JP7343169B2 - Gas concentration measurement method and gas concentration measurement device for sealed packaging containers - Google Patents

Gas concentration measurement method and gas concentration measurement device for sealed packaging containers Download PDF

Info

Publication number
JP7343169B2
JP7343169B2 JP2019226118A JP2019226118A JP7343169B2 JP 7343169 B2 JP7343169 B2 JP 7343169B2 JP 2019226118 A JP2019226118 A JP 2019226118A JP 2019226118 A JP2019226118 A JP 2019226118A JP 7343169 B2 JP7343169 B2 JP 7343169B2
Authority
JP
Japan
Prior art keywords
reflective surface
laser
gas concentration
packaging container
sealed packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019226118A
Other languages
Japanese (ja)
Other versions
JP2021096099A (en
Inventor
雅志 大島
直樹 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Packer Co Ltd
Original Assignee
General Packer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Packer Co Ltd filed Critical General Packer Co Ltd
Priority to JP2019226118A priority Critical patent/JP7343169B2/en
Publication of JP2021096099A publication Critical patent/JP2021096099A/en
Application granted granted Critical
Publication of JP7343169B2 publication Critical patent/JP7343169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、内部の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびその方法に使用されるガス濃度測定装置に関するものである。 The present invention relates to a gas concentration measuring method for a sealed packaging container that can measure the concentration of a specific gas inside with high precision, and a gas concentration measuring device used in the method.

従来より、ガス置換されて密封されたレトルト成形容器(例えばレトルト米飯パック)などの密封包装容器が多用されている。
この種の密封包装容器の包装工程では、ヘッドスペース内に残存する、被包装物の保存期間または賞味期間を縮めるおそれがある酸化原因ガス(例えば酸素)を除去した後、窒素、二酸化炭素等の不活性ガスでガス置換して密封するガス置換包装が行われている(特許文献1)。これによって、密封包装容器内の酸化原因ガスは除去され、被包装物、特に食品は長期の保存期間、賞味期間を確保することができる。
BACKGROUND ART Conventionally, hermetically sealed packaging containers, such as retort molded containers (for example, retort rice packs) that are gas-substituted and sealed, have been widely used.
In the packaging process for this type of sealed packaging container, after removing oxidizing gases (e.g. oxygen) that may shorten the shelf life or shelf life of the packaged product remaining in the head space, nitrogen, carbon dioxide, etc. Gas replacement packaging is performed in which gas replacement is performed with an inert gas and the packaging is sealed (Patent Document 1). As a result, oxidation-causing gases within the sealed packaging container are removed, and the packaged items, especially foods, can have a long shelf life and shelf life.

そして、ガス置換包装後の検査工程において、酸化原因ガス、特に酸素の濃度が既定値以下であるかどうかの検査が行われている。 In the inspection process after gas replacement packaging, an inspection is performed to see if the concentration of oxidation-causing gas, particularly oxygen, is below a predetermined value.

しかしながら、現在主流であるガス濃度の測定方法は、サンプルとして任意に選択した密封包装容器に注射針を刺し、密封包装容器内から吸引した少量のガスの組成を検査する抜き取り検査である。この抜き取り検査では、注射痕が形成された密封包装容器は廃棄しなければならない。また、検査精度を上げるためにサンプル数を増やすと検査時間が長くなり、増加する廃棄量によって経済的、時間的損失が増大する不都合があった。さらに、充填した被包装物が存在しないヘッドスペースが狭小な場合、ガス濃度の測定が極めて困難であった。 However, the currently mainstream method for measuring gas concentration is a sampling test in which a syringe needle is inserted into a sealed packaging container arbitrarily selected as a sample, and the composition of a small amount of gas sucked from inside the sealed packaging container is examined. During this sampling inspection, sealed packaging containers with injection marks must be discarded. Furthermore, if the number of samples is increased in order to improve the inspection accuracy, the inspection time becomes longer, and the increased amount of waste results in increased economic and time losses. Furthermore, when the head space without the filled packaged object is narrow, it is extremely difficult to measure the gas concentration.

特許第3742042号公報Patent No. 3742042

そこで、本発明の課題は、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびその方法に使用されるガス濃度測定装置を提供することにある。 Therefore, an object of the present invention is to enable the gas concentration of a sealed packaging container to be able to measure the concentration of a specific gas inside with high precision, without damaging the sealed packaging container, even when the head space where there is no packaged object is narrow. An object of the present invention is to provide a measuring method and a gas concentration measuring device used in the method.

上記課題を解決するものは、被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度をガス濃度測定装置により測定するガス濃度測定方法であって、前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長のレーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計と、前記レーザー光が反射可能な反射面を有し、前記レーザー発生部から射出され前記密封包装容器の前記被測定部を透過するレーザー光を、前記反射面で反射させた後に前記レーザー受光部に入射させることを特徴とするガス濃度測定方法である(請求項1)。 What solves the above problem is a gas concentration measuring method in which the concentration of a specific gas in a sealed packaging container filled with an object to be packaged, gas replaced, and packaged is measured using a gas concentration measuring device, the method comprising: has a main body portion having a space for filling a packaged object therein, and a measuring portion having a communication portion communicating with a head space in the main body portion and a space for laser light transmission, The device includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam that transmits the laser beam of the specific wavelength to the portion to be measured of the sealed packaging container. a laser-type gas concentration meter that measures the gas concentration of a specific gas remaining inside the container; and a reflective surface capable of reflecting the laser beam, the laser beam being emitted from the laser generating section and hitting the measured portion of the sealed packaging container. The gas concentration measuring method is characterized in that the transmitted laser light is reflected by the reflective surface and then made to enter the laser light receiving section (claim 1).

前記反射面は、前記密封包装容器の前記被測定部を挟んで互いに平行に対向配置された第1反射面と第2反射面からなり、前記レーザー光を前記第1反射面と前記第2反射面との間で複数回反射させることが好ましい(請求項2)。 The reflective surface includes a first reflective surface and a second reflective surface that are arranged parallel to each other to face each other with the portion to be measured of the sealed packaging container sandwiched therebetween, and the reflective surface reflects the laser beam to the first reflective surface and the second reflective surface. It is preferable to reflect the light a plurality of times between the light and the surface (Claim 2).

また、上記課題を解決するものは、被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度を測定するガス濃度測定装置であって、前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長のレーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計と、前記レーザー光が反射可能な反射面を有し、前記レーザー発生部から射出され前記密封包装容器の前記被測定部を透過するレーザー光を、前記反射面で反射させた後に前記レーザー受光部に入射させるように構成されていることを特徴とするガス濃度測定装置である(請求項3)。 Moreover, what solves the above-mentioned problem is a gas concentration measuring device that measures the concentration of a specific gas in a sealed packaging container filled with an object to be packaged, replaced with gas, and packaged, wherein the sealed packaging container has an internal The gas concentration measuring device has a main body portion having a space for filling a packaged object, and a measuring portion having a communication portion communicating with a head space in the main body portion and a space for transmitting laser light, the gas concentration measuring device comprising: a laser generator that emits a laser beam of a specific wavelength; a laser receiver that receives the laser beam; and a laser beam that transmits the laser beam of a specific wavelength to the portion to be measured of the sealed packaging container and enters the inside of the sealed packaging container. A laser gas concentration meter that measures the gas concentration of a specific gas remaining; and a laser that has a reflective surface capable of reflecting the laser beam, and that is emitted from the laser generating section and transmitted through the measured portion of the sealed packaging container. The gas concentration measuring device is characterized in that the gas concentration measuring device is configured to make light enter the laser light receiving section after being reflected by the reflecting surface.

