WO2021070960A1 - Work device - Google Patents

Work device Download PDF

Info

Publication number
WO2021070960A1
WO2021070960A1 PCT/JP2020/038384 JP2020038384W WO2021070960A1 WO 2021070960 A1 WO2021070960 A1 WO 2021070960A1 JP 2020038384 W JP2020038384 W JP 2020038384W WO 2021070960 A1 WO2021070960 A1 WO 2021070960A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell array
work
edge
robot
Prior art date
Application number
PCT/JP2020/038384
Other languages
French (fr)
Japanese (ja)
Inventor
三宅 徹
末岡 一彦
Original Assignee
株式会社未来機械
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社未来機械 filed Critical 株式会社未来機械
Priority to CN202080038685.2A priority Critical patent/CN113950381A/en
Publication of WO2021070960A1 publication Critical patent/WO2021070960A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/38Machines, specially adapted for cleaning walls, ceilings, roofs, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/12Brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a working device. More specifically, the present invention relates to a work device for cleaning the surface of a solar cell array used for photovoltaic power generation.
  • Cleaning of a solar cell array or the like can be performed by a worker using a brush or the like, but in a large-scale photovoltaic power generation facility, the burden on the worker is heavy and a large number of workers are required. Therefore, a cleaning device having various structures for self-propelling and cleaning the surface (light receiving surface) of the solar cell array in a large-scale photovoltaic power generation facility has been developed. (See, for example, Patent Documents 1 to 5).
  • an object of the present invention is to provide a working device capable of moving on a solar cell array for cleaning.
  • the working device of the first invention is a working device that performs work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side, and includes a working device that performs work on the surface of the solar cell array.
  • a moving portion for moving the working device along the direction in which the solar cell modules are lined up is provided, and the moving portion includes a moving mechanism for moving the working device using a cord-shaped member. It is characterized by being.
  • the working apparatus of the second invention includes the cord-shaped member connected to the working device and a drive mechanism for moving the cord-shaped member, and the cord-shaped member is provided. The member is characterized in that one end and the other end are connected to the working device to form an endless loop.
  • the working apparatus of the third invention includes the cord-shaped member connected to the working device and a driving mechanism for moving the traction member, and the cord-shaped member is provided. Is an endless member.
  • the working device of the fourth invention is characterized in that, in the first, second or third invention, the cord-like member is provided so as to be in non-contact with the surface of the solar cell array.
  • the working device of the fifth invention is the first, second, third or fourth invention in which the cord-like member is a shadow of the cord-like member on the surface of the solar cell array in the power generation state of the solar cell array. Is arranged at a position where is not formed.
  • the moving portion of the working apparatus of the sixth invention drives the cord-shaped member stretched along the surface of the solar cell array and a roller rolling on the surface of the cord-shaped member. It is characterized by having a drive mechanism.
  • the working device of the seventh invention is characterized in that, in the sixth invention, the drive mechanism includes a pair of rollers arranged so as to sandwich the cord-like member.
  • the work apparatus of the eighth invention is the work of the work device outside one end of the solar cell array in the direction in which the work device is moved by the movement mechanism of the moving part. It is characterized by having a retracting portion for retracting the vessel from the surface of the solar cell array.
  • the working apparatus of the ninth invention includes a reaching detection unit that detects that the working device has reached an end portion of the solar cell array on the side opposite to the side where the retracting portion is provided. It is characterized by being.
  • the working device of the tenth invention is a working device that performs work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side, and is a moving means for self-propelled operation and a surface of the solar cell array.
  • a work robot having a work unit for carrying out work on the solar cell array, and a retracting unit for retracting the work robot from the surface of the solar cell array are provided, and the work robot moves to the retracted unit.
  • the working apparatus of the eleventh invention is characterized in that, in the tenth invention, the retracting portions are provided at a plurality of places.
  • the working device of the twelfth invention is a working device for performing work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side along the axial direction of a swing axis, and is a moving device for self-propelled operation.
  • the transport path is provided with a transport path on which the work robot can travel, and the transport path is around an axis whose first end is parallel to the surface of the solar cell array with respect to one of the adjacent solar cell arrays.
  • the second end of the solar cell array is mounted on one of the adjacent solar cell arrays.
  • the working device of the thirteenth invention is a working device for performing work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side along the axial direction of a swing axis, and is a moving device for self-propelled operation.
  • a work robot having means, a work unit for performing work on the surface of the solar cell array, and a transport path provided between adjacent solar cell arrays on which the work robot can travel.
  • the transport path is installed so that the upper surface thereof is substantially horizontal and the surface of the solar cell array is substantially horizontal so that the surface of the solar cell array and the upper surface thereof are substantially the same height. It is characterized by being.
  • the working apparatus of the fourteenth invention is provided such that the transport path is provided so as to connect adjacent solar cell arrays arranged side by side along the axial direction of the swing shaft. It is characterized in that it is arranged so as to be located outside the axial end of the swing axis of the solar cell array.
  • the working apparatus of the fifteenth invention includes a state detection mechanism for detecting the state of the solar cell array, and the state detection mechanism detects the state of the solar cell array. It is characterized by including a state detection unit for determining the state of the solar cell array and a determination unit for determining the state of the solar cell array based on the information detected by the state detection unit.
  • the working apparatus of the 16th invention is characterized in that, in the 15th invention, the state detecting unit includes a temperature detecting unit that detects the temperature of the solar cell array.
  • the working apparatus of the seventeenth invention includes a light irradiation unit in which the state detection unit irradiates the surface of the solar cell array with light, and the light irradiated by the light irradiation unit is the surface of the solar cell array. It is provided with a light receiving unit that receives the reflected light reflected by the above, and the determination unit has a function of determining dirt on the surface of the solar cell array based on the reflected light received by the light receiving unit. It is characterized by.
  • the working device can be stably moved along the surface of the solar cell array.
  • the working device does not have a moving mechanism, the weight of the working device can be reduced.
  • the work device is moved by the drive mechanism that moves the cord-shaped member, the work can be performed at a desired timing regardless of the inclination angle of the surface of the solar cell array or the like. It is possible to prevent the work equipment and the drive mechanism from adversely affecting the power generation of the solar cell module, such as lowering the power generation efficiency.
  • the working device since the working device can be moved along the cord-like member, the working device can be stably moved along the surface of the solar cell array. According to the eighth invention, the movement of the work equipment can be appropriately controlled, and the number of devices required for control can be reduced.
  • the working robot since the working robot returns to the evacuation section along the edge of the solar cell array, the working robot can be stably returned to the evacuation section. According to the tenth invention, the time for returning the working robot to the evacuation unit can be shortened.
  • Transport path> According to the twelfth to fourteenth inventions, since the working robot can be shared by a plurality of solar cell arrays, the working apparatus can be simplified.
  • the work can be performed according to the state of the solar cell array.
  • the work can be performed according to the temperature of the solar cell array.
  • the work can be carried out according to the state of the dirt.
  • FIG. 10 It is a schematic explanatory view of the work apparatus 10 in the work apparatus 1 of the 1st Embodiment, (A) is a plan view, and (B) is the BB line arrow view of (A). It is a schematic explanatory drawing in the case where the working apparatus 1 of 1st Embodiment is made movable between solar cell array LPs. It is a schematic explanatory drawing of the photovoltaic power generation equipment SP which has a plurality of solar cell array LPs. It is a schematic plan view of the work robot 101 of the work apparatus 1 of the 2nd Embodiment. It is the schematic explanatory drawing of the operation of the work robot 101 of the work apparatus 1 of the 2nd Embodiment.
  • FIG. 1 It is a schematic explanatory drawing of the work robot 101 of the work apparatus 1 of the 2nd Embodiment which performs a cleaning work. It is a schematic front view of the work robot 101 of the work apparatus 1 of the 2nd Embodiment which performs a cleaning work. It is the schematic explanatory drawing of the operation of the work robot 101 of the work apparatus 1 of the 2nd Embodiment traveling on the solar cell array LP which has a groove G. It is a schematic plan view of the work robot 101 of another embodiment. It is a schematic plan view of the work robot 101 of another embodiment. It is a schematic plan view of the work robot 101 of another embodiment. FIG.
  • FIG. 5 is a schematic plan view of a work robot 101 including an edge detection unit 131 in which the outer detection unit 132 and the inner detection unit 133 have a plurality of sensors. It is the schematic explanatory drawing of the situation which the working robot 101 of the working apparatus 1 of the 2nd Embodiment moves along the edge SE of the solar cell array LP.
  • FIG. 5 is a schematic explanatory view of a photovoltaic power generation facility SP in which the work robot 101 of the work device 1 of the second embodiment performs work such as cleaning.
  • the working device of the present embodiment is a working device that performs work while moving the surface of a solar cell array having a plurality of solar cell modules arranged side by side along the direction in which the plurality of solar cell modules are arranged. ..
  • the solar cell array in which the work is carried out by the working device of the present embodiment and the solar cell modules constituting the solar cell array are not particularly limited.
  • a tracking type solar cell array in which a plurality of solar cell modules having a panel frame are arranged side by side, or a solar cell array having a plurality of fixed solar cell modules having a panel frame (in other words, a non-tracking type solar cell array, non-tracking). Can also be used for type). It can also be used in solar cell arrays (including tracking type and non-tracking type) in which frameless solar cell modules are arranged side by side.
  • the “surface of the solar cell module” means the surface of the power generation region where power is generated in the solar cell module.
  • the part other than the panel frame is the power generation area.
  • the “surface of the solar cell array” means the “surface of the solar cell module”.
  • the term “on the solar cell array” is a concept that includes both the “surface of the solar cell module” and the “panel frame” in the "solar cell array” formed of the solar cell module having the panel frame.
  • the work performed by the work device of this embodiment is not particularly limited. For example, cleaning the surface of a solar cell array to which the work equipment moves, inspecting defects on the surface, measuring the surface shape and thickness of members, measuring the surface temperature, measuring the surface roughness, measuring the light reflectance and glossiness on the surface. Measurement, measurement of other physical quantities, etc. correspond to the work performed by the work apparatus of this embodiment. In addition, collection and observation of substances on the surface of the solar cell array, peeling of deposits and paint on the surface, painting and surface treatment before that, and coating work also correspond to the work performed by the working apparatus of this embodiment. .. Further, sticking of a film or the like to the surface of the solar cell array, polishing, marking, etc. can also be mentioned as the work performed by the working apparatus of the first embodiment. Then, communication by presenting information and the like can be mentioned as the work to be carried out by the work device of the first embodiment.
  • the working device of the present embodiment cleans the surface of a tracking type solar cell array formed by arranging a plurality of solar cell modules having a panel frame.
  • a work device, a sensor, an instrument, or the like is provided at a position where the cleaning member 15 described later is provided.
  • the work performed by the work apparatus of the present embodiment is a flat surface defect inspection, a surface shape or member thickness measurement, a temperature measurement, a surface roughness measurement, a light reflectance or glossiness measurement on a surface, or the like.
  • various sensors used for each measurement are provided.
  • an instrument such as a spray nozzle is provided.
  • the work carried out by the working apparatus of the present embodiment is a peeling treatment such as a deposit or coating on the surface of the solar cell array, a polishing treatment, or a base treatment before coating or the like, shot blasting, rotary type, or vibration is performed.
  • a type of polishing device is provided.
  • a roller or the like is provided.
  • communication or the like by presenting information is performed by the working device of the present embodiment, a display, an LED, a speaker, or the like is provided.
  • the photovoltaic power generation facility SP in which the work device 1 of the present embodiment performs work such as cleaning will be briefly described.
  • the photovoltaic power generation facility SP has a plurality of rows of solar cell array LPs including a plurality of solar cell modules P.
  • the solar cell array LP is connected by the swing axis SS of the gantry MT in a state where the end edges of the plurality of solar cell modules P are aligned so as to be lined up in substantially the same straight line.
  • the solar cell array LP a plurality of solar cell modules P are arranged so that their surfaces are substantially flush with each other and connected by a swing axis SS of a gantry MT.
  • the solar cell array LP can swing a plurality of solar cell modules P at the same time and at the same angle by rotating the swing shaft SS. Therefore, the solar cell array LP can make the plurality of solar cell modules P follow the sun and adjust the inclination of the surface of the plurality of solar cell modules P so as to optimize the power generation efficiency.
  • the solar cell array LP has both ends (first end portion P1) in a direction orthogonal to the direction in which a plurality of solar cell modules P are arranged along the swing axis SS in a state where the surface thereof is horizontal. And the intermediate line between the second end P2) is connected to the swing shaft SS so as to be located approximately vertically above the central axis of the swing shaft SS (including the case where a deviation of up to about 80 mm occurs). There is.
  • the solar cell array LP may have a plurality of solar cell modules P arranged in a row or may have a plurality of rows in which a plurality of solar cell modules P are arranged (see FIG. 2).
  • the "first end portion P1 and second end portion P2 of the solar cell array LP" are the ends of the solar cell module P located on the outermost side in the direction orthogonal to the axial direction of the swing axis SS. It shall mean a part.
  • both ends of the solar cell module P are "first end portions P1 and second of the solar cell array LP". It becomes "end P2".
  • the solar cell array LP has two rows of upper and lower solar cell modules P in which a plurality of solar cell modules P are arranged
  • the upper end portion of the upper solar cell module P and the lower end portion of the lower solar cell module P are “suns”. It corresponds to the first end portion P1 and the second end portion P2 of the battery array LP.
  • both ends in a direction orthogonal to the axial direction of the swing axis SS are "first end portion P1 and second end portion P2 of the solar cell module P".
  • the edge of the first end portion P1 of the solar cell array LP (first end edge)” and “the edge edge of the second end portion P2 of the solar cell array LP (second end edge)” are the solar cells. If the solar cell module P constituting the array LP is a frameless solar cell module P, a surface (first end surface or first surface) intersecting the surface of the solar cell array LP at the first end portion P1 and the second end portion P2. It means the intersection line between the two end faces) and the surface of the solar cell array LP.
  • the solar cell module P constituting the solar cell array LP is a solar cell module P having a panel frame
  • the panel frame intersecting the upper surface of the panel frame at the first end portion P1 and the second end portion P2.
  • the side surface becomes the first end surface or the second end surface.
  • the line of intersection of the upper surface of the panel frame and the first end surface or the second end surface is "the end edge (first) of the first end portion P1 of the solar cell array LP.
  • Edge edge) or“ edge edge (second edge edge) of the second end portion P2 of the solar cell array LP ”.
  • each "solar cell module P" in the case of the frameless solar cell module P, the surface intersecting the surface of the solar cell module P at the first end P1 and the second end P2 of the solar cell module P ( The intersection line between the first end surface or the second end surface) and the surface of the solar cell array LP becomes the "first end edge (second end edge) of the solar cell module P".
  • the solar cell module P having a panel frame the upper surface of the panel frame at the first end P1 and the second end P2 of the solar cell module P intersects with the side surface of the panel frame intersecting the upper surface of the panel frame. The intersection is the "first end edge (second end edge) of the solar cell module P".
  • the first end edge (or the second end edge) of the solar cell array LP (or the solar cell module P) is aligned so as to be arranged in substantially the same linear shape" means that the first end edge of the solar cell array LP (or the solar cell module P) is aligned.
  • the first end edges (or the second end edges) of the adjacent solar cell modules P forming the edge (or the second edge) are completely aligned, and when the first end edge (or the second edge) is aligned completely. This includes the case where there is a slight deviation between the first end edges (or the second end edges) of the adjacent solar cell modules P forming the two end edges).
  • the first end edge (or the second end edge) is formed.
  • the first end edges (or the second end edges) of the adjacent solar cell modules P forming the second edge) are almost parallel, but there is a slight deviation in height or in the horizontal direction (for example, about 0 to 5 mm).
  • the position of the solar cell module P in the direction along the surface is deviated (for example, about 0 to 20 mm).
  • the case where the first end edges (or the second end edges) of the adjacent solar cell modules P forming the first end edge (or the second end edge) are relatively inclined is included.
  • the surfaces of a plurality of solar cell modules P are substantially flush with each other is a concept including a case where the angles formed by the surfaces of adjacent solar cell modules P are displaced by about 0 to 1 degree. It also includes the case where there is a slight difference in height between the surfaces of the adjacent solar cell modules P (for example, about 0 to 5 mm).
  • the working device 10 is moved along the solar cell array LP on the solar cell array LP provided with the plurality of solar cell modules P in the photovoltaic power generation facility SP, and the plurality of suns are moved.
  • the surface of the battery module P is cleaned by the working device 10.
  • the plurality of solar cell modules P of the solar cell array LP are arranged, in other words, along the axial direction of the swing axis SS of the gantry MT, the plurality of solar cell modules P are arranged.
  • the surface of the solar cell module P is cleaned by the working device 10.
  • the work apparatus 1 of the present embodiment includes the above-mentioned work device 10, a moving unit 20 for moving the work device 10, and a retracting unit 30 for retracting the work device 10 from the solar cell array LP. , Is equipped.
  • the moving unit 20 moves the working device 10 on the solar cell array LP along the solar cell array LP. Specifically, the solar cell modules P are moved along the direction in which the plurality of solar cell modules P are arranged, in other words, along the axial direction of the swing axis SS of the gantry MT.
  • the moving portion 20 includes a traction mechanism 21, and the traction mechanism 21 has a cord-like member 22 connected to the work device 10 and a drive mechanism 25 for moving the cord-like member 22.
  • the traction mechanism 21 has a pair of cord-shaped members 22, 22.
  • the pair of cord-shaped members 22, 22 are all arranged so as to be located outside the first end portion P1 and the second end portion P2 of the solar cell array LP.
  • the pair of cord-shaped members 22, 22 are arranged at positions so as not to be shadowed on the power generation region of the solar cell array LP.
  • the pair of cord-shaped members 22 and 22 are installed at positions where the power generation efficiency of the solar cell array LP does not decrease even if the pair of cord-shaped members 22 and 22 are provided.
  • Each of the pair of cord-shaped members 22 and 22 is formed in an endless loop shape so as to move in parallel with the axial direction of the swing shaft SS of the gantry MT.
  • one end and the other end of each cord-like member 22 are connected to the chassis frame 11 of the work equipment 10 to form an endless loop, and the pulley 22p, sprockets, etc. are formed near both ends of the swing shaft SS of the gantry MT. It is wrapped around.
  • the traction mechanism 21 includes a drive mechanism 25.
  • the drive mechanism 25 is capable of orbiting each cord-like member 22. That is, the drive mechanism 25 is configured so that each cord-shaped member 22 can be moved along the axial direction thereof, in other words, the axial direction of the swing shaft SS of the gantry MT.
  • a motor is adopted as the drive source of the drive mechanism 25
  • a structure in which the main shaft of the motor is connected to the pulley 22p and the rotation shaft of the sprocket can be adopted.
  • the working device 10 can be moved in the direction in which the pair of cord-shaped members 22, 22 move. That is, the work equipment 10 can be moved along the axial direction of the swing shaft SS of the gantry MT.
  • electric power may be supplied from the outside, or a part of the electric power generated by the solar cell array LP may be stored in a battery or a capacitor and operated by the electric power. Further, a power generation device (solar panel or the like) for the work device may be provided, and the electric power generated by the power generation device may be stored.
  • a power generation device solar panel or the like
  • a hydraulic motor or a pneumatic motor may be used as the motor used as the drive source of the drive mechanism 25.
  • a hydraulic source or a pneumatic source for driving the hydraulic motor or the pneumatic motor may be provided.
  • the electric power generated by the solar cell array LP or the like may be converted into mechanical energy by an actuator and stored, and the pair of cord-shaped members 22, 22 may be moved by the stored energy.
  • the method of converting into mechanical energy is not particularly limited.
  • the spring may be contracted or extended to store energy, or the weight may be lifted to store energy.
  • the cord-shaped members 22 may be one or three or more.
  • the work device 10 can be mounted on the axis of the swing axis SS of the gantry MT. It can be moved stably along the direction. In this case, the shadow of the cord-shaped member 22 may be formed on the power generation region of the solar cell array LP.
  • the solar cell array LP in which the solar cell modules P are arranged on both sides of the swing axis SS, if the cord-like member 22 is arranged so as to be located in the vicinity of the swing axis SS, the solar cell array It is possible to prevent the shadow of the cord-shaped member 22 from being formed on the power generation region of the LP (FIG. 2).
  • the cord-shaped member 22 is in contact with the solar cell module P, the solar cell module P and the cord-shaped member 22 may be damaged when the cord-shaped member 22 moves. Therefore, it is desirable that the cord-shaped member 22 is arranged so as to be in non-contact with the solar cell module P.
  • the cord-like member 22 itself may be formed of an endless loop (such as an endless belt or an endless chain). Even in this case, the chassis frame 11 of the work tool 10 and the cord-shaped member 22 may be connected via the connecting tool.
  • a sprocket, a pulley, or the like is provided on the work equipment 10 so that the cord-like member 22 is wound around the sprocket or the like, the moving force of the cord-like member 22 is applied to the wheels provided on the chassis frame 11 of the work equipment 10. It can be used as a driving force for rotating 12.
  • the moving force of the cord-shaped member 22 can be used as a driving force for rotating the brush.
  • the moving force of the cord-shaped member 22 is used as a driving force for rotating the wheel 12 provided on the chassis frame 11 of the work device 10" means that the moving force of the cord-shaped member 22 is transmitted to the wheel 12 by the transmission mechanism. This includes both the case where the wheel 12 is rotated by the wheel 12 and the case where the wheel 12 is rotated by friction with the solar cell module P simply by pulling the chassis frame 11.
  • cord-shaped member 22 is not formed in an endless loop shape, but the cord-shaped member 22 is provided on both sides of the work device 10, and each cord-shaped member 22 is moved by an individual (or one) drive source of the drive mechanism 25. You may let it.
  • the cord-shaped member 22 is not particularly limited as long as it has a tensile strength capable of generating sufficient tension when the work device 10 is moved.
  • a wire, a string, a fishing line, a rope, a chain, a belt for example, a flat belt, a round belt, a V-belt, a toothed belt, etc.
  • the material of the cord-shaped member 22 is not particularly limited.
  • metal, synthetic resin, synthetic fiber, rubber, or the like can be adopted. In particular, those having little decrease in flexibility and strength even when exposed to sunlight or the like are preferable.
  • the working device 1 of the present embodiment is provided with a retracting unit 30 for retracting the working device 10 from the solar cell array LP in a state where the working device 10 does not perform work such as cleaning.
  • the retracting portion 30 is arranged at one end of the solar cell array LP on the outer side in the axial direction of the swing shaft SS (the left end in FIGS. 1 and 2).
  • the upper surface of the retracting portion 30 is arranged substantially horizontally.
  • the height of the retracting portion 30 is provided so as to be substantially the same as the height of the surface of the solar cell array LP when the surface of the solar cell array LP is horizontal.
  • the working device 10 can be moved from the retracting unit 30 onto the solar cell array LP, or the working device 10 can be retracted from the solar cell array LP to the retracting unit 30. ..
  • the retracting unit 30 may swing together with the solar cell array LP.
  • the evacuation portion 30 is arranged so that the upper surface thereof is substantially the same plane as the surface of the solar cell array LP, the work device 10 can be moved to the solar cell array LP regardless of the inclination of the solar cell array LP. Can be moved between and the retracting unit 30.
  • the work equipment 10 since the work equipment 10 always swings together with the solar cell array LP, it is necessary to provide the above-mentioned traction mechanism 21 so as to swing together with the solar cell array LP.
  • the upper surface of the retracting portion 30 is located on the same plane as the surface of the solar cell array LP.
  • the control device 40 controls the operation of the drive mechanism 25 of the traction mechanism 21 to control the movement of the work equipment 10.
  • the movement of the work equipment 10 is controlled by directly detecting the position of the work equipment 10 or by detecting the movement of the cord-like member 22 of the traction mechanism 21.
  • the control device 40 may be installed in the vicinity of the solar cell array LP such as the evacuation unit 30, or may be installed in a management building or the like away from the solar cell array LP.
  • the control device 40 has an evacuation detection unit that detects whether or not the work device 10 is arranged in the evacuation unit 30. Further, when the work device 10 is not arranged in the retracted portion 30, that is, when it is arranged on the solar cell array LP, the work device 10 reaches the end opposite to the retracted portion 30 in the solar cell array LP. It has a arrival detection unit that detects whether or not it has been done.
  • a sensor for detecting the presence or absence of the work device 10 may be provided in the evacuation unit 30 to serve as the evacuation detection unit. ..
  • a limit switch, a photo interrupter, a proximity sensor, an ultrasonic sensor, a photoelectric switch, or the like can be adopted as the sensor.
  • a reach detection unit for detecting whether or not the work device 10 has reached the end on the opposite side of the retracted portion 30 in the solar cell array LP the end on the opposite side of the retracted portion 30 in the solar cell array LP is used.
  • a method in which a sensor for detecting the work device 10 is provided as a arrival detection unit can be adopted.
  • the control device 40 controls the operation of the drive mechanism 25 of the traction mechanism 21 to stop the movement of the work device 10 or move it toward the retracting unit 30. Then, it is possible to prevent the working device 10 from falling from the end portion of the solar cell array LP opposite to the retracted portion 30.
  • the drive mechanism 25 of the traction mechanism 21 may be provided with a function of detecting the movement of the cord-like member 22 of the traction mechanism 21 to serve as the arrival detection unit.
  • the moving distance of the cord-shaped member 22 is measured by a tachometer such as an encoder or a potentiometer or a range finder
  • the working device 10 is a retracted portion in the solar cell array LP based on the moving amount of the cord-shaped member 22. It is possible to detect whether or not the end on the opposite side of 30 has been reached.
  • the control device 40 not only determines whether the work device 10 has reached the opposite end, but also the cord-like member 22 based on the information supplied from the arrival detection unit. The position of the work device 10 may be grasped based on the amount of movement of the work device 10.
  • the control device and the drive device of the work device 1 can be easily arranged in a centralized manner, so that maintainability and the like can be improved.
  • devices such as a drive mechanism 25, a control device 40, and the above sensors are collectively arranged in the vicinity of the evacuation unit 30 or the like. Then, since the work such as maintenance can be performed in the vicinity of the evacuation unit 30, the work efficiency of the maintenance can be improved and the burden on the operator can be reduced. Further, since it is not necessary to provide a sensor or the like at the end of the retracting portion 30 or the solar cell array LP on the opposite side of the retracting portion 30, the structure of the working device 1 can be simplified.
  • the work equipment 10 is arranged on the evacuation unit 30.
  • the surface of the solar cell array LP is arranged horizontally. Then, since the surface of the solar cell array LP and the upper surface of the retracted portion 30 are at the same height, the control device 40 operates the drive mechanism 25 of the traction mechanism 21, and the working device 10 moves the solar cell array from the retracted portion 30.
  • the cord-like member 22 is moved so as to move on the LP.
  • the drive mechanism 25 of the traction mechanism 21 When the work device 10 moves onto the solar cell array LP, the drive mechanism 25 of the traction mechanism 21 further sets the cord-like member 22 so that the work device 10 faces the opposite end of the retracted portion 30 of the solar cell array LP. Move. At this time, the surface of the solar cell module P is cleaned by the cleaning member 15, and dust and the like are moved toward the opposite end of the retracted portion 30 of the solar cell array LP.
  • the control device 40 controls the drive mechanism 25 of the traction mechanism 21 to stop the movement of the cord-like member 22. Stop the movement of the work device 10.
  • the cleaning member 15 is made to protrude from the opposite end of the retracting portion 30 of the solar cell array LP, dust and the like that have moved together with the cleaning member 15 (that is, together with the work equipment 10) are removed from the solar cell. It can be dropped from the opposite end of the retracted portion 30 of the array LP.
  • the control device 40 operates the drive mechanism 25 of the traction mechanism 21 to move the cord-like member 22 in the opposite direction, and moves the work device 10 toward the retracting portion 30. At this time as well, the surface of the solar cell array LP can be cleaned by the cleaning member 15. Then, when the work device 10 reaches the end of the solar cell array LP on the retracted portion 30 side, the control device 40 controls the drive mechanism 25 of the traction mechanism 21 to stop the movement of the cord-shaped member 22, and the work device 10 is used. Stop the movement of 10.
  • the work device 10 can clean the surface of the solar cell array LP.
  • the operation of the work device 10 may be controlled by a timer provided in the control device 40, or may be supplied to the control device 40 from the outside (for example, a management building) via wireless or wired. It may be controlled based on the operation signal. Further, the control device 40 is time information obtained based on a global positioning system (GNSS) such as GPS provided in the control device 40 or a standard radio wave (radio wave received by a radio clock). Then, the work device 10 may be operated at a time when the conditions are met with reference to the preset operation time. The number of times the work device 10 is cleaned by one cleaning operation (that is, the number of times the solar cell array LP is reciprocated once) may be a preset number of times in the control device 40, or an operation transmitted from the outside. It may be carried out based on the information of the number of times.
  • GNSS global positioning system
  • the cord-shaped member 22 is fixed>
  • the work device 10 is connected to the cord-shaped member 22, and the cord-shaped member 22 is moved by the drive mechanism 25 of the traction mechanism 21 to move the work device 10.
  • the cord-shaped member 22 may be fixed so that the working device 10 moves along the cord-shaped member 22.
  • the cord-shaped member 22 is installed above the surface of the solar cell array LP so as to be parallel to the swing axis SS.
  • the work equipment 10 is provided with a pair of rollers 26, 26 installed so as to sandwich the cord-shaped member 22 from the vertical direction (see FIG. 19B).
  • the pair of rollers 26, 26 is, for example, a pulley or the like, and has a structure capable of accommodating the cord-shaped member 22 in a groove or the like and holding the cord-shaped member 22 so as not to come off from the roller 26.
  • one or both rollers 26 are connected to a drive source 27 such as a motor by a transmission mechanism (for example, a gear mechanism or the like). That is, when the drive source 27 is driven, one or both rollers 26 are connected to the drive source 27 so that one or both rollers 26 are rotated by the driving force.
  • a drive source 27 such as a motor
  • a transmission mechanism for example, a gear mechanism or the like
  • the control device is similar to the case where the operation of the drive mechanism 25 of the traction mechanism 21 is controlled to move the work device 10.
  • the movement of the work equipment 10 may be controlled by 40 (not shown in FIG. 19).
  • the evacuation detection unit and the arrival detection unit may be provided, and the control device 40 may grasp the position of the work equipment 10 and control the movement of the work equipment 10 in response to a signal from the evacuation detection unit or the arrival detection unit. ..
  • an encoder or the like may be provided on the rotation shaft of the roller 26 to detect the rotation amount of the roller 26, and the control device 40 may control the movement of the work equipment 10 based on the rotation amount of the roller 26.
  • the control device 40 may be mounted on the work device 10, or may be installed at a place away from the work device 10 such as the evacuation unit 30, and the drive source 27 or the like of the work device 10 may be operated wirelessly or the like. You may control it.
  • the pair of rollers 26, 26 are arranged so as to sandwich the cord-shaped member 22 from the vertical direction. It may be sandwiched from the direction.
  • a pair of rollers 26, 26 may be arranged so as to sandwich the cord-shaped member 22 from the horizontal direction, or a pair of rollers 26, 26 may be arranged so as to sandwich the cord-shaped member 22 from an oblique direction with respect to the horizontal direction. May be arranged.
  • roller 26 only one roller 26 may be provided.
  • the roller 26 may be arranged so as to be hooked from above the cord-shaped member 22, or may be arranged so as to push up the cord-shaped member 22 by the roller 26.
  • the roller 26 is rotated, the roller 26 is brought into contact with the cord-shaped member 22 so that a sufficient frictional force that can move the work device 10 is generated between the cord-shaped member 22 and the roller 26. Just do it.
  • a toothed belt or the like may be adopted as the cord-shaped member 22.
  • the cord-like member 22 and the roller 26 can be in a meshed state, so that the work device 10 can be reliably moved by a length corresponding to the rotation of the roller 26. it can.
  • the work device 10 includes a chassis frame 11 and wheels 12 for moving the work device 10 on the solar cell array LP. Further, the work device 10 includes a cleaning member 15 that cleans the surface of the solar cell array LP when it is moved on the solar cell array LP by the wheels 12. Further, the work device 10 includes a support mechanism 50 that supports the movement of the work device 10 along the axial direction of the swing shaft SS.
  • the chassis frame 11 is a member whose axial direction (horizontal direction in FIG. 3B) is longer than its width (vertical direction in FIG. 3B).
  • the chassis frame 11 is provided with wheels 12 and a cleaning member 15. Further, first and second support portions 51 and 52 of the support mechanism 50 are attached to both shaft ends of the chassis frame 11, respectively.
  • a handle 10f is provided at the central portion of the chassis frame 11 in the axial direction, which is used when the operator needs to lift the work device 10 such as when installing or maintaining the work device (FIG. 3 (FIG. 3). A)).
  • the position where the handle 10f is provided is not particularly limited. It may be provided at both ends of the chassis frame 11 in the axial direction. That is, instead of the handle 10f at the center of the chassis frame 11 in the axial direction, or together with the handle 10f at the center of the chassis frame 11 in the axial direction, the operator puts the work equipment on both ends of the chassis frame 11 in the axial direction.
  • a handle used for lifting the 10 may be provided.
  • Wheels 12 are provided on the lower surface of the chassis frame 11.
  • the wheels 12 are provided so that the wheels 12 are arranged at predetermined positions of the solar cell module P when the work device 10 is arranged on the solar cell array LP.
  • the sun Wheels 12 may be provided so as to be arranged on the upper end and lower end panel frames of each solar cell module P of the battery array LP.
  • the panel frame at the upper end of the solar cell module P located on the upper side and the panel frame at the lower end of the solar cell module P located on the lower side may be provided so as to be arranged in the lower panel frame of the solar cell module P located on the upper side and / or the upper panel frame of the upper end of the solar cell module P located on the lower side, respectively.
  • the intermediate wheels do not necessarily have to be provided.
  • the solar cell array LP is formed by providing only one stage of the solar cell module P (see FIGS. 1 and 3), when the work device 10 is arranged on the solar cell array LP,
  • the wheels 12 are provided so as to be arranged on the panel frames at the upper end and the lower end (that is, the first end and the second end of the solar cell array LP) of the solar cell module P, respectively.
  • the solar cell array LP is formed by providing the solar cell modules P in three or more stages, when the work device 10 is arranged on the solar cell array LP, the upper end of each solar cell module P and the upper end of each solar cell module P are formed.
  • the wheels 12 may be provided so as to be arranged in the panel frame at the lower end (or arranged in the panel frame of some solar cell modules P).
  • the frameless solar cell module P is deformed when the work device 10 is arranged on the solar cell array LP. It is desirable to provide the wheels 12 at positions where the force to cause them can be reduced.
  • the wheel 12 has the lower end of the wheel 12 on the solar cell module P (panel frame or the surface of the solar cell module P) before the chassis frame 11. It is provided so as to come into contact with each other.
  • the diameter and width of the wheel 12 are not particularly limited.
  • the cleaning member 15 for example, in the case of a brush, a part of the tip (a portion located below) of the cleaning member 15) described later is the solar cell array LP in a state where the work device 10 is arranged on the solar cell array LP. It suffices if it is provided so as to come into contact with the surface.
  • all the wheels 12 do not have to have the same diameter and width, but those having the same diameter and width can stabilize the movement of the work equipment 10. In particular, if all the wheels 12 have the same diameter and width, the movement can be more stable.
  • the structure and material of the wheel 12 are not particularly limited. It is possible to use a material formed of general rubber or a resin material such as urethane resin, or a material provided with rubber or a resin material such as urethane resin in contact with the solar cell array LP. it can. In particular, when the solar cell array LP is formed of the frameless solar cell module P, even if the wheels 12 move on the surface of the solar cell array LP, the portion in contact with the surface of the solar cell array LP is the sun. It is desirable that the battery array LP is made of a material that does not easily damage the surface (glass, surface coating, etc.) or a material that has hardness (flexibility).
  • the cleaning member 15 is provided on the lower surface side of the chassis frame 11. Specifically, the length of the cleaning member 15 in the axial direction is longer than the length between the first and second ends P1 and P2 of the solar cell array LP (the length in the direction orthogonal to the swing axis SS). Is also long.
  • the cleaning member 15 includes a shaft portion and a brush portion having a brush or the like provided around the shaft portion, and the shaft portion is provided so as to be parallel to the axial direction of the chassis frame 11.
  • the shaft portion is attached to the chassis frame 11 so as not to rotate. That is, when the work device 10 is moved by the traction mechanism 21 of the moving portion 20, the cleaning member 15 is provided so that the surface of the solar cell module P can be cleaned by the brush.
  • the brush When a brush having a shaft portion and a brush portion having a brush or the like provided around the shaft portion as described above is used as the cleaning member 15, the brush is provided so as to rotate with respect to the chassis frame 11. You may. In this case, the brush needs to be rotated by an external driving force or the like. For example, when the wheel 12 rotates, the brush may rotate due to the rotation. Specifically, the rotating shaft of the wheel 12 and the shaft portion of the brush are connected by a gear mechanism, a belt pulley mechanism, or the like. Then, when the work equipment 10 is moved by the moving unit 20 and the wheels 12 are rotated, the brush can be rotated, so that the surface of the solar cell module P can be swept and cleaned by the rotation of the brush.
  • the solar cell module P by the brush can be used.
  • the surface cleaning effect can be enhanced.
  • the cleaning member 15 may move in the axial direction according to the movement of the work device 10 and the rotation of the wheels 12.
  • the cleaning member 15 may move in the axial direction when the wheel 12 rotates by a link mechanism that connects the rotating shaft of the wheel 12 and the shaft of the cleaning member 15.
  • a drive source such as a motor may be provided in the work device 10, and the cleaning member 15 may be rotated or moved in the axial direction by the drive source.
  • a motor such as a motor
  • the rotation speed of the brush can be adjusted regardless of the moving speed of the work equipment 10 by the moving unit 20, so that the effect of cleaning the surface of the solar cell module P by the brush can be further enhanced. ..
  • the work equipment 10 is provided with an electrically driven drive source (for example, the drive source 27 in FIG. 19 or a motor for driving a brush), it is necessary to supply electric power to the drive source.
  • the method of supplying electric power to the drive source is not particularly limited.
  • a battery may be provided in the work equipment 10 to supply electric power from the battery to the drive source.
  • the solar cell module may be mounted on the work device 10 and the electricity generated by the solar cell module may be used as the electric power of the drive source. Both the solar cell module and the battery may be placed on the work equipment 10, the battery may be charged with the electric power generated by the solar cell module, and the electric power may be supplied to the drive source.
  • electric power may be supplied to the work equipment 10 from the outside.
  • the cord-shaped member 22 can be used as one electrode and the solar cell array can be used as the other electrode.
  • a conductive member such as a conductive brush is provided on the work device 10, and the conductive member is provided so as to come into contact with the solar cell array.
  • DC power can be supplied to the work equipment 10 from the outside.
  • the cord-shaped members 22 are electrically insulated from each other to have different polarities. Power may be supplied to a drive source, a battery, or the like. For example, when a DC power supply is used, if one cord-shaped member 22 is used as an anode and the other cord-shaped member 22 is used as a cathode (ground electrode), power can be supplied by the two cord-shaped members 22. it can.
  • the solar cell array LP may be provided with two insulated rail-shaped electrodes along the moving direction of the work device 10, and power may be supplied to the work device 10 from the electrodes.
  • the work equipment 10 may be provided with a conductive member such as a conductive brush, and power may be supplied from each electrode to a drive source, a battery, or the like via the conductive member.
  • the working device 10 when the working device 10 is provided with a battery, the battery may be charged in a state where the working device 10 is retracted to the above-mentioned evacuation section 30.
  • the work equipment 10 and the evacuation unit 30 are provided with the following devices.
  • the work equipment 10 is provided with a device for receiving power supply from the evacuation unit 30.
  • the equipment for receiving the power supply is not particularly limited.
  • a terminal for charging may be provided, and this terminal may be connected (contacted) with the terminal provided in the evacuation unit 30 to receive power supply.
  • a device that receives power by a non-contact method such as electromagnetic induction may be provided so that the power is supplied in a non-contact manner.
  • the evacuation unit 30 is provided with a power supply unit for supplying electric power to the work equipment 10.
  • a power supply unit for supplying electric power to the work equipment 10.
  • a terminal that connects (contacts) with the terminal of the work equipment 10 is provided in the power supply unit, and power is supplied to the work equipment 10 by a connection (contact) method. You may do so.
  • a device for supplying electric power by a non-contact method such as electromagnetic induction may be provided in the power supply unit to supply electric power to the work equipment 10 in a non-contact manner.
  • the method of supplying electric power to the power supply unit is not particularly limited.
  • electric power may be directly supplied to the terminals of the power supply unit or the device for electromagnetic induction from the outside of the evacuation unit 30 by a power cable or the like, or a battery may be provided in the power supply unit to supply the electric power supplied from the outside to the battery.
  • the charged electric power may be supplied to the terminal of the power supply unit or the device for electromagnetic induction.
  • the solar cell module may be provided in the evacuation section 30 to supply the electric power generated by the solar cell module to the power supply section.
  • the power may be directly supplied to the terminal of the power supply unit or the device for electromagnetic induction, or a battery may be provided in the power supply unit and supplied from the solar cell module.
  • the electric power generated may be charged to the battery, and the electric power charged to the battery may be supplied to the terminal of the power supply unit or the device for electromagnetic induction.
  • a general brush or broom member may be used, or a simple cloth or blade may be used as the cleaning member. If the tips of these members are in contact with the surface of the solar cell module P, they can be slidably moved along the surface of the solar cell module P. Then, the dust or the like on the surface of the solar cell module P can be pushed by the cleaning member (in other words, together with the cleaning member) to move the dust or the like in the moving direction of the work equipment 10. Then, when the working device 10 reaches the end of the solar cell array LP, dust and the like can be dropped from the surface of the solar cell module P and removed at the end.
  • the effect of moving dust or the like in the moving direction of the working device 10 and removing the dust or the like from the surface of the solar cell module P at the end of the solar cell array LP can also be obtained by the rotating cleaning member 15. That is, if the cleaning member 15 is rotated in the direction opposite to the rotation direction of the wheel 12 and at a speed different from the rotation speed of the wheel 12, dust and the like can be moved forward in the moving direction of the work device 10. Therefore, the work device 10 can be moved to the end of the solar cell array LP, and dust and the like can be dropped from the surface of the solar cell module P at the end of the solar cell array LP.
  • both ends of the chassis frame 11 are provided with a first support portion 51 and a second support portion 52 of the support mechanism 50, respectively.
  • the first support portion 51 includes two free rollers 51a and 51a having the same shape.
  • the two free rollers 51a and 51a are provided so as to be arranged at intervals along the moving direction of the work device 10. Further, the two free rollers 51a and 51a have a rotation axis substantially orthogonal to a plane parallel to both the moving direction of the work equipment 10 and the plane parallel to both the axial direction of the cleaning member 15 (referred to as a reference parallel plane).
  • a reference parallel plane referred to as a reference parallel plane.
  • the two free rollers 51a and 51a are provided so that their rotation axes are substantially parallel to the normal direction of the surface of the solar cell array LP when the work device 10 is arranged on the solar cell array LP. Has been done.
  • the distance from the lower surface of the chassis frame 11 (the surface facing the surface of the solar cell array LP) to the lower end surfaces of the two free rollers 51a and 51a is from the lower surface of the chassis frame 11. It is provided so as to be slightly longer than the distance to the lower end of the wheel 12. That is, when the work device 10 is arranged on the solar cell array LP, the two free rollers 51a and 51a are provided so that their peripheral surfaces face the first end surface of the solar cell array LP. There is.
  • the second support portion 52 also includes two free rollers 52a and 52a having the same shape.
  • the two free rollers 52a and 52a are provided so as to be arranged at intervals along the moving direction of the work device 10. Further, these two free rollers 52a and 52a also have a rotation axis substantially orthogonal to the reference parallel plane. In other words, the two free rollers 52a and 52a are provided so that their rotation axes are substantially parallel to the normal direction of the surface of the solar cell array LP when the work device 10 is arranged on the solar cell array LP. Has been done.
  • the two free rollers 52a and 52a also have two free rollers from the lower surface of the chassis frame 11 (the surface facing the surface of the solar cell array LP), similarly to the two free rollers 51a and 51a of the first support portion 51.
  • the distances to the lower end surfaces of the 52a and 52a are provided so as to be slightly longer than the distance from the lower surface of the chassis frame 11 to the lower ends of the wheels 12. That is, when the work device 10 is arranged on the solar cell array LP, the two free rollers 52a and 52a are provided so that their peripheral surfaces face the second end surface of the solar cell array LP. There is.
  • first support unit 51 and the second support unit 52 have two free rollers 51a and 51a of the first support unit 51 and two free rollers 52a of the second support unit 52 in the axial direction of the chassis frame 11.
  • the distance between the 52a is set to be longer than the distance between both ends of the solar cell array LP (for example, about 20 to 30 mm longer).
  • the posture of the work equipment 10 can be returned to the original posture even if the work equipment 10 is tilted with respect to the axial direction of the swing shaft SS. That is, when the work equipment 10 is tilted with respect to the axial direction of the swing shaft SS, either (or two) of the free rollers 51a and 51a of the first support portion 51 or the free rollers 52a and 52a of the second support portion 52. ) Contact the end face of the solar cell array LP, so that the posture of the work device 10 can be corrected in the direction along the edge of the solar cell array LP.
  • the work device 10 Since the edge of the solar cell array LP is usually provided parallel to the axial direction of the swing shaft SS, the work device 10 is moved parallel to the axial direction of the swing shaft SS by the guidance of the support mechanism 50. Can be done. Further, even if the edge of the solar cell array LP is tilted with respect to the axial direction of the swing shaft SS, the work device 10 cannot be tilted more than the state in which the free roller is in contact with the end face of the solar cell array LP. Even if the edge of the solar cell array LP is tilted with respect to the axial direction of the swing shaft SS, it is at most about 0.5 degrees. Therefore, if the support mechanism 50 as described above is provided, the work device 10 can be moved in the direction along the axial direction of the swing shaft SS while correcting the posture of the work device 10.
  • the two free rollers 51a and 51a may be provided so that their rotation axes intersect with the reference parallel plane, and are not necessarily orthogonal to each other. That is, the two free rollers 51a and 51a come into contact with the end faces of the solar cell array LP and return the posture of the work equipment 10 when the work equipment 10 is tilted obliquely with respect to the axial direction of the swing shaft SS. It suffices if it is provided so that When the rotation axes of the two free rollers 51a and 51a are not orthogonal to the reference parallel plane, the two free rollers 51a and 51a extend from the position farthest from the lower surface of the chassis frame 11 to the lower surface of the chassis frame 11 in the two free rollers 51a and 51a. The distance may be slightly longer than the distance from the lower surface of the chassis frame 11 to the lower end of the wheel 12.
  • the two free rollers 52a and 52a may not necessarily be orthogonal to each other as long as their rotation axes are provided so as to intersect the reference parallel plane. That is, the two free rollers 52a and 52a come into contact with the end faces of the solar cell array LP and return the posture of the work equipment 10 when the work equipment 10 is tilted obliquely with respect to the axial direction of the swing shaft SS. It suffices if it is provided so that When the rotation axes of the two free rollers 52a and 52a are not orthogonal to the reference parallel plane, the two free rollers 52a and 52a extend from the position farthest from the lower surface of the chassis frame 11 to the lower surface of the chassis frame 11 in the two free rollers 52a and 52a. The distance may be slightly longer than the distance from the lower surface of the chassis frame 11 to the lower end of the wheel 12.
  • the free rollers 51a and 52a may have a damper mechanism that moves the free rollers 51a and 52a along the direction of the force when a certain force or more is applied from the direction intersecting the rotation axis. That is, the free rollers 51a and 52a may be attached to the chassis frame 11 via a damper mechanism that holds the rotating shafts of the free rollers 51a and 52a so as to be movable along the axial direction of the cleaning member 15. If such a damper mechanism is provided, even if the step between the end faces of the adjacent solar cell modules P becomes larger than expected, the free rollers 51a and 52a can overcome the step between the end faces of the solar cell modules P. Become.
  • the number of free rollers provided in the first support section 51 and the second support section 52 of the support mechanism 50 is not particularly limited.
  • One free roller may be provided on each of the support portions 51 and 52, or three or more free rollers may be provided on each of the support portions 51 and 52. Further, the number of free rollers provided may be different in each of the support units 51 and 52. For example, when the work device 10 moves on the solar cell array LP in a state where the surface of the solar cell array LP is inclined with respect to the horizontal, two or more support portions on the end side located above are used. On the other hand, only one free roller may be provided on the support portion on the end side located below.
  • the first support section 51 and the second support section 52 of the support mechanism 50 do not have to use the free rollers as described above as long as they can guide the movement along the end face of the solar cell array LP.
  • a plate-shaped member having a small surface sliding resistance may be provided so that its surface faces each end surface of the solar cell module P to form the first support portion 51 and the second support portion 52.
  • the end portion of the plate-shaped member in the moving direction of the work device 10 is formed so as to be separated from the end face of the solar cell array LP toward the tip end. That is, the plate-shaped member is formed so that the tip is curved like a ski plate. Then, even if it is a plate-shaped member, it becomes easy to get over a step between adjacent solar cell modules P.
  • the reference parallel plane is a plane parallel to both the moving direction of the work equipment 10 and the axial direction of the cleaning member 15.
  • a surface parallel to both the moving direction of the working device 10 and the axial direction of the chassis frame 11 corresponds to a reference parallel surface.
  • a plane parallel to both the moving direction of the working device 10 and the direction intersecting the moving direction of the working device 10 in a plan view corresponds to a reference parallel plane.
  • the reference parallel plane becomes a plane substantially parallel to the surface of the solar cell array LP when the solar cell module P does not bend when the work device 10 is arranged on the solar cell array LP.
  • the reference parallel plane does not bend. It means a plane (target plane) parallel to the surface of the solar cell module P in the case.
  • the reference parallel plane also includes a case where the solar cell module P has a slight inclination (up to about 0.1 degree) with respect to the surface of the solar cell array LP and the target plane when the solar cell module P does not bend.
  • the support mechanism 50 may have the first support portion 51 and the second support portion 52 at both ends of the chassis frame 11, but the support portion is one end of the chassis frame 11. It may be provided only in. That is, the support mechanism 50 may be provided with only one of the first support unit 51 and the second support unit 52.
  • the support portion may be provided only at the end portion (in FIG. 5B, the first end portion P1 of the solar cell array LP) side of the chassis frame 11.
  • the support portion when the support portion is provided only on one end of the chassis frame 11, the work equipment 10 is arranged so that the support portion is arranged on the end side located above the solar cell array LP. Just do it.
  • the support unit may adopt the same structure as the first support unit 51 and the second support unit 52 as described above.
  • the working device 1 may include a state detection mechanism for detecting the state of the surface of the solar cell array LP by measuring the surface of the solar cell array LP or the like. If such a state detection mechanism is provided, the surface of the solar cell array LP can be appropriately grasped, so that work such as cleaning according to the state of the surface of the solar cell array LP can be performed.
  • the state detection mechanism can be composed of a state detection unit that detects the state of the solar cell array LP and a determination unit that determines the state of the surface of the solar cell array LP based on the information detected by the state detection unit.
  • Both the state detection unit and the determination unit may be provided in the work device 10, or only the state detection unit may be provided in the work device 10 and the determination unit may be provided in the control device 40. Further, the state detection unit may be provided in the solar cell array LP or the like, and the determination unit may be provided in the control device 40.
  • the state detection unit is not particularly limited, and examples thereof include a temperature detection unit that detects the surface temperature of the solar cell array LP. In this case, depending on the temperature of the surface of the solar cell array LP detected by the temperature detection unit, the work device 10 can be made to perform the work suitable for the temperature.
  • the control device 40 moves the work device 10 to perform cleaning. It is desirable that it is like this.
  • the cleaning member 15 is cleaned with the surface of the solar cell array LP having a dew point temperature or higher. It is desirable to do. Therefore, when the working device 10 has such a cleaning member 15, when the state detecting mechanism detects a state of the dew point temperature or higher, the control device 40 moves the working device 10 to perform cleaning. It is desirable to have.
  • the temperature detection unit may be installed in the solar cell array LP or in the work equipment 10.
  • the temperature detection unit can be provided in the panel frame or the like of the solar cell array LP.
  • the temperature detection unit may be provided at a position where the temperature of the surface of the solar cell array LP can be measured while the work equipment 10 is arranged in the retracting unit 30.
  • a method such as providing a temperature detection unit on a stay or the like projecting laterally from the width direction of the chassis frame 11 can be adopted.
  • the temperature of the solar cell array LP to be detected is not necessarily limited to the temperature of the front surface, and the temperature of the solar cell module P in a predetermined region or the back surface of the solar cell array LP, the vicinity of the predetermined region or the back surface in the vicinity thereof, or the predetermined region.
  • the internal temperature may be measured.
  • a temperature detection unit may be provided on the back surface of the solar cell array LP.
  • a state detection unit for detecting the state of the surface of the solar cell array LP a device that measures the color and intensity (gloss) of the surface of the solar cell array LP may be adopted.
  • the dirt on the surface of the solar cell array LP can be determined by detecting the color and intensity (gloss) of the surface of the solar cell array LP.
  • the work equipment 10 is provided with a state detection unit for measuring the color and intensity (gloss) of the surface of the solar cell array LP. Then, when the determination unit determines that a certain amount of dirt remains based on the information detected by the state detection unit, the control device 40 operates the work device 10 so as to reciprocate the position a plurality of times. To do so.
  • the drive mechanism 25 is operated so that the working device 10 reciprocates the solar cell array LP a plurality of times. Then, the effect of removing the dirt on the surface of the solar cell array LP by the working device 10 can be enhanced.
  • the control device 40 has a function of notifying the operator of the position where the dirt remains. May have. In this case, if the operator manually cleans the position (using water or the like), dirt that cannot be removed by the work device 10 can be eliminated. Further, when the reciprocating work is performed a predetermined number of times, the cleaning at that position may be stopped and the cleaning at another position may be performed. That is, when the work device 10 reciprocates the solar cell array LP a predetermined number of times, even if the determination unit determines that a certain amount of dirt remains, the cleaning of the solar cell array LP is stopped. It may be.
  • a state detection unit a light irradiation unit that irradiates the surface of the solar cell array LP with light is provided.
  • the light emitted by the light irradiation unit is not particularly limited.
  • a light receiving unit is provided so that the light emitted by the light irradiation unit can receive the reflected light reflected on the surface of the solar cell array LP. Then, if the determination unit determines the dirt on the surface of the solar cell array LP based on the signal received by the light receiving unit, the dirt on the surface of the solar cell array LP can be determined.
  • the determination unit can determine the dirt on the surface of the solar cell array LP.
  • the configuration of the light irradiation unit and the light receiving unit is not particularly limited, but a plurality of light irradiation units and a plurality of light receiving units are provided along a direction intersecting the moving direction of the work device 10 (for example, a direction orthogonal to each other). Is desirable. In this case, it is possible to reduce the area where dirt on the surface of the solar cell array LP cannot be detected. In particular, if a line sensor is used as the light receiving unit, it becomes easy to prevent omission of detection of dirt.
  • the state detection unit is provided behind the cleaning member 15 in the moving direction of the work device 10, the state after cleaning by the cleaning member 15 can be determined. Further, if it is provided in front of the cleaning member 15 in the moving direction of the work device 10, cleaning by the cleaning member 15 can be adjusted according to the state of dirt. In particular, if the cleaning member 15 is provided both in the front and the rear in the moving direction of the work device 10, both of the above-mentioned functions can be exhibited.
  • the state detection mechanism may have a wind speed sensor for measuring the wind speed as a state detection unit.
  • the control device 40 operates the work device 10 when the wind speed is equal to or higher than a certain wind speed based on the wind speed information measured by the wind speed sensor, the cleaning effect can be enhanced. That is, when the cleaning member 15 of the work device 10 winds up dust or the like, the dust is easily scattered, so that the cleaning effect can be enhanced.
  • the control device 40 is controlled so as not to operate the work device 10.
  • cleaning may be performed by the working device 10 in a state where the surface is horizontal, or cleaning may be performed by the working device 10 in a state where the surface is inclined to some extent.
  • the surface is not leveled, but the surface is maintained in a state of being tilted to some extent (for example, a state of being tilted with respect to the horizontal by about 30 °) and cleaned by the work equipment 10. It may be carried out. When the work is carried out at an angle, the angle is not particularly limited.
  • the surface of the solar cell array LP may be maintained at an appropriate angle according to the surrounding environment and the like, and cleaning may be performed by the working device 10.
  • One working device 1 may be provided in each of the solar cell array LPs, or one working device 1 may be shared by a plurality of solar cell array LPs.
  • a transport path DR is installed between adjacent ends of adjacent solar cell arrays LP1 and LP2.
  • the transport path DR is provided at a position corresponding to a position where the wheels 12 provided on the work device 10 travel on the surfaces of the solar cell arrays LP1 and LP2.
  • the transport path DR is arranged so that the surface thereof and the surfaces of the solar cell arrays LP1 and LP2 are substantially flush with each other. Both ends of the transport path DR are connected to the solar cell arrays LP1 and LP2 (ends in the left-right direction in FIG. 20), and when the solar cell arrays LP1 and LP2 swing, the swings thereof. It is provided so as to swing according to the above.
  • the transport path DR is provided.
  • the pair of cord-shaped members 22 and 22 of the traction mechanism 21 of the moving portion 20 are arranged in the direction in which the solar cell arrays LP1 and LP2 are arranged, that is, along the axial direction of the swing axis SS of the solar cell arrays LP1 and LP2. It is arranged so as to be located outside the first end portion P1 and the second end portion P2 of the solar cell arrays LP1 and LP2.
  • the work equipment 10 can be moved on the transport path DR and can be moved between the solar cell arrays LP1 and LP2.
  • the number and position of the transport path DRs are not particularly limited. When the work device 10 moves between the solar cell arrays LP1 and LP2, it may be provided so that the transport path DR can support all or a part of the wheels 12 provided on the work device 10.
  • the transport path DR is arranged so that its outer end (the vertical end in FIG. 20) is arranged substantially linearly with the first end P1 and the second end P2 of the solar cell array LP. It is desirable to be installed.
  • the outer ends of the pair of transport paths DR and DR are arranged so as to be substantially linearly aligned with the first end P1 and the second end P2 of the solar cell array LP, respectively. Is desirable. With such a configuration, even when the work device 10 moves on the transport path DR, the posture of the work device 10 with respect to the swing shaft SS is determined by the first support portion 51 and the second support portion 52 of the support mechanism 50 described later. Tilt can be suppressed.
  • the transport path DR in which the first support portion 51 and the second support portion 52 of the support mechanism 50 come into contact with each other may be provided separately from the transport path DR that supports the wheels 12. That is, a member connecting the transport path DR, in other words, the solar cell arrays LP1 and LP2 may be provided only in order to suppress the inclination of the posture of the work equipment 10.
  • outer end portion of the transport path DR (or the outer end portion of the pair of transport path DRs and DRs) is substantially linear with the first end portion P1 and the second end portion P2 of the solar cell array LP, respectively.
  • Lined up means the edge of the first end P1 and the second end P2 of the solar cell array LP and the edge of the outer end of the line of intersection DR (formed by the surface and the end face of the line of intersection DR). This includes the case where the lines of intersection) are perfectly aligned and the case where there is a slight deviation between the two.
  • the edge of the first end P1 and the second end P2 of the solar cell array LP and the edge of the end of the transport path DR are almost parallel, but slightly. This includes cases where there is a deviation in the height or horizontal direction (for example, about 0 to 5 mm) and cases where there is a deviation in the position along the surface of the solar cell module P (for example, about 0 to 20 mm). Further, the case where the edge of the second end P2 of the solar cell array LP and the edge of the end D2 of the transport path DR are relatively inclined is included.
  • it includes a case where it is tilted by about 0 to 1 degree in a plane parallel to the surface of the solar cell module P and a case where it is tilted by about 0 to 2 degrees in a plane parallel to the second end surface of the solar cell module P. I'm out.
  • the surface of the solar cell array LP and the surface of the transport path DR are substantially the same plane
  • ⁇ Swing type transport path DR> In the above example, in the adjacent solar cell arrays LP1 and LP2, the case where both surfaces are substantially the same plane and the case where both surfaces are substantially the same plane even if both are shaken have been described. However, depending on the installation conditions of the solar cell arrays LP1 and LP2, there may be a difference in height or an angle difference between the surfaces of the solar cell arrays LP1 and LP2. When there is such a problem, the transport path DR may have the following configuration.
  • the transport path DR is provided with a swing shaft Da at a first end portion (end portion on the solar cell array LP1 side).
  • the swing shaft Da is provided parallel to the surface of the solar cell array LP1 and is fixed to the solar cell array LP1 via a bearing or the like.
  • One end of the transport portion Db (the end on the right side in FIG. 22) is attached to the swing shaft Da. That is, the transport portion Db is provided so as to be swingable with respect to the solar cell array LP1 by the swing shaft Da.
  • the other end (the right end in FIG. 22) of the transport portion Db is placed on the end of the solar cell array LP2 adjacent to the solar cell array LP1.
  • a holding plate LM is provided at the end of the solar cell array LP2 on the solar cell array LP1 side, and the other end of the transport portion Db is placed on the upper surface of the holding plate LM. ..
  • the configuration of the holding plate LM is not particularly limited.
  • the transport portion Db It is desirable that the surface (that is, the surface of the transport path DR) and the surfaces of the adjacent solar cell arrays LP1 and LP2 are provided so as to be substantially flush with each other.
  • the transport path DR having such a configuration is provided, even if there is a difference in the height of the surfaces of the adjacent solar cell arrays LP1 and LP2, if the transport unit Db swings, the transport path between the solar cell arrays LP1 and LP2. It can be connected by DR. Then, even if there is a difference in the height of the surfaces of the adjacent solar cell arrays LP1 and LP2, the adjacent solar cell arrays LP1 and LP2 can be moved to the work device 10 via the transport path DR.
  • the work device 10 If the inclination angle of the transport unit Db becomes large, it becomes difficult for the work device 10 to move between the transport path DR and the solar cell arrays LP1 and LP2. For example, if the angle formed by the surface of the transport path DR with respect to the surface of the solar cell arrays LP1 and LP2 is larger than 20 degrees, it becomes difficult to move from the transport path DR to the solar cell arrays LP1 and LP2. Therefore, a sensor for detecting the swing angle of the transport unit Db is provided in the transport path DR, and when the sensor detects that the angle is equal to or higher than a certain angle, the work equipment is installed between the transport path DR and the solar cell arrays LP1 and LP2.
  • the control device 40 may control the operation of the drive mechanism 25 of the traction mechanism 21 so that the 10 does not move.
  • a sensor for detecting the inclination of the transport path DR may be provided in the work equipment 10 itself, and the control device 40 may control the operation of the drive mechanism 25 of the traction mechanism 21 based on the signal from this sensor.
  • the cord-shaped member 22 may be provided so as to allow bending to a degree corresponding to the difference between the two.
  • the solar cell arrays LP1 and LP2 swing, if the swing angles of the solar cell arrays LP1 and LP2 deviate, it becomes difficult to move the work equipment 10.
  • the angle of the work device 10 with respect to the swing axis SS (the angle around the swing axis SS) when moving on the surface of the solar cell array LP1 and the angle of the surface of the solar cell array LP2 are different. is there.
  • the work device 10 may come into contact with the solar cell array LP2 and the work device 10 may fall. ..
  • the length of the transport path DR is set so that the other end of the transport path DR deviates from the upper surface of the holding plate LM when the deviation of the swing angle of the solar cell arrays LP1 and LP2 exceeds a certain level. do it. That is, in FIG. 22, if the swing angles of the solar cell arrays LP1 and LP2 are the same, the other end of the transport path DR can be maintained in a state of being placed on the upper surface of the holding plate LM (FIG. 22 (A).
  • a sensor for detecting the swing angle of the transport unit Db may be provided in the transport path DR so that the control device 40 controls the operation of the drive mechanism 25 of the traction mechanism 21. That is, when the sensor detects that the surface of the transport unit Db is at a certain angle or more with respect to the surface of the solar cell arrays LP1 and LP2, the control device 40 betweens the transport path DR and the solar cell arrays LP1 and LP2. The operation of the drive mechanism 25 of the traction mechanism 21 may be controlled so that the work device 10 does not move.
  • the work equipment 10 itself is provided with a sensor for detecting the inclination of the transport path DR and the presence / absence of the transport path DR, and the control device 40 controls the operation of the drive mechanism 25 of the traction mechanism 21 based on the signal from this sensor. You may try to do it.
  • a pair of track RLs and RLs are installed outward from both ends in the axial direction of the swing axis SS of the adjacent solar cell array LPs, and the retracting portion 30 is provided along one track RL. Provided so that it can be moved. Further, in the traction mechanism 21, devices provided at each end of the solar cell array LP are also provided so as to be able to move along the pair of orbits RL, RL.
  • a pair of stations ST and ST that move along a pair of tracks RL and RL are provided, and each device of the retracting portion 30 and the traction mechanism 21 is arranged therein. Then, if the pair of stations ST and ST are simultaneously moved along the pair of orbitals RL and RL, the working device 1 can be moved from one solar cell array LP to another solar cell array LP.
  • the evacuation section 30 may be provided in both the pair of stations ST and ST.
  • the cord-like member 22 of the traction mechanism 21 comes into contact with the solar cell array LP when the working device 1 is moved between the solar cell array LPs. Therefore, when the above-described configuration is adopted, it is necessary to install the work device 1 so that the cord-shaped member 22 and the like do not come into contact with the solar cell array LP in the moving state.
  • the traction mechanism 21 has the entire cord-shaped member 22 arranged horizontally. It may be installed so as to be located above the surface of the solar cell array LP.
  • a cord shape is formed above the upper end of the solar cell array LP.
  • the member 22 may be arranged so as to be located.
  • the pair of stations ST and ST may be provided with a mechanism for raising and lowering the work device 1.
  • the mechanism for raising and lowering the work device 1 is not particularly limited, and for example, each station ST is provided with a traveling body traveling on the track RL and a base member located above the traveling body. Then, each device of the retracting portion 30 and the traction mechanism 21 is arranged on the base member. Then, if an elevating device (a known mechanism such as a cylinder mechanism or a screw mechanism) is provided between the traveling body and the base member, the working device 1 can be lifted together with the base member by operating the elevating device. In this case, when moving the work equipment 10 between the retracting portion 30 and the surface of the solar cell array LP, it is necessary to match the heights of both.
  • the method of adjusting the heights of the two is not particularly limited.
  • a sensor such as a camera or an optical sensor is provided on the base member or the like, and the position of the swing shaft SS is grasped by this sensor. Then, based on the position of the swing shaft SS detected by the sensor and the position of the base member based on the operating amount of the elevating device, the control unit of the elevating device (or the control unit of the station ST) automatically operates the elevating device. By adjusting the amount, the heights of both can be adjusted.
  • the working device 1 can be moved between the solar cell array LPs even when the traction mechanism 21 or the like cannot be arranged above the solar cell array LP. That is, specifically, even when the traction mechanism 21 or the like has a portion located below the solar cell array LP, the working device 1 can be moved between the solar cell array LPs. In this case, the working device 1 is located until the entire working device 1 is located above the solar cell array LP, or until the member which hinders the movement of the working device 1 is located above the solar cell array LP. The work device 1 may be moved while the device 1 is lifted.
  • the working device 1 can be shared by a plurality of solar cell array LPs even if the heights of the adjacent solar cell array LPs are different.
  • the height of the solar cell array LPs may differ depending on where the solar cell array LPs are installed.
  • the working device 1 can be arranged at a height suitable for each solar cell array LP, so that the working device 1 can be shared by a plurality of solar cell array LPs even on rough terrain.
