WO2021085331A1 - Laser gas concentration meter - Google Patents

Laser gas concentration meter Download PDF

Info

Publication number
WO2021085331A1
WO2021085331A1 PCT/JP2020/039933 JP2020039933W WO2021085331A1 WO 2021085331 A1 WO2021085331 A1 WO 2021085331A1 JP 2020039933 W JP2020039933 W JP 2020039933W WO 2021085331 A1 WO2021085331 A1 WO 2021085331A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical path
absorbance
gas
transmitted
Prior art date
Application number
PCT/JP2020/039933
Other languages
French (fr)
Japanese (ja)
Inventor
雅志 大島
Original Assignee
ゼネラルパッカー株式会社
雅志 大島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼネラルパッカー株式会社, 雅志 大島 filed Critical ゼネラルパッカー株式会社
Publication of WO2021085331A1 publication Critical patent/WO2021085331A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers

Definitions

  • a laser beam having a specific wavelength is transmitted through a packaging container or bag sealed by gas substitution or similar packaging, and an absorption spectrum of a specific wavelength that changes before and after transmission of the packaging.
  • the present invention relates to a laser gas densitometer for measuring the gas concentration of a specific gas remaining inside the package based on the above.
  • the air in the packaging bag containing a specific oxidation-causing gas that may shorten the storage period or the taste period of the packaged object is removed, and the gas is converted into an inert gas such as nitrogen or carbon dioxide.
  • Gas replacement packaging is performed after replacement and sealing.
  • the oxidation-causing gas inside the packaging bag is removed, and the packaged object, particularly the food, can secure a long storage period and a shelf life.
  • inspection step after the gas replacement packaging inspection is performed to see if the concentration of the oxidation-causing gas, particularly oxygen, is equal to or less than the predetermined value.
  • the current mainstream method for measuring oxygen concentration is a sampling test in which an injection needle is inserted into a packaging bag arbitrarily selected as a sample and the composition of a small amount of gas sucked from the packaging bag is inspected.
  • the packaging bag on which the injection mark is formed must be discarded.
  • the inspection time becomes long, and there is a disadvantage that the economic and time loss increases due to the increased amount of waste.
  • the packaging bag gas concentration measuring device 1 disclosed in Japanese Patent Application Laid-Open No. 2010-107197 is connected to a laser generating unit 2 having a transmitter and the laser generating unit 2, and a laser beam is emitted. It is composed of a main head 3 to be generated, a laser light receiving unit 4 having a receiver, and a sub head 5 which is connected to the laser light receiving unit 4 and receives laser light.
  • the main head 3 and the sub-head 5 provided so as to be relatively close to each other and separated from each other sandwich the packaging bag B to be inspected held by the pair of grips 6 and 6, and the sub-head 5 is relative to the main head 3.
  • the laser beam can pass through the packaging bag from the main head 3 to the sub head 5 at the shortest distance, and when measuring the concentration of a specific gas such as oxygen remaining in the packaging bag, the packaging bag It has become possible to quickly measure all of the packaging bags without damaging the packaging bags.
  • the gas concentration measuring device 1 when the laser beam is transmitted through the packaging bag B, the main head 3 and the sub head 5 are attracted to the packaging bag B, or a laser forming a laser gas concentration meter is generated.
  • the influence of the atmosphere around the packaging bag B is suppressed as much as possible. ..
  • the gas purge mechanism is provided in the laser gas densitometer, the structure of the instrument becomes complicated, so that it may be difficult to install the gas purge mechanism in the limited space on the packaging machine.
  • the problem to be solved by the present invention is to provide a laser gas densitometer capable of measuring the gas concentration even in an atmospheric atmosphere, simplifying the configuration, and saving space. Is.
  • the laser gas densitometer according to claim 1 transmits laser light of a specific wavelength through a packaging container or bag that is gas-replaced and sealed, or a packaging body similar thereto, and transmits the packaging body. It is a laser type gas densitometer that measures the gas concentration of the specific gas remaining inside the package based on the absorption spectrum of the specific wavelength that changes before and after.
  • the laser gas densitometer is The laser generating part that emits the laser light and A laser receiving unit that receives the laser light and The laser beam including an incident optical path from the laser generating portion to the packaging, an attenuated optical path through which the laser light is transmitted through the packaging and attenuated, and a transmitted optical path from the packaging to the laser receiving portion.
  • the measuring unit that has a total optical path of Based on the incident intensity of the laser beam in the laser generating section and the transmittance of the laser beam transmitted through the package obtained from the transmitted light intensity of the laser beam in the laser receiving section, the said on the attenuated optical path. It has a measuring unit that measures the attenuated absorbance of the specific wavelength absorbed by the specific gas inside the package and calculates the concentration of the specific gas inside the package based on the attenuated absorbance. From the total absorbance of the specific wavelength in which the laser light is absorbed by the specific gas on the total optical path, the measuring unit determines the incident absorbance of the specific wavelength in which the laser light is absorbed by the specific gas on the incident light path.
  • the attenuated absorbance of the specific wavelength on the attenuated optical path is measured. It is characterized in that the concentration of the specific gas inside the package is calculated based on the attenuated absorbance and the optical path length of the attenuated optical path.
  • the laser gas densitometer according to claim 2 is characterized in that, in the invention according to claim 1, the optical path length of the attenuated optical path is constant at a predetermined length.
  • the laser gas densitometer according to claim 3 is characterized in that, in the invention according to claim 1, the incident optical path and the transmitted optical path are in an atmospheric atmosphere.
  • the laser gas densitometer according to claim 4 is characterized in that the optical path length of the attenuated optical path is longer than the optical path length of the incident optical path or the transmitted optical path.
  • the laser gas densitometer according to claim 5 is the invention according to claim 1, when the incident absorbance and the transmitted absorbance change due to a predetermined disturbance in an atmospheric atmosphere.
  • the laser beam is emitted to the measuring unit a plurality of times to obtain the total average absorbance of the specific gas on the total optical path. Based on the total average absorbance, the incident absorbance and the corrected absorbance for correcting the transmitted absorbance are determined.
  • the incident absorbance corrected by the corrected absorption and the transmitted absorbance are applied.
  • the laser gas densitometer according to claim 6 is based on the invention according to claim 5, wherein the disturbance is caused by a change in the air temperature or atmospheric pressure in the atmosphere, or the optical path length of the incident optical path or the transmitted optical path. It is characterized by being.
  • the incident light intensity of the laser light emitted from the laser generating portion and the transmitted light intensity of the laser light transmitted through the package to be measured and incident on the laser receiving portion can be determined.
  • the measurement was made so that the transmittance of the transmitted light with respect to the incident light was measured. Since the total absorbance of the laser light absorbed between the laser generating part and the laser receiving part can be obtained based on the transmittance, the incident light from the laser generating part to the package is absorbed by the specific gas from the total absorbance.
  • the attenuated absorbance absorbed by the specific gas in the package can be obtained.
  • the gas concentration inside the package is measured based on the attenuated absorbance and the optical path length inside the package. Thereby, the gas concentration can be measured even when the incident light or the transmitted light of the laser light is absorbed by the specific gas other than the inside of the package.
  • the total absorbance including the incident absorbance related to the incident light and the transmitted absorbance related to the transmitted light is measured, and the attenuated absorbance related to the inside of the package is obtained from the total absorbance, so that the incident light or the transmitted light can be specified.
  • the gas concentration of the specific gas inside the package can be measured. Therefore, it is not necessary to purge the gas on the optical path of the incident light or the transmitted light to remove the specific gas, so that the configuration of the laser gas densitometer can be simplified. Space can be achieved. Further, the laser beam was emitted a plurality of times to obtain the total average absorbance on the total light path, and the corrected absorbance was obtained from the total average absorbance. By applying the corrected absorbance to the incident absorbance or the transmitted absorbance, even if the measured value is disturbed by disturbance, it can be kept within a predetermined range, and the gas concentration of a specific gas inside the package is measured. be able to.
  • FIG. 1 is a block diagram showing an outline of the configuration of a laser gas densitometer according to the present embodiment.
  • the laser gas densitometer 10 is installed between a laser generating unit 11 that emits laser light, a laser receiving unit 12 that receives laser light, and a laser generating unit 11 and a laser receiving unit 12, and measures a specific gas to be measured. It includes a measuring unit 13 capable of measuring the gas concentration.
  • the laser generation unit 11 includes a laser light source 14 and a control unit 15 that sets the wavelength of the laser light emitted from the light source 14 to a specific wavelength and adjusts the wavelength to a predetermined light intensity.
  • the laser light source 14 includes a semiconductor laser element made of a diode having a variable wavelength, and is formed so as to be able to output laser light in the near infrared region.
  • the semiconductor laser device according to this embodiment is a high-power semiconductor laser device called a DFB (Distributed Feed Back) laser.
  • the control unit 15 adjusts the wavelength of the laser light output from the semiconductor laser element to a specific wavelength peculiar to the specific gas to be measured, and controls to amplify the laser light so that it is emitted at a predetermined incident light intensity. It is formed like this. Further, the control unit 15 is formed so as to output an incident light signal related to the emitted incident light intensity to the measuring unit 17.
  • the specific gas measured by the laser gas densitometer according to this embodiment is oxygen gas (O 2 ).
  • the absorption wavelength band peculiar to the oxygen gas is the 760 nm band, and among the plurality of absorption lines included in the absorption wavelength band, a specific wavelength related to one absorption line is selected as the output wavelength of the laser beam.
  • the laser light receiving unit 12 measures the gas concentration based on the light receiving sensor 16 that receives the laser light transmitted through the measuring unit 13 and attenuated, and the light receiving signal from the light receiving sensor 16. It has a part 17.
  • the light receiving sensor 16 is composed of an element that converts the transmitted light intensity of the laser light transmitted through the measuring unit 13 into an electrically transmitted light signal, for example, a photodiode. As a result, the transmitted light intensity of the laser light transmitted through and attenuated by the measuring unit 13 can be electrically processed.
  • the measuring unit 17 calculates the transmittance based on the transmitted light signal related to the transmitted light intensity and the incident light signal related to the incident light intensity of the laser light output from the control unit 15 of the laser generating unit 11, and the transmittance is calculated.
  • the absorbance of the laser beam from the specific gas is determined based on the above, and the gas concentration of the specific gas in the packaging bag is measured based on the absorbance.
  • the measuring unit 13 is configured to be capable of transmitting laser light to the measurement target.
  • the measurement target is a packaging bag or a packaging container or a packaging body 50 similar thereto, such as a plastic bag, a packaging bag such as a pouch, or a packaging container such as a bottle or a plastic case. , Used for various packaging.
  • the transmittance of the laser beam related to these packages 50 is assumed to be 0.00001% or more and less than 100%. That is, the laser gas densitometer according to the present embodiment is effective as long as the laser light is transmitted even when the package 50 is colored. As shown in FIG.
  • the optical path related to the laser light in the measuring unit 13 is a total optical path 20 from the laser generating unit 11 to the laser receiving unit 12, and the total optical path 20 is from the laser generating unit 11 to the package. It is composed of an incident light path 21 related to incident light up to 50, an attenuated light path 22 in which laser light is absorbed by a specific gas and attenuated inside the package 50, and a transmitted light path 23 related to transmitted light from the package 50 to the laser receiving portion 12. ..