前記ガス濃度測定装置は、前記レーザー発生部を内蔵する第1ハウジングと、前記レーザー受光部を内蔵する第2ハウジングとを有し、前記反射面は、前記密封包装容器の前記被測定部を挟んで互いに平行に対向配置された第1反射面及び第2反射面を有し、前記第1反射面は前記レーザー光を射出する第1窓部を備え、前記第1反射面または前記第2反射面は、前記レーザー光が入射する第2窓部を備え、前記第1窓部から射出されたレーザー光は、前記第1反射面と前記第2反射面との間で複数回反射した後、前記第2窓部に入射するように構成されていることが好ましい(請求項4)。前記第1反射面と前記第2反射面は、相対的な離隔距離を調整可能に設けられ、前記第1反射面と前記第2反射面が前記密封包装容器の前記被測定部を挟持したとき、前記第1窓部および前記第2窓部、並びに前記第1反射面および前記第2反射面が、前記密封包装容器の前記被測定部に密着するように構成されていることが好ましい(請求項5)。 The gas concentration measuring device includes a first housing that includes the laser generating section and a second housing that includes the laser receiving section, and the reflective surface is connected to the part to be measured of the sealed packaging container. has a first reflective surface and a second reflective surface that are arranged to face each other in parallel with each other in between, the first reflective surface has a first window portion that emits the laser beam, and the first reflective surface or the second reflective surface has a The second reflective surface includes a second window into which the laser beam enters, and the laser beam emitted from the first window is reflected multiple times between the first reflective surface and the second reflective surface. It is preferable that the light is configured such that the light is then incident on the second window portion (claim 4). The first reflective surface and the second reflective surface are provided so that a relative separation distance can be adjusted, and when the first reflective surface and the second reflective surface sandwich the portion to be measured of the sealed packaging container. It is preferable that the first window part and the second window part, and the first reflective surface and the second reflective surface are configured to be in close contact with the part to be measured of the sealed packaging container. Item 5).

請求項1に記載のガス濃度測定方法によれば、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定することができる。
請求項2に記載のガス濃度測定方法によれば、レーザー光の光路長をより長くすることができ、密封包装容器内部の特定ガスの濃度をより高精度に測定することができる。
請求項3に記載のガス濃度測定装置によれば、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定することができる。
請求項4に記載のガス濃度測定装置によれば、レーザー光の光路長をより長くすることができ、密封包装容器内部の特定ガスの濃度をより高精度に測定することができる。
請求項5に記載のガス濃度測定装置によれば、上記請求項3の効果をより容易に奏することができる。
According to the gas concentration measuring method according to claim 1, the concentration of a specific gas inside can be measured with high precision without damaging the sealed packaging container, even when the head space where there is no packaged object is narrow. Can be done.
According to the gas concentration measuring method according to the second aspect, the optical path length of the laser beam can be made longer, and the concentration of the specific gas inside the sealed packaging container can be measured with higher precision.
According to the gas concentration measuring device according to claim 3, the concentration of the specific gas inside can be measured with high precision without damaging the sealed packaging container, even when the head space where there is no packaged object is narrow. Can be done.
According to the gas concentration measuring device according to the fourth aspect, the optical path length of the laser beam can be made longer, and the concentration of the specific gas inside the sealed packaging container can be measured with higher precision.
According to the gas concentration measuring device according to the fifth aspect, the effects of the third aspect can be more easily achieved.

本発明のガス濃度測定方法に使用される密封包装容器の一実施例の作用を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the operation of an embodiment of a sealed packaging container used in the gas concentration measuring method of the present invention. 図1に示した密封包装容器の正面図である。FIG. 2 is a front view of the sealed packaging container shown in FIG. 1. FIG. 図1に示した密封包装容器の右側図である。FIG. 2 is a right side view of the sealed packaging container shown in FIG. 1. FIG. 図1に示した密封包装容器の平面図である。2 is a plan view of the sealed packaging container shown in FIG. 1. FIG. 図1に示した密封包装容器の使用状態を示す正面図である。FIG. 2 is a front view showing the sealed packaging container shown in FIG. 1 in use. 本発明のガス濃度測定方法に用いるガス濃度測定装置の一実施例の平面図である。1 is a plan view of an embodiment of a gas concentration measuring device used in the gas concentration measuring method of the present invention. 図6に示したガス濃度測定装置の平面図である。7 is a plan view of the gas concentration measuring device shown in FIG. 6. FIG. 図7に示したガス濃度測定装置の部分拡大図である。8 is a partially enlarged view of the gas concentration measuring device shown in FIG. 7. FIG. 図7のA-A線矢視図である。8 is a view taken along the line AA in FIG. 7. FIG. 図7B-B線矢視図である。FIG. 7 is a view taken along the line B-B in FIG.

本発明では、レーザー発生部11から射出され密封包装容器1の被測定部7を透過するレーザー光を、反射面14で反射させた後にレーザー受光部12に入射させることで、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびガス濃度測定装置を実現した。 In the present invention, the laser beam emitted from the laser generating part 11 and transmitted through the measurement target part 7 of the sealed packaging container 1 is reflected by the reflective surface 14 and then incident on the laser receiving part 12, thereby damaging the sealed packaging container. The present invention has realized a gas concentration measuring method and a gas concentration measuring device for a sealed packaging container, which can measure the concentration of a specific gas inside with high precision even when the head space without an object to be packaged is narrow.

まず、本発明のガス濃度測定方法に使用される密封包装容器の一実施例を図1ないし図5に示した一実施例を用いて説明する。
この実施例の密封包装容器1は、内部の特定ガスの濃度を測定可能な密封包装容器1であって、内部に被包装物充填空間2を備えた本体部3と、本体部3内のヘッドスペース4と連通する連通部5を有すると共にレーザー光透過用空間6を備えた被測定部7とを有している。以下、各構成について順次詳述する。
First, an embodiment of a sealed packaging container used in the gas concentration measuring method of the present invention will be described using an embodiment shown in FIGS. 1 to 5.
The sealed packaging container 1 of this embodiment is a sealed packaging container 1 capable of measuring the concentration of a specific gas inside, and includes a main body 3 having an object filling space 2 inside, and a head inside the main body 3. It has a communicating portion 5 communicating with the space 4 and a measuring portion 7 having a space 6 for transmitting laser light. Each configuration will be described in detail below.