  • the pair of stations ST and ST may swing. That is, the retractable portions 30 provided in the pair of stations ST and ST may swing so that the upper surface of the retractable portions 30 is flush with the surface of the solar cell array LP.
  • the upper surface of the retractable portion 30 matches the surface of the solar cell array LP, the upper surface of the retractable portion 30 and the sun The surface of the battery array LP can be flush with the surface. Then, the working unit 10 can be moved between the retracting unit 30 and the solar cell array LP regardless of the swing angle of the solar cell array LP.
  • the angle between the surface of the solar cell array LP and the upper surface of the retracting portion 30 it is necessary to match the angle between the surface of the solar cell array LP and the upper surface of the retracting portion 30, but various sensors detect the angle of the surface of the solar cell array LP with respect to the horizontal (or vertical).
  • the angle of the detected surface of the solar cell array LP and the angle of the upper surface of the retracting portion 30 may be matched.
  • the angle of the surface of the solar cell array LP may be detected by, for example, the rotation angle of the camera, the optical sensor, or the swing axis SS.
  • the deviation between the surface of the solar cell array LP and the upper surface of the retracting portion 30 may be detected by a camera or an optical sensor so that the deviation between the two is within a certain range (for example, within 0 to 1 degree).
  • the above-mentioned base member of the station ST swings.
  • the upper surface of the retracting portion 30 and the surface of the solar cell array LP can be adjusted to be flush with each other.
  • the work device 10 can be moved between the solar cell array LP and the retracted portion 30 on the base member of the station ST regardless of the angle of the surface of the solar cell array LP.
  • the angle of the solar cell array LP and the angle of the base member can be matched by various methods.
  • the control unit of the station ST grasps the angle of the solar cell array LP based on the signal from the device that operates the solar cell array LP, and adjusts the angle of the base member so as to match the angle of the solar cell array LP. Can be done. Further, a camera, an optical sensor, or the like is provided in the station ST, and the control unit of the station ST grasps the angle of the solar cell array LP based on the signal, and the base member so as to match the angle of the solar cell array LP. You can adjust the angle.
  • the mechanism for moving between the solar cell array LPs of the working device 1 can be used other than the case of moving the working device 1 (that is, the working device 1 having the traction mechanism 21) as described above.
  • a retracting unit 30 for retracting the work device or the work robot is provided in a pair of stations ST, ST or one station ST.
  • one work device or work robot can be used for the work of a plurality of solar cell array LPs.
  • one track RL is installed outside from one end in the axial direction of the swing axis SS of the adjacent solar cell array LP. Then, a station ST may be provided on the track RL.
  • each station ST has a mechanism for raising and lowering the work device or work robot as described above, the worker can move the work device from the station ST. The work of lowering and loading 1 can be facilitated.
  • the position where the static elimination member is provided is not particularly limited.
  • the static elimination member may come into contact with the member grounded in the retracting portion 30.
  • the static elimination member may be provided at a position where the working device 10 comes into contact with the panel frame of the solar cell module P constituting the solar cell array LP when the working device 10 moves on the solar cell array LP. In this case, the panel frame can be discharged through the static elimination member while the working device 10 is moving.
  • the static elimination member is provided so as to be located behind the cleaning member 15 in the moving direction. In this case, a certain amount of static electricity accumulated in the chassis frame 11 can be released from the static eliminator member to the surface of the solar cell array LP.
  • the grounded member means a conductive member that is directly or indirectly electrically connected to the ground.
  • the panel frame is also connected to the gantry MT, so that it corresponds to a grounded member.
  • the static elimination member is brought into contact with a building or equipment in the vicinity of the solar cell array LP, the building or equipment also corresponds to the grounded member.
  • the static eliminator member may be any as long as it can allow static electricity of the chassis frame 11 to flow to the outside, and its shape, structure, and material are not particularly limited.
  • a metal body provided with a brush-like member formed of a conductive material at the tip thereof can be adopted.
  • a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material can also be adopted as the static elimination member.
  • the working device 10 is provided with the cleaning member 15 and the brush is provided as the cleaning member 15
  • flexible strip-shaped or string-shaped members or conductive fibers formed of the conductive material are provided as the static elimination member. You may.
  • a conductive material may be used as a material for forming a part or all of the brush.
  • the brush itself may have the same function as the static elimination member.
  • the shaft portion of the brush may be formed of a conductive material (metal, etc.), or the brush portion may be formed of a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material. Good.
  • the static elimination member connected to the chassis frame 11 does not necessarily have to be provided.
  • the work device of the second embodiment is a work device that self-propells on the surface of a solar cell array having a plurality of solar cell modules arranged side by side to perform work.
  • the solar cell array in which the work is carried out by the working device of the second embodiment and the solar cell modules constituting the solar cell array are not particularly limited.
  • a tracking type solar cell array in which a plurality of solar cell modules having a panel frame are arranged side by side, or a solar cell array having a plurality of fixed solar cell modules having a panel frame (in other words, a non-tracking type solar cell array, non-tracking). Can also be used for type). It can also be used in solar cell arrays (including tracking type and non-tracking type) in which frameless solar cell modules are arranged side by side.
  • the “surface of the solar cell module” means the surface of the power generation region where power is generated in the solar cell module.
  • a frameless solar cell module almost the entire surface becomes a power generation area, but in the case of a solar cell module having a panel frame, a part other than the panel frame (a part surrounded by the panel frame in a plan view) generates power. Become an area.
  • the "surface of the solar cell array” means the "surface of the solar cell module”.
  • the term “on the solar cell array” is a concept that includes both the "surface of the solar cell module” and the "panel frame” in the "solar cell array” formed of the solar cell module having the panel frame.
  • the work performed by the work device of the second embodiment is not particularly limited. For example, cleaning the surface of the solar cell array to which the work equipment moves, inspecting defects on the surface, measuring the surface shape and thickness of members, measuring the surface temperature, measuring the surface roughness, measuring the light reflectance and glossiness on the surface. Measurement, measurement of other physical quantities, etc. correspond to the work performed by the work apparatus of the second embodiment. In addition, collection and observation of substances on the surface of the solar cell array, peeling of deposits and paint on the surface, painting and surface treatment before that, and coating work also correspond to the work performed by the work device of the second embodiment. To do. Further, sticking of a film or the like to the surface of the solar cell array, polishing, marking, etc. can also be mentioned as the work performed by the working apparatus of the second embodiment. Then, communication by presenting information and the like can be mentioned as the work to be carried out by the work device of the second embodiment.
  • a work device, a sensor, an instrument, or the like is provided at a position where a cleaning unit, which will be described later, is provided.
  • the work performed by the work apparatus of the second embodiment is surface defect inspection, surface shape and member thickness measurement, temperature measurement, surface roughness measurement, light reflectance and glossiness measurement on the surface, and the like.
  • various sensors used for each measurement are provided.
  • an instrument such as a spray nozzle is provided.
  • the work carried out by the work apparatus of the second embodiment is a peeling treatment such as adhesion or coating on the surface of the solar cell array, a polishing treatment, or a base treatment before coating or the like, shot blasting or rotary type or A vibrating polishing device is provided.
  • a peeling treatment such as adhesion or coating on the surface of the solar cell array
  • a polishing treatment or a base treatment before coating or the like
  • shot blasting or rotary type or A vibrating polishing device is provided.
  • the work performed by the work apparatus of the second embodiment is to attach a film or the like to the surface of the solar cell array
  • a roller or the like is provided.
  • communication or the like by presenting information is performed by the work device of the second embodiment, a display, an LED, a speaker, or the like is provided.
  • the photovoltaic power generation facility SP in which the working device 1 of the present embodiment performs work such as cleaning will be briefly described.
  • the photovoltaic power generation facility SP has a plurality of rows of solar cell array LPs including a plurality of solar cell modules P.
  • the solar cell array LP is connected by the swing axis SS of the gantry MT in a state where the end edges of the plurality of solar cell modules P are aligned so as to be lined up in substantially the same straight line.
  • the solar cell array LP a plurality of solar cell modules P are arranged so that their surfaces are substantially flush with each other and connected by a swing axis SS of a gantry MT.
  • the solar cell array LP can swing a plurality of solar cell modules P at the same time and at the same angle by rotating the swing shaft SS. Therefore, the solar cell array LP can make the plurality of solar cell modules P follow the sun and adjust the inclination of the surface of the plurality of solar cell modules P so as to optimize the power generation efficiency.
  • the solar cell array LP has both ends (first end portion P1) in a direction orthogonal to the direction in which a plurality of solar cell modules P are arranged along the swing axis SS in a state where the surface thereof is horizontal. And the intermediate line between the second end P2) is connected to the swing shaft SS so as to be located approximately vertically above the central axis of the swing shaft SS (including the case where a deviation of up to about 80 mm occurs). There is.
  • the solar cell array LP may have a plurality of solar cell modules P arranged in a row or may have a plurality of rows in which a plurality of solar cell modules P are arranged.
  • the "first end portion P1 and second end portion P2 of the solar cell array LP" are the ends of the solar cell module P located on the outermost side in the direction orthogonal to the axial direction of the swing axis SS. It shall mean a part.
  • both ends of the solar cell module P are "first end portions P1 and second of the solar cell array LP". It becomes "end P2".
  • the solar cell array LP has two rows of upper and lower solar cell modules P in which a plurality of solar cell modules P are arranged, the upper end portion of the upper solar cell module P and the lower end portion of the lower solar cell module P are ". It corresponds to the first end portion P1 and the second end portion P2 of the solar cell array LP.
  • both ends in a direction orthogonal to the axial direction of the swing axis SS are "first end portion P1 and second end portion P2 of the solar cell module P".
  • the "edge of the solar cell array LP" means the side surface intersecting the surface of the solar cell array LP and the sun when the solar cell module P constituting the solar cell array LP is a frameless solar cell module P. It means an intersection line that intersects with the surface of the battery array LP.
  • the solar cell module P constituting the solar cell array LP is a solar cell module P having a panel frame
  • the side surface of the panel frame intersecting the upper surface of the panel frame becomes an end surface, and the upper surface of the panel frame and the panel.
  • the intersection line that intersects the side surface of the frame is the "edge of the solar cell array LP".
  • the end edge of the "first end portion P1 (second end portion P2) of the solar cell array LP" becomes the "first end edge (second end edge) of the solar cell array LP (or the solar cell module P)".
  • the intersection of the side surface intersecting the surface of the solar cell module P and the surface of the solar cell module P is the “solar cell module”. It becomes “the edge of P”.
  • the line of intersection between the upper surface of the panel frame and the side surface of the panel frame intersecting the upper surface of the panel frame is the "edge of the solar cell module P".
  • the edge corresponding to the "first end portion P1 and the second end portion P2 of the solar cell array LP" in the "solar cell module P" is the "first end edge (second end edge) of the solar cell module P".
  • the first end edge (second end edge) of the solar cell array LP (or the solar cell module P) is aligned so as to be arranged in substantially the same linear shape" means that the first end edge of the solar cell array LP (or the solar cell module P) is aligned.
  • first end edges (or the second end edges) of the adjacent solar cell modules P forming (or the second end edge) are completely aligned, and when the first end edge (or the second end edge) is aligned completely. This includes the case where there is a slight deviation between the first end edges (or the second end edges) of the adjacent solar cell modules P forming the edge).
  • the first end edge (or the second end edge) is formed.
  • the first end edges (or the second end edges) of the adjacent solar cell modules P forming the second edge) are almost parallel, but there is a slight deviation in height or in the horizontal direction (for example, about 0 to 5 mm).
  • the position of the solar cell module P in the direction along the surface is deviated (for example, about 0 to 20 mm).
  • the case where the first end edges (or the second end edges) of the adjacent solar cell modules P forming the first end edge (or the second end edge) are relatively inclined is included.
  • the surfaces of a plurality of solar cell modules P are substantially flush with each other is a concept including a case where the angles formed by the surfaces of adjacent solar cell modules P are displaced by about 0 to 1 degree. It also includes the case where there is a slight difference in height between the surfaces of the adjacent solar cell modules P (for example, about 0 to 5 mm).
  • the working device 1 of the present embodiment causes the working robot 101 to self-propell on the solar cell array LP provided with the plurality of solar cell modules P in the photovoltaic power generation facility SP, and causes the surface of the plurality of solar cell modules P to run on its own. It is cleaned by the working robot 101.
  • the work device 1 of the present embodiment includes the above-mentioned work robot 101 and a retracting unit 30 for retracting the work robot 101 from the solar cell array LP (see FIG. 17).
  • the working robot 101 self-propells on the solar cell array LP and cleans the surface of the solar cell array LP.
  • the work robot 101 includes a cleaning unit 110, and if the work robot 101 runs on the surface of the solar cell array LP, the cleaning unit 110 can clean the surface of the solar cell array LP as if it were swept.
  • "Sweeping the surface of the solar cell array LP” here means a scraper or cloth when sweeping the surface of the solar cell array LP with a broom and when rubbing the surface of the solar cell array LP with a brush. It is a concept including the case where such as is moved along the surface of the solar cell array LP. The details of the work robot 101 will be described later.
  • the work device 1 of the present embodiment is provided with a retracting unit 30 for retracting the work robot 101 from the solar cell array LP in a state where the work robot 101 does not perform work such as cleaning.
  • the retracting portion 30 is arranged at one end of the solar cell array LP on the outer side in the axial direction of the swing shaft SS (the left end in FIG. 17).
  • the upper surface of the retracting portion 30 is arranged substantially horizontally.
  • the height of the retracting portion 30 is provided so as to be substantially the same as the height of the surface of the solar cell array LP when the surface of the solar cell array LP is horizontal.
  • the working robot 101 can be moved from the retracting unit 30 onto the solar cell array LP, or the working robot 101 can be retracted from the solar cell array LP to the retracting unit 30. ..
  • the retracting unit 30 may swing together with the solar cell array LP.
  • the retracting portion 30 is arranged so that the upper surface thereof is substantially the same plane as the surface of the solar cell array LP. Then, the working robot 101 can be moved between the solar cell array LP and the retracting unit 30 regardless of the inclination of the solar cell array LP.
  • the upper surface of the retracting portion 30 is located on the same plane as the surface of the solar cell array LP.
  • the work robot 101 is arranged on the evacuation section 30 (see FIG. 17 (A)).
  • the surface of the solar cell array LP is arranged horizontally. Then, since the surface of the solar cell array LP and the upper surface of the retracting portion 30 are at the same height, the working robot 101 moves from the retracting portion 30 onto the solar cell array LP.
  • the working robot 101 moves on the solar cell array LP and cleans the surface of the solar cell module P by the cleaning unit 110.
  • the working robot 101 first moves to one side edge of the solar cell array LP (the edge that intersects the first edge of the solar cell module P located in the axial direction of the swing axis SS).
  • the side edge of the solar cell module P constituting the solar cell array LP (the first edge of the solar cell module P) is directed from the second edge to the first edge of the solar cell array LP.
  • Move along the edge when the work robot 101 reaches the first end edge, the dust that has moved together with the cleaning unit 110 (that is, together with the work robot 101) can be dropped from the first end edge of the solar cell array LP.
  • the work robot 101 When the work robot 101 reaches the first end edge, it changes its traveling direction by 180 ° and travels from the first end edge to the second end edge. At this time, in the direction along the first end edge (that is, the direction along the swing axis SS) from the region (cleaning completed region) traveling from the second end edge to the first end edge of the solar cell array LP. Drive in a misaligned position. Then, the uncleaned area of the solar cell array LP can be cleaned when traveling from the first end edge to the second end edge. At this time, a part of the cleaning completed area may be cleaned again by the cleaning unit 110. Then, when the work robot 101 reaches the second end edge, dust and the like that have moved together with the cleaning unit 110 (that is, together with the work robot 101) can be removed from the second end edge of the solar cell array LP.
  • the traveling direction is changed by 180 °, and the working robot 101 travels again from the second end edge toward the first end edge.
  • the direction along the second end edge that is, the direction along the swing axis SS
  • the region (cleaning completion region) traveling from the first end edge to the second end edge of the solar cell array LP It runs in a misaligned position.
  • the uncleaned area of the solar cell array LP can be cleaned when traveling from the second end edge to the first end edge.
  • a part of the cleaning completed area may be cleaned again by the cleaning unit 110.
  • the surface of the solar cell array LP can be cleaned by the working robot 101. Then, when the working robot 101 moves from one side edge of the solar cell array LP to the other side edge, cleaning of the surface of the solar cell array LP is completed.
  • the work robot 101 returns to the evacuation unit 30 when cleaning is completed. At this time, the working robot 101 moves to the retracting portion 30 along the edge of the solar cell array LP (see FIG. 17B). That is, assuming that the position where the cleaning of the surface of the solar cell array LP is completed is the second end edge P2 of the solar cell array LP, the swing axis SS is along the second end edge P2 of the solar cell array LP. The working robot 101 moves in the direction along the line. Then, when the robot moves to the side edge of the solar cell array LP (the side edge on the side where the retracting portion 30 is provided), the working robot 101 then moves along the side edge of the solar cell array LP.
  • the evacuation unit 30 is detected. In that state, if the surface of the solar cell array LP and the upper surface of the retracting portion 30 are at the same height, the working robot 101 moves from the surface of the solar cell array LP toward the retracting portion 30 and retracts to the retracting portion 30. To do.
  • the work The robot 101 stops at that position and waits until the surface of the solar cell array LP and the upper surface of the retracting portion 30 are at the same height (in other words, at the same angle).
  • the work robot 101 may not pass through the area NC in FIG. 17 (A). In that case, the area NC cannot be cleaned. However, as shown in FIG. 17B, if the work robot 101 is operated so that the area NC exists in the path where the work robot 101 returns to the evacuation unit 30, the area NC can also be cleaned.
  • the retracting portion 30 may not be provided at the side edge. ..
  • the working robot 101 moves along its side edge to the first edge P1 (or the second edge P2). Then, when it moves along the first end edge P1 to the other side edge of the solar cell array LP, it then moves along the other side edge. Then, the evacuation unit 30 can be reached.
  • the number of the evacuation units 30 is not limited to one, and a plurality of evacuation units 30 may be provided. In this case, since the work robot 101 can be evacuated to the nearest evacuation unit 30, the time until the work robot 101 evacuates to the evacuation unit 30 can be shortened after the cleaning is completed.
  • the work robot 101 stops cleaning and evacuates to the evacuation unit 30. .. In this case, the working robot 101 moves to the nearest edge of the solar cell array LP, moves along the edge, and moves to the retracting portion 30.
  • the operation of the work robot 101 may be controlled by a timer provided in the control unit 130 of the work robot 101, or may be external to the control unit 130 via wireless or wired (for example, a management building). It may be controlled based on the operation signal supplied from. Further, the control unit 130 of the work robot 101 refers to the time information obtained based on GPS or standard radio waves (radio waves received by the radio clock) provided in the control unit 130 and the preset operation time. Then, the work robot 101 may be operated at a time when the conditions are met.
  • the number of times the work robot 101 cleans by one cleaning operation (that is, the number of times the work robot 101 moves between one end and the other end of the solar cell array LP) is set to a preset number of times in the control unit 130. It may be carried out based on the information of the number of operations transmitted from the outside.
  • the working robot 101 includes a robot main body 102 provided with a moving means 104 for traveling on the surface of the solar cell array LP, and a cleaning unit provided on the robot main body 102. It includes a 110 and a control unit 130 that controls the operation of the moving means 104 and the cleaning unit 110.
  • the cleaning unit 110 is provided in front of the robot main body 102, that is, in front of the robot main body 102 in the traveling direction.
  • the cleaning unit 110 includes a rotating brush 112, and by rotating the brush 112, the surface of the solar cell array LP can be swept and cleaned.
  • the structure of the cleaning unit 110 that is, how the cleaning unit 110 cleans the surface of the solar cell array LP is not particularly limited.
  • the brush 112 includes not only a brush 112 having a brush provided on the rotating shaft, but also a brush 112 having a plate-shaped blade erected on the surface of the rotating shaft, and the entire surface or a part of the rotating shaft covered with a sponge-like member. You may use a broken one, one with a cloth attached to the entire surface or a part of the rotating shaft, and the like.
  • a general brush or broom-shaped member may be used as the cleaning unit 110, or a simple cloth or blade may be used as the cleaning unit 110. If the tips of these members are in contact with the surface of the solar cell array LP, the cleaning unit 110 can be slid along the surface of the solar cell array LP. Then, the dust or the like on the surface of the solar cell array LP can be pushed by the cleaning unit 110 (in other words, together with the cleaning unit 110) to move the dust or the like in the moving direction of the work robot 101. Then, when the working robot 101 moves to the end of the solar cell array LP, dust and the like can be dropped from the surface of the solar cell array LP and removed at the end.
  • the cleaning unit 110 may be provided in front of and behind the robot main body 102, respectively.
  • the position where the cleaning unit 110 is provided is not particularly limited, and may be provided at a position facing the lower surface of the robot main body 102 or the surface of the solar cell array LP.
  • the robot main body 102 is provided with a moving means 104.
  • the moving means 104 is provided so that the robot main body 102 can be moved in the front-rear direction or swiveled.
  • the moving means 104 may be composed of a pair of side drive wheels 104a, 104a and one intermediate drive wheel 104b. In this case, if the pair of side drive wheels 104a and 104a and the intermediate drive wheels 104b are arranged so as to form a triangle in a plan view, the work robot 101 can be arranged in a stable state on the solar cell array LP. Can be done.
  • each drive motor can independently drive the drive wheels 104a and 104b. Then, if the operating state of each drive motor is controlled by the control unit 130, the work robot 101 can be linearly moved or swiveled. In particular, if an omni wheel (omnidirectional moving wheel) is adopted for the intermediate drive wheel 104b, the turning movement of the working robot 101 can be made smooth, and the degree of freedom of movement of the working robot 101 can be increased.
  • omni wheel omnidirectional moving wheel
  • the moving means 104 is not limited to the above configuration, and may be configured so that the working robot 101 can be linearly moved or swiveled.
  • the omni wheel which is the intermediate drive wheel 104b may not be used as the drive wheel, and only the pair of side drive wheels 104a and 104a may be used as the drive wheels.
  • a passive wheel may be adopted for the intermediate drive wheel 104b. Even in this case, the moving direction of the work robot 101 can be freely changed by adjusting the rotation speeds of the pair of side drive wheels 104a and 104a.
  • the structure may be the same as that of a vehicle such as a passenger car.
  • a vehicle such as a passenger car.
  • four wheels 104c are provided, and the two wheels in front of (or behind) the wheels are used as steering wheels and the other wheels are used as driving wheels, or four-wheel drive or four-wheel steering. You may do it.
  • the moving means 104 may be provided with a crawler instead of the wheel.
  • the work robot 101 can be moved linearly by controlling the operation of the drive motor that drives the pair of crawlers. , Can be swiveled and moved.
  • the control unit 130 has a function of controlling the operation of the moving means 104 to control the movement of the working robot 101.
  • the operation of the drive motor provided on each drive wheel 104 is controlled to control the movement direction and movement speed of the robot body 102. That is, it controls the moving direction and moving speed of the work robot 101.
  • the work robot 101 travels straight. Can be moved.
  • each drive motor is operated so as to cause a difference in moving speed between the pair of side drive wheels 104a and 104a, the work robot 101 can be moved so as to rotate.
  • the work robot 101 of the present embodiment has the above configuration, if the work robot 101 is placed on the surface of the solar cell array LP, the work robot 101 cleans the surface of the solar cell array LP. Can be done (see FIG. 17). That is, since the moving means 104 can move the working robot 101 on the surface of the solar cell array LP, the cleaning unit 110 can clean the surface of the solar cell array LP.
  • the working robot 101 includes a plurality of edge detection units 131 for detecting the edges (edges) of the solar cell array LP. Then, based on the signals detected by the plurality of edge detection units 131, the control unit 130 controls the operation of the moving means 104 to enable movement along the edge of the solar cell array LP, and the solar cell array LP It prevents the work robot 101 from falling from the edge.
  • the description will be described with reference to FIGS. 6 and 7 in which the structure is simplified.
  • a plurality of edge detection units 131A and B are provided in the vicinity of the side edge of the cleaning unit 110, respectively.
  • Each of the edge detection units 131A and B includes an outer detection unit 132 and an inner detection unit 133, respectively, and is provided so that the cleaning unit 110 is sandwiched between the two detection units 132 and 133. ing.
  • the outer detection unit 132 is arranged so as to be located in front of the cleaning unit 110 when the work robot 101 travels.
  • the inner detection unit 133 is provided so as to be located behind the outer detection unit 132 in the traveling direction of the work robot 101, in other words, between the cleaning unit 110 and the moving means 104.
  • the detection unit located above the cleaning unit 110 is the outer detection unit 132.
  • a detection unit (a detection unit located below the cleaning unit 110) provided so as to sandwich the cleaning unit 110 with the outer detection unit 132 becomes the inner detection unit 133.
  • the inner detection unit 133 does not necessarily have to be provided so as to sandwich the cleaning unit 110.
  • the inner detecting unit 133 may be provided so as to be located in front of the wheel located in the frontmost position in the traveling direction and behind the outer detecting unit 132 in the traveling direction. ..
  • the position where the inner detection unit 133 detects the surface of the solar cell array LP is forward and outside the position where the wheel located at the frontmost position in the traveling direction comes into contact with the surface of the solar cell array LP.
  • the inner detection unit 133 may be provided so as to be located behind the direction detection unit 132 in the traveling direction.
  • control unit 130 controls the operation of the moving means 104 based on the signal detected by the edge detection unit 131A to prevent the working robot 101 from falling from the solar cell array LP.
  • both the outer detection unit 132 and the inner detection unit 133 of the edge detection unit 131A have the solar cell array LP below them. Detects that. Then, based on the signals (ON signal, OFF signal) sent from the outer detection unit 132 and the inner detection unit 133, the control unit 130 is in a situation where the work robot 101 can stably travel and perform the work. Understand that.
  • the outer detection unit 132 detects that the solar cell array LP does not exist below and transmits the signal (hereinafter, may be referred to as an OFF signal) to the control unit 130 (FIG. 7). (B).
  • a signal from the inner detection unit 133 indicating that the solar cell array LP exists below the inner detection unit 133 (hereinafter referred to as an ON signal). In some cases) is sent. Then, the control unit 130 grasps that the edge E exists between the detection units 132 and 133. However, since the inner detection unit 133 is located on the cleaning unit 110 side (that is, forward in the traveling direction) with respect to the moving means 104, the control unit 130 determines that there is no risk of falling or derailing, and the work robot. Continue running and working on 101.
  • the control unit 130 which has grasped the above situation, may run the work robot 101 at the same speed as before, or may control the operation of the moving means 104 so as to slightly reduce the speed.
  • control unit 130 which has grasped the above situation is a moving means 104 or a cleaning unit. Instruct 110 to perform a special run or work near the edge.
  • the inner detection unit 133 also reaches the edge E. Then, not only the outer detection unit 132 but also the inner detection unit 133 detects that the solar cell array LP does not exist below and transmits the signal to the control unit 130 (FIG. 7 (C)). )). Then, the control unit 130 grasps that the work by the cleaning unit 110 has been carried out up to the edge E of the solar cell array LP, and that the moving means 104 may be derailed if the operation is further advanced. Then, the control unit 130 stops the traveling of the working robot 101 or changes the traveling direction of the working robot 101. For example, when the cleaning of the solar cell array LP is completed, the working robot 101 stops running and shifts to the evacuation operation to the evacuation unit 30. On the other hand, when the cleaning of the solar cell array LP is not completed, the traveling direction is changed so as to move toward the other edge E.
  • the cleaning unit 110 is arranged so as to be located between the outer detection unit 132 and the inner detection unit 133 of the edge detection unit 131, it is possible to prevent the moving means 104 from coming off and to prevent the edge from coming off.
  • the work can be carried out by the cleaning unit 110 up to the edge E.
  • control unit 130 has a function of receiving signals from the edge sensors of the outer detection unit 132 and the inner detection unit 133 and controlling the moving means 104 so that the work robot 101 travels as follows. ing. That is, it has a deceleration control function for decelerating the work robot 101 and a stop control function for stopping the work robot 101.
  • deceleration control function for decelerating the work robot 101
  • stop control function for stopping the work robot 101.
  • the working robot 101 is traveling while working on the solar cell array LP.
  • the outer detection unit 132 and the inner detection unit 133 detect that the solar cell array LP is present below the edge E. Then, based on the ON signals sent from the outer detection unit 132 and the inner detection unit 133, the control unit 130 grasps that the work robot 101 is in a situation where it can stably travel and perform work.
  • the outer detection unit 132 detects that the solar cell array LP does not exist below and transmits an OFF signal to the control unit 130.
  • the control unit 130 controls the operation of the moving means 104 so as to reduce the traveling speed of the working robot 101 (deceleration control).
  • the control unit 130 grasps that the moving means 104 may be derailed if the vehicle proceeds further. To do. Then, the control unit 130 controls the operation of the moving means 104 so as to stop the working robot 101 (stop control). Then, since the working robot 101 stops before the moving means 104 reaches the edge E, it is possible to prevent the working robot 101 from falling from the edge E.
  • the edge detection unit 131 is provided with the outer detection unit 132 and the inner detection unit 133, when the work robot 101 approaches the edge E, it can be decelerated and then stopped. Then, the braking distance at the time of stopping can be shortened as compared with the case where the vehicle suddenly stops from the normal moving speed. In other words, if the work robot 101 is stopped by the above control, even if the speed at which the work robot 101 moves is faster than the conventional one, the distance from the start of braking to the stop is about the same as the conventional one. Can be done. Therefore, the work robot 101 can be moved at high speed, and even in that case, it is possible to prevent the work robot 101 from falling from the edge E.
  • the working robot 101 can be stopped before the moving means 104 reaches the edge. it can. That is, even if the length of the work robot 101 in the traveling direction is shortened, it is possible to prevent the work robot 101 from falling from the edge E, so that the work robot 101 can be made compact.
  • the moving speed may be reduced to a constant speed slower than the normal moving speed to maintain the state, or the moving speed may be gradually decelerated from the normal moving speed. Further, the control may be a combination of both. That is, the speed may be significantly reduced at the start of deceleration, and then gradually reduced.
  • the inner detection unit 133 is located in the traveling direction of the work robot 101 in front of the wheel located at the frontmost position in the traveling direction and behind the outer detecting unit 132 in the traveling direction. It suffices if it is provided, and its position is not particularly limited. However, it is desirable that the inner detection unit 133 be arranged as close to the cleaning unit 110 as possible. If the inner detection unit 133 is arranged in the vicinity of the cleaning unit 110, the movement of the work robot 101 can be stopped quickly after the work of the edge E is completed. Then, after the work is completed, it is possible to immediately move to the next work place or quickly switch to the next work based on the signal from the inner detection unit 133. Therefore, since unnecessary movement and work can be reduced as much as possible, the work by the work robot 101 can be made more efficient.
  • FIG. 6 shows a case where each edge detection unit 131 is provided near the side edge of the cleaning unit 110, but the position where each edge detection unit 131 is provided is particularly limited as long as the above configuration is satisfied. Not done.
  • the edge detection unit 131 may be provided at the center of the cleaning unit 110 in the width direction, and even in this case, it is possible to grasp the position of the edge E located in front of the traveling direction of the work robot 101. (See FIG. 13 (B)).
  • each edge detection unit 131 is provided near the side edge of the cleaning unit 110, the relative position between the cleaning unit 110 and the lateral end of the solar cell array LP can be grasped. Can be done. In the solar cell array LP, it is possible to grasp the relative position between the end portion parallel to the traveling direction of the working robot 101 and the working robot 101. Then, it is possible to prevent the working robot 101 from falling or derailing from the side edge SE (see FIG. 15) of the solar cell array LP.
  • the position of the edge detection unit 131 moves inward or at the same position as the side end of the cleaning unit 110 in the axial direction of the cleaning unit 110 (the direction intersecting the traveling direction of the work robot 101). If it is arranged outside the means 104, the cleaning unit 110 can perform the work up to the side edge SE of the solar cell array LP. Then, the working robot 101 can be moved along the side edge of the solar cell array LP (or the side edge SE of the solar cell module P).
  • the moving means 104 reaches the side edge SE to some extent. The distance is secured. Therefore, the wheels and the like of the moving means 104 do not come off.
  • the cleaning unit 110 The side edge will be located on the outer side of the lateral edge SE of the solar cell array LP. That is, the side edge SE of the solar cell array LP is already being operated by the cleaning unit 110. In other words, the cleaning unit 110 can work up to the side edge SE of the solar cell array LP (the edge SE along the traveling direction of the work robot 101).
  • the edge detection unit 131 is arranged inside the side end of the cleaning unit 110 and outside the moving means 104, it is possible to work up to the side edge SE of the solar cell array LP, and moreover. It is also possible to prevent the wheels and the like of the moving means 104 from coming off.
  • the position of the edge detection unit 131 is the same as the inner side or the end of the cleaning unit 110
  • the position where the edge detection unit 131 can detect the edge SE is the cleaning unit. It means that it matches the cleanable edge at 110. That is, when the cleaning unit 110 has the brush 112 as shown in FIGS. 8 and 9, the edge of the portion where the brush is provided in the axial direction of the brush 112 and the edge detection unit 131 have the edge SE. It means that the detectable positions are almost the same.
  • the outer detection unit 132 and the inner detection unit 133 are arranged so as to be arranged along the traveling direction (vertical direction in FIG. 6) of the work robot 101.
  • the outer detection unit 132 and the inner detection unit 133 may be arranged at positions deviated from each other in the width direction of the cleaning unit 110 (see FIGS. 12B and 13A).
  • the edge detection unit 131 describes a case where the outer detection unit 132 and the inner detection unit 133 are arranged so as to sandwich the cleaning unit 110 in the traveling direction of the work robot 101 (vertical direction in FIG. 6). did. However, the edge detection unit 131 does not necessarily have to be arranged so as to sandwich the cleaning unit 110. If both the outer detection unit 132 and the inner detection unit 133 are arranged outside the moving means 104, the work robot is based on the signals detected by the outer detection unit 132 and the inner detection unit 133. It is possible to prevent the 101 from falling or coming off. For example, both the outer detection unit 132 and the inner detection unit 133 may be arranged outside the cleaning unit 110 (FIG. 11B), and the outer detection unit 132 and the inner detection unit 133 may be arranged. Both may be arranged inward of the cleaning unit 110 (FIG. 12 (A)).
  • both the outer detection unit 132 and the inner detection unit 133 are arranged outside the cleaning unit 110 (FIG. 11B), the edge E of the solar cell array LP (FIG. 7).
  • the cleaning unit 110 cannot be moved to (see). Then, even if the working robot 101 reaches the edge E of the solar cell array LP, it is difficult to drop dust or the like from the edge E of the solar cell array LP.
  • the cleaning unit 110 has a rotating brush and the brush is rotating so as to sweep out dust or the like from the surface of the solar cell array LP, the dust or the like is removed from the solar cell array LP. It will be possible to drop it down from the edge.
  • the cleaning unit 110 is a scraper or the like
  • the tip of the scraper or the like is moved toward the edge of the solar cell array LP to remove dust or the like from the solar cell array LP. It will be possible to drop it down from the edge.
  • the outer detection unit 132 and the inner detection unit 133 determine that the edge of the groove is also the edge of the solar cell array LP. However, if the signals of the outer detection unit 132 and the inner detection unit 133 are processed as follows, it is possible to determine whether the detected edge is the edge of the groove or the edge of the solar cell array LP. Can be done. Then, when the solar cell array LP has a groove, it is possible to prevent the working robot 101 from stopping due to the misidentification of the edge of the groove as the edge of the solar cell array LP.
  • the solar cell array LP When the working robot 101 reaches the edge E of the solar cell array LP, the solar cell array LP does not exist below both the outer detection unit 132 and the inner detection unit 133. In this state, both the outer detection unit 132 and the inner detection unit 133 transmit an OFF signal notifying that there is no solar cell array LP below. Then, the working robot 101 stops traveling (see FIG. 7C).
  • the signal transmitted from the outer detection unit 132 to the control unit 130 is turned on.
  • the signal is switched to the OFF signal (FIG. 10 (B)).
  • the ON signal is continuously transmitted from the inner detection unit 133 to the control unit 130.
  • the outer detection unit 132 passes through the groove G, and the solar cell array LP is present again below the outer detection unit 132. Then, the signal transmitted from the outer detection unit 132 to the control unit 130 is switched from the OFF signal to the ON signal (FIG. 10 (C)).
  • the inner detection unit 133 is arranged at the position of the groove G, so that the signal transmitted from the inner detection unit 133 to the control unit 130 is switched from the ON signal to the OFF signal.
  • the signal transmitted from the inner detection unit 133 to the control unit 130 is an OFF signal.
  • the signal transmitted from the outer detection unit 132 to the control unit 130 becomes an ON signal. That is, since the signal transmitted from both the outer detection unit 132 and the inner detection unit 133 to the control unit 130 does not become an OFF signal, the working robot 101 can continue running even if there is a groove G. In other words, since the edge of the groove G of the solar cell array LP is not mistaken for the edge E of the solar cell array LP, the working robot 101 is allowed to continue running even if the solar cell array LP has the groove G. be able to.
  • both the outer detection unit 132 and the inner detection unit 133 are necessary to arrange both the outer detection unit 132 and the inner detection unit 133 so as not to detect the groove G at the same time. That is, it is necessary to appropriately set the distance between the outer detection unit 132 and the inner detection unit 133 in the traveling direction of the work robot 101.
  • the distance between the outer detection unit 132 and the inner detection unit 133 is large. It is arranged so as to be wider than the width W of the groove G. Then, since the outer detection unit 132 and the inner detection unit 133 do not detect the groove G at the same time, the working robot 101 can continue the running without stopping the running even if the groove G is present.
  • outer detection unit 132 and inner detection unit 133 ⁇ Other configurations of outer detection unit 132 and inner detection unit 133>
  • the case where the outer detection unit 132 and the inner detection unit 133 of the edge detection unit 131 have one sensor has been described. If the outer detection unit 132 and the inner detection unit 133 have a plurality of sensors, the following functions can be exerted.
  • the outer detection unit 132 includes a pair of edge sensors 132a and 132b.
  • the pair of edge sensors 132a and 132b are arranged so as to be arranged along a width direction (hereinafter, simply referred to as a width direction) orthogonal to the traveling direction of the work robot 101. Further, each of the pair of edge sensors 132a and 132b has a function of detecting the edge E of the solar cell array LP, and has a function of transmitting a signal for detecting the edge E to the control unit 130. doing.
  • the inner detection unit 133 also includes a pair of edge sensors 133a and 133b.
  • the pair of edge sensors 133a and 133b are arranged so as to be arranged along the width direction of the work robot 101. That is, they are arranged so as to be substantially parallel to the pair of edge sensors 132a and 132b of the outer detection unit 132. Further, each of the pair of edge sensors 133a and 133b also has a function of detecting the edge E of the solar cell array LP, and also has a function of transmitting a signal for detecting the edge E to the control unit 130. doing.
  • the moving means 104 is controlled as follows, the work robot 101
  • the work robot 101 can be moved along an edge parallel to the traveling direction of the robot 101 (hereinafter referred to as an edge SE). That is, it has a copy movement control function for moving the work robot 101 along the edge SE.
  • the copy movement control function is used to use the first and second edge P1, P2 and the first and second edge P1, of the solar cell array LP. It moves along the edge SE (side edge) that intersects P2.
  • control by the copy movement control function will be described with reference to FIG.
  • the filled sensor is a sensor that detects the solar cell array LP
  • the white sensor is a sensor that detects the edge SE (in other words, it can detect the solar cell array LP). The sensor that did not appear) is shown.
  • FIG. 15 shows a state in which the work robot 101 is moving from the bottom to the top (direction of arrow DR, traveling direction of the work robot 101).
  • the working robot 101 is normally controlled to operate the moving means 104 so as to move slightly toward the edge SE side while moving in the direction of the arrow DR. That is, the operation of the moving means 104 is controlled so that the working robot 101 moves in the direction of the arrow a.
  • the "normal” here means a state in which the solar cell array LP exists below all the edge sensors of the outer detection unit 132 and the inner detection unit 133.
  • the control unit 130 controls the operation of the moving means 104 so that the working robot 101 moves in a direction away from the edge SE side. That is, the operation of the moving means 104 is controlled so that the working robot 101 moves in the direction of the arrow b (see the second working robot 101 from the bottom of FIG. 15).
  • deceleration control is performed.
  • both or one of the edge sensor 132a and the edge sensor 133a is a solar cell array below the edge sensor 132a and the edge sensor 133a. If it is detected that the LP is present, the deceleration control is released and the working robot 101 moves at the original moving speed.
  • the edge sensor 132a of the outer detection unit 132 again detects that the solar cell array LP exists below the edge sensor 132a, and transmits the signal to the control unit 130.
  • the control unit 130 confirms the signal from the other edge sensor (or other edge sensor other than the edge sensor 132a), and confirms that the solar cell array LP exists below the other edge sensor.
  • the control unit 130 controls the operation of the moving means 104 so that the working robot 101 is in a normal traveling state (see the second working robot 101 from the top of FIG. 15). ).
  • the working robot 101 When the working robot 101 is in the normal running state, the working robot 101 moves toward the edge SE side again. Then, when the edge sensor 132a of the outer detection unit 132 detects that the solar cell array LP does not exist below the edge sensor 132a, the working robot 101 moves in the direction away from the edge SE again. Then, when the edge sensor 132a of the outer detection unit 132 again detects that the solar cell array LP exists below the edge sensor 132a, the working robot 101 enters a normal running state.
  • the working robot 101 When controlled as described above, if the work robot 101 moves while switching the traveling state, the working robot 101 is slightly swung left and right with respect to the traveling direction (that is, with respect to the edge SE), and the edge edge. It can be moved along the SE.
  • the work robot 101 reaches the edge E in the traveling direction (see the work robot 101 in the uppermost stage of FIG. 15), and both of the pair of edge sensors 132a and 132b of the outer detection unit 132 are below the solar cell. If it is detected that the array LP does not exist, the traveling speed of the working robot 101 is reduced. At this time, when the edge sensor 132a of the outer detection unit 132 detects that the solar cell array LP does not exist below the edge sensor 132a, the working robot 101 moves in the direction away from the edge SE (direction of arrow b). Will be. That is, since the working robot 101 is decelerated while being controlled to follow the movement, it moves in a direction away from the edge SE and closer to the edge E while reducing the speed.
  • the working robot 101 is stopped. To. That is, deceleration control and stop control can be performed while moving the work robot 101 by copying control.
  • the working robot 101 switches the edge that moves in accordance with the edge SE that has been copied up to that point to the edge E that is located forward, and the edge edge. It moves along E while being controlled to follow the movement.
  • the copy control is performed even while the deceleration control is being performed.
  • the solar cell array LP does not exist below the edge sensor 132a of the outer detection unit 132, but whether or not the solar cell array LP exists below the edge sensor 133a of the inner detection unit 133.
  • the movement in the direction approaching the edge SE (direction of arrow a) and the direction away from the edge SE (direction of arrow b) are switched.
  • the outer detection unit 132 and the inner detection unit 133 need only include at least one edge sensor. However, if the outer detection unit 132 is provided with a pair of edge sensors 132a and 132b, deceleration control is performed only when both edge sensors 132a are in the same state (the state where there is no solar cell array LP below the edge sensors 132a). Can be done. Then, even if only the edge sensor 132a on the outer side (edge SE side) of the outer detection unit 132 detects the edge SE, the deceleration control is not performed, so that the working robot 101 is stably driven in the traveling direction. Can be done.
  • the stop control is performed only when both are in the same state (the state where there is no solar cell array LP below the state). Can be done. Then, when performing the copying control while performing the deceleration control described above, even if only the edge sensor 133a on the outer side (edge SE side) of the inner detection unit 133 detects the edge SE, the stop control is performed. Therefore, the work robot 101 can be stably driven even during deceleration control.
  • the inner detection unit 133 is located inward of the outer edge sensor 132a of the outer detection unit 132 (end edge SE side). Only the edge sensor 133b may be provided.
  • the outer detection unit 132 and the inner detection unit 133 may each have one edge sensor. In this case, whether the edge E or the edge SE is located in the traveling direction of the work robot 101 cannot be determined only by the signals detected by the outer detection unit 132 and the inner detection unit 133. Therefore, it is desirable to separately provide a sensor for detecting the edge SE.
  • the outer detection unit 132 and the inner detection unit 133 are used. This can be done if each has one edge sensor. Further, it is not necessary to provide both the outer detection unit 132 and the inner detection unit 133, and it is possible to carry out the copy movement control even if only one is provided.
  • the tilt prevention sensor 135 may be provided at a position away from the edge detection unit 131 in the width direction, inward of the edge detection unit 131 and outside of the moving means 104. ..
  • the work robot 101 moves toward the edge SE in normal traveling, its axial direction (that is, traveling direction) is inclined with respect to the direction of the edge SE.
  • the edge sensor 132a of the outer detection unit 132 detects the edge SE, the working robot 101 tilts in the opposite direction. Therefore, the inclination of the work robot 101 in the axial direction swings so as to be within a certain range with respect to the direction of the edge SE.
  • the work robot 101 is arranged at a position far away from the edge SE, the inclination of the work robot 101 in the axial direction becomes large. Then, if such a state occurs in the vicinity of the edge E in the traveling direction, there is a possibility that the moving means 104 may be derailed or the like.
  • the tilt prevention sensor 135 can detect that there is no solar cell array LP below the tilt prevention sensor 135 before the moving means 104 derails or the like. In this case, if the control unit 130 stops the moving means 104 when a signal from the tilt prevention sensor 135 that detects that there is no solar cell array LP below the tilt prevention sensor 135 is transmitted to the control unit 130, the moving means The movement of the working robot 101 can be stopped before the 104 derails.
  • ⁇ Danger control unit 140 If the edge detection unit 131 is provided and the operation of the moving means 104 is controlled by the control unit 130 as described above, if the edge detection unit 131 and the control unit 130 are operating normally, the wheel removal or the work robot 101 Can be appropriately prevented from falling from the solar cell array LP.
  • the edge detection unit 131 cannot properly detect the edge E of the solar cell array LP due to a failure or the like, there is a possibility that the wheel may come off or the working robot 101 may fall from the solar cell array LP.
  • a danger detection unit 141 for detecting the edge E of the solar cell array LP may be provided. Specifically, as shown in FIG. 11A, a danger detection unit 141 is provided between the edge detection unit 131 and the moving means 104 in the traveling direction of the work robot 101, and the danger detection unit 141 is the sun.
  • the control unit 130 stops the working robot 101 from traveling. Then, even if the edge detection unit 131 does not detect the edge E of the solar cell array LP, the danger detection unit 141 causes the solar cell array LP before the moving means 104 reaches the edge E of the solar cell array LP. Edge edge E can be detected. Therefore, even if the edge detection unit 131 does not detect the edge E of the solar cell array LP, it is possible to prevent the wheel from coming off or the working robot 101 from falling from the solar cell array LP.
  • the control unit 130 may be provided with a function of notifying the operator or the like that the running of the work robot 101 has been stopped by a signal from the danger detection unit 141. Then, by notifying the worker or the manager that the work robot 101 is out of order, the work robot 101 can be quickly repaired or the like. For example, an alarm or an indicator may be used to notify the operator of the failure, or a signal may be transmitted to the operator's mobile terminal, management center, or the like to transmit information on the failure.
  • the work robot 101 does not stop running even if the edge detection unit 131 detects the edge E of the solar cell array LP, and the work robot 101 starts from the solar cell array LP. It may fall.
  • the danger control unit 140 that controls the moving means 104 by the signal of the danger detection unit 141 is provided separately from the control unit 130, even if the control unit 130 is out of order, the wheel can be removed or the work robot 101 can be removed. Can be prevented from falling from the solar cell array LP.
  • the danger control unit 140 may be provided with a function of notifying the operator or the like that the running of the work robot 101 has been stopped. Then, by notifying the worker or the manager that the work robot 101 is out of order, the work robot 101 can be quickly repaired or the like. For example, an alarm or an indicator may be used to notify the operator of the failure, or a signal may be transmitted to the worker's mobile terminal, management center, or the like to transmit information on the failure. Further, if the signal from the edge detection unit 131 is also input to the danger control unit 140, it is possible to grasp which of the edge detection unit 131 and the control unit 130 is damaged. Then, when the work robot 101 is repaired or the like, the worker can easily grasp the problem, so that the time until recovery can be shortened.
  • the structure of the danger detection unit 141 is also not particularly limited. However, if the danger detection unit 141 has the outer sensor and the inner sensor so as to line up in the moving direction of the work robot 101 (see the edge detection unit 131 in FIG. 14), the groove or the like is formed in the solar cell array LP. The possibility of erroneous detection as edge E can be reduced.
  • the danger detection unit 141 has only one sensor, if the danger detection unit 141 is installed at a position shifted in the moving direction of the work robot 101, a groove or the like is erroneously used as the edge E of the solar cell array LP. The possibility of detection can be reduced.
  • the sensor used in the edge detection unit 131 and the danger detection unit 141 is not particularly limited, and a known sensor can be used.
  • a non-contact edge detection sensor such as a laser sensor, an infrared sensor, or an ultrasonic sensor, or a contact-type sensor such as a limit switch can be used as the sensor.
  • the control unit 130 may analyze the image taken by using the CCD camera or the like as a sensor to detect the edge.
  • the sensor when the sensor is a laser sensor, it is possible to detect whether or not the solar cell array LP exists as follows. First, it is assumed that the solar cell array LP exists directly under the sensor. In this case, if the sensor irradiates the laser light, the sensor receives the reflected light reflected by the solar cell array LP. That is, it can be determined that the position of the sensor is located inward of the edge. On the other hand, when the sensor cannot receive the reflected light, it can be determined that there is no solar cell array LP directly under the sensor, that is, the position of the sensor is located outside the edge.
  • a contact type sensor for detecting derailment may be provided in case the danger detection unit 141 fails.
  • a contact sensor electrically connected to the danger control unit 140 is provided on the lower surface of the robot body 102. Then, when the wheel is removed, the lower surface of the robot body 102, that is, the contact sensor comes into contact with the edge of the solar cell array LP, so that it is possible to detect that the wheel has been removed. Then, when the contact sensor detects that it has come into contact with the solar cell array LP and transmits a signal to the danger control unit 140 (or control unit 130), the danger control unit 140 (or control unit 130) that has received the signal moves.
  • the operation of the drive unit of the means 104 is stopped. For example, when a motor is used for the drive unit, the supply of current to the motor is stopped. Then, since the force for moving the working robot 101 in the edge direction is not applied, it is possible to prevent the robot main body 102 from falling from the solar cell array LP.
  • the drive unit When the danger control unit 140 (or the control unit 130) receives a signal that the contact sensor contacts the solar cell array LP, the drive unit may be operated so that the wheels 104a and 104b generate a drive resistance. .. Then, the effect of preventing the robot body 102 from falling from the solar cell array LP can be enhanced.
  • a motor when used for the drive unit, a current may be supplied to the motor so that the rotation direction of the motor is reversed.
  • a braking device such as an electromagnetic brake may be provided in the drive unit, or a short braking function in which a braking force can be obtained by short-circuiting the terminals of the motor may be exhibited.
  • the sensor used as the above-mentioned contact type sensor is not particularly limited.
  • a pressure-sensitive rubber switch called a cable switch (manufactured by Azbil) or a tape switch (manufactured by Tokyo Sensor) can be used.
  • the position where the contact sensor is provided is not particularly limited.
  • the cable switch, the tape switch, or the like may be installed so as to be parallel to the rotating surface of the wheel 104c (or the wheel 104a in FIG. 6).
  • the sensor may be provided on the entire lower surface of the robot body 102.
  • the work robot 101 described above controls operations such as operation and cleaning of the moving means 104 by the control unit 130. Therefore, if the operation of the work robot 101 is controlled so as to automatically travel on the route or the like stored in the control unit 130, the work such as cleaning is performed while moving on the solar cell array LP almost automatically. be able to. Even when cleaning is performed while moving on the solar cell array LP almost automatically, when moving to the retracting unit 30, the solar cell array LP is moved along the edge of the solar cell array LP (of the solar cell array LP). It may be moved (following the edge). Then, the work robot 101 can be returned to the evacuation unit 30 reliably and stably.
  • the work robot 101 may be operated by an operator from the outside to control operations such as running and cleaning.
  • the work robot 101 may be remotely controlled by using wireless communication using wireless, infrared rays, or the like. That is, the operator may operate the wireless communication controller to remotely control the work robot 101. Further, the worker may operate the work robot 101 by using a controller connected to the work robot 101 by a signal line or the like. If the operator operates the work robot 101 using a controller for wireless communication or a controller connected by a signal line, the operator can perform the work while checking the work status such as cleaning. Then, the work robot 101 can be made to perform appropriate work according to changes in the surrounding conditions and the like.
  • the edge detection function as described above. If it has such a function, even if there is an operation error of the operator, the work robot 101 can be appropriately run to perform the work. Further, even if there is an operation error of the operator, it is possible to prevent the working robot 101 from falling from the solar cell array LP.
  • the work robot 101 may be a combination of both operation by an operator and automatic traveling (work). That is, normally, work and running are performed automatically (that is, control of only the control unit 130), but when an operation by the operator is input from the controller or the like, the operation by the operator is performed from the state of automatic running (work). It may be switched to the operation. In this case, if the input from the controller or the like does not exceed a certain level, the state is switched to the automatic driving (working) state. Then, even if the operator makes an operation error or forgets to switch to the automatic driving (work) state, the work can be continued, which is preferable.
  • the working device 1 may include a state detection mechanism for detecting the state of the surface of the solar cell array LP by measuring the surface of the solar cell array LP or the like. If such a state detection mechanism is provided, the surface of the solar cell array LP can be appropriately grasped, so that work such as cleaning according to the state of the surface of the solar cell array LP can be performed.
  • the state detection mechanism can be composed of a state detection unit that detects the state of the solar cell array LP and a determination unit that determines the state of the surface of the solar cell array LP based on the information detected by the state detection unit.
  • Both the state detection unit and the determination unit may be provided in the work robot 101, or only the state detection unit may be provided in the work robot 101 and the determination unit may be provided in the management building or the like. Further, the state detection unit may be provided in the solar cell array LP or the like, and the determination unit may be provided in the management building or the like. When the determination unit is provided in the management building or the like, commands such as operation timing are transmitted from the management building to the work robot 101.
  • the state detection unit is not particularly limited, and examples thereof include a temperature detection unit that detects the surface temperature of the solar cell array LP. In this case, depending on the temperature of the surface of the solar cell array LP detected by the temperature detection unit, the work robot 101 can perform work suitable for that temperature.
  • the control unit 130 moves the work robot 101 to perform cleaning. It is desirable that it is like this.
  • the working robot 101 has a cleaning unit 110 suitable for cleaning in a dry state such as a brush or cloth
  • the cleaning is performed in a state where the surface of the solar cell array LP is above the dew point temperature. It is desirable to do. Therefore, when the work robot 101 has such a cleaning unit 110, when the state detection mechanism detects a state of the dew point temperature or higher, the control unit 130 moves the work robot 101 to perform cleaning. It is desirable to have.
  • the temperature detection unit may be installed on the solar cell array LP or on the work robot 101.
  • the temperature detection unit can be provided in the panel frame or the like of the solar cell array LP.
  • the temperature detection unit may be provided at a position where the temperature of the surface of the solar cell array LP can be measured while the work robot 101 is arranged in the evacuation unit 30.
  • a method such as providing a temperature detection unit on a stay or the like protruding outward from the work robot 101 can be adopted.
  • the temperature of the solar cell array LP to be detected is not necessarily limited to the surface temperature, and the temperature of the solar cell module P in a predetermined region or the front surface of the solar cell array LP, the vicinity of the predetermined region or the back surface in the vicinity thereof, or the predetermined region.
  • the internal temperature may be measured.
  • a temperature detection unit may be provided on the back surface of the solar cell array LP.
  • a state detection unit for detecting the state of the surface of the solar cell array LP a device that measures the color and intensity (gloss) of the surface of the solar cell array LP may be adopted.
  • the dirt on the surface of the solar cell array LP can be determined by detecting the color and intensity (gloss) of the surface of the solar cell array LP.
  • the work robot 101 is provided with a state detection unit that measures the color and intensity (gloss) of the surface of the solar cell array LP. Then, when the determination unit determines that a certain amount of dirt remains based on the information detected by the state detection unit, the control unit 130 operates the work robot 101 so as to reciprocate the position a plurality of times. To do so. For example, the control unit 130 operates the work robot 101 so that the work robot 101 reciprocates a plurality of times in the area where dirt remains in the solar cell array LP. Then, the effect of removing the dirt on the surface of the solar cell array LP by the working robot 101 can be enhanced.
  • a state detection unit that measures the color and intensity (gloss) of the surface of the solar cell array LP. Then, when the determination unit determines that a certain amount of dirt remains based on the information detected by the state detection unit, the control unit 130 operates the work robot 101 so as to reciprocate the position a plurality of times. To do so. For example, the control unit 130 operates the work
  • the control unit 130 informs the operator of the area where the dirt remains. It may have a function of notifying. In this case, if the operator manually cleans the area (using water or the like), dirt that cannot be removed by the work robot 101 can be eliminated. Further, when the reciprocating work is performed a predetermined number of times, the cleaning of the area may be stopped and the cleaning of the other area may be performed. That is, when the work robot 101 reciprocates in the area where the dirt remains a predetermined number of times, the cleaning of the area is stopped even if the determination unit determines that the dirt remains above a certain level. You may.
  • a state detection unit a light irradiation unit that irradiates the surface of the solar cell array LP with light is provided.
  • the light emitted by the light irradiation unit is not particularly limited.
  • a light receiving unit is provided so that the light emitted by the light irradiation unit can receive the reflected light reflected on the surface of the solar cell array LP. Then, if the determination unit determines the dirt on the surface of the solar cell array LP based on the signal received by the light receiving unit, the dirt on the surface of the solar cell array LP can be determined.
  • the determination unit can determine the dirt on the surface of the solar cell array LP.
  • the configuration of the light irradiation unit and the light receiving unit is not particularly limited, but a plurality of light irradiation units and a plurality of light receiving units are provided along a direction intersecting the moving direction of the work robot 101 (for example, a direction orthogonal to each other). Is desirable. In this case, it is possible to reduce the area where dirt on the surface of the solar cell array LP cannot be detected. In particular, if a line sensor is used as the light receiving unit, it becomes easy to prevent omission of detection of dirt.
  • the state detection unit is provided behind the cleaning unit 110 in the moving direction of the work robot 101, the state after cleaning by the cleaning unit 110 can be determined. Further, if the robot 101 is provided in front of the cleaning unit 110 in the moving direction, the cleaning by the cleaning unit 110 can be adjusted according to the state of dirt. In particular, if the work robot 101 is provided both in front of and behind the cleaning unit 110 in the moving direction, both of the above-mentioned functions can be exhibited.
  • the state detection mechanism may have a wind speed sensor for measuring the wind speed as a state detection unit.
  • the control unit 130 operates the work robot 101 when the wind speed is equal to or higher than a certain wind speed based on the wind speed information measured by the wind speed sensor, the cleaning effect can be enhanced. That is, when the cleaning unit 110 of the work robot 101 winds up dust or the like, the dust is easily scattered, so that the cleaning effect can be enhanced.
  • the control unit 130 controls the work robot 101 so as not to operate it.
  • cleaning may be performed by the working robot 101 in a state where the surface is horizontal, or cleaning may be performed by the working robot 101 in a state where the surface is inclined to some extent.
  • the surface is not leveled, but the surface is maintained in a state of being tilted to some extent (for example, a state of being tilted with respect to the horizontal by about 30 °) for cleaning by the work robot 101. It may be carried out. When the work is carried out at an angle, the angle is not particularly limited.
  • the surface of the solar cell array LP may be maintained at an appropriate angle according to the surrounding environment and the like, and cleaning may be performed by the working robot 101.
  • One work robot 101 may be provided in each of the solar cell array LPs, or one work robot 101 may be shared by a plurality of solar cell array LPs.
  • a transport path DR is installed outside from both ends in the axial direction of the swing shaft SS of the adjacent solar cell array LP, and a retracting portion 30 is provided in the transport path DR. That is, a transport path DR is installed that is outward from both ends of the swing shaft SS of the solar cell array LP in the axial direction and whose upper surface is substantially horizontal. Then, the height of the upper surface of the transport path DR is set to be substantially the same as the surface of the solar cell array LP in a state where the surface of the solar cell array LP is substantially horizontal. Then, if the work robot 101 is moved to the evacuation unit 30 (that is, the transport path DR), the work robot 101 is moved from one solar cell array LP to another solar cell array LP by traveling on the transport path DR. Can be moved.
  • a transport path DR is installed between the ends of adjacent solar cell arrays LP1 and LP2 in parallel with the axial direction of the swing shaft SS.
  • the surfaces of the solar cell arrays LP1 and LP2 and the surface of the transport path DR are arranged so as to be substantially flush with each other. Then, since the working robot 101 can move between the adjacent solar cell arrays LP1 and LP2 through the surface of the transport path DR, the working robot 101 can be shared by a plurality of solar cell arrays LP.
  • the transport path DR between the adjacent solar cell arrays LP1 and LP2 so that the adjacent solar cell arrays LP1 and LP2 and the end D2 of the transport path DR are lined up substantially in a straight line.
  • the retracting portion 30 is provided only in one solar cell array LP1 (the left solar cell array LP1 in FIG. 21), and the other solar cell array LP2 (the right side in FIG. 21) is provided. It is assumed that the solar cell array LP2) is not provided with the retracting unit 30.
  • the working robot 101 when one working robot 101 cleans the two solar cell arrays LP1 and LP2, the working robot 101 moves to the solar cell array LP2 after cleaning the solar cell array LP1 in sequence. At this time, the working robot 101 is moved to the solar cell array LP2 along the second end P2 of the solar cell array LP1. Then, the working robot 101 can be reliably moved from the solar cell array LP1 to the solar cell array LP2 through the transport path DR (see FIG. 21 (A)).
  • the transport path DR When moving the transport path DR, if the work robot 101 is moved along the end D2 of the transport path DR, the transport path DR can be stably traveled, and the solar cell array LP2 can be moved. Positioning when moving and grasping the position of the work robot 101 are also facilitated.
  • the transport path DR is surely performed.
  • the working robot 101 can be moved to the solar cell array LP1 (FIG. 21 (B)).
  • the working robot 101 can be moved and returned to the evacuation unit 30 as if the solar cell array LP1 and the solar cell array LP2 are one solar cell array LP, the movement control of the working robot 101 can also be performed. It will be easier.
  • the second end P2 of the adjacent solar cell arrays LP1 and LP2 and the end D2 of the line-of-conducting DR are aligned substantially linearly
  • the edge of the transport path DR and the edge edge of the end portion D2 of the transport path DR are perfectly aligned, there is a slight deviation between the two. Including cases where there is.
  • the edge of the second end P2 of the solar cell arrays LP1 and LP2 and the edge of the end D2 of the transport path DR are almost parallel, but slightly higher or horizontal. This includes the case where there is a deviation in the direction (for example, about 0 to 5 mm) and the case where there is a deviation in the position along the surface of the solar cell module P (for example, about 0 to 20 mm). Further, the case where the end edge of the second end portion P2 of the solar cell arrays LP1 and LP2 and the end edge of the end portion D2 of the transport path DR are relatively inclined is included.
  • the surface of the solar cell arrays LP1 and LP2 and the surface of the transport path DR are substantially the same plane
  • the angle between the surface of the solar cell arrays LP1 and LP2 and the surface of the transport path DR is about 0 to 1 degree. This is a concept that includes cases where there is a gap. It also includes the case where there is a slight difference in height between the surfaces of the solar cell arrays LP1 and LP2 and the surface of the transport path DR (for example, about 0 to 5 mm).
  • ⁇ Swing type transport path DR> In the above example, in the adjacent solar cell arrays LP1 and LP2, the case where both surfaces are substantially the same plane and the case where both surfaces are substantially the same plane even if both are shaken have been described. However, depending on the installation conditions of the solar cell arrays LP1 and LP2, there may be a difference in height or an angle difference between the surfaces of the solar cell arrays LP1 and LP2. When there is such a problem, the transport path DR may have the following configuration.
  • the transport path DR is provided with a swing shaft Da at a first end portion (end portion on the solar cell array LP1 side).
  • the swing shaft Da is provided parallel to the surface of the solar cell array LP1 and is fixed to the solar cell array LP1 via a bearing or the like.
  • One end of the transport portion Db (the end on the right side in FIG. 22) is attached to the swing shaft Da. That is, the transport portion Db is provided so as to be swingable with respect to the solar cell array LP1 by the swing shaft Da.
  • the other end (the right end in FIG. 22) of the transport portion Db is placed on the end of the solar cell array LP2 adjacent to the solar cell array LP1.
  • a holding plate LM is provided at the end of the solar cell array LP2 on the solar cell array LP1 side, and the other end of the transport portion Db is placed on the upper surface of the holding plate LM. ..
  • the configuration of the holding plate LM is not particularly limited.
  • the surface of the transport portion Db (that is, the surface of the transport path DR). ) are adjacent to each other so that the surfaces of the solar cell arrays LP1 and LP2 are substantially flush with each other.
  • the transport path DR having such a configuration is provided, even if there is a difference in the height of the surfaces of the adjacent solar cell arrays LP1 and LP2, if the transport unit Db swings, the transport path between the solar cell arrays LP1 and LP2. It can be connected by DR. Then, even if there is a difference in the height of the surfaces of the adjacent solar cell arrays LP1 and LP2, the working robot 101 can move between the adjacent solar cell arrays LP1 and LP2 via the transport path DR.
  • the work robot 101 If the inclination angle of the transport unit Db becomes large, it becomes difficult for the work robot 101 to move between the transport path DR and the solar cell arrays LP1 and LP2. For example, if the angle formed by the surface of the transport path DR with respect to the surface of the solar cell arrays LP1 and LP2 is larger than 20 degrees, it becomes difficult to move from the transport path DR to the solar cell arrays LP1 and LP2. Therefore, a sensor for detecting the swing angle of the transport unit Db is provided in the transport path DR, and when the sensor detects that the angle is equal to or higher than a certain angle, the work robot between the transport path DR and the solar cell arrays LP1 and LP2.
  • the control unit 130 may control the operation of the moving means 104 so that the 101 does not move.
  • the working robot 101 itself may be provided with a sensor for detecting the inclination of the transport path DR, and the control unit 130 may control the operation of the moving means 104 based on the signal from this sensor.
  • the angle of the working robot 101 with respect to the swing axis SS (the angle around the swing axis SS) when moving on the surface of the solar cell array LP1 may be different from the angle of the surface of the solar cell array LP2. is there.
  • the work robot 101 may come into contact with the solar cell array LP2 and the work robot 101 may fall. ..
  • the length of the transport path DR is set so that the other end of the transport path DR deviates from the upper surface of the holding plate LM when the deviation of the swing angle of the solar cell arrays LP1 and LP2 exceeds a certain level. do it. That is, in FIG. 22, if the swing angles of the solar cell arrays LP1 and LP2 are the same, the other end of the transport path DR can be maintained in a state of being placed on the upper surface of the holding plate LM (FIG. 22 (A).
  • a sensor for detecting the swing angle of the transport unit Db may be provided in the transport path DR so that the control unit 130 of the work robot 101 controls the operation of the moving means 104. That is, when the sensor detects that the surface of the transport unit Db is at a certain angle or more with respect to the surface of the solar cell arrays LP1 and LP2, the control unit 130 between the transport path DR and the solar cell arrays LP1 and LP2. The operation of the moving means 104 may be controlled so that the working robot 101 does not move.
  • the work robot 101 itself is provided with a sensor for detecting the inclination of the transport path DR and the presence / absence of the transport path DR, so that the control unit 130 controls the operation of the moving means 104 based on the signal from this sensor. May be good.
  • the arrangement of the transport path DR is not limited to the arrangement shown in FIG. 18, and various arrangements can be taken.
  • the working device of the present invention is suitable for cleaning the surface of a fixed type or tracking type solar cell module.

