WO2020189620A1 - Cleaning device, cleaning system for solar photovoltaic devices, and cleaning method for solar photovoltaic devices - Google Patents

Cleaning device, cleaning system for solar photovoltaic devices, and cleaning method for solar photovoltaic devices Download PDF

Info

Publication number
WO2020189620A1
WO2020189620A1 PCT/JP2020/011418 JP2020011418W WO2020189620A1 WO 2020189620 A1 WO2020189620 A1 WO 2020189620A1 JP 2020011418 W JP2020011418 W JP 2020011418W WO 2020189620 A1 WO2020189620 A1 WO 2020189620A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
light receiving
receiving surface
dirt
cleaning device
Prior art date
Application number
PCT/JP2020/011418
Other languages
French (fr)
Japanese (ja)
Inventor
和志 飯屋谷
義哉 安彦
塁 三上
真士 田村
エマニュエル アレクサンドル ジウディチェリ
靖和 古結
岩崎 孝
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020189620A1 publication Critical patent/WO2020189620A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/38Machines, specially adapted for cleaning walls, ceilings, roofs, or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a cleaning device, a cleaning system for a photovoltaic power generation device, and a cleaning method for the photovoltaic power generation device.
  • the surface of the array (panel) of the photovoltaic power generation device may be contaminated with sand or the like.
  • the rain may naturally wash away dirt, but in areas with low rain, sand accumulates. If the sand is left unclean, the power generation efficiency will decrease, so regular cleaning work will be required.
  • cleaning is mainly performed manually, but since labor costs are high, a cleaning device has also been proposed (see, for example, Patent Document 1 and Patent Document 2).
  • the cleaning device of the present disclosure is a cleaning device that cleans a surface to be cleaned, and is mounted on the body in a state of being in contact with the surface to be cleaned and a body that can move along the surface to be cleaned.
  • a wiper having a material that adsorbs dirt adhering to the cleaning target surface, a first sensor mounted in front of the body in the moving direction in a state of facing the cleaning target surface, and detecting dirt on the cleaning target surface, and the cleaning target.
  • a second sensor which is mounted rearward in the moving direction of the body while facing the surface, is on the opposite side of the first sensor when viewed from the wiper, and detects dirt on the surface to be cleaned, and the cleaning target.
  • a control unit that controls the movement of the body along a surface is provided, and the control unit moves the body when the level of dirt detected by the second sensor is lower than a predetermined level during the movement of the body. It is a cleaning device that controls the moving direction of the body so as to continue and pass through the same place again when the level is higher than the predetermined level.
  • adsorption also includes gathering (the same shall apply hereinafter).
  • the cleaning system of the present disclosure is a photovoltaic power generation device having an array and a photovoltaic power generation device including a photovoltaic power generation device for cleaning the light receiving surface of the array, and the cleaning device is the light receiving surface.
  • the first sensor mounted in the front in the direction to detect the dirt on the light receiving surface and the first sensor mounted in the rear in the moving direction of the body facing the light receiving surface are opposite to the first sensor when viewed from the wiper.
  • a second sensor that detects dirt on the light receiving surface and a control unit that controls the movement of the body along the light receiving surface are provided, and the control unit is provided during the movement of the body.
  • the control unit is provided during the movement of the body.
  • the cleaning system of the present disclosure is a cleaning system for a solar power generation device capable of directing the light receiving surface of the array to the ground, and solar power generation in a state where the light receiving surface of the array is oriented horizontally and facing the ground.
  • a device a vehicle parked below the array, a lifting device mounted on the vehicle that can expand and contract in the vertical direction, and a lifting device that can move horizontally on the upper surface of the lifting device to clean the light receiving surface.
  • the cleaning device includes a body that can move along the light receiving surface and a material that is mounted on the body in contact with the light receiving surface and adsorbs dirt adhering to the light receiving surface.
  • a wiper to be mounted a first sensor mounted on the front in the moving direction of the body in a state of facing the light receiving surface and detecting dirt on the light receiving surface, and a first sensor in the moving direction of the body facing the light receiving surface.
  • a second sensor mounted rearward and opposite to the first sensor when viewed from the wiper to detect dirt on the light receiving surface, and a control unit that controls movement of the body along the light receiving surface.
  • the control unit continues the movement while the body is moving, and when the level is higher than the predetermined level, the control unit relocates to the same place. It is a cleaning system of a solar power generation device that controls the moving direction of the body so as to pass through.
  • a cleaning device having a wiper made of microfiber is used to clean the light receiving surfaces of a plurality of solar power generation devices installed apart from each other.
  • the cleaning device mounted on a hoverable flying object, the cleaning device is approached to an arbitrary solar power generation device, the cleaning device is attached to a predetermined position on the light receiving surface, and the cleaning device is said.
  • the flying object is a cleaning method for a solar power generation device, in which a plurality of solar power generation devices are cleaned by repeating the process of transporting the cleaning device to another uncleaned solar power generation device in the air.
  • FIG. 1 is a perspective view of an example of a concentrating type photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the photovoltaic power generation device in a completed state.