この実施例の密封包装容器1は、レトルト米飯の容器であり、内部の特定ガスは酸素である。ただし、本発明の密封包装容器は、これに限定されるものではなく、図1に示すように、被包装物(この実施例では米飯)Sが密封包装容器1内に十分に充填されヘッドスペース4が狭小となってガス濃度を精度よく測定できない密封包装容器を広く包含するものであり、また、酸素以外の特定ガスを含有した密封包装容器を包含するものである。 The sealed packaging container 1 of this embodiment is a container for retort cooked rice, and the specific gas inside is oxygen. However, the sealed packaging container of the present invention is not limited to this, and as shown in FIG. The term 4 includes a wide range of sealed packaging containers in which gas concentration cannot be accurately measured due to narrowness, and also includes sealed packaging containers containing specific gases other than oxygen.

本体部3内部には、被包装物(この実施例では米飯)Sを充填するための被包装物充填空間2が設けられており、この実施例では、本体部3および被包装物充填空間2は略長方体を形成されているが、形態は長方体に限定されるものではなく、どのような形態のものも本発明の範疇に包含される。 Inside the main body 3, there is provided a packing space 2 for filling the packing object (cooked rice in this embodiment).In this embodiment, the main body 3 and the packing space 2 Although it is formed into a substantially rectangular parallelepiped, the shape is not limited to a rectangular parallelepiped, and any shape is included within the scope of the present invention.

被測定部7は、内部にレーザー光透過用空間6を有し、レーザー光を透過させて特定ガスの濃度を測定するための部位であり、本体部3内のヘッドスペース4と連通する連通部5を介して本体部3に隣接して設けられている。ただし、この実施例の被測定部7は、本体部3に隣接して別に設けられているが、これに限定されるものではなく、レーザー光を透過させて特定ガスの濃度を測定できるものであればどのような形態でもよく、例えば、本体部内に区画板部などで被包装物充填空間とレーザー光透過用空間とが区画して設けられたものなども本発明の範疇に包含される。なお、被測定部7は、連通部5を介して、ヘッドスペース4内の気体のみが移行する構造であることが好ましいが、レーザー光による特定ガスの濃度測定を阻害しない範囲内で、水分や被包装物Sの微量分が少量移行するものでもよい。 The measurement target part 7 has a laser light transmission space 6 therein, is a part for measuring the concentration of a specific gas by transmitting the laser light, and has a communication part communicating with the head space 4 in the main body part 3. It is provided adjacent to the main body part 3 via 5. However, although the part to be measured 7 in this embodiment is provided separately adjacent to the main body part 3, it is not limited to this, and can measure the concentration of a specific gas by transmitting a laser beam. Any form may be used as long as it exists, and for example, a structure in which a space for filling the packaged object and a space for transmitting laser light are partitioned by a partition plate or the like within the main body is also included in the scope of the present invention. It is preferable that the measurement target section 7 has a structure in which only the gas in the head space 4 is transferred via the communication section 5, but moisture and It may be one in which a small amount of the packaged object S is transferred.

この実施例の密封包装容器1は、被測定部7にレーザー光を透過させて特定ガスの濃度を測定するために、透明性材料(例えばポリプロピレン等)にて一体成形されている。ただし、本発明の密封包装容器は、これに限定されるものではなく、被測定部を構成する部位のみが透明性材料にて形成されていてもよく、さらに、特定ガスの濃度を測定可能とする特定波長のレーザー光を透過可能な材料にて、本体部または/および被測定部が形成されていてもよい。なお、本願において「透明性材料」には、色彩の有無を問わず、透明または半透明の材料を広く包含する。また、本願において、特定波長のレーザー光を透過可能な材料には、透明または半透明、材質、柄、文字または図形等付加、着色の有無を問わず、特定波長のレーザー光を透過可能な材料を広く包含する。 The sealed packaging container 1 of this embodiment is integrally molded of a transparent material (for example, polypropylene, etc.) in order to transmit a laser beam to the part to be measured 7 to measure the concentration of a specific gas. However, the sealed packaging container of the present invention is not limited to this, and only the part constituting the part to be measured may be formed of a transparent material, and furthermore, the sealed packaging container of the present invention may be made of a transparent material. The main body portion and/or the measured portion may be formed of a material that can transmit laser light of a specific wavelength. Note that in the present application, the term "transparent material" broadly includes transparent or translucent materials, regardless of whether they are colored or not. In addition, in this application, materials that can transmit laser light of a specific wavelength include materials that can transmit laser light of a specific wavelength, regardless of whether they are transparent or translucent, materials, patterns, characters, figures, etc. added, or colored. broadly encompasses

また、被測定部7のレーザー光透過用空間6は、この実施例のように細長形状に形成されていることが好ましい。これにより、レーザー光の光路長をより長く確保することができ、特定ガス濃度の測定精度を向上させることができる。そして、この実施例の密封包装容器1は、上面にフィルムFが貼着されて、被包装物充填空間2、連通部5およびレーザー光透過用空間6の密封状態が保持されている。 Further, it is preferable that the laser beam transmission space 6 of the portion to be measured 7 is formed into an elongated shape as in this embodiment. Thereby, the optical path length of the laser beam can be ensured longer, and the measurement accuracy of the specific gas concentration can be improved. In the sealed packaging container 1 of this embodiment, a film F is adhered to the upper surface to maintain the sealed state of the packaged object filling space 2, the communication portion 5, and the laser beam transmission space 6.

つぎに、本発明の密封包装容器のガス濃度測定方法を図6ないし図10に示した一実施例を用いて説明する。
この実施例の密封包装容器1を用いたガス濃度測定方法は、被包装物Sを充填しガス置換して包装された密封包装容器1内の特定ガスの濃度をガス濃度測定装置10により測定するガス濃度測定方法であって、密封包装容器1は、内部に被包装物充填空間2を備えた本体部3と、本体部3内のヘッドスペース4と連通する連通部5を有すると共にレーザー光透過用空間6を備えた被測定部7とを有し、ガス濃度測定装置10は、特定波長のレーザー光を射出するレーザー発生部11と、レーザー光を受光するレーザー受光部12と、特定波長のレーザー光を密封包装容器1の被測定部7に透過させて密封包装容器1の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計13と、レーザー光が反射可能な反射面14を有し、レーザー発生部11から射出され密封包装容器1の被測定部7を透過するレーザー光を、反射面14で反射させた後にレーザー受光部12に入射させることを特徴とするガス濃度測定方法である。以下、詳述するが、密封包装容器1については前述した通りであり説明を省略する。
Next, a method for measuring gas concentration in a sealed packaging container according to the present invention will be explained using an embodiment shown in FIGS. 6 to 10.
The gas concentration measuring method using the sealed packaging container 1 of this embodiment is to measure the concentration of a specific gas in the sealed packaging container 1 filled with an object to be packaged S, replaced with gas, and packaged using the gas concentration measuring device 10. In the method for measuring gas concentration, a sealed packaging container 1 has a main body 3 having an object filling space 2 therein, a communication part 5 communicating with a head space 4 in the main body 3, and a laser beam transmitting device. The gas concentration measuring device 10 includes a laser generating section 11 that emits a laser beam of a specific wavelength, a laser receiving section 12 that receives the laser beam, and a measuring section 7 that has a space 6 for measuring the specific wavelength. A laser gas concentration meter 13 that transmits laser light to the measurement target part 7 of the sealed packaging container 1 to measure the gas concentration of a specific gas remaining inside the sealed packaging container 1, and a reflective surface 14 that can reflect the laser light. Gas concentration measurement characterized in that a laser beam emitted from a laser generating section 11 and transmitted through a measurement target section 7 of a sealed packaging container 1 is reflected by a reflecting surface 14 and then made incident on a laser receiving section 12. It's a method. Although detailed description will be given below, the sealed packaging container 1 is as described above, and its explanation will be omitted.