Landscapes

  • Photovoltaic Devices (AREA)
  • Cleaning In General (AREA)

Abstract

[Problem] To provide a work device capable of moving a solar cell array and working. [Solution] A work device 1 that executes work on a surface of a solar cell array LP having a plurality of solar cell modules P lined up therein. The work device comprises: a work instrument 10 that implements work on the surface of the solar cell array LP; and a travel unit 20 that moves the work instrument 10 along the direction in which the solar cell modules P are lined up. The travel unit 20 comprises a towing mechanism that pulls and moves the work instrument 10.

Description

作業装置Working equipment
 本発明は、作業装置に関する。さらに詳しくは、太陽光発電に使用する太陽電池アレイなどの表面を掃除する作業装置に関する。 The present invention relates to a working device. More specifically, the present invention relates to a work device for cleaning the surface of a solar cell array used for photovoltaic power generation.
 近年、再生可能エネルギを利用した発電の要求が高まっており、とくに太陽光を利用した太陽光発電には大きな注目が集まっている。かかる太陽光発電では、太陽からの日射光を受けて発電するため、太陽電池アレイ(つまり太陽電池モジュール)の受光面が汚れると、受光面を構成するカバーガラスの光透過率が低下することによって、発電される電力量が減少する。このため、太陽電池アレイ等の受光面の汚れを除去するために、太陽電池アレイ等を適宜掃除することが重要になる。 In recent years, the demand for power generation using renewable energy has been increasing, and in particular, solar power generation using sunlight has attracted a great deal of attention. In such photovoltaic power generation, since solar power is generated by receiving sunlight from the sun, if the light receiving surface of the solar cell array (that is, the solar cell module) becomes dirty, the light transmittance of the cover glass constituting the light receiving surface decreases. , The amount of power generated is reduced. Therefore, in order to remove dirt on the light receiving surface of the solar cell array or the like, it is important to appropriately clean the solar cell array or the like.
 太陽電池アレイ等の掃除は作業者がブラシなどを使用して実施することもできるが、大規模な太陽光発電設備では作業者の負担が大きく多数の作業者が必要になる。
 そこで、大規模な太陽光発電設備における太陽電池アレイの表面(受光面)を自走して掃除する種々の構造を有する清掃装置が開発されている。(例えば、特許文献1~5参照)。
Cleaning of a solar cell array or the like can be performed by a worker using a brush or the like, but in a large-scale photovoltaic power generation facility, the burden on the worker is heavy and a large number of workers are required.
Therefore, a cleaning device having various structures for self-propelling and cleaning the surface (light receiving surface) of the solar cell array in a large-scale photovoltaic power generation facility has been developed. (See, for example, Patent Documents 1 to 5).
特開2014-223564号公報Japanese Unexamined Patent Publication No. 2014-223564 特開2015-178088号公報JP-A-2015-178808 特開2017-144413号公報JP-A-2017-144413 特開2016-26861号公報Japanese Unexamined Patent Publication No. 2016-26861 特開2018-528071号公報Japanese Unexamined Patent Publication No. 2018-528071
 このように太陽電池アレイの表面を自走して掃除する装置が多数開発されており、作業者によって行っていた作業の機械化が進んでいる。しかし、上述した装置でも作業者のサポートが必要であり、大規模の発電設備では、作業者が行う作業を軽減するために、清掃装置のさらなる機能の向上が求められている。 In this way, many devices have been developed that self-propelledly clean the surface of the solar cell array, and the mechanization of the work performed by the workers is progressing. However, even the above-mentioned devices require the support of workers, and in large-scale power generation facilities, further improvement of the functions of the cleaning device is required in order to reduce the work performed by the workers.
 また、太陽電池アレイの表面の掃除に限らず、太陽電池モジュールの不具合等の検査も現状では作業者が実施しているが、作業者の負担を軽減するためにかかる検査の機械化をさらに進めることが求められている。 In addition to cleaning the surface of the solar cell array, workers are currently inspecting for defects in the solar cell module, but in order to reduce the burden on the workers, the mechanization of such inspections should be further promoted. Is required.
 本発明は上記事情に鑑み、太陽電池アレイ上を移動して掃除することができる作業装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a working device capable of moving on a solar cell array for cleaning.
 <牽引型作業装置>
 第1発明の作業装置は、複数枚の太陽電池モジュールを並べて設置された太陽電池アレイの表面に対する作業を実施する作業装置であって、前記太陽電池アレイの表面に対する作業を実施する作業器と、該作業器を前記太陽電池モジュールが並んでいる方向に沿って移動させる移動部と、を備えており、前記移動部が、索状部材を利用して前記作業器を移動させる移動機構を備えていることを特徴とする。
 第2発明の作業装置は、第1発明において、前記移動部は、前記作業器に連結された前記索状部材と、該索状部材を移動させる駆動機構と、を備えており、前記索状部材が、一端および他端が前記作業器に連結されて無端ループ状に形成されていることを特徴とする。
 第3発明の作業装置は、第1発明において、前記移動部は、前記作業器に連結された前記索状部材と、該牽引部材を移動させる駆動機構と、を備えており、前記索状部材が無端部材であることを特徴とする。
 第4発明の作業装置は、第1、第2または第3発明において、前記索状部材は、前記太陽電池アレイの表面と非接触となるように設けられていることを特徴とする。
 第5発明の作業装置は、第1、第2、第3または第4発明において、前記索状部材は、前記太陽電池アレイの発電状態において、前記太陽電池アレイの表面に該索状部材の影が形成されない位置に配設されていることを特徴とする。
 第6発明の作業装置は、第1発明において、前記移動部は、前記太陽電池アレイの表面に沿って張られた前記索状部材と、該索状部材の表面を転動するローラを駆動する駆動機構と、を備えていることを特徴とする。
 第7発明の作業装置は、第6発明において、前記駆動機構は、前記索状部材を挟むように配置された一対のローラを備えていることを特徴とする。
 第8発明の作業装置は、第1から第7発明のいずれかにおいて、前記移動部の移動機構によって前記作業器が移動する方向において、前記太陽電池アレイの一方の端部の外方に前記作業器を前記太陽電池アレイの表面から退避させる退避部を備えていることを特徴とする。
 第9発明の作業装置は、第8発明において、前記太陽電池アレイにおける前記退避部が設けられている側と反対側の端部に前記作業器が到達したことを検出する到達検出部を備えていることを特徴とする。
 <自走ロボット>
 第10発明の作業装置は、複数枚の太陽電池モジュールを並べて設置された太陽電池アレイの表面に対する作業を実施する作業装置であって、自走のための移動手段と、前記太陽電池アレイの表面に対する作業を実施する作業部と、を有する作業ロボットと、前記作業ロボットを前記太陽電池アレイの表面から退避させるための退避部と、を備えており、前記作業ロボットは、前記退避部に移動する際に、前記太陽電池アレイの端縁まで移動した後、該太陽電池アレイの端縁に沿って前記退避部まで移動することを特徴とする。
 第11発明の作業装置は、第10発明において、前記退避部が複数個所設けられていることを特徴とする。
<搬送路>
 第12発明の作業装置は、複数枚の太陽電池モジュールが揺動軸の軸方向に沿って並べて設置された太陽電池アレイの表面に対する作業を実施する作業装置であって、自走のための移動手段と、前記太陽電池アレイの表面に対する作業を実施する作業部と、を有する作業ロボットと、前記揺動軸の軸方向に沿って並んで配設された隣接する太陽電池アレイ間に設けられた、前記作業ロボットが走行し得る搬送路と、を備えており、該搬送路は、その第一端部が、隣接する一方の太陽電池アレイに対して該太陽電池アレイの表面と平行な軸周りに揺動可能に設けられており、その第二端部は、隣接する一方の太陽電池アレイに載せられていることを特徴とする。
 第13発明の作業装置は、複数枚の太陽電池モジュールが揺動軸の軸方向に沿って並べて設置された太陽電池アレイの表面に対する作業を実施する作業装置であって、自走のための移動手段と、前記太陽電池アレイの表面に対する作業を実施する作業部と、を有する作業ロボットと、隣接する太陽電池アレイ間に設けられた、前記作業ロボットが走行し得る搬送路と、を備えており、該搬送路は、その上面が略水平であって、前記太陽電池アレイの表面が略水平になった状態で該太陽電池アレイの表面とその上面がほぼ同じ高さになるように設置されていることを特徴とする。
 第14発明の作業装置は、第13発明において、前記搬送路は、前記揺動軸の軸方向に沿って並んで配設された隣接する太陽電池アレイ間を繋ぐように設けられており、隣接する太陽電池アレイの揺動軸の軸方向の端部よりも外方に位置するように配設されていることを特徴とする。
<状態検出>
 第15発明の作業装置は、第1から第14発明のいずれかにおいて、前記太陽電池アレイの状態を検出する状態検出機構を備えており、該状態検出機構は、前記太陽電池アレイの状態を検出する状態検出部と、該状態検出部が検出した情報に基づいて前記太陽電池アレイの状態を判断する判断部と、を備えていることを特徴とする。
 第16発明の作業装置は、第15発明において、前記状態検出部が、前記太陽電池アレイの温度を検出する温度検出部を備えていることを特徴とする。
 第17発明の作業装置は、第15発明において、前記状態検出部が、前記太陽電池アレイの表面に光を照射する光照射部と、該光照射部が照射した光が前記太陽電池アレイの表面で反射した反射光を受光する受光部と、を備えており、前記判断部は、前記受光部が受光した反射光に基づいて前記太陽電池アレイの表面の汚れを判断する機能を備えていることを特徴とする。
<Tow type work equipment>
The working device of the first invention is a working device that performs work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side, and includes a working device that performs work on the surface of the solar cell array. A moving portion for moving the working device along the direction in which the solar cell modules are lined up is provided, and the moving portion includes a moving mechanism for moving the working device using a cord-shaped member. It is characterized by being.
In the first invention, the working apparatus of the second invention includes the cord-shaped member connected to the working device and a drive mechanism for moving the cord-shaped member, and the cord-shaped member is provided. The member is characterized in that one end and the other end are connected to the working device to form an endless loop.
In the first invention, the working apparatus of the third invention includes the cord-shaped member connected to the working device and a driving mechanism for moving the traction member, and the cord-shaped member is provided. Is an endless member.
The working device of the fourth invention is characterized in that, in the first, second or third invention, the cord-like member is provided so as to be in non-contact with the surface of the solar cell array.
The working device of the fifth invention is the first, second, third or fourth invention in which the cord-like member is a shadow of the cord-like member on the surface of the solar cell array in the power generation state of the solar cell array. Is arranged at a position where is not formed.
In the first invention, the moving portion of the working apparatus of the sixth invention drives the cord-shaped member stretched along the surface of the solar cell array and a roller rolling on the surface of the cord-shaped member. It is characterized by having a drive mechanism.
The working device of the seventh invention is characterized in that, in the sixth invention, the drive mechanism includes a pair of rollers arranged so as to sandwich the cord-like member.
In any one of the first to seventh inventions, the work apparatus of the eighth invention is the work of the work device outside one end of the solar cell array in the direction in which the work device is moved by the movement mechanism of the moving part. It is characterized by having a retracting portion for retracting the vessel from the surface of the solar cell array.
In the eighth aspect of the invention, the working apparatus of the ninth invention includes a reaching detection unit that detects that the working device has reached an end portion of the solar cell array on the side opposite to the side where the retracting portion is provided. It is characterized by being.
<Self-propelled robot>
The working device of the tenth invention is a working device that performs work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side, and is a moving means for self-propelled operation and a surface of the solar cell array. A work robot having a work unit for carrying out work on the solar cell array, and a retracting unit for retracting the work robot from the surface of the solar cell array are provided, and the work robot moves to the retracted unit. It is characterized in that it moves to the edge of the solar cell array and then moves to the retracted portion along the edge of the solar cell array.
The working apparatus of the eleventh invention is characterized in that, in the tenth invention, the retracting portions are provided at a plurality of places.
<Transport path>
The working device of the twelfth invention is a working device for performing work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side along the axial direction of a swing axis, and is a moving device for self-propelled operation. Provided between a working robot having means and a working portion for performing work on the surface of the solar cell array, and adjacent solar cell arrays arranged side by side along the axial direction of the swing axis. The transport path is provided with a transport path on which the work robot can travel, and the transport path is around an axis whose first end is parallel to the surface of the solar cell array with respect to one of the adjacent solar cell arrays. The second end of the solar cell array is mounted on one of the adjacent solar cell arrays.
The working device of the thirteenth invention is a working device for performing work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side along the axial direction of a swing axis, and is a moving device for self-propelled operation. It is provided with a work robot having means, a work unit for performing work on the surface of the solar cell array, and a transport path provided between adjacent solar cell arrays on which the work robot can travel. The transport path is installed so that the upper surface thereof is substantially horizontal and the surface of the solar cell array is substantially horizontal so that the surface of the solar cell array and the upper surface thereof are substantially the same height. It is characterized by being.
In the thirteenth invention, the working apparatus of the fourteenth invention is provided such that the transport path is provided so as to connect adjacent solar cell arrays arranged side by side along the axial direction of the swing shaft. It is characterized in that it is arranged so as to be located outside the axial end of the swing axis of the solar cell array.
<Status detection>
In any one of the first to the fourteenth inventions, the working apparatus of the fifteenth invention includes a state detection mechanism for detecting the state of the solar cell array, and the state detection mechanism detects the state of the solar cell array. It is characterized by including a state detection unit for determining the state of the solar cell array and a determination unit for determining the state of the solar cell array based on the information detected by the state detection unit.
The working apparatus of the 16th invention is characterized in that, in the 15th invention, the state detecting unit includes a temperature detecting unit that detects the temperature of the solar cell array.
In the fifteenth invention, the working apparatus of the seventeenth invention includes a light irradiation unit in which the state detection unit irradiates the surface of the solar cell array with light, and the light irradiated by the light irradiation unit is the surface of the solar cell array. It is provided with a light receiving unit that receives the reflected light reflected by the above, and the determination unit has a function of determining dirt on the surface of the solar cell array based on the reflected light received by the light receiving unit. It is characterized by.
<牽引型作業装置>
 第1発明によれば、索状部材を利用して移動機構を移動させるので、作業器を太陽電池アレイの表面に沿って安定して移動させることができる。
 第2~第5発明によれば、作業器が移動機構を有しないので、作業器を軽量化できる。しかも、索状部材を移動させる駆動機構によって作業器を移動させるので、太陽電池アレイの表面の傾斜角度等によらず、所望のタイミングで作業を実施することができる。作業器や駆動機構が太陽電池モジュールの発電に対して発電効率を低下させる等の悪影響を与えることを防止できる。
 第6、第7発明によれば、索状部材に沿って作業器を移動させることができるので、作業器を太陽電池アレイの表面に沿って安定して移動させることができる。
 第8発明によれば、作業器の移動を適切に制御でき、かつ、制御に必要な装置などを低減できる。
 <自走ロボット>
 第9発明によれば、太陽電池アレイの端縁に沿って作業ロボットが退避部に帰還するので、安定して作業ロボットを退避部に帰還させることができる。
 第10発明によれば、作業ロボットを退避部に帰還させる時間を短くできる。
<搬送路>
 第12~第14発明によれば、作業ロボットを複数の太陽電池アレイで共有できるので、作業装置を簡素化できる。
<状態検出>
 第15発明によれば、太陽電池アレイの状態を適切に把握できるので、太陽電池アレイの状態に応じた作業を実施できる。
 第16発明によれば、太陽電池アレイの温度に応じた作業を実施できる。
 第17発明によれば、太陽電池アレイの表面の汚れを検出できるので、汚れの状態に応じた作業を実施できる。
<Tow type work equipment>
According to the first invention, since the moving mechanism is moved by using the cord-shaped member, the working device can be stably moved along the surface of the solar cell array.
According to the second to fifth inventions, since the working device does not have a moving mechanism, the weight of the working device can be reduced. Moreover, since the work device is moved by the drive mechanism that moves the cord-shaped member, the work can be performed at a desired timing regardless of the inclination angle of the surface of the solar cell array or the like. It is possible to prevent the work equipment and the drive mechanism from adversely affecting the power generation of the solar cell module, such as lowering the power generation efficiency.
According to the sixth and seventh inventions, since the working device can be moved along the cord-like member, the working device can be stably moved along the surface of the solar cell array.
According to the eighth invention, the movement of the work equipment can be appropriately controlled, and the number of devices required for control can be reduced.
<Self-propelled robot>
According to the ninth invention, since the working robot returns to the evacuation section along the edge of the solar cell array, the working robot can be stably returned to the evacuation section.
According to the tenth invention, the time for returning the working robot to the evacuation unit can be shortened.
<Transport path>
According to the twelfth to fourteenth inventions, since the working robot can be shared by a plurality of solar cell arrays, the working apparatus can be simplified.
<Status detection>
According to the fifteenth invention, since the state of the solar cell array can be appropriately grasped, the work can be performed according to the state of the solar cell array.
According to the sixteenth invention, the work can be performed according to the temperature of the solar cell array.
According to the seventeenth invention, since the dirt on the surface of the solar cell array can be detected, the work can be carried out according to the state of the dirt.
第一実施形態の作業装置1を太陽電池アレイLPに設置した状態の概略説明図であり、(A)は平面図であり、(B)は(A)のB-B線断面図である。It is a schematic explanatory view of the state which the working apparatus 1 of 1st Embodiment was installed in the solar cell array LP, (A) is a plan view, and (B) is a sectional view taken along line BB of (A). 第一実施形態の作業装置1を太陽電池モジュールPが2段に並んだ太陽電池アレイLPに設置した状態の概略説明図であり、(A)は平面図であり、(B)は(A)のB-B線断面図である。It is a schematic explanatory view of the state in which the working apparatus 1 of the 1st Embodiment is installed in the solar cell array LP in which the solar cell modules P are arranged in two stages, (A) is a plan view, (B) is (A). It is a cross-sectional view taken along the line BB. 第一実施形態の作業装置1における作業器10の概略説明図であり、(A)は平面図であり、(B)は(A)のB-B線矢視図である。It is a schematic explanatory view of the work apparatus 10 in the work apparatus 1 of the 1st Embodiment, (A) is a plan view, and (B) is the BB line arrow view of (A). 第一実施形態の作業装置1を太陽電池アレイLP間で移動できるようにした場合の概略説明図である。It is a schematic explanatory drawing in the case where the working apparatus 1 of 1st Embodiment is made movable between solar cell array LPs. 太陽電池アレイLPを複数有する太陽光発電設備SPの概略説明図である。It is a schematic explanatory drawing of the photovoltaic power generation equipment SP which has a plurality of solar cell array LPs. 第二実施形態の作業装置1の作業ロボット101の概略平面図である。It is a schematic plan view of the work robot 101 of the work apparatus 1 of the 2nd Embodiment. 第二実施形態の作業装置1の作業ロボット101の作動の概略説明図である。It is the schematic explanatory drawing of the operation of the work robot 101 of the work apparatus 1 of the 2nd Embodiment. 掃除作業を行う第二実施形態の作業装置1の作業ロボット101の概略説明図である。It is a schematic explanatory drawing of the work robot 101 of the work apparatus 1 of the 2nd Embodiment which performs a cleaning work. 掃除作業を行う第二実施形態の作業装置1の作業ロボット101の概略正面図である。It is a schematic front view of the work robot 101 of the work apparatus 1 of the 2nd Embodiment which performs a cleaning work. 溝Gを有する太陽電池アレイLP上を走行する第二実施形態の作業装置1の作業ロボット101の作動の概略説明図である。It is the schematic explanatory drawing of the operation of the work robot 101 of the work apparatus 1 of the 2nd Embodiment traveling on the solar cell array LP which has a groove G. 他の実施形態の作業ロボット101の概略平面図である。It is a schematic plan view of the work robot 101 of another embodiment. 他の実施形態の作業ロボット101の概略平面図である。It is a schematic plan view of the work robot 101 of another embodiment. 他の実施形態の作業ロボット101の概略平面図である。It is a schematic plan view of the work robot 101 of another embodiment. 外方検出部132と内方検出部133とが複数のセンサを有するエッジ検出部131を備えた作業ロボット101の概略平面図である。FIG. 5 is a schematic plan view of a work robot 101 including an edge detection unit 131 in which the outer detection unit 132 and the inner detection unit 133 have a plurality of sensors. 第二実施形態の作業装置1の作業ロボット101が太陽電池アレイLPの端縁SEに沿って移動する状況の概略説明図である。It is the schematic explanatory drawing of the situation which the working robot 101 of the working apparatus 1 of the 2nd Embodiment moves along the edge SE of the solar cell array LP. 第二実施形態の作業装置1の作業ロボット101が掃除などの作業を行う太陽光発電設備SPの概略説明図である。FIG. 5 is a schematic explanatory view of a photovoltaic power generation facility SP in which the work robot 101 of the work device 1 of the second embodiment performs work such as cleaning. 第二実施形態の作業装置1の作業ロボット101の作動の説明図であり、(A)は掃除作業における作業ロボット101の移動経路の説明図であり、(B)は退避部30に作業ロボット101が帰還する際の移動経路の説明図である。It is explanatory drawing of the operation of the work robot 101 of the work apparatus 1 of the 2nd Embodiment, (A) is the explanatory view of the movement path of the work robot 101 in cleaning work, (B) is the work robot 101 in the evacuation part 30. It is explanatory drawing of the movement path at the time of returning. 搬送路DRを備えた第二実施形態の作業装置1の概略平面図である。It is a schematic plan view of the work apparatus 1 of the 2nd Embodiment provided with the transport path DR. 索状部材22が固定された作業装置1を太陽電池アレイLPに設置した状態の概略説明図であり、(A)は平面図であり、(B)は側面図である。It is a schematic explanatory view of the state in which the working apparatus 1 to which the cord-like member 22 is fixed is installed in the solar cell array LP, (A) is a plan view, and (B) is a side view. 第一実施形態の作業装置1を直列に配置された太陽電池アレイLP間で移動できるようにした場合の概略説明図である。It is a schematic explanatory drawing in the case where the working apparatus 1 of 1st Embodiment is made movable between the solar cell array LP arranged in series. 第二実施形態の作業装置1を直列に配置された太陽電池アレイLP間で移動できるようにした場合の概略説明図である。It is a schematic explanatory drawing in the case where the working apparatus 1 of the 2nd Embodiment is made movable between the solar cell array LP arranged in series. 揺動する搬送路DRを設けた太陽電池アレイLPの概略説明図であり、(A)は搬送路DRの搬送部Dbの他端が保持プレートLM上に載せられている状態の概略説明図であり、(B)は隣接する太陽電池アレイLP1,LP2が両者の表面の角度が大きくズレた状態の概略説明図である。It is a schematic explanatory view of the solar cell array LP provided with the swinging transport path DR, and (A) is the schematic explanatory view of the state where the other end of the transport portion Db of the transport path DR is placed on the holding plate LM. (B) is a schematic explanatory view of a state in which the angles of the surfaces of the adjacent solar cell arrays LP1 and LP2 are greatly deviated from each other.
 本実施形態の作業装置は、並べて配置された複数の太陽電池モジュールを有する太陽電池アレイの表面を、複数の太陽電池モジュールの並んでいる方向に沿って移動しながら作業を実施する作業装置である。 The working device of the present embodiment is a working device that performs work while moving the surface of a solar cell array having a plurality of solar cell modules arranged side by side along the direction in which the plurality of solar cell modules are arranged. ..
 なお、本実施形態の作業装置によって作業が実施される太陽電池アレイや、この太陽電池アレイを構成する太陽電池モジュールはとくに限定されない。パネルフレームを有する太陽電池モジュールを複数枚並べて配置されたトラッキングタイプの太陽電池アレイや、パネルフレームを有する固定された太陽電池モジュールを複数有する太陽電池アレイ(言い換えればトラッキングタイプでない太陽電池アレイ、非トラッキングタイプ)にも使用できる。また、フレームレス太陽電池モジュールを並べて配置された太陽電池アレイ(トラッキングタイプおよび非トラッキングタイプを含む)でも使用することができる。 The solar cell array in which the work is carried out by the working device of the present embodiment and the solar cell modules constituting the solar cell array are not particularly limited. A tracking type solar cell array in which a plurality of solar cell modules having a panel frame are arranged side by side, or a solar cell array having a plurality of fixed solar cell modules having a panel frame (in other words, a non-tracking type solar cell array, non-tracking). Can also be used for type). It can also be used in solar cell arrays (including tracking type and non-tracking type) in which frameless solar cell modules are arranged side by side.
 また、本明細書において、「太陽電池モジュールの表面」とは、太陽電池モジュールにおいて発電をする発電領域の表面を意味している。例えば、フレームレス太陽電池モジュールの場合にはほぼ全面が発電領域になるが、パネルフレームを有する太陽電池モジュールの場合にはパネルフレーム以外の部分(平面視でフレームに囲まれた部分)が発電領域になる。
 そして、「太陽電池アレイの表面」とは、「太陽電池モジュールの表面」を意味している。「太陽電池アレイ上」という場合には、パネルフレームを有する太陽電池モジュールで形成された「太陽電池アレイ」では、「太陽電池モジュールの表面」と「パネルフレーム」の両方を含んだ概念である。
Further, in the present specification, the “surface of the solar cell module” means the surface of the power generation region where power is generated in the solar cell module. For example, in the case of a frameless solar cell module, almost the entire surface is the power generation area, but in the case of a solar cell module having a panel frame, the part other than the panel frame (the part surrounded by the frame in a plan view) is the power generation area. become.
The "surface of the solar cell array" means the "surface of the solar cell module". The term "on the solar cell array" is a concept that includes both the "surface of the solar cell module" and the "panel frame" in the "solar cell array" formed of the solar cell module having the panel frame.
 本実施形態の作業装置が実施する作業もとくに限定されない。例えば、作業装置が移動する太陽電池アレイの表面の掃除やその表面の欠陥検査、表面形状や部材の厚さ測定、表面温度の測定、表面粗さの測定、表面における光反射率や光沢度の測定、その他の物理量の測定等が本実施形態の作業装置が実施する作業に該当する。また、太陽電池アレイの表面上にある物質の収集や観察、表面の付着物や塗装等の剥離、塗装及びその前の下地処理、コーティング作業も本実施形態の作業装置が実施する作業に該当する。さらに、太陽電池アレイの表面に対するフィルム等の貼付、研磨、マーキング等も第一実施形態の作業装置が実施する作業として挙げることができる。そして、情報提示によるコミュニケーション等も第一実施形態の作業装置が実施する作業として挙げることができる。 The work performed by the work device of this embodiment is not particularly limited. For example, cleaning the surface of a solar cell array to which the work equipment moves, inspecting defects on the surface, measuring the surface shape and thickness of members, measuring the surface temperature, measuring the surface roughness, measuring the light reflectance and glossiness on the surface. Measurement, measurement of other physical quantities, etc. correspond to the work performed by the work apparatus of this embodiment. In addition, collection and observation of substances on the surface of the solar cell array, peeling of deposits and paint on the surface, painting and surface treatment before that, and coating work also correspond to the work performed by the working apparatus of this embodiment. .. Further, sticking of a film or the like to the surface of the solar cell array, polishing, marking, etc. can also be mentioned as the work performed by the working apparatus of the first embodiment. Then, communication by presenting information and the like can be mentioned as the work to be carried out by the work device of the first embodiment.
 以下では、本実施形態の作業装置によって、パネルフレームを有する太陽電池モジュールを複数枚並べて形成されたトラッキングタイプの太陽電池アレイの表面を掃除する場合を説明する。 Hereinafter, a case will be described in which the working device of the present embodiment cleans the surface of a tracking type solar cell array formed by arranging a plurality of solar cell modules having a panel frame.
 なお、本実施形態の作業装置が掃除以外の作業を実施する場合には、後述する掃除部材15が設けられている位置に、作業用の装置やセンサ、器具などが設けられる。例えば、本実施形態の作業装置が実施する作業が平面の欠陥検査、表面形状や部材の厚さ測定、温度の測定、表面粗さの測定、表面における光反射率や光沢度の測定、その他の物理量の測定の場合には、各測定に使用される種々のセンサが設けられる。また、本実施形態の作業装置が実施する作業が太陽電池アレイの表面のコーティング作業や塗装作業の場合には、スプレーノズル等の器具が設けられる。さらに、本実施形態の作業装置が実施する作業が、太陽電池アレイの表面の付着物や塗装等の剥離処理や研磨処理、コーティング等の前の下地処理であれば、ショットブラストや回転式や振動式の研磨装置が設けられる。本実施形態の作業装置が実施する作業が太陽電池アレイの表面にフィルム等の貼付を行う場合にはローラ等が設けられる。本実施形態の作業装置によって情報提示によるコミュニケーション等を行う場合には、ディスプレイやLED、スピーカー等が設けられる。 When the work device of the present embodiment performs work other than cleaning, a work device, a sensor, an instrument, or the like is provided at a position where the cleaning member 15 described later is provided. For example, the work performed by the work apparatus of the present embodiment is a flat surface defect inspection, a surface shape or member thickness measurement, a temperature measurement, a surface roughness measurement, a light reflectance or glossiness measurement on a surface, or the like. In the case of physical quantity measurement, various sensors used for each measurement are provided. Further, when the work performed by the work apparatus of the present embodiment is a coating work or a painting work on the surface of the solar cell array, an instrument such as a spray nozzle is provided. Further, if the work carried out by the working apparatus of the present embodiment is a peeling treatment such as a deposit or coating on the surface of the solar cell array, a polishing treatment, or a base treatment before coating or the like, shot blasting, rotary type, or vibration is performed. A type of polishing device is provided. When the work performed by the work apparatus of the present embodiment is to attach a film or the like to the surface of the solar cell array, a roller or the like is provided. When communication or the like by presenting information is performed by the working device of the present embodiment, a display, an LED, a speaker, or the like is provided.
<太陽光発電設備SP>
 まず、本実施形態の作業装置1を説明する前に、本実施形態の作業装置1が掃除等の作業を実施する太陽光発電設備SPについて簡単に説明する。図5に示すように、太陽光発電設備SPは、複数枚の太陽電池モジュールPを備えた太陽電池アレイLPを複数列有している。太陽電池アレイLPは、複数枚の太陽電池モジュールPの端縁がほぼ同じ直線状に並ぶように揃えた状態で架台MTの揺動軸SSで連結したものである。より具体的には、太陽電池アレイLPは、複数枚の太陽電池モジュールPをその表面がほぼ同一平面になるように並べて架台MTの揺動軸SSで連結したものである。そして、太陽電池アレイLPは、揺動軸SSを回転させることによって、複数枚の太陽電池モジュールPを同時かつ同じ角度に揺動させることができるようになっている。したがって、太陽電池アレイLPは、複数枚の太陽電池モジュールPを太陽に追従させて、発電効率が最適となるように複数枚の太陽電池モジュールPの表面の傾きを調整することができる。
<Solar power generation equipment SP>
First, before explaining the work device 1 of the present embodiment, the photovoltaic power generation facility SP in which the work device 1 of the present embodiment performs work such as cleaning will be briefly described. As shown in FIG. 5, the photovoltaic power generation facility SP has a plurality of rows of solar cell array LPs including a plurality of solar cell modules P. The solar cell array LP is connected by the swing axis SS of the gantry MT in a state where the end edges of the plurality of solar cell modules P are aligned so as to be lined up in substantially the same straight line. More specifically, in the solar cell array LP, a plurality of solar cell modules P are arranged so that their surfaces are substantially flush with each other and connected by a swing axis SS of a gantry MT. The solar cell array LP can swing a plurality of solar cell modules P at the same time and at the same angle by rotating the swing shaft SS. Therefore, the solar cell array LP can make the plurality of solar cell modules P follow the sun and adjust the inclination of the surface of the plurality of solar cell modules P so as to optimize the power generation efficiency.
 通常、太陽電池アレイLPは、その表面が水平になった状態で、複数枚の太陽電池モジュールPが揺動軸SSに沿って並んでいる方向と直交する方向の両端部(第一端部P1および第二端部P2)間の中間線が揺動軸SSの中心軸のほぼ鉛直上方(80mm程度までのズレが生じている場合も含む)に位置するように揺動軸SSに連結されている。 Normally, the solar cell array LP has both ends (first end portion P1) in a direction orthogonal to the direction in which a plurality of solar cell modules P are arranged along the swing axis SS in a state where the surface thereof is horizontal. And the intermediate line between the second end P2) is connected to the swing shaft SS so as to be located approximately vertically above the central axis of the swing shaft SS (including the case where a deviation of up to about 80 mm occurs). There is.
 なお、太陽電池アレイLPは、複数枚の太陽電池モジュールPが一列に並んでいる場合と、複数枚の太陽電池モジュールPが並んだ列を複数段有する場合とがある(図2参照)。本明細書において、「太陽電池アレイLPの第一端部P1および第二端部P2」とは、揺動軸SSの軸方向と直交する方向において最も外方に位置する太陽電池モジュールPの端部を意味するものとする。例えば、太陽電池アレイLPが、複数枚の太陽電池モジュールPが並んでいる列を一列のみ有する場合は、太陽電池モジュールPの両端部が、「太陽電池アレイLPの第一端部P1および第二端部P2」になる。また、太陽電池アレイLPが複数枚の太陽電池モジュールPが並んだ列を上下2段有する場合であれば、上段の太陽電池モジュールPの上端部と下段の太陽電池モジュールPの下端部が「太陽電池アレイLPの第一端部P1および第二端部P2」に相当することになる。
 なお、個々の「太陽電池モジュールP」では、揺動軸SSの軸方向と直交する方向の両端部が、「太陽電池モジュールPの第一端部P1および第二端部P2」になる。
The solar cell array LP may have a plurality of solar cell modules P arranged in a row or may have a plurality of rows in which a plurality of solar cell modules P are arranged (see FIG. 2). In the present specification, the "first end portion P1 and second end portion P2 of the solar cell array LP" are the ends of the solar cell module P located on the outermost side in the direction orthogonal to the axial direction of the swing axis SS. It shall mean a part. For example, when the solar cell array LP has only one row in which a plurality of solar cell modules P are arranged, both ends of the solar cell module P are "first end portions P1 and second of the solar cell array LP". It becomes "end P2". Further, when the solar cell array LP has two rows of upper and lower solar cell modules P in which a plurality of solar cell modules P are arranged, the upper end portion of the upper solar cell module P and the lower end portion of the lower solar cell module P are "suns". It corresponds to the first end portion P1 and the second end portion P2 of the battery array LP.
In each "solar cell module P", both ends in a direction orthogonal to the axial direction of the swing axis SS are "first end portion P1 and second end portion P2 of the solar cell module P".
 また、「太陽電池アレイLPの第一端部P1の端縁(第一端縁)」および「太陽電池アレイLPの第二端部P2の端縁(第二端縁)」とは、太陽電池アレイLPを構成する太陽電池モジュールPがフレームレス太陽電池モジュールPの場合であれば、第一端部P1および第二端部P2において太陽電池アレイLPの表面と交差する面(第一端面または第二端面)と太陽電池アレイLPの表面との交わる交線を意味している。
 一方、太陽電池アレイLPを構成する太陽電池モジュールPがパネルフレームを有する太陽電池モジュールPの場合であれば、第一端部P1および第二端部P2におけるパネルフレームの上面と交差するパネルフレームの側面が第一端面または第二端面となる。そして、第一端部P1および第二端部P2において、パネルフレームの上面と第一端面または第二端面の交わる交線が、「太陽電池アレイLPの第一端部P1の端縁(第一端縁)」または「太陽電池アレイLPの第二端部P2の端縁(第二端縁)」となる。
 なお、個々の「太陽電池モジュールP」では、フレームレス太陽電池モジュールPの場合は、太陽電池モジュールPの第一端部P1および第二端部P2において太陽電池モジュールPの表面と交差する面(第一端面または第二端面)と太陽電池アレイLPの表面との交わる交線が、「太陽電池モジュールPの第一端縁(第二端縁)」になる。パネルフレームを有する太陽電池モジュールPの場合であれば、太陽電池モジュールPの第一端部P1および第二端部P2におけるパネルフレームの上面とパネルフレームの上面と交差するパネルフレームの側面との交わる交線が、「太陽電池モジュールPの第一端縁(第二端縁)」になる。
Further, "the edge of the first end portion P1 of the solar cell array LP (first end edge)" and "the edge edge of the second end portion P2 of the solar cell array LP (second end edge)" are the solar cells. If the solar cell module P constituting the array LP is a frameless solar cell module P, a surface (first end surface or first surface) intersecting the surface of the solar cell array LP at the first end portion P1 and the second end portion P2. It means the intersection line between the two end faces) and the surface of the solar cell array LP.
On the other hand, in the case where the solar cell module P constituting the solar cell array LP is a solar cell module P having a panel frame, the panel frame intersecting the upper surface of the panel frame at the first end portion P1 and the second end portion P2. The side surface becomes the first end surface or the second end surface. Then, at the first end portion P1 and the second end portion P2, the line of intersection of the upper surface of the panel frame and the first end surface or the second end surface is "the end edge (first) of the first end portion P1 of the solar cell array LP. Edge edge) ”or“ edge edge (second edge edge) of the second end portion P2 of the solar cell array LP ”.
In each "solar cell module P", in the case of the frameless solar cell module P, the surface intersecting the surface of the solar cell module P at the first end P1 and the second end P2 of the solar cell module P ( The intersection line between the first end surface or the second end surface) and the surface of the solar cell array LP becomes the "first end edge (second end edge) of the solar cell module P". In the case of the solar cell module P having a panel frame, the upper surface of the panel frame at the first end P1 and the second end P2 of the solar cell module P intersects with the side surface of the panel frame intersecting the upper surface of the panel frame. The intersection is the "first end edge (second end edge) of the solar cell module P".
 さらに、「太陽電池アレイLP(または太陽電池モジュールP)の第一端縁(または第二端縁)をほぼ同じ直線状に並ぶように揃えた」とは、太陽電池アレイLPにおいて、第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)が完全に直線状に並んでいる場合と、第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)の間に若干のズレが有る場合を含んでいる。第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)に若干のズレが有る場合とは、第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)がほぼ平行であるが若干高さや水平方向においてズレがある場合(例えば0~5mm程度)や太陽電池モジュールPの表面に沿った方向における位置にズレがある場合(例えば0~20mm程度)を含んでいる。また、第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)が相対的に傾いている場合を含んでいる。例えば、太陽電池モジュールPの表面と平行な面内において0~1度程度傾いている場合や、太陽電池モジュールPの第一端面(第二端面)と平行な面内において0~2度程度傾いている場合を含んでいる。 Further, "the first end edge (or the second end edge) of the solar cell array LP (or the solar cell module P) is aligned so as to be arranged in substantially the same linear shape" means that the first end edge of the solar cell array LP (or the solar cell module P) is aligned. When the first end edges (or the second end edges) of the adjacent solar cell modules P forming the edge (or the second edge) are completely aligned, and when the first end edge (or the second edge) is aligned completely. This includes the case where there is a slight deviation between the first end edges (or the second end edges) of the adjacent solar cell modules P forming the two end edges). When there is a slight deviation between the first end edges (or the second end edges) of the adjacent solar cell modules P forming the first end edge (or the second end edge), the first end edge (or the second end edge) is formed. When the first end edges (or the second end edges) of the adjacent solar cell modules P forming the second edge) are almost parallel, but there is a slight deviation in height or in the horizontal direction (for example, about 0 to 5 mm). ) And the case where the position of the solar cell module P in the direction along the surface is deviated (for example, about 0 to 20 mm). Further, the case where the first end edges (or the second end edges) of the adjacent solar cell modules P forming the first end edge (or the second end edge) are relatively inclined is included. For example, when it is tilted by about 0 to 1 degree in a plane parallel to the surface of the solar cell module P, or when it is tilted by about 0 to 2 degrees in a plane parallel to the first end surface (second end face) of the solar cell module P. Includes cases where
 また、「複数枚の太陽電池モジュールPの表面がほぼ同一平面」とは、隣接する太陽電池モジュールPの表面のなす角度に0~1度程度のズレがある場合を含む概念である。また、隣接する太陽電池モジュールPの表面で若干高さの差がある場合(例えば0~5mm程度)も含んでいる。 Further, "the surfaces of a plurality of solar cell modules P are substantially flush with each other" is a concept including a case where the angles formed by the surfaces of adjacent solar cell modules P are displaced by about 0 to 1 degree. It also includes the case where there is a slight difference in height between the surfaces of the adjacent solar cell modules P (for example, about 0 to 5 mm).
<作業装置1>
 以下、図面に基づいて、本実施形態の作業装置1を説明する。
 なお、図面では、構造を分かりやすくするために、適宜記載を省いている部分がある。
<Working device 1>
Hereinafter, the working device 1 of the present embodiment will be described with reference to the drawings.
In the drawings, some parts are omitted as appropriate to make the structure easier to understand.
 本実施形態の作業装置1は、太陽光発電設備SPにおける複数枚の太陽電池モジュールPを備えた太陽電池アレイLP上を太陽電池アレイLPに沿って作業器10を移動させて、複数枚の太陽電池モジュールPの表面を作業器10によって掃除するものである。具体的には、太陽電池アレイLPの複数枚の太陽電池モジュールPが並んでいる方向、言い換えれば、架台MTの揺動軸SSの軸方向に沿って作業器10を移動させながら、複数枚の太陽電池モジュールPの表面を作業器10によって掃除するものである。 In the working device 1 of the present embodiment, the working device 10 is moved along the solar cell array LP on the solar cell array LP provided with the plurality of solar cell modules P in the photovoltaic power generation facility SP, and the plurality of suns are moved. The surface of the battery module P is cleaned by the working device 10. Specifically, while moving the work equipment 10 along the direction in which the plurality of solar cell modules P of the solar cell array LP are arranged, in other words, along the axial direction of the swing axis SS of the gantry MT, the plurality of solar cell modules P are arranged. The surface of the solar cell module P is cleaned by the working device 10.
 図1に示すように、本実施形態の作業装置1は、上述した作業器10と、作業器10を移動させる移動部20と、作業器10を太陽電池アレイLP上から退避させる退避部30と、を備えている。 As shown in FIG. 1, the work apparatus 1 of the present embodiment includes the above-mentioned work device 10, a moving unit 20 for moving the work device 10, and a retracting unit 30 for retracting the work device 10 from the solar cell array LP. , Is equipped.
<移動部20>
 まず、移動部20は、作業器10を太陽電池アレイLP上を太陽電池アレイLPに沿って移動させるものである。具体的には、複数枚の太陽電池モジュールPが並んでいる方向、言い換えれば、架台MTの揺動軸SSの軸方向に沿って移動させるものである。この移動部20は、牽引機構21を備えており、牽引機構21は、作業器10と連結された索状部材22と、この索状部材22を移動させる駆動機構25を有している。
<Moving part 20>
First, the moving unit 20 moves the working device 10 on the solar cell array LP along the solar cell array LP. Specifically, the solar cell modules P are moved along the direction in which the plurality of solar cell modules P are arranged, in other words, along the axial direction of the swing axis SS of the gantry MT. The moving portion 20 includes a traction mechanism 21, and the traction mechanism 21 has a cord-like member 22 connected to the work device 10 and a drive mechanism 25 for moving the cord-like member 22.
<牽引機構21>
 図1に示すように、牽引機構21は、一対の索状部材22,22を有している。一対の索状部材22,22は、いずれも太陽電池アレイLPの第一端部P1および第二端部P2の外方に位置するように配設されている。しかも、太陽電池アレイLPが発電状態(太陽光を受光している状態)において、太陽電池アレイLPの発電領域上に一対の索状部材22,22の影ができないような位置に配設されている。つまり、一対の索状部材22,22を設けても太陽電池アレイLPの発電効率が低下しない位置に一対の索状部材22,22が設置されている。
<Towing mechanism 21>
As shown in FIG. 1, the traction mechanism 21 has a pair of cord-shaped members 22, 22. The pair of cord-shaped members 22, 22 are all arranged so as to be located outside the first end portion P1 and the second end portion P2 of the solar cell array LP. Moreover, in the power generation state (state in which sunlight is received) of the solar cell array LP, the pair of cord-shaped members 22, 22 are arranged at positions so as not to be shadowed on the power generation region of the solar cell array LP. There is. That is, the pair of cord-shaped members 22 and 22 are installed at positions where the power generation efficiency of the solar cell array LP does not decrease even if the pair of cord-shaped members 22 and 22 are provided.
 一対の索状部材22,22は、いずれも架台MTの揺動軸SSの軸方向と平行に移動するように無端ループ状に形成されている。例えば、各索状部材22は、一端および他端が作業器10のシャシフレーム11に連結されて無端ループ状になっており、架台MTの揺動軸SSの両端部近傍でプーリ22pやスプロケット等に巻き掛けられている。 Each of the pair of cord-shaped members 22 and 22 is formed in an endless loop shape so as to move in parallel with the axial direction of the swing shaft SS of the gantry MT. For example, one end and the other end of each cord-like member 22 are connected to the chassis frame 11 of the work equipment 10 to form an endless loop, and the pulley 22p, sprockets, etc. are formed near both ends of the swing shaft SS of the gantry MT. It is wrapped around.
 図1に示すように、牽引機構21は駆動機構25を備えている。この駆動機構25は、各索状部材22を周回移動させることができるようになっている。つまり、各索状部材22を、その軸方向、言い換えれば、架台MTの揺動軸SSの軸方向に沿って移動させることができるように、駆動機構25は構成されている。例えば、駆動機構25の駆動源としてモータを採用した場合には、モータの主軸とプーリ22pやスプロケットの回転軸とを連結した構造を採用することができる。すると、一対の索状部材22,22を逆方向に周回移動させれば、作業器10を一対の索状部材22,22が移動する方向に移動させることができる。つまり、作業器10を架台MTの揺動軸SSの軸方向に沿って移動させることができる。 As shown in FIG. 1, the traction mechanism 21 includes a drive mechanism 25. The drive mechanism 25 is capable of orbiting each cord-like member 22. That is, the drive mechanism 25 is configured so that each cord-shaped member 22 can be moved along the axial direction thereof, in other words, the axial direction of the swing shaft SS of the gantry MT. For example, when a motor is adopted as the drive source of the drive mechanism 25, a structure in which the main shaft of the motor is connected to the pulley 22p and the rotation shaft of the sprocket can be adopted. Then, if the pair of cord-shaped members 22, 22 are moved in the opposite direction, the working device 10 can be moved in the direction in which the pair of cord-shaped members 22, 22 move. That is, the work equipment 10 can be moved along the axial direction of the swing shaft SS of the gantry MT.
 なお、駆動機構25の駆動源として一般的な電動モータを採用する場合には、電力を供給する必要がある。この場合、電力を外部から供給してもよいし、太陽電池アレイLPで発電した一部の電力をバッテリやキャパシタに蓄積しておき、その電力で作動してもよい。また、作業装置用の発電装置(太陽光パネルなど)を設けておき、その発電装置が発電した電力を蓄電しておいてもよい。 When a general electric motor is used as the drive source of the drive mechanism 25, it is necessary to supply electric power. In this case, electric power may be supplied from the outside, or a part of the electric power generated by the solar cell array LP may be stored in a battery or a capacitor and operated by the electric power. Further, a power generation device (solar panel or the like) for the work device may be provided, and the electric power generated by the power generation device may be stored.
 また、駆動機構25の駆動源に使用するモータとして、油圧モータや空圧モータを使用してもよい。この場合には、油圧モータや空圧モータを駆動するための油圧源や空圧源を設ければよい。 Further, a hydraulic motor or a pneumatic motor may be used as the motor used as the drive source of the drive mechanism 25. In this case, a hydraulic source or a pneumatic source for driving the hydraulic motor or the pneumatic motor may be provided.
 さらに、太陽電池アレイLP等で発電した電力をアクチュエータで力学的なエネルギに変換して蓄積しておき、その蓄積されたエネルギで一対の索状部材22,22を移動させてもよい。力学的なエネルギに変換する方法はとくに限定されない。例えば、バネを収縮又は伸長させてエネルギを蓄積してもよいし、錘を持ち上げてエネルギを蓄積してもよい。 Further, the electric power generated by the solar cell array LP or the like may be converted into mechanical energy by an actuator and stored, and the pair of cord-shaped members 22, 22 may be moved by the stored energy. The method of converting into mechanical energy is not particularly limited. For example, the spring may be contracted or extended to store energy, or the weight may be lifted to store energy.
 なお、上記例では、一対の索状部材22,22を有する場合を説明したが、索状部材22は一本でもよいし3本以上設けてもよい。1本の場合には、太陽電池アレイLPの第一端部P1と第二端部P2の間の中間に索状部材22を配置すれば、作業器10を架台MTの揺動軸SSの軸方向に沿って安定して移動させることができる。この場合、太陽電池アレイLPの発電領域上に索状部材22の影が形成される可能性がある。しかし、揺動軸SSを挟んで両側に太陽電池モジュールPが配置されている太陽電池アレイLPであれば、揺動軸SS近傍に位置するように索状部材22を配置すれば、太陽電池アレイLPの発電領域上に索状部材22の影が形成されることを防止できる(図2)。 In the above example, the case where the pair of cord-shaped members 22 and 22 is provided has been described, but the cord-shaped members 22 may be one or three or more. In the case of one, if the cord-like member 22 is arranged between the first end P1 and the second end P2 of the solar cell array LP, the work device 10 can be mounted on the axis of the swing axis SS of the gantry MT. It can be moved stably along the direction. In this case, the shadow of the cord-shaped member 22 may be formed on the power generation region of the solar cell array LP. However, in the case of a solar cell array LP in which the solar cell modules P are arranged on both sides of the swing axis SS, if the cord-like member 22 is arranged so as to be located in the vicinity of the swing axis SS, the solar cell array It is possible to prevent the shadow of the cord-shaped member 22 from being formed on the power generation region of the LP (FIG. 2).
 また、索状部材22が太陽電池モジュールPに接触していると、索状部材22が移動した際に太陽電池モジュールPや索状部材22が損傷する可能性がある。したがって、索状部材22は、太陽電池モジュールPと非接触になるように配置されることが望ましい。 Further, if the cord-shaped member 22 is in contact with the solar cell module P, the solar cell module P and the cord-shaped member 22 may be damaged when the cord-shaped member 22 moves. Therefore, it is desirable that the cord-shaped member 22 is arranged so as to be in non-contact with the solar cell module P.
 また、上記例では、索状部材22の両端が作業器10のシャシフレーム11に連結されて無端ループを形成している場合を説明した。しかし、索状部材22自体を無端ループになっているもの(無端ベルトや無端チェーンなど)で形成してもよい。この場合でも、連結器具を介して作業器10のシャシフレーム11と索状部材22とを連結するようにすればよい。とくに、作業器10にスプロケットやプーリ等を設けて索状部材22がスプロケット等に巻き掛けられた状態とすれば、索状部材22の移動力を、作業器10のシャシフレーム11に設けた車輪12を回転させる駆動力として使用することができる。また、掃除部材15としてブラシを採用した場合には、索状部材22の移動力をブラシを回転させる駆動力として使用することができる。なお「索状部材22の移動力を、作業器10のシャシフレーム11に設けた車輪12を回転させる駆動力として使用する」とは、索状部材22の移動力を伝達機構で車輪12に伝達して車輪12を回転させる場合と、単にシャシフレーム11が引っ張られることで車輪12が太陽電池モジュールPとの間の摩擦で回転する場合と、の両方を含んでいる。 Further, in the above example, the case where both ends of the cord-like member 22 are connected to the chassis frame 11 of the work device 10 to form an endless loop has been described. However, the cord-like member 22 itself may be formed of an endless loop (such as an endless belt or an endless chain). Even in this case, the chassis frame 11 of the work tool 10 and the cord-shaped member 22 may be connected via the connecting tool. In particular, if a sprocket, a pulley, or the like is provided on the work equipment 10 so that the cord-like member 22 is wound around the sprocket or the like, the moving force of the cord-like member 22 is applied to the wheels provided on the chassis frame 11 of the work equipment 10. It can be used as a driving force for rotating 12. When a brush is used as the cleaning member 15, the moving force of the cord-shaped member 22 can be used as a driving force for rotating the brush. "The moving force of the cord-shaped member 22 is used as a driving force for rotating the wheel 12 provided on the chassis frame 11 of the work device 10" means that the moving force of the cord-shaped member 22 is transmitted to the wheel 12 by the transmission mechanism. This includes both the case where the wheel 12 is rotated by the wheel 12 and the case where the wheel 12 is rotated by friction with the solar cell module P simply by pulling the chassis frame 11.
 また、索状部材22は無端ループ状とせずに、作業器10の両側に索状部材22をそれぞれ設けて、各索状部材22を駆動機構25の個別の(または一つの)駆動源によって移動させるようにしてもよい。 Further, the cord-shaped member 22 is not formed in an endless loop shape, but the cord-shaped member 22 is provided on both sides of the work device 10, and each cord-shaped member 22 is moved by an individual (or one) drive source of the drive mechanism 25. You may let it.
 また、索状部材22は、作業器10を移動させた際に十分な張力を発生させることができる引張強度を有するものであればよく、とくに限定されない。例えば、ワイヤーや紐、テグス、ロープ、チェーン、ベルト(例えば平ベルトや丸ベルト、Vベルト、歯付ベルト等)などを索状部材22として使用することができる。また、索状部材22の素材はとくに限定されない。例えば、金属や合成樹脂、合成繊維、ゴムなどを採用することができる。とくに、太陽光等にさらされてもその柔軟性や強度の低下が少ないものが好ましい。 Further, the cord-shaped member 22 is not particularly limited as long as it has a tensile strength capable of generating sufficient tension when the work device 10 is moved. For example, a wire, a string, a fishing line, a rope, a chain, a belt (for example, a flat belt, a round belt, a V-belt, a toothed belt, etc.) can be used as the cord-like member 22. Further, the material of the cord-shaped member 22 is not particularly limited. For example, metal, synthetic resin, synthetic fiber, rubber, or the like can be adopted. In particular, those having little decrease in flexibility and strength even when exposed to sunlight or the like are preferable.
<退避部30>
 本実施形態の作業装置1では,作業器10が掃除などの作業を行わない状態において、作業器10を太陽電池アレイLP上から退避させておくための退避部30を設けている。この退避部30は、太陽電池アレイLPの一方の端部において揺動軸SSの軸方向の外方に配置されている(図1、2では左側の端部)。この退避部30は、その上面がほぼ水平に配置されている。さらに、退避部30の高さは、太陽電池アレイLPの表面が水平になった状態における太陽電池アレイLPの表面の高さとほぼ同じになるように設けられている。したがって、太陽電池アレイLPの表面を水平にすれば、退避部30から太陽電池アレイLP上に作業器10を移動させたり、太陽電池アレイLP上から退避部30に作業器10を退避させたりできる。
<Evacuation section 30>
The working device 1 of the present embodiment is provided with a retracting unit 30 for retracting the working device 10 from the solar cell array LP in a state where the working device 10 does not perform work such as cleaning. The retracting portion 30 is arranged at one end of the solar cell array LP on the outer side in the axial direction of the swing shaft SS (the left end in FIGS. 1 and 2). The upper surface of the retracting portion 30 is arranged substantially horizontally. Further, the height of the retracting portion 30 is provided so as to be substantially the same as the height of the surface of the solar cell array LP when the surface of the solar cell array LP is horizontal. Therefore, if the surface of the solar cell array LP is made horizontal, the working device 10 can be moved from the retracting unit 30 onto the solar cell array LP, or the working device 10 can be retracted from the solar cell array LP to the retracting unit 30. ..
 なお、退避部30は、太陽電池アレイLPとともに揺動するようになっていてもよい。この場合には、退避部30をその上面が太陽電池アレイLPの表面とほぼ同じ平面となるように配置しておけば、太陽電池アレイLPの傾きに係らず、作業器10を太陽電池アレイLPと退避部30との間で移動させることができる。この場合、作業器10も常に太陽電池アレイLPと一緒に揺動することになるので、上述した牽引機構21も太陽電池アレイLPと一緒に揺動するように設けることが必要になる。 The retracting unit 30 may swing together with the solar cell array LP. In this case, if the evacuation portion 30 is arranged so that the upper surface thereof is substantially the same plane as the surface of the solar cell array LP, the work device 10 can be moved to the solar cell array LP regardless of the inclination of the solar cell array LP. Can be moved between and the retracting unit 30. In this case, since the work equipment 10 always swings together with the solar cell array LP, it is necessary to provide the above-mentioned traction mechanism 21 so as to swing together with the solar cell array LP.
 なお、太陽電池アレイLPを非トラッキングタイプ(固定型)とした場合には、退避部30は、その上面が太陽電池アレイLP表面と同じ平面上に位置するようにしておくことが望ましい。 When the solar cell array LP is a non-tracking type (fixed type), it is desirable that the upper surface of the retracting portion 30 is located on the same plane as the surface of the solar cell array LP.
<制御装置40>
 制御装置40は、牽引機構21の駆動機構25の作動を制御して、作業器10の移動を制御するものである。例えば、作業器10の位置を直接検出することにより、または、牽引機構21の索状部材22の移動等を検出することにより、作業器10の移動を制御するものである。この制御装置40は、退避部30等の太陽電池アレイLPの近傍に設置されてもよいし、太陽電池アレイLPから離れた管理棟等に設けてもよい。
<Control device 40>
The control device 40 controls the operation of the drive mechanism 25 of the traction mechanism 21 to control the movement of the work equipment 10. For example, the movement of the work equipment 10 is controlled by directly detecting the position of the work equipment 10 or by detecting the movement of the cord-like member 22 of the traction mechanism 21. The control device 40 may be installed in the vicinity of the solar cell array LP such as the evacuation unit 30, or may be installed in a management building or the like away from the solar cell array LP.
 この制御装置40は、作業器10が退避部30に配置されているか否かを検出する退避検出部を有している。また、作業器10が退避部30に配置されていない、つまり太陽電池アレイLP上に配置されている場合には、太陽電池アレイLPにおいて退避部30と反対側の端部まで作業器10が到達したか否かを検出する到達検出部を有している。 The control device 40 has an evacuation detection unit that detects whether or not the work device 10 is arranged in the evacuation unit 30. Further, when the work device 10 is not arranged in the retracted portion 30, that is, when it is arranged on the solar cell array LP, the work device 10 reaches the end opposite to the retracted portion 30 in the solar cell array LP. It has a arrival detection unit that detects whether or not it has been done.
 まず、作業器10が退避部30に配置されているか否かを検出する退避検出部としては、退避部30に作業器10の有無を検出するセンサを設けておき退避検出部とすることができる。この場合、センサとしては、リミットスイッチやフォトインタラプタ、近接センサ、超音波センサ、光電スイッチ等を採用することができる。 First, as the evacuation detection unit for detecting whether or not the work device 10 is arranged in the evacuation unit 30, a sensor for detecting the presence or absence of the work device 10 may be provided in the evacuation unit 30 to serve as the evacuation detection unit. .. In this case, as the sensor, a limit switch, a photo interrupter, a proximity sensor, an ultrasonic sensor, a photoelectric switch, or the like can be adopted.
 また、太陽電池アレイLPにおいて退避部30と反対側の端部まで作業器10が到達したか否かを検出する到達検出部としては、太陽電池アレイLPにおける退避部30と反対側の端部に、作業器10を検出するセンサを到達検出部として設けておく方法を採用することができる。センサが作業器10を検出すると、制御装置40が、牽引機構21の駆動機構25の作動を制御して、作業器10の移動を停止させたり、退避部30に向かって移動させたりする。すると、作業器10が太陽電池アレイLPにおける退避部30と反対側の端部から落下することを防止できる。 Further, as a reach detection unit for detecting whether or not the work device 10 has reached the end on the opposite side of the retracted portion 30 in the solar cell array LP, the end on the opposite side of the retracted portion 30 in the solar cell array LP is used. , A method in which a sensor for detecting the work device 10 is provided as a arrival detection unit can be adopted. When the sensor detects the work device 10, the control device 40 controls the operation of the drive mechanism 25 of the traction mechanism 21 to stop the movement of the work device 10 or move it toward the retracting unit 30. Then, it is possible to prevent the working device 10 from falling from the end portion of the solar cell array LP opposite to the retracted portion 30.
 一方、牽引機構21の駆動機構25に、牽引機構21の索状部材22の移動等を検出する機能を設けて到達検出部としてもよい。この場合には、索状部材22の移動距離をエンコーダ、ポテンショメータ等の回転計や距離計で計測すれば、索状部材22の移動量に基づいて、作業器10が太陽電池アレイLPにおける退避部30と反対側の端部に到達したか否かを検出できる。なお、この構成とした場合には、制御装置40は、到達検出部から供給される情報に基づいて、作業器10が反対側の端部に到達したか否かだけでなく、索状部材22の移動量に基づいて作業器10の位置を把握するようにしてもよい。 On the other hand, the drive mechanism 25 of the traction mechanism 21 may be provided with a function of detecting the movement of the cord-like member 22 of the traction mechanism 21 to serve as the arrival detection unit. In this case, if the moving distance of the cord-shaped member 22 is measured by a tachometer such as an encoder or a potentiometer or a range finder, the working device 10 is a retracted portion in the solar cell array LP based on the moving amount of the cord-shaped member 22. It is possible to detect whether or not the end on the opposite side of 30 has been reached. In this configuration, the control device 40 not only determines whether the work device 10 has reached the opposite end, but also the cord-like member 22 based on the information supplied from the arrival detection unit. The position of the work device 10 may be grasped based on the amount of movement of the work device 10.
 そして、索状部材22の移動距離を測定する場合、作業装置1の制御機器や駆動機器を集約して配置しやすくなるので、メンテナンス性などを向上させることができる。例えば、退避部30の近傍等に駆動機構25や制御装置40、上記センサ等の機器を集約して配置する。すると、退避部30の近傍でメンテナンスなどの作業を実施できるので、メンテナンスの作業効率を向上でき、作業者の負担を軽減できる。また、退避部30や太陽電池アレイLPにおける退避部30と反対側の端部にセンサ等を設けなくてもよくなるので、作業装置1の構造も簡素化できる。 Then, when measuring the moving distance of the cord-shaped member 22, the control device and the drive device of the work device 1 can be easily arranged in a centralized manner, so that maintainability and the like can be improved. For example, devices such as a drive mechanism 25, a control device 40, and the above sensors are collectively arranged in the vicinity of the evacuation unit 30 or the like. Then, since the work such as maintenance can be performed in the vicinity of the evacuation unit 30, the work efficiency of the maintenance can be improved and the burden on the operator can be reduced. Further, since it is not necessary to provide a sensor or the like at the end of the retracting portion 30 or the solar cell array LP on the opposite side of the retracting portion 30, the structure of the working device 1 can be simplified.
<作業装置1の作動>
 作業装置1が以上のような構成であるので、作業器10によって太陽電池アレイLPの表面を掃除することができる。
<Operation of work device 1>
Since the working device 1 has the above configuration, the surface of the solar cell array LP can be cleaned by the working device 10.
 まず、掃除しない状態では、作業器10は退避部30上に配置されている。
 太陽電池アレイLPの表面を掃除する場合には、まず、太陽電池アレイLPの表面が水平に配置される。すると、太陽電池アレイLPの表面と退避部30の上面が同じ高さになるので、制御装置40は、牽引機構21の駆動機構25を作動させて、作業器10が退避部30から太陽電池アレイLP上に移動するように索状部材22を移動させる。
First, in the non-cleaning state, the work equipment 10 is arranged on the evacuation unit 30.
When cleaning the surface of the solar cell array LP, first, the surface of the solar cell array LP is arranged horizontally. Then, since the surface of the solar cell array LP and the upper surface of the retracted portion 30 are at the same height, the control device 40 operates the drive mechanism 25 of the traction mechanism 21, and the working device 10 moves the solar cell array from the retracted portion 30. The cord-like member 22 is moved so as to move on the LP.
 作業器10が太陽電池アレイLP上に移動すると、牽引機構21の駆動機構25は、さらに作業器10が太陽電池アレイLPの退避部30の反対側の端部に向かうように索状部材22を移動させる。このとき、掃除部材15によって太陽電池モジュールPの表面が掃除されるとともに、太陽電池アレイLPの退避部30の反対側の端部に向かって埃等を移動させる。 When the work device 10 moves onto the solar cell array LP, the drive mechanism 25 of the traction mechanism 21 further sets the cord-like member 22 so that the work device 10 faces the opposite end of the retracted portion 30 of the solar cell array LP. Move. At this time, the surface of the solar cell module P is cleaned by the cleaning member 15, and dust and the like are moved toward the opposite end of the retracted portion 30 of the solar cell array LP.