  • the laser gas densitometer 10 having the above configuration analyzes a specific gas by tunable semiconductor laser absorption spectroscopy.
  • Variable Diameter Laser Absorption Spectroscopy is a cell in which a predetermined incident light intensity related to a laser beam output from a semiconductor laser element and a gas containing a specific gas to be measured are sealed. This is a method in which the transmittance is obtained from the transmitted light intensity of the transmitted laser light absorbed by the specific gas, and the gas concentration is measured from the absorbance of the laser light based on the transmittance. It is known that each gas including a specific gas has a unique absorption wavelength band, and the absorption wavelength band includes a plurality of absorption lines related to wavelengths that absorb light more strongly.
  • TDLAS modulates and amplifies the wavelength of the output laser light in the near-infrared region so as to match the specific wavelength of one absorption line among the plurality of absorption lines of the specific gas to be measured. It is configured as follows. Then, the gas concentration is measured by obtaining the absorbance of the laser beam based on the absorption spectrum of a specific wavelength that changes before and after the transmission of the cell.
  • Tunable semiconductor laser absorption spectroscopy measures gas concentration based on Lambert-Beer's law.
  • the Lambert-Beer's law the incident light intensity I 0, packaging bag B to the transmitted light intensity transmitted through I t, the transmittance of the transmitted light to incident light as T, and the optical path length L, and gas concentration C Then, Equation 1 is established with the luminous intensity A of the laser light emitted in the absorption spectrum of a specific wavelength.
  • is a unique absorption coefficient at which a predetermined gas to be measured absorbs laser light.
  • the total optical path length related to the total optical path 20 is L, and the gas concentration absorbed by the total optical path 20 is defined as shown in FIG. If C, the by equation 1, the incident light intensity I 0, the transmitted light intensity I t, Sadamari total absorbance a of emitted laser light in the absorption spectrum of a specific wavelength on Sohikariro 20, the total optical path
  • the gas concentration C absorbed in can be determined.
  • the total optical path length L is incident optical path length L 0
  • the total absorbance A is incident absorbance is the absorbance in the incident light path 21 A 0 is the sum of the attenuated absorbance A a absorbed in the attenuated optical path 22 inside the package and the transmitted absorbance At absorbed in the transmitted optical path 23.
  • Equation 2 (2) if with respect to the incident optical path length L 0 and the transmission optical path length L t, and the package such 50 inside the attenuation optical path length L a relatively long, incident optical path length L 0 it is possible to reduce the influence of the gas concentration in the transmission optical path length L t.
  • length of the wrapper class 50 to be measured i.e. transmission optical path as the incident optical path length L 0 with respect to attenuation optical path length L a
  • the length L t may be adjusted so as to be relatively extremely short. Thereby, the measurement accuracy of the gas concentration Ca of the specific gas inside the package 50 can be improved.
  • the gas concentration C 0 on the incident optical path 21 is set. Since the gas concentration C t on the transmitted light path 23 can be regarded as the same value or a value close to each other, the gas concentration on the transmitted light path 23 is set to C 0, and the gas concentration C on the incident light path 21 is set. It can be summarized by 0. Thereby, the gas concentration Ca inside the package 50 can be measured not only in the gas-purged environment but also in the atmospheric atmosphere.
  • the gas concentration C 0 of the incident light path 21 on transmission optical path 23 of the gas If it is the concentration C t is the same value as or close to the gas concentration C on Sohikariro 20, gas concentration C a of the inner package such 50, determining the ratio of the attenuation optical path length L a to the total optical path length L Can be done.
  • a constant attenuation optical path L a is, i.e., it is preferred size of the package such 50 is constant, a package such 50 inside the attenuation path 22 is constant. This can be obtained stably the gas concentration C a of the inner wrapper class.
  • the density per unit of the atmosphere containing a specific gas changes from moment to moment depending on the atmospheric pressure and the air temperature. That is, since the number of atoms or molecules of the specific gas contained in the atmosphere per unit also changes from moment to moment, one of the multiple absorption lines of the specific gas is obtained by TDLAS.
  • the number of atoms or molecules that absorb the laser beam per unit changes with atmospheric pressure or temperature, so the gas concentration measured based on that changes is stable. There is a risk that it will not work.
  • the thickness of the packaging bag depends on the amount of the inert gas sealed in the packaging bag and the internal pressure. As a changes, the incident optical path length L 0 and the transmitted optical path length L t with respect to the total optical path length L also change accordingly.
  • the change in laser type gas densitometer 10 of the surrounding environment such as temperature, or incident that changes based on the attenuation optical path length L a that varies with the thickness and the length of the wrapper class 50
  • the gas concentration Ca inside the package 50 may easily change due to a disturbance such as an optical path length L 0 or a transmitted optical path length L t length. Therefore, the laser gas densitometer 10 according to the present embodiment sets the measurement time to a predetermined length and emits the laser beam onto the total optical path 20 a plurality of times within the measurement time to obtain a plurality of actually measured values. It is configured to get.
  • the total average absorbance Av which is the average of the above, can be obtained.
  • the total average absorbance A av a number of measurements, the variation of the measured actual values, can be obtained and the standard deviation, a correction absorbance A c. Further, by applying the correction absorbance A c based on the standard deviation relative to the measured value of the total absorbance A, it is possible to keep the measured value obtained by correcting the measured values within a predetermined range.
  • the correction absorbance A c since those affect all absorbance on Sohikariro 20, seeking correction factor of the correction the absorbance A c to the total absorbance A, incident on the incident light path 21 the correction factor by applying relative absorbance a 0, and transmission absorbance a t on transmission optical path 23, it is possible to improve the measurement accuracy of the wrapper class 50 inside the gas concentration C a.
  • the correction factor for correcting the absorbance A av with respect to the total absorbance A to feedback to the measured value when the gas concentration measurement.
  • FIG. 2 is a graph showing the results of the first experimental example
  • FIG. 3 is a graph showing the results of the second experimental example
  • FIG. 4 is a graph showing the results of the third experimental example.
  • the attenuation path length L a of the attenuation optical path 22 on the measuring unit 13 is obtained by setting the 17 mm.
  • transmitted light path length L t and the incident optical path length L 0 is as relatively sufficiently shorter than the attenuation path length L a, i.e., the laser generator 11 and the packaging member such 50,
  • the distance between the package 50 and the laser receiving unit 12 is set to be shorter than the length of the package 50.
  • the incident optical path length L 0 and the transmitted optical path length L t are ignored in this first experiment.
  • FIG. 2 is a graph showing the measurement results when the packages 50 are not installed in the measuring unit 13. That is, the measurement result in the case that can be regarded as total optical path length L and attenuation optical path length L a match.
  • the standard deviation of the measured values relating to the gas concentration of oxygen gas was 0.05%.
  • the standard deviation of the measured value related to the gas concentration of oxygen gas was 0.
  • the second experiment will be described with reference to FIG.
  • the second experiment the length of the attenuation optical path length L a of the first experiment for it was 17 mm, the point where the attenuation optical path length L a and 38mm are different.
  • transmitted light path length L t and the incident optical path length L 0 is as relatively sufficiently shorter than the attenuation path length L a, i.e., the laser generating unit 11
  • the packaging body 50, or the distance between the packaging body 50 and the laser receiving unit 12 was set to be shorter than the length of the packaging body 50.
  • the incident optical path length L 0 and the transmitted optical path length L t are ignored in this second experiment.
  • FIG. 3 is a graph showing the measurement results when the packages 50 are installed in the measuring unit 13.
  • the packaging body 50 is a packaging bag used in the experiment performed auxiliary in the first experiment, and is a transparent polyethylene packaging bag capable of sufficiently securing the attenuated optical path length La.
  • the standard deviation of the measured values relating to the gas concentration of oxygen gas was 0.031%. Compared with FIG. 3 according to the first experiment, it is clear that the measured value is within a predetermined range.
  • the standard deviation of the measured values relating to the gas concentration of oxygen gas was 0.028%. That is, it is confirmed that the variation in the measured value can be suppressed and the measurement accuracy can be improved by lengthening the total optical path 20 and also lengthening the attenuated optical path 22 inside the package 50. Was done.
  • the third experiment will be described with reference to FIG.
  • the third experiment as in the second experiment, and sets the attenuation optical path length L a to 38mm.
  • transmission optical path length L t and the incident optical path length L 0 is as relatively sufficiently shorter than the attenuation path length L a, i.e., the laser generator 11 and the packaging member such 50
  • the distance between the package 50 and the laser receiving unit 12 is set to be shorter than the length of the package 50.
  • the incident optical path length L 0 and the transmitted optical path length L t are ignored in this third experiment.
  • five packaging bags in which the gas concentration of oxygen gas inside the packaging body 50 was already adjusted to a predetermined low oxygen concentration were prepared.
  • the gas concentrations are 0.3% for the packaging bag B1, 0.25% for the packaging bag B2, 0.5% for the packaging bag B3, 0.2% for the packaging bag B4, and 0.35% for the packaging bag B5. It is adjusted to be. Then, the measurement unit 13 was repeatedly measured 20 times by changing the position of each packaging bag 5 times. Therefore, the number of measurements is 100 for each packaging bag.
  • the graph shown in FIG. 4 shows the measurement results for the packaging bags B1 to B5. The standard deviation of the total number of measurements of 500 was 0.04%, which was measured by changing the packaging bags adjusted to different low oxygen concentrations and changing the position of the packaging bags. Further, as is clear from the graph of FIG. 4, it was confirmed that the packaging bag B3 in which the gas concentration of oxygen gas was adjusted to 0.5% could be detected in the third experiment.
  • the package 50 The normal value is set when the gas concentration of the oxygen gas is 0.2% or less with respect to the gas concentration of the inert gas filled therein. Then, the case where the gas concentration of the oxygen gas is 0.2% to 0.5% is set as the allowable range, and when the gas concentration is 0.5% or more, it is judged as a defective product and 0.5% or more.
  • the packaging 50 in which oxygen gas is sealed is set to be excluded. From the viewpoint of quality assurance, the standard deviation of the measured value of gas concentration is targeted to be within 0.033%. As is clear from FIG.
  • the laser type gas concentration meter 10 since the packaging bag B having a gas concentration of 0.5% can be detected, the laser type gas concentration meter 10 according to the present embodiment is in an air atmosphere. Can also measure gas concentration. However, a sufficient standard deviation cannot be obtained in the third experiment with respect to the desired standard deviation. Therefore, in order to fit within 0.033 percent standard deviation
  • the target improves the detection sensitivity by extending the total optical path length L and attenuation optical path length L a, further incident upon the attenuation path length L a
  • a device for holding the packages 50 is provided so that the optical path length L 0 and the transmitted optical path length L t are kept relatively short, it is considered that the value related to the standard deviation can be further improved.
  • the laser gas densitometer 10 according to the present embodiment, even if the measuring unit 13 between the laser generating unit 11 and the laser receiving unit 12 is in an atmospheric atmosphere, the inside of the packaging body 50 arranged in the measuring unit 13 The gas concentration of a specific gas can be measured. As a result, the device related to the gas purge can be omitted, so that the configuration of the gas concentration measuring device using the laser type gas concentration meter 10 according to the present embodiment can be simplified, and further, thereby, on the packaging machine. It can be easily installed in a limited space.