この実施例のガス濃度測定方法は、密封包装容器1内に残留している特定ガスのガス濃度を測定する方法であり、出荷前に密封包装容器1を検査する検査場で行われたり、包装に係る各種工程を有するロータリー式或いはピロー式等の包装機の検査工程で行われる。 The gas concentration measuring method of this embodiment is a method of measuring the gas concentration of a specific gas remaining in the sealed packaging container 1, and is carried out at an inspection site where the sealed packaging container 1 is inspected before shipping. This is done in the inspection process of a rotary type or pillow type packaging machine that has various processes related to this.

この実施例のガス濃度測定方法では、残留している特定ガス酸素ガス(O)である。大気雰囲気下で行われる包装機の包装工程では、被包装物を充填したとき、密封包装容器内部に大気も充填される。
大気に含まれている酸素ガスをはじめとした酸化原因ガスは、被包装物、特に食品類を酸化させて劣化させる原因となる。そのため、包装機には、被包装物を密封包装容器に充填する包装工程の後に、当該密封包装容器から大気を抜気して、不活性ガス、たとえば、窒素ガス(N)、二酸化炭素ガス(CO)へ置き換えるガス置換(ガスパージ)工程が設けられている。
In the gas concentration measuring method of this embodiment, the remaining specific gas is oxygen gas (O 2 ). In the packaging process of a packaging machine, which is carried out in an atmospheric environment, when an object to be packaged is filled, the inside of the sealed packaging container is also filled with atmospheric air.
Oxidizing gases such as oxygen gas contained in the atmosphere cause oxidation and deterioration of packaged items, especially foods. Therefore, after the packaging process of filling the sealed packaging container with the item to be packaged, the packaging machine evacuates the atmosphere from the sealed packaging container and fills it with an inert gas, such as nitrogen gas (N 2 ), carbon dioxide gas, etc. A gas replacement (gas purge) step is provided to replace the gas with (CO 2 ).

その後、ガス置換された密封包装容器1内の酸素ガスのガス濃度を測定して、ガス濃度が基準値以下に収まっているかどうか検査する方法が、本実施例に係るガス濃度測定方法である。酸素ガスのガス濃度を測定したとき、ガス濃度が基準値以下に収まっている場合は、正常にガス置換が行われ、密封包装容器1内は不活性ガスが充満しているので、被包装物の酸化を防止することができ、保存期間や賞味期間を延ばすことができる。これに対して、ガス濃度が基準値を超えている場合は不良品と判断されて、例えば包装機の包装工程(不良品排出工程)にて排出される。 Thereafter, the gas concentration measuring method according to this embodiment is a method of measuring the gas concentration of oxygen gas in the sealed packaging container 1 that has been replaced with gas, and inspecting whether the gas concentration is below a reference value. When measuring the gas concentration of oxygen gas, if the gas concentration is below the standard value, gas replacement has been performed normally and the inside of the sealed packaging container 1 is filled with inert gas, so the packaged items can prevent oxidation and extend shelf life and shelf life. On the other hand, if the gas concentration exceeds the standard value, the product is determined to be defective and is discharged, for example, in the packaging process (defective product discharge process) of a packaging machine.

この実施例のガス濃度測定法に用いられるガス濃度測定装置10は、図8に示すように、レーザー光を射出するレーザー発生部11と、レーザー光を受光するレーザー受光部12とを備えたレーザー式ガス濃度計13と、レーザー光を反射する反射面14を有している。 As shown in FIG. 8, the gas concentration measuring device 10 used in the gas concentration measuring method of this embodiment is a laser beam equipped with a laser generating section 11 that emits a laser beam and a laser receiving section 12 that receives the laser beam. It has a type gas concentration meter 13 and a reflective surface 14 that reflects laser light.

レーザー式ガス濃度計13は、波長可変半導体レーザー吸収分光法によって特定ガスを分析可能に形成されている。 The laser gas concentration meter 13 is configured to be able to analyze a specific gas by wavelength tunable semiconductor laser absorption spectroscopy.

ここで、波長可変半導体レーザー吸収分光法(Tunable Diode Laser Absorption Spectroscopy:TDLAS)とは、半導体レーザー素子から出力されたレーザー光に係る所定の入射光強度と、測定対象となる特定ガスを含んだ気体を封じたセルを透過して当該特定ガスに吸収された透過後のレーザー光に係る透過光強度とから透過率を求めて、透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。 Here, Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a technique that uses a predetermined incident light intensity of a laser beam output from a semiconductor laser element and a gas containing a specific gas to be measured. In this method, the transmittance is determined from the transmitted light intensity of the laser light after passing through a sealed cell and absorbed by the specific gas, and the gas concentration is measured from the absorbance of the laser light based on the transmittance. .

特定ガスを含め、気体はそれぞれ固有の吸収波長帯を有し、当該吸収波長帯にはより強く光を吸収する波長に係る吸収線が複数本含まれていることが知られている。TDLASは、出力するレーザー光の近赤外領域の波長を、測定対象となる特定ガスの複数本の吸収線のうち、一本の吸収線に係る特定波長に合致するように変調し増幅するように構成されている。そして、セルの透過前後で変化する特定波長の吸収スペクトルに基づいてレーザー光の吸光度を求めてガス濃度を測定している。なお、本実施例において測定対象ガスは酸素ガスであって、当該測定対象ガスを封じるセルは密封包装容器1である。 It is known that each gas, including a specific gas, has its own absorption wavelength band, and that the absorption wavelength band includes a plurality of absorption lines related to wavelengths that more strongly absorb light. TDLAS modulates and amplifies the wavelength of the output laser light in the near-infrared region so that it matches the specific wavelength of one of the multiple absorption lines of the specific gas to be measured. It is composed of Then, the gas concentration is measured by determining the absorbance of the laser beam based on the absorption spectrum of a specific wavelength that changes before and after passing through the cell. In this example, the gas to be measured is oxygen gas, and the cell that seals the gas to be measured is the sealed packaging container 1.