 やがて、作業器10が太陽電池アレイLPの退避部30の反対側の端部まで到達すると、制御装置40が牽引機構21の駆動機構25を制御することで索状部材22の移動を停止させ、作業器10の移動を停止させる。このとき、掃除部材15が太陽電池アレイLPの退避部30の反対側の端部よりも突出するようにしておけば、掃除部材15とともに(つまり作業器10とともに)移動してきた埃等を太陽電池アレイLPの退避部30の反対側の端部から落とすことができる。 Eventually, when the work device 10 reaches the opposite end of the retracted portion 30 of the solar cell array LP, the control device 40 controls the drive mechanism 25 of the traction mechanism 21 to stop the movement of the cord-like member 22. Stop the movement of the work device 10. At this time, if the cleaning member 15 is made to protrude from the opposite end of the retracting portion 30 of the solar cell array LP, dust and the like that have moved together with the cleaning member 15 (that is, together with the work equipment 10) are removed from the solar cell. It can be dropped from the opposite end of the retracted portion 30 of the array LP.
 その後、制御装置40は、牽引機構21の駆動機構25を作動させて、索状部材22を逆方向に移動させて、作業器10を退避部30に向かって移動させる。このときも、掃除部材15によって太陽電池アレイLPの表面を掃除することができる。そして、作業器10が太陽電池アレイLPの退避部30側の端部まで到達すると、制御装置40が牽引機構21の駆動機構25を制御することで索状部材22の移動を停止させ、作業器10の移動を停止させる。 After that, the control device 40 operates the drive mechanism 25 of the traction mechanism 21 to move the cord-like member 22 in the opposite direction, and moves the work device 10 toward the retracting portion 30. At this time as well, the surface of the solar cell array LP can be cleaned by the cleaning member 15. Then, when the work device 10 reaches the end of the solar cell array LP on the retracted portion 30 side, the control device 40 controls the drive mechanism 25 of the traction mechanism 21 to stop the movement of the cord-shaped member 22, and the work device 10 is used. Stop the movement of 10.
 上記作業を繰り返すことによって、作業器10が太陽電池アレイLPの表面を掃除することができる。 By repeating the above work, the work device 10 can clean the surface of the solar cell array LP.
 なお、作業器10の作動は、制御装置40に設けられたタイマーによって作動するタイミングを制御してもよいし、無線または有線を通じて制御装置40に対して外部(例えば管理棟等)から供給される動作信号に基づいて制御してもよい。
 また、制御装置40は、制御装置40に設けられたGPS等の全地球測位システム(Global Navigation Satellite System:GNSS)または標準電波(電波時計が受信している電波)等に基づいて得られる時刻情報と、予め設定された作動時刻を参照して、その条件が一致した時間に作業器10を作動させるようにしてもよい。
 作業器10が一回の清掃作業によって掃除する回数(つまり太陽電池アレイLPを一往復する回数)は、制御装置40に予め設定された回数を実施してもよいし、外部から送信される作動回数の情報に基づいて実施してもよい。
The operation of the work device 10 may be controlled by a timer provided in the control device 40, or may be supplied to the control device 40 from the outside (for example, a management building) via wireless or wired. It may be controlled based on the operation signal.
Further, the control device 40 is time information obtained based on a global positioning system (GNSS) such as GPS provided in the control device 40 or a standard radio wave (radio wave received by a radio clock). Then, the work device 10 may be operated at a time when the conditions are met with reference to the preset operation time.
The number of times the work device 10 is cleaned by one cleaning operation (that is, the number of times the solar cell array LP is reciprocated once) may be a preset number of times in the control device 40, or an operation transmitted from the outside. It may be carried out based on the information of the number of times.
<索状部材22が固定されている場合>
 上記例では、索状部材22に作業器10を連結し、牽引機構21の駆動機構25によって索状部材22を移動させて作業器10を移動するようにした。この構成に代えて、索状部材22は固定しておき、索状部材22に沿って作業器10が移動するようにしてもよい。
<When the cord-shaped member 22 is fixed>
In the above example, the work device 10 is connected to the cord-shaped member 22, and the cord-shaped member 22 is moved by the drive mechanism 25 of the traction mechanism 21 to move the work device 10. Instead of this configuration, the cord-shaped member 22 may be fixed so that the working device 10 moves along the cord-shaped member 22.
 例えば、図19に示すように、太陽電池アレイLPの表面よりも上方に、揺動軸SSと平行になるように索状部材22を張った状態で設置する。 For example, as shown in FIG. 19, the cord-shaped member 22 is installed above the surface of the solar cell array LP so as to be parallel to the swing axis SS.
 一方、作業器10には、上下方向から索状部材22を挟むように設置される一対のローラ26,26を設ける(図19(B)参照)。一対のローラ26,26は、例えばプーリ等であり、索状部材22を溝などに収容して索状部材22がローラ26から外れないように保持できる構造を有している。 On the other hand, the work equipment 10 is provided with a pair of rollers 26, 26 installed so as to sandwich the cord-shaped member 22 from the vertical direction (see FIG. 19B). The pair of rollers 26, 26 is, for example, a pulley or the like, and has a structure capable of accommodating the cord-shaped member 22 in a groove or the like and holding the cord-shaped member 22 so as not to come off from the roller 26.
 この一対のローラ26,26のうち、一方または両方のローラ26は、伝達機構(例えば歯車機構等)によってモータ等の駆動源27に連結されている。つまり、駆動源27が駆動すると、その駆動力によって一方または両方のローラ26が回転するように、一方または両方のローラ26が駆動源27と連結されている。 Of the pair of rollers 26, 26, one or both rollers 26 are connected to a drive source 27 such as a motor by a transmission mechanism (for example, a gear mechanism or the like). That is, when the drive source 27 is driven, one or both rollers 26 are connected to the drive source 27 so that one or both rollers 26 are rotated by the driving force.
 かかる構成とすれば、駆動源27を駆動すれば、一方または両方のローラ26を回転させることができる。すると、ローラ26と索状部材22との間の摩擦力によってローラ26が索状部材22の表面を転動するので、ローラ26が設けられている作業器10を索状部材22に沿って移動させることがでできる。 With such a configuration, if the drive source 27 is driven, one or both rollers 26 can be rotated. Then, the roller 26 rolls on the surface of the cord-shaped member 22 due to the frictional force between the roller 26 and the cord-shaped member 22, so that the work device 10 provided with the roller 26 is moved along the cord-shaped member 22. You can do it.
 なお、ローラ26を駆動して索状部材22に沿って作業器10を移動させる場合でも、牽引機構21の駆動機構25の作動を制御して作業器10を移動させる場合と同様に、制御装置40(図19には図示せず)によって作業器10の移動を制御してもよい。例えば、退避検出部や到達検出部を設けて、退避検出部や到達検出部からの信号に応じて制御装置40が作業器10の位置を把握して作業器10の移動を制御してもよい。また、ローラ26の回転軸にエンコーダ等を設けてローラ26の回転量を検出し、ローラ26の回転量に基づいて制御装置40が作業器10の移動を制御してもよい。この場合、制御装置40は、作業器10に搭載されていてもよいし、退避部30等の作業器10から離れた場所に設置して無線等によって作業器10の駆動源27等の作動を制御してもよい。 Even when the roller 26 is driven to move the work device 10 along the cord-like member 22, the control device is similar to the case where the operation of the drive mechanism 25 of the traction mechanism 21 is controlled to move the work device 10. The movement of the work equipment 10 may be controlled by 40 (not shown in FIG. 19). For example, the evacuation detection unit and the arrival detection unit may be provided, and the control device 40 may grasp the position of the work equipment 10 and control the movement of the work equipment 10 in response to a signal from the evacuation detection unit or the arrival detection unit. .. Further, an encoder or the like may be provided on the rotation shaft of the roller 26 to detect the rotation amount of the roller 26, and the control device 40 may control the movement of the work equipment 10 based on the rotation amount of the roller 26. In this case, the control device 40 may be mounted on the work device 10, or may be installed at a place away from the work device 10 such as the evacuation unit 30, and the drive source 27 or the like of the work device 10 may be operated wirelessly or the like. You may control it.
 また、上記例では、上下方向から索状部材22を挟むように一対のローラ26,26を配置した例を説明したが、一対のローラ26,26は索状部材22を挟むことができれば、どの方向から挟んでもよい。例えば、水平方向から索状部材22を挟むように一対のローラ26,26を配設してもよいし、水平方向に対して斜め方向から索状部材22を挟むように一対のローラ26,26を配設してもよい。 Further, in the above example, an example in which the pair of rollers 26, 26 are arranged so as to sandwich the cord-shaped member 22 from the vertical direction has been described. It may be sandwiched from the direction. For example, a pair of rollers 26, 26 may be arranged so as to sandwich the cord-shaped member 22 from the horizontal direction, or a pair of rollers 26, 26 may be arranged so as to sandwich the cord-shaped member 22 from an oblique direction with respect to the horizontal direction. May be arranged.
 また、ローラ26は一つだけ設けてもよい。この場合には、索状部材22の上方からローラ26を引っ掛かけるように配置してもよいし、ローラ26によって索状部材22を押し上げるように配置してもよい。ローラ26を回転させた際に、索状部材22とローラ26との間に、作業器10を移動させることができる十分な摩擦力が発生するように、ローラ26を索状部材22に接触させればよい。 Also, only one roller 26 may be provided. In this case, the roller 26 may be arranged so as to be hooked from above the cord-shaped member 22, or may be arranged so as to push up the cord-shaped member 22 by the roller 26. When the roller 26 is rotated, the roller 26 is brought into contact with the cord-shaped member 22 so that a sufficient frictional force that can move the work device 10 is generated between the cord-shaped member 22 and the roller 26. Just do it.
 また、索状部材22として歯付ベルト等を採用してもよい。この場合には、ローラ26として歯車を使用すれば、索状部材22とローラ26とが噛み合った状態にできるので、ローラ26の回転に応じた長さだけ確実に作業器10を移動させることができる。 Further, a toothed belt or the like may be adopted as the cord-shaped member 22. In this case, if a gear is used as the roller 26, the cord-like member 22 and the roller 26 can be in a meshed state, so that the work device 10 can be reliably moved by a length corresponding to the rotation of the roller 26. it can.
<作業器10>
 以下では、上述したような作業を実施する作業器10について、詳細に説明する。
<Worker 10>
Hereinafter, the work device 10 for carrying out the above-mentioned work will be described in detail.
 図3に示すように、作業器10は、シャシフレーム11と、作業器10を太陽電池アレイLP上で移動させる車輪12と、を備えている。また、作業器10は、車輪12によって太陽電池アレイLP上を移動した際に太陽電池アレイLPの表面を掃除する掃除部材15を備えている。さらに、作業器10は、揺動軸SSの軸方向に沿った作業器10の移動をサポートするサポート機構50を備えている。 As shown in FIG. 3, the work device 10 includes a chassis frame 11 and wheels 12 for moving the work device 10 on the solar cell array LP. Further, the work device 10 includes a cleaning member 15 that cleans the surface of the solar cell array LP when it is moved on the solar cell array LP by the wheels 12. Further, the work device 10 includes a support mechanism 50 that supports the movement of the work device 10 along the axial direction of the swing shaft SS.
<シャシフレーム11>
 図3に示すように、シャシフレーム11は、その幅(図3(B)の上下方向)に比べて、その軸方向(図3(B)の左右方向)が長い部材である。このシャシフレーム11に、車輪12、掃除部材15が設けられている。また、シャシフレーム11の両軸端部には、サポート機構50の第一、第二サポート部51,52がそれぞれ取り付けられている。
<Chassis frame 11>
As shown in FIG. 3, the chassis frame 11 is a member whose axial direction (horizontal direction in FIG. 3B) is longer than its width (vertical direction in FIG. 3B). The chassis frame 11 is provided with wheels 12 and a cleaning member 15. Further, first and second support portions 51 and 52 of the support mechanism 50 are attached to both shaft ends of the chassis frame 11, respectively.
 なお、シャシフレーム11の軸方向の中央部には、作業装置の取り付けやメンテナンスの際等、作業者が作業器10を持ち上げる必要があるときに使用する取っ手10fが設けられている(図3(A))。この取っ手10fを設ける位置はとくに限定されない。シャシフレーム11の軸方向の両端部に設けてもよい。つまり、シャシフレーム11の軸方向の中央部の取っ手10fに替えて、または、シャシフレーム11の軸方向の中央部の取っ手10fとともに、シャシフレーム11の軸方向の両端部に、作業者が作業器10を持ち上げたりする際に使用する取っ手を設けてもよい。 A handle 10f is provided at the central portion of the chassis frame 11 in the axial direction, which is used when the operator needs to lift the work device 10 such as when installing or maintaining the work device (FIG. 3 (FIG. 3). A)). The position where the handle 10f is provided is not particularly limited. It may be provided at both ends of the chassis frame 11 in the axial direction. That is, instead of the handle 10f at the center of the chassis frame 11 in the axial direction, or together with the handle 10f at the center of the chassis frame 11 in the axial direction, the operator puts the work equipment on both ends of the chassis frame 11 in the axial direction. A handle used for lifting the 10 may be provided.
<車輪12>
 シャシフレーム11の下面には車輪12が設けられている。この車輪12は、作業器10が太陽電池アレイLP上に配置されたときに、車輪12が太陽電池モジュールPの所定の位置に配置されるように設けられている。例えば、図2のように、太陽電池モジュールPの列を2段設けて太陽電池アレイLPが形成されている場合であれば、作業器10が太陽電池アレイLP上に配置されたときに、太陽電池アレイLPの各太陽電池モジュールPの上端および下端のパネルフレームにそれぞれ配置されるように車輪12を設けてもよい。具体的には、作業器10が太陽電池アレイLPの表面に配置されたときに、上側に位置する太陽電池モジュールPの上端のパネルフレーム、下側に位置する太陽電池モジュールPの下端のパネルフレーム、上側に位置する太陽電池モジュールPの下端のパネルフレームおよび/または下側に位置する太陽電池モジュールPの上端のパネルフレーム、にそれぞれ配置されるように、車輪12(中間車輪)を設けてもよい。なお、中間車輪は必ずしも設けなくてもよい。
<Wheel 12>
Wheels 12 are provided on the lower surface of the chassis frame 11. The wheels 12 are provided so that the wheels 12 are arranged at predetermined positions of the solar cell module P when the work device 10 is arranged on the solar cell array LP. For example, as shown in FIG. 2, in the case where the solar cell array LP is formed by providing two rows of solar cell modules P, when the work device 10 is arranged on the solar cell array LP, the sun Wheels 12 may be provided so as to be arranged on the upper end and lower end panel frames of each solar cell module P of the battery array LP. Specifically, when the work device 10 is arranged on the surface of the solar cell array LP, the panel frame at the upper end of the solar cell module P located on the upper side and the panel frame at the lower end of the solar cell module P located on the lower side. Wheels 12 (intermediate wheels) may be provided so as to be arranged in the lower panel frame of the solar cell module P located on the upper side and / or the upper panel frame of the upper end of the solar cell module P located on the lower side, respectively. Good. It should be noted that the intermediate wheels do not necessarily have to be provided.
 なお、太陽電池モジュールPを1段だけ設けて太陽電池アレイLPが形成されている場合であれば(図1および図3参照)、作業器10が太陽電池アレイLP上に配置されたときに、太陽電池モジュールPの上端および下端(つまり太陽電池アレイLPの第一端部および第二端部)のパネルフレームにそれぞれ配置されるように、車輪12は設けられる。 If the solar cell array LP is formed by providing only one stage of the solar cell module P (see FIGS. 1 and 3), when the work device 10 is arranged on the solar cell array LP, The wheels 12 are provided so as to be arranged on the panel frames at the upper end and the lower end (that is, the first end and the second end of the solar cell array LP) of the solar cell module P, respectively.
 また、太陽電池モジュールPを3段以上設けて太陽電池アレイLPが形成されている場合であれば、作業器10が太陽電池アレイLP上に配置されたときに、各太陽電池モジュールPの上端および下端のパネルフレームにそれぞれ配置されるように(または一部の太陽電池モジュールPのパネルフレームに配置されるように)車輪12を設けてもよい。 Further, in the case where the solar cell array LP is formed by providing the solar cell modules P in three or more stages, when the work device 10 is arranged on the solar cell array LP, the upper end of each solar cell module P and the upper end of each solar cell module P are formed. The wheels 12 may be provided so as to be arranged in the panel frame at the lower end (or arranged in the panel frame of some solar cell modules P).
 さらに、フレームレス太陽電池モジュールPを複数枚並べて太陽電池アレイLPが形成されている場合であれば、作業器10が太陽電池アレイLP上に配置されたときに、フレームレス太陽電池モジュールPを変形させる力を小さくできる位置に車輪12を設けることが望ましい。 Further, in the case where a plurality of frameless solar cell modules P are arranged side by side to form the solar cell array LP, the frameless solar cell module P is deformed when the work device 10 is arranged on the solar cell array LP. It is desirable to provide the wheels 12 at positions where the force to cause them can be reduced.
 また、車輪12は、作業器10が太陽電池アレイLP上に配置されたときに、車輪12の下端がシャシフレーム11よりも先に太陽電池モジュールP(パネルフレームまたは太陽電池モジュールPの表面)に接触するように設けられている。 Further, when the work device 10 is arranged on the solar cell array LP, the wheel 12 has the lower end of the wheel 12 on the solar cell module P (panel frame or the surface of the solar cell module P) before the chassis frame 11. It is provided so as to come into contact with each other.
 また、車輪12の直径や幅等はとくに限定されない。車輪12は、作業器10が太陽電池アレイLP上に配置された状態で、後述する掃除部材15(例えばブラシであればその先端の一部(下方に位置する部分))が太陽電池アレイLPの表面に接触するように設けられていればよい。また、車輪12は全て同じ直径や幅でなくてもよいが、同じ直径や幅である方が作業器10の移動を安定させることができる。とくに、全ての車輪12が同じ直径や幅であれば、より移動を安定させることができる。 Further, the diameter and width of the wheel 12 are not particularly limited. In the wheel 12, the cleaning member 15 (for example, in the case of a brush, a part of the tip (a portion located below) of the cleaning member 15) described later is the solar cell array LP in a state where the work device 10 is arranged on the solar cell array LP. It suffices if it is provided so as to come into contact with the surface. Further, all the wheels 12 do not have to have the same diameter and width, but those having the same diameter and width can stabilize the movement of the work equipment 10. In particular, if all the wheels 12 have the same diameter and width, the movement can be more stable.
 また、車輪12の構造や素材などもとくに限定されない。一般的なゴムや、ウレタン樹脂等の樹脂材料などで形成されたものや、ゴムや、ウレタン樹脂等の樹脂材料などを太陽電池アレイLPと接触する部分に設けたもの、などを使用することができる。とくに、太陽電池アレイLPがフレームレス太陽電池モジュールPで形成されている場合には、車輪12が太陽電池アレイLPの表面を移動しても、太陽電池アレイLPの表面と接触する部分が、太陽電池アレイLPの表面(ガラスや表面コーティング等)を傷つけにくい素材や硬さ(柔軟性)を有するもので形成されているものが望ましい。 Also, the structure and material of the wheel 12 are not particularly limited. It is possible to use a material formed of general rubber or a resin material such as urethane resin, or a material provided with rubber or a resin material such as urethane resin in contact with the solar cell array LP. it can. In particular, when the solar cell array LP is formed of the frameless solar cell module P, even if the wheels 12 move on the surface of the solar cell array LP, the portion in contact with the surface of the solar cell array LP is the sun. It is desirable that the battery array LP is made of a material that does not easily damage the surface (glass, surface coating, etc.) or a material that has hardness (flexibility).
<掃除部材15>
 図3(A)に示すように、掃除部材15はシャシフレーム11の下面側に設けられている。具体的には、掃除部材15は、その軸方向の長さが太陽電池アレイLPの第一、第二端部P1,P2間の長さ(揺動軸SSと直交する方向の長さ)よりも長いものである。この掃除部材15は、軸部とその周囲に設けられた刷毛などを有するブラシ部とを備えており、その軸部がシャシフレーム11の軸方向と平行になるように設けられている。なお、軸部は回転しないようにシャシフレーム11に取り付けられている。つまり、作業器10が移動部20の牽引機構21によって移動されると、その刷毛によって太陽電池モジュールPの表面を掃除することができるように掃除部材15は設けられている。
<Cleaning member 15>
As shown in FIG. 3A, the cleaning member 15 is provided on the lower surface side of the chassis frame 11. Specifically, the length of the cleaning member 15 in the axial direction is longer than the length between the first and second ends P1 and P2 of the solar cell array LP (the length in the direction orthogonal to the swing axis SS). Is also long. The cleaning member 15 includes a shaft portion and a brush portion having a brush or the like provided around the shaft portion, and the shaft portion is provided so as to be parallel to the axial direction of the chassis frame 11. The shaft portion is attached to the chassis frame 11 so as not to rotate. That is, when the work device 10 is moved by the traction mechanism 21 of the moving portion 20, the cleaning member 15 is provided so that the surface of the solar cell module P can be cleaned by the brush.
 なお、掃除部材15として、上述したような軸部とその周囲に設けられた刷毛などを有するブラシ部とを有するブラシを採用した場合には、ブラシがシャシフレーム11に対して回転するように設けてもよい。この場合には、ブラシは外部からの駆動力などによって回転するようになっていることが必要である。例えば、車輪12が回転すると、その回転によってブラシが回転するようになっていてもよい。具体的には、車輪12の回転軸とブラシの軸部とをギア機構やベルトプーリ機構などによって連結しておく。すると、作業器10が移動部20によって移動されて車輪12が回転した際に、ブラシを回転させることができるので、ブラシの回転によって太陽電池モジュールPの表面を掃いて掃除することができる。この場合、車輪12の回転方向と逆方向かつ車輪12の回転速度と異なる速度(好ましくは車輪12のよりも速い回転速度)でブラシが回転するようにしておけば、ブラシによる太陽電池モジュールPの表面の掃除効果を高くできる。
 また、作業器10の移動や車輪12の回転に応じて掃除部材15が軸方向に移動するようになっていてもよい。例えば、車輪12の回転軸と掃除部材15の軸とを連結するリンク機構によって、車輪12が回転すると掃除部材15が軸方向に移動するようにしてもよい。
When a brush having a shaft portion and a brush portion having a brush or the like provided around the shaft portion as described above is used as the cleaning member 15, the brush is provided so as to rotate with respect to the chassis frame 11. You may. In this case, the brush needs to be rotated by an external driving force or the like. For example, when the wheel 12 rotates, the brush may rotate due to the rotation. Specifically, the rotating shaft of the wheel 12 and the shaft portion of the brush are connected by a gear mechanism, a belt pulley mechanism, or the like. Then, when the work equipment 10 is moved by the moving unit 20 and the wheels 12 are rotated, the brush can be rotated, so that the surface of the solar cell module P can be swept and cleaned by the rotation of the brush. In this case, if the brush is rotated in the direction opposite to the rotation direction of the wheel 12 and at a speed different from the rotation speed of the wheel 12 (preferably a rotation speed faster than that of the wheel 12), the solar cell module P by the brush can be used. The surface cleaning effect can be enhanced.
Further, the cleaning member 15 may move in the axial direction according to the movement of the work device 10 and the rotation of the wheels 12. For example, the cleaning member 15 may move in the axial direction when the wheel 12 rotates by a link mechanism that connects the rotating shaft of the wheel 12 and the shaft of the cleaning member 15.
 また、作業器10にモータ等の駆動源を設けて、この駆動源によって掃除部材15を回転させたり軸方向に移動させたりしてもよい。例えば、駆動源としてモータを使用した場合には、移動部20による作業器10の移動速度に係らずブラシの回転速度を調整できるので、ブラシによる太陽電池モジュールPの表面の掃除効果をより高くできる。 Further, a drive source such as a motor may be provided in the work device 10, and the cleaning member 15 may be rotated or moved in the axial direction by the drive source. For example, when a motor is used as a drive source, the rotation speed of the brush can be adjusted regardless of the moving speed of the work equipment 10 by the moving unit 20, so that the effect of cleaning the surface of the solar cell module P by the brush can be further enhanced. ..
 なお、作業器10に、電気で駆動する駆動源(例えば、図19の駆動源27やブラシを駆動するモータ等)を設けた場合には、駆動源に対して電力を供給する必要がある。駆動源に対して電力を供給する方法はとくに限定されない。 If the work equipment 10 is provided with an electrically driven drive source (for example, the drive source 27 in FIG. 19 or a motor for driving a brush), it is necessary to supply electric power to the drive source. The method of supplying electric power to the drive source is not particularly limited.
 例えば、作業器10にバッテリを設けて、バッテリから駆動源に対して電力を供給するようにしてもよい。また、作業器10に太陽電池モジュールを搭載してこの太陽電池モジュールが発電した電気を駆動源の電力として使用してもよい。太陽電池モジュールとバッテリの両方を作業器10に載せて、太陽電池モジュールで発電した電力でバッテリを充電し、その電力を駆動源に供給してもよい。 For example, a battery may be provided in the work equipment 10 to supply electric power from the battery to the drive source. Further, the solar cell module may be mounted on the work device 10 and the electricity generated by the solar cell module may be used as the electric power of the drive source. Both the solar cell module and the battery may be placed on the work equipment 10, the battery may be charged with the electric power generated by the solar cell module, and the electric power may be supplied to the drive source.
 また、作業器10に対して外部から電力を供給するようにしてもよい。この場合、牽引部材が1本の場合は(図19参照)、索状部材22を一方の電極とし、太陽電池アレイを他方の電極として採用することができる。この場合には、作業器10に導電性のブラシ等の導通部材を設け、この導通部材を太陽電池アレイに接触するように設ける。例えば、直流電源を使用する場合、索状部材22を陽極とし、太陽電池アレイ側を陰極(接地極)とすれば、作業器10に対して外部から直流電力を供給することができる。 Further, electric power may be supplied to the work equipment 10 from the outside. In this case, when there is only one traction member (see FIG. 19), the cord-shaped member 22 can be used as one electrode and the solar cell array can be used as the other electrode. In this case, a conductive member such as a conductive brush is provided on the work device 10, and the conductive member is provided so as to come into contact with the solar cell array. For example, when a DC power source is used, if the cord-shaped member 22 is used as an anode and the solar cell array side is used as a cathode (ground electrode), DC power can be supplied to the work equipment 10 from the outside.
 また、2本以上の索状部材22を使用する場合には(図1参照)、それぞれの索状部材22を電気的に絶縁して、それぞれ別の極性をもたせることによって、索状部材22から駆動源や電池等に給電するようにしてもよい。例えば、直流電源を使用する場合であれば、一方の索状部材22を陽極にし、他方の索状部材22を陰極(接地極)にすれば、2本の索状部材22によって給電することができる。 When two or more cord-shaped members 22 are used (see FIG. 1), the cord-shaped members 22 are electrically insulated from each other to have different polarities. Power may be supplied to a drive source, a battery, or the like. For example, when a DC power supply is used, if one cord-shaped member 22 is used as an anode and the other cord-shaped member 22 is used as a cathode (ground electrode), power can be supplied by the two cord-shaped members 22. it can.
 また、太陽電池アレイLPに、作業器10の移動方向に沿って、2つのそれぞれ絶縁されたレール状の電極を設けて、その電極から作業器10に電力を供給するようにしてもよい。例えば、作業器10に導電性のブラシ等の導通部材を設け、この導通部材を介して各電極から駆動源やバッテリ等に給電するようにしてもよい。 Further, the solar cell array LP may be provided with two insulated rail-shaped electrodes along the moving direction of the work device 10, and power may be supplied to the work device 10 from the electrodes. For example, the work equipment 10 may be provided with a conductive member such as a conductive brush, and power may be supplied from each electrode to a drive source, a battery, or the like via the conductive member.
 また、作業器10にバッテリを設けた場合には、作業器10が上述した退避部30に退避している状態でバッテリを充電できるようにしてもよい。退避部30で待機している間に作業器10のバッテリを充電する場合には、作業器10および退避部30に以下の機器を設けることが望ましい。 Further, when the working device 10 is provided with a battery, the battery may be charged in a state where the working device 10 is retracted to the above-mentioned evacuation section 30. When charging the battery of the work equipment 10 while waiting at the evacuation unit 30, it is desirable that the work equipment 10 and the evacuation unit 30 are provided with the following devices.
 まず、作業器10には、退避部30から電力の供給を受けるための機器を設ける。電力の供給を受けるための機器はとくに限定されない。例えば、充電のための端子を設けて、この端子を退避部30に設けた端子と接続(接触)させて電力の供給を受けるようにしてもよい。また、電磁誘導等による非接触による方法で電力の供給を受ける機器を設けて非接触で電力の供給を受けるようにしてもよい。 First, the work equipment 10 is provided with a device for receiving power supply from the evacuation unit 30. The equipment for receiving the power supply is not particularly limited. For example, a terminal for charging may be provided, and this terminal may be connected (contacted) with the terminal provided in the evacuation unit 30 to receive power supply. In addition, a device that receives power by a non-contact method such as electromagnetic induction may be provided so that the power is supplied in a non-contact manner.
 また、退避部30には、作業器10に電力の供給するための電源部を設ける。例えば、作業器10が退避部30における所定の位置に停止すると、作業器10の端子と接続(接触)する端子を電源部に設けて、接続(接触)方式で作業器10に電力を供給するようにしてもよい。また、電磁誘導等による非接触による方法で電力を供給する機器を電源部に設けて、非接触で作業器10に電力を供給するようにしてもよい。 Further, the evacuation unit 30 is provided with a power supply unit for supplying electric power to the work equipment 10. For example, when the work equipment 10 stops at a predetermined position in the evacuation unit 30, a terminal that connects (contacts) with the terminal of the work equipment 10 is provided in the power supply unit, and power is supplied to the work equipment 10 by a connection (contact) method. You may do so. Further, a device for supplying electric power by a non-contact method such as electromagnetic induction may be provided in the power supply unit to supply electric power to the work equipment 10 in a non-contact manner.
 退避部30に電源部を設けた場合、電源部に電力を供給するまたは電源部が電力を貯蔵しておく必要がある。電源部に電力を供給する方法はとくに限定されない。例えば、退避部30の外部から電源ケーブル等によって電源部の端子や電磁誘導用の機器に直接電力を供給するようにしてもよいし、電源部にバッテリを設けて外部から供給される電力をバッテリに充電し充電した電力を電源部の端子や電磁誘導用の機器に供給するようにしてもよい。また、退避部30に太陽電池モジュールを設けて、太陽電池モジュールで発電した電力を電源部に供給するようにしてもよい。この場合も、外部から電力を供給する場合と同様に、電源部の端子や電磁誘導用の機器に直接電力を供給するようにしてもよいし、電源部にバッテリを設けて太陽電池モジュールから供給される電力をバッテリに充電しバッテリに充電した電力を電源部の端子や電磁誘導用の機器に供給するようにしてもよい。 When the power supply unit is provided in the evacuation unit 30, it is necessary to supply electric power to the power supply unit or store the electric power in the power supply unit. The method of supplying electric power to the power supply unit is not particularly limited. For example, electric power may be directly supplied to the terminals of the power supply unit or the device for electromagnetic induction from the outside of the evacuation unit 30 by a power cable or the like, or a battery may be provided in the power supply unit to supply the electric power supplied from the outside to the battery. The charged electric power may be supplied to the terminal of the power supply unit or the device for electromagnetic induction. Further, the solar cell module may be provided in the evacuation section 30 to supply the electric power generated by the solar cell module to the power supply section. In this case as well, as in the case of supplying power from the outside, the power may be directly supplied to the terminal of the power supply unit or the device for electromagnetic induction, or a battery may be provided in the power supply unit and supplied from the solar cell module. The electric power generated may be charged to the battery, and the electric power charged to the battery may be supplied to the terminal of the power supply unit or the device for electromagnetic induction.
 さらに、掃除部材15は、一般的な刷毛や箒上の部材を使用してもよいし、単なる布やブレードを掃除部材として使用してもよい。これらの部材の先端部などが太陽電池モジュールPの表面に接触していれば、太陽電池モジュールPの表面に沿って滑るように移動させることができる。すると、太陽電池モジュールPの表面上の埃等を掃除部材によって押して(言い換えれば掃除部材とともに)、埃等を作業器10の移動方向に移動させることができる。そして、作業器10が太陽電池アレイLPの端部まで到達すると、その端部において埃等を太陽電池モジュールPの表面から落として除去することができる。 Further, as the cleaning member 15, a general brush or broom member may be used, or a simple cloth or blade may be used as the cleaning member. If the tips of these members are in contact with the surface of the solar cell module P, they can be slidably moved along the surface of the solar cell module P. Then, the dust or the like on the surface of the solar cell module P can be pushed by the cleaning member (in other words, together with the cleaning member) to move the dust or the like in the moving direction of the work equipment 10. Then, when the working device 10 reaches the end of the solar cell array LP, dust and the like can be dropped from the surface of the solar cell module P and removed at the end.
 なお、作業器10の移動方向に埃等を移動させて、太陽電池アレイLPの端部において埃等を太陽電池モジュールPの表面から落とす効果は、回転する掃除部材15でも得ることができる。つまり、車輪12の回転方向と逆方向かつ車輪12の回転速度と異なる速度で掃除部材15が回転するようにしておけば、埃等を作業器10の移動方向前方に移動させることができる。したがって、作業器10を太陽電池アレイLPの端部まで移動させて、太陽電池アレイLPの端部において埃等を太陽電池モジュールPの表面から落とすことができる。この場合、掃除部材15が太陽電池モジュールPと接触している個所が太陽電池アレイLPの側端縁まで到達していなくても、掃除部材15の回転力で埃等を太陽電池モジュールPの側端縁から落とすことができる。また、掃除部材15がスクレーパ等であっても、作業器10の移動が停止すると、太陽電池アレイLPの端縁に向かってスクレーパ等の先端を移動させるような機能を有していれば、埃等を太陽電池アレイLPの端縁から下に落とすことが可能になる。 The effect of moving dust or the like in the moving direction of the working device 10 and removing the dust or the like from the surface of the solar cell module P at the end of the solar cell array LP can also be obtained by the rotating cleaning member 15. That is, if the cleaning member 15 is rotated in the direction opposite to the rotation direction of the wheel 12 and at a speed different from the rotation speed of the wheel 12, dust and the like can be moved forward in the moving direction of the work device 10. Therefore, the work device 10 can be moved to the end of the solar cell array LP, and dust and the like can be dropped from the surface of the solar cell module P at the end of the solar cell array LP. In this case, even if the part where the cleaning member 15 is in contact with the solar cell module P does not reach the side edge of the solar cell array LP, dust or the like is removed by the rotational force of the cleaning member 15 on the side of the solar cell module P. Can be dropped from the edge. Further, even if the cleaning member 15 is a scraper or the like, dust is provided as long as it has a function of moving the tip of the scraper or the like toward the edge of the solar cell array LP when the movement of the work device 10 is stopped. Etc. can be dropped down from the edge of the solar cell array LP.
<サポート機構50>
 移動部20の牽引機構21の索状部材22は、揺動軸SSと平行に移動するので、作業器10は揺動軸SSに沿って移動される。しかし、太陽電池モジュールP間を乗り越える際等に、作業器10は揺動軸SSに対してその姿勢が傾く可能性がある。すると、太陽電池アレイLPの表面を適切に掃除できない可能性がある。そこで、作業器10が揺動軸SSに沿って移動する際に、その姿勢の傾きを抑制するサポート機構50を設けることが望ましい。
<Support mechanism 50>
Since the cord-like member 22 of the traction mechanism 21 of the moving portion 20 moves in parallel with the swing shaft SS, the work device 10 is moved along the swing shaft SS. However, when the work equipment 10 gets over between the solar cell modules P, the posture of the work equipment 10 may be tilted with respect to the swing axis SS. Then, the surface of the solar cell array LP may not be properly cleaned. Therefore, it is desirable to provide a support mechanism 50 that suppresses the inclination of the posture when the work equipment 10 moves along the swing shaft SS.
 図3に示すように、シャシフレーム11の両端部には、サポート機構50の第一サポート部51および第二サポート部52がそれぞれ設けられている。 As shown in FIG. 3, both ends of the chassis frame 11 are provided with a first support portion 51 and a second support portion 52 of the support mechanism 50, respectively.
 図3に示すように、第一サポート部51は、同じ形状の2つのフリーローラ51a,51aを備えている。この2つのフリーローラ51a,51aは、作業器10の移動方向に沿って間隔を空けて並ぶように設けられている。また、2つのフリーローラ51a,51aは、作業器10の移動方向および、掃除部材15の軸方向の両方と平行な面(基準平行面という)の両方と平行な面と略直交する回転軸を有している。言い換えれば、2つのフリーローラ51a,51aは、作業器10が太陽電池アレイLP上に配置されたときに、その回転軸が太陽電池アレイLPの表面の法線方向と略平行となるように設けられている。しかも、2つのフリーローラ51a,51aは、シャシフレーム11の下面(太陽電池アレイLPの表面と対向する面)から2つのフリーローラ51a,51aの下端面までの距離が、シャシフレーム11の下面から車輪12の下端までの距離よりも若干長くなるように設けられている。つまり、作業器10が太陽電池アレイLP上に配置されたときに、2つのフリーローラ51a,51aは、その周面が太陽電池アレイLPの第一端面と向かい合った状態となるように設けられている。 As shown in FIG. 3, the first support portion 51 includes two free rollers 51a and 51a having the same shape. The two free rollers 51a and 51a are provided so as to be arranged at intervals along the moving direction of the work device 10. Further, the two free rollers 51a and 51a have a rotation axis substantially orthogonal to a plane parallel to both the moving direction of the work equipment 10 and the plane parallel to both the axial direction of the cleaning member 15 (referred to as a reference parallel plane). Have. In other words, the two free rollers 51a and 51a are provided so that their rotation axes are substantially parallel to the normal direction of the surface of the solar cell array LP when the work device 10 is arranged on the solar cell array LP. Has been done. Moreover, in the two free rollers 51a and 51a, the distance from the lower surface of the chassis frame 11 (the surface facing the surface of the solar cell array LP) to the lower end surfaces of the two free rollers 51a and 51a is from the lower surface of the chassis frame 11. It is provided so as to be slightly longer than the distance to the lower end of the wheel 12. That is, when the work device 10 is arranged on the solar cell array LP, the two free rollers 51a and 51a are provided so that their peripheral surfaces face the first end surface of the solar cell array LP. There is.
 一方、図3に示すように、第二サポート部52も、同じ形状の2つのフリーローラ52a,52aを備えている。この2つのフリーローラ52a,52aは、作業器10の移動方向に沿って間隔を空けて並ぶように設けられている。また、この2つのフリーローラ52a,52aも、基準平行面と略直交する回転軸を有している。言い換えれば、2つのフリーローラ52a,52aは、作業器10が太陽電池アレイLP上に配置されたときに、その回転軸が太陽電池アレイLPの表面の法線方向と略平行となるように設けられている。しかも、2つのフリーローラ52a,52aも、第一サポート部51の2つのフリーローラ51a,51aと同様に、シャシフレーム11の下面(太陽電池アレイLPの表面と対向する面)から2つのフリーローラ52a,52aの下端面までの距離が、シャシフレーム11の下面から車輪12の下端までの距離よりも若干長くなるように設けられている。つまり、作業器10が太陽電池アレイLP上に配置されたときに、2つのフリーローラ52a,52aは、その周面が太陽電池アレイLPの第二端面と向かい合った状態となるように設けられている。 On the other hand, as shown in FIG. 3, the second support portion 52 also includes two free rollers 52a and 52a having the same shape. The two free rollers 52a and 52a are provided so as to be arranged at intervals along the moving direction of the work device 10. Further, these two free rollers 52a and 52a also have a rotation axis substantially orthogonal to the reference parallel plane. In other words, the two free rollers 52a and 52a are provided so that their rotation axes are substantially parallel to the normal direction of the surface of the solar cell array LP when the work device 10 is arranged on the solar cell array LP. Has been done. Moreover, the two free rollers 52a and 52a also have two free rollers from the lower surface of the chassis frame 11 (the surface facing the surface of the solar cell array LP), similarly to the two free rollers 51a and 51a of the first support portion 51. The distances to the lower end surfaces of the 52a and 52a are provided so as to be slightly longer than the distance from the lower surface of the chassis frame 11 to the lower ends of the wheels 12. That is, when the work device 10 is arranged on the solar cell array LP, the two free rollers 52a and 52a are provided so that their peripheral surfaces face the second end surface of the solar cell array LP. There is.
 そして、第一サポート部51およびと第二サポート部52は、シャシフレーム11の軸方向において、第一サポート部51の2つのフリーローラ51a,51aと第二サポート部52の2つのフリーローラ52a,52a間の距離が太陽電池アレイLPの両端間の距離よりも長く(例えば、20~30mm程度長く)なるように設けられている。 Then, the first support unit 51 and the second support unit 52 have two free rollers 51a and 51a of the first support unit 51 and two free rollers 52a of the second support unit 52 in the axial direction of the chassis frame 11. The distance between the 52a is set to be longer than the distance between both ends of the solar cell array LP (for example, about 20 to 30 mm longer).
 このようなサポート機構50を設けておけば、作業器10が揺動軸SSの軸方向に対して傾いても、作業器10の姿勢を元の姿勢に戻すことができる。つまり、作業器10が揺動軸SSの軸方向に対して傾いた場合、第一サポート部51のフリーローラ51a,51aまたは第二サポート部52のフリーローラ52a,52aのいずれか(または2つ)が太陽電池アレイLPの端面に接触するので、作業器10の姿勢を太陽電池アレイLPの端縁に沿った方向に修正できる。太陽電池アレイLPの端縁は、通常、揺動軸SSの軸方向と平行に設けられているので、サポート機構50の案内によって作業器10を揺動軸SSの軸方向と平行に移動させることができる。また、太陽電池アレイLPの端縁が揺動軸SSの軸方向に対して傾いていても、作業器10はフリーローラが太陽電池アレイLPの端面に接触した状態以上に傾くことができない。そして、太陽電池アレイLPの端縁が揺動軸SSの軸方向に対して傾いていてもせいぜい0.5度程度までである。したがって、上述したようなサポート機構50を設ければ、作業器10の姿勢を補正しつつ、作業器10を揺動軸SSの軸方向に沿った方向に移動させることができる。 If such a support mechanism 50 is provided, the posture of the work equipment 10 can be returned to the original posture even if the work equipment 10 is tilted with respect to the axial direction of the swing shaft SS. That is, when the work equipment 10 is tilted with respect to the axial direction of the swing shaft SS, either (or two) of the free rollers 51a and 51a of the first support portion 51 or the free rollers 52a and 52a of the second support portion 52. ) Contact the end face of the solar cell array LP, so that the posture of the work device 10 can be corrected in the direction along the edge of the solar cell array LP. Since the edge of the solar cell array LP is usually provided parallel to the axial direction of the swing shaft SS, the work device 10 is moved parallel to the axial direction of the swing shaft SS by the guidance of the support mechanism 50. Can be done. Further, even if the edge of the solar cell array LP is tilted with respect to the axial direction of the swing shaft SS, the work device 10 cannot be tilted more than the state in which the free roller is in contact with the end face of the solar cell array LP. Even if the edge of the solar cell array LP is tilted with respect to the axial direction of the swing shaft SS, it is at most about 0.5 degrees. Therefore, if the support mechanism 50 as described above is provided, the work device 10 can be moved in the direction along the axial direction of the swing shaft SS while correcting the posture of the work device 10.
 なお、2つのフリーローラ51a,51aは、その回転軸が基準平行面と交差するように設けられていればよく、必ずしも直交していなくてもよい。つまり、2つのフリーローラ51a,51aは、作業器10が揺動軸SSの軸方向に対して斜めに傾いた場合に、太陽電池アレイLPの端面に接触して作業器10の姿勢を戻すことができるように設けられていればよい。そして、2つのフリーローラ51a,51aは、その回転軸が基準平行面と直交しない場合には、2つのフリーローラ51a,51aにおいてシャシフレーム11の下面から最も離れた位置からシャシフレーム11の下面までの距離が、シャシフレーム11の下面から車輪12の下端までの距離よりも若干長くなるように設けられていればよい。 The two free rollers 51a and 51a may be provided so that their rotation axes intersect with the reference parallel plane, and are not necessarily orthogonal to each other. That is, the two free rollers 51a and 51a come into contact with the end faces of the solar cell array LP and return the posture of the work equipment 10 when the work equipment 10 is tilted obliquely with respect to the axial direction of the swing shaft SS. It suffices if it is provided so that When the rotation axes of the two free rollers 51a and 51a are not orthogonal to the reference parallel plane, the two free rollers 51a and 51a extend from the position farthest from the lower surface of the chassis frame 11 to the lower surface of the chassis frame 11 in the two free rollers 51a and 51a. The distance may be slightly longer than the distance from the lower surface of the chassis frame 11 to the lower end of the wheel 12.
 また、2つのフリーローラ52a,52aも、その回転軸が基準平行面と交差するように設けられていればよく、必ずしも直交していなくてもよい。つまり、2つのフリーローラ52a,52aは、作業器10が揺動軸SSの軸方向に対して斜めに傾いた場合に、太陽電池アレイLPの端面に接触して作業器10の姿勢を戻すことができるように設けられていればよい。そして、2つのフリーローラ52a,52aは、その回転軸が基準平行面と直交しない場合には、2つのフリーローラ52a,52aにおいてシャシフレーム11の下面から最も離れた位置からシャシフレーム11の下面までの距離が、シャシフレーム11の下面から車輪12の下端までの距離よりも若干長くなるように設けられていればよい。 Further, the two free rollers 52a and 52a may not necessarily be orthogonal to each other as long as their rotation axes are provided so as to intersect the reference parallel plane. That is, the two free rollers 52a and 52a come into contact with the end faces of the solar cell array LP and return the posture of the work equipment 10 when the work equipment 10 is tilted obliquely with respect to the axial direction of the swing shaft SS. It suffices if it is provided so that When the rotation axes of the two free rollers 52a and 52a are not orthogonal to the reference parallel plane, the two free rollers 52a and 52a extend from the position farthest from the lower surface of the chassis frame 11 to the lower surface of the chassis frame 11 in the two free rollers 52a and 52a. The distance may be slightly longer than the distance from the lower surface of the chassis frame 11 to the lower end of the wheel 12.
 また、フリーローラ51a,52aは、その回転軸と交差する方向から一定以上の力が加わると、フリーローラ51a,52aをその力の方向に沿って移動させるダンパ機構を有していてもよい。つまり、フリーローラ51a,52aは、その回転軸を掃除部材15の軸方向に沿って移動可能に保持するダンパ機構を介してシャシフレーム11に取り付けられていてもよい。かかるダンパ機構を設けておけば、隣接する太陽電池モジュールPの端面間の段差が想定よりも大きくなっても、太陽電池モジュールPの端面間の段差をフリーローラ51a,52aが乗り越えることが可能になる。 Further, the free rollers 51a and 52a may have a damper mechanism that moves the free rollers 51a and 52a along the direction of the force when a certain force or more is applied from the direction intersecting the rotation axis. That is, the free rollers 51a and 52a may be attached to the chassis frame 11 via a damper mechanism that holds the rotating shafts of the free rollers 51a and 52a so as to be movable along the axial direction of the cleaning member 15. If such a damper mechanism is provided, even if the step between the end faces of the adjacent solar cell modules P becomes larger than expected, the free rollers 51a and 52a can overcome the step between the end faces of the solar cell modules P. Become.
 サポート機構50の第一サポート部51および第二サポート部52に設けられるフリーローラの数はとくに限定されない。各サポート部51,52に、それぞれ1つずつフリーローラを設けてもよいし、それぞれ3つ以上設けてもよい。また、各サポート部51,52で、フリーローラを設ける数が異なっていてもよい。例えば、太陽電池アレイLPの表面が水平に対して傾斜した状態で作業器10が太陽電池アレイLP上を移動する場合であれば、上方に位置する端部側のサポート部には、2つ以上のフリーローラを設ける一方、下方に位置する端部側のサポート部にはフリーローラを1つしか設けなくてもよい。これは、隣接する太陽電池モジュールP間で上方に位置する端部で段差(第一端部P1と第二端部P2を繋ぐ方向の段差)がある場合に、上方に位置する端部と接触するサポート部では、2つ以上のフリーローラを有している方が段差を乗り越えやすくなるからである。 The number of free rollers provided in the first support section 51 and the second support section 52 of the support mechanism 50 is not particularly limited. One free roller may be provided on each of the support portions 51 and 52, or three or more free rollers may be provided on each of the support portions 51 and 52. Further, the number of free rollers provided may be different in each of the support units 51 and 52. For example, when the work device 10 moves on the solar cell array LP in a state where the surface of the solar cell array LP is inclined with respect to the horizontal, two or more support portions on the end side located above are used. On the other hand, only one free roller may be provided on the support portion on the end side located below. This is in contact with the upper end when there is a step (a step in the direction connecting the first end P1 and the second end P2) at the upper end between the adjacent solar cell modules P. This is because it is easier to get over the step if the support unit has two or more free rollers.
 サポート機構50の第一サポート部51および第二サポート部52は、太陽電池アレイLPの端面に沿った移動を案内できるのであれば、上述したようなフリーローラを使用しなくてもよい。例えば、表面の摺動抵抗が小さい板状の部材を、その表面が太陽電池モジュールPの各端面と対向するように設けて、第一サポート部51および第二サポート部52としてもよい。この場合には、板状の部材における作業器10の移動方向の端部を、先端に向かって太陽電池アレイLPの端面から離間するように形成しておく。つまり、板状の部材を、スキーの板のように先端が反ったように形成しておく。すると、板状の部材であっても、隣接する太陽電池モジュールP間の段差を乗り越えやすくなる。 The first support section 51 and the second support section 52 of the support mechanism 50 do not have to use the free rollers as described above as long as they can guide the movement along the end face of the solar cell array LP. For example, a plate-shaped member having a small surface sliding resistance may be provided so that its surface faces each end surface of the solar cell module P to form the first support portion 51 and the second support portion 52. In this case, the end portion of the plate-shaped member in the moving direction of the work device 10 is formed so as to be separated from the end face of the solar cell array LP toward the tip end. That is, the plate-shaped member is formed so that the tip is curved like a ski plate. Then, even if it is a plate-shaped member, it becomes easy to get over a step between adjacent solar cell modules P.
 上述したように、基準平行面は、作業器10の移動方向および掃除部材15の軸方向の両方と平行な面である。一方、作業器10が掃除部材15を有しない場合には、作業器10の移動方向およびシャシフレーム11の軸方向の両方と平行な面が基準平行面に相当する。他の表現をすれば、作業器10の移動方向と、平面視で作業器10の移動方向と交差する方向(図3では左右方向)の両方に平行な面が基準平行面に相当する。 As described above, the reference parallel plane is a plane parallel to both the moving direction of the work equipment 10 and the axial direction of the cleaning member 15. On the other hand, when the working device 10 does not have the cleaning member 15, a surface parallel to both the moving direction of the working device 10 and the axial direction of the chassis frame 11 corresponds to a reference parallel surface. In other words, a plane parallel to both the moving direction of the working device 10 and the direction intersecting the moving direction of the working device 10 in a plan view (horizontal direction in FIG. 3) corresponds to a reference parallel plane.
 また、基準平行面は、太陽電池アレイLP上に作業器10が配置されたときに太陽電池モジュールPが撓まない場合には、太陽電池アレイLPの表面と略平行となる面になる。一方、作業器10が太陽電池アレイLP上に配置されたときに太陽電池モジュールPの表面が撓む場合(フレームレス太陽電池モジュールの場合)には、基準平行面は、撓みが生じなかったとした場合における太陽電池モジュールPの表面と平行な面(対象平面)を意味している。また、基準平行面は、太陽電池モジュールPが撓まない場合における太陽電池アレイLPの表面や対象平面に対して若干の傾き(最大0.1度程度)がある場合も含んでいる。 Further, the reference parallel plane becomes a plane substantially parallel to the surface of the solar cell array LP when the solar cell module P does not bend when the work device 10 is arranged on the solar cell array LP. On the other hand, when the surface of the solar cell module P bends when the work device 10 is arranged on the solar cell array LP (in the case of the frameless solar cell module), the reference parallel plane does not bend. It means a plane (target plane) parallel to the surface of the solar cell module P in the case. The reference parallel plane also includes a case where the solar cell module P has a slight inclination (up to about 0.1 degree) with respect to the surface of the solar cell array LP and the target plane when the solar cell module P does not bend.
 また、サポート機構50は、上述したように、シャシフレーム11の両端部に第一サポート部51および第二サポート部52を有していてもよいが、サポート部はシャシフレーム11の一方の端部にのみ設けてもよい。つまり、サポート機構50は、第一サポート部51または第二サポート部52のいずれか一方だけを設けてもよい。例えば、図5のように太陽電池アレイLPの表面が水平に対して傾斜した状態において、この太陽電池アレイLP上で作業器10を移動させる場合であれば、太陽電池アレイLPの上方に位置する端部(図5(B)では太陽電池アレイLPの第一端部P1)側に位置するシャシフレーム11の端部だけにサポート部を設けてもよい。言い換えれば、シャシフレーム11の一方の端部にのみサポート部を設けた場合には、太陽電池アレイLPの上方に位置する端部側にサポート部が配置されるように、作業器10を配置すればよい。この場合でも、サポート部には、上述したような第一サポート部51や第二サポート部52と同様の構造を採用すればよい。 Further, as described above, the support mechanism 50 may have the first support portion 51 and the second support portion 52 at both ends of the chassis frame 11, but the support portion is one end of the chassis frame 11. It may be provided only in. That is, the support mechanism 50 may be provided with only one of the first support unit 51 and the second support unit 52. For example, when the working device 10 is moved on the solar cell array LP in a state where the surface of the solar cell array LP is inclined with respect to the horizontal as shown in FIG. 5, it is located above the solar cell array LP. The support portion may be provided only at the end portion (in FIG. 5B, the first end portion P1 of the solar cell array LP) side of the chassis frame 11. In other words, when the support portion is provided only on one end of the chassis frame 11, the work equipment 10 is arranged so that the support portion is arranged on the end side located above the solar cell array LP. Just do it. Even in this case, the support unit may adopt the same structure as the first support unit 51 and the second support unit 52 as described above.
<作業制御について>
 また、作業装置1は、太陽電池アレイLPの表面を測定などして、太陽電池アレイLPの表面の状態を検出する状態検出機構を備えていてもよい。かかる状態検出機構を設けていれば、太陽電池アレイLPの表面を適切に把握できるので、太陽電池アレイLPの表面の状態に応じた掃除などの作業を実施できる。
<About work control>
Further, the working device 1 may include a state detection mechanism for detecting the state of the surface of the solar cell array LP by measuring the surface of the solar cell array LP or the like. If such a state detection mechanism is provided, the surface of the solar cell array LP can be appropriately grasped, so that work such as cleaning according to the state of the surface of the solar cell array LP can be performed.
 状態検出機構は、太陽電池アレイLPの状態を検出する状態検出部と、状態検出部が検出した情報に基づいて太陽電池アレイLPの表面の状態を判断する判断部とから構成することができる。状態検出部および判断部は、いずれも作業器10に設けてもよいし、状態検出部のみを作業器10に設けて判断部は制御装置40に設けてもよい。また、状態検出部を太陽電池アレイLP等に設けて判断部は制御装置40に設けてもよい。 The state detection mechanism can be composed of a state detection unit that detects the state of the solar cell array LP and a determination unit that determines the state of the surface of the solar cell array LP based on the information detected by the state detection unit. Both the state detection unit and the determination unit may be provided in the work device 10, or only the state detection unit may be provided in the work device 10 and the determination unit may be provided in the control device 40. Further, the state detection unit may be provided in the solar cell array LP or the like, and the determination unit may be provided in the control device 40.
 状態検出部は、とくに限定されないが、例えば、太陽電池アレイLPの表面の温度を検出する温度検出部を挙げることができる。この場合、温度検出部が検出した太陽電池アレイLPの表面の温度に応じて、その温度に適した作業を作業器10に実施させることができる。 The state detection unit is not particularly limited, and examples thereof include a temperature detection unit that detects the surface temperature of the solar cell array LP. In this case, depending on the temperature of the surface of the solar cell array LP detected by the temperature detection unit, the work device 10 can be made to perform the work suitable for the temperature.
 例えば、太陽電池アレイLPの表面が露点温度以下の場合には、太陽電池アレイLPの表面に結露が発生するので、その結露を掃除に使用することができる。したがって、掃除部材15としてゴム製ブレードを作業器10が有している場合には、状態検出機構が露点温度以下の状態を検出すると、制御装置40が作業器10を移動させて掃除を実施するようになっていることが望ましい。 For example, when the surface of the solar cell array LP is below the dew point temperature, dew condensation occurs on the surface of the solar cell array LP, and the dew condensation can be used for cleaning. Therefore, when the work device 10 has a rubber blade as the cleaning member 15, when the state detection mechanism detects a state below the dew point temperature, the control device 40 moves the work device 10 to perform cleaning. It is desirable that it is like this.
 一方、掃除部材15としてブラシや布などのドライ状態での清掃に適したものを作業器10が有している場合には、太陽電池アレイLPの表面が露点温度以上になっている状態で掃除することが望ましい。したがって、かかる掃除部材15を作業器10が有している場合には、状態検出機構が露点温度以上の状態を検出すると、制御装置40が作業器10を移動させて掃除を実施するようになっていることが望ましい。 On the other hand, when the working device 10 has a cleaning member 15 such as a brush or a cloth suitable for cleaning in a dry state, the cleaning member 15 is cleaned with the surface of the solar cell array LP having a dew point temperature or higher. It is desirable to do. Therefore, when the working device 10 has such a cleaning member 15, when the state detecting mechanism detects a state of the dew point temperature or higher, the control device 40 moves the working device 10 to perform cleaning. It is desirable to have.
 なお、温度検出部は、太陽電池アレイLPに設置してもよいし、作業器10に設置してもよい。例えば、太陽電池アレイLPに設置する場合には、太陽電池アレイLPのパネルフレーム等に温度検出部を設けることができる。また、作業器10に設ける場合には、作業器10が退避部30に配置されている状態で、太陽電池アレイLPの表面の温度を測定できる位置に温度検出部を設ければよい。例えば、シャシフレーム11の幅方向から側方に突出したステー等に温度検出部を設けるなどの方法を採用することができる。 The temperature detection unit may be installed in the solar cell array LP or in the work equipment 10. For example, when it is installed in the solar cell array LP, the temperature detection unit can be provided in the panel frame or the like of the solar cell array LP. Further, when the work equipment 10 is provided, the temperature detection unit may be provided at a position where the temperature of the surface of the solar cell array LP can be measured while the work equipment 10 is arranged in the retracting unit 30. For example, a method such as providing a temperature detection unit on a stay or the like projecting laterally from the width direction of the chassis frame 11 can be adopted.
 検出する太陽電池アレイLPの温度は、必ずしも表面の温度に限られず、太陽電池アレイLPの所定の領域やその裏面、所定の領域の近傍やその近傍の裏面、所定の領域における太陽電池モジュールPの内部の温度を計測してもよい。太陽電池アレイLPの裏面の温度を測定する場合には、太陽電池アレイLPの裏面に温度検出部を設けてもよい。 The temperature of the solar cell array LP to be detected is not necessarily limited to the temperature of the front surface, and the temperature of the solar cell module P in a predetermined region or the back surface of the solar cell array LP, the vicinity of the predetermined region or the back surface in the vicinity thereof, or the predetermined region. The internal temperature may be measured. When measuring the temperature of the back surface of the solar cell array LP, a temperature detection unit may be provided on the back surface of the solar cell array LP.
 また、太陽電池アレイLPの表面の状態を検出する状態検出部として、太陽電池アレイLPの表面の色や強度(光沢)を測定するものを採用してもよい。この場合、太陽電池アレイLPの表面の色や強度(光沢)を検出することで太陽電池アレイLPの表面の汚れを判断することができる。 Further, as a state detection unit for detecting the state of the surface of the solar cell array LP, a device that measures the color and intensity (gloss) of the surface of the solar cell array LP may be adopted. In this case, the dirt on the surface of the solar cell array LP can be determined by detecting the color and intensity (gloss) of the surface of the solar cell array LP.
 例えば、作業器10に太陽電池アレイLPの表面の色や強度(光沢)を測定する状態検出部を設ける。そして、状態検出部が検出した情報に基づいて、判断部が一定以上の汚れが残っていると判断した場合には、その位置を複数回往復するように制御装置40が作業器10を作動させるようにする。例えば、太陽電池アレイLPを作業器10が複数回往復するように、駆動機構25を作動させるようにする。すると、太陽電池アレイLPの表面の汚れを作業器10によって除去する効果を高めることができる。 For example, the work equipment 10 is provided with a state detection unit for measuring the color and intensity (gloss) of the surface of the solar cell array LP. Then, when the determination unit determines that a certain amount of dirt remains based on the information detected by the state detection unit, the control device 40 operates the work device 10 so as to reciprocate the position a plurality of times. To do so. For example, the drive mechanism 25 is operated so that the working device 10 reciprocates the solar cell array LP a plurality of times. Then, the effect of removing the dirt on the surface of the solar cell array LP by the working device 10 can be enhanced.
 また、作業器10が太陽電池アレイLPを複数回往復したにもかかわらず汚れが残っていると判断部が判断した場合は、制御装置40は、汚れが残っている位置を作業者に知らせる機能を有していてもよい。この場合、その位置を作業者が(水などを使って)人手で清掃することで、作業器10では除去することができない汚れも解消できる。
 さらに、所定の回数の往復作業を実施すると、その位置の掃除を中止して他の位置の掃除を実施するようにしてもよい。つまり、作業器10が所定の回数だけ太陽電池アレイLPを往復移動すると、判断部が一定以上の汚れが残っていると判断した場合であっても、その太陽電池アレイLPの掃除を中止するようにしてもよい。この場合、作業器10の無駄な作動を防止できる。そして、後述するように、複数の太陽電池アレイLPで一つの作業装置1を共有する場合には、一の太陽電池アレイLPの表面に汚れが除去できない領域があった場合でも、他の太陽電池アレイLPに作業装置1を移動させることができる。すると、作業装置1が、作業器10では除去することができない汚れを解消するために一つの太陽電池アレイLPに長時間留まらないので、作業効率を向上できる。
Further, when the determination unit determines that the dirt remains even though the work device 10 reciprocates the solar cell array LP a plurality of times, the control device 40 has a function of notifying the operator of the position where the dirt remains. May have. In this case, if the operator manually cleans the position (using water or the like), dirt that cannot be removed by the work device 10 can be eliminated.
Further, when the reciprocating work is performed a predetermined number of times, the cleaning at that position may be stopped and the cleaning at another position may be performed. That is, when the work device 10 reciprocates the solar cell array LP a predetermined number of times, even if the determination unit determines that a certain amount of dirt remains, the cleaning of the solar cell array LP is stopped. It may be. In this case, unnecessary operation of the work device 10 can be prevented. Then, as will be described later, when one working device 1 is shared by a plurality of solar cell array LPs, even if there is an area on the surface of one solar cell array LP where dirt cannot be removed, another solar cell The working device 1 can be moved to the array LP. Then, the working device 1 does not stay in one solar cell array LP for a long time in order to eliminate the dirt that cannot be removed by the working device 10, so that the working efficiency can be improved.
 かかる状態検出部は、例えば、以下のような構成を採用することができる。
 状態検出部として、太陽電池アレイLPの表面に光を照射する光照射部を設ける。この光照射部が照射する光はとくに限定されない。また、光照射部が照射した光が太陽電池アレイLPの表面で反射した反射光を受光できるように受光部を設ける。そして、受光部の受光した信号に基づいて、太陽電池アレイLPの表面の汚れを判断部が判断するようにしておけば、太陽電池アレイLPの表面の汚れを判断することができる。例えば、判断部に、光照射部が所定の強度および波長の光を太陽電池アレイLPの表面に照射したときに、太陽電池アレイLPの表面が汚れていない状態(または許容される程度に汚れている状態)における反射光の色(基準色)や強度(基準強度)を記憶させておく。すると、受光部が受光した反射光と、基準色や基準強度を比較することによって、判断部が太陽電池アレイLPの表面の汚れを判断することができる。
For example, the following configuration can be adopted for such a state detection unit.
As a state detection unit, a light irradiation unit that irradiates the surface of the solar cell array LP with light is provided. The light emitted by the light irradiation unit is not particularly limited. Further, a light receiving unit is provided so that the light emitted by the light irradiation unit can receive the reflected light reflected on the surface of the solar cell array LP. Then, if the determination unit determines the dirt on the surface of the solar cell array LP based on the signal received by the light receiving unit, the dirt on the surface of the solar cell array LP can be determined. For example, when the light irradiation unit irradiates the surface of the solar cell array LP with light of a predetermined intensity and wavelength, the surface of the solar cell array LP is not contaminated (or is contaminated to an acceptable degree). The color (reference color) and intensity (reference intensity) of the reflected light in the present state) are stored. Then, by comparing the reflected light received by the light receiving unit with the reference color and the reference intensity, the determination unit can determine the dirt on the surface of the solar cell array LP.