Abstract

[Problem] To provide a laser gas concentration meter that enables measurement of gas concentrations even under atmospheric conditions and that has a simplified configuration to achieve space saving. [Solution] A laser gas concentration meter 10 measures the concentration of residual specific gas by transmitting laser light of a specific wavelength through a gas-substituted and hermetically-sealed packaging material 50 in a measurement unit 13 disposed between a laser generating unit 11 and a laser receiving unit 12. The measurement unit has a total light path 20 of laser light including an incident light path 21, an attenuated light path 22 where the laser light transmitted through the packaging material is attenuated, and a transmitted light path 23. An attenuated absorbance of a specific wavelength on the attenuated light path is determined by eliminating, from a total absorbance with which the laser light has been absorbed by the specific gas on the total light path, an incident absorbance with which the laser light has been absorbed on the incident light path, and a transmitted absorbance with which the laser light has been absorbed on the transmitted light path. The concentration of residual gas in the packaging material is calculated from the attenuated absorbance and the length of the attenuated light path 22.

Description

レーザー式ガス濃度計Laser gas densitometer
 本発明は、特定波長のレーザー光を、ガス置換されて密封された包装容器又は包装袋或いはこれらに類する包装体類に透過させて、当該包装体類の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装体類の内部に残留している特定ガスのガス濃度を測定するようにしたレーザー式ガス濃度計に関するものである。 In the present invention, a laser beam having a specific wavelength is transmitted through a packaging container or bag sealed by gas substitution or similar packaging, and an absorption spectrum of a specific wavelength that changes before and after transmission of the packaging. The present invention relates to a laser gas densitometer for measuring the gas concentration of a specific gas remaining inside the package based on the above.
 従来、包装工程において、被包装物の保存期間又は賞味期間を縮めるおそれのある特定の酸化原因ガスを含んだ包装袋内の空気を除去して、不活性ガス、たとえば窒素、二酸化炭素等にガス置換してから密封するガス置換包装が行われている。これによって、包装袋内部の酸化原因ガスは除去され、被包装物、特に食品は、長期の保存期間、賞味期間を確保することができる。
 そして、ガス置換包装後の検査工程において、酸化原因ガス、特に酸素の濃度が既定値以下であるかどうか検査が行われている。
 しかしながら、現在主流である酸素濃度の測定方法は、サンプルとして任意に選択した包装袋に注射針を刺し、包装袋内から吸引した少量のガスの組成を検査する抜き取り検査である。当該抜き取り検査では、注射痕が形成された包装袋は廃棄しなければならない。また、検査精度を上げるためにサンプル数を増やすと検査時間が長くなり、増加する廃棄量によって経済的、時間的損失が増大する不都合があった。
Conventionally, in the packaging process, the air in the packaging bag containing a specific oxidation-causing gas that may shorten the storage period or the taste period of the packaged object is removed, and the gas is converted into an inert gas such as nitrogen or carbon dioxide. Gas replacement packaging is performed after replacement and sealing. As a result, the oxidation-causing gas inside the packaging bag is removed, and the packaged object, particularly the food, can secure a long storage period and a shelf life.
Then, in the inspection step after the gas replacement packaging, inspection is performed to see if the concentration of the oxidation-causing gas, particularly oxygen, is equal to or less than the predetermined value.
However, the current mainstream method for measuring oxygen concentration is a sampling test in which an injection needle is inserted into a packaging bag arbitrarily selected as a sample and the composition of a small amount of gas sucked from the packaging bag is inspected. In the sampling inspection, the packaging bag on which the injection mark is formed must be discarded. Further, if the number of samples is increased in order to improve the inspection accuracy, the inspection time becomes long, and there is a disadvantage that the economic and time loss increases due to the increased amount of waste.
 これに対し、本願出願人は、包装袋を損傷することなく内部の特定ガスの濃度を測定可能なガス濃度測定装置を開発した。
 特開2010-107197に開示されている包装袋のガス濃度測定装置1は、図7に示すように、発信器を有するレーザー発生部2と、当該レーザー発生部2に連接し、レーザー光が射出される主ヘッド3、並びに受信器を有するレーザー受光部4と、当該レーザ受光部4に連接し、レーザー光が入射される副ヘッド5とからなる。相対的に接近及び離隔自在に設けられた主ヘッド3と副ヘッド5は、、一対のグリップ6,6に把持された検査対象の包装袋Bを挟んで、主ヘッド3に対して副ヘッド5が正対するように配置されている。これによって、主ヘッド3から副ヘッド5へ最短距離でレーザー光が包装袋を透過することができ、包装袋内に残留している酸素等の特定ガスの濃度を測定する際に、包装袋の全数について当該包装袋を一切損傷することなく迅速に測定することができるようになった。
On the other hand, the applicant of the present application has developed a gas concentration measuring device capable of measuring the concentration of a specific gas inside without damaging the packaging bag.
As shown in FIG. 7, the packaging bag gas concentration measuring device 1 disclosed in Japanese Patent Application Laid-Open No. 2010-107197 is connected to a laser generating unit 2 having a transmitter and the laser generating unit 2, and a laser beam is emitted. It is composed of a main head 3 to be generated, a laser light receiving unit 4 having a receiver, and a sub head 5 which is connected to the laser light receiving unit 4 and receives laser light. The main head 3 and the sub-head 5 provided so as to be relatively close to each other and separated from each other sandwich the packaging bag B to be inspected held by the pair of grips 6 and 6, and the sub-head 5 is relative to the main head 3. Are arranged so that they face each other. As a result, the laser beam can pass through the packaging bag from the main head 3 to the sub head 5 at the shortest distance, and when measuring the concentration of a specific gas such as oxygen remaining in the packaging bag, the packaging bag It has become possible to quickly measure all of the packaging bags without damaging the packaging bags.
特開2010-107197号公報JP-A-2010-107197
 しかしながら、上記のガス濃度測定装置1は、包装袋Bに対してレーザー光を透過させるとき、包装袋Bに主ヘッド3と副ヘッド5を吸着させたり、レーザー式ガス濃度計を構成するレーザー発生部及びレーザー受光部の内部を窒素ガスでガスパージして酸素ガスを除去してから測定し、酸素ガスのガス濃度を測定するとき、包装袋Bの周囲の大気の影響を極力抑えるようにしている。このように、測定対象の包装袋ごとに吸着工程を設けた場合、包装袋を測定するための時間が長くなるため、包装機の生産性が低下するおそれがある。また、レーザー式ガス濃度計でガスパージ機構を設けると、計器の構造が複雑になるため、包装機上の限られたスペースに設置することが困難となるおそれがある。 However, in the gas concentration measuring device 1 described above, when the laser beam is transmitted through the packaging bag B, the main head 3 and the sub head 5 are attracted to the packaging bag B, or a laser forming a laser gas concentration meter is generated. When measuring the gas concentration of oxygen gas by purging the inside of the part and the laser receiving part with nitrogen gas to remove oxygen gas, the influence of the atmosphere around the packaging bag B is suppressed as much as possible. .. As described above, when the adsorption step is provided for each packaging bag to be measured, the time for measuring the packaging bag becomes long, so that the productivity of the packaging machine may decrease. Further, if the gas purge mechanism is provided in the laser gas densitometer, the structure of the instrument becomes complicated, so that it may be difficult to install the gas purge mechanism in the limited space on the packaging machine.
 したがって、本発明が解決しようとする課題は、大気雰囲気下であってもガス濃度を測定可能にすると共に、構成をシンプルにして、省スペース化を可能にしたレーザー式ガス濃度計を提供することである。 Therefore, the problem to be solved by the present invention is to provide a laser gas densitometer capable of measuring the gas concentration even in an atmospheric atmosphere, simplifying the configuration, and saving space. Is.
 請求項1に記載のレーザー式ガス濃度計は、特定波長のレーザー光を、ガス置換されて密封された包装容器又は包装袋或いはこれらに類する包装体類に透過させて、前記包装体類の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装体類の内部に残留している特定ガスのガス濃度を測定するようにしたレーザー式ガス濃度計であって、
当該レーザー式ガス濃度計は、
前記レーザー光を射出するレーザー発生部と、
前記レーザー光を受光するレーザー受光部と、
前記レーザー発生部から前記包装体類までの入射光路、前記レーザー光が前記包装体類を透過して減衰する減衰光路、及び前記包装体類から前記レーザー受光部までの透過光路からなる前記レーザー光の総光路を有する測定部と、
前記レーザー発生部における前記レーザー光の入射強度、及び前記レーザー受光部における前記レーザー光の透過光強度から求められる前記包装体類を透過したレーザー光の透過率に基づいて、前記減衰光路上で前記包装体類内部の前記特定ガスに吸収された前記特定波長の減衰吸光度を測定して、当該減衰吸光度に基づいて前記包装体類内部の前記特定ガスの濃度を算出する計測部とを有し、
当該計測部が、前記総光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の総吸光度から
前記入射光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の入射吸光度と、
前記透過光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の透過吸光度とを除外して、
前記減衰光路上における前記特定波長の前記減衰吸光度を計測し、
当該減衰吸光度と前記減衰光路の前記光路長に基づいて、前記包装体類内部の前記特定ガスの濃度を算出するようにしたことを特徴とする。
The laser gas densitometer according to claim 1 transmits laser light of a specific wavelength through a packaging container or bag that is gas-replaced and sealed, or a packaging body similar thereto, and transmits the packaging body. It is a laser type gas densitometer that measures the gas concentration of the specific gas remaining inside the package based on the absorption spectrum of the specific wavelength that changes before and after.
The laser gas densitometer is
The laser generating part that emits the laser light and
A laser receiving unit that receives the laser light and
The laser beam including an incident optical path from the laser generating portion to the packaging, an attenuated optical path through which the laser light is transmitted through the packaging and attenuated, and a transmitted optical path from the packaging to the laser receiving portion. With a measuring unit that has a total optical path of
Based on the incident intensity of the laser beam in the laser generating section and the transmittance of the laser beam transmitted through the package obtained from the transmitted light intensity of the laser beam in the laser receiving section, the said on the attenuated optical path. It has a measuring unit that measures the attenuated absorbance of the specific wavelength absorbed by the specific gas inside the package and calculates the concentration of the specific gas inside the package based on the attenuated absorbance.
From the total absorbance of the specific wavelength in which the laser light is absorbed by the specific gas on the total optical path, the measuring unit determines the incident absorbance of the specific wavelength in which the laser light is absorbed by the specific gas on the incident light path. When,
Excluding the transmitted absorbance of the specific wavelength in which the laser beam is absorbed by the specific gas on the transmitted light path,
The attenuated absorbance of the specific wavelength on the attenuated optical path is measured.
It is characterized in that the concentration of the specific gas inside the package is calculated based on the attenuated absorbance and the optical path length of the attenuated optical path.
 請求項2に記載のレーザー式ガス濃度計は、請求項1に記載の発明において、前記減衰光路の光路長が所定の長さで一定であることを特徴とする。 The laser gas densitometer according to claim 2 is characterized in that, in the invention according to claim 1, the optical path length of the attenuated optical path is constant at a predetermined length.
 請求項3に記載のレーザー式ガス濃度計は、請求項1に記載の発明において、前記入射光路と前記透過光路が大気雰囲気下であることを特徴とする。 The laser gas densitometer according to claim 3 is characterized in that, in the invention according to claim 1, the incident optical path and the transmitted optical path are in an atmospheric atmosphere.
 請求項4に記載のレーザー式ガス濃度計は、前記減衰光路の光路長が、前記入射光路又は前記透過光路の光路長よりも長いことを特徴とする。 The laser gas densitometer according to claim 4 is characterized in that the optical path length of the attenuated optical path is longer than the optical path length of the incident optical path or the transmitted optical path.
 請求項5に記載のレーザー式ガス濃度計は、請求項1に記載の発明において、前記入射吸光度と前記透過吸光度が、大気雰囲気下で所定の外乱によって変化するとき、
前記レーザー光を前記測定部へ複数回射出して、前記総光路上における前記特定ガスの総平均吸光度を求め、
当該総平均吸光度に基づいて前記入射吸光度と前記透過吸光度を補正する補正吸光度を定めて、
前記包装体類内部の前記減衰光路上における前記特定波長の前記減衰吸光度を計測するとき、
前記補正吸収度で補正された前記入射吸光度と前記透過吸光度を適用するようにしたことを特徴とする。
The laser gas densitometer according to claim 5 is the invention according to claim 1, when the incident absorbance and the transmitted absorbance change due to a predetermined disturbance in an atmospheric atmosphere.
The laser beam is emitted to the measuring unit a plurality of times to obtain the total average absorbance of the specific gas on the total optical path.
Based on the total average absorbance, the incident absorbance and the corrected absorbance for correcting the transmitted absorbance are determined.