レーザー発生部11は、レーザー光源と、レーザー光源から射出するレーザー光の波長を特定の波長に設定し所定の光強度に調整する制御部とを有している。
レーザー光源は、波長が可変可能なダイオードからなる半導体レーザー素子を備え近赤外領域のレーザー光を出力可能に形成されている。制御部は、半導体レーザー素子から出力されるレーザー光の波長を測定対象の特定ガス固有の特定波長に調整して、レーザー光が所定の入射光強度で射出されるように増幅する制御を行うように形成されている。
The laser generating section 11 includes a laser light source and a control section that sets the wavelength of the laser light emitted from the laser light source to a specific wavelength and adjusts the light intensity to a predetermined light intensity.
The laser light source includes a semiconductor laser element made of a wavelength-tunable diode and is configured to be able to output laser light in the near-infrared region. The control unit adjusts the wavelength of the laser light output from the semiconductor laser element to a specific wavelength specific to the specific gas to be measured, and performs control to amplify the laser light so that it is emitted with a predetermined incident light intensity. is formed.

ここで、本実施例に係るレーザー式ガス濃度計13が測定する特定ガスは、酸素ガスであることから、当該酸素ガス固有の吸収波長帯は760nm帯であり、当該吸収波長帯に含まれる複数の吸収線のうち、一の吸収線に係る特定波長がレーザー光の出力波長として選択される。 Here, since the specific gas measured by the laser gas concentration meter 13 according to this embodiment is oxygen gas, the absorption wavelength band specific to the oxygen gas is the 760 nm band, and the plurality of absorption wavelength bands included in the absorption wavelength band are 760 nm. A specific wavelength related to one of the absorption lines is selected as the output wavelength of the laser beam.

レーザー発生部11は、第1ハウジング15に内蔵されており、第1ハウジング15はレーザー射出用窓部16を有している。レーザー射出用窓部16には、近赤外領域の光を通しやすいサファイヤガラスが嵌め込まれている。そして、レーザー発生部11は、レーザー射出用窓部16を通じて第1ハウジング15からレーザー光を射出するように形成されている。 The laser generator 11 is built into a first housing 15, and the first housing 15 has a laser emission window 16. The laser emission window 16 is fitted with sapphire glass that easily transmits light in the near-infrared region. The laser generating section 11 is formed to emit a laser beam from the first housing 15 through the laser emitting window section 16.

第1ハウジング15内は特定ガス、この実施例では酸素ガスを除去するために、真空化またはガス置換(ガスパージ)をすることができるように形成されている。そのため、第1ハウジング15内を真空で維持したり、あるいは窒素ガス、または二酸化炭素等の不活性ガス類で満たすことができるように構成されている。 これによって、レーザー光源からレーザー射出用窓部16を通じて射出するまでの間に、第1ハウジング15内でレーザー光が特定ガスに吸収されることを防止することができ、ガス濃度測定の精度を向上させることができる。 The inside of the first housing 15 is formed so that it can be evacuated or gas replaced (gas purge) in order to remove a specific gas, oxygen gas in this embodiment. Therefore, the first housing 15 is configured to be able to maintain a vacuum or be filled with an inert gas such as nitrogen gas or carbon dioxide. This can prevent the laser light from being absorbed by the specific gas within the first housing 15 until it is emitted from the laser light source through the laser emission window 16, improving the accuracy of gas concentration measurement. can be done.

レーザー受光部12は、密封包装容器1の被測定部7を透過したレーザー光を受光する受光センサと、受光センサからの受光信号に基づいてガス濃度を測定する測定部を有している。 The laser light receiving section 12 has a light receiving sensor that receives the laser light that has passed through the portion to be measured 7 of the sealed packaging container 1, and a measuring section that measures the gas concentration based on the light receiving signal from the light receiving sensor.

受光センサは、密封包装容器1の被測定部7を透過したレーザー光の透過光強度を電気的な透過光信号に変換する素子、例えばフォトダイオードにて構成されている。これによって、密封包装容器1の被測定部7を透過したレーザー光の透過光強度を電気的に処理することができる。 The light receiving sensor is composed of an element, such as a photodiode, that converts the transmitted light intensity of the laser beam transmitted through the measurement target part 7 of the sealed packaging container 1 into an electrical transmitted light signal. Thereby, the transmitted light intensity of the laser beam transmitted through the portion to be measured 7 of the sealed packaging container 1 can be electrically processed.

測定部は、透過光強度に係る透過光信号と、レーザー発生部11から出力されたレーザー光の入射光強度に係る入射光信号に基づいて透過率を計算し、当該透過率に基づいてレーザー光の特定ガスによる吸光度を求め、当該吸光度に基づいて密封包装容器1の被測定部7内の特定ガスの濃度を測定するように構成されている。 The measurement unit calculates the transmittance based on the transmitted light signal related to the transmitted light intensity and the incident light signal related to the incident light intensity of the laser beam output from the laser generator 11, and calculates the transmittance based on the transmittance. The absorbance of the specific gas is determined, and the concentration of the specific gas in the portion to be measured 7 of the sealed packaging container 1 is measured based on the absorbance.

レーザー受光部12は、第2ハウジング17に内蔵されている。第2ハウジング17はレーザー受光用窓部18を有している。レーザー受光用窓部18には、レーザー射出用窓部16と同様、近赤外領域の光を通しやすいサファイヤガラスが嵌め込まれている。これによって、レーザー受光部12は、レーザー受光用窓部18を通じて密封包装容器1の被測定部7を透過したレーザー光を受光するように形成されている。 The laser light receiving section 12 is built into the second housing 17. The second housing 17 has a window 18 for receiving laser light. Like the laser emission window 16, the laser reception window 18 is fitted with sapphire glass that easily transmits light in the near-infrared region. Thereby, the laser light receiving section 12 is formed so as to receive the laser light that has passed through the portion to be measured 7 of the sealed packaging container 1 through the laser light receiving window section 18 .

第2ハウジング17内もまた、第1ハウジング15と同様、真空化またはガス置換可能に形成されている。そのため、レーザー受光用窓部18を通じて入射されたレーザー光を受光センサが受光するまでの間に、第2ハウジング17内でレーザー光が特定ガスに吸収されることを防止することができガス濃度測定の精度を向上させることができる。 Similarly to the first housing 15, the inside of the second housing 17 is also formed to be able to be evacuated or replaced with gas. Therefore, it is possible to prevent the laser light from being absorbed by the specific gas in the second housing 17 until the light receiving sensor receives the laser light that is incident through the laser light receiving window 18, thereby measuring the gas concentration. accuracy can be improved.

このように、レーザー式ガス濃度計13は、レーザー発生部11からレーザー射出用窓部16を通じてレーザー光を射出し、当該レーザー光を測定対象の密封包装容器1の被測定部7内に透過させて、レーザー受光用窓部18を通じてレーザー受光部12で密封包装容器1の被測定部7を透過したレーザー光を受光するように構成されている。 In this manner, the laser gas concentration meter 13 emits a laser beam from the laser generating section 11 through the laser emission window section 16, and transmits the laser beam into the measured section 7 of the sealed packaging container 1 to be measured. The laser light receiving section 12 is configured to receive the laser light that has passed through the measurement target part 7 of the sealed packaging container 1 through the laser light receiving window section 18 .