 なお、光照射部や受光部の構成はとくに限定されないが、作業器10の移動方向と交差する方向(例えば直交する方向)に沿って複数の光照射部と複数の受光部とを設けておくことが望ましい。この場合、太陽電池アレイLPの表面の汚れを検出できない領域を少なくできる。とくに、受光部としてラインセンサを使用すれば、汚れの検出漏れを防止しやすくなる。 The configuration of the light irradiation unit and the light receiving unit is not particularly limited, but a plurality of light irradiation units and a plurality of light receiving units are provided along a direction intersecting the moving direction of the work device 10 (for example, a direction orthogonal to each other). Is desirable. In this case, it is possible to reduce the area where dirt on the surface of the solar cell array LP cannot be detected. In particular, if a line sensor is used as the light receiving unit, it becomes easy to prevent omission of detection of dirt.
 なお、状態検出部は、作業器10の移動方向において掃除部材15の後方に設けておけば、掃除部材15による掃除後の状態を判断できる。また、作業器10の移動方向において掃除部材15の前方に設けておけば、汚れの状態に応じて掃除部材15による掃除を調整することができる。とくに、作業器10の移動方向において掃除部材15の前方と後方の両方に設けておけば、上述した両方の機能を発揮させることができる。 If the state detection unit is provided behind the cleaning member 15 in the moving direction of the work device 10, the state after cleaning by the cleaning member 15 can be determined. Further, if it is provided in front of the cleaning member 15 in the moving direction of the work device 10, cleaning by the cleaning member 15 can be adjusted according to the state of dirt. In particular, if the cleaning member 15 is provided both in the front and the rear in the moving direction of the work device 10, both of the above-mentioned functions can be exhibited.
 また、状態検出機構は、状態検出部として、風速を測定する風速センサを有していてもよい。この場合、風速センサが測定する風速情報に基づき、風速がある一定の風速以上のときに制御装置40が作業器10を作動させれば、清掃効果を高めることができる。つまり、作業器10の掃除部材15が埃等を巻き上げた場合、その埃を飛散させやすくなるので清掃効果を高めることができる。なお、一定以上の風速の際は、作業器10の破損や動作不良を招く恐れがあるため、制御装置40は作業器10を作動させないように制御するようになっていることが望ましい。 Further, the state detection mechanism may have a wind speed sensor for measuring the wind speed as a state detection unit. In this case, if the control device 40 operates the work device 10 when the wind speed is equal to or higher than a certain wind speed based on the wind speed information measured by the wind speed sensor, the cleaning effect can be enhanced. That is, when the cleaning member 15 of the work device 10 winds up dust or the like, the dust is easily scattered, so that the cleaning effect can be enhanced. When the wind speed exceeds a certain level, the work device 10 may be damaged or malfunction. Therefore, it is desirable that the control device 40 is controlled so as not to operate the work device 10.
<作業時の太陽電池アレイLPの傾斜>
 トラッキングタイプの太陽電池アレイLPの場合、その表面が水平になった状態で作業器10による掃除を実施してもよいし、ある程度傾斜した状態で作業器10による掃除を実施してもよい。
<Inclination of solar cell array LP during work>
In the case of the tracking type solar cell array LP, cleaning may be performed by the working device 10 in a state where the surface is horizontal, or cleaning may be performed by the working device 10 in a state where the surface is inclined to some extent.
 つまり、トラッキングタイプの太陽電池アレイLPでも、その表面を水平にせずに、その表面をある程度傾斜した状態(例えば、30°程度水平に対して傾斜した状態)に維持して作業器10による掃除を実施してもよい。傾斜させて作業を実施する場合、その角度はとくに限定されない。周囲の環境等に応じて、適切な角度に太陽電池アレイLPの表面を維持して、作業器10による掃除を実施すればよい。 That is, even in the tracking type solar cell array LP, the surface is not leveled, but the surface is maintained in a state of being tilted to some extent (for example, a state of being tilted with respect to the horizontal by about 30 °) and cleaned by the work equipment 10. It may be carried out. When the work is carried out at an angle, the angle is not particularly limited. The surface of the solar cell array LP may be maintained at an appropriate angle according to the surrounding environment and the like, and cleaning may be performed by the working device 10.
<作業装置1の太陽電池アレイLP間の移動>
 作業装置1は、太陽電池アレイLPにそれぞれ1つ設けてもよいし、複数の太陽電池アレイLPで1つの作業装置1を共有してもよい。
<Movement of working device 1 between solar cell array LPs>
One working device 1 may be provided in each of the solar cell array LPs, or one working device 1 may be shared by a plurality of solar cell array LPs.
<直列に配置された太陽電池アレイLPの場合>
 まず、図20に示すように、揺動軸SSの軸方向に沿って並んで配設された太陽電池アレイLPで作業器10を共有する場合を説明する。なお、以下では、揺動軸SSの軸方向に沿って並ぶ複数の太陽電池アレイLPのうち、一方の端部に位置する太陽電池アレイLP1と、その太陽電池アレイLP1と隣接する太陽電池アレイLP2を代表として説明する。
<In the case of solar cell array LP arranged in series>
First, as shown in FIG. 20, a case where the work equipment 10 is shared by the solar cell array LPs arranged side by side along the axial direction of the swing shaft SS will be described. In the following, among a plurality of solar cell arrays LP arranged along the axial direction of the swing axis SS, the solar cell array LP1 located at one end and the solar cell array LP2 adjacent to the solar cell array LP1. Will be explained as a representative.
 例えば、図20に示すように、隣接する太陽電池アレイLP1,LP2の隣接する端部間に搬送路DRを設置する。具体的には、この搬送路DRは、作業器10に設けられた車輪12が太陽電池アレイLP1,LP2の表面を走行する位置と対応する位置に設けられる。しかも、この搬送路DRは、その表面と太陽電池アレイLP1,LP2の表面とがほぼ同一平面になるように配置されている。この搬送路DRは、太陽電池アレイLP1,LP2にその両端部(図20では左右方向の端部)がそれぞれ連結されており、太陽電池アレイLP1,LP2が揺動する場合には、その揺動にあわせて揺動するように設けられている。つまり、太陽電池アレイLP1,LP2が揺動しても、両者の揺動角度が同じであれば、太陽電池アレイLP1,LP2の表面と搬送路DRの表面とがほぼ同一平面を維持するように搬送路DRは設けられている。 For example, as shown in FIG. 20, a transport path DR is installed between adjacent ends of adjacent solar cell arrays LP1 and LP2. Specifically, the transport path DR is provided at a position corresponding to a position where the wheels 12 provided on the work device 10 travel on the surfaces of the solar cell arrays LP1 and LP2. Moreover, the transport path DR is arranged so that the surface thereof and the surfaces of the solar cell arrays LP1 and LP2 are substantially flush with each other. Both ends of the transport path DR are connected to the solar cell arrays LP1 and LP2 (ends in the left-right direction in FIG. 20), and when the solar cell arrays LP1 and LP2 swing, the swings thereof. It is provided so as to swing according to the above. That is, even if the solar cell arrays LP1 and LP2 swing, if the swing angles of both are the same, the surface of the solar cell arrays LP1 and LP2 and the surface of the transport path DR maintain substantially the same plane. The transport path DR is provided.
 また、移動部20の牽引機構21の一対の索状部材22,22は、太陽電池アレイLP1,LP2の並ぶ方向、つまり、太陽電池アレイLP1,LP2の揺動軸SSの軸方向に沿って、太陽電池アレイLP1,LP2の第一端部P1および第二端部P2の外方に位置するように配設される。 Further, the pair of cord-shaped members 22 and 22 of the traction mechanism 21 of the moving portion 20 are arranged in the direction in which the solar cell arrays LP1 and LP2 are arranged, that is, along the axial direction of the swing axis SS of the solar cell arrays LP1 and LP2. It is arranged so as to be located outside the first end portion P1 and the second end portion P2 of the solar cell arrays LP1 and LP2.
 かかる構成とすれば、牽引機構21によって作業器10を移動させれば、作業器10に搬送路DR上を走行させて、太陽電池アレイLP1,LP2間を移動させることができる。 With such a configuration, if the work equipment 10 is moved by the traction mechanism 21, the work equipment 10 can be moved on the transport path DR and can be moved between the solar cell arrays LP1 and LP2.
 なお、搬送路DRを設ける数や設置する位置はとくに限定されない。作業器10が太陽電池アレイLP1,LP2間を移動する際に、作業器10に設けられた車輪12の全てまたは一部を搬送路DRが支えることができるように設けられていればよい。 The number and position of the transport path DRs are not particularly limited. When the work device 10 moves between the solar cell arrays LP1 and LP2, it may be provided so that the transport path DR can support all or a part of the wheels 12 provided on the work device 10.
 とくに、搬送路DRは、その外方の端部(図20では上下方向の端部)が太陽電池アレイLPの第一端部P1と第二端部P2とそれぞれほぼ直線状に並ぶように配設されることが望ましい。例えば、図20であれば、一対の搬送路DR,DRの外方の端部が太陽電池アレイLPの第一端部P1と第二端部P2とそれぞれほぼ直線状に並ぶように配設されることが望ましい。かかる構成とすれば、作業器10が搬送路DR上を移動する際にも、後述するサポート機構50の第一サポート部51および第二サポート部52によって揺動軸SSに対する作業器10の姿勢の傾きを抑制することができる。すると、搬送路DR上を作業器10が移動する際に、安定して作業器10を移動させることができる。また、太陽電池アレイLP1と搬送路DRとの間での作業器10の移動や、太陽電池アレイLP2と搬送路DRとの間での作業器10の移動も安定させることができる。なお、サポート機構50の第一サポート部51および第二サポート部52が接触する搬送路DRは、車輪12を支える搬送路DRとは別に設けてもよい。つまり、作業器10の姿勢の傾きを抑制するためだけに搬送路DR、言い換えれば、太陽電池アレイLP1,LP2間をつなぐ部材を設けてもよい。 In particular, the transport path DR is arranged so that its outer end (the vertical end in FIG. 20) is arranged substantially linearly with the first end P1 and the second end P2 of the solar cell array LP. It is desirable to be installed. For example, in FIG. 20, the outer ends of the pair of transport paths DR and DR are arranged so as to be substantially linearly aligned with the first end P1 and the second end P2 of the solar cell array LP, respectively. Is desirable. With such a configuration, even when the work device 10 moves on the transport path DR, the posture of the work device 10 with respect to the swing shaft SS is determined by the first support portion 51 and the second support portion 52 of the support mechanism 50 described later. Tilt can be suppressed. Then, when the work device 10 moves on the transport path DR, the work device 10 can be moved stably. Further, the movement of the working device 10 between the solar cell array LP1 and the transport path DR and the movement of the working device 10 between the solar cell array LP2 and the transport path DR can also be stabilized. The transport path DR in which the first support portion 51 and the second support portion 52 of the support mechanism 50 come into contact with each other may be provided separately from the transport path DR that supports the wheels 12. That is, a member connecting the transport path DR, in other words, the solar cell arrays LP1 and LP2 may be provided only in order to suppress the inclination of the posture of the work equipment 10.
 上述した「搬送路DRの外方の端部(または一対の搬送路DR,DRの外方の端部)が太陽電池アレイLPの第一端部P1と第二端部P2とそれぞれほぼ直線状に並ぶ」とは、太陽電池アレイLPの第一端部P1および第二端部P2の端縁と搬送路DRの外方の端部の端縁(搬送路DRの表面と端面で形成される交線)とが完全に直線状に並んでいる場合と、両者の間に若干のズレが有る場合を含んでいる。両者の間に若干のズレが有る場合とは、太陽電池アレイLPの第一端部P1および第二端部P2の端縁と搬送路DRの端部の端縁とがほぼ平行であるが若干高さや水平方向においてズレがある場合(例えば0~5mm程度)や太陽電池モジュールPの表面に沿った方向における位置にズレがある場合(例えば0~20mm程度)を含んでいる。また、太陽電池アレイLPの第二端部P2の端縁と搬送路DRの端部D2の端縁とが相対的に傾いている場合を含んでいる。例えば、太陽電池モジュールPの表面と平行な面内において0~1度程度傾いている場合や、太陽電池モジュールPの第二端面と平行な面内において0~2度程度傾いている場合を含んでいる。 The above-mentioned "outer end portion of the transport path DR (or the outer end portion of the pair of transport path DRs and DRs) is substantially linear with the first end portion P1 and the second end portion P2 of the solar cell array LP, respectively. "Lined up" means the edge of the first end P1 and the second end P2 of the solar cell array LP and the edge of the outer end of the line of intersection DR (formed by the surface and the end face of the line of intersection DR). This includes the case where the lines of intersection) are perfectly aligned and the case where there is a slight deviation between the two. When there is a slight deviation between the two, the edge of the first end P1 and the second end P2 of the solar cell array LP and the edge of the end of the transport path DR are almost parallel, but slightly. This includes cases where there is a deviation in the height or horizontal direction (for example, about 0 to 5 mm) and cases where there is a deviation in the position along the surface of the solar cell module P (for example, about 0 to 20 mm). Further, the case where the edge of the second end P2 of the solar cell array LP and the edge of the end D2 of the transport path DR are relatively inclined is included. For example, it includes a case where it is tilted by about 0 to 1 degree in a plane parallel to the surface of the solar cell module P and a case where it is tilted by about 0 to 2 degrees in a plane parallel to the second end surface of the solar cell module P. I'm out.
 また、「太陽電池アレイLPの表面と搬送路DRの表面とがほぼ同一平面」とは、太陽電池アレイLPの表面と搬送路DRの表面のなす角度に0~1度程度のズレがある場合を含む概念である。また、太陽電池アレイLPの表面と搬送路DRの表面で若干高さの差がある場合(例えば0~5mm程度)も含んでいる。 Further, "the surface of the solar cell array LP and the surface of the transport path DR are substantially the same plane" means that there is a deviation of about 0 to 1 degree between the surface of the solar cell array LP and the surface of the transport path DR. Is a concept that includes. It also includes the case where there is a slight difference in height between the surface of the solar cell array LP and the surface of the transport path DR (for example, about 0 to 5 mm).
<揺動式の搬送路DR>
 上記例では、隣接する太陽電池アレイLP1,LP2において、両者の表面がほぼ同一平面になっている場合および、両者が揺動しても両者の表面がほぼ同一平面になる場合を説明した。しかし、太陽電池アレイLP1,LP2の設置状況によっては、太陽電池アレイLP1,LP2の両者の表面に高さの差が生じたりその角度がズレたりする場合がある。かかる問題がある場合には、搬送路DRは、以下のような構成にすればよい。
<Swing type transport path DR>
In the above example, in the adjacent solar cell arrays LP1 and LP2, the case where both surfaces are substantially the same plane and the case where both surfaces are substantially the same plane even if both are shaken have been described. However, depending on the installation conditions of the solar cell arrays LP1 and LP2, there may be a difference in height or an angle difference between the surfaces of the solar cell arrays LP1 and LP2. When there is such a problem, the transport path DR may have the following configuration.
 図22に示すように、搬送路DRは、第一端部(太陽電池アレイLP1側の端部)に揺動軸Daが設けられている。この揺動軸Daは、太陽電池アレイLP1の表面と平行に設けられており、軸受等を介して太陽電池アレイLP1に固定されている。この揺動軸Daには、搬送部Dbの一方の端部(図22では右側の端部)が取り付けられている。つまり、搬送部Dbは、揺動軸Daによって太陽電池アレイLP1に対して揺動可能に設けられている。 As shown in FIG. 22, the transport path DR is provided with a swing shaft Da at a first end portion (end portion on the solar cell array LP1 side). The swing shaft Da is provided parallel to the surface of the solar cell array LP1 and is fixed to the solar cell array LP1 via a bearing or the like. One end of the transport portion Db (the end on the right side in FIG. 22) is attached to the swing shaft Da. That is, the transport portion Db is provided so as to be swingable with respect to the solar cell array LP1 by the swing shaft Da.
 搬送部Dbは、その他方の端部(図22では右側の端部)が太陽電池アレイLP1と隣接する太陽電池アレイLP2の端部に載せられている。具体的には、太陽電池アレイLP2の太陽電池アレイLP1側の端部には、保持プレートLMが設けられており、この保持プレートLMの上面に搬送部Dbの他方の端部が載せられている。 The other end (the right end in FIG. 22) of the transport portion Db is placed on the end of the solar cell array LP2 adjacent to the solar cell array LP1. Specifically, a holding plate LM is provided at the end of the solar cell array LP2 on the solar cell array LP1 side, and the other end of the transport portion Db is placed on the upper surface of the holding plate LM. ..
 なお、保持プレートLMの構成はとくに限定されない。隣接する太陽電池アレイLP1,LP2が両者の表面がほぼ同一平面となるように設置されている場合には、搬送部Dbの他方の端部が保持プレートLM上に載せられると、搬送部Dbの表面(つまり搬送路DRの表面)と隣接する太陽電池アレイLP1,LP2の表面とがほぼ同一平面となるように設けられていることが望ましい。 The configuration of the holding plate LM is not particularly limited. When the adjacent solar cell arrays LP1 and LP2 are installed so that their surfaces are substantially flush with each other, when the other end of the transport portion Db is placed on the holding plate LM, the transport portion Db It is desirable that the surface (that is, the surface of the transport path DR) and the surfaces of the adjacent solar cell arrays LP1 and LP2 are provided so as to be substantially flush with each other.
 かかる構成の搬送路DRを設ければ、隣接する太陽電池アレイLP1,LP2の表面の高さに差があっても、搬送部Dbが揺動すれば、太陽電池アレイLP1,LP2間を搬送路DRによって繋ぐことができる。すると、隣接する太陽電池アレイLP1,LP2の表面の高さに差があっても、搬送路DRを介して隣接する太陽電池アレイLP1,LP2間を作業器10に移動させることができる。 If the transport path DR having such a configuration is provided, even if there is a difference in the height of the surfaces of the adjacent solar cell arrays LP1 and LP2, if the transport unit Db swings, the transport path between the solar cell arrays LP1 and LP2. It can be connected by DR. Then, even if there is a difference in the height of the surfaces of the adjacent solar cell arrays LP1 and LP2, the adjacent solar cell arrays LP1 and LP2 can be moved to the work device 10 via the transport path DR.
 なお、搬送部Dbの傾斜角度が大きくなると、搬送路DRと太陽電池アレイLP1,LP2との間を作業器10が移動することが困難になる。例えば、太陽電池アレイLP1,LP2の表面に対する搬送路DRの表面のなす角度が、20度より大きくなると搬送路DRから太陽電池アレイLP1,LP2への移動が困難になる。したがって、搬送路DRに搬送部Dbの揺動角度を検出するセンサを設けて、一定の角度以上であることをセンサが検出すると、搬送路DRと太陽電池アレイLP1,LP2との間で作業器10が移動しないように、制御装置40が牽引機構21の駆動機構25の作動を制御するようにしてもよい。もちろん、作業器10自体に搬送路DRの傾きを検出するセンサを設けて、このセンサからの信号に基づいて制御装置40が牽引機構21の駆動機構25の作動を制御するようにしてもよい。 If the inclination angle of the transport unit Db becomes large, it becomes difficult for the work device 10 to move between the transport path DR and the solar cell arrays LP1 and LP2. For example, if the angle formed by the surface of the transport path DR with respect to the surface of the solar cell arrays LP1 and LP2 is larger than 20 degrees, it becomes difficult to move from the transport path DR to the solar cell arrays LP1 and LP2. Therefore, a sensor for detecting the swing angle of the transport unit Db is provided in the transport path DR, and when the sensor detects that the angle is equal to or higher than a certain angle, the work equipment is installed between the transport path DR and the solar cell arrays LP1 and LP2. The control device 40 may control the operation of the drive mechanism 25 of the traction mechanism 21 so that the 10 does not move. Of course, a sensor for detecting the inclination of the transport path DR may be provided in the work equipment 10 itself, and the control device 40 may control the operation of the drive mechanism 25 of the traction mechanism 21 based on the signal from this sensor.
 また、隣接する太陽電池アレイLP1,LP2間で高さに差がある場合には、索状部材22から太陽電池アレイLP1までの鉛直方向の距離と、索状部材22から太陽電池アレイLP2までの鉛直方向の距離と、に差が生じる。したがって、索状部材22は、両者の差に対応できる程度の撓みを許容するように設ければよい。 When there is a difference in height between the adjacent solar cell arrays LP1 and LP2, the vertical distance from the cord-shaped member 22 to the solar cell array LP1 and the distance from the cord-shaped member 22 to the solar cell array LP2 There is a difference between the vertical distance and the distance. Therefore, the cord-shaped member 22 may be provided so as to allow bending to a degree corresponding to the difference between the two.
 とくに、太陽電池アレイLP1,LP2が揺動する場合には、太陽電池アレイLP1,LP2の揺動角度にズレが生じると、作業器10の移動が困難になる。例えば、太陽電池アレイLP1の表面上を移動していたときの作業器10の揺動軸SSに対する角度(揺動軸SS周りの角度)と、太陽電池アレイLP2の表面の角度が異なる可能性がある。この場合、作業器10が搬送路DRを通って太陽電池アレイLP1から太陽電池アレイLP2に移動すると、太陽電池アレイLP2に作業器10が接触したりして作業器10が落下する可能性がある。かかる問題を防ぐ上では、搬送路DRの長さを、太陽電池アレイLP1,LP2の揺動角度のズレが一定以上になると、搬送路DRの他端部が保持プレートLMの上面から外れるようにすればよい。つまり、図22であれば、太陽電池アレイLP1,LP2の揺動角度が同じであれば、搬送路DRの他端部が保持プレートLMの上面に載せられた状態を維持でき(図22(A))、太陽電池アレイLP1よりも太陽電池アレイLP2が水平に対して大きく傾いた場合には、搬送路DRの他端部が保持プレートLMの上面から外れるように(図22(B))、搬送部Dbの長さを調整すればよい。 In particular, when the solar cell arrays LP1 and LP2 swing, if the swing angles of the solar cell arrays LP1 and LP2 deviate, it becomes difficult to move the work equipment 10. For example, there is a possibility that the angle of the work device 10 with respect to the swing axis SS (the angle around the swing axis SS) when moving on the surface of the solar cell array LP1 and the angle of the surface of the solar cell array LP2 are different. is there. In this case, when the work device 10 moves from the solar cell array LP1 to the solar cell array LP2 through the transport path DR, the work device 10 may come into contact with the solar cell array LP2 and the work device 10 may fall. .. In order to prevent such a problem, the length of the transport path DR is set so that the other end of the transport path DR deviates from the upper surface of the holding plate LM when the deviation of the swing angle of the solar cell arrays LP1 and LP2 exceeds a certain level. do it. That is, in FIG. 22, if the swing angles of the solar cell arrays LP1 and LP2 are the same, the other end of the transport path DR can be maintained in a state of being placed on the upper surface of the holding plate LM (FIG. 22 (A). )), When the solar cell array LP2 is tilted more than the solar cell array LP1 with respect to the horizontal, the other end of the transport path DR is separated from the upper surface of the holding plate LM (FIG. 22 (B)). The length of the transport portion Db may be adjusted.
 この場合も、搬送路DRに搬送部Dbの揺動角度を検出するセンサを設けて、制御装置40が牽引機構21の駆動機構25の作動を制御するようにしてもよい。つまり、搬送部Dbの表面が太陽電池アレイLP1,LP2の表面に対して一定の角度以上であることをセンサが検出すると、制御装置40によって搬送路DRと太陽電池アレイLP1,LP2との間で作業器10が移動しないように牽引機構21の駆動機構25の作動を制御するようにしてもよい。もちろん、作業器10自体に搬送路DRの傾きやを搬送路DRの有無を検出するセンサを設けて、このセンサからの信号に基づいて制御装置40が牽引機構21の駆動機構25の作動を制御するようにしてもよい。 In this case as well, a sensor for detecting the swing angle of the transport unit Db may be provided in the transport path DR so that the control device 40 controls the operation of the drive mechanism 25 of the traction mechanism 21. That is, when the sensor detects that the surface of the transport unit Db is at a certain angle or more with respect to the surface of the solar cell arrays LP1 and LP2, the control device 40 betweens the transport path DR and the solar cell arrays LP1 and LP2. The operation of the drive mechanism 25 of the traction mechanism 21 may be controlled so that the work device 10 does not move. Of course, the work equipment 10 itself is provided with a sensor for detecting the inclination of the transport path DR and the presence / absence of the transport path DR, and the control device 40 controls the operation of the drive mechanism 25 of the traction mechanism 21 based on the signal from this sensor. You may try to do it.
<並列に配置された太陽電池アレイLPの場合>
 つぎに、図4に示すように、揺動軸SSの軸方向と交差する方向に沿って並んで配設された太陽電池アレイLPで作業器10を共有する場合を説明する。
<In the case of solar cell array LP arranged in parallel>
Next, as shown in FIG. 4, a case where the work equipment 10 is shared by the solar cell array LPs arranged side by side along the direction intersecting the axial direction of the swing shaft SS will be described.
 例えば、図4に示すように、隣接する太陽電池アレイLPの揺動軸SSの軸方向の両端より外方に一対の軌道RL,RLを設置し、退避部30を一方の軌道RLに沿って移動可能に設ける。また、牽引機構21において、太陽電池アレイLPの各端部に設けられる装置も、一対の軌道RL,RLに沿って移動できるように設ける。 For example, as shown in FIG. 4, a pair of track RLs and RLs are installed outward from both ends in the axial direction of the swing axis SS of the adjacent solar cell array LPs, and the retracting portion 30 is provided along one track RL. Provided so that it can be moved. Further, in the traction mechanism 21, devices provided at each end of the solar cell array LP are also provided so as to be able to move along the pair of orbits RL, RL.
 例えば、一対の軌道RL,RLに沿って移動する一対のステーションST,STをそれぞれ設けて、これらに退避部30や牽引機構21の各装置を配置しておく。すると、一対のステーションST,STを同時に一対の軌道RL,RLに沿って移動させれば、作業装置1を一の太陽電池アレイLPから他の太陽電池アレイLPに移動させることができる。この場合、退避部30を一対のステーションST,STの両方に設けるようにしてもよい。 For example, a pair of stations ST and ST that move along a pair of tracks RL and RL are provided, and each device of the retracting portion 30 and the traction mechanism 21 is arranged therein. Then, if the pair of stations ST and ST are simultaneously moved along the pair of orbitals RL and RL, the working device 1 can be moved from one solar cell array LP to another solar cell array LP. In this case, the evacuation section 30 may be provided in both the pair of stations ST and ST.
 なお、上記構成を採用した場合、作業装置1を太陽電池アレイLP間で移動させる際に、牽引機構21の索状部材22が太陽電池アレイLPと接触する可能性がある。したがって、上述した構成を採用する場合には、作業装置1を移動させる状態において、索状部材22等が太陽電池アレイLPと接触しないように設置することが必要になる。例えば、トラッキングタイプの太陽電池アレイLPにおいて、太陽電池アレイLPの表面を水平に配置した状態で作業装置1を移動させるのであれば、牽引機構21は、その索状部材22の全体が水平に配置した太陽電池アレイLPの表面よりも上方に位置するように設置しておけばよい。また、太陽電池アレイLPの表面がある程度傾斜した状態(例えば、30°程度水平に対して傾斜した状態)で作業装置1を移動させる場合には、太陽電池アレイLPの上端よりも上方に索状部材22が位置するように配置すればよい。 When the above configuration is adopted, there is a possibility that the cord-like member 22 of the traction mechanism 21 comes into contact with the solar cell array LP when the working device 1 is moved between the solar cell array LPs. Therefore, when the above-described configuration is adopted, it is necessary to install the work device 1 so that the cord-shaped member 22 and the like do not come into contact with the solar cell array LP in the moving state. For example, in a tracking type solar cell array LP, if the working device 1 is moved with the surface of the solar cell array LP arranged horizontally, the traction mechanism 21 has the entire cord-shaped member 22 arranged horizontally. It may be installed so as to be located above the surface of the solar cell array LP. Further, when the working device 1 is moved in a state where the surface of the solar cell array LP is inclined to some extent (for example, in a state where the surface is inclined with respect to the horizontal by about 30 °), a cord shape is formed above the upper end of the solar cell array LP. The member 22 may be arranged so as to be located.
 また、一対のステーションST,STに作業装置1を昇降する機構を設けてもよい。作業装置1を昇降する機構はとくに限定されず、例えば、各ステーションSTに、軌道RLを走行する走行体と、走行体よりも上方に位置するベース部材と、を設ける。そして、ベース部材に、退避部30や牽引機構21の各装置が配置する。そして、走行体とベース部材との間に昇降装置(シリンダ機構やネジ機構等の公知の機構)を設ければ、昇降装置を作動させることで作業装置1をベース部材とともに持ち上げることができる。この場合、退避部30と太陽電池アレイLPの表面との間で作業器10を移動させるときには、両者の高さを合せる必要がある。両者の高さを合わせる方法はとくに限定されない。例えば、ベース部材等にカメラや光センサ等のセンサを設けておき、このセンサで揺動軸SSの位置を把握するようにする。そして、センサで検出した揺動軸SSの位置と昇降装置の作動量等に基づくベース部材の位置とに基づいて、昇降装置の制御部(またはステーションSTの制御部)が自動で昇降装置の作動量を調整すれば、両者の高さを合わせることができる。 Further, the pair of stations ST and ST may be provided with a mechanism for raising and lowering the work device 1. The mechanism for raising and lowering the work device 1 is not particularly limited, and for example, each station ST is provided with a traveling body traveling on the track RL and a base member located above the traveling body. Then, each device of the retracting portion 30 and the traction mechanism 21 is arranged on the base member. Then, if an elevating device (a known mechanism such as a cylinder mechanism or a screw mechanism) is provided between the traveling body and the base member, the working device 1 can be lifted together with the base member by operating the elevating device. In this case, when moving the work equipment 10 between the retracting portion 30 and the surface of the solar cell array LP, it is necessary to match the heights of both. The method of adjusting the heights of the two is not particularly limited. For example, a sensor such as a camera or an optical sensor is provided on the base member or the like, and the position of the swing shaft SS is grasped by this sensor. Then, based on the position of the swing shaft SS detected by the sensor and the position of the base member based on the operating amount of the elevating device, the control unit of the elevating device (or the control unit of the station ST) automatically operates the elevating device. By adjusting the amount, the heights of both can be adjusted.
 また、かかる構成を採用すれば、牽引機構21を牽引機構21等が太陽電池アレイLPより上方に配置できない場合であっても、作業装置1を太陽電池アレイLP間で移動させることができる。つまり、具体的には、牽引機構21等が太陽電池アレイLPより下方に位置する部分を有している場合でも、作業装置1を太陽電池アレイLP間で移動させることができる。この場合には、作業装置1の全体が太陽電池アレイLPよりも上方に位置するまで、または、作業装置1において移動の障害となる部材が太陽電池アレイLPよりも上方に位置するまで作業装置1を持ち上げた状態で、作業装置1を移動させればよい。 Further, if such a configuration is adopted, the working device 1 can be moved between the solar cell array LPs even when the traction mechanism 21 or the like cannot be arranged above the solar cell array LP. That is, specifically, even when the traction mechanism 21 or the like has a portion located below the solar cell array LP, the working device 1 can be moved between the solar cell array LPs. In this case, the working device 1 is located until the entire working device 1 is located above the solar cell array LP, or until the member which hinders the movement of the working device 1 is located above the solar cell array LP. The work device 1 may be moved while the device 1 is lifted.
 さらに、かかる構成を採用すれば、隣接する太陽電池アレイLP同士の高さが異なっていても、作業装置1を複数の太陽電池アレイLPで共有することができる。例えば、不整地に複数の太陽電池アレイLPを設けた場合、太陽電池アレイLPを設置する場所で太陽電池アレイLPの高さが異なる可能性が有る。この様な場所でも、各太陽電池アレイLPに適した高さに作業装置1を配置することができるので、不整地でも、複数の太陽電池アレイLPで作業装置1を共有することができる。 Further, if such a configuration is adopted, the working device 1 can be shared by a plurality of solar cell array LPs even if the heights of the adjacent solar cell array LPs are different. For example, when a plurality of solar cell array LPs are provided on rough terrain, the height of the solar cell array LPs may differ depending on where the solar cell array LPs are installed. Even in such a place, the working device 1 can be arranged at a height suitable for each solar cell array LP, so that the working device 1 can be shared by a plurality of solar cell array LPs even on rough terrain.
 なお、トラッキングタイプの太陽電池アレイLPの場合には、一対のステーションST,ST(作業装置1を昇降する機構を有する場合にはベース部材)が揺動する構成としてもよい。つまり、一対のステーションST,STに設けられた退避部30が揺動し、退避部30の上面が太陽電池アレイLPの表面と同一平面になるように設置する構成としてもよい。この構成とすれば、太陽電池アレイLPの揺動角度がどのような角度になっていても、退避部30の上面を太陽電池アレイLPの表面と一致させれば、退避部30の上面と太陽電池アレイLPの表面とを同一平面にできる。すると、太陽電池アレイLPの揺動角度に係らず、作業部10を退避部30と太陽電池アレイLPとの間で移動させることができる。この場合、太陽電池アレイLPの表面と退避部30の上面との角度を一致させることが必要になるが、種々のセンサで太陽電池アレイLPの表面の水平(または鉛直)に対する角度を検出し、検出された太陽電池アレイLPの表面の角度と退避部30の上面との角度を一致させればよい。この場合、太陽電池アレイLPの表面の角度は、例えば、カメラや光センサ、また、揺動軸SSの回転角度によって検出してもよい。また、太陽電池アレイLPの表面と退避部30の上面とのズレをカメラや光センサで検出して、両者のズレが一定の範囲(例えば0~1度以内)になるようにしてもよい。 In the case of the tracking type solar cell array LP, the pair of stations ST and ST (or the base member when a mechanism for raising and lowering the work device 1) may swing. That is, the retractable portions 30 provided in the pair of stations ST and ST may swing so that the upper surface of the retractable portions 30 is flush with the surface of the solar cell array LP. With this configuration, regardless of the swing angle of the solar cell array LP, if the upper surface of the retractable portion 30 matches the surface of the solar cell array LP, the upper surface of the retractable portion 30 and the sun The surface of the battery array LP can be flush with the surface. Then, the working unit 10 can be moved between the retracting unit 30 and the solar cell array LP regardless of the swing angle of the solar cell array LP. In this case, it is necessary to match the angle between the surface of the solar cell array LP and the upper surface of the retracting portion 30, but various sensors detect the angle of the surface of the solar cell array LP with respect to the horizontal (or vertical). The angle of the detected surface of the solar cell array LP and the angle of the upper surface of the retracting portion 30 may be matched. In this case, the angle of the surface of the solar cell array LP may be detected by, for example, the rotation angle of the camera, the optical sensor, or the swing axis SS. Further, the deviation between the surface of the solar cell array LP and the upper surface of the retracting portion 30 may be detected by a camera or an optical sensor so that the deviation between the two is within a certain range (for example, within 0 to 1 degree).
 さらに、トラッキングタイプの太陽電池アレイLPの場合は、ステーションSTの上述したベース部材が揺動するようになっていることが望ましい。この場合、ベース部材を揺動させることによって、退避部30の上面と太陽電池アレイLPの表面とを同一平面になるように調整することができる。すると、太陽電池アレイLPの表面がどのような角度になっていても、太陽電池アレイLPと、ステーションSTのベース部材上の退避部30との間で作業器10を移動させることができる。この場合、太陽電池アレイLPの角度とベース部材の角度は、種々の方法で一致させることができる。例えば、太陽電池アレイLPを作動させる機器からの信号に基づいて太陽電池アレイLPの角度をステーションSTの制御部が把握し、太陽電池アレイLPの角度と一致するようにベース部材の角度を調整するようにできる。また、ステーションSTにカメラや光センサ等を設けて、その信号に基づいてステーションSTの制御部が太陽電池アレイLPの角度を把握して、太陽電池アレイLPの角度と一致するようにベース部材の角度を調整するようにできる。 Further, in the case of the tracking type solar cell array LP, it is desirable that the above-mentioned base member of the station ST swings. In this case, by swinging the base member, the upper surface of the retracting portion 30 and the surface of the solar cell array LP can be adjusted to be flush with each other. Then, the work device 10 can be moved between the solar cell array LP and the retracted portion 30 on the base member of the station ST regardless of the angle of the surface of the solar cell array LP. In this case, the angle of the solar cell array LP and the angle of the base member can be matched by various methods. For example, the control unit of the station ST grasps the angle of the solar cell array LP based on the signal from the device that operates the solar cell array LP, and adjusts the angle of the base member so as to match the angle of the solar cell array LP. Can be done. Further, a camera, an optical sensor, or the like is provided in the station ST, and the control unit of the station ST grasps the angle of the solar cell array LP based on the signal, and the base member so as to match the angle of the solar cell array LP. You can adjust the angle.
 なお、作業装置1の太陽電池アレイLP間を移動させる機構は、上述したような作業装置1(つまり牽引機構21を有する作業装置1)を移動する場合以外にも使用することができる。例えば、太陽電池アレイLPを自走して移動する作業装置や作業ロボットを使用する場合でも、作業装置や作業ロボットを退避させる退避部30を一対のステーションST,STや一方のステーションSTに設ければ、1つの作業装置や作業ロボットを複数の太陽電池アレイLPの作業に使用することができる。太陽電池アレイLPを自走して移動する作業装置や作業ロボットの場合には、隣接する太陽電池アレイLPの揺動軸SSの軸方向の一方の端部より外方に一つの軌道RLを設置して、その軌道RLにステーションSTを設けてもよい。なお、自走して移動する作業装置や作業ロボットの場合には、上述したように各ステーションSTが作業装置や作業ロボットを昇降する機構を有していれば、作業者がステーションSTから作業装置1を降ろしたり載せたりする作業を楽にすることができる。 The mechanism for moving between the solar cell array LPs of the working device 1 can be used other than the case of moving the working device 1 (that is, the working device 1 having the traction mechanism 21) as described above. For example, even when a work device or a work robot that moves by itself on the solar cell array LP is used, a retracting unit 30 for retracting the work device or the work robot is provided in a pair of stations ST, ST or one station ST. For example, one work device or work robot can be used for the work of a plurality of solar cell array LPs. In the case of a work device or a work robot that moves by itself on the solar cell array LP, one track RL is installed outside from one end in the axial direction of the swing axis SS of the adjacent solar cell array LP. Then, a station ST may be provided on the track RL. In the case of a work device or work robot that moves by itself, if each station ST has a mechanism for raising and lowering the work device or work robot as described above, the worker can move the work device from the station ST. The work of lowering and loading 1 can be facilitated.
 また、不整地に複数の太陽電池アレイLPを設けた場合など、軌道RLを設置できない場合がある。このような場合には軌道RLを設置せずに、各ステーションSTとして、車輪やクローラ等で地上を走行するものを採用してもよい。 In addition, there are cases where the track RL cannot be installed, such as when multiple solar cell array LPs are installed on rough terrain. In such a case, instead of installing the track RL, as each station ST, those traveling on the ground with wheels, crawlers, or the like may be adopted.
<除電部材>
 作業器10の掃除部材15が太陽電池アレイLPの表面を擦ることによって、太陽電池アレイLPや作業器10のシャシフレーム11等に静電気が帯電する可能性がある。索状部材22が金属ベルトなどの導電性材料を形成されていれば、作業器10のシャシフレーム11等は常時アースされた状態となるので、作業器10のシャシフレーム11等に静電気は蓄積されることはない。しかし、索状部材22が絶縁性の材料で形成されていれば、作業器10のシャシフレーム11等に静電気が蓄積される可能性がある。すると、作業器10のシャシフレーム11等にアースされた物体が接近した際にシャシフレーム11から放電される場合がある。放電が発生した場合、マイクロコントローラ等の誤動作や電子部品の故障等の問題が生じるため、帯電した静電気を作業器10のシャシフレーム11等から除去する必要がある。
<Static elimination member>
When the cleaning member 15 of the work device 10 rubs the surface of the solar cell array LP, static electricity may be charged to the solar cell array LP, the chassis frame 11 of the work device 10, and the like. If the cord-like member 22 is formed of a conductive material such as a metal belt, the chassis frame 11 or the like of the work equipment 10 is always in a grounded state, so that static electricity is accumulated in the chassis frame 11 or the like of the work equipment 10. There is nothing. However, if the cord-like member 22 is made of an insulating material, static electricity may be accumulated in the chassis frame 11 or the like of the work equipment 10. Then, when an object grounded approaches the chassis frame 11 or the like of the work equipment 10, the chassis frame 11 may discharge the electric discharge. When an electric discharge occurs, problems such as malfunction of the microprocessor and the failure of electronic parts occur, so it is necessary to remove the charged static electricity from the chassis frame 11 or the like of the work equipment 10.
 そこで、帯電した静電気をシャシフレーム11から除去する除電部材を設けておくことが望ましい。この除電部材を設ける位置はとくに限定されない。 Therefore, it is desirable to provide a static eliminator member that removes the charged static electricity from the chassis frame 11. The position where the static elimination member is provided is not particularly limited.
 例えば、退避部30に作業器10が退避すると、退避部30においてアースされた部材に除電部材が接触するようになっていればよい。
 また、除電部材は、作業器10が太陽電池アレイLP上を移動した際に、太陽電池アレイLPを構成する太陽電池モジュールPのパネルフレームと接触する位置に設けてもよい。この場合には、作業器10が移動している状態において、除電部材を通してパネルフレームに放電させることができる。
For example, when the work device 10 retracts to the retracting portion 30, the static elimination member may come into contact with the member grounded in the retracting portion 30.
Further, the static elimination member may be provided at a position where the working device 10 comes into contact with the panel frame of the solar cell module P constituting the solar cell array LP when the working device 10 moves on the solar cell array LP. In this case, the panel frame can be discharged through the static elimination member while the working device 10 is moving.
 また、除電部材は、掃除部材15に対して、移動方向の後方に位置するように設けることが望ましい。この場合、除電部材からシャシフレーム11に蓄積したある程度の静電気を太陽電池アレイLPの表面に放出することができる。 Further, it is desirable that the static elimination member is provided so as to be located behind the cleaning member 15 in the moving direction. In this case, a certain amount of static electricity accumulated in the chassis frame 11 can be released from the static eliminator member to the surface of the solar cell array LP.
 本明細書における、アースされた部材とは、直接または間接的に地面に電気的に接続された導電性の部材を意味している。例えば、太陽電池モジュールPがパネルフレームを有する場合には、パネルフレームも架台MTに連結されるので、アースされた部材に相当する。さらに、太陽電池アレイLPの近傍にある建造物や設備等に除電部材を接触させる場合には、この建造物や設備等もアースされた部材に相当する。 In the present specification, the grounded member means a conductive member that is directly or indirectly electrically connected to the ground. For example, when the solar cell module P has a panel frame, the panel frame is also connected to the gantry MT, so that it corresponds to a grounded member. Further, when the static elimination member is brought into contact with a building or equipment in the vicinity of the solar cell array LP, the building or equipment also corresponds to the grounded member.
 また、除電部材は、シャシフレーム11の静電気を外部に流すことができるものであればよく、とくにその形状や構造、素材は限定されない。例えば、金属製の本体の先端に、導電性材料によって形成されているブラシ状の部材を設けたものを採用することができる。また、導電性材料によって形成された柔軟性を有する帯状やひも状の部材や導電性繊維を除電部材として採用することもできる。
 さらに、作業器10が掃除部材15を設け、掃除部材15としてブラシを設けた場合には、導電性材料によって形成された柔軟性を有する帯状やひも状の部材や導電性繊維を除電部材として設けてもよい。また、ブラシの一部または全部を形成する素材として導電性材料を使用してもよい。つまり、ブラシ自体が除電部材と同等の機能を有するようにしてもよい。例えば、ブラシの軸部を導電性材料(金属など)で形成したり、ブラシ部を導電性材料によって形成された柔軟性を有する帯状やひも状の部材、導電性繊維によって形成したりしてもよい。また、ブラシに除電部材を設けたり、ブラシ自体が除電部材と同等の機能を有するようにしたりした場合には、シャシフレーム11に連結された除電部材は必ずしも設けなくてもよい。
<自走式ロボット>
Further, the static eliminator member may be any as long as it can allow static electricity of the chassis frame 11 to flow to the outside, and its shape, structure, and material are not particularly limited. For example, a metal body provided with a brush-like member formed of a conductive material at the tip thereof can be adopted. Further, a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material can also be adopted as the static elimination member.
Further, when the working device 10 is provided with the cleaning member 15 and the brush is provided as the cleaning member 15, flexible strip-shaped or string-shaped members or conductive fibers formed of the conductive material are provided as the static elimination member. You may. Further, a conductive material may be used as a material for forming a part or all of the brush. That is, the brush itself may have the same function as the static elimination member. For example, the shaft portion of the brush may be formed of a conductive material (metal, etc.), or the brush portion may be formed of a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material. Good. Further, when the brush is provided with a static elimination member or the brush itself has a function equivalent to that of the static elimination member, the static elimination member connected to the chassis frame 11 does not necessarily have to be provided.
<Self-propelled robot>
 第二実施形態の作業装置は、並べて配置された複数の太陽電池モジュールを有する太陽電池アレイの表面を自走して作業を実施する作業装置である。 The work device of the second embodiment is a work device that self-propells on the surface of a solar cell array having a plurality of solar cell modules arranged side by side to perform work.
 なお、第二実施形態の作業装置によって作業が実施される太陽電池アレイや、この太陽電池アレイを構成する太陽電池モジュールはとくに限定されない。パネルフレームを有する太陽電池モジュールを複数枚並べて配置されたトラッキングタイプの太陽電池アレイや、パネルフレームを有する固定された太陽電池モジュールを複数有する太陽電池アレイ(言い換えればトラッキングタイプでない太陽電池アレイ、非トラッキングタイプ)にも使用できる。また、フレームレス太陽電池モジュールを並べて配置された太陽電池アレイ(トラッキングタイプおよび非トラッキングタイプを含む)でも使用することができる。 The solar cell array in which the work is carried out by the working device of the second embodiment and the solar cell modules constituting the solar cell array are not particularly limited. A tracking type solar cell array in which a plurality of solar cell modules having a panel frame are arranged side by side, or a solar cell array having a plurality of fixed solar cell modules having a panel frame (in other words, a non-tracking type solar cell array, non-tracking). Can also be used for type). It can also be used in solar cell arrays (including tracking type and non-tracking type) in which frameless solar cell modules are arranged side by side.
 また、本明細書において、「太陽電池モジュールの表面」とは、太陽電池モジュールにおいて発電をする発電領域の表面を意味している。例えば、フレームレス太陽電池モジュールの場合にはほぼ全面が発電領域になるが、パネルフレームを有する太陽電池モジュールの場合にはパネルフレーム以外の部分(平面視でパネルフレームに囲まれた部分)が発電領域になる。
 そして、「太陽電池アレイの表面」とは、「太陽電池モジュールの表面」を意味している。「太陽電池アレイ上」という場合には、パネルフレームを有する太陽電池モジュールで形成された「太陽電池アレイ」では、「太陽電池モジュールの表面」と「パネルフレーム」の両方を含んだ概念である。
Further, in the present specification, the “surface of the solar cell module” means the surface of the power generation region where power is generated in the solar cell module. For example, in the case of a frameless solar cell module, almost the entire surface becomes a power generation area, but in the case of a solar cell module having a panel frame, a part other than the panel frame (a part surrounded by the panel frame in a plan view) generates power. Become an area.
The "surface of the solar cell array" means the "surface of the solar cell module". The term "on the solar cell array" is a concept that includes both the "surface of the solar cell module" and the "panel frame" in the "solar cell array" formed of the solar cell module having the panel frame.
 第二実施形態の作業装置が実施する作業もとくに限定されない。例えば、作業装置が移動する太陽電池アレイの表面の掃除やその表面の欠陥検査、表面形状や部材の厚さ測定、表面温度の測定、表面粗さの測定、表面における光反射率や光沢度の測定、その他の物理量の測定等が第二実施形態の作業装置が実施する作業に該当する。また、太陽電池アレイの表面上にある物質の収集や観察、表面の付着物や塗装等の剥離、塗装及びその前の下地処理、コーティング作業も第二実施形態の作業装置が実施する作業に該当する。さらに、太陽電池アレイの表面に対するフィルム等の貼付、研磨、マーキング等も第二実施形態の作業装置が実施する作業として挙げることができる。そして、情報提示によるコミュニケーション等も第二実施形態の作業装置が実施する作業として挙げることができる。 The work performed by the work device of the second embodiment is not particularly limited. For example, cleaning the surface of the solar cell array to which the work equipment moves, inspecting defects on the surface, measuring the surface shape and thickness of members, measuring the surface temperature, measuring the surface roughness, measuring the light reflectance and glossiness on the surface. Measurement, measurement of other physical quantities, etc. correspond to the work performed by the work apparatus of the second embodiment. In addition, collection and observation of substances on the surface of the solar cell array, peeling of deposits and paint on the surface, painting and surface treatment before that, and coating work also correspond to the work performed by the work device of the second embodiment. To do. Further, sticking of a film or the like to the surface of the solar cell array, polishing, marking, etc. can also be mentioned as the work performed by the working apparatus of the second embodiment. Then, communication by presenting information and the like can be mentioned as the work to be carried out by the work device of the second embodiment.
 以下では、第二実施形態の作業装置によって、パネルフレームを有する太陽電池モジュールを複数枚並べて形成されたトラッキングタイプの太陽電池アレイの表面を掃除する場合を説明する。 Hereinafter, a case will be described in which the surface of a tracking type solar cell array formed by arranging a plurality of solar cell modules having a panel frame is cleaned by the working device of the second embodiment.
 なお、第二実施形態の作業装置が掃除以外の作業を実施する場合には、後述する掃除部が設けられている位置に、作業用の装置やセンサ、器具などが設けられる。例えば、第二実施形態の作業装置が実施する作業が平面の欠陥検査、表面形状や部材の厚さ測定、温度の測定、表面粗さの測定、表面における光反射率や光沢度の測定、その他の物理量の測定の場合には、各測定に使用される種々のセンサが設けられる。また、第二実施形態の作業装置が実施する作業が太陽電池アレイの表面のコーティング作業や塗装作業の場合には、スプレーノズル等の器具が設けられる。さらに、第二実施形態の作業装置が実施する作業が、太陽電池アレイの表面の付着物や塗装等の剥離処理や研磨処理、コーティング等の前の下地処理であれば、ショットブラストや回転式や振動式の研磨装置が設けられる。第二実施形態の作業装置が実施する作業が太陽電池アレイの表面にフィルム等の貼付を行う場合にはローラ等が設けられる。第二実施形態の作業装置によって情報提示によるコミュニケーション等を行う場合には、ディスプレイやLED、スピーカー等が設けられる。 When the work device of the second embodiment performs work other than cleaning, a work device, a sensor, an instrument, or the like is provided at a position where a cleaning unit, which will be described later, is provided. For example, the work performed by the work apparatus of the second embodiment is surface defect inspection, surface shape and member thickness measurement, temperature measurement, surface roughness measurement, light reflectance and glossiness measurement on the surface, and the like. In the case of measuring the physical quantity of, various sensors used for each measurement are provided. Further, when the work performed by the work apparatus of the second embodiment is a coating work or a painting work on the surface of the solar cell array, an instrument such as a spray nozzle is provided. Further, if the work carried out by the work apparatus of the second embodiment is a peeling treatment such as adhesion or coating on the surface of the solar cell array, a polishing treatment, or a base treatment before coating or the like, shot blasting or rotary type or A vibrating polishing device is provided. When the work performed by the work apparatus of the second embodiment is to attach a film or the like to the surface of the solar cell array, a roller or the like is provided. When communication or the like by presenting information is performed by the work device of the second embodiment, a display, an LED, a speaker, or the like is provided.
<太陽光発電設備SP>
 まず、作業装置1を説明する前に、本実施形態の作業装置1が掃除等の作業を実施する太陽光発電設備SPについて簡単に説明する。図16に示すように、太陽光発電設備SPは、複数枚の太陽電池モジュールPを備えた太陽電池アレイLPを複数列有している。太陽電池アレイLPは、複数枚の太陽電池モジュールPの端縁がほぼ同じ直線状に並ぶように揃えた状態で架台MTの揺動軸SSで連結したものである。より具体的には、太陽電池アレイLPは、複数枚の太陽電池モジュールPをその表面がほぼ同一平面になるように並べて架台MTの揺動軸SSで連結したものである。そして、太陽電池アレイLPは、揺動軸SSを回転させることによって、複数枚の太陽電池モジュールPを同時かつ同じ角度に揺動させることができるようになっている。したがって、太陽電池アレイLPは、複数枚の太陽電池モジュールPを太陽に追従させて、発電効率が最適となるように複数枚の太陽電池モジュールPの表面の傾きを調整することができる。
<Solar power generation equipment SP>
First, before explaining the working device 1, the photovoltaic power generation facility SP in which the working device 1 of the present embodiment performs work such as cleaning will be briefly described. As shown in FIG. 16, the photovoltaic power generation facility SP has a plurality of rows of solar cell array LPs including a plurality of solar cell modules P. The solar cell array LP is connected by the swing axis SS of the gantry MT in a state where the end edges of the plurality of solar cell modules P are aligned so as to be lined up in substantially the same straight line. More specifically, in the solar cell array LP, a plurality of solar cell modules P are arranged so that their surfaces are substantially flush with each other and connected by a swing axis SS of a gantry MT. The solar cell array LP can swing a plurality of solar cell modules P at the same time and at the same angle by rotating the swing shaft SS. Therefore, the solar cell array LP can make the plurality of solar cell modules P follow the sun and adjust the inclination of the surface of the plurality of solar cell modules P so as to optimize the power generation efficiency.
 通常、太陽電池アレイLPは、その表面が水平になった状態で、複数枚の太陽電池モジュールPが揺動軸SSに沿って並んでいる方向と直交する方向の両端部(第一端部P1および第二端部P2)間の中間線が揺動軸SSの中心軸のほぼ鉛直上方(80mm程度までのズレが生じている場合も含む)に位置するように揺動軸SSに連結されている。 Normally, the solar cell array LP has both ends (first end portion P1) in a direction orthogonal to the direction in which a plurality of solar cell modules P are arranged along the swing axis SS in a state where the surface thereof is horizontal. And the intermediate line between the second end P2) is connected to the swing shaft SS so as to be located approximately vertically above the central axis of the swing shaft SS (including the case where a deviation of up to about 80 mm occurs). There is.
 なお、太陽電池アレイLPは、複数枚の太陽電池モジュールPが一列に並んでいる場合と、複数枚の太陽電池モジュールPが並んだ列を複数段有する場合とがある。本明細書において、「太陽電池アレイLPの第一端部P1および第二端部P2」とは、揺動軸SSの軸方向と直交する方向において最も外方に位置する太陽電池モジュールPの端部を意味するものとする。例えば、太陽電池アレイLPが、複数枚の太陽電池モジュールPが並んでいる列を一列のみ有する場合は、太陽電池モジュールPの両端部が、「太陽電池アレイLPの第一端部P1および第二端部P2」になる。また、太陽電池アレイLPが複数枚の太陽電池モジュールPが並んだ列を上下2数段有する場合であれば、上段の太陽電池モジュールPの上端部と下段の太陽電池モジュールPの下端部が「太陽電池アレイLPの第一端部P1および第二端部P2」に相当することになる。
 なお、個々の「太陽電池モジュールP」では、揺動軸SSの軸方向と直交する方向の両端部が、「太陽電池モジュールPの第一端部P1および第二端部P2」になる。
The solar cell array LP may have a plurality of solar cell modules P arranged in a row or may have a plurality of rows in which a plurality of solar cell modules P are arranged. In the present specification, the "first end portion P1 and second end portion P2 of the solar cell array LP" are the ends of the solar cell module P located on the outermost side in the direction orthogonal to the axial direction of the swing axis SS. It shall mean a part. For example, when the solar cell array LP has only one row in which a plurality of solar cell modules P are arranged, both ends of the solar cell module P are "first end portions P1 and second of the solar cell array LP". It becomes "end P2". Further, when the solar cell array LP has two rows of upper and lower solar cell modules P in which a plurality of solar cell modules P are arranged, the upper end portion of the upper solar cell module P and the lower end portion of the lower solar cell module P are ". It corresponds to the first end portion P1 and the second end portion P2 of the solar cell array LP.
In each "solar cell module P", both ends in a direction orthogonal to the axial direction of the swing axis SS are "first end portion P1 and second end portion P2 of the solar cell module P".
 また、「太陽電池アレイLPの端縁」とは、太陽電池アレイLPを構成する太陽電池モジュールPがフレームレス太陽電池モジュールPの場合であれば、太陽電池アレイLPの表面と交差する側面と太陽電池アレイLPの表面とが交わる交線を意味している。
 一方、太陽電池アレイLPを構成する太陽電池モジュールPがパネルフレームを有する太陽電池モジュールPの場合であれば、パネルフレームの上面と交差するパネルフレームの側面が端面になり、パネルフレームの上面とパネルフレームの側面とが交わる交線が、「太陽電池アレイLPの端縁」となる。
 そして、「太陽電池アレイLPの第一端部P1(第二端部P2)」の端縁が「太陽電池アレイLP(または太陽電池モジュールP)の第一端縁(第二端縁)」になる。
 なお、個々の「太陽電池モジュールP」では、フレームレス太陽電池モジュールPの場合は、太陽電池モジュールPの表面と交差する側面と太陽電池モジュールPの表面との交わる交線が、「太陽電池モジュールPの端縁」になる。パネルフレームを有する太陽電池モジュールPの場合であれば、パネルフレームの上面とパネルフレームの上面と交差するパネルフレームの側面との交わる交線が、「太陽電池モジュールPの端縁」になる。そして、「太陽電池モジュールP」における「太陽電池アレイLPの第一端部P1および第二端部P2」に相当する端縁が「太陽電池モジュールPの第一端縁(第二端縁)」になる。
Further, the "edge of the solar cell array LP" means the side surface intersecting the surface of the solar cell array LP and the sun when the solar cell module P constituting the solar cell array LP is a frameless solar cell module P. It means an intersection line that intersects with the surface of the battery array LP.
On the other hand, in the case where the solar cell module P constituting the solar cell array LP is a solar cell module P having a panel frame, the side surface of the panel frame intersecting the upper surface of the panel frame becomes an end surface, and the upper surface of the panel frame and the panel. The intersection line that intersects the side surface of the frame is the "edge of the solar cell array LP".
Then, the end edge of the "first end portion P1 (second end portion P2) of the solar cell array LP" becomes the "first end edge (second end edge) of the solar cell array LP (or the solar cell module P)". Become.
In each "solar cell module P", in the case of the frameless solar cell module P, the intersection of the side surface intersecting the surface of the solar cell module P and the surface of the solar cell module P is the "solar cell module". It becomes "the edge of P". In the case of the solar cell module P having a panel frame, the line of intersection between the upper surface of the panel frame and the side surface of the panel frame intersecting the upper surface of the panel frame is the "edge of the solar cell module P". Then, the edge corresponding to the "first end portion P1 and the second end portion P2 of the solar cell array LP" in the "solar cell module P" is the "first end edge (second end edge) of the solar cell module P". become.
 さらに、「太陽電池アレイLP(または太陽電池モジュールP)の第一端縁(第二端縁)をほぼ同じ直線状に並ぶように揃えた」とは、太陽電池アレイLPにおいて、第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)が完全に直線状に並んでいる場合と、第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)の間に若干のズレが有る場合を含んでいる。第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)に若干のズレが有る場合とは、第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)がほぼ平行であるが若干高さや水平方向においてズレがある場合(例えば0~5mm程度)や太陽電池モジュールPの表面に沿った方向における位置にズレがある場合(例えば0~20mm程度)を含んでいる。また、第一端縁(または第二端縁)を形成する隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)が相対的に傾いている場合を含んでいる。例えば、太陽電池モジュールPの表面と平行な面内において0~1度程度傾いている場合や、太陽電池モジュールPの第一端面(または第二端面)と平行な面内において0~2度程度傾いている場合を含んでいる。 Further, "the first end edge (second end edge) of the solar cell array LP (or the solar cell module P) is aligned so as to be arranged in substantially the same linear shape" means that the first end edge of the solar cell array LP (or the solar cell module P) is aligned. When the first end edges (or the second end edges) of the adjacent solar cell modules P forming (or the second end edge) are completely aligned, and when the first end edge (or the second end edge) is aligned completely. This includes the case where there is a slight deviation between the first end edges (or the second end edges) of the adjacent solar cell modules P forming the edge). When there is a slight deviation between the first end edges (or the second end edges) of the adjacent solar cell modules P forming the first end edge (or the second end edge), the first end edge (or the second end edge) is formed. When the first end edges (or the second end edges) of the adjacent solar cell modules P forming the second edge) are almost parallel, but there is a slight deviation in height or in the horizontal direction (for example, about 0 to 5 mm). ) And the case where the position of the solar cell module P in the direction along the surface is deviated (for example, about 0 to 20 mm). Further, the case where the first end edges (or the second end edges) of the adjacent solar cell modules P forming the first end edge (or the second end edge) are relatively inclined is included. For example, when it is tilted by about 0 to 1 degree in the plane parallel to the surface of the solar cell module P, or about 0 to 2 degrees in the plane parallel to the first end surface (or the second end surface) of the solar cell module P. Including the case of tilting.
 また、「複数枚の太陽電池モジュールPの表面がほぼ同一平面」とは、隣接する太陽電池モジュールPの表面のなす角度に0~1度程度のズレがある場合を含む概念である。また、隣接する太陽電池モジュールPの表面で若干高さの差がある場合(例えば0~5mm程度)も含んでいる。 Further, "the surfaces of a plurality of solar cell modules P are substantially flush with each other" is a concept including a case where the angles formed by the surfaces of adjacent solar cell modules P are displaced by about 0 to 1 degree. It also includes the case where there is a slight difference in height between the surfaces of the adjacent solar cell modules P (for example, about 0 to 5 mm).
<作業装置1>
 以下、図面に基づいて、本実施形態の作業装置1を説明する。
 なお、図面では、構造を分かりやすくするために、適宜記載を省いている部分がある。
<Working device 1>
Hereinafter, the working device 1 of the present embodiment will be described with reference to the drawings.
In the drawings, some parts are omitted as appropriate to make the structure easier to understand.
 本実施形態の作業装置1は、太陽光発電設備SPにおける複数枚の太陽電池モジュールPを備えた太陽電池アレイLP上を作業ロボット101に自走させて、複数枚の太陽電池モジュールPの表面を作業ロボット101によって掃除するものである。 The working device 1 of the present embodiment causes the working robot 101 to self-propell on the solar cell array LP provided with the plurality of solar cell modules P in the photovoltaic power generation facility SP, and causes the surface of the plurality of solar cell modules P to run on its own. It is cleaned by the working robot 101.
 本実施形態の作業装置1は、上述した作業ロボット101と、作業ロボット101を太陽電池アレイLP上から退避させる退避部30と、を備えている(図17参照)。 The work device 1 of the present embodiment includes the above-mentioned work robot 101 and a retracting unit 30 for retracting the work robot 101 from the solar cell array LP (see FIG. 17).
<作業ロボット101>
 まず、作業ロボット101は、太陽電池アレイLP上を自走して、太陽電池アレイLPの表面を掃除するものである。この作業ロボット101は、掃除部110を備えており、作業ロボット101が太陽電池アレイLPの表面上を走行すれば、掃除部110によって太陽電池アレイLPの表面を掃くように掃除することができるものである。ここでいう「太陽電池アレイLPの表面を掃くように」とは、箒で太陽電池アレイLPの表面を掃くような場合と、ブラシで太陽電池アレイLPの表面を擦るような場合、スクレーパや布などを太陽電池アレイLPの表面に沿って移動させる場合を含む概念である。なお、作業ロボット101の詳細は後述する。
<Working robot 101>
First, the working robot 101 self-propells on the solar cell array LP and cleans the surface of the solar cell array LP. The work robot 101 includes a cleaning unit 110, and if the work robot 101 runs on the surface of the solar cell array LP, the cleaning unit 110 can clean the surface of the solar cell array LP as if it were swept. Is. "Sweeping the surface of the solar cell array LP" here means a scraper or cloth when sweeping the surface of the solar cell array LP with a broom and when rubbing the surface of the solar cell array LP with a brush. It is a concept including the case where such as is moved along the surface of the solar cell array LP. The details of the work robot 101 will be described later.
<退避部30>
 本実施形態の作業装置1では,作業ロボット101が掃除などの作業を行わない状態において、作業ロボット101を太陽電池アレイLP上から退避させておくための退避部30を設けている。この退避部30は、太陽電池アレイLPの一方の端部において揺動軸SSの軸方向の外方に配置されている(図17では左側の端部)。この退避部30は、その上面がほぼ水平に配置されている。さらに、退避部30の高さは、太陽電池アレイLPの表面が水平になった状態における太陽電池アレイLPの表面の高さとほぼ同じになるように設けられている。したがって、太陽電池アレイLPの表面を水平にすれば、退避部30から太陽電池アレイLP上に作業ロボット101を移動させたり、太陽電池アレイLP上から退避部30に作業ロボット101を退避させたりできる。
<Evacuation section 30>
The work device 1 of the present embodiment is provided with a retracting unit 30 for retracting the work robot 101 from the solar cell array LP in a state where the work robot 101 does not perform work such as cleaning. The retracting portion 30 is arranged at one end of the solar cell array LP on the outer side in the axial direction of the swing shaft SS (the left end in FIG. 17). The upper surface of the retracting portion 30 is arranged substantially horizontally. Further, the height of the retracting portion 30 is provided so as to be substantially the same as the height of the surface of the solar cell array LP when the surface of the solar cell array LP is horizontal. Therefore, if the surface of the solar cell array LP is made horizontal, the working robot 101 can be moved from the retracting unit 30 onto the solar cell array LP, or the working robot 101 can be retracted from the solar cell array LP to the retracting unit 30. ..