  • FIG. 2 is a perspective view of an example of a concentrating type photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the photovoltaic power generation device in a state during assembly.
  • FIG. 3 is an example of a graph showing how the particle size of the sand collected from the ground (left) and the sand deposited after being blown up by the wind (right) are different.
  • FIG. 4 is a diagram showing an outline of the mechanical configuration of the cleaning device.
  • FIG. 4 is a diagram showing an outline of the mechanical configuration of the cleaning device.
  • FIG. 5 is a diagram showing an outline of a control configuration of the cleaning device.
  • FIG. 6A is a diagram showing a state of light reception and reception of the optical sensor on a clean surface to be cleaned.
  • FIG. 6B is a diagram showing a state of light reception and reception of the optical sensor on the surface to be cleaned to which dirt is attached.
  • FIG. 7 is a comparative photograph showing the difference in the fiber structure of the wiper.
  • FIG. 8 is a photograph showing a state in which sand is adsorbed on the microfiber, and an enlarged view of the central portion of the photograph of (a) is a photograph of (b).
  • FIG. 9 is a diagram showing an example of a state in which the light receiving surface of the array of the photovoltaic power generation device is cleaned by using the cleaning device.
  • FIG. 10 is an example of a flowchart showing processing by the control unit from the start to the end of cleaning by the cleaning device.
  • FIG. 11 is a diagram showing an outline of the mechanical configuration of the cleaning device as in FIG. 4, but the difference from FIG. 4 is a diagram when there is a protrusion as a step on the surface to be cleaned.
  • FIG. 12 is a diagram showing an example of a state in which the light receiving surface of the array of the photovoltaic power generation device is cleaned by using the cleaning device connected to the flying object (drone).
  • FIG. 13 is a diagram showing another example of a state in which the light receiving surface of the array of the photovoltaic power generation device is cleaned by using the cleaning device connected to the flying object.
  • FIG. 11 is a diagram showing an outline of the mechanical configuration of the cleaning device as in FIG. 4, but the difference from FIG. 4 is a diagram when there is a protrusion as a step on the surface to be cleaned.
  • FIG. 12 is a diagram showing an example of a state
  • FIG. 14 is a diagram showing an example of a state in which the light receiving surface of the array of the photovoltaic power generation device is cleaned by using the cleaning device mounted on the vehicle.
  • FIG. 15 is a schematic view showing a state of sand cleaning with a microfiber cloth.
  • FIG. 16 is a graph examining how the output (generated power) of the array changes under the same weather conditions when the conditions of the wiper pressing pressure are changed in the presence of a certain amount of sand.
  • FIG. 17 is a diagram showing a state in which an array is imaged using an air vehicle.
  • FIG. 18 is a diagram showing an example of a dirt determination system mounted on an air vehicle.
  • an object of the present disclosure is to provide a cleaning device that can remove stains without water, a cleaning system for a photovoltaic power generation device, and a cleaning method for the photovoltaic power generation device.
  • Embodiments of the present disclosure include at least the following as a gist thereof.
  • This is a cleaning device for cleaning the surface to be cleaned, and is mounted on the body in contact with the surface to be cleaned and a body that can move along the surface to be cleaned, and is mounted on the surface to be cleaned.
  • a wiper having a material that adsorbs the adhered dirt
  • a first sensor mounted in front of the body in the moving direction while facing the cleaning target surface, and detecting dirt on the cleaning target surface, and the cleaning target surface.
  • a second sensor which is mounted rearward in the moving direction of the body in a state of facing the body, is on the opposite side of the first sensor when viewed from the wiper, and detects dirt on the surface to be cleaned, and the surface to be cleaned.
  • the control unit includes a control unit that controls the movement of the body along the body, and the control unit continues the movement when the level of dirt detected by the second sensor is lower than a predetermined level during the movement of the body. It is a cleaning device that controls the moving direction of the body so as to pass through the same place again when the level is higher than the predetermined level.
  • the dirt adhering to the surface to be cleaned is removed by the wiper by moving the body.
  • the level of dirt detected by the second sensor behind in the moving direction during the movement of the body is lower than a predetermined level, the cleaning result is good and the body moves as it is.
  • control is performed so as to pass through the same place again, and at least "wiping twice" is performed. In this way, the dirt can be wiped a plurality of times, and more reliable cleaning can be performed.
  • the wiper since the wiper has a material that adsorbs dirt, it can be wiped dry without using water. Since no water is used, a water supply device is not required and the entire device is simplified.
  • the dirt contains sand, and the material is microfiber. Since the microfiber sucks up minute sand with static electricity, dirt can be removed without using water, and it is possible to prevent the surface to be cleaned from being scratched by the wiper.
  • both the first sensor and the second sensor are optical sensors, and the level of dirt can be detected based on the intensity of reflected light.
  • the amount of light scattered differs depending on the degree of dirt (adhesion amount) on the surface to be cleaned, and the intensity of reflected light differs. Based on this, the level of dirt can be detected based on the intensity of the reflected light detected by the optical sensor.