そして、レーザー式ガス濃度計13を有するガス濃度測定装置10は、レーザー射出用窓部16から射出されたレーザー光をレーザー受光用窓部18へ入射させる間に、反射面14で少なくとも一回、好ましくは複数回反射させるように構成されている。 The gas concentration measuring device 10 having the laser type gas concentration meter 13 allows the laser beam emitted from the laser emission window section 16 to enter the laser reception window section 18 at least once on the reflective surface 14. Preferably, it is configured to be reflected multiple times.

この実施例の反射面14は、所定の位置に第1窓部19が設けられた第1反射面14aと、所定の位置に第2窓部20が設けられた第2反射面14bとからなり、第1反射面14aと第2反射面14bは、互いに平行に対向するように設けられている。第1反射面14aと第2反射面14bは、例えば鏡面または鏡面状に磨き上げられた金属、或いは所定の基材に鏡面状の膜体を貼り付けものからなり、レーザー光を反射可能に形成されている。 The reflective surface 14 of this embodiment consists of a first reflective surface 14a in which a first window portion 19 is provided at a predetermined position, and a second reflective surface 14b in which a second window portion 20 is provided in a predetermined position. , the first reflective surface 14a and the second reflective surface 14b are provided so as to face each other in parallel. The first reflective surface 14a and the second reflective surface 14b are made of, for example, a mirror surface, a mirror-polished metal, or a mirror-like film attached to a predetermined base material, and are formed to be able to reflect laser light. has been done.

第1反射面14aと第2反射面14bは、それぞれ図示しない往復動機構(シリンダーまたはサーボモーター等の駆動装置を含む機構により)相対的な離隔距離を調整可能(相対的に接近または離隔可能)に形成され、図8中、第1反射面14aと第2反射面14bとの間に密封包装容器1の被測定部7を上下で挟持可能に形成されている。そのため、第1反射面14aと第2反射面14bで密封包装容器1の被測定部7を上下方向から挟持したとき、密封包装容器1の被測定部7の上下面に、それぞれ第1反射面14aと第2反射面14bを密着させることができるように構成されている。 The relative distance between the first reflecting surface 14a and the second reflecting surface 14b can be adjusted (they can be relatively approached or separated) by a reciprocating mechanism (not shown) (a mechanism including a cylinder or a driving device such as a servo motor). In FIG. 8, the portion to be measured 7 of the sealed packaging container 1 can be held between the first reflective surface 14a and the second reflective surface 14b at the upper and lower sides. Therefore, when the portion to be measured 7 of the sealed packaging container 1 is held between the first reflective surface 14a and the second reflective surface 14b from above and below, the first reflective surface is placed on the upper and lower surfaces of the portion to be measured 7 of the sealed packaging container 1, respectively. 14a and the second reflective surface 14b are configured to be brought into close contact with each other.

さらに、密封包装容器1の被測定部7に対する第1窓部19と第2窓部20の位置を定めることによって、第1反射面14aと第2反射面14bで密封包装容器1の被測定部7を挟持したとき、密封包装容器1の被測定部7に第1窓部19と第2窓部20も密着させることができる。これによって、レーザー光を第1窓部19から射出して、第2反射面14b、第1反射面14abと反射させて、第2窓部20へ入射させるとき、大気に含まれている特定ガスの影響を最小限に抑えることができ、より高精度に特定ガスの濃度を測定することができる。 Furthermore, by determining the positions of the first window part 19 and the second window part 20 with respect to the part to be measured 7 of the sealed packaging container 1, the part to be measured of the sealed packaging container 1 is 7, the first window portion 19 and the second window portion 20 can also be brought into close contact with the portion to be measured 7 of the sealed packaging container 1. As a result, when the laser beam is emitted from the first window section 19, reflected by the second reflective surface 14b and the first reflective surface 14ab, and made to enter the second window section 20, the specific gas contained in the atmosphere The influence of gas can be minimized, and the concentration of a specific gas can be measured with higher accuracy.

なお、第1窓部19と第2窓部20の位置は、レーザー光を第1窓部19から射出して第2窓部20へ入射させる間に第1反射面14aと第2反射面14bで反射可能となるように配置すれば良く、第1窓部19と第2窓部20間の距離と、第1窓部19から射出されるレーザー光が第2反射面14bへ入射するときの入射角度との関係によって、第1反射面14aと第2反射面14bとの間でレーザー光を所定回反射させて、第2窓部20へ入射させるよう制御することができる。 Note that the positions of the first window section 19 and the second window section 20 are such that the first reflective surface 14a and the second reflective surface 14b are positioned so that the laser beam is emitted from the first window section 19 and enters the second window section 20. The distance between the first window section 19 and the second window section 20 and the distance between the first window section 19 and the second window section 20 when the laser beam emitted from the first window section 19 is incident on the second reflective surface 14b are sufficient. Depending on the relationship with the incident angle, the laser beam can be controlled to be reflected a predetermined number of times between the first reflective surface 14a and the second reflective surface 14b and to be incident on the second window portion 20.

レーザー光を第1窓部19から射出され第2反射面20へ入射させるとき、レーザー光の入射角度は、5度から85度の間で任意に設定することができ、さらに第1反射面14aと第2反射面14b間の距離に基づいて光路長の計算を容易に行うことができる、入射角度が5度以下の場合、第1窓部19と第2窓部20が正対している従来の場合と光路長の差が大きくならない。他方、入射角度が85度以上の場合、透過するレーザー光が特定ガスに吸収されるよりも散乱する割合が大きくなり、ガス濃度の測定で誤差が生じやすくなるおそれがある。 When the laser beam is emitted from the first window part 19 and is made to enter the second reflective surface 20, the incident angle of the laser beam can be arbitrarily set between 5 degrees and 85 degrees, and the angle of incidence of the laser beam can be arbitrarily set between 5 degrees and 85 degrees. When the incident angle is 5 degrees or less, the optical path length can be easily calculated based on the distance between the first window section 19 and the second reflecting surface 14b. The difference in optical path length is not large compared to the case of . On the other hand, when the incident angle is 85 degrees or more, a larger proportion of the transmitted laser light is scattered than absorbed by the specific gas, which may lead to errors in gas concentration measurement.

また、第1反射面14aと第2反射面14bとの間を反射させる反射回数は、2回ないし4回程度が好ましい。5回以上反射させると、光路長を長くすることはできるが、レーザー光の減衰率が大きくなるため、レーザー受光部12に高感度な受光センサを設けなければならない。そのため、コストが増大するおそれがある。 Further, the number of times of reflection between the first reflective surface 14a and the second reflective surface 14b is preferably about 2 to 4 times. If the laser beam is reflected five times or more, the optical path length can be increased, but the attenuation rate of the laser beam increases, so a highly sensitive light-receiving sensor must be provided in the laser light-receiving section 12. Therefore, there is a possibility that the cost will increase.

つぎに、本発明のガス濃度測定方法およびガス濃度測定装置の具体的な作用を図面に示した一実施例を用いて説明する。 Next, specific operations of the gas concentration measuring method and gas concentration measuring device of the present invention will be explained using an example shown in the drawings.