 なお、退避部30は、太陽電池アレイLPとともに揺動するようになっていてもよい。この場合には、退避部30をその上面が太陽電池アレイLPの表面とほぼ同じ平面となるように配置しておく。すると、太陽電池アレイLPの傾きに係らず、作業ロボット101を太陽電池アレイLPと退避部30との間で移動させることができる。 The retracting unit 30 may swing together with the solar cell array LP. In this case, the retracting portion 30 is arranged so that the upper surface thereof is substantially the same plane as the surface of the solar cell array LP. Then, the working robot 101 can be moved between the solar cell array LP and the retracting unit 30 regardless of the inclination of the solar cell array LP.
 なお、太陽電池アレイLPを非トラッキングタイプ(固定型)とした場合には、退避部30は、その上面が太陽電池アレイLP表面と同じ平面上に位置するようにしておくことが望ましい。 When the solar cell array LP is a non-tracking type (fixed type), it is desirable that the upper surface of the retracting portion 30 is located on the same plane as the surface of the solar cell array LP.
<作業装置1の作動>
 作業装置1が以上のような構成であるので、作業ロボット101によって太陽電池アレイLPの表面を掃除することができる。
<Operation of work device 1>
Since the working device 1 has the above configuration, the surface of the solar cell array LP can be cleaned by the working robot 101.
 まず、掃除しない状態では、作業ロボット101は退避部30上に配置されている(図17(A)参照)。
 太陽電池アレイLPの表面を掃除する場合には、まず、太陽電池アレイLPの表面が水平に配置される。すると、太陽電池アレイLPの表面と退避部30の上面が同じ高さになるので、作業ロボット101が退避部30から太陽電池アレイLP上に移動する。
First, in the non-cleaning state, the work robot 101 is arranged on the evacuation section 30 (see FIG. 17 (A)).
When cleaning the surface of the solar cell array LP, first, the surface of the solar cell array LP is arranged horizontally. Then, since the surface of the solar cell array LP and the upper surface of the retracting portion 30 are at the same height, the working robot 101 moves from the retracting portion 30 onto the solar cell array LP.
 太陽電池アレイLP上に移動すると、作業ロボット101は太陽電池アレイLP上を移動して、太陽電池モジュールPの表面を掃除部110によって掃除する。例えば、作業ロボット101は、まず、太陽電池アレイLPの一方の側端縁(揺動軸SSの軸方向に位置する太陽電池モジュールPの第一端縁と交差する端縁)まで移動する。一方の側端縁に到達すると、太陽電池アレイLPの第二端縁から第一端縁に向かって、太陽電池アレイLPを構成する太陽電池モジュールPの側端縁(太陽電池モジュールPの第一端縁と交差する)に沿って移動する。そして、作業ロボット101が第一端縁に到達すれば、掃除部110とともに(つまり作業ロボット101とともに)移動してきた埃を太陽電池アレイLPの第一端縁から落とすことができる。 When moving onto the solar cell array LP, the working robot 101 moves on the solar cell array LP and cleans the surface of the solar cell module P by the cleaning unit 110. For example, the working robot 101 first moves to one side edge of the solar cell array LP (the edge that intersects the first edge of the solar cell module P located in the axial direction of the swing axis SS). When reaching one side edge, the side edge of the solar cell module P constituting the solar cell array LP (the first edge of the solar cell module P) is directed from the second edge to the first edge of the solar cell array LP. Move along the edge). Then, when the work robot 101 reaches the first end edge, the dust that has moved together with the cleaning unit 110 (that is, together with the work robot 101) can be dropped from the first end edge of the solar cell array LP.
 作業ロボット101は、第一端縁に到達すると、その走行方向を180°転換して、第一端縁から第二端縁に向かって走行する。このとき、太陽電池アレイLPの第二端縁から第一端縁に向かって走行した領域(掃除完了領域)から、第一端縁に沿った方向(つまり揺動軸SSに沿った方向)においてズレた位置を走行する。すると、太陽電池アレイLPにおいて掃除していない領域を、第一端縁から第二端縁に向かって走行する際に掃除することができる。なお、この際に、掃除完了領域の一部が再度掃除部110によって掃除されるようになっていてもよい。そして、作業ロボット101が第二端縁に到達すれば、掃除部110とともに(つまり作業ロボット101とともに)移動してきた埃等を太陽電池アレイLPの第二端縁から落とすことができる。 When the work robot 101 reaches the first end edge, it changes its traveling direction by 180 ° and travels from the first end edge to the second end edge. At this time, in the direction along the first end edge (that is, the direction along the swing axis SS) from the region (cleaning completed region) traveling from the second end edge to the first end edge of the solar cell array LP. Drive in a misaligned position. Then, the uncleaned area of the solar cell array LP can be cleaned when traveling from the first end edge to the second end edge. At this time, a part of the cleaning completed area may be cleaned again by the cleaning unit 110. Then, when the work robot 101 reaches the second end edge, dust and the like that have moved together with the cleaning unit 110 (that is, together with the work robot 101) can be removed from the second end edge of the solar cell array LP.
 作業ロボット101が第二端縁に到達すると、その走行方向を180°転換して、再び第二端縁から第一端縁に向かって走行する。このときも、太陽電池アレイLPの第一端縁から第二端縁に向かって走行した領域(掃除完了領域)から、第二端縁に沿った方向(つまり揺動軸SSに沿った方向)においてズレた位置を走行する。すると、太陽電池アレイLPにおいて掃除していない領域を、第二端縁から第一端縁に向かって走行する際に掃除することができる。なお、この際に、掃除完了領域の一部が再度掃除部110によって掃除されるようになっていてもよい。 When the working robot 101 reaches the second end edge, the traveling direction is changed by 180 °, and the working robot 101 travels again from the second end edge toward the first end edge. Also at this time, the direction along the second end edge (that is, the direction along the swing axis SS) from the region (cleaning completion region) traveling from the first end edge to the second end edge of the solar cell array LP. It runs in a misaligned position. Then, the uncleaned area of the solar cell array LP can be cleaned when traveling from the second end edge to the first end edge. At this time, a part of the cleaning completed area may be cleaned again by the cleaning unit 110.
 上記動作を繰り返すことによって、作業ロボット101によって太陽電池アレイLPの表面を掃除することができる。そして、作業ロボット101が太陽電池アレイLPにおける一方の側端縁から他方の側端縁まで移動すると、太陽電池アレイLPの表面の掃除が完了する。 By repeating the above operation, the surface of the solar cell array LP can be cleaned by the working robot 101. Then, when the working robot 101 moves from one side edge of the solar cell array LP to the other side edge, cleaning of the surface of the solar cell array LP is completed.
 作業ロボット101は、掃除が完了すると退避部30に帰還する。このとき、作業ロボット101は、太陽電池アレイLPの端縁に沿って退避部30まで移動する(図17(B)参照)。つまり、太陽電池アレイLPの表面の掃除が完了した位置が太陽電池アレイLPの第二端縁P2であるとすると、この太陽電池アレイLPの第二端縁P2に沿って、揺動軸SSに沿った方向に作業ロボット101は移動する。そして、太陽電池アレイLPの側端縁(退避部30が設けられている側の側端縁)まで移動すると、次に、太陽電池アレイLPの側端縁に沿って作業ロボット101は移動する。そして、作業ロボット101は退避部30の位置まで移動すると、退避部30を検出する。その状態で、太陽電池アレイLPの表面と退避部30の上面が同じ高さになっていれば、作業ロボット101は太陽電池アレイLPの表面から退避部30に向かって移動し退避部30に退避する。 The work robot 101 returns to the evacuation unit 30 when cleaning is completed. At this time, the working robot 101 moves to the retracting portion 30 along the edge of the solar cell array LP (see FIG. 17B). That is, assuming that the position where the cleaning of the surface of the solar cell array LP is completed is the second end edge P2 of the solar cell array LP, the swing axis SS is along the second end edge P2 of the solar cell array LP. The working robot 101 moves in the direction along the line. Then, when the robot moves to the side edge of the solar cell array LP (the side edge on the side where the retracting portion 30 is provided), the working robot 101 then moves along the side edge of the solar cell array LP. Then, when the work robot 101 moves to the position of the evacuation unit 30, the evacuation unit 30 is detected. In that state, if the surface of the solar cell array LP and the upper surface of the retracting portion 30 are at the same height, the working robot 101 moves from the surface of the solar cell array LP toward the retracting portion 30 and retracts to the retracting portion 30. To do.
 一方、太陽電池アレイLPの表面と退避部30の上面が同じ高さになっていない場合(つまり太陽電池アレイLPの表面が退避部30の上面に対して傾斜している場合)には、作業ロボット101はその位置で停止し、太陽電池アレイLPの表面と退避部30の上面が同じ高さ(言い換えれば同じ角度)になるまで待機する。 On the other hand, when the surface of the solar cell array LP and the upper surface of the retracting portion 30 are not at the same height (that is, when the surface of the solar cell array LP is inclined with respect to the upper surface of the retracting portion 30), the work The robot 101 stops at that position and waits until the surface of the solar cell array LP and the upper surface of the retracting portion 30 are at the same height (in other words, at the same angle).
 なお、図17の矢印に示すように作業ロボット101が移動した場合、図17(A)の領域NCは作業ロボット101が通過しない場合がある。その場合、領域NCの掃除ができない。しかし、図17(B)に示すように、作業ロボット101が退避部30に帰還する経路に領域NCが存在するように作業ロボット101を作動させれば、領域NCの掃除も行うことができる。 When the work robot 101 moves as shown by the arrow in FIG. 17, the work robot 101 may not pass through the area NC in FIG. 17 (A). In that case, the area NC cannot be cleaned. However, as shown in FIG. 17B, if the work robot 101 is operated so that the area NC exists in the path where the work robot 101 returns to the evacuation unit 30, the area NC can also be cleaned.
 なお、太陽電池アレイLPの第二端縁P2(または第一端縁P1)に沿って太陽電池アレイLPの側端縁まで移動しても、その側端縁に退避部30が無い場合がある。この場合には、作業ロボット101は、その側端縁に沿って第一端縁P1(または第二端縁P2)まで移動する。そして、第一端縁P1に沿って太陽電池アレイLPの他方の側端縁まで移動すると、次に、他方の側端縁に沿って移動する。すると、退避部30に到達することができる。 Even if the solar cell array LP is moved to the side edge of the solar cell array LP along the second edge P2 (or the first end edge P1), the retracting portion 30 may not be provided at the side edge. .. In this case, the working robot 101 moves along its side edge to the first edge P1 (or the second edge P2). Then, when it moves along the first end edge P1 to the other side edge of the solar cell array LP, it then moves along the other side edge. Then, the evacuation unit 30 can be reached.
 また、退避部30を設ける数は一つに限られず、複数設けてもよい。この場合には、作業ロボット101は最も近い退避部30に退避できるので、掃除完了後に作業ロボット101が退避部30に退避するまでの時間を短くできる。 Further, the number of the evacuation units 30 is not limited to one, and a plurality of evacuation units 30 may be provided. In this case, since the work robot 101 can be evacuated to the nearest evacuation unit 30, the time until the work robot 101 evacuates to the evacuation unit 30 can be shortened after the cleaning is completed.
 さらに、作業ロボット101が掃除している状況において、異常を検出したり外部から退避部30に戻る指令が通知されたりした場合には、作業ロボット101は掃除を中止して退避部30に退避する。この場合、作業ロボット101は、最も近い太陽電池アレイLPの端縁まで移動し、その端縁に沿って移動して退避部30まで移動する。 Further, in a situation where the work robot 101 is cleaning, if an abnormality is detected or a command to return to the evacuation unit 30 is notified from the outside, the work robot 101 stops cleaning and evacuates to the evacuation unit 30. .. In this case, the working robot 101 moves to the nearest edge of the solar cell array LP, moves along the edge, and moves to the retracting portion 30.
<作業ロボット101の作動タイミング>
 なお、作業ロボット101の作動は、作業ロボット101の制御部130に設けられたタイマーによって作動するタイミングを制御してもよいし、無線または有線を通じて制御部130に対して外部(例えば管理棟等)から供給される動作信号に基づいて制御してもよい。
 また、作業ロボット101の制御部130は、制御部130に設けられたGPSまたは標準電波(電波時計が受信している電波)等に基づいて得られる時刻情報と、予め設定された作動時刻を参照して、その条件が一致した時間に作業ロボット101を作動させるようにしてもよい。
 作業ロボット101が一回の清掃作業によって掃除する回数(つまり太陽電池アレイLPの一方の端部と他方の端部との間を移動する回数)は、制御部130に予め設定された回数を実施してもよいし、外部から送信される作動回数の情報に基づいて実施してもよい。
<Operation timing of work robot 101>
The operation of the work robot 101 may be controlled by a timer provided in the control unit 130 of the work robot 101, or may be external to the control unit 130 via wireless or wired (for example, a management building). It may be controlled based on the operation signal supplied from.
Further, the control unit 130 of the work robot 101 refers to the time information obtained based on GPS or standard radio waves (radio waves received by the radio clock) provided in the control unit 130 and the preset operation time. Then, the work robot 101 may be operated at a time when the conditions are met.
The number of times the work robot 101 cleans by one cleaning operation (that is, the number of times the work robot 101 moves between one end and the other end of the solar cell array LP) is set to a preset number of times in the control unit 130. It may be carried out based on the information of the number of operations transmitted from the outside.
<作業ロボット101>
 つぎに、作業ロボット101を説明する。
 図8および図9に示すように、作業ロボット101は、太陽電池アレイLPの表面上を走行するための移動手段104を備えたロボット本体部102と、このロボット本体部102に設けられた掃除部110と、移動手段104や掃除部110の作動を制御する制御部130と、を備えている。
<Working robot 101>
Next, the working robot 101 will be described.
As shown in FIGS. 8 and 9, the working robot 101 includes a robot main body 102 provided with a moving means 104 for traveling on the surface of the solar cell array LP, and a cleaning unit provided on the robot main body 102. It includes a 110 and a control unit 130 that controls the operation of the moving means 104 and the cleaning unit 110.
<掃除部110>
 図8および図9に示すように、掃除部110は、ロボット本体部102の前方、つまり、ロボット本体部102が走行する方向の前方に設けられている。この掃除部110は、回転するブラシ112を備えており、このブラシ112を回転させることによって、太陽電池アレイLPの表面上を掃いて掃除することができるようになっている。
<Cleaning section 110>
As shown in FIGS. 8 and 9, the cleaning unit 110 is provided in front of the robot main body 102, that is, in front of the robot main body 102 in the traveling direction. The cleaning unit 110 includes a rotating brush 112, and by rotating the brush 112, the surface of the solar cell array LP can be swept and cleaned.
 なお、掃除部110の構造、つまり、掃除部110が太陽電池アレイLPの表面上をどのように掃除するかは、とくに限定されない。例えば、ブラシ112として、回転軸に刷毛が設けられたものだけでなく、回転軸の表面に板状のブレードが立設されたもの、回転軸の表面全面または一部がスポンジ状の部材によって覆われたもの、回転軸の表面全面または一部に布を取り付けたもの等を使用してもよい。 The structure of the cleaning unit 110, that is, how the cleaning unit 110 cleans the surface of the solar cell array LP is not particularly limited. For example, the brush 112 includes not only a brush 112 having a brush provided on the rotating shaft, but also a brush 112 having a plate-shaped blade erected on the surface of the rotating shaft, and the entire surface or a part of the rotating shaft covered with a sponge-like member. You may use a broken one, one with a cloth attached to the entire surface or a part of the rotating shaft, and the like.
 また、ブラシ112に代えて一般的な刷毛や箒状の部材を掃除部110として使用してもよいし、単なる布やブレードを掃除部110として使用してもよい。これらの部材の先端部などが太陽電池アレイLPの表面に接触していれば、掃除部110を太陽電池アレイLPの表面に沿って滑るように移動させることができる。すると、太陽電池アレイLPの表面上の埃等を掃除部110によって押して(言い換えれば掃除部110とともに)、埃等を作業ロボット101の移動方向に移動させることができる。そして、作業ロボット101が太陽電池アレイLPの端部まで移動すると、その端部において埃等を太陽電池アレイLPの表面から落として除去することができる。 Further, instead of the brush 112, a general brush or broom-shaped member may be used as the cleaning unit 110, or a simple cloth or blade may be used as the cleaning unit 110. If the tips of these members are in contact with the surface of the solar cell array LP, the cleaning unit 110 can be slid along the surface of the solar cell array LP. Then, the dust or the like on the surface of the solar cell array LP can be pushed by the cleaning unit 110 (in other words, together with the cleaning unit 110) to move the dust or the like in the moving direction of the work robot 101. Then, when the working robot 101 moves to the end of the solar cell array LP, dust and the like can be dropped from the surface of the solar cell array LP and removed at the end.
 また、掃除部110をロボット本体部102の前方だけに設けた場合を説明したが、掃除部110はロボット本体部102の前方および後方にそれぞれ設けてもよい。 Although the case where the cleaning unit 110 is provided only in front of the robot main body 102 has been described, the cleaning unit 110 may be provided in front of and behind the robot main body 102, respectively.
 さらに、掃除部110を設ける位置はとくに限定されず、ロボット本体部102の下面や太陽電池アレイLPの表面と対向する位置に設けてもよい。 Further, the position where the cleaning unit 110 is provided is not particularly limited, and may be provided at a position facing the lower surface of the robot main body 102 or the surface of the solar cell array LP.
<移動手段104>
 図8および図9に示すように、ロボット本体部102には、移動手段104が設けられている。この移動手段104は、ロボット本体部102を前後方向に移動させたり旋回移動させたりすることができるように設けられている。例えば、図8および図9に示すように、移動手段104を、一対の側方駆動輪104a,104aと、一つの中間駆動輪104bによって構成してもよい。この場合、一対の側方駆動輪104a,104aと中間駆動輪104bとによって、平面視で三角形を形成するように配置すれば、作業ロボット101を太陽電池アレイLP上に安定した状態で配置することができる。この場合、移動手段104の全ての駆動輪104a,104bにそれぞれ駆動モータを設け、各駆動モータが独立して各駆動輪104a,104bを駆動させることができるようになっていることが望ましい。すると、制御部130によって各駆動モータの作動状態を制御すれば、作業ロボット101を直線的に移動させたり、旋回移動させたりすることができる。とくに、中間駆動輪104bにオムニホイール(全方向移動車輪)を採用すれば、作業ロボット101の旋回移動等がスムースになり、また、作業ロボット101の移動の自由度を高めることができる。
<Transportation means 104>
As shown in FIGS. 8 and 9, the robot main body 102 is provided with a moving means 104. The moving means 104 is provided so that the robot main body 102 can be moved in the front-rear direction or swiveled. For example, as shown in FIGS. 8 and 9, the moving means 104 may be composed of a pair of side drive wheels 104a, 104a and one intermediate drive wheel 104b. In this case, if the pair of side drive wheels 104a and 104a and the intermediate drive wheels 104b are arranged so as to form a triangle in a plan view, the work robot 101 can be arranged in a stable state on the solar cell array LP. Can be done. In this case, it is desirable that drive motors are provided on all the drive wheels 104a and 104b of the moving means 104 so that each drive motor can independently drive the drive wheels 104a and 104b. Then, if the operating state of each drive motor is controlled by the control unit 130, the work robot 101 can be linearly moved or swiveled. In particular, if an omni wheel (omnidirectional moving wheel) is adopted for the intermediate drive wheel 104b, the turning movement of the working robot 101 can be made smooth, and the degree of freedom of movement of the working robot 101 can be increased.
 なお、移動手段104は上記のごとき構成に限られず、作業ロボット101を直線的に移動させたり、旋回移動させたりすることができるように構成されていればよい。例えば、中間駆動輪104bであるオムニホイールを駆動輪とせず、一対の側方駆動輪104a,104aだけを駆動輪としてもよい。 The moving means 104 is not limited to the above configuration, and may be configured so that the working robot 101 can be linearly moved or swiveled. For example, the omni wheel which is the intermediate drive wheel 104b may not be used as the drive wheel, and only the pair of side drive wheels 104a and 104a may be used as the drive wheels.
 また、オムニホイールに代えて、中間駆動輪104bに受動車輪(キャスター)を採用してもよい。この場合でも、一対の側方駆動輪104a,104aの回転数を調整すれば、作業ロボット101の移動方向を自在に変更することができる。 Further, instead of the omni wheel, a passive wheel (caster) may be adopted for the intermediate drive wheel 104b. Even in this case, the moving direction of the work robot 101 can be freely changed by adjusting the rotation speeds of the pair of side drive wheels 104a and 104a.
 さらに、乗用車等の車両と同様の構造としてもよい。例えば、図11~図13に示すように、車輪104cを4輪設けて、その前方(または後方)の2輪を操舵輪として他の車輪を駆動輪としたり、4輪駆動や4輪操舵としたりしてもよい。 Further, the structure may be the same as that of a vehicle such as a passenger car. For example, as shown in FIGS. 11 to 13, four wheels 104c are provided, and the two wheels in front of (or behind) the wheels are used as steering wheels and the other wheels are used as driving wheels, or four-wheel drive or four-wheel steering. You may do it.
 また、移動手段104は、車輪に代えてクローラを設けてもよい。この場合、ロボット本体部102の中心(重心)を挟むように一対のクローラを設ければ、一対のクローラを駆動する駆動モータの作動を制御することによって、作業ロボット101を直線的に移動させたり、旋回移動させたりすることができる。 Further, the moving means 104 may be provided with a crawler instead of the wheel. In this case, if a pair of crawlers are provided so as to sandwich the center (center of gravity) of the robot body 102, the work robot 101 can be moved linearly by controlling the operation of the drive motor that drives the pair of crawlers. , Can be swiveled and moved.
<制御部130>
 制御部130は、移動手段104の作動を制御して、作業ロボット101の移動を制御する機能を有している。例えば、上述したように、各駆動輪104に駆動モータが設けられている場合には、各駆動輪104に設けられている駆動モータの作動を制御して、ロボット本体102の移動方向や移動速度、つまり、作業ロボット101の移動方向や移動速度を制御するものである。例えば、全ての駆動輪104による移動速度(具体的には、回転数(回転速度)×駆動輪の周長)が同じとなるように各駆動モータを作動させた場合には作業ロボット101を直進移動させることができる。一方、一対の側方駆動輪104a,104a間で移動速度の差が生じるように各駆動モータを作動させた場合には作業ロボット101を旋回するように移動させることができる。
<Control unit 130>
The control unit 130 has a function of controlling the operation of the moving means 104 to control the movement of the working robot 101. For example, as described above, when a drive motor is provided on each drive wheel 104, the operation of the drive motor provided on each drive wheel 104 is controlled to control the movement direction and movement speed of the robot body 102. That is, it controls the moving direction and moving speed of the work robot 101. For example, when each drive motor is operated so that the moving speeds of all the driving wheels 104 (specifically, the number of rotations (rotational speed) x the peripheral length of the driving wheels) are the same, the work robot 101 travels straight. Can be moved. On the other hand, when each drive motor is operated so as to cause a difference in moving speed between the pair of side drive wheels 104a and 104a, the work robot 101 can be moved so as to rotate.
 本実施形態の作業ロボット101は、以上のような構成を有しているので、作業ロボット101を太陽電池アレイLPの表面上に載せれば、作業ロボット101によって太陽電池アレイLPの表面を掃除することができる(図17参照)。つまり、移動手段104によって作業ロボット101に太陽電池アレイLPの表面上を移動させることができるので、掃除部110によって太陽電池アレイLPの表面を掃除することができる。 Since the work robot 101 of the present embodiment has the above configuration, if the work robot 101 is placed on the surface of the solar cell array LP, the work robot 101 cleans the surface of the solar cell array LP. Can be done (see FIG. 17). That is, since the moving means 104 can move the working robot 101 on the surface of the solar cell array LP, the cleaning unit 110 can clean the surface of the solar cell array LP.
<エッジ検出>
 図6~図9に示すように、作業ロボット101は、太陽電池アレイLPのエッジ(端縁)を検出する複数のエッジ検出部131を備えている。そして、複数のエッジ検出部131が検出した信号に基づいて、制御部130が移動手段104の作動を制御して、太陽電池アレイLPの端縁に沿った移動を可能にし、太陽電池アレイLPの端縁から作業ロボット101が落下することを防止している。
 なお、以下では、構成を分かりやすくするために、構造を簡素化した図6および図7に基づいて説明する。
<Edge detection>
As shown in FIGS. 6 to 9, the working robot 101 includes a plurality of edge detection units 131 for detecting the edges (edges) of the solar cell array LP. Then, based on the signals detected by the plurality of edge detection units 131, the control unit 130 controls the operation of the moving means 104 to enable movement along the edge of the solar cell array LP, and the solar cell array LP It prevents the work robot 101 from falling from the edge.
In the following, in order to make the configuration easy to understand, the description will be described with reference to FIGS. 6 and 7 in which the structure is simplified.
 図6および図7に示すように、複数のエッジ検出部131A,Bは、掃除部110の側端縁近傍にそれぞれ設けられている。各エッジ検出部131A,Bは、それぞれ外方検出部132と、内方検出部133と、を備えており、両検出部132,133によって掃除部110が挟まれた状態となるように設けられている。 As shown in FIGS. 6 and 7, a plurality of edge detection units 131A and B are provided in the vicinity of the side edge of the cleaning unit 110, respectively. Each of the edge detection units 131A and B includes an outer detection unit 132 and an inner detection unit 133, respectively, and is provided so that the cleaning unit 110 is sandwiched between the two detection units 132 and 133. ing.
 各エッジ検出部131において、外方検出部132は、作業ロボット101が走行した際に、掃除部110よりも前方に位置するように配設されたものである。
 一方、内方検出部133は、作業ロボット101の走行方向において、外方検出部132に対して後方、言い換えれば、掃除部110と移動手段104との間に位置するように設けられている。
In each edge detection unit 131, the outer detection unit 132 is arranged so as to be located in front of the cleaning unit 110 when the work robot 101 travels.
On the other hand, the inner detection unit 133 is provided so as to be located behind the outer detection unit 132 in the traveling direction of the work robot 101, in other words, between the cleaning unit 110 and the moving means 104.
 例えば、図6であれば、掃除部110の側端近傍に設けられているエッジ検出部131A,131Bであれば、掃除部110よりも上方に位置する検出部が外方検出部132になる。そして、外方検出部132との間に掃除部110を挟むように設けられた検出部(掃除部110よりも下方に位置する検出部)が内方検出部133になる。なお、内方検出部133は、必ずしも掃除部110を挟むように設けなくてもよい。移動手段104の車輪のうち、走行方向の最も前方に位置する車輪よりも前方かつ外方検出部132よりも走行方向の後方に位置するように、内方検出部133は設けられていればよい。より具体的に言えば、内方検出部133が太陽電池アレイLPの表面を検出する位置が、走行方向の最も前方に位置する車輪が太陽電池アレイLPの表面と接触する位置よりも前方かつ外方検出部132よりも走行方向の後方に位置するように、内方検出部133は設けられていればよい。 For example, in FIG. 6, in the case of the edge detection units 131A and 131B provided near the side end of the cleaning unit 110, the detection unit located above the cleaning unit 110 is the outer detection unit 132. Then, a detection unit (a detection unit located below the cleaning unit 110) provided so as to sandwich the cleaning unit 110 with the outer detection unit 132 becomes the inner detection unit 133. The inner detection unit 133 does not necessarily have to be provided so as to sandwich the cleaning unit 110. Of the wheels of the moving means 104, the inner detecting unit 133 may be provided so as to be located in front of the wheel located in the frontmost position in the traveling direction and behind the outer detecting unit 132 in the traveling direction. .. More specifically, the position where the inner detection unit 133 detects the surface of the solar cell array LP is forward and outside the position where the wheel located at the frontmost position in the traveling direction comes into contact with the surface of the solar cell array LP. The inner detection unit 133 may be provided so as to be located behind the direction detection unit 132 in the traveling direction.
<移動制御方法>
 以下では、エッジ検出部131Aが検出した信号に基づいて、制御部130が移動手段104の作動を制御して、太陽電池アレイLPから作業ロボット101が落下することを防止する方法を説明する。
<Movement control method>
Hereinafter, a method will be described in which the control unit 130 controls the operation of the moving means 104 based on the signal detected by the edge detection unit 131A to prevent the working robot 101 from falling from the solar cell array LP.
 まず、図7(A)に示すように、作業ロボット101が太陽電池アレイLP上を作業しながら走行しているとする。この場合、太陽電池アレイLPの端縁Eまで到達していない場合には、エッジ検出部131Aの外方検出部132および内方検出部133の両方がその下方に太陽電池アレイLPが存在していることを検出する。すると、外方検出部132および内方検出部133から送られた信号(ON信号、OFF信号)に基づいて、制御部130は、作業ロボット101が安定して走行および作業を実施できる状況であることを把握する。 First, as shown in FIG. 7A, it is assumed that the working robot 101 is traveling while working on the solar cell array LP. In this case, when the edge E of the solar cell array LP is not reached, both the outer detection unit 132 and the inner detection unit 133 of the edge detection unit 131A have the solar cell array LP below them. Detects that. Then, based on the signals (ON signal, OFF signal) sent from the outer detection unit 132 and the inner detection unit 133, the control unit 130 is in a situation where the work robot 101 can stably travel and perform the work. Understand that.
 図7(A)の状態から、さらに作業ロボット101が走行すると、やがて太陽電池アレイLPの端縁Eに到達する。このとき、作業ロボット101が太陽電池アレイLPの表面上を作業しながら走行しているとする。この場合、外方検出部132は、下方に太陽電池アレイLPが存在していない状態であることを検出し、その信号(以下OFF信号という場合がある)を制御部130に送信する(図7(B)。 When the work robot 101 further travels from the state shown in FIG. 7A, it eventually reaches the edge E of the solar cell array LP. At this time, it is assumed that the working robot 101 is traveling while working on the surface of the solar cell array LP. In this case, the outer detection unit 132 detects that the solar cell array LP does not exist below and transmits the signal (hereinafter, may be referred to as an OFF signal) to the control unit 130 (FIG. 7). (B).
 一方、内方検出部133の下方には太陽電池アレイLPが存在しているので、内方検出部133からは、その下方に太陽電池アレイLPが存在していることを示す信号(以下ON信号という場合がある)が送信される。すると、制御部130は、両検出部132,133間に端縁Eが存在していることを把握する。しかし、内方検出部133は移動手段104よりも掃除部110側(つまり走行方向前方)に位置しているので、制御部130は、落下や脱輪の恐れがないと判断して、作業ロボット101の走行および作業を継続させる。 On the other hand, since the solar cell array LP exists below the inner detection unit 133, a signal from the inner detection unit 133 indicating that the solar cell array LP exists below the inner detection unit 133 (hereinafter referred to as an ON signal). In some cases) is sent. Then, the control unit 130 grasps that the edge E exists between the detection units 132 and 133. However, since the inner detection unit 133 is located on the cleaning unit 110 side (that is, forward in the traveling direction) with respect to the moving means 104, the control unit 130 determines that there is no risk of falling or derailing, and the work robot. Continue running and working on 101.
 なお、上記状況であることを把握した制御部130は、それまでと同じ速度で作業ロボット101を走行させてもよいし、若干速度を落とすように移動手段104の作動を制御してもよい。 The control unit 130, which has grasped the above situation, may run the work robot 101 at the same speed as before, or may control the operation of the moving means 104 so as to slightly reduce the speed.
 また、端縁Eに特別な構造物が存在する場合、また、端縁Eでは特別な作業が必要な場合には、上記状況であることを把握した制御部130は、移動手段104や掃除部110にエッジ近傍における特別な走行や作業を実施するように指示する。 Further, when a special structure is present on the edge E, or when a special work is required on the edge E, the control unit 130 which has grasped the above situation is a moving means 104 or a cleaning unit. Instruct 110 to perform a special run or work near the edge.
 さらに、作業ロボット101が走行すると、内方検出部133も端縁Eまで到達する。すると、外方検出部132だけでなく、内方検出部133も下方に太陽電池アレイLPが存在していない状態であることを検出し、その信号を制御部130に送信する(図7(C))。すると、制御部130は、太陽電池アレイLPの端縁Eまで掃除部110による作業が実施されたこと、および、これ以上進行すると移動手段104が脱輪する可能性が生じること、を把握する。すると、制御部130は、作業ロボット101の走行を停止させる、または、作業ロボット101の走行方向を変化させる。例えば、太陽電池アレイLPの掃除が完了した場合には、作業ロボット101の走行を停止し退避部30への退避動作に移行する。一方、太陽電池アレイLPの掃除が完了していない場合には、他方の端縁Eに向かって移動するようにその走行方向を変化させる。 Further, when the work robot 101 travels, the inner detection unit 133 also reaches the edge E. Then, not only the outer detection unit 132 but also the inner detection unit 133 detects that the solar cell array LP does not exist below and transmits the signal to the control unit 130 (FIG. 7 (C)). )). Then, the control unit 130 grasps that the work by the cleaning unit 110 has been carried out up to the edge E of the solar cell array LP, and that the moving means 104 may be derailed if the operation is further advanced. Then, the control unit 130 stops the traveling of the working robot 101 or changes the traveling direction of the working robot 101. For example, when the cleaning of the solar cell array LP is completed, the working robot 101 stops running and shifts to the evacuation operation to the evacuation unit 30. On the other hand, when the cleaning of the solar cell array LP is not completed, the traveling direction is changed so as to move toward the other edge E.
 以上のように、エッジ検出部131の外方検出部132と内方検出部133との間に掃除部110が位置するように配設すれば、移動手段104の脱輪を防止できるし、端縁Eまで掃除部110による作業を実施できる。 As described above, if the cleaning unit 110 is arranged so as to be located between the outer detection unit 132 and the inner detection unit 133 of the edge detection unit 131, it is possible to prevent the moving means 104 from coming off and to prevent the edge from coming off. The work can be carried out by the cleaning unit 110 up to the edge E.
<移動制御の他の例>
 また、制御部130は、外方検出部132および内方検出部133のエッジセンサからの信号を受けて、以下のように作業ロボット101が走行するように移動手段104を制御する機能を有している。つまり、作業ロボット101を減速する減速制御機能と、作業ロボット101を停止する停止制御機能と、を有している。
 以下、図7に基づいて各機能による制御を説明する。
<Other examples of movement control>
Further, the control unit 130 has a function of receiving signals from the edge sensors of the outer detection unit 132 and the inner detection unit 133 and controlling the moving means 104 so that the work robot 101 travels as follows. ing. That is, it has a deceleration control function for decelerating the work robot 101 and a stop control function for stopping the work robot 101.
Hereinafter, control by each function will be described with reference to FIG. 7.
 まず、図7(A)に示すように、作業ロボット101が太陽電池アレイLP上を作業しながら走行しているとする。この場合、太陽電池アレイLPの端縁Eまで到達していない場合には、外方検出部132および内方検出部133は、その下方に太陽電池アレイLPが存在していることを検出する。すると、外方検出部132および内方検出部133から送られたON信号に基づいて、制御部130は、作業ロボット101が安定して走行および作業を実施できる状況であることを把握する。 First, as shown in FIG. 7A, it is assumed that the working robot 101 is traveling while working on the solar cell array LP. In this case, when the edge E of the solar cell array LP has not been reached, the outer detection unit 132 and the inner detection unit 133 detect that the solar cell array LP is present below the edge E. Then, based on the ON signals sent from the outer detection unit 132 and the inner detection unit 133, the control unit 130 grasps that the work robot 101 is in a situation where it can stably travel and perform work.
 図7(A)の状態から、さらに作業ロボット101が走行すると、やがて太陽電池アレイLPの端縁Eに到達する(図7(B))。この場合、外方検出部132は、下方に太陽電池アレイLPが存在していない状態であることを検出し、OFF信号を制御部130に送信する。一方、内方検出部133の下方には太陽電池アレイLPが存在しているので、内方検出部133からはON信号が送信される。すると、制御部130は、作業ロボット101の走行速度を減速するように移動手段104の作動を制御する(減速制御)。 When the work robot 101 further travels from the state of FIG. 7 (A), it eventually reaches the edge E of the solar cell array LP (FIG. 7 (B)). In this case, the outer detection unit 132 detects that the solar cell array LP does not exist below and transmits an OFF signal to the control unit 130. On the other hand, since the solar cell array LP exists below the inner detection unit 133, an ON signal is transmitted from the inner detection unit 133. Then, the control unit 130 controls the operation of the moving means 104 so as to reduce the traveling speed of the working robot 101 (deceleration control).
 さらに、作業ロボット101が走行すると、内方検出部133の下方にも太陽電池アレイLPが存在していない状態となる(図7(C))。その状態となったことを検出した内方検出部133からOFF信号が制御部130に送信されると、制御部130は、これ以上進行すると移動手段104が脱輪する可能性が生じることを把握する。すると、制御部130は、作業ロボット101を停止するように移動手段104の作動を制御する(停止制御)。すると、作業ロボット101は、移動手段104が端縁Eに到達する前に停止するので、端縁Eから作業ロボット101が落下することを防止することができる。 Further, when the work robot 101 travels, the solar cell array LP does not exist below the inner detection unit 133 (FIG. 7 (C)). When an OFF signal is transmitted from the inner detection unit 133 that has detected that the state has been reached to the control unit 130, the control unit 130 grasps that the moving means 104 may be derailed if the vehicle proceeds further. To do. Then, the control unit 130 controls the operation of the moving means 104 so as to stop the working robot 101 (stop control). Then, since the working robot 101 stops before the moving means 104 reaches the edge E, it is possible to prevent the working robot 101 from falling from the edge E.
 以上のように、エッジ検出部131に外方検出部132と内方検出部133を設ければ、作業ロボット101が端縁Eに近づいた際に、一旦減速してから停止させることができる。すると、通常の移動速度から急に停止する場合に比べて、停止する際の制動距離を短くすることができる。言い換えれば、上記制御によって作業ロボット101を停止させれば、作業ロボット101が移動する速度を従来よりも速くしても、制動を開始してから停止するまでの距離を従来と同等程度にすることができる。したがって、作業ロボット101を高速で移動させることができ、その場合でも、端縁Eから作業ロボット101が落下することを防止することができる。 As described above, if the edge detection unit 131 is provided with the outer detection unit 132 and the inner detection unit 133, when the work robot 101 approaches the edge E, it can be decelerated and then stopped. Then, the braking distance at the time of stopping can be shortened as compared with the case where the vehicle suddenly stops from the normal moving speed. In other words, if the work robot 101 is stopped by the above control, even if the speed at which the work robot 101 moves is faster than the conventional one, the distance from the start of braking to the stop is about the same as the conventional one. Can be done. Therefore, the work robot 101 can be moved at high speed, and even in that case, it is possible to prevent the work robot 101 from falling from the edge E.
 しかも、停止する際の制動距離を短くすることができれば、エッジ検出部131から移動手段104までの距離が短くでも、移動手段104が端縁に到達する前に、作業ロボット101を停止させることができる。つまり、作業ロボット101の走行方向の長さを短くしても、端縁Eから作業ロボット101が落下することを防止することができるので、作業ロボット101をコンパクトな構成とすることができる。 Moreover, if the braking distance at the time of stopping can be shortened, even if the distance from the edge detection unit 131 to the moving means 104 is short, the working robot 101 can be stopped before the moving means 104 reaches the edge. it can. That is, even if the length of the work robot 101 in the traveling direction is shortened, it is possible to prevent the work robot 101 from falling from the edge E, so that the work robot 101 can be made compact.
 なお、減速制御では、通常の移動速度よりも遅い一定の速度に移動速度を落としてその状態を維持するようにしてもよいし、通常の移動速度から徐々に減速するようにしてもよい。また、両方を組み合わせた制御でもよい。つまり、減速開始時には大きく速度を減速して、その後、徐々に速度を低下させるようにしてもよい。 In the deceleration control, the moving speed may be reduced to a constant speed slower than the normal moving speed to maintain the state, or the moving speed may be gradually decelerated from the normal moving speed. Further, the control may be a combination of both. That is, the speed may be significantly reduced at the start of deceleration, and then gradually reduced.
<内方検出部133の位置>
 内方検出部133は、上述したように、作業ロボット101の走行方向において、走行方向の最も前方に位置する車輪よりも前方かつ外方検出部132よりも走行方向の後方に位置するように、設けられていればよく、その位置はとくに限定されない。しかし、内方検出部133は、できるだけ掃除部110の近傍に配置しておくことが望ましい。内方検出部133が掃除部110の近傍に配置されていれば、端縁Eの作業が完了した後、迅速に作業ロボット101の移動を停止できる。すると、作業が完了後、内方検出部133からの信号に基づいて、すぐに次の作業場所に移動させたり、次の作業に迅速に切り替えたりできる。したがって、無駄な移動や作業を極力少なくできるので、作業ロボット101による作業を効率化できる。
<Position of inner detection unit 133>
As described above, the inner detection unit 133 is located in the traveling direction of the work robot 101 in front of the wheel located at the frontmost position in the traveling direction and behind the outer detecting unit 132 in the traveling direction. It suffices if it is provided, and its position is not particularly limited. However, it is desirable that the inner detection unit 133 be arranged as close to the cleaning unit 110 as possible. If the inner detection unit 133 is arranged in the vicinity of the cleaning unit 110, the movement of the work robot 101 can be stopped quickly after the work of the edge E is completed. Then, after the work is completed, it is possible to immediately move to the next work place or quickly switch to the next work based on the signal from the inner detection unit 133. Therefore, since unnecessary movement and work can be reduced as much as possible, the work by the work robot 101 can be made more efficient.
<エッジ検出部131の幅方向の位置>
 また、図6では、各エッジ検出部131を、いずれも掃除部110の側端縁近傍に設けた場合を示したが、各エッジ検出部131を設ける位置は、上記構成を満たす限り、とくに限定されない。例えば、エッジ検出部131を、掃除部110の幅方向の中央部に設けてもよく、この場合でも、作業ロボット101の走行方向前方に位置する端縁Eの位置を把握することは可能である(図13(B)参照)。
<Position of edge detection unit 131 in the width direction>
Further, FIG. 6 shows a case where each edge detection unit 131 is provided near the side edge of the cleaning unit 110, but the position where each edge detection unit 131 is provided is particularly limited as long as the above configuration is satisfied. Not done. For example, the edge detection unit 131 may be provided at the center of the cleaning unit 110 in the width direction, and even in this case, it is possible to grasp the position of the edge E located in front of the traveling direction of the work robot 101. (See FIG. 13 (B)).
 しかし、上述したように、各エッジ検出部131を掃除部110の側端縁近傍に設ければ、掃除部110と太陽電池アレイLPの側方の端部との相対的な位置を把握することができる。太陽電池アレイLPにおいて、作業ロボット101が走行する方向と平行な端部と作業ロボット101との相対的な位置を把握することができる。すると、作業ロボット101が太陽電池アレイLPの側方の端縁SE(図15参照)から落下したり脱輪したりすることを防ぐことができる。 However, as described above, if each edge detection unit 131 is provided near the side edge of the cleaning unit 110, the relative position between the cleaning unit 110 and the lateral end of the solar cell array LP can be grasped. Can be done. In the solar cell array LP, it is possible to grasp the relative position between the end portion parallel to the traveling direction of the working robot 101 and the working robot 101. Then, it is possible to prevent the working robot 101 from falling or derailing from the side edge SE (see FIG. 15) of the solar cell array LP.
 しかも、エッジ検出部131の位置が、掃除部110の軸方向(作業ロボット101の走行方向と交差する方向)において、掃除部110の側端よりも内方または端部と同じ位置であって移動手段104よりも外方に配置されていれば、掃除部110によって、太陽電池アレイLPの側方の端縁SEまで作業を実施することができる。そして、太陽電池アレイLPの側方の端縁(または太陽電池モジュールPの側方の端縁SE)に沿って作業ロボット101を移動させることができる。 Moreover, the position of the edge detection unit 131 moves inward or at the same position as the side end of the cleaning unit 110 in the axial direction of the cleaning unit 110 (the direction intersecting the traveling direction of the work robot 101). If it is arranged outside the means 104, the cleaning unit 110 can perform the work up to the side edge SE of the solar cell array LP. Then, the working robot 101 can be moved along the side edge of the solar cell array LP (or the side edge SE of the solar cell module P).
 例えば、上記のようにエッジ検出部131を配置すれば、エッジ検出部131が下方に太陽電池アレイLPが存在しない状態を検出しても、移動手段104は、ある程度、側方の端縁SEまでの距離が確保された状態になっている。したがって、移動手段104の車輪等が脱輪することはない。とくにエッジ検出部131の位置が掃除部110の側端よりも内方に位置していれば、エッジ検出部131が下方に太陽電池アレイLPが存在しない状態を検出しても、掃除部110の側端は、太陽電池アレイLPの側方の端縁SEよりも外方に位置することになる。つまり、太陽電池アレイLPの側方の端縁SEは、既に掃除部110によって作業されている状態になる。言い換えれば、太陽電池アレイLPの側方の端縁SE(作業ロボット101の走行方向に沿った端縁SE)まで、掃除部110によって作業することができる。 For example, if the edge detection unit 131 is arranged as described above, even if the edge detection unit 131 detects a state in which the solar cell array LP does not exist below, the moving means 104 reaches the side edge SE to some extent. The distance is secured. Therefore, the wheels and the like of the moving means 104 do not come off. In particular, if the position of the edge detection unit 131 is located inward from the side end of the cleaning unit 110, even if the edge detection unit 131 detects a state in which the solar cell array LP does not exist below, the cleaning unit 110 The side edge will be located on the outer side of the lateral edge SE of the solar cell array LP. That is, the side edge SE of the solar cell array LP is already being operated by the cleaning unit 110. In other words, the cleaning unit 110 can work up to the side edge SE of the solar cell array LP (the edge SE along the traveling direction of the work robot 101).
 したがって、エッジ検出部131を、掃除部110の側端よりも内方であって移動手段104よりも外方に配置すれば、太陽電池アレイLPの側方の端縁SEまで作業でき、しかも、移動手段104の車輪等が脱輪することも防止することができる。 Therefore, if the edge detection unit 131 is arranged inside the side end of the cleaning unit 110 and outside the moving means 104, it is possible to work up to the side edge SE of the solar cell array LP, and moreover. It is also possible to prevent the wheels and the like of the moving means 104 from coming off.
 なお、上記記載で、「エッジ検出部131の位置が、掃除部110の側端よりも内方または端部と同じ位置」とは、エッジ検出部131が端縁SEを検出できる位置が掃除部110において掃除可能な端縁と一致することを意味している。つまり、図8、図9に示すように掃除部110がブラシ112を有する場合には、ブラシ112の軸方向において刷毛が設けられている部分の端縁と、エッジ検出部131が端縁SEを検出できる位置がほぼ一致する状態を意味している。 In the above description, "the position of the edge detection unit 131 is the same as the inner side or the end of the cleaning unit 110" means that the position where the edge detection unit 131 can detect the edge SE is the cleaning unit. It means that it matches the cleanable edge at 110. That is, when the cleaning unit 110 has the brush 112 as shown in FIGS. 8 and 9, the edge of the portion where the brush is provided in the axial direction of the brush 112 and the edge detection unit 131 have the edge SE. It means that the detectable positions are almost the same.
<外方検出部132と内方検出部133の相対的な位置>
 また、上記例では、エッジ検出部131において、外方検出部132と内方検出部133とが作業ロボット101の走行方向(図6の上下方向)に沿って並ぶように配置されている。しかし、外方検出部132と内方検出部133は、掃除部110の幅方向においてズレた位置に配置されていてもよい(図12(B)、図13(A)参照)。
<Relative position of outer detection unit 132 and inner detection unit 133>
Further, in the above example, in the edge detection unit 131, the outer detection unit 132 and the inner detection unit 133 are arranged so as to be arranged along the traveling direction (vertical direction in FIG. 6) of the work robot 101. However, the outer detection unit 132 and the inner detection unit 133 may be arranged at positions deviated from each other in the width direction of the cleaning unit 110 (see FIGS. 12B and 13A).
 さらに、エッジ検出部131は、作業ロボット101の走行方向(図6の上下方向)において、外方検出部132と内方検出部133とが掃除部110を挟むように配置している場合を説明した。しかし、エッジ検出部131は、必ずしも掃除部110を挟むように配置されていなくてもよい。外方検出部132と内方検出部133の両方が移動手段104よりも外方に配置されていれば、外方検出部132と内方検出部133とが検出した信号に基づいて、作業ロボット101の落下や脱輪を防止できる。例えば、外方検出部132と内方検出部133の両方が掃除部110よりも外方に配置されていてもよいし(図11(B))、外方検出部132と内方検出部133の両方が掃除部110よりも内方に配置されていてもよい(図12(A))。 Further, the edge detection unit 131 describes a case where the outer detection unit 132 and the inner detection unit 133 are arranged so as to sandwich the cleaning unit 110 in the traveling direction of the work robot 101 (vertical direction in FIG. 6). did. However, the edge detection unit 131 does not necessarily have to be arranged so as to sandwich the cleaning unit 110. If both the outer detection unit 132 and the inner detection unit 133 are arranged outside the moving means 104, the work robot is based on the signals detected by the outer detection unit 132 and the inner detection unit 133. It is possible to prevent the 101 from falling or coming off. For example, both the outer detection unit 132 and the inner detection unit 133 may be arranged outside the cleaning unit 110 (FIG. 11B), and the outer detection unit 132 and the inner detection unit 133 may be arranged. Both may be arranged inward of the cleaning unit 110 (FIG. 12 (A)).
 なお、外方検出部132と内方検出部133の両方が掃除部110よりも外方に配置されていた場合には(図11(B))、太陽電池アレイLPの端縁E(図7参照)まで掃除部110を移動させることができない。すると、作業ロボット101が太陽電池アレイLPの端縁Eまで到達しても、埃等を太陽電池アレイLPの端縁Eから下に落とすことは難しい。しかし、掃除部110が回転するブラシを有しており、そのブラシが太陽電池アレイLPの表面から外方に埃等を掃き出すように回転している場合には、埃等を太陽電池アレイLPの端縁から下に落とすことが可能になる。また、掃除部110がスクレーパ等であっても、作業ロボット101が停止すると、太陽電池アレイLPの端縁に向かってスクレーパ等の先端を移動させるようにすれば、埃等を太陽電池アレイLPの端縁から下に落とすことが可能になる。 When both the outer detection unit 132 and the inner detection unit 133 are arranged outside the cleaning unit 110 (FIG. 11B), the edge E of the solar cell array LP (FIG. 7). The cleaning unit 110 cannot be moved to (see). Then, even if the working robot 101 reaches the edge E of the solar cell array LP, it is difficult to drop dust or the like from the edge E of the solar cell array LP. However, when the cleaning unit 110 has a rotating brush and the brush is rotating so as to sweep out dust or the like from the surface of the solar cell array LP, the dust or the like is removed from the solar cell array LP. It will be possible to drop it down from the edge. Further, even if the cleaning unit 110 is a scraper or the like, if the working robot 101 is stopped, the tip of the scraper or the like is moved toward the edge of the solar cell array LP to remove dust or the like from the solar cell array LP. It will be possible to drop it down from the edge.
<溝検出>
 太陽電池アレイLPに溝等がある場合、外方検出部132および内方検出部133は、溝の端縁も太陽電池アレイLPの端縁と判断する。しかし、以下のように外方検出部132および内方検出部133の信号を処理すれば、検出した端縁を溝の端縁であるか太陽電池アレイLPの端縁であるかを判断することができる。すると、太陽電池アレイLPに溝がある場合に、溝の端縁を太陽電池アレイLPの端縁と誤認して作業ロボット101が停止することを防止することができる。
<Groove detection>
When the solar cell array LP has a groove or the like, the outer detection unit 132 and the inner detection unit 133 determine that the edge of the groove is also the edge of the solar cell array LP. However, if the signals of the outer detection unit 132 and the inner detection unit 133 are processed as follows, it is possible to determine whether the detected edge is the edge of the groove or the edge of the solar cell array LP. Can be done. Then, when the solar cell array LP has a groove, it is possible to prevent the working robot 101 from stopping due to the misidentification of the edge of the groove as the edge of the solar cell array LP.
 まず、太陽電池アレイLP上を走行している状態では、外方検出部132と内方検出部133の両方から、両者の下方に太陽電池アレイLPが存在することを通知するON信号が制御部130に通知されている。この状態では、作業ロボット101は通常通り走行する(図10(A))。 First, while traveling on the solar cell array LP, an ON signal notifying that the solar cell array LP exists below both of the outer detection unit 132 and the inner detection unit 133 is sent from the control unit. It has been notified to 130. In this state, the work robot 101 travels as usual (FIG. 10 (A)).
 作業ロボット101が太陽電池アレイLPの端縁Eまで到達すると、外方検出部132と内方検出部133の両方の下方に太陽電池アレイLPが存在しない状態となる。この状態になると、外方検出部132と内方検出部133の両方から、下方に太陽電池アレイLPが無い状態であることを通知するOFF信号が送信される状態になる。すると、作業ロボット101は走行を停止する(図7(C)参照)。 When the working robot 101 reaches the edge E of the solar cell array LP, the solar cell array LP does not exist below both the outer detection unit 132 and the inner detection unit 133. In this state, both the outer detection unit 132 and the inner detection unit 133 transmit an OFF signal notifying that there is no solar cell array LP below. Then, the working robot 101 stops traveling (see FIG. 7C).
 一方、図10に示すように、太陽電池アレイLPに溝Gがある場合、溝Gの位置に外方検出部132が位置すると、外方検出部132から制御部130に送信される信号がON信号からOFF信号に切り替わる(図10(B))。このとき、内方検出部133の下方には太陽電池アレイLPが存在するので、内方検出部133から制御部130には引き続きON信号が送信される On the other hand, as shown in FIG. 10, when the solar cell array LP has a groove G and the outer detection unit 132 is located at the position of the groove G, the signal transmitted from the outer detection unit 132 to the control unit 130 is turned on. The signal is switched to the OFF signal (FIG. 10 (B)). At this time, since the solar cell array LP exists below the inner detection unit 133, the ON signal is continuously transmitted from the inner detection unit 133 to the control unit 130.
 さらに作業ロボット101が走行すると、外方検出部132は溝Gを通過して、再び外方検出部132の下方に太陽電池アレイLPが存在する状態となる。すると、外方検出部132から制御部130に送信される信号がOFF信号からON信号に切り替わる(図10(C))。 When the work robot 101 further travels, the outer detection unit 132 passes through the groove G, and the solar cell array LP is present again below the outer detection unit 132. Then, the signal transmitted from the outer detection unit 132 to the control unit 130 is switched from the OFF signal to the ON signal (FIG. 10 (C)).
 一方、作業ロボット101が走行すると、内方検出部133が溝Gの位置に配置されるので、内方検出部133から制御部130に送信される信号が、ON信号からOFF信号に切り替わる。 On the other hand, when the work robot 101 travels, the inner detection unit 133 is arranged at the position of the groove G, so that the signal transmitted from the inner detection unit 133 to the control unit 130 is switched from the ON signal to the OFF signal.
 ここで、外方検出部132と内方検出部133を、両者が同時に溝Gを検出しないように配置していれば、内方検出部133から制御部130に送信される信号がOFF信号となる前に、外方検出部132から制御部130に送信される信号がON信号になる。つまり、外方検出部132と内方検出部133の両方から制御部130に送信される信号がOFF信号とならないので、溝Gがあっても作業ロボット101に走行を継続させることができる。言い換えれば、太陽電池アレイLPの溝Gの端縁を太陽電池アレイLPの端縁Eと誤認することがないので、太陽電池アレイLPに溝Gがあっても、作業ロボット101に走行を継続させることができる。 Here, if the outer detection unit 132 and the inner detection unit 133 are arranged so that both of them do not detect the groove G at the same time, the signal transmitted from the inner detection unit 133 to the control unit 130 is an OFF signal. Before this, the signal transmitted from the outer detection unit 132 to the control unit 130 becomes an ON signal. That is, since the signal transmitted from both the outer detection unit 132 and the inner detection unit 133 to the control unit 130 does not become an OFF signal, the working robot 101 can continue running even if there is a groove G. In other words, since the edge of the groove G of the solar cell array LP is not mistaken for the edge E of the solar cell array LP, the working robot 101 is allowed to continue running even if the solar cell array LP has the groove G. be able to.
 なお、上述した溝Gの検出を実施させる場合には、外方検出部132と内方検出部133の両方が同時に溝Gを検出しないように配置する必要がある。つまり、作業ロボット101の走行方向において、外方検出部132と内方検出部133との距離を適切に設定する必要がある。例えば、外方検出部132と内方検出部133がレーザーセンサによって太陽電池アレイLPの有無を検出している場合には、外方検出部132と内方検出部133は、両者間の距離が溝Gの幅Wよりも広くなるように配設する。すると、外方検出部132と内方検出部133が同時に溝Gを検出しないので、溝Gがあっても作業ロボット101は走行を停止せず、走行を継続させることができる。 When detecting the groove G described above, it is necessary to arrange both the outer detection unit 132 and the inner detection unit 133 so as not to detect the groove G at the same time. That is, it is necessary to appropriately set the distance between the outer detection unit 132 and the inner detection unit 133 in the traveling direction of the work robot 101. For example, when the outer detection unit 132 and the inner detection unit 133 detect the presence or absence of the solar cell array LP by the laser sensor, the distance between the outer detection unit 132 and the inner detection unit 133 is large. It is arranged so as to be wider than the width W of the groove G. Then, since the outer detection unit 132 and the inner detection unit 133 do not detect the groove G at the same time, the working robot 101 can continue the running without stopping the running even if the groove G is present.
<外方検出部132と内方検出部133の他の構成>
 上記例では、エッジ検出部131の外方検出部132と内方検出部133が一つのセンサを有する場合を説明したが。外方検出部132と内方検出部133は、複数のセンサを有していれば、以下のような機能を発揮させることができる。
<Other configurations of outer detection unit 132 and inner detection unit 133>
In the above example, the case where the outer detection unit 132 and the inner detection unit 133 of the edge detection unit 131 have one sensor has been described. If the outer detection unit 132 and the inner detection unit 133 have a plurality of sensors, the following functions can be exerted.
 以下、外方検出部132と内方検出部133がそれぞれ2つのセンサを有する場合を説明する。なお、以下では、外方検出部132と内方検出部133がいずれも掃除部110の外方に配置された場合を代表として説明する。また、外方検出部132がOFF信号を発信すると制御部130によって減速処理が実施される制御が行われている場合を説明する。 Hereinafter, a case where the outer detection unit 132 and the inner detection unit 133 each have two sensors will be described. In the following, a case where both the outer detection unit 132 and the inner detection unit 133 are arranged outside the cleaning unit 110 will be described as a representative. Further, a case where the control unit 130 controls to execute the deceleration process when the outer detection unit 132 transmits an OFF signal will be described.
 図14に示すように、外方検出部132は、一対のエッジセンサ132a,132bを備えている。一対のエッジセンサ132a,132bは、作業ロボット101が走行する方向と直交する幅方向(以下単に幅方向という)に沿って並ぶように配置されている。また、一対のエッジセンサ132a,132bは、それぞれが太陽電池アレイLPの端縁Eを検出する機能を有しており、端縁Eを検出した信号を制御部130に対して送信する機能を有している。 As shown in FIG. 14, the outer detection unit 132 includes a pair of edge sensors 132a and 132b. The pair of edge sensors 132a and 132b are arranged so as to be arranged along a width direction (hereinafter, simply referred to as a width direction) orthogonal to the traveling direction of the work robot 101. Further, each of the pair of edge sensors 132a and 132b has a function of detecting the edge E of the solar cell array LP, and has a function of transmitting a signal for detecting the edge E to the control unit 130. doing.
 内方検出部133も、一対のエッジセンサ133a,133bを備えている。一対のエッジセンサ133a,133bは、作業ロボット101の幅方向に沿って並ぶように配置されている。つまり、外方検出部132の一対のエッジセンサ132a,132bとほぼ平行に並ぶように配設されている。また、一対のエッジセンサ133a,133bも、それぞれが太陽電池アレイLPの端縁Eを検出する機能を有しており、端縁Eを検出した信号を制御部130に対して送信する機能を有している。 The inner detection unit 133 also includes a pair of edge sensors 133a and 133b. The pair of edge sensors 133a and 133b are arranged so as to be arranged along the width direction of the work robot 101. That is, they are arranged so as to be substantially parallel to the pair of edge sensors 132a and 132b of the outer detection unit 132. Further, each of the pair of edge sensors 133a and 133b also has a function of detecting the edge E of the solar cell array LP, and also has a function of transmitting a signal for detecting the edge E to the control unit 130. doing.
<倣い移動制御>
 上述したように、エッジ検出部131の外方検出部132と内方検出部133が複数のセンサを有する場合を有している場合、以下のように移動手段104を制御すれば、作業ロボット101の走行方向と平行な端縁(以下端縁SEという)に沿って、作業ロボット101を移動させることができる。つまり、作業ロボット101を端縁SEに沿って移動させる倣い移動制御機能を有している。上述した作業ロボット101が退避部30に移動する場合、この倣い移動制御機能を使用して、太陽電池アレイLPの第一、第二端縁P1,P2,および第一、第二端縁P1,P2と交差する端縁SE(側端縁)に沿って移動する。
 以下、図15に基づいて倣い移動制御機能による制御を説明する。
<Copying movement control>
As described above, when the outer detection unit 132 and the inner detection unit 133 of the edge detection unit 131 have a case where the edge detection unit 131 has a plurality of sensors, if the moving means 104 is controlled as follows, the work robot 101 The work robot 101 can be moved along an edge parallel to the traveling direction of the robot 101 (hereinafter referred to as an edge SE). That is, it has a copy movement control function for moving the work robot 101 along the edge SE. When the work robot 101 described above moves to the retracting unit 30, the copy movement control function is used to use the first and second edge P1, P2 and the first and second edge P1, of the solar cell array LP. It moves along the edge SE (side edge) that intersects P2.
Hereinafter, control by the copy movement control function will be described with reference to FIG.
 なお、図15において、塗りつぶされているセンサは太陽電池アレイLPを検出しているセンサであり、白抜きになっているセンサは端縁SEを検出したセンサ(言い換えれば太陽電池アレイLPを検出できなかったセンサ)を示している。 In FIG. 15, the filled sensor is a sensor that detects the solar cell array LP, and the white sensor is a sensor that detects the edge SE (in other words, it can detect the solar cell array LP). The sensor that did not appear) is shown.
 図15では、下方から上方に向かって(矢印DRの方向、作業ロボット101の走行方向)、作業ロボット101が移動している状態を示している。図15に示すように、作業ロボット101は、通常は、矢印DRの方向に移動しながら、若干、端縁SE側に向かって移動するように移動手段104の作動が制御されている。つまり、作業ロボット101が矢印aの方向に移動するように、移動手段104の作動が制御されている。 FIG. 15 shows a state in which the work robot 101 is moving from the bottom to the top (direction of arrow DR, traveling direction of the work robot 101). As shown in FIG. 15, the working robot 101 is normally controlled to operate the moving means 104 so as to move slightly toward the edge SE side while moving in the direction of the arrow DR. That is, the operation of the moving means 104 is controlled so that the working robot 101 moves in the direction of the arrow a.
 なお、ここでいう「通常」とは、外方検出部132および内方検出部133の全てのエッジセンサの下方に太陽電池アレイLPが存在している状態を意味している。 Note that the "normal" here means a state in which the solar cell array LP exists below all the edge sensors of the outer detection unit 132 and the inner detection unit 133.
 図15に示すように、作業ロボット101(図15の最下段)が矢印aの方向に移動すると、作業ロボット101は、若干傾きながら移動し、やがて端縁SEまで到達する(図15の下から2番目の作業ロボット101参照)。すると、外方検出部132において幅方向の外方に位置するエッジセンサ132aの下方に太陽電池アレイLPが存在していない状態となる。この状態を検出すると、エッジセンサ132aから制御部130に信号が送信される。このとき、制御部130は、他のエッジセンサからの信号を確認し、他のエッジセンサ(またはエッジセンサ133aを除く他のエッジセンサ)からその下方に太陽電池アレイLPが存在していることを示す信号が送信されている場合には、外方検出部132のエッジセンサ132a(またはエッジセンサ132aとエッジセンサ133a)が、端縁SEを検出したと判断する。すると、制御部130は、作業ロボット101が、端縁SE側から離れる方向に向かって移動するように移動手段104の作動を制御する。つまり、作業ロボット101が矢印bの方向に移動するように、移動手段104の作動を制御する(図15の下から2番目の作業ロボット101参照)。なお、エッジセンサ132aとエッジセンサ133aの両方が端縁SEを検出した場合には減速制御されるが、後述するように、エッジセンサ132aとエッジセンサ133aの両方または一方がその下方に太陽電池アレイLPが存在していることを検出すれば、減速制御は解除され、元の移動速度で作業ロボット101は移動するようになる。 As shown in FIG. 15, when the working robot 101 (bottom of FIG. 15) moves in the direction of arrow a, the working robot 101 moves while tilting slightly and eventually reaches the edge SE (from the bottom of FIG. 15). See the second working robot 101). Then, the solar cell array LP does not exist below the edge sensor 132a located outside in the width direction in the outer detection unit 132. When this state is detected, a signal is transmitted from the edge sensor 132a to the control unit 130. At this time, the control unit 130 confirms the signal from the other edge sensor, and indicates that the solar cell array LP exists below the other edge sensor (or another edge sensor other than the edge sensor 133a). When the indicated signal is transmitted, it is determined that the edge sensor 132a (or the edge sensor 132a and the edge sensor 133a) of the outer detection unit 132 has detected the edge SE. Then, the control unit 130 controls the operation of the moving means 104 so that the working robot 101 moves in a direction away from the edge SE side. That is, the operation of the moving means 104 is controlled so that the working robot 101 moves in the direction of the arrow b (see the second working robot 101 from the bottom of FIG. 15). When both the edge sensor 132a and the edge sensor 133a detect the edge SE, deceleration control is performed. However, as will be described later, both or one of the edge sensor 132a and the edge sensor 133a is a solar cell array below the edge sensor 132a and the edge sensor 133a. If it is detected that the LP is present, the deceleration control is released and the working robot 101 moves at the original moving speed.
 図15に示すように、作業ロボット101が矢印bの方向に移動すると、作業ロボット101は、若干傾きながら端縁SE側から離れるように移動する(図15の上から2番目の作業ロボット101参照)。すると、外方検出部132のエッジセンサ132aが、再び、その下方に太陽電池アレイLPが存在していることを検出し、その信号を制御部130に送信する。このとき、制御部130は、他のエッジセンサ(またはエッジセンサ132aを除く他のエッジセンサ)からの信号を確認し、他のエッジセンサからその下方に太陽電池アレイLPが存在していることを示す信号が送信されている場合には、制御部130は、作業ロボット101が通常の走行状態になるように、移動手段104の作動を制御する(図15の上から2番目の作業ロボット101参照)。 As shown in FIG. 15, when the work robot 101 moves in the direction of the arrow b, the work robot 101 moves away from the edge SE side while slightly tilting (see the second work robot 101 from the top in FIG. 15). ). Then, the edge sensor 132a of the outer detection unit 132 again detects that the solar cell array LP exists below the edge sensor 132a, and transmits the signal to the control unit 130. At this time, the control unit 130 confirms the signal from the other edge sensor (or other edge sensor other than the edge sensor 132a), and confirms that the solar cell array LP exists below the other edge sensor. When the indicated signal is transmitted, the control unit 130 controls the operation of the moving means 104 so that the working robot 101 is in a normal traveling state (see the second working robot 101 from the top of FIG. 15). ).