When measuring the attenuated absorbance of the specific wavelength on the attenuated optical path inside the package,
It is characterized in that the incident absorbance corrected by the corrected absorption and the transmitted absorbance are applied.
 請求項6に記載のレーザー式ガス濃度計は、請求項5に記載の発明において、前記外乱が、前記大気雰囲気の気温又は気圧、或いは前記入射光路又は前記透過光路の光路長の変化によるものであることを特徴とする。 The laser gas densitometer according to claim 6 is based on the invention according to claim 5, wherein the disturbance is caused by a change in the air temperature or atmospheric pressure in the atmosphere, or the optical path length of the incident optical path or the transmitted optical path. It is characterized by being.
 本発明に係るレーザー式ガス濃度計によれば、レーザー発生部から射出したレーザー光の入射光強度と、測定対象の包装体を透過してレーザー受光部へ入射されたレーザー光の透過光強度を測定して、入射光に対する透過光の透過率を測定するようにした。当該透過率に基づいて、レーザー発生部とレーザー受光部間で吸収されたレーザー光の総吸光度を求めることができるので、当該総吸光度からレーザー発生部から包装体までの入射光が特定ガスに吸収された入射吸光度と、包装体からレーザー受光部までの透過光が特定ガスに吸収された透過光吸光度を引くと、包装体内で特定ガスに吸収された減衰吸光度を求めることができる。この減衰吸光度と、包装体内部の光路長に基づいて包装体内部のガス濃度を測定するようにした。
 これによって、包装体内部以外、すなわちレーザー光の入射光または透過光が特定ガスに吸収されるような場合であっても、ガス濃度を測定することができる。
 また、入射光に係る入射吸光度と透過光に係る透過吸光度を含めた総吸光度を測定して、当該総吸光度から包装体内部に係る減衰吸光度を求めるようにしたので、入射光又は透過光が特定ガスに吸収された場合であっても、包装体内部の特定ガスのガス濃度を測定することができる。そのため、入射光又は透過光の光路上をガスパージして特定ガスを除去する必要が無くなるので、レーザー式ガス濃度計の構成をシンプルにすることができ、たとえば、包装機上に設置するとき、省スペース化を図ることができる。
 さらに、レーザー光を複数回射出して総光路上における総平均吸光度を求めて、当該総平均吸光度から補正吸光度を求めるようにした。当該補正吸光度を入射吸光度又は透過吸光度に適用することによって、外乱によって測定値が乱れた場合であっても、所定の範囲内に収めることができ、包装体内部の特定ガスのガス濃度を測定することができる。
According to the laser gas densitometer according to the present invention, the incident light intensity of the laser light emitted from the laser generating portion and the transmitted light intensity of the laser light transmitted through the package to be measured and incident on the laser receiving portion can be determined. The measurement was made so that the transmittance of the transmitted light with respect to the incident light was measured. Since the total absorbance of the laser light absorbed between the laser generating part and the laser receiving part can be obtained based on the transmittance, the incident light from the laser generating part to the package is absorbed by the specific gas from the total absorbance. By subtracting the incident absorbance obtained and the transmitted light absorbance of the transmitted light from the package to the laser receiving portion absorbed by the specific gas, the attenuated absorbance absorbed by the specific gas in the package can be obtained. The gas concentration inside the package is measured based on the attenuated absorbance and the optical path length inside the package.
Thereby, the gas concentration can be measured even when the incident light or the transmitted light of the laser light is absorbed by the specific gas other than the inside of the package.
In addition, the total absorbance including the incident absorbance related to the incident light and the transmitted absorbance related to the transmitted light is measured, and the attenuated absorbance related to the inside of the package is obtained from the total absorbance, so that the incident light or the transmitted light can be specified. Even when absorbed by the gas, the gas concentration of the specific gas inside the package can be measured. Therefore, it is not necessary to purge the gas on the optical path of the incident light or the transmitted light to remove the specific gas, so that the configuration of the laser gas densitometer can be simplified. Space can be achieved.
Further, the laser beam was emitted a plurality of times to obtain the total average absorbance on the total light path, and the corrected absorbance was obtained from the total average absorbance. By applying the corrected absorbance to the incident absorbance or the transmitted absorbance, even if the measured value is disturbed by disturbance, it can be kept within a predetermined range, and the gas concentration of a specific gas inside the package is measured. be able to.
第1実施例に係るレーザー式ガス濃度計の構成の概略を示すブロック図である。It is a block diagram which shows the outline of the structure of the laser type gas densitometer which concerns on 1st Example. 第1実施例に係るレーザー式ガス濃度計に関する第1実験の結果を示すグラフ図である。It is a graph which shows the result of the 1st experiment about the laser type gas densitometer which concerns on 1st Example. 第1実施例に係るレーザー式ガス濃度計に関する第2実験の結果を示すグラフ図である。It is a graph which shows the result of the 2nd experiment about the laser type gas densitometer which concerns on 1st Example. 第1実施例に係るレーザー式ガス濃度計に関する第3実験の結果を示すグラフ図である。It is a graph which shows the result of the 3rd experiment about the laser type gas densitometer which concerns on 1st Example. 従来のガス濃度測定装置の構成の概略を示す平面図である。It is a top view which shows the outline of the structure of the conventional gas concentration measuring apparatus.
 本実施例に係るレーザー式ガス濃度計について、添付した図面にしたがって説明する。図1は、本実施例に係るレーザー式ガス濃度計の構成の概略を示すブロック図である。
 レーザー式ガス濃度計10は、レーザー光を射出するレーザー発生部11と、レーザー光を受光するレーザー受光部12と、レーザー発生部11とレーザー受光部12間に設置され、測定対象の特定ガスをガス濃度を測定可能な測定部13とからなる。
The laser gas densitometer according to this embodiment will be described with reference to the attached drawings. FIG. 1 is a block diagram showing an outline of the configuration of a laser gas densitometer according to the present embodiment.
The laser gas densitometer 10 is installed between a laser generating unit 11 that emits laser light, a laser receiving unit 12 that receives laser light, and a laser generating unit 11 and a laser receiving unit 12, and measures a specific gas to be measured. It includes a measuring unit 13 capable of measuring the gas concentration.
 レーザー発生部11は、図1に示すように、レーザー光源14と、当該光源14から射出するレーザー光の波長を特定の波長に設定し、所定の光強度に調整する制御部15とを有している。
 レーザー光源14は、波長が可変可能なダイオードからなる半導体レーザー素子を備え、近赤外領域のレーザー光を出力可能に形成されている。本実施例に係る半導体レーザー素子は、DFB(Distributed Feed Back:分布帰還形)レーザーと呼ばれる高出力の半導体レーザー素子である。
 制御部15は、半導体レーザー素子から出力されるレーザー光の波長を測定対象の特定ガス固有の特定波長に調整して、レーザー光が所定の入射光強度で射出されるように増幅する制御を行うように形成されている。また制御部15は、計測部17に対して、射出する入射光強度に係る入射光信号を出力するように形成されている。
 ここで、本実施例に係るレーザー式ガス濃度計が測定する特定ガスは、酸素ガス(O)である。当該酸素ガス固有の吸収波長帯は760nm帯であり、当該吸収波長帯に含まれる複数の吸収線のうち、一の吸収線に係る特定波長がレーザー光の出力波長として選択される。
As shown in FIG. 1, the laser generation unit 11 includes a laser light source 14 and a control unit 15 that sets the wavelength of the laser light emitted from the light source 14 to a specific wavelength and adjusts the wavelength to a predetermined light intensity. ing.
The laser light source 14 includes a semiconductor laser element made of a diode having a variable wavelength, and is formed so as to be able to output laser light in the near infrared region. The semiconductor laser device according to this embodiment is a high-power semiconductor laser device called a DFB (Distributed Feed Back) laser.
The control unit 15 adjusts the wavelength of the laser light output from the semiconductor laser element to a specific wavelength peculiar to the specific gas to be measured, and controls to amplify the laser light so that it is emitted at a predetermined incident light intensity. It is formed like this. Further, the control unit 15 is formed so as to output an incident light signal related to the emitted incident light intensity to the measuring unit 17.
Here, the specific gas measured by the laser gas densitometer according to this embodiment is oxygen gas (O 2 ). The absorption wavelength band peculiar to the oxygen gas is the 760 nm band, and among the plurality of absorption lines included in the absorption wavelength band, a specific wavelength related to one absorption line is selected as the output wavelength of the laser beam.
 レーザー受光部12は、図2に示すように、測定部13を透過して減衰したレーザー光を受光する受光センサ16と、当該受光センサ16からの受光信号に基づいて、ガス濃度を計測する計測部17とを有している。
 受光センサ16は、測定部13を透過したレーザー光の透過光強度を電気的な透過光信号に変換する素子、たとえば、フォトダイオードからなる。これによって、測定部13を透過して減衰したレーザー光の透過光強度を電気的に処理することができる。
 計測部17は、透過光強度に係る透過光信号と、レーザー発生部11の制御部15から出力されたレーザー光の入射光強度に係る入射光信号に基づいて透過率を計算し、当該透過率に基づいてレーザー光の特定ガスによる吸光度を求め、当該吸光度に基づいて包装袋内の特定ガスのガス濃度を計測するように形成されている。
As shown in FIG. 2, the laser light receiving unit 12 measures the gas concentration based on the light receiving sensor 16 that receives the laser light transmitted through the measuring unit 13 and attenuated, and the light receiving signal from the light receiving sensor 16. It has a part 17.
The light receiving sensor 16 is composed of an element that converts the transmitted light intensity of the laser light transmitted through the measuring unit 13 into an electrically transmitted light signal, for example, a photodiode. As a result, the transmitted light intensity of the laser light transmitted through and attenuated by the measuring unit 13 can be electrically processed.
The measuring unit 17 calculates the transmittance based on the transmitted light signal related to the transmitted light intensity and the incident light signal related to the incident light intensity of the laser light output from the control unit 15 of the laser generating unit 11, and the transmittance is calculated. The absorbance of the laser beam from the specific gas is determined based on the above, and the gas concentration of the specific gas in the packaging bag is measured based on the absorbance.
 測定部13は、図1に示すように、測定対象に対してレーザー光を透過可能に構成されている。
 ここで、測定対象は、包装袋又は包装容器或いはこれらに類する包装体類50であって、たとえば、ポリ袋、パウチのような包装袋、又は瓶、プラスチックケース等のような包装容器のように、各種包装に供されるものである。本実施例において、これら包装体類50に係るレーザー光の透過率は、0.00001%以上、100%未満と想定されている。すなわち、本実施例に係るレーザー式ガス濃度計は、包装体類50が着色されている場合であってもレーザー光が透過するようであれば有効である。
 測定部13におけるレーザー光に係る光路は、図1に示すように、レーザー発生部11からレーザー受光部12までの光路を総光路20とし、当該総光路20は、レーザー発生部11から包装体類50まで入射光に係る入射光路21、包装体類50内部でレーザー光が特定ガスに吸収されて減衰する減衰光路22、包装体類50からレーザー受光部12まで透過光に係る透過光路23からなる。
As shown in FIG. 1, the measuring unit 13 is configured to be capable of transmitting laser light to the measurement target.
Here, the measurement target is a packaging bag or a packaging container or a packaging body 50 similar thereto, such as a plastic bag, a packaging bag such as a pouch, or a packaging container such as a bottle or a plastic case. , Used for various packaging. In this embodiment, the transmittance of the laser beam related to these packages 50 is assumed to be 0.00001% or more and less than 100%. That is, the laser gas densitometer according to the present embodiment is effective as long as the laser light is transmitted even when the package 50 is colored.
As shown in FIG. 1, the optical path related to the laser light in the measuring unit 13 is a total optical path 20 from the laser generating unit 11 to the laser receiving unit 12, and the total optical path 20 is from the laser generating unit 11 to the package. It is composed of an incident light path 21 related to incident light up to 50, an attenuated light path 22 in which laser light is absorbed by a specific gas and attenuated inside the package 50, and a transmitted light path 23 related to transmitted light from the package 50 to the laser receiving portion 12. ..
 上記の構成を有するレーザー式ガス濃度計10は、波長可変半導体レーザー吸収分光法によって特定ガスを分析するものである。
 波長可変半導体レーザー吸収分光法(Tunable Diode Laser Absorption Spectroscopy:TDLAS)とは、半導体レーザー素子から出力されたレーザー光に係る所定の入射光強度と、測定対象となる特定ガス含んだ気体を封じたセルを透過して、当該特定ガスに吸収された透過後のレーザー光に係る透過光強度とから透過率を求めて、透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。
 特定ガスを含めて気体はそれぞれ固有の吸収波長帯を有し、当該吸収波長帯にはより強く光を吸収する波長に係る吸収線が複数本含まれていることが知られている。TDLASは、出力するレーザー光の近赤外領域の波長を、測定対象となる特定ガスの複数本の吸収線のうち、一本の吸収線に係る特定波長に合致するように変調し、増幅するように構成されている。そして、セルの透過前後で変化する特定波長の吸収スペクトルに基づいてレーザー光の吸光度を求めてガス濃度を測定している。
The laser gas densitometer 10 having the above configuration analyzes a specific gas by tunable semiconductor laser absorption spectroscopy.
Variable Diameter Laser Absorption Spectroscopy (TDLAS) is a cell in which a predetermined incident light intensity related to a laser beam output from a semiconductor laser element and a gas containing a specific gas to be measured are sealed. This is a method in which the transmittance is obtained from the transmitted light intensity of the transmitted laser light absorbed by the specific gas, and the gas concentration is measured from the absorbance of the laser light based on the transmittance.