本発明のガス濃度測定方法およびガス濃度測定装置10では、図6または図7に示すように、コンベアWのベルトY上に載置された密封包装容器1が順次間欠搬送される。密封包装容器1は、図6中搬送方向(矢印H方向)に、密封包装容器1の被測定部7の長手方向が沿って搬送されるようにベルトY上に載置される。 In the gas concentration measuring method and gas concentration measuring device 10 of the present invention, as shown in FIG. 6 or 7, the sealed packaging containers 1 placed on the belt Y of the conveyor W are sequentially and intermittently conveyed. The sealed packaging container 1 is placed on the belt Y so that the longitudinal direction of the portion 7 to be measured of the sealed packaging container 1 is transported in the transport direction (arrow H direction) in FIG.

そして、ガス濃度測定装置10が設置された部位付近において、ガス濃度測定装置10の第1反射面14aと第2反射面14bの間に密封包装容器1の被測定部7が至ると、図8に示すように、ガス濃度測定装置10の第1反射面14aと第2反射面14bが被測定部7を上下から挟持する。 Then, when the part to be measured 7 of the sealed packaging container 1 reaches between the first reflective surface 14a and the second reflective surface 14b of the gas concentration measuring device 10 near the location where the gas concentration measuring device 10 is installed, as shown in FIG. As shown in FIG. 2, the first reflective surface 14a and the second reflective surface 14b of the gas concentration measuring device 10 sandwich the measured portion 7 from above and below.

密封包装容器1の被測定部7が第1反射面14aと第2反射面14bに挟持された後、レーザー発生部11からレーザー射出用窓部16および第1反射面14aの第1窓部19を介して密封包装容器1の被測定部7にレーザー光が上方から射出される。レーザー光は第2反射面14bでまず反射し、その後、第1反射面14a、さらに第2反射面14bと順に反射してから、第1反射面14aの第2窓部19および第2ハウジング17のレーザー受光用窓部18を介してレーザー受光部12で受光される。 After the part to be measured 7 of the sealed packaging container 1 is sandwiched between the first reflecting surface 14a and the second reflecting surface 14b, the laser emitting window 16 and the first window 19 of the first reflecting surface 14a are removed from the laser generating section 11. A laser beam is emitted from above to the portion to be measured 7 of the sealed packaging container 1 through the laser beam. The laser beam is first reflected by the second reflective surface 14b, then reflected by the first reflective surface 14a, then the second reflective surface 14b, and then reflected by the second window 19 of the first reflective surface 14a and the second housing 17. The laser beam is received by the laser light receiving section 12 through the laser light receiving window section 18 .

レーザー受光部12の受光センサは、密封包装容器1の被測定部7を透過したレーザー光を電子的な透過光信号へ変換し、当該透過光信号が測定部へ出力される。測定部は、上記透過光信号と、レーザー発生部11が射出したレーザー光を電子的に変換した入射光信号を取得し、透過光信号と入射光信号を比較して、レーザー光の密封包装容器1の被測定部7に対する透過率Tを測定する。そして、当該透過率Tに基づいて、密封包装容器1の被測定部7内の特定ガスに吸収されたレーザー光の特定波長の吸収スペクトルの吸光度が計算され、当該吸光度に基づいて密封包装容器1の被測定部7内の特定ガスのガス濃度が測定される。 The light-receiving sensor of the laser light-receiving section 12 converts the laser light that has passed through the measurement target section 7 of the sealed packaging container 1 into an electronic transmitted light signal, and the transmitted light signal is output to the measurement section. The measuring section acquires the transmitted light signal and an incident light signal obtained by electronically converting the laser light emitted by the laser generating section 11, compares the transmitted light signal and the incident light signal, and compares the transmitted light signal with the incident light signal to determine whether the laser light is in a sealed packaging container. The transmittance T for the part to be measured 7 of No. 1 is measured. Then, based on the transmittance T, the absorbance of the absorption spectrum of the specific wavelength of the laser beam absorbed by the specific gas in the measurement target part 7 of the sealed packaging container 1 is calculated, and based on the absorbance, the sealed packaging container 1 The gas concentration of the specific gas in the measured part 7 is measured.

なお、この実施例においては反射面14を第1反射面14aと第2反射面14bの二面からなるように構成したがこれに限定されるものではなく、例えば一枚の反射面に対してレーザー光を反射させることによってもまた光路長を延ばすことができる。 In this embodiment, the reflective surface 14 is configured to consist of two surfaces, the first reflective surface 14a and the second reflective surface 14b, but the configuration is not limited to this. For example, for one reflective surface, The optical path length can also be increased by reflecting the laser light.

1 密封包装容器
2 被包装物充填空間
3 本体部
4 ヘッドスペース
5 連通部
6 レーザー光透過用空間
7 被測定部
10 ガス濃度測定装置
11 レーザー発生部
12 レーザー受光部
13 レーザー式ガス濃度計
14 反射面
14a 第1反射面
14b 第2反射面
15 第1ハウジング
16 レーザー射出用窓部
17 第2ハウジング
18 レーザー受光用窓部
19 第1窓部
20 第2窓部、
F フィルム
w コンベア
Y ベルト
S 被包装物
1 Sealed packaging container 2 Packaging space 3 Main body section 4 Head space 5 Communication section 6 Laser light transmission space 7 Measurement section 10 Gas concentration measuring device 11 Laser generating section 12 Laser receiving section 13 Laser type gas concentration meter 14 Reflection Surface 14a First reflective surface 14b Second reflective surface 15 First housing 16 Laser emission window 17 Second housing 18 Laser reception window 19 First window 20 Second window,
F Film w Conveyor Y Belt S Item to be packaged

Claims (5)