 作業ロボット101が通常の走行状態になると、再び作業ロボット101は端縁SE側に向かって移動するようになる。そして、外方検出部132のエッジセンサ132aがその下方に太陽電池アレイLPが存在していないことを検出すると、作業ロボット101は、再び、端縁SEから離れる方向に移動するようになる。そして、外方検出部132のエッジセンサ132aが、再び、その下方に太陽電池アレイLPが存在していることを検出すると、作業ロボット101は通常の走行状態になる When the working robot 101 is in the normal running state, the working robot 101 moves toward the edge SE side again. Then, when the edge sensor 132a of the outer detection unit 132 detects that the solar cell array LP does not exist below the edge sensor 132a, the working robot 101 moves in the direction away from the edge SE again. Then, when the edge sensor 132a of the outer detection unit 132 again detects that the solar cell array LP exists below the edge sensor 132a, the working robot 101 enters a normal running state.
 上記のように制御すれば、作業ロボット101が走行状態を切り替えながら移動すれば、作業ロボット101を、走行方向に対して(つまり端縁SEに対して)若干左右に揺動させながら、端縁SEに沿って移動させることができる。 When controlled as described above, if the work robot 101 moves while switching the traveling state, the working robot 101 is slightly swung left and right with respect to the traveling direction (that is, with respect to the edge SE), and the edge edge. It can be moved along the SE.
 そして、作業ロボット101が走行方向の端縁Eに到達し(図15の最上段の作業ロボット101参照)、外方検出部132の一対のエッジセンサ132a,132bの両方が、その下方に太陽電池アレイLPが存在していない状態であることを検出すれば、作業ロボット101の走行速度が減速される。このとき、外方検出部132のエッジセンサ132aがその下方に太陽電池アレイLPが存在していないことを検出すると、作業ロボット101は、端縁SEから離れる方向(矢印bの方向)に移動するようになる。つまり、作業ロボット101は、倣い移動制御されながら減速制御されるので、速度を落としながら、端縁SEから離れる方向かつ端縁Eにさらに接近するように移動する。 Then, the work robot 101 reaches the edge E in the traveling direction (see the work robot 101 in the uppermost stage of FIG. 15), and both of the pair of edge sensors 132a and 132b of the outer detection unit 132 are below the solar cell. If it is detected that the array LP does not exist, the traveling speed of the working robot 101 is reduced. At this time, when the edge sensor 132a of the outer detection unit 132 detects that the solar cell array LP does not exist below the edge sensor 132a, the working robot 101 moves in the direction away from the edge SE (direction of arrow b). Will be. That is, since the working robot 101 is decelerated while being controlled to follow the movement, it moves in a direction away from the edge SE and closer to the edge E while reducing the speed.
 やがて、内方検出部133の一対のエッジセンサ133a,133bの両方が、その下方にも太陽電池アレイLPが存在していない状態であることを検出するようになれば、作業ロボット101は停止される。つまり、倣い制御によって作業ロボット101を移動させつつ、減速制御および停止制御を実施することができる。なお、上述した退避部30に退避する場合には、作業ロボット101は、倣って移動する端縁をそれまで倣ってきた端縁SEから前方に位置していた端縁Eに切り替えて、端縁Eに沿って倣い移動制御されながら移動する。 Eventually, when both the pair of edge sensors 133a and 133b of the inner detection unit 133 detect that the solar cell array LP does not exist below the pair of edge sensors 133a, the working robot 101 is stopped. To. That is, deceleration control and stop control can be performed while moving the work robot 101 by copying control. When retracting to the above-mentioned evacuation unit 30, the working robot 101 switches the edge that moves in accordance with the edge SE that has been copied up to that point to the edge E that is located forward, and the edge edge. It moves along E while being controlled to follow the movement.
 なお、倣い制御は、減速制御されている間も実施される。この間は、外方検出部132のエッジセンサ132aの下方には太陽電池アレイLPが存在していないが、内方検出部133のエッジセンサ133aの下方に太陽電池アレイLPが存在しているか否かによって、端縁SEに近づく方向の移動(矢印aの方向)と、端縁SEから離れる方向(矢印bの方向)が切り替わるようになる。 Note that the copy control is performed even while the deceleration control is being performed. During this period, the solar cell array LP does not exist below the edge sensor 132a of the outer detection unit 132, but whether or not the solar cell array LP exists below the edge sensor 133a of the inner detection unit 133. As a result, the movement in the direction approaching the edge SE (direction of arrow a) and the direction away from the edge SE (direction of arrow b) are switched.
<外方検出部132および内方検出部133>
 上述した速度制御および停止制御は、外方検出部132および内方検出部133が少なくとも一つのエッジセンサを備えていればよい。しかし、外方検出部132に一対のエッジセンサ132a,132bを設ければ、両方のエッジセンサ132aが同じ状態(その下方に太陽電池アレイLPが無い状態)となったときにのみ減速制御となるようにすることができる。すると、外方検出部132の外方(端縁SE側)のエッジセンサ132aだけが端縁SEを検出しても、減速制御をしないので、作業ロボット101を進行方向に安定して走行させることができる。
<Outer detection unit 132 and inner detection unit 133>
For the speed control and stop control described above, the outer detection unit 132 and the inner detection unit 133 need only include at least one edge sensor. However, if the outer detection unit 132 is provided with a pair of edge sensors 132a and 132b, deceleration control is performed only when both edge sensors 132a are in the same state (the state where there is no solar cell array LP below the edge sensors 132a). Can be done. Then, even if only the edge sensor 132a on the outer side (edge SE side) of the outer detection unit 132 detects the edge SE, the deceleration control is not performed, so that the working robot 101 is stably driven in the traveling direction. Can be done.
 また、内方検出部133に一対のエッジセンサ133a,133bを設ければ、両方が同じ状態(その下方に太陽電池アレイLPが無い状態)となったときにのみ停止制御となるようにすることができる。すると、上述した、減速制御を実施しながら倣い制御を実施する際に、内方検出部133の外方(端縁SE側)のエッジセンサ133aだけが端縁SEを検出しても、停止制御をしないので、作業ロボット101を減速制御中でも安定して走行させることができる。 Further, if the inner detection unit 133 is provided with a pair of edge sensors 133a and 133b, the stop control is performed only when both are in the same state (the state where there is no solar cell array LP below the state). Can be done. Then, when performing the copying control while performing the deceleration control described above, even if only the edge sensor 133a on the outer side (edge SE side) of the inner detection unit 133 detects the edge SE, the stop control is performed. Therefore, the work robot 101 can be stably driven even during deceleration control.
 なお、減速制御の間は倣い制御を実施しないようにする場合には、内方検出部133は、外方検出部132の外方(端縁SE側)のエッジセンサ132aよりも内方に位置するエッジセンサ133bだけを設けてもよい。 When the copy control is not performed during the deceleration control, the inner detection unit 133 is located inward of the outer edge sensor 132a of the outer detection unit 132 (end edge SE side). Only the edge sensor 133b may be provided.
 一方、速度制御および停止制御だけを実施するのであれば、外方検出部132と内方検出部133は、それぞれ一つのエッジセンサを有していればよい。この場合、作業ロボット101の走行方向に位置する端縁Eであるか端縁SEであるかは、外方検出部132や内方検出部133が検出した信号だけでは判断ができない。したがって、端縁SEを検出するセンサを別途設けることが望ましい。 On the other hand, if only speed control and stop control are to be performed, the outer detection unit 132 and the inner detection unit 133 may each have one edge sensor. In this case, whether the edge E or the edge SE is located in the traveling direction of the work robot 101 cannot be determined only by the signals detected by the outer detection unit 132 and the inner detection unit 133. Therefore, it is desirable to separately provide a sensor for detecting the edge SE.
 また、外方検出部132および内方検出部133からの信号によって速度制御や停止制御を実施せずに倣い移動制御だけを実施するのであれば、外方検出部132および内方検出部133がそれぞれ一つのエッジセンサを有していれば実施できる。また、外方検出部132と内方検出部133を両方設けなくてもよく、一方だけを設けても倣い移動制御を実施することは可能である。 Further, if only the copy movement control is performed without performing the speed control or the stop control by the signals from the outer detection unit 132 and the inner detection unit 133, the outer detection unit 132 and the inner detection unit 133 are used. This can be done if each has one edge sensor. Further, it is not necessary to provide both the outer detection unit 132 and the inner detection unit 133, and it is possible to carry out the copy movement control even if only one is provided.
<傾き防止センサ135>
 なお、図14に示すように、幅方向においてエッジ検出部131から離れた位置であってエッジ検出部131よりも内方かつ移動手段104よりも外方に、傾き防止センサ135を設けてもよい。
<Anti-tilt sensor 135>
As shown in FIG. 14, the tilt prevention sensor 135 may be provided at a position away from the edge detection unit 131 in the width direction, inward of the edge detection unit 131 and outside of the moving means 104. ..
 上述したように、作業ロボット101は、通常走行では端縁SEに向かうように移動するので、その軸方向(つまり走行方向)は端縁SEの方向に対して傾くことになる。一方、外方検出部132のエッジセンサ132aが端縁SEを検出すれば、作業ロボット101は逆方向に傾く。したがって、作業ロボット101の軸方向の傾きは、端縁SEの方向に対してある程度の範囲内に収まるように揺動する。しかし、作業ロボット101が端縁SEから大きく離れた位置に配置された場合には、作業ロボット101の軸方向の傾きは大きくなる。そして、走行方向の端縁E近傍でそのような状態になれば、移動手段104の脱輪等が発生する可能性がある。 As described above, since the work robot 101 moves toward the edge SE in normal traveling, its axial direction (that is, traveling direction) is inclined with respect to the direction of the edge SE. On the other hand, if the edge sensor 132a of the outer detection unit 132 detects the edge SE, the working robot 101 tilts in the opposite direction. Therefore, the inclination of the work robot 101 in the axial direction swings so as to be within a certain range with respect to the direction of the edge SE. However, when the work robot 101 is arranged at a position far away from the edge SE, the inclination of the work robot 101 in the axial direction becomes large. Then, if such a state occurs in the vicinity of the edge E in the traveling direction, there is a possibility that the moving means 104 may be derailed or the like.
 しかし、上述した位置に傾き防止センサ135を設けておけば、移動手段104が脱輪等する前に、傾き防止センサ135が、その下方に太陽電池アレイLPが無いことを検出できる。この場合、傾き防止センサ135からその下方に太陽電池アレイLPが無いことを検出した信号が制御部130に送信されると、制御部130が移動手段104を停止するようにしておけば、移動手段104が脱輪する前に、作業ロボット101の移動を停止させることができる。 However, if the tilt prevention sensor 135 is provided at the above-mentioned position, the tilt prevention sensor 135 can detect that there is no solar cell array LP below the tilt prevention sensor 135 before the moving means 104 derails or the like. In this case, if the control unit 130 stops the moving means 104 when a signal from the tilt prevention sensor 135 that detects that there is no solar cell array LP below the tilt prevention sensor 135 is transmitted to the control unit 130, the moving means The movement of the working robot 101 can be stopped before the 104 derails.
<危険制御部140>
 エッジ検出部131を設けておき、上記のように移動手段104の作動を制御部130によって制御すれば、エッジ検出部131および制御部130が正常に作動していれば、脱輪や作業ロボット101の太陽電池アレイLPからの落下を適切に防止できる。
<Danger control unit 140>
If the edge detection unit 131 is provided and the operation of the moving means 104 is controlled by the control unit 130 as described above, if the edge detection unit 131 and the control unit 130 are operating normally, the wheel removal or the work robot 101 Can be appropriately prevented from falling from the solar cell array LP.
 しかし、エッジ検出部131が故障等で適切に太陽電池アレイLPの端縁Eを検出できない場合には、脱輪したり作業ロボット101が太陽電池アレイLPから落下したりする可能性がある。 However, if the edge detection unit 131 cannot properly detect the edge E of the solar cell array LP due to a failure or the like, there is a possibility that the wheel may come off or the working robot 101 may fall from the solar cell array LP.
 そこで、エッジ検出部131とは別に、太陽電池アレイLPの端縁Eを検出する危険検出部141を設けてもよい。具体的には、図11(A)に示すように、作業ロボット101の走行方向において、エッジ検出部131と移動手段104との間に危険検出部141を設けておき、危険検出部141が太陽電池アレイLPの端縁Eを検出すると、制御部130が作業ロボット101の走行を停止するようにしておく。すると、エッジ検出部131が太陽電池アレイLPの端縁Eを検出しなかった場合でも、移動手段104が太陽電池アレイLPの端縁Eに到達する前に、危険検出部141が太陽電池アレイLPの端縁Eを検出できる。したがって、エッジ検出部131が太陽電池アレイLPの端縁Eを検出しなかった場合でも、脱輪したり作業ロボット101が太陽電池アレイLPから落下したりすることを防止できる。 Therefore, in addition to the edge detection unit 131, a danger detection unit 141 for detecting the edge E of the solar cell array LP may be provided. Specifically, as shown in FIG. 11A, a danger detection unit 141 is provided between the edge detection unit 131 and the moving means 104 in the traveling direction of the work robot 101, and the danger detection unit 141 is the sun. When the edge E of the battery array LP is detected, the control unit 130 stops the working robot 101 from traveling. Then, even if the edge detection unit 131 does not detect the edge E of the solar cell array LP, the danger detection unit 141 causes the solar cell array LP before the moving means 104 reaches the edge E of the solar cell array LP. Edge edge E can be detected. Therefore, even if the edge detection unit 131 does not detect the edge E of the solar cell array LP, it is possible to prevent the wheel from coming off or the working robot 101 from falling from the solar cell array LP.
 なお、危険検出部141を設けた場合、危険検出部141からの信号によって作業ロボット101の走行を停止させたことを作業者などに知らせる機能を制御部130に設けてもよい。すると、作業ロボット101が故障していることを作業者や管理者に知らせることによって、迅速に作業ロボット101を修理等することができる。例えば、警報機やインジケータによって作業者などに故障を通知するようにしてもよいし、信号を作業者の携帯端末や管理センタ等に送信して故障に関する情報を送信するようにしてもよい。 When the danger detection unit 141 is provided, the control unit 130 may be provided with a function of notifying the operator or the like that the running of the work robot 101 has been stopped by a signal from the danger detection unit 141. Then, by notifying the worker or the manager that the work robot 101 is out of order, the work robot 101 can be quickly repaired or the like. For example, an alarm or an indicator may be used to notify the operator of the failure, or a signal may be transmitted to the operator's mobile terminal, management center, or the like to transmit information on the failure.
 また、制御部130が故障等していれば、エッジ検出部131が太陽電池アレイLPの端縁Eを検出しても作業ロボット101の走行が停止せず、作業ロボット101が太陽電池アレイLPから落下してしまう可能性がある。しかし、制御部130とは別に、危険検出部141の信号によって移動手段104を制御する危険制御部140を設けておけば、制御部130が故障等していても、脱輪したり作業ロボット101が太陽電池アレイLPから落下したりすることを防止できる。 Further, if the control unit 130 is out of order, the work robot 101 does not stop running even if the edge detection unit 131 detects the edge E of the solar cell array LP, and the work robot 101 starts from the solar cell array LP. It may fall. However, if the danger control unit 140 that controls the moving means 104 by the signal of the danger detection unit 141 is provided separately from the control unit 130, even if the control unit 130 is out of order, the wheel can be removed or the work robot 101 can be removed. Can be prevented from falling from the solar cell array LP.
 この場合には、作業ロボット101の走行を停止したことを作業者などに知らせる機能を危険制御部140に設けてもよい。すると、作業ロボット101が故障していることを作業者や管理者に知らせることによって、迅速に作業ロボット101を修理等することができる。例えば、警報機やインジケータによって作業者などに故障を通知するようにしてもよいし、作業者の携帯端末や管理センタ等に信号を送信して故障に関する情報を送信するようにしてもよい。また、危険制御部140にエッジ検出部131からの信号も入力されるようにしておけば、エッジ検出部131と制御部130のいずれが損傷したのかも把握できる。すると、作業ロボット101を修理などする際に、問題点を作業者が簡単に把握できるので、復旧までの時間も短縮することができる。 In this case, the danger control unit 140 may be provided with a function of notifying the operator or the like that the running of the work robot 101 has been stopped. Then, by notifying the worker or the manager that the work robot 101 is out of order, the work robot 101 can be quickly repaired or the like. For example, an alarm or an indicator may be used to notify the operator of the failure, or a signal may be transmitted to the worker's mobile terminal, management center, or the like to transmit information on the failure. Further, if the signal from the edge detection unit 131 is also input to the danger control unit 140, it is possible to grasp which of the edge detection unit 131 and the control unit 130 is damaged. Then, when the work robot 101 is repaired or the like, the worker can easily grasp the problem, so that the time until recovery can be shortened.
 危険検出部141の構造もとくに限定されない。しかし、危険検出部141が作業ロボット101の移動方向に並ぶように外方センサと内方センサとを有していれば(図14のエッジ検出部131参照)、溝などを太陽電池アレイLPの端縁Eとして誤検出する可能性を低くできる。 The structure of the danger detection unit 141 is also not particularly limited. However, if the danger detection unit 141 has the outer sensor and the inner sensor so as to line up in the moving direction of the work robot 101 (see the edge detection unit 131 in FIG. 14), the groove or the like is formed in the solar cell array LP. The possibility of erroneous detection as edge E can be reduced.
 また、危険検出部141がセンサを一つしか有しない場合でも、危険検出部141を作業ロボット101の移動方向においてズレた位置に設置すれば、溝などを太陽電池アレイLPの端縁Eとして誤検出する可能性を低くできる。 Further, even if the danger detection unit 141 has only one sensor, if the danger detection unit 141 is installed at a position shifted in the moving direction of the work robot 101, a groove or the like is erroneously used as the edge E of the solar cell array LP. The possibility of detection can be reduced.
<センサの例>
 なお、エッジ検出部131や危険検出部141に使用されるセンサはとくに限定されず、公知のセンサを使用することができる。例えば、レーザーセンサや赤外線センサ、超音波センサなどの非接触でエッジを検出するセンサや、リミットスイッチなどの接触式のセンサなどをセンサに使用できる。また、CCDカメラ等をセンサとして使用して撮影された画像を制御部130で解析して、エッジを検出するようにしてもよい。さらに、温度センサや静電容量センサをセンサとして使用することも可能である。これらのセンサを使用した場合、太陽電池アレイLPとエッジ外方の部分(空間等)との温度差や静電容量の差から、太陽電池アレイLPのエッジを把握することができる。
<Example of sensor>
The sensor used in the edge detection unit 131 and the danger detection unit 141 is not particularly limited, and a known sensor can be used. For example, a non-contact edge detection sensor such as a laser sensor, an infrared sensor, or an ultrasonic sensor, or a contact-type sensor such as a limit switch can be used as the sensor. Further, the control unit 130 may analyze the image taken by using the CCD camera or the like as a sensor to detect the edge. Further, it is also possible to use a temperature sensor or a capacitance sensor as a sensor. When these sensors are used, the edge of the solar cell array LP can be grasped from the temperature difference and the difference in capacitance between the solar cell array LP and the portion outside the edge (space, etc.).
 例えば、センサがレーザーセンサの場合、以下のようにして、太陽電池アレイLPが存在しているか否かを検出することができる。まず、センサの直下に太陽電池アレイLPが存在しているとする。この場合、センサからレーザー光を照射すれば、センサは、太陽電池アレイLPで反射した反射光を受光する。つまり、センサの位置がエッジよりも内方に位置していると判断できる。一方、センサが反射光を受光できない場合には、センサの直下に太陽電池アレイLPがない、つまり、センサの位置がエッジ外に位置していると判断できる。 For example, when the sensor is a laser sensor, it is possible to detect whether or not the solar cell array LP exists as follows. First, it is assumed that the solar cell array LP exists directly under the sensor. In this case, if the sensor irradiates the laser light, the sensor receives the reflected light reflected by the solar cell array LP. That is, it can be determined that the position of the sensor is located inward of the edge. On the other hand, when the sensor cannot receive the reflected light, it can be determined that there is no solar cell array LP directly under the sensor, that is, the position of the sensor is located outside the edge.
<脱輪防止機能>
 さらに、危険検出部141が故障した場合に備えて、脱輪を検出する接触式センサを設けてもよい。
<Wheel removal prevention function>
Further, a contact type sensor for detecting derailment may be provided in case the danger detection unit 141 fails.
 例えば、ロボット本体102の下面に、危険制御部140(または制御部130)と電気的に接続された接触式センサを設ける。すると、脱輪した場合には、ロボット本体102の下面、つまり、接触式センサが太陽電池アレイLPのエッジに接触するので、脱輪したことを検出することができる。そして、太陽電池アレイLPと接触したことを検出し接触式センサが信号を危険制御部140(または制御部130)に送信すると、その信号を受信した危険制御部140(または制御部130)が移動手段104の駆動部の作動を停止するようにしておく。例えば、駆動部にモータを使用した場合には、モータへの電流の供給を停止するようにしておく。すると、作業ロボット101をエッジ方向に移動させる力が加わらないので、ロボット本体102が太陽電池アレイLPから落下することを防止できる。 For example, a contact sensor electrically connected to the danger control unit 140 (or control unit 130) is provided on the lower surface of the robot body 102. Then, when the wheel is removed, the lower surface of the robot body 102, that is, the contact sensor comes into contact with the edge of the solar cell array LP, so that it is possible to detect that the wheel has been removed. Then, when the contact sensor detects that it has come into contact with the solar cell array LP and transmits a signal to the danger control unit 140 (or control unit 130), the danger control unit 140 (or control unit 130) that has received the signal moves. The operation of the drive unit of the means 104 is stopped. For example, when a motor is used for the drive unit, the supply of current to the motor is stopped. Then, since the force for moving the working robot 101 in the edge direction is not applied, it is possible to prevent the robot main body 102 from falling from the solar cell array LP.
 なお、接触式センサが太陽電池アレイLPと接触した信号を危険制御部140(または制御部130)が受信すると、車輪104a,104bに駆動抵抗が生じるように駆動部を作動させるようにしてもよい。すると、ロボット本体102が太陽電池アレイLPから落下することをより防止する効果を高くすることができる。例えば、駆動部にモータを使用した場合には、モータの回転方向が逆転するように、モータに電流を供給するようにしてもよい。また、駆動部に電磁ブレーキ等の制動装置を設けてもよいし、モータの端子間を短絡させることで制動力が得られる、ショートブレーキ機能を発揮させてもよい。 When the danger control unit 140 (or the control unit 130) receives a signal that the contact sensor contacts the solar cell array LP, the drive unit may be operated so that the wheels 104a and 104b generate a drive resistance. .. Then, the effect of preventing the robot body 102 from falling from the solar cell array LP can be enhanced. For example, when a motor is used for the drive unit, a current may be supplied to the motor so that the rotation direction of the motor is reversed. Further, a braking device such as an electromagnetic brake may be provided in the drive unit, or a short braking function in which a braking force can be obtained by short-circuiting the terminals of the motor may be exhibited.
 なお、上述した接触式センサとして使用するセンサはとくに限定されない。例えば、ケーブルスイッチ(アズビル製)やテープスイッチ(東京センサ製)と呼ばれる、感圧ゴムスイッチ等を使用することができる。そして、接触式センサを設ける位置もとくに限定されない。例えば、ケーブルスイッチやテープスイッチ等を使用する場合であれば、車輪104c(または図6の車輪104a)の回転面と平行となるように、ケーブルスイッチやテープスイッチ等を設置してもよい。また、面状のセンサを使用した場合には、センサをロボット本体102の下面全面に設けてもよい。 The sensor used as the above-mentioned contact type sensor is not particularly limited. For example, a pressure-sensitive rubber switch called a cable switch (manufactured by Azbil) or a tape switch (manufactured by Tokyo Sensor) can be used. The position where the contact sensor is provided is not particularly limited. For example, when a cable switch, a tape switch, or the like is used, the cable switch, the tape switch, or the like may be installed so as to be parallel to the rotating surface of the wheel 104c (or the wheel 104a in FIG. 6). When a planar sensor is used, the sensor may be provided on the entire lower surface of the robot body 102.
<作業ロボット101の作動>
 上述した作業ロボット101は、制御部130によって移動手段104の作動や掃除等の作業を制御している。このため、制御部130に記憶されたルート等を自動で走行するように作業ロボット101の作動が制御されていれば、ほぼ自動で太陽電池アレイLP上を移動させながら掃除等の作業を実施させることができる。なお、ほぼ自動で太陽電池アレイLP上を移動させながら掃除等の作業を実施させる場合でも、退避部30に移動する際には、太陽電池アレイLPの端縁に沿って(太陽電池アレイLPの端縁に倣って)移動させてもよい。すると、退避部30に確実かつ安定して作業ロボット101を帰還させることができる。
<Operation of work robot 101>
The work robot 101 described above controls operations such as operation and cleaning of the moving means 104 by the control unit 130. Therefore, if the operation of the work robot 101 is controlled so as to automatically travel on the route or the like stored in the control unit 130, the work such as cleaning is performed while moving on the solar cell array LP almost automatically. be able to. Even when cleaning is performed while moving on the solar cell array LP almost automatically, when moving to the retracting unit 30, the solar cell array LP is moved along the edge of the solar cell array LP (of the solar cell array LP). It may be moved (following the edge). Then, the work robot 101 can be returned to the evacuation unit 30 reliably and stably.
 一方、作業ロボット101は、外部から作業者が操作してその走行や掃除等の作業を制御するようにしてもよい。例えば、無線や赤外線等を利用した無線通信を利用して、作業ロボット101を遠隔操作するようにしてもよい。つまり、無線通信用コントローラを作業者が操作して作業ロボット101を遠隔操作するようにしてもよい。また、作業ロボット101と信号線等によって接続されたコントローラを用いて、作業者が作業ロボット101を操作するようにしてもよい。無線通信用のコントローラや信号線で接続されたコントローラを用いて作業者が作業ロボット101を操作するようにすれば、作業者が掃除等の作業状況を確認しながら作業を実施できる。すると、周囲の状況の変化等に合わせて、作業ロボット101に適切な作業を実施させることができる。 On the other hand, the work robot 101 may be operated by an operator from the outside to control operations such as running and cleaning. For example, the work robot 101 may be remotely controlled by using wireless communication using wireless, infrared rays, or the like. That is, the operator may operate the wireless communication controller to remotely control the work robot 101. Further, the worker may operate the work robot 101 by using a controller connected to the work robot 101 by a signal line or the like. If the operator operates the work robot 101 using a controller for wireless communication or a controller connected by a signal line, the operator can perform the work while checking the work status such as cleaning. Then, the work robot 101 can be made to perform appropriate work according to changes in the surrounding conditions and the like.
 このように、作業者が作業ロボット101の作動を制御する場合でも、上述したようなエッジ検出機能を有していることが望ましい。かかる機能を有していれば、作業者の操作ミスがあっても、作業ロボット101を適切に走行させて作業を実施できる。また、作業者の操作ミスがあっても、作業ロボット101が太陽電池アレイLPから落下することを防止することができる。 In this way, even when the operator controls the operation of the work robot 101, it is desirable to have the edge detection function as described above. If it has such a function, even if there is an operation error of the operator, the work robot 101 can be appropriately run to perform the work. Further, even if there is an operation error of the operator, it is possible to prevent the working robot 101 from falling from the solar cell array LP.
 作業ロボット101は、作業者による操作と自動走行(作業)の両方を併用したものでもよい。つまり、通常は自動(つまり制御部130のみの制御)で作業や走行をしているが、コントローラなどから作業者による操作が入力されると、自動走行(作業)の状態から作業者の操作による作動に切り替わるようにしてもよい。この場合、コントローラ等からの入力が一定以上ない場合には、自動走行(作業)の状態に切り替わるようにしておく。すると、作業者の操作ミスや自動走行(作業)の状態への切り替えを忘れても、作業を継続して実施できるので好ましい。 The work robot 101 may be a combination of both operation by an operator and automatic traveling (work). That is, normally, work and running are performed automatically (that is, control of only the control unit 130), but when an operation by the operator is input from the controller or the like, the operation by the operator is performed from the state of automatic running (work). It may be switched to the operation. In this case, if the input from the controller or the like does not exceed a certain level, the state is switched to the automatic driving (working) state. Then, even if the operator makes an operation error or forgets to switch to the automatic driving (work) state, the work can be continued, which is preferable.
<作業制御について>
 また、作業装置1は、太陽電池アレイLPの表面を測定などして、太陽電池アレイLPの表面の状態を検出する状態検出機構を備えていてもよい。かかる状態検出機構を設けていれば、太陽電池アレイLPの表面を適切に把握できるので、太陽電池アレイLPの表面の状態に応じた掃除などの作業を実施できる。
<About work control>
Further, the working device 1 may include a state detection mechanism for detecting the state of the surface of the solar cell array LP by measuring the surface of the solar cell array LP or the like. If such a state detection mechanism is provided, the surface of the solar cell array LP can be appropriately grasped, so that work such as cleaning according to the state of the surface of the solar cell array LP can be performed.
 状態検出機構は、太陽電池アレイLPの状態を検出する状態検出部と、状態検出部が検出した情報に基づいて太陽電池アレイLPの表面の状態を判断する判断部とから構成することができる。状態検出部および判断部は、いずれも作業ロボット101に設けてもよいし、状態検出部のみを作業ロボット101に設けて判断部は管理棟等に設けてもよい。また、状態検出部を太陽電池アレイLP等に設けて判断部は管理棟等に設けてもよい。判断部を管理棟等に設けた場合には、管理棟から作業ロボット101に対して作動タイミングなどの指令が送信されることになる。 The state detection mechanism can be composed of a state detection unit that detects the state of the solar cell array LP and a determination unit that determines the state of the surface of the solar cell array LP based on the information detected by the state detection unit. Both the state detection unit and the determination unit may be provided in the work robot 101, or only the state detection unit may be provided in the work robot 101 and the determination unit may be provided in the management building or the like. Further, the state detection unit may be provided in the solar cell array LP or the like, and the determination unit may be provided in the management building or the like. When the determination unit is provided in the management building or the like, commands such as operation timing are transmitted from the management building to the work robot 101.
 状態検出部は、とくに限定されないが、例えば、太陽電池アレイLPの表面の温度を検出する温度検出部を挙げることができる。この場合、温度検出部が検出した太陽電池アレイLPの表面の温度に応じて、その温度に適した作業を作業ロボット101に実施させることができる。 The state detection unit is not particularly limited, and examples thereof include a temperature detection unit that detects the surface temperature of the solar cell array LP. In this case, depending on the temperature of the surface of the solar cell array LP detected by the temperature detection unit, the work robot 101 can perform work suitable for that temperature.
 例えば、太陽電池アレイLPの表面が露点温度以下の場合には、太陽電池アレイLPの表面に結露が発生するので、その結露を掃除に使用することができる。したがって、掃除部110としてゴム製ブレードを作業ロボット101が有している場合には、状態検出機構が露点温度以下の状態を検出すると、制御部130が作業ロボット101を移動させて掃除を実施するようになっていることが望ましい。 For example, when the surface of the solar cell array LP is below the dew point temperature, dew condensation occurs on the surface of the solar cell array LP, and the dew condensation can be used for cleaning. Therefore, when the work robot 101 has a rubber blade as the cleaning unit 110, when the state detection mechanism detects a state below the dew point temperature, the control unit 130 moves the work robot 101 to perform cleaning. It is desirable that it is like this.
 一方、掃除部110としてブラシや布などのドライ状態での清掃に適したものを作業ロボット101が有している場合には、太陽電池アレイLPの表面が露点温度以上になっている状態で掃除することが望ましい。したがって、かかる掃除部110を作業ロボット101が有している場合には、状態検出機構が露点温度以上の状態を検出すると、制御部130が作業ロボット101を移動させて掃除を実施するようになっていることが望ましい。 On the other hand, when the working robot 101 has a cleaning unit 110 suitable for cleaning in a dry state such as a brush or cloth, the cleaning is performed in a state where the surface of the solar cell array LP is above the dew point temperature. It is desirable to do. Therefore, when the work robot 101 has such a cleaning unit 110, when the state detection mechanism detects a state of the dew point temperature or higher, the control unit 130 moves the work robot 101 to perform cleaning. It is desirable to have.
 なお、温度検出部は、太陽電池アレイLPに設置してもよいし、作業ロボット101に設置してもよい。例えば、太陽電池アレイLPに設置する場合には、太陽電池アレイLPのパネルフレーム等に温度検出部を設けることができる。また、作業ロボット101に設ける場合には、作業ロボット101が退避部30に配置されている状態で、太陽電池アレイLPの表面の温度を測定できる位置に温度検出部を設ければよい。例えば、作業ロボット101から外方に突出したステー等に温度検出部を設けるなどの方法を採用することができる。 The temperature detection unit may be installed on the solar cell array LP or on the work robot 101. For example, when it is installed in the solar cell array LP, the temperature detection unit can be provided in the panel frame or the like of the solar cell array LP. Further, when the work robot 101 is provided, the temperature detection unit may be provided at a position where the temperature of the surface of the solar cell array LP can be measured while the work robot 101 is arranged in the evacuation unit 30. For example, a method such as providing a temperature detection unit on a stay or the like protruding outward from the work robot 101 can be adopted.
 検出する太陽電池アレイLPの温度は、必ずしも表面の温度に限られず、太陽電池アレイLPの所定の領域やその表面、所定の領域の近傍やその近傍の裏面、所定の領域における太陽電池モジュールPの内部の温度を計測してもよい。太陽電池アレイLPの裏面の温度を測定する場合には、太陽電池アレイLPの裏面に温度検出部を設けてもよい。 The temperature of the solar cell array LP to be detected is not necessarily limited to the surface temperature, and the temperature of the solar cell module P in a predetermined region or the front surface of the solar cell array LP, the vicinity of the predetermined region or the back surface in the vicinity thereof, or the predetermined region. The internal temperature may be measured. When measuring the temperature of the back surface of the solar cell array LP, a temperature detection unit may be provided on the back surface of the solar cell array LP.
 また、太陽電池アレイLPの表面の状態を検出する状態検出部として、太陽電池アレイLPの表面の色や強度(光沢)を測定するものを採用してもよい。この場合、太陽電池アレイLPの表面の色や強度(光沢)を検出することで太陽電池アレイLPの表面の汚れを判断することができる。 Further, as a state detection unit for detecting the state of the surface of the solar cell array LP, a device that measures the color and intensity (gloss) of the surface of the solar cell array LP may be adopted. In this case, the dirt on the surface of the solar cell array LP can be determined by detecting the color and intensity (gloss) of the surface of the solar cell array LP.
 例えば、作業ロボット101に太陽電池アレイLPの表面の色や強度(光沢)を測定する状態検出部を設ける。そして、状態検出部が検出した情報に基づいて、判断部が一定以上の汚れが残っていると判断した場合には、その位置を複数回往復するように制御部130が作業ロボット101を作動させるようにする。例えば、太陽電池アレイLPにおいて汚れが残っている領域を作業ロボット101が複数回往復するように、制御部130が作業ロボット101を作動させるようにする。すると、太陽電池アレイLPの表面の汚れを作業ロボット101によって除去する効果を高めることができる。 For example, the work robot 101 is provided with a state detection unit that measures the color and intensity (gloss) of the surface of the solar cell array LP. Then, when the determination unit determines that a certain amount of dirt remains based on the information detected by the state detection unit, the control unit 130 operates the work robot 101 so as to reciprocate the position a plurality of times. To do so. For example, the control unit 130 operates the work robot 101 so that the work robot 101 reciprocates a plurality of times in the area where dirt remains in the solar cell array LP. Then, the effect of removing the dirt on the surface of the solar cell array LP by the working robot 101 can be enhanced.
 また、汚れが残っている領域を作業ロボット101が複数回往復したにもかかわらず汚れが残っていると判断部が判断した場合は、制御部130は、汚れが残っている領域を作業者に知らせる機能を有していてもよい。この場合、その領域を作業者が(水などを使って)人手で清掃することで、作業ロボット101では除去することができない汚れも解消できる。
 さらに、所定の回数の往復作業を実施すると、その領域の掃除を中止して他の領域の掃除を実施するようにしてもよい。つまり、作業ロボット101が所定の回数だけ汚れが残っている領域を往復移動すると、判断部が一定以上の汚れが残っていると判断した場合であっても、その領域の掃除を中止するようにしてもよい。この場合、作業ロボット101の無駄な作動を防止できる。そして、後述するように、複数の太陽電池アレイLPで一つの作業ロボット101を共有する場合には、一の太陽電池アレイLPの表面に汚れが除去できない領域があった場合でも、他の太陽電池アレイLPに作業ロボット101を移動させることができる。すると、作業ロボット101が、作業ロボット101では除去することができない汚れを解消するために一つの太陽電池アレイLPに長時間留まらないので、作業効率を向上できる。
Further, when the determination unit determines that the dirt remains even though the work robot 101 reciprocates a plurality of times in the area where the dirt remains, the control unit 130 informs the operator of the area where the dirt remains. It may have a function of notifying. In this case, if the operator manually cleans the area (using water or the like), dirt that cannot be removed by the work robot 101 can be eliminated.
Further, when the reciprocating work is performed a predetermined number of times, the cleaning of the area may be stopped and the cleaning of the other area may be performed. That is, when the work robot 101 reciprocates in the area where the dirt remains a predetermined number of times, the cleaning of the area is stopped even if the determination unit determines that the dirt remains above a certain level. You may. In this case, unnecessary operation of the work robot 101 can be prevented. Then, as will be described later, when one working robot 101 is shared by a plurality of solar cell array LPs, even if there is an area on the surface of one solar cell array LP where dirt cannot be removed, another solar cell The working robot 101 can be moved to the array LP. Then, the working robot 101 does not stay in one solar cell array LP for a long time in order to eliminate the dirt that cannot be removed by the working robot 101, so that the working efficiency can be improved.
 かかる状態検出部は、例えば、以下のような構成を採用することができる。
 状態検出部として、太陽電池アレイLPの表面に光を照射する光照射部を設ける。この光照射部が照射する光はとくに限定されない。また、光照射部が照射した光が太陽電池アレイLPの表面で反射した反射光を受光できるように受光部を設ける。そして、受光部の受光した信号に基づいて、太陽電池アレイLPの表面の汚れを判断部が判断するようにしておけば、太陽電池アレイLPの表面の汚れを判断することができる。例えば、判断部に、光照射部が所定の強度および波長の光を太陽電池アレイLPの表面に照射したときに、太陽電池アレイLPの表面が汚れていない状態(または許容される程度に汚れている状態)における反射光の色(基準色)や強度(基準強度)を記憶させておく。すると、受光部が受光した反射光と、基準色や基準強度を比較することによって、判断部が太陽電池アレイLPの表面の汚れを判断することができる。
For example, the following configuration can be adopted for such a state detection unit.
As a state detection unit, a light irradiation unit that irradiates the surface of the solar cell array LP with light is provided. The light emitted by the light irradiation unit is not particularly limited. Further, a light receiving unit is provided so that the light emitted by the light irradiation unit can receive the reflected light reflected on the surface of the solar cell array LP. Then, if the determination unit determines the dirt on the surface of the solar cell array LP based on the signal received by the light receiving unit, the dirt on the surface of the solar cell array LP can be determined. For example, when the light irradiation unit irradiates the surface of the solar cell array LP with light of a predetermined intensity and wavelength, the surface of the solar cell array LP is not contaminated (or is contaminated to an acceptable degree). The color (reference color) and intensity (reference intensity) of the reflected light in the present state) are stored. Then, by comparing the reflected light received by the light receiving unit with the reference color and the reference intensity, the determination unit can determine the dirt on the surface of the solar cell array LP.
 なお、光照射部や受光部の構成はとくに限定されないが、作業ロボット101の移動方向と交差する方向(例えば直交する方向)に沿って複数の光照射部と複数の受光部とを設けておくことが望ましい。この場合、太陽電池アレイLPの表面の汚れを検出できない領域を少なくできる。とくに、受光部としてラインセンサを使用すれば、汚れの検出漏れを防止しやすくなる。 The configuration of the light irradiation unit and the light receiving unit is not particularly limited, but a plurality of light irradiation units and a plurality of light receiving units are provided along a direction intersecting the moving direction of the work robot 101 (for example, a direction orthogonal to each other). Is desirable. In this case, it is possible to reduce the area where dirt on the surface of the solar cell array LP cannot be detected. In particular, if a line sensor is used as the light receiving unit, it becomes easy to prevent omission of detection of dirt.
 なお、状態検出部は、作業ロボット101の移動方向において掃除部110の後方に設けておけば、掃除部110による掃除後の状態を判断できる。また、作業ロボット101の移動方向において掃除部110の前方に設けておけば、汚れの状態に応じて掃除部110による掃除を調整することができる。とくに、作業ロボット101の移動方向において掃除部110の前方と後方の両方に設けておけば、上述した両方の機能を発揮させることができる。 If the state detection unit is provided behind the cleaning unit 110 in the moving direction of the work robot 101, the state after cleaning by the cleaning unit 110 can be determined. Further, if the robot 101 is provided in front of the cleaning unit 110 in the moving direction, the cleaning by the cleaning unit 110 can be adjusted according to the state of dirt. In particular, if the work robot 101 is provided both in front of and behind the cleaning unit 110 in the moving direction, both of the above-mentioned functions can be exhibited.
 また、状態検出機構は、状態検出部として、風速を測定する風速センサを有していてもよい。この場合、風速センサが測定する風速情報に基づき、風速がある一定の風速以上のときに制御部130が作業ロボット101を作動させれば、清掃効果を高めることができる。つまり、作業ロボット101の掃除部110が埃等を巻き上げた場合、その埃を飛散させやすくなるので清掃効果を高めることができる。なお、一定以上の風速の際は、作業ロボット101の破損や動作不良を招く恐れがあるため、制御部130は作業ロボット101を作動させないように制御するようになっていることが望ましい。 Further, the state detection mechanism may have a wind speed sensor for measuring the wind speed as a state detection unit. In this case, if the control unit 130 operates the work robot 101 when the wind speed is equal to or higher than a certain wind speed based on the wind speed information measured by the wind speed sensor, the cleaning effect can be enhanced. That is, when the cleaning unit 110 of the work robot 101 winds up dust or the like, the dust is easily scattered, so that the cleaning effect can be enhanced. When the wind speed exceeds a certain level, the work robot 101 may be damaged or malfunction. Therefore, it is desirable that the control unit 130 controls the work robot 101 so as not to operate it.
<作業時の太陽電池アレイLPの傾斜>
 トラッキングタイプの太陽電池アレイLPの場合、その表面が水平になった状態で作業ロボット101による掃除を実施してもよいし、ある程度傾斜した状態で作業ロボット101による掃除を実施してもよい。
<Inclination of solar cell array LP during work>
In the case of the tracking type solar cell array LP, cleaning may be performed by the working robot 101 in a state where the surface is horizontal, or cleaning may be performed by the working robot 101 in a state where the surface is inclined to some extent.
 つまり、トラッキングタイプの太陽電池アレイLPでも、その表面を水平にせずに、その表面をある程度傾斜した状態(例えば、30°程度水平に対して傾斜した状態)に維持して作業ロボット101による掃除を実施してもよい。傾斜させて作業を実施する場合、その角度はとくに限定されない。周囲の環境等に応じて、適切な角度に太陽電池アレイLPの表面を維持して、作業ロボット101による掃除を実施すればよい。 That is, even in the tracking type solar cell array LP, the surface is not leveled, but the surface is maintained in a state of being tilted to some extent (for example, a state of being tilted with respect to the horizontal by about 30 °) for cleaning by the work robot 101. It may be carried out. When the work is carried out at an angle, the angle is not particularly limited. The surface of the solar cell array LP may be maintained at an appropriate angle according to the surrounding environment and the like, and cleaning may be performed by the working robot 101.
<作業ロボット101の太陽電池アレイLP間の移動>
 作業ロボット101は、太陽電池アレイLPにそれぞれ1つ設けてもよいし、複数の太陽電池アレイLPで1つの作業ロボット101を共有してもよい。
<Movement of work robot 101 between solar cell array LPs>
One work robot 101 may be provided in each of the solar cell array LPs, or one work robot 101 may be shared by a plurality of solar cell array LPs.
<並列に配置された太陽電池アレイLPの場合>
 まず、図18に示すように、揺動軸SSの軸方向と交差する方向に沿って並んで配設された太陽電池アレイLPで作業ロボット101を共有する場合を説明する。
<In the case of solar cell array LP arranged in parallel>
First, as shown in FIG. 18, a case where the working robot 101 is shared by the solar cell array LPs arranged side by side along the direction intersecting the axial direction of the swing shaft SS will be described.
 例えば、図18に示すように、隣接する太陽電池アレイLPの揺動軸SSの軸方向の両端より外方に搬送路DRを設置し、搬送路DRに退避部30を設ける。つまり、太陽電池アレイLPの揺動軸SSの軸方向の両端より外方であって、その上面が略水平である搬送路DRを設置する。そして、搬送路DRの上面の高さを、太陽電池アレイLPの表面が略水平になった状態における太陽電池アレイLPの表面とほぼ同じになるように設置する。すると、作業ロボット101を退避部30(つまり搬送路DR)に移動させれば、搬送路DR上を走行させることによって、作業ロボット101を一の太陽電池アレイLPから他の太陽電池アレイLPにも移動させることができる。 For example, as shown in FIG. 18, a transport path DR is installed outside from both ends in the axial direction of the swing shaft SS of the adjacent solar cell array LP, and a retracting portion 30 is provided in the transport path DR. That is, a transport path DR is installed that is outward from both ends of the swing shaft SS of the solar cell array LP in the axial direction and whose upper surface is substantially horizontal. Then, the height of the upper surface of the transport path DR is set to be substantially the same as the surface of the solar cell array LP in a state where the surface of the solar cell array LP is substantially horizontal. Then, if the work robot 101 is moved to the evacuation unit 30 (that is, the transport path DR), the work robot 101 is moved from one solar cell array LP to another solar cell array LP by traveling on the transport path DR. Can be moved.
<直列に配置された太陽電池アレイLPの場合>
 つぎに、図21に示すように、揺動軸SSの軸方向に沿って並んで配設された太陽電池アレイLP1,LP2で作業ロボット101を共有する場合を説明する。
<In the case of solar cell array LP arranged in series>
Next, as shown in FIG. 21, a case where the working robot 101 is shared by the solar cell arrays LP1 and LP2 arranged side by side along the axial direction of the swing shaft SS will be described.
 例えば、図21に示すように、隣接する太陽電池アレイLP1,LP2の端部間に、揺動軸SSの軸方向と平行に搬送路DRを設置する。具体的には、太陽電池アレイLP1,LP2の表面と搬送路DRの表面とがほぼ同一平面になるように配置する。すると、搬送路DRの表面を通って隣接する太陽電池アレイLP1,LP2間を作業ロボット101が移動できるので、複数の太陽電池アレイLPで作業ロボット101を共有することができる。 For example, as shown in FIG. 21, a transport path DR is installed between the ends of adjacent solar cell arrays LP1 and LP2 in parallel with the axial direction of the swing shaft SS. Specifically, the surfaces of the solar cell arrays LP1 and LP2 and the surface of the transport path DR are arranged so as to be substantially flush with each other. Then, since the working robot 101 can move between the adjacent solar cell arrays LP1 and LP2 through the surface of the transport path DR, the working robot 101 can be shared by a plurality of solar cell arrays LP.
 この場合、隣接する太陽電池アレイLP1,LP2と搬送路DRの端部D2とがほぼ直線状に並ぶように搬送路DRを隣接する太陽電池アレイLP1,LP2間に設置することが望ましい。かかる構成とすれば、搬送路DRを作業ロボット101が移動する際に、搬送路DRの端部D2に沿って作業ロボット101を移動させれば、隣接する太陽電池アレイLP1,LP2間を安定して作業ロボット101に移動させることができる。 In this case, it is desirable to install the transport path DR between the adjacent solar cell arrays LP1 and LP2 so that the adjacent solar cell arrays LP1 and LP2 and the end D2 of the transport path DR are lined up substantially in a straight line. With such a configuration, when the work robot 101 moves on the transport path DR, if the work robot 101 is moved along the end D2 of the transport path DR, the space between the adjacent solar cell arrays LP1 and LP2 is stabilized. Can be moved to the work robot 101.
 例えば、隣接する太陽電池アレイLP1,LP2において、一方の太陽電池アレイLP1(図21では左側の太陽電池アレイLP1)のみに退避部30が設けられ、他方の太陽電池アレイLP2(図21では右側の太陽電池アレイLP2)には退避部30が設けられていないとする。かかる構成では、2つの太陽電池アレイLP1,LP2を一台の作業ロボット101が掃除する場合、太陽電池アレイLP1の掃除を順次行った後、作業ロボット101は太陽電池アレイLP2に移動する。このとき、太陽電池アレイLP1の第二端部P2に沿って作業ロボット101を太陽電池アレイLP2に移動させるようにする。すると、作業ロボット101を、確実に、搬送路DRを通して、太陽電池アレイLP1から太陽電池アレイLP2に移動させることができる(図21(A)参照)。 For example, in the adjacent solar cell arrays LP1 and LP2, the retracting portion 30 is provided only in one solar cell array LP1 (the left solar cell array LP1 in FIG. 21), and the other solar cell array LP2 (the right side in FIG. 21) is provided. It is assumed that the solar cell array LP2) is not provided with the retracting unit 30. In such a configuration, when one working robot 101 cleans the two solar cell arrays LP1 and LP2, the working robot 101 moves to the solar cell array LP2 after cleaning the solar cell array LP1 in sequence. At this time, the working robot 101 is moved to the solar cell array LP2 along the second end P2 of the solar cell array LP1. Then, the working robot 101 can be reliably moved from the solar cell array LP1 to the solar cell array LP2 through the transport path DR (see FIG. 21 (A)).
 なお、搬送路DRを移動する際にも、搬送路DRの端部D2に沿って作業ロボット101を移動させれば、安定して搬送路DRを走行させることができるし、太陽電池アレイLP2に移動した際の位置決めや作業ロボット101の位置の把握も容易になる。 When moving the transport path DR, if the work robot 101 is moved along the end D2 of the transport path DR, the transport path DR can be stably traveled, and the solar cell array LP2 can be moved. Positioning when moving and grasping the position of the work robot 101 are also facilitated.
 また、太陽電池アレイLP2の作業が完了して退避部30に帰還する際にも、太陽電池アレイLP2の第二端縁P2に沿って作業ロボット101が移動すれば、確実に、搬送路DRを通って、作業ロボット101を太陽電池アレイLP1に移動させることができる(図21(B))。しかも、太陽電池アレイLP1と太陽電池アレイLP2とが一つの太陽電池アレイLPであるかのように作業ロボット101を移動させて退避部30に帰還させることができるので、作業ロボット101の移動制御も容易になる。 Further, even when the work of the solar cell array LP2 is completed and the work is returned to the evacuation unit 30, if the work robot 101 moves along the second end edge P2 of the solar cell array LP2, the transport path DR is surely performed. Through this, the working robot 101 can be moved to the solar cell array LP1 (FIG. 21 (B)). Moreover, since the working robot 101 can be moved and returned to the evacuation unit 30 as if the solar cell array LP1 and the solar cell array LP2 are one solar cell array LP, the movement control of the working robot 101 can also be performed. It will be easier.
 なお、上述した「隣接する太陽電池アレイLP1,LP2の第二端部P2と搬送路DRの端部D2とがほぼ直線状に並ぶ」とは、太陽電池アレイLP1,LP2の第二端部P2の端縁と搬送路DRの端部D2の端縁(搬送路DRの表面と端面で形成される交線)とが完全に直線状に並んでいる場合と、両者の間に若干のズレが有る場合を含んでいる。両者の間に若干のズレが有る場合とは、太陽電池アレイLP1,LP2の第二端部P2の端縁と搬送路DRの端部D2の端縁とがほぼ平行であるが若干高さや水平方向においてズレがある場合(例えば0~5mm程度)や太陽電池モジュールPの表面に沿った方向における位置にズレがある場合(例えば0~20mm程度)を含んでいる。また、太陽電池アレイLP1,LP2の第二端部P2の端縁と搬送路DRの端部D2の端縁とが相対的に傾いている場合を含んでいる。例えば、太陽電池アレイLP1,LP2の表面と平行な面内において0~1度程度傾いている場合や、太陽電池アレイLP1,LP2の第二端面と平行な面内において0~2度程度傾いている場合を含んでいる。 The above-mentioned "the second end P2 of the adjacent solar cell arrays LP1 and LP2 and the end D2 of the line-of-conducting DR are aligned substantially linearly" means that the second end P2 of the solar cell arrays LP1 and LP2 is aligned. When the edge of the transport path DR and the edge edge of the end portion D2 of the transport path DR (the intersection line formed by the surface and the end face of the transport path DR) are perfectly aligned, there is a slight deviation between the two. Including cases where there is. When there is a slight deviation between the two, the edge of the second end P2 of the solar cell arrays LP1 and LP2 and the edge of the end D2 of the transport path DR are almost parallel, but slightly higher or horizontal. This includes the case where there is a deviation in the direction (for example, about 0 to 5 mm) and the case where there is a deviation in the position along the surface of the solar cell module P (for example, about 0 to 20 mm). Further, the case where the end edge of the second end portion P2 of the solar cell arrays LP1 and LP2 and the end edge of the end portion D2 of the transport path DR are relatively inclined is included. For example, when it is tilted by about 0 to 1 degree in a plane parallel to the surface of the solar cell arrays LP1 and LP2, or when it is tilted by about 0 to 2 degrees in a plane parallel to the second end surface of the solar cell arrays LP1 and LP2. Includes cases where
 また、「太陽電池アレイLP1,LP2の表面と搬送路DRの表面とがほぼ同一平面」とは、太陽電池アレイLP1,LP2の表面と搬送路DRの表面のなす角度に0~1度程度のズレがある場合を含む概念である。また、太陽電池アレイLP1,LP2の表面と搬送路DRの表面で若干高さの差がある場合(例えば0~5mm程度)も含んでいる。 Further, "the surface of the solar cell arrays LP1 and LP2 and the surface of the transport path DR are substantially the same plane" means that the angle between the surface of the solar cell arrays LP1 and LP2 and the surface of the transport path DR is about 0 to 1 degree. This is a concept that includes cases where there is a gap. It also includes the case where there is a slight difference in height between the surfaces of the solar cell arrays LP1 and LP2 and the surface of the transport path DR (for example, about 0 to 5 mm).
<揺動式の搬送路DR>
 上記例では、隣接する太陽電池アレイLP1,LP2において、両者の表面がほぼ同一平面になっている場合および、両者が揺動しても両者の表面がほぼ同一平面になる場合を説明した。しかし、太陽電池アレイLP1,LP2の設置状況によっては、太陽電池アレイLP1,LP2の両者の表面に高さの差が生じたりその角度がズレたりする場合がある。かかる問題がある場合には、搬送路DRは、以下のような構成にすればよい。
<Swing type transport path DR>
In the above example, in the adjacent solar cell arrays LP1 and LP2, the case where both surfaces are substantially the same plane and the case where both surfaces are substantially the same plane even if both are shaken have been described. However, depending on the installation conditions of the solar cell arrays LP1 and LP2, there may be a difference in height or an angle difference between the surfaces of the solar cell arrays LP1 and LP2. When there is such a problem, the transport path DR may have the following configuration.
 図22に示すように、搬送路DRは、第一端部(太陽電池アレイLP1側の端部)に揺動軸Daが設けられている。この揺動軸Daは、太陽電池アレイLP1の表面と平行に設けられており、軸受等を介して太陽電池アレイLP1に固定されている。この揺動軸Daには、搬送部Dbの一方の端部(図22では右側の端部)が取り付けられている。つまり、搬送部Dbは、揺動軸Daによって太陽電池アレイLP1に対して揺動可能に設けられている。 As shown in FIG. 22, the transport path DR is provided with a swing shaft Da at a first end portion (end portion on the solar cell array LP1 side). The swing shaft Da is provided parallel to the surface of the solar cell array LP1 and is fixed to the solar cell array LP1 via a bearing or the like. One end of the transport portion Db (the end on the right side in FIG. 22) is attached to the swing shaft Da. That is, the transport portion Db is provided so as to be swingable with respect to the solar cell array LP1 by the swing shaft Da.
 搬送部Dbは、その他方の端部(図22では右側の端部)が太陽電池アレイLP1と隣接する太陽電池アレイLP2の端部に載せられている。具体的には、太陽電池アレイLP2の太陽電池アレイLP1側の端部には、保持プレートLMが設けられており、この保持プレートLMの上面に搬送部Dbの他方の端部が載せられている。 The other end (the right end in FIG. 22) of the transport portion Db is placed on the end of the solar cell array LP2 adjacent to the solar cell array LP1. Specifically, a holding plate LM is provided at the end of the solar cell array LP2 on the solar cell array LP1 side, and the other end of the transport portion Db is placed on the upper surface of the holding plate LM. ..
 なお、保持プレートLMの構成はとくに限定されない。隣接する太陽電池アレイLP1,LP2の表面がほぼ同一平面となる場合には、搬送部Dbの他方の端部が保持プレートLM上に載せられると、搬送部Dbの表面(つまり搬送路DRの表面)が隣接する太陽電池アレイLP1,LP2の表面がほぼ同一平面となるように設けられていることが望ましい。 The configuration of the holding plate LM is not particularly limited. When the surfaces of the adjacent solar cell arrays LP1 and LP2 are substantially flush with each other, when the other end of the transport portion Db is placed on the holding plate LM, the surface of the transport portion Db (that is, the surface of the transport path DR). ) Are adjacent to each other so that the surfaces of the solar cell arrays LP1 and LP2 are substantially flush with each other.
 かかる構成の搬送路DRを設ければ、隣接する太陽電池アレイLP1,LP2の表面の高さに差があっても、搬送部Dbが揺動すれば、太陽電池アレイLP1,LP2間を搬送路DRによって繋ぐことができる。すると、隣接する太陽電池アレイLP1,LP2の表面の高さに差があっても、搬送路DRを介して隣接する太陽電池アレイLP1,LP2間を作業ロボット101に移動させることができる。 If the transport path DR having such a configuration is provided, even if there is a difference in the height of the surfaces of the adjacent solar cell arrays LP1 and LP2, if the transport unit Db swings, the transport path between the solar cell arrays LP1 and LP2. It can be connected by DR. Then, even if there is a difference in the height of the surfaces of the adjacent solar cell arrays LP1 and LP2, the working robot 101 can move between the adjacent solar cell arrays LP1 and LP2 via the transport path DR.
 なお、搬送部Dbの傾斜角度が大きくなると、搬送路DRと太陽電池アレイLP1,LP2との間を作業ロボット101が移動することが困難になる。例えば、太陽電池アレイLP1,LP2の表面に対する搬送路DRの表面のなす角度が、20度より大きくなると搬送路DRから太陽電池アレイLP1,LP2への移動が困難になる。したがって、搬送路DRに搬送部Dbの揺動角度を検出するセンサを設けて、一定の角度以上であることをセンサが検出すると、搬送路DRと太陽電池アレイLP1,LP2との間で作業ロボット101が移動しないように制御部130が移動手段104の作動を制御するようにしてもよい。もちろん、作業ロボット101自体に搬送路DRの傾きを検出するセンサを設けて、このセンサからの信号に基づいて制御部130が移動手段104の作動を制御するようにしてもよい。 If the inclination angle of the transport unit Db becomes large, it becomes difficult for the work robot 101 to move between the transport path DR and the solar cell arrays LP1 and LP2. For example, if the angle formed by the surface of the transport path DR with respect to the surface of the solar cell arrays LP1 and LP2 is larger than 20 degrees, it becomes difficult to move from the transport path DR to the solar cell arrays LP1 and LP2. Therefore, a sensor for detecting the swing angle of the transport unit Db is provided in the transport path DR, and when the sensor detects that the angle is equal to or higher than a certain angle, the work robot between the transport path DR and the solar cell arrays LP1 and LP2. The control unit 130 may control the operation of the moving means 104 so that the 101 does not move. Of course, the working robot 101 itself may be provided with a sensor for detecting the inclination of the transport path DR, and the control unit 130 may control the operation of the moving means 104 based on the signal from this sensor.
 とくに、太陽電池アレイLP1,LP2が揺動する場合には、太陽電池アレイLP1,LP2の揺動角度にズレが生じると、作業ロボット101の移動が困難になる。例えば、太陽電池アレイLP1の表面上を移動していたときの作業ロボット101の揺動軸SSに対する角度(揺動軸SS周りの角度)と、太陽電池アレイLP2の表面の角度が異なる可能性がある。この場合、作業ロボット101が搬送路DRを通って太陽電池アレイLP1から太陽電池アレイLP2に移動すると、太陽電池アレイLP2に作業ロボット101が接触したりして作業ロボット101が落下する可能性がある。かかる問題を防ぐ上では、搬送路DRの長さを、太陽電池アレイLP1,LP2の揺動角度のズレが一定以上になると、搬送路DRの他端部が保持プレートLMの上面から外れるようにすればよい。つまり、図22であれば、太陽電池アレイLP1,LP2の揺動角度が同じであれば、搬送路DRの他端部が保持プレートLMの上面に載せられた状態を維持でき(図22(A))、太陽電池アレイLP1よりも太陽電池アレイLP2が水平に対して大きく傾いた場合には、搬送路DRの他端部が保持プレートLMの上面から外れるように(図22(B))、搬送部Dbの長さを調整すればよい。 In particular, when the solar cell arrays LP1 and LP2 swing, if the swing angles of the solar cell arrays LP1 and LP2 deviate, it becomes difficult to move the work robot 101. For example, the angle of the working robot 101 with respect to the swing axis SS (the angle around the swing axis SS) when moving on the surface of the solar cell array LP1 may be different from the angle of the surface of the solar cell array LP2. is there. In this case, when the work robot 101 moves from the solar cell array LP1 to the solar cell array LP2 through the transport path DR, the work robot 101 may come into contact with the solar cell array LP2 and the work robot 101 may fall. .. In order to prevent such a problem, the length of the transport path DR is set so that the other end of the transport path DR deviates from the upper surface of the holding plate LM when the deviation of the swing angle of the solar cell arrays LP1 and LP2 exceeds a certain level. do it. That is, in FIG. 22, if the swing angles of the solar cell arrays LP1 and LP2 are the same, the other end of the transport path DR can be maintained in a state of being placed on the upper surface of the holding plate LM (FIG. 22 (A). )), When the solar cell array LP2 is tilted more than the solar cell array LP1 with respect to the horizontal, the other end of the transport path DR is separated from the upper surface of the holding plate LM (FIG. 22 (B)). The length of the transport portion Db may be adjusted.
 この場合も、搬送路DRに搬送部Dbの揺動角度を検出するセンサを設けて、作業ロボット101の制御部130が移動手段104の作動を制御するようにしてもよい。つまり、搬送部Dbの表面が太陽電池アレイLP1,LP2の表面に対して一定の角度以上であることをセンサが検出すると、制御部130によって搬送路DRと太陽電池アレイLP1,LP2との間で作業ロボット101が移動しないように移動手段104の作動を制御するようにしてもよい。もちろん、作業ロボット101自体に搬送路DRの傾きやを搬送路DRの有無を検出するセンサを設けて、このセンサからの信号に基づいて制御部130が移動手段104の作動を制御するようにしてもよい。 In this case as well, a sensor for detecting the swing angle of the transport unit Db may be provided in the transport path DR so that the control unit 130 of the work robot 101 controls the operation of the moving means 104. That is, when the sensor detects that the surface of the transport unit Db is at a certain angle or more with respect to the surface of the solar cell arrays LP1 and LP2, the control unit 130 between the transport path DR and the solar cell arrays LP1 and LP2. The operation of the moving means 104 may be controlled so that the working robot 101 does not move. Of course, the work robot 101 itself is provided with a sensor for detecting the inclination of the transport path DR and the presence / absence of the transport path DR, so that the control unit 130 controls the operation of the moving means 104 based on the signal from this sensor. May be good.
 なお、搬送路DRの配置は図18の配置に限られず、種々の配置を取ることができる。 The arrangement of the transport path DR is not limited to the arrangement shown in FIG. 18, and various arrangements can be taken.
 本発明の作業装置は、固定式やトラッキングタイプの太陽電池モジュールの表面の掃除に適している。 The working device of the present invention is suitable for cleaning the surface of a fixed type or tracking type solar cell module.
   1      作業装置
  10      作業器
  11      シャシフレーム
  15      掃除部材
  20      移動部
  21      牽引機構
  22      牽引部材
  25      駆動機構
  30      退避部
  50      サポート機構
  51      第一サポート部
  51a     フリーローラ
  52      第二サポート部
  52a     フリーローラ
 101      作業用ロボット
 102      ロボット本体部
 104      移動手段
 110      掃除部
 112      ブラシ
 130      制御部
 131      エッジ検出部
 132      外方検出部
 132a     エッジセンサ
 132b     エッジセンサ
 133      内方検出部
 133a     エッジセンサ
 133b     エッジセンサ
 140      危険制御部
 141      危険検出部
  SP      太陽光発電設備
  LP      太陽電池アレイ
   P      太陽電池モジュール
  SS      揺動軸
  DR      搬送路
1 Work equipment 10 Work equipment 11 Chassis frame 15 Cleaning member 20 Moving part 21 Towing mechanism 22 Towing member 25 Drive mechanism 30 Evacuation part 50 Support mechanism 51 First support part 51a Free roller 52 Second support part 52a Free roller 101 Working robot 102 Robot body 104 Moving means 110 Cleaning unit 112 Brush 130 Control unit 131 Edge detection unit 132 Outer detection unit 132a Edge sensor 132b Edge sensor 133 Inner detection unit 133a Edge sensor 133b Edge sensor 140 Danger control unit 141 Danger detection unit SP Photovoltaic equipment LP Solar cell array P Solar cell module SS Swing axis DR Transport path