It is known that each gas including a specific gas has a unique absorption wavelength band, and the absorption wavelength band includes a plurality of absorption lines related to wavelengths that absorb light more strongly. TDLAS modulates and amplifies the wavelength of the output laser light in the near-infrared region so as to match the specific wavelength of one absorption line among the plurality of absorption lines of the specific gas to be measured. It is configured as follows. Then, the gas concentration is measured by obtaining the absorbance of the laser beam based on the absorption spectrum of a specific wavelength that changes before and after the transmission of the cell.
 波長可変半導体レーザー吸収分光法(TDLAS)は、ランバート・ベールの法則に基づいてガス濃度を測定するものである。ランバート・ベールの法則とは、入射光強度をI、包装袋Bを透過した透過光強度をI、入射光に対する透過光の透過率をTとして、光路長をL、ガス濃度をCとすると,特定波長の吸収スペクトルで射出されたレーザー光の吸光度Aとの間に、数式1が成立する関係である。ここでεは測定対象となる所定のガスがレーザー光を吸収する固有の吸収係数である。 Tunable semiconductor laser absorption spectroscopy (TDLAS) measures gas concentration based on Lambert-Beer's law. The Lambert-Beer's law, the incident light intensity I 0, packaging bag B to the transmitted light intensity transmitted through I t, the transmittance of the transmitted light to incident light as T, and the optical path length L, and gas concentration C Then, Equation 1 is established with the luminous intensity A of the laser light emitted in the absorption spectrum of a specific wavelength. Here, ε is a unique absorption coefficient at which a predetermined gas to be measured absorbs laser light.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、レーザー発生部11とレーザー受光部12間に設けた測定部13について、図1に示すように、総光路20に係る総光路長をLとし、総光路20で吸収されたガス濃度をCとすると、数式1のように、入射光強度Iと、透過光強度Iから、総光路20上で特定波長の吸収スペクトルで射出されたレーザー光の総吸光度Aが定まり、総光路上で吸収されたガス濃度Cを求めることができる。 Here, with respect to the measuring unit 13 provided between the laser generating unit 11 and the laser receiving unit 12, the total optical path length related to the total optical path 20 is L, and the gas concentration absorbed by the total optical path 20 is defined as shown in FIG. If C, the by equation 1, the incident light intensity I 0, the transmitted light intensity I t, Sadamari total absorbance a of emitted laser light in the absorption spectrum of a specific wavelength on Sohikariro 20, the total optical path The gas concentration C absorbed in can be determined.
 そして、総光路長Lは、入射光路長L、包装体類内部の減衰光路長L、透過光路長Lの和であって、総吸光度Aは、入射光路21で吸光された入射吸光度A、包装体類内部の減衰光路22で吸光された減衰吸光度A、透過光路23で吸光された透過吸光度Atの和である。
 したがって、入射光路21上の特定ガスのガス濃度をC、透過光路23上の特定ガスのガス濃度をCとすると、減衰光路22上、すなわち包装体類50内部のガス濃度をCは、数式2で求めることができる。
Then, the total optical path length L is incident optical path length L 0, packaging such internal attenuation optical path length L a, a sum of the transmitted light path length L t, the total absorbance A is incident absorbance is the absorbance in the incident light path 21 A 0 is the sum of the attenuated absorbance A a absorbed in the attenuated optical path 22 inside the package and the transmitted absorbance At absorbed in the transmitted optical path 23.
Accordingly, the gas concentration of a specific gas on the incident light path 21 C 0, if the gas concentration of a specific gas on the transmission optical path 23 and C t, on the attenuation optical path 22, i.e., the gas concentration inside the package such 50 C a is , Can be obtained by the formula 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数式2の(2)式によれば、入射光路長Lと透過光路長Lに対して、包装体類50内部の減衰光路長Lを相対的に長くした場合、入射光路長Lと透過光路長Lにおけるガス濃度の影響を小さくすることができる。
 したがって、たとえば、レーザー発生部11とレーザー受光部12を接離自在に構成して、測定対象の包装体類50の長さ、すなわち減衰光路長Lに対して入射光路長Lと透過光路長Lが相対的に極めて短くなるように調整可能にすれば良い。これによって、包装体類50内部の特定ガスのガス濃度Caの測定精度を向上させることができる。
 また、測定部13全体を窒素ガス(N)でガスパージして特定ガスを除去するような構成の場合、或いは測定部13が大気雰囲気下にある場合、入射光路21上のガス濃度Cと透過光路23上のガス濃度Cは、同一値か或いは互いに近似した値であるとみなすことができるから、透過光路23上のガス濃度をCと置いて、入射光路21上のガス濃度Cでまとめることができる。
 これによって、ガスパージされた環境だけではなく、大気雰囲気下であっても包装体類50内部のガス濃度Caを計測することができる。
 さらに、入射光路長Lと透過光路長Lが減衰光路長Lに対して相対的に無視できるほど短い場合であって、入射光路21上のガス濃度Cと透過光路23上のガス濃度Cが総光路20上のガス濃度Cと同一値又は近似することができる場合、包装体類50内部のガス濃度Cは、総光路長Lに対する減衰光路長Lの比で求めることができる。
 このとき、減衰光路Lが一定、すなわち、包装体類50の大きさが一定であって、包装体類50内部の減衰光路22が一定であることが好ましい。これによって、包装体類内部のガス濃度Cを安定して求めることができる。
According to Equation 2 (2), if with respect to the incident optical path length L 0 and the transmission optical path length L t, and the package such 50 inside the attenuation optical path length L a relatively long, incident optical path length L 0 it is possible to reduce the influence of the gas concentration in the transmission optical path length L t.
Thus, for example, by a laser generator 11 and a laser light receiving section 12 and separable freely configured, length of the wrapper class 50 to be measured, i.e. transmission optical path as the incident optical path length L 0 with respect to attenuation optical path length L a The length L t may be adjusted so as to be relatively extremely short. Thereby, the measurement accuracy of the gas concentration Ca of the specific gas inside the package 50 can be improved.
Further, in the case of a configuration in which the entire measuring unit 13 is gas purged with nitrogen gas (N 2 ) to remove a specific gas, or when the measuring unit 13 is in an atmospheric atmosphere, the gas concentration C 0 on the incident optical path 21 is set. Since the gas concentration C t on the transmitted light path 23 can be regarded as the same value or a value close to each other, the gas concentration on the transmitted light path 23 is set to C 0, and the gas concentration C on the incident light path 21 is set. It can be summarized by 0.
Thereby, the gas concentration Ca inside the package 50 can be measured not only in the gas-purged environment but also in the atmospheric atmosphere.
Furthermore, a case where the incident optical path length L 0 and the transmission optical path length L t is short enough to be relatively negligible with respect to the attenuation path length L a, the gas concentration C 0 of the incident light path 21 on transmission optical path 23 of the gas If it is the concentration C t is the same value as or close to the gas concentration C on Sohikariro 20, gas concentration C a of the inner package such 50, determining the ratio of the attenuation optical path length L a to the total optical path length L Can be done.
In this case, a constant attenuation optical path L a is, i.e., it is preferred size of the package such 50 is constant, a package such 50 inside the attenuation path 22 is constant. This can be obtained stably the gas concentration C a of the inner wrapper class.
 ここで、特定ガスを含む大気は、気圧、気温によって単位当たりの密度が時々刻々と変化している。すなわち、単位当たりの大気中に含まれる特定ガスの原子、又は分子の数もまた、それに応じて時々刻々と変化しているので、TDLASによって、特定ガスの複数本の吸収線のうち、一本の吸収線に係る特定波長に合致するレーザー光を射出した場合、当該レーザー光を吸収する原子又は分子の単位当たりの数が気圧又は気温で変化するため、それに基づいて測定されるガス濃度は安定しなくなるおそれがある。
 また、包装体類50が所定の包装袋であるような場合には、当該包装袋に密封されている不活性ガスの量や内圧に応じて、包装袋の厚さ、すなわち、減衰光路長Lが変化し、これに伴って、総光路長Lに対する入射光路長Lと透過光路長Lもまた変化する。
Here, the density per unit of the atmosphere containing a specific gas changes from moment to moment depending on the atmospheric pressure and the air temperature. That is, since the number of atoms or molecules of the specific gas contained in the atmosphere per unit also changes from moment to moment, one of the multiple absorption lines of the specific gas is obtained by TDLAS. When a laser beam that matches a specific wavelength related to the absorption line of is emitted, the number of atoms or molecules that absorb the laser beam per unit changes with atmospheric pressure or temperature, so the gas concentration measured based on that changes is stable. There is a risk that it will not work.
When the packaging body 50 is a predetermined packaging bag, the thickness of the packaging bag, that is, the attenuated optical path length L, depends on the amount of the inert gas sealed in the packaging bag and the internal pressure. As a changes, the incident optical path length L 0 and the transmitted optical path length L t with respect to the total optical path length L also change accordingly.
 上記のような時々刻々と変化する気圧、気温といったレーザー式ガス濃度計10の周辺環境の変化、或いは、包装体類50の厚みや長さによって変化する減衰光路長Lに基づいて変化する入射光路長L又は透過光路長L長さといった外乱によって、包装体類50内部のガス濃度Cは容易に変化してしまうおそれがある。
 そこで、本実施例に係るレーザー式ガス濃度計10は、測定時間を所定の長さに定め、当該測定時間内で複数回レーザー光を総光路20上へ射出することによって、複数の実測値を得るように構成されている。
The above-described momentarily with varying air pressure, the change in laser type gas densitometer 10 of the surrounding environment such as temperature, or incident that changes based on the attenuation optical path length L a that varies with the thickness and the length of the wrapper class 50 The gas concentration Ca inside the package 50 may easily change due to a disturbance such as an optical path length L 0 or a transmitted optical path length L t length.
Therefore, the laser gas densitometer 10 according to the present embodiment sets the measurement time to a predetermined length and emits the laser beam onto the total optical path 20 a plurality of times within the measurement time to obtain a plurality of actually measured values. It is configured to get.
 複数の実測値に基づいて、レーザー発生部11から総光路20上に射出されたレーザー光が包装体類50を含む測定部13を透過してレーザー受光部12で受光されたときの総吸光度Aについて、その平均である総平均吸光度Aavを求めることができる。そして、総平均吸光度Aavと測定回数、測定した実測値のバラツキから、標準偏差と、補正吸光度Aを得ることができる。
 さらに、標準偏差に基づく補正吸光度Aを総吸光度Aの実測値に対して適用することによって、実測値を補正した計測値を所定の範囲内に収めることができる。ここで、補正吸光度Aは、総光路20上全ての吸光度に影響を及ぼすものであるから、総吸光度Aに対する補正吸光度Aの補正率を求めて、当該補正率を入射光路21上の入射吸光度A、及び透過光路23上の透過吸光度Aに対して適用することによって、包装体類50内部のガス濃度Cの測定精度を向上させることができる。
Based on a plurality of measured values, the total absorbance A when the laser light emitted from the laser generating unit 11 onto the total optical path 20 passes through the measuring unit 13 including the packaging 50 and is received by the laser receiving unit 12. The total average absorbance Av , which is the average of the above, can be obtained. The total average absorbance A av a number of measurements, the variation of the measured actual values, can be obtained and the standard deviation, a correction absorbance A c.
Further, by applying the correction absorbance A c based on the standard deviation relative to the measured value of the total absorbance A, it is possible to keep the measured value obtained by correcting the measured values within a predetermined range. The correction absorbance A c, since those affect all absorbance on Sohikariro 20, seeking correction factor of the correction the absorbance A c to the total absorbance A, incident on the incident light path 21 the correction factor by applying relative absorbance a 0, and transmission absorbance a t on transmission optical path 23, it is possible to improve the measurement accuracy of the wrapper class 50 inside the gas concentration C a.
 また、所定の測定時間内で複数回実測することによって、上記の補正吸光度Aavを得ると共に、総吸光度Aに対する補正吸光度Aavの補正率を、ガス濃度測定時に実測値に対してフィードバックすることによって、計測値を所定の範囲内に含まれた所定の値へ収束させることができ、より一層測定精度を向上させることができる。 Moreover, by actually measuring a plurality of times within a predetermined measuring time, with obtaining the correction absorbance A av, the correction factor for correcting the absorbance A av with respect to the total absorbance A, to feedback to the measured value when the gas concentration measurement As a result, the measured value can be converged to a predetermined value included in the predetermined range, and the measurement accuracy can be further improved.
 上記の構成を有するレーザー式ガス濃度計10の効果を検証する複数の実験を行った。当該各実験の実験結果について添付した図面にしたがって説明する。図2は第1実験例の結果を示すグラフ、図3は第2実験例の結果を示すグラフ、図4は第3実験例の結果を示すグラフである。 A plurality of experiments were conducted to verify the effect of the laser gas densitometer 10 having the above configuration. The experimental results of each of the experiments will be described with reference to the attached drawings. FIG. 2 is a graph showing the results of the first experimental example, FIG. 3 is a graph showing the results of the second experimental example, and FIG. 4 is a graph showing the results of the third experimental example.