被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度をガス濃度測定装置により測定するガス濃度測定方法であって、
前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、
前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長のレーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計と、前記レーザー光が反射可能な反射面を有し、
前記レーザー発生部から射出され前記密封包装容器の前記被測定部を透過するレーザー光を、前記反射面で反射させた後に前記レーザー受光部に入射させることを特徴とするガス濃度測定方法。
A gas concentration measuring method in which the concentration of a specific gas in a sealed packaging container filled with an object to be packaged, gas replaced, and packaged is measured using a gas concentration measuring device, the method comprising:
The sealed packaging container has a main body portion having a space for filling a packaged object therein, and a measuring portion having a communication portion communicating with a head space in the main body portion and a space for transmitting laser light,
The gas concentration measuring device includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam that transmits the laser beam of the specific wavelength to the portion to be measured of the sealed packaging container. A laser gas concentration meter that measures the gas concentration of a specific gas remaining inside the sealed packaging container, and a reflective surface that can reflect the laser beam,
A method for measuring a gas concentration, characterized in that a laser beam emitted from the laser generating section and transmitted through the measuring section of the sealed packaging container is reflected by the reflecting surface and then made incident on the laser receiving section.
前記反射面は、前記密封包装容器の前記被測定部を挟んで互いに平行に対向配置された第1反射面と第2反射面からなり、前記レーザー光を前記第1反射面と前記第2反射面との間で複数回反射させる請求項1に記載のガス濃度測定方法。 The reflective surface includes a first reflective surface and a second reflective surface that are arranged parallel to each other to face each other with the portion to be measured of the sealed packaging container sandwiched therebetween, and the reflective surface reflects the laser beam to the first reflective surface and the second reflective surface. 2. The gas concentration measuring method according to claim 1, wherein the gas concentration is reflected multiple times between the gas and the surface. 被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度を測定するガス濃度測定装置であって、
前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、
前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長のレーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計と、前記レーザー光が反射可能な反射面を有し、
前記レーザー発生部から射出され前記密封包装容器の前記被測定部を透過するレーザー光を、前記反射面で反射させた後に前記レーザー受光部に入射させるように構成されていることを特徴とするガス濃度測定装置。
A gas concentration measuring device that measures the concentration of a specific gas in a sealed packaging container filled with a packaged object, replaced with gas, and packaged,
The sealed packaging container has a main body portion having a space for filling a packaged object therein, and a measuring portion having a communication portion communicating with a head space in the main body portion and a space for transmitting laser light,
The gas concentration measuring device includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam that transmits the laser beam of the specific wavelength to the portion to be measured of the sealed packaging container. A laser gas concentration meter that measures the gas concentration of a specific gas remaining inside the sealed packaging container, and a reflective surface that can reflect the laser beam,
A gas characterized in that the laser beam is emitted from the laser generating section and passes through the measured portion of the sealed packaging container, and is configured so that the laser beam is reflected by the reflecting surface and then made to enter the laser receiving section. Concentration measuring device.
前記ガス濃度測定装置は、前記レーザー発生部を内蔵する第1ハウジングと、前記レーザー受光部を内蔵する第2ハウジングとを有し、
前記反射面は、前記密封包装容器の前記被測定部を挟んで互いに平行に対向配置された第1反射面及び第2反射面を有し、
前記第1反射面は前記レーザー光を射出する第1窓部を備え、前記第1反射面または前記第2反射面は、前記レーザー光が入射する第2窓部を備え、
前記第1窓部から射出されたレーザー光は、前記第1反射面と前記第2反射面との間で複数回反射した後、前記第2窓部に入射するように構成されている請求項3に記載のガス濃度測定装置。
The gas concentration measuring device includes a first housing containing the laser generating section and a second housing containing the laser receiving section,
The reflective surface has a first reflective surface and a second reflective surface that are arranged to face each other in parallel with the measured portion of the sealed packaging container in between,
The first reflective surface includes a first window portion through which the laser beam is emitted, and the first reflective surface or the second reflective surface includes a second window portion through which the laser beam enters,
Claim: The laser beam emitted from the first window is configured to be reflected multiple times between the first reflective surface and the second reflective surface and then enter the second window. 3. The gas concentration measuring device according to 3.
前記第1反射面と前記第2反射面は、相対的な離隔距離を調整可能に設けられ、前記第1反射面と前記第2反射面が前記密封包装容器の前記被測定部を挟持したとき、前記第1窓部および前記第2窓部、並びに前記第1反射面および前記第2反射面が、前記密封包装容器の前記被測定部に密着するように構成されている請求項4に記載のガス濃度測定装置。 The first reflective surface and the second reflective surface are provided so that a relative separation distance can be adjusted, and when the first reflective surface and the second reflective surface sandwich the portion to be measured of the sealed packaging container. 5. The first window portion, the second window portion, the first reflective surface, and the second reflective surface are configured to be in close contact with the portion to be measured of the sealed packaging container. gas concentration measuring device.
JP2019226118A 2019-12-16 2019-12-16 Gas concentration measurement method and gas concentration measurement device for sealed packaging containers Active JP7343169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226118A JP7343169B2 (en) 2019-12-16 2019-12-16 Gas concentration measurement method and gas concentration measurement device for sealed packaging containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226118A JP7343169B2 (en) 2019-12-16 2019-12-16 Gas concentration measurement method and gas concentration measurement device for sealed packaging containers

Publications (2)

Publication Number Publication Date
JP2021096099A JP2021096099A (en) 2021-06-24
JP7343169B2 true JP7343169B2 (en) 2023-09-12

Family

ID=76432159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226118A Active JP7343169B2 (en) 2019-12-16 2019-12-16 Gas concentration measurement method and gas concentration measurement device for sealed packaging containers

Country Status (1)

Country Link
JP (1) JP7343169B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038846A (en) 2008-08-08 2010-02-18 Hitachi Zosen Corp Nondestructive inspection device of oxygen concentration within bag-like container
JP2010521676A (en) 2007-03-13 2010-06-24 アドヴァンスト リキッド ロジック インコーポレイテッド Droplet actuator apparatus, configuration and method for improved absorbance detection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921731A (en) * 1995-07-06 1997-01-21 Tokyo Electric Power Co Inc:The Method for preserving hydrazine standard liquid
JPH10148613A (en) * 1996-11-20 1998-06-02 Mitsubishi Heavy Ind Ltd Gas concentration measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521676A (en) 2007-03-13 2010-06-24 アドヴァンスト リキッド ロジック インコーポレイテッド Droplet actuator apparatus, configuration and method for improved absorbance detection
JP2010038846A (en) 2008-08-08 2010-02-18 Hitachi Zosen Corp Nondestructive inspection device of oxygen concentration within bag-like container

Also Published As

Publication number Publication date
JP2021096099A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US7948626B2 (en) Method for the automated measurement of gas pressure and concentration inside sealed containers
CN109863385B (en) Method and apparatus for measuring the concentration of a gas
JP7075862B2 (en) Analysis equipment
JP2021067634A (en) Device for measuring gas concentration in packaging bag
JP7321453B2 (en) Laser gas concentration meter
CN104903704A (en) Tunable diode laser absorption spectroscopy with water vapor determination
JP7357918B2 (en) Gas concentration measuring device inside packaging bag
KR20190112742A (en) How to measure gas concentration
US8994948B2 (en) Apparatus for the non-destructive testing of the integrity and/or suitability of sealed packagings
JP4948145B2 (en) Gas detector
US20170268996A1 (en) Method and device for measuring the gas content of materials packaged in plastic films, glass or other light-permeable materials and sensitive to a gas to be measured
JP7343169B2 (en) Gas concentration measurement method and gas concentration measurement device for sealed packaging containers
JP7355381B2 (en) sealed packaging containers
JP7339662B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
JP7339663B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
CN104964926B (en) Method and device for determining gas composition in transparent container
US10088416B2 (en) Method and device for determining gas component inside a transparent container
JP7350312B2 (en) Method for measuring gas concentration in packaging containers
JP5337953B2 (en) Gas concentration measuring method and gas concentration measuring device
Cocola et al. Design and evaluation of an in-line system for gas sensing in flow-packed products
JP2021067631A (en) Method of measuring gas concentration in packaging bag
Cocola et al. A Modular Approach of Different Geometries for Non‐invasive Oxygen Measurement inside Moving Food Packages
JP2021067633A (en) Method of measuring gas concentration in packaging bag
JP2021096133A (en) Gas concentration measuring device for packaging bags
JP2021156853A (en) Gas analyser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230824

R150 Certificate of patent or registration of utility model

Ref document number: 7343169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150