Claims (17)

  1.  複数枚の太陽電池モジュールを並べて設置された太陽電池アレイの表面に対する作業を実施する作業装置であって、
    前記太陽電池アレイの表面に対する作業を実施する作業器と、
    該作業器を前記太陽電池モジュールが並んでいる方向に沿って移動させる移動部と、を備えており、
    前記移動部が、
    索状部材を利用して前記作業器を移動させる移動機構を備えている
    ことを特徴とする作業装置。
    A work device that performs work on the surface of a solar cell array in which multiple solar cell modules are installed side by side.
    A work device that performs work on the surface of the solar cell array, and
    It is provided with a moving portion for moving the working device along the direction in which the solar cell modules are lined up.
    The moving part
    A work device including a moving mechanism for moving the work device by using a cord-shaped member.
  2.  前記移動部は、
    前記作業器に連結された前記索状部材と、
    該索状部材を移動させる駆動機構と、を備えており、
    前記索状部材が、
    一端および他端が前記作業器に連結されて無端ループ状に形成されている
    ことを特徴とする請求項1記載の作業装置。
    The moving part
    With the cord-like member connected to the work equipment,
    It is provided with a drive mechanism for moving the cord-like member.
    The cord-like member
    The working apparatus according to claim 1, wherein one end and the other end are connected to the working device to form an endless loop.
  3.  前記移動部は、
    前記作業器に連結された前記索状部材と、
    該牽引部材を移動させる駆動機構と、を備えており、
    前記索状部材が無端部材である
    ことを特徴とする請求項1記載の作業装置。
    The moving part
    With the cord-like member connected to the work equipment,
    It is provided with a drive mechanism for moving the towing member.
    The working device according to claim 1, wherein the cord-shaped member is an endless member.
  4.  前記索状部材は、
    前記太陽電池アレイの表面と非接触となるように設けられている
    ことを特徴とする請求項1、2または3記載の作業装置。
    The cord-like member
    The working apparatus according to claim 1, 2 or 3, wherein the working apparatus is provided so as not to be in contact with the surface of the solar cell array.
  5.  前記索状部材は、
    前記太陽電池アレイの発電状態において、前記太陽電池アレイの表面に該索状部材の影が形成されない位置に配設されている
    ことを特徴とする請求項1、2、3または4記載の作業装置。
    The cord-like member
    The working apparatus according to claim 1, 2, 3 or 4, wherein in the power generation state of the solar cell array, the working apparatus is arranged at a position where a shadow of the cord-like member is not formed on the surface of the solar cell array. ..
  6.  前記移動部は、
    前記太陽電池アレイの表面に沿って張られた前記索状部材と、
    該索状部材の表面を転動するローラを駆動する駆動機構と、を備えている
    ことを特徴とする請求項1記載の作業装置。
    The moving part
    With the cord-like member stretched along the surface of the solar cell array,
    The work device according to claim 1, further comprising a drive mechanism for driving a roller that rolls on the surface of the cord-like member.
  7.  前記駆動機構は、
    前記索状部材を挟むように配置された一対のローラを備えている
    ことを特徴とする請求項6記載の作業装置。
    The drive mechanism is
    The work apparatus according to claim 6, further comprising a pair of rollers arranged so as to sandwich the cord-like member.
  8.  前記移動部の移動機構によって前記作業器が移動する方向において、前記太陽電池アレイの一方の端部の外方に前記作業器を前記太陽電池アレイの表面から退避させる退避部を備えている
    ことを特徴とする請求項1から7のいずれかに記載の作業装置。
    A retracting portion for retracting the working device from the surface of the solar cell array is provided outside one end of the solar cell array in the direction in which the working device is moved by the moving mechanism of the moving portion. The working apparatus according to any one of claims 1 to 7.
  9.  前記太陽電池アレイにおける前記退避部が設けられている側と反対側の端部に前記作業器が到達したことを検出する到達検出部を備えている
    ことを特徴とする請求項8記載の作業装置。
    The working apparatus according to claim 8, further comprising a reach detecting portion for detecting that the working device has arrived at an end portion of the solar cell array on the side opposite to the side on which the retracting portion is provided. ..
  10.  複数枚の太陽電池モジュールを並べて設置された太陽電池アレイの表面に対する作業を実施する作業装置であって、
    自走のための移動手段と、前記太陽電池アレイの表面に対する作業を実施する作業部と、を有する作業ロボットと、
    前記作業ロボットを前記太陽電池アレイの表面から退避させるための退避部と、を備えており、
    前記作業ロボットは、
    前記退避部に移動する際に、前記太陽電池アレイの端縁まで移動した後、該太陽電池アレイの端縁に沿って前記退避部まで移動する
    ことを特徴とする作業装置。
    A work device that performs work on the surface of a solar cell array in which multiple solar cell modules are installed side by side.
    A work robot having a means of transportation for self-propelling and a work unit for performing work on the surface of the solar cell array.
    It is provided with a retracting portion for retracting the working robot from the surface of the solar cell array.
    The work robot
    A working device characterized in that when moving to the retracted portion, it moves to the edge of the solar cell array and then moves to the retracted portion along the edge of the solar cell array.
  11.  前記退避部が複数個所設けられている
    ことを特徴とする請求項10記載の作業装置。
    The work apparatus according to claim 10, wherein the evacuation portions are provided at a plurality of locations.
  12.  複数枚の太陽電池モジュールが揺動軸の軸方向に沿って並べて設置された太陽電池アレイの表面に対する作業を実施する作業装置であって、
    自走のための移動手段と、前記太陽電池アレイの表面に対する作業を実施する作業部と、を有する作業ロボットと、
    前記揺動軸の軸方向に沿って並んで配設された隣接する太陽電池アレイ間に設けられた、前記作業ロボットが走行し得る搬送路と、を備えており、
    該搬送路は、
    その第一端部が、隣接する一方の太陽電池アレイに対して該太陽電池アレイの表面と平行な軸周りに揺動可能に設けられており、
    その第二端部は、隣接する一方の太陽電池アレイに載せられている
    ことを特徴とする作業装置。
    A work device for performing work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side along the axial direction of a swing axis.
    A work robot having a means of transportation for self-propelling and a work unit for performing work on the surface of the solar cell array.
    It is provided with a transport path on which the work robot can travel, which is provided between adjacent solar cell arrays arranged side by side along the axial direction of the swing shaft.
    The transport path is
    A first end portion thereof is provided so as to be swingable about an axis parallel to the surface of the solar cell array with respect to one of the adjacent solar cell arrays.
    The second end is a working device characterized by being mounted on one of the adjacent solar cell arrays.
  13.  複数枚の太陽電池モジュールが揺動軸の軸方向に沿って並べて設置された太陽電池アレイの表面に対する作業を実施する作業装置であって、
    自走のための移動手段と、前記太陽電池アレイの表面に対する作業を実施する作業部と、を有する作業ロボットと、
    隣接する太陽電池アレイ間に設けられた、前記作業ロボットが走行し得る搬送路と、を備えており、
    該搬送路は、
    その上面が略水平であって、前記太陽電池アレイの表面が略水平になった状態で該太陽電池アレイの表面とその上面がほぼ同じ高さになるように設置されている
    ことを特徴とする作業装置。
    A work device that performs work on the surface of a solar cell array in which a plurality of solar cell modules are arranged side by side along the axial direction of a swing axis.
    A work robot having a means of transportation for self-propelling and a work unit for performing work on the surface of the solar cell array.
    It is provided with a transport path on which the work robot can travel, which is provided between adjacent solar cell arrays.
    The transport path is
    The upper surface thereof is substantially horizontal, and the surface of the solar cell array and the upper surface thereof are installed so as to be substantially the same height in a state where the surface of the solar cell array is substantially horizontal. Working equipment.
  14.  前記搬送路は、
    前記揺動軸の軸方向と交差する方向に沿って並んで配設された隣接する太陽電池アレイ間を繋ぐように設けられており、
    隣接する太陽電池アレイの揺動軸の軸方向の端部よりも外方に位置するように配設されている
    ことを特徴とする請求項13記載の作業装置。
    The transport path is
    It is provided so as to connect adjacent solar cell arrays arranged side by side along a direction intersecting the axial direction of the swing shaft.
    13. The working apparatus according to claim 13, wherein the working apparatus is arranged so as to be located outside the axial end of the swing axis of the adjacent solar cell array.
  15.  前記太陽電池アレイの状態を検出する状態検出機構を備えており、
    該状態検出機構は、
    前記太陽電池アレイの状態を検出する状態検出部と、
    該状態検出部が検出した情報に基づいて前記太陽電池アレイの状態を判断する判断部と、を備えている
    ことを特徴とする請求項1から14のいずれかに記載の作業装置。
    It is equipped with a state detection mechanism that detects the state of the solar cell array.
    The state detection mechanism is
    A state detection unit that detects the state of the solar cell array and
    The work apparatus according to any one of claims 1 to 14, further comprising a determination unit for determining the state of the solar cell array based on the information detected by the state detection unit.
  16.  前記状態検出部が、
    前記太陽電池アレイの温度を検出する温度検出部を備えている
    ことを特徴とする請求項15記載の作業装置。
    The state detection unit
    The working apparatus according to claim 15, further comprising a temperature detecting unit for detecting the temperature of the solar cell array.
  17.  前記状態検出部が、
    前記太陽電池アレイの表面に光を照射する光照射部と、
    該光照射部が照射した光が前記太陽電池アレイの表面で反射した反射光を受光する受光部と、を備えており、
    前記判断部は、
    前記受光部が受光した反射光に基づいて前記太陽電池アレイの表面の汚れを判断する機能を備えている
    ことを特徴とする請求項15記載の作業装置。
     
    The state detection unit
    A light irradiation unit that irradiates the surface of the solar cell array with light,
    It is provided with a light receiving unit that receives the reflected light reflected by the light emitted by the light irradiation unit on the surface of the solar cell array.
    The judgment unit
    The working apparatus according to claim 15, further comprising a function of determining dirt on the surface of the solar cell array based on the reflected light received by the light receiving unit.
PCT/JP2020/038384 2019-10-11 2020-10-09 Work device WO2021070960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080038685.2A CN113950381A (en) 2019-10-11 2020-10-09 Working device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-187997 2019-10-11
JP2019187997 2019-10-11

Publications (1)

Publication Number Publication Date
WO2021070960A1 true WO2021070960A1 (en) 2021-04-15

Family

ID=75438232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038384 WO2021070960A1 (en) 2019-10-11 2020-10-09 Work device

Country Status (2)

Country Link
CN (1) CN113950381A (en)
WO (1) WO2021070960A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082272A (en) * 2012-10-15 2014-05-08 Sharp Corp Inspection device and inspection method for solar cell module
JP2016059694A (en) * 2014-09-19 2016-04-25 孝一 中川 Cleaning apparatus of solar battery panel
KR20160053902A (en) * 2016-05-02 2016-05-13 김병성 Cleaning Apparatus for Solar-Light Panel
JP2017153246A (en) * 2016-02-24 2017-08-31 シャープ株式会社 Solar panel cleaning system
JP2018078677A (en) * 2016-11-07 2018-05-17 株式会社Nttファシリティーズ Solar cell diagnosis device, and solar cell diagnosis method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599907B (en) * 2013-12-06 2016-03-30 邵俊松 A kind of photovoltaic battery panel Full-automatic of auto-navigation
KR20160012024A (en) * 2014-07-23 2016-02-02 김병성 Cleaning Apparatus for Solar-Light Panel
CN105834130A (en) * 2016-03-17 2016-08-10 张波 Cleaning system for solar panel array and solar panel array
CN106325276B (en) * 2016-09-21 2019-06-25 苏州瑞得恩光能科技有限公司 The determination method and control method of robot straight-line travelling in the plane of slope
CN106788203B (en) * 2016-12-07 2018-08-07 中国计量大学 Using the photovoltaic board cleaning device of wind-force
CN106655999B (en) * 2016-12-26 2019-08-09 北京天诚同创电气有限公司 Photovoltaic battery panel cleaner testing stand
CN108405393A (en) * 2018-05-11 2018-08-17 西南交通大学 A kind of photovoltaic board cleaning device
CN109560767B (en) * 2018-05-28 2024-01-23 苏州瑞得恩光能科技有限公司 Connection robot and cleaning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082272A (en) * 2012-10-15 2014-05-08 Sharp Corp Inspection device and inspection method for solar cell module
JP2016059694A (en) * 2014-09-19 2016-04-25 孝一 中川 Cleaning apparatus of solar battery panel
JP2017153246A (en) * 2016-02-24 2017-08-31 シャープ株式会社 Solar panel cleaning system
KR20160053902A (en) * 2016-05-02 2016-05-13 김병성 Cleaning Apparatus for Solar-Light Panel
JP2018078677A (en) * 2016-11-07 2018-05-17 株式会社Nttファシリティーズ Solar cell diagnosis device, and solar cell diagnosis method

Also Published As

Publication number Publication date
CN113950381A (en) 2022-01-18

Similar Documents

Publication Publication Date Title
US11345016B2 (en) Robot for solar farms
JP6732230B2 (en) Self-propelled robot
CN107617616B (en) Cleaning device and photovoltaic array
CN105414069B (en) Cleaning device
EP2752621B1 (en) Apparatus for maintaining wind turbine blades
CN205762538U (en) Cleaning device and photovoltaic array
JP6830261B2 (en) Self-propelled robot
JP7359450B2 (en) cleaning robot
KR20190130941A (en) Solar panel cleaning robot system
WO2018186461A1 (en) Work device
KR20190130944A (en) System for managing solar panel cleaning robot
KR20210056033A (en) Apparatus for cleaning panel
WO2021070960A1 (en) Work device
KR101302990B1 (en) Apparatus for robot management, and wind power generator having the same
WO2021024968A1 (en) Cleaning robot, and solar power generating facility
KR102156916B1 (en) Automatic Cleaning Robot for Solar Panel
CN109074071B (en) Work robot and edge detector
WO2020189620A1 (en) Cleaning device, cleaning system for solar photovoltaic devices, and cleaning method for solar photovoltaic devices
KR20210011115A (en) Cleaning Robot for Solarcell Panel Capabel of Flying
CN220373274U (en) Photovoltaic robot
CN220371665U (en) Photovoltaic robot
CN117060840A (en) Method for operating a photovoltaic robot
EP4338281A1 (en) Cleaning device for solar panels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874761

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20874761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 521430992

Country of ref document: SA