 まず、第1実験について、図2にしたがって説明する。
 第1実験は、測定部13上の減衰光路22に係る減衰光路長Lを17mmに設定したものである。ここで、上記したように、入射光路長Lと透過光路長Lは、減衰光路長Lに対して相対的に十分短くなるように、すなわち、レーザー発生部11と包装体類50、又は包装体類50とレーザー受光部12の距離が、包装体類50の長さよりも短くなるように設置した。これによって、入射光路長Lと透過光路長Lは、本第1実験では無視するものとする。
 そして、測定時間は300msに設定し、当該測定時間内で1000回、測定部13上にレーザー光を照射した。
 図2は、測定部13に包装体類50を設置していない場合の測定結果を示すグラフである。すなわち、総光路長Lと減衰光路長Lが一致しているとみなせる場合の測定結果である。このとき、酸素ガスのガス濃度に係る測定値の標準偏差は、0.05%であった。
 また、測定部13に減衰光路長Laを十分に確保できる透明なポリエチレン製の包装袋を設置して、同様の実験を行ったところ、酸素ガスのガス濃度に係る測定値の標準偏差は、0.08%を示し、包装体類50を設置していないときと比べて測定値のバラツキが大きくなった。これは、レーザー光が包装体類50へ入射するとき、及び当該レーザー光が包装体類50を透過するとき、測定部13の雰囲気と包装体類50との境界面上で、レーザー光の反射或いは散乱が発生したためと考えられる。
First, the first experiment will be described with reference to FIG.
The first experiment, the attenuation path length L a of the attenuation optical path 22 on the measuring unit 13 is obtained by setting the 17 mm. Here, as described above, transmitted light path length L t and the incident optical path length L 0 is as relatively sufficiently shorter than the attenuation path length L a, i.e., the laser generator 11 and the packaging member such 50, Alternatively, the distance between the package 50 and the laser receiving unit 12 is set to be shorter than the length of the package 50. As a result, the incident optical path length L 0 and the transmitted optical path length L t are ignored in this first experiment.
Then, the measurement time was set to 300 ms, and the measurement unit 13 was irradiated with the laser beam 1000 times within the measurement time.
FIG. 2 is a graph showing the measurement results when the packages 50 are not installed in the measuring unit 13. That is, the measurement result in the case that can be regarded as total optical path length L and attenuation optical path length L a match. At this time, the standard deviation of the measured values relating to the gas concentration of oxygen gas was 0.05%.
Further, when a transparent polyethylene packaging bag capable of sufficiently securing the attenuated optical path length La was installed in the measuring unit 13 and the same experiment was performed, the standard deviation of the measured value related to the gas concentration of oxygen gas was 0. It showed 0.08%, and the variation of the measured values became larger than that when the package 50 was not installed. This is because when the laser light is incident on the package 50 and when the laser light is transmitted through the package 50, the laser light is reflected on the interface between the atmosphere of the measuring unit 13 and the package 50. Alternatively, it is considered that scattering has occurred.
 次に、第2実験について、図3にしたがって説明する。
 第2実験は、第1実験の減衰光路長Lの長さを17mmとしたこと対して、減衰光路長Lを38mmとした点が相違する。また、第1実験と同様に、上記したように、入射光路長Lと透過光路長Lは、減衰光路長Lに対して相対的に十分短くなるように、すなわち、レーザー発生部11と包装体類50、又は包装体類50とレーザー受光部12の距離が、包装体類50の長さよりも短くなるように設置した。これによって、入射光路長Lと透過光路長Lは、本第2実験では無視するものとする。
 そして、第1実験と同様に、測定時間を300msに設定し、当該測定時間内で1000回、測定部13上にレーザー光を照射した。
 図3は、測定部13に包装体類50を設置した場合の測定結果を示すグラフである。ここで、包装体類50は、第1実験において補助的に行った実験で使用した包装袋であって、減衰光路長Lを十分に確保できる透明なポリエチレン製の包装袋とする。
 このとき、酸素ガスのガス濃度に係る測定値の標準偏差は、0.031%であった。第1実験に係る図3と比べて、測定値が所定の範囲内に収まっていることが明らかである。
 また、測定部13に包装体類50を設置せずに同様の実験を行ったところ、酸素ガスのガス濃度に係る測定値の標準偏差は、0.028%を示した。
 すなわち、総光路20を長くすると共に、包装体類50内部の減衰光路22もまた長くすることによって、測定値のバラツキを抑えることができ、測定精度を向上させることができるということを確認することが出来た。
Next, the second experiment will be described with reference to FIG.
The second experiment, the length of the attenuation optical path length L a of the first experiment for it was 17 mm, the point where the attenuation optical path length L a and 38mm are different. As in the first experiment, as described above, transmitted light path length L t and the incident optical path length L 0 is as relatively sufficiently shorter than the attenuation path length L a, i.e., the laser generating unit 11 And the packaging body 50, or the distance between the packaging body 50 and the laser receiving unit 12 was set to be shorter than the length of the packaging body 50. As a result, the incident optical path length L 0 and the transmitted optical path length L t are ignored in this second experiment.
Then, as in the first experiment, the measurement time was set to 300 ms, and the laser beam was irradiated onto the measurement unit 13 1000 times within the measurement time.
FIG. 3 is a graph showing the measurement results when the packages 50 are installed in the measuring unit 13. Here, the packaging body 50 is a packaging bag used in the experiment performed auxiliary in the first experiment, and is a transparent polyethylene packaging bag capable of sufficiently securing the attenuated optical path length La.
At this time, the standard deviation of the measured values relating to the gas concentration of oxygen gas was 0.031%. Compared with FIG. 3 according to the first experiment, it is clear that the measured value is within a predetermined range.
Further, when the same experiment was conducted without installing the package 50 in the measuring unit 13, the standard deviation of the measured values relating to the gas concentration of oxygen gas was 0.028%.
That is, it is confirmed that the variation in the measured value can be suppressed and the measurement accuracy can be improved by lengthening the total optical path 20 and also lengthening the attenuated optical path 22 inside the package 50. Was done.
 さらに、第3実験について、図4にしたがって説明する。
 第3実験は、第2実験と同様に、減衰光路長Lを38mmに設定している。そして、第2実験と同様に、入射光路長Lと透過光路長Lは、減衰光路長Lに対して相対的に十分短くなるように、すなわち、レーザー発生部11と包装体類50、又は包装体類50とレーザー受光部12の距離が、包装体類50の長さよりも短くなるように設置した。これによって、入射光路長Lと透過光路長Lは、本第3実験では無視するものとする。
 第3実験では、既に包装体類50内部の酸素ガスのガス濃度を所定の低酸素濃度に調整した包装袋を5個用意した。それらのガス濃度は、包装袋B1が0.3%、包装袋B2が0.25%、包装袋B3が0.5%、包装袋B4が0.2%、包装袋B5が0.35%となるように調整されている。
 そして、測定部13に対し、各包装袋の位置を変えてそれぞれ20回測定することを5回繰り返した。したがって、測定回数は各包装袋ごとに100回となっている。図4に示すグラフは、包装袋B1~包装袋B5について、測定した結果を示すものである。
 それぞれ異なる低酸素濃度に調整された包装袋を変え、当該包装袋の位置を変えて測定した総測定回数500回の標準偏差は0.04%であった。
 また、図4のグラフから明らかなように、酸素ガスのガス濃度を0.5%に調整した包装袋B3を第3実験で検出することが出来ていることを確認することができた。
Further, the third experiment will be described with reference to FIG.
The third experiment, as in the second experiment, and sets the attenuation optical path length L a to 38mm. Then, as in the second experiment, transmission optical path length L t and the incident optical path length L 0 is as relatively sufficiently shorter than the attenuation path length L a, i.e., the laser generator 11 and the packaging member such 50 Or, the distance between the package 50 and the laser receiving unit 12 is set to be shorter than the length of the package 50. As a result, the incident optical path length L 0 and the transmitted optical path length L t are ignored in this third experiment.
In the third experiment, five packaging bags in which the gas concentration of oxygen gas inside the packaging body 50 was already adjusted to a predetermined low oxygen concentration were prepared. Their gas concentrations are 0.3% for the packaging bag B1, 0.25% for the packaging bag B2, 0.5% for the packaging bag B3, 0.2% for the packaging bag B4, and 0.35% for the packaging bag B5. It is adjusted to be.
Then, the measurement unit 13 was repeatedly measured 20 times by changing the position of each packaging bag 5 times. Therefore, the number of measurements is 100 for each packaging bag. The graph shown in FIG. 4 shows the measurement results for the packaging bags B1 to B5.
The standard deviation of the total number of measurements of 500 was 0.04%, which was measured by changing the packaging bags adjusted to different low oxygen concentrations and changing the position of the packaging bags.
Further, as is clear from the graph of FIG. 4, it was confirmed that the packaging bag B3 in which the gas concentration of oxygen gas was adjusted to 0.5% could be detected in the third experiment.
 ここで、本願出願人は、本実施例に係るレーザー式ガス濃度計10を組み込んだガス濃度測定装置において、包装体類50内部に封じた酸素ガスのガス濃度を検査したとき、包装体類50内に満たされている不活性ガスのガス濃度に対して、酸素ガスのガス濃度が0.2%以下の場合が正常値となるように設定している。そして、当該酸素ガスのガス濃度が0.2%~0.5%の場合を許容範囲とし、ガス濃度が0.5%以上の場合には不良品と判定して、0.5%以上の酸素ガスが封入されている包装体類50を排除するように設定している。また、品質保証の観点から、ガス濃度の測定値の標準偏差は、0.033%以内に収めることを目標としている。
 図4から明らかなように、ガス濃度が0.5%である包装袋Bを検出することができていることから、本実施例に係るレーザー式ガス濃度計10は、大気雰囲気下であってもガス濃度を測定することができる。
 しかしながら、求める標準偏差に対して、第3実験では十分な標準偏差を得ることが出来ていない。
 したがって、目標とする標準偏差0.033%以内に納めるためには、たとえば、総光路長Lと減衰光路長Lを延ばして検知感度を向上させると共に、減衰光路長Lに対してさらに入射光路長L及び透過光路長Lを相対的に短く納めるように包装体類50を保持する装置を設けた場合、さらに標準偏差に係る値を改善することができるものと思われる。
Here, when the applicant of the present application inspects the gas concentration of the oxygen gas sealed inside the package 50 in the gas concentration measuring device incorporating the laser gas concentration meter 10 according to the present embodiment, the package 50 The normal value is set when the gas concentration of the oxygen gas is 0.2% or less with respect to the gas concentration of the inert gas filled therein. Then, the case where the gas concentration of the oxygen gas is 0.2% to 0.5% is set as the allowable range, and when the gas concentration is 0.5% or more, it is judged as a defective product and 0.5% or more. The packaging 50 in which oxygen gas is sealed is set to be excluded. From the viewpoint of quality assurance, the standard deviation of the measured value of gas concentration is targeted to be within 0.033%.
As is clear from FIG. 4, since the packaging bag B having a gas concentration of 0.5% can be detected, the laser type gas concentration meter 10 according to the present embodiment is in an air atmosphere. Can also measure gas concentration.
However, a sufficient standard deviation cannot be obtained in the third experiment with respect to the desired standard deviation.
Therefore, in order to fit within 0.033 percent standard deviation The target, for example, improves the detection sensitivity by extending the total optical path length L and attenuation optical path length L a, further incident upon the attenuation path length L a When a device for holding the packages 50 is provided so that the optical path length L 0 and the transmitted optical path length L t are kept relatively short, it is considered that the value related to the standard deviation can be further improved.
 本実施例に係るレーザー式ガス濃度計10によれば、レーザー発生部11とレーザー受光部12の間の測定部13が大気雰囲気下にあっても、測定部13に配置した包装体類50内部の特定ガスのガス濃度を測定できるようにした。これによって、ガスパージに係る装置を省くことができるので、本実施例に係るレーザー式ガス濃度計10を用いるガス濃度測定装置の構成を簡略化することができ、さらに、これによって、包装機上に限られたスペースへ容易に取り付けることができる。 According to the laser gas densitometer 10 according to the present embodiment, even if the measuring unit 13 between the laser generating unit 11 and the laser receiving unit 12 is in an atmospheric atmosphere, the inside of the packaging body 50 arranged in the measuring unit 13 The gas concentration of a specific gas can be measured. As a result, the device related to the gas purge can be omitted, so that the configuration of the gas concentration measuring device using the laser type gas concentration meter 10 according to the present embodiment can be simplified, and further, thereby, on the packaging machine. It can be easily installed in a limited space.
 10…レーザー式ガス濃度計、
11…レーザー発生部、12…レーザー受光部、13…測定部、
14…レーザー光源、15…制御部、16…受光センサ、17…計測部、
20…総光路、21…入射光路、22…減衰光路、23…透過光路、
50…包装体類、
1…従来のガス濃度測定装置、2…従来のレーザー発生部、3…主ヘッド、4…従来のレーザー受光部、5…副ヘッド、6…グリップ、
B…包装袋。
10 ... Laser gas densitometer,
11 ... Laser generating unit, 12 ... Laser receiving unit, 13 ... Measuring unit,
14 ... laser light source, 15 ... control unit, 16 ... light receiving sensor, 17 ... measurement unit,
20 ... total optical path, 21 ... incident optical path, 22 ... attenuated optical path, 23 ... transmitted optical path,
50 ... Packaging,
1 ... Conventional gas concentration measuring device, 2 ... Conventional laser generator, 3 ... Main head, 4 ... Conventional laser receiver, 5 ... Sub head, 6 ... Grip,
B ... Packaging bag.

Claims (6)

  1.  特定波長のレーザー光を、ガス置換されて密封された包装容器又は包装袋或いはこれらに類する包装体類に透過させて、前記包装体類の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装体類の内部に残留している特定ガスのガス濃度を測定するようにしたレーザー式ガス濃度計であって、
    当該レーザー式ガス濃度計は、
    前記レーザー光を射出するレーザー発生部と、
    前記レーザー光を受光するレーザー受光部と、
    前記レーザー発生部から前記包装体類までの入射光路、前記レーザー光が前記包装体類を透過して減衰する減衰光路、及び前記包装体類から前記レーザー受光部までの透過光路からなる前記レーザー光の総光路を有する測定部と、
    前記レーザー発生部における前記レーザー光の入射強度、及び前記レーザー受光部における前記レーザー光の透過光強度から求められる前記包装体類を透過したレーザー光の透過率に基づいて、前記減衰光路上で前記包装体類内部の前記特定ガスに吸収された前記特定波長の減衰吸光度を測定して、当該減衰吸光度に基づいて前記包装体類内部の前記特定ガスの濃度を算出する計測部とを有し、
    当該計測部が、前記総光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の総吸光度から
    前記入射光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の入射吸光度と、
    前記透過光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の透過吸光度とを除外して、
    前記減衰光路上における前記特定波長の前記減衰吸光度を計測し、
    当該減衰吸光度と前記減衰光路の前記光路長に基づいて、前記包装体類内部の前記特定ガスの濃度を算出するようにしたことを特徴とするレーザー式ガス濃度計。
    Laser light of a specific wavelength is transmitted through a packaging container or bag sealed by gas substitution or similar packaging, and the absorption spectrum of the specific wavelength that changes before and after transmission of the packaging is used as the basis for the above. A laser gas densitometer that measures the gas concentration of a specific gas remaining inside the packaging.
    The laser gas densitometer is
    The laser generating part that emits the laser light and
    A laser receiving unit that receives the laser light and
    The laser beam including an incident optical path from the laser generating portion to the packaging, an attenuated optical path through which the laser light is transmitted through the packaging and attenuated, and a transmitted optical path from the packaging to the laser receiving portion. With a measuring unit that has a total optical path of
    Based on the incident intensity of the laser beam in the laser generating section and the transmittance of the laser beam transmitted through the package obtained from the transmitted light intensity of the laser beam in the laser receiving section, the said on the attenuated optical path. It has a measuring unit that measures the attenuated absorbance of the specific wavelength absorbed by the specific gas inside the package and calculates the concentration of the specific gas inside the package based on the attenuated absorbance.
    From the total absorbance of the specific wavelength in which the laser light is absorbed by the specific gas on the total optical path, the measuring unit determines the incident absorbance of the specific wavelength in which the laser light is absorbed by the specific gas on the incident light path. When,
    Excluding the transmitted absorbance of the specific wavelength in which the laser beam is absorbed by the specific gas on the transmitted light path,
    The attenuated absorbance of the specific wavelength on the attenuated optical path is measured.
    A laser gas densitometer characterized in that the concentration of the specific gas inside the package is calculated based on the attenuated absorbance and the optical path length of the attenuated optical path.
  2.  前記減衰光路の光路長が所定の長さで一定であることを特徴とする請求項1に記載のレーザー式ガス濃度計。 The laser gas densitometer according to claim 1, wherein the optical path length of the attenuated optical path is constant at a predetermined length.
  3.  前記入射光路と前記透過光路が大気雰囲気下であることを特徴とする請求項1に記載のレーザー式ガス濃度計。 The laser gas densitometer according to claim 1, wherein the incident optical path and the transmitted optical path are in an atmospheric atmosphere.
  4.  前記減衰光路の光路長が、前記入射光路又は前記透過光路の光路長よりも長いことを特徴とする請求項1に記載のレーザー式ガス濃度計。 The laser gas densitometer according to claim 1, wherein the optical path length of the attenuated optical path is longer than the optical path length of the incident optical path or the transmitted optical path.
  5.  前記入射吸光度と前記透過吸光度が、大気雰囲気下で所定の外乱によって変化するとき、
    前記レーザー光を前記測定部へ複数回射出して、前記総光路上における前記特定ガスの総平均吸光度を求め、
    当該総平均吸光度に基づいて前記入射吸光度と前記透過吸光度を補正する補正吸光度を定めて、
    前記包装体類内部の前記減衰光路上における前記特定波長の前記減衰吸光度を計測するとき、
    前記補正吸収度で補正された前記入射吸光度と前記透過吸光度を適用するようにしたことを特徴とする請求項1に記載のレーザー式ガス濃度計。
    When the incident absorbance and the transmitted absorbance change due to a predetermined disturbance in an atmospheric atmosphere,
    The laser beam is emitted to the measuring unit a plurality of times to obtain the total average absorbance of the specific gas on the total optical path.
    Based on the total average absorbance, the incident absorbance and the corrected absorbance for correcting the transmitted absorbance are determined.
    When measuring the attenuated absorbance of the specific wavelength on the attenuated optical path inside the package,
    The laser gas densitometer according to claim 1, wherein the incident absorbance corrected by the corrected absorbance and the transmitted absorbance are applied.
  6.  前記外乱が、前記大気雰囲気の気温又は気圧、或いは前記入射光路又は前記透過光路の光路長の変化によるものであることを特徴とする請求項5に記載のレーザー式ガス濃度計。 The laser gas densitometer according to claim 5, wherein the disturbance is due to a change in the air temperature or atmospheric pressure in the atmosphere, or the optical path length of the incident optical path or the transmitted optical path.
PCT/JP2020/039933 2019-10-28 2020-10-23 Laser gas concentration meter WO2021085331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-195098 2019-10-28
JP2019195098A JP7321453B2 (en) 2019-10-28 2019-10-28 Laser gas concentration meter

Publications (1)

Publication Number Publication Date
WO2021085331A1 true WO2021085331A1 (en) 2021-05-06

Family

ID=75637881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039933 WO2021085331A1 (en) 2019-10-28 2020-10-23 Laser gas concentration meter

Country Status (2)

Country Link
JP (1) JP7321453B2 (en)
WO (1) WO2021085331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758899A (en) * 2021-11-11 2021-12-07 国网湖北省电力有限公司检修公司 Micro-water measuring method and device based on TDLAS technology

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230166115A (en) 2021-04-13 2023-12-06 캐논 가부시끼가이샤 Light-emitting devices, display devices, imaging devices, and electronic devices
JP2022173623A (en) * 2021-05-10 2022-11-22 ゼネラルパッカー株式会社 Gas concentration measurement method for pillow packaging bag
JP2022176603A (en) * 2021-05-17 2022-11-30 ゼネラルパッカー株式会社 Packaging bag gas concentration measurement device and packaging bag gas concentration measurement method
CN113820103A (en) * 2021-09-15 2021-12-21 中钢安科睿特(武汉)科技有限公司 Laser absorption amplitude measuring device and measuring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014589A (en) * 2007-07-06 2009-01-22 General Packer Co Ltd Gas concentration measuring method in packaging machine
JP2010038846A (en) * 2008-08-08 2010-02-18 Hitachi Zosen Corp Nondestructive inspection device of oxygen concentration within bag-like container
US20100067012A1 (en) * 2006-10-30 2010-03-18 Universita Degli Studi Di Padova Method for the automated measurement of gas pressure and concentration inside sealed containers
JP2010107197A (en) * 2008-10-28 2010-05-13 General Packer Co Ltd Instrument for measuring concentration of gas in packaging bag
JP2016520838A (en) * 2013-05-27 2016-07-14 ガスポロックス エービー System and method for determining the concentration of a gas in a container
JP2018510346A (en) * 2015-04-02 2018-04-12 ガスポロックス エイビー System and method for determining container integrity by optical measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067012A1 (en) * 2006-10-30 2010-03-18 Universita Degli Studi Di Padova Method for the automated measurement of gas pressure and concentration inside sealed containers
JP2009014589A (en) * 2007-07-06 2009-01-22 General Packer Co Ltd Gas concentration measuring method in packaging machine
JP2010038846A (en) * 2008-08-08 2010-02-18 Hitachi Zosen Corp Nondestructive inspection device of oxygen concentration within bag-like container
JP2010107197A (en) * 2008-10-28 2010-05-13 General Packer Co Ltd Instrument for measuring concentration of gas in packaging bag
JP2016520838A (en) * 2013-05-27 2016-07-14 ガスポロックス エービー System and method for determining the concentration of a gas in a container
JP2018510346A (en) * 2015-04-02 2018-04-12 ガスポロックス エイビー System and method for determining container integrity by optical measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758899A (en) * 2021-11-11 2021-12-07 国网湖北省电力有限公司检修公司 Micro-water measuring method and device based on TDLAS technology
CN113758899B (en) * 2021-11-11 2022-04-08 国网湖北省电力有限公司超高压公司 Micro-water measuring method and device based on TDLAS technology

Also Published As

Publication number Publication date
JP2021067635A (en) 2021-04-30
JP7321453B2 (en) 2023-08-07

Similar Documents

Publication Publication Date Title
WO2021085331A1 (en) Laser gas concentration meter
US20030025909A1 (en) Method and apparatus for measuring of the concentration of a substance in a fluid medium
JP7210442B2 (en) Method and apparatus for measuring gas concentration
CN107076637B (en) Apparatus and method for measuring pressure in closed container
JP5124719B2 (en) Gas concentration measurement method for packaging machines
US20100067012A1 (en) Method for the automated measurement of gas pressure and concentration inside sealed containers
FR2687785A1 (en) CALIBRATION PROCESS FOR GAS CONCENTRATION MEASUREMENTS.
US20130275052A1 (en) Method and device of determining a co2 content in a liquid
US20220276154A1 (en) Method for analysing a gas using an optical sensor
US20180217053A1 (en) Concentration measurement device
SE538814C2 (en) System and method for determining the integrity of containers by optical measurement
JP2021067632A (en) Device for measuring gas concentration in packaging bag
CA2409424C (en) A method and an apparatus for producing a gaseous medium
JP4034920B2 (en) Method and apparatus for determining the concentration of a substance in a sample in the presence of interfering materials
EP3413032B1 (en) An arrangement and method for measuring the gas content in the head space of a closed container and an automatic filling and/or packaging plant using such an arrangement
WO2012173562A1 (en) System and method for in-situ online measurement of hydrogen peroxide concentration
WO2021124711A1 (en) Method for measuring gas concentration in packaging container
JP2010164365A (en) Method and instrument for measuring concentration of gas
JP2021067631A (en) Method of measuring gas concentration in packaging bag
WO2021124710A1 (en) Sealed packaging container
KR20110034330A (en) Non-dispersive infrared absorption co2 gas sensor
JP7339663B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
JP7339662B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
JP7343169B2 (en) Gas concentration measurement method and gas concentration measurement device for sealed packaging containers
JP2021096133A (en) Gas concentration measuring device for packaging bags

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881944

Country of ref document: EP

Kind code of ref document: A1