  • the wiper has a first roller for initial cleaning that rolls on the surface to be cleaned due to the movement of the body, and the first roller.
  • a second roller for finish cleaning which is located behind the roller in the moving direction and rolls on the cleaning target surface due to the movement of the body, is provided.
  • the first roller and the subsequent second roller arranged in the front-rear direction in the moving direction roll on the surface to be cleaned, so that initial cleaning and finish cleaning can be performed, respectively.
  • the dirt level detected by the first sensor and the dirt level detected by the second sensor are both from the first predetermined value.
  • the control unit determines that it is time to replace the wiper. When the wiper becomes dirty, this happens, so you can know when to replace the wiper without looking directly at it.
  • the cleaning device may be provided with an elastic member that pushes the wiper out of the body so that the wiper is in pressure contact with the surface to be cleaned.
  • the wiper can be stably pressed against the cleaning target surface even if the cleaning target surface has some irregularities.
  • the surface to be cleaned is a light receiving surface in an array of photovoltaic power generation devices. Fine sand is particularly likely to adhere to the array of photovoltaic power plants installed in dry highlands.
  • the cleaning device is suitable for removing such fine sand stains.
  • a camera may be mounted on an end portion of the body so as to face the surface to be cleaned. In this case, it is possible to detect that the body has moved to the end of the surface to be cleaned based on the actually measured image information captured by the camera.
  • a hoverable flying object may be attached to the body.
  • An air vehicle is, for example, a so-called drone.
  • the pressing pressure for pressing the wiper against the surface to be cleaned is preferably in the range of 500 Pa to 5000 Pa. If the pressing pressure is less than 500 Pa, a sufficient cleaning effect cannot be obtained. If the pressing pressure exceeds 5000 Pa, the surface to be cleaned may be damaged. By setting the pressing pressure within the range of 500 Pa to 5000 Pa, it is possible to suppress damage to the surface to be cleaned while ensuring the cleaning effect.
  • this is a cleaning system of a photovoltaic power generation device including a photovoltaic power generation device having an array and a cleaning device for cleaning the light receiving surface of the array, and the cleaning device is the light receiving device.
  • the first sensor mounted in the front in the moving direction and detecting the dirt on the light receiving surface, and the first sensor mounted in the rear in the moving direction of the body in a state facing the light receiving surface and viewed from the wiper.
  • a second sensor for detecting dirt on the light receiving surface and a control unit for controlling the movement of the body along the light receiving surface are provided.
  • the control unit continues the movement when the level of dirt detected by the second sensor is lower than the predetermined level, and when the level is higher than the predetermined level, the body passes through the same place again. It is a cleaning system for photovoltaic power generation equipment that controls the direction of movement.
  • the dirt adhering to the light receiving surface is removed by the wiper by moving the body.
  • the level of dirt detected by the second sensor behind in the moving direction during the movement of the body is lower than a predetermined level, the cleaning result is good and the body moves as it is.
  • control is performed so as to pass through the same place again, and at least "wiping twice" is performed. In this way, the dirt can be wiped a plurality of times, and more reliable cleaning can be performed.
  • the wiper since the wiper has a material that adsorbs dirt, it can be wiped dry without using water. Since no water is used, a water supply device is not required and the entire device is simplified.
  • the cleaning system for the photovoltaic power generation device includes a hoverable flying object equipped with an imaging device, and the flying object includes an area of dirt with respect to the total area of the light receiving surface of the imaged array.
  • the array to be cleaned by the cleaning device may be determined based on the ratio of. In this case, the array to be cleaned can be accurately detected in advance.
  • this is a cleaning system for a solar power generation device capable of directing the light receiving surface of the array to the ground, and the solar power generation device in a state where the light receiving surface of the array is oriented horizontally and facing the ground.
  • a vehicle parked below the array a lifting device mounted on the vehicle that can expand and contract in the vertical direction, and a lifting device that can move horizontally on the upper surface of the lifting device to clean the light receiving surface.
  • a cleaning device is provided, and the cleaning device has a body that can move along the light receiving surface and a material that is mounted on the body in contact with the light receiving surface and adsorbs dirt adhering to the light receiving surface.
  • a wiper a first sensor mounted in front of the body in the moving direction while facing the light receiving surface, and a first sensor for detecting dirt on the light receiving surface, and a rear sensor in the moving direction of the body facing the light receiving surface.
  • a second sensor that is mounted on the wiper and is on the opposite side of the first sensor to detect dirt on the light receiving surface, and a control unit that controls the movement of the body along the light receiving surface.
  • the dirt adhering to the light receiving surface is removed by the wiper by moving the body.
  • the level of dirt detected by the second sensor behind in the moving direction during the movement of the body is lower than a predetermined level, the cleaning result is good and the body moves as it is.
  • control is performed so as to pass through the same place again, and at least "wiping twice" is performed. In this way, the dirt can be wiped a plurality of times, and more reliable cleaning can be performed.
  • the wiper since the wiper has a material that adsorbs dirt, it can be wiped dry without using water. Since no water is used, a water supply device is not required and the entire device is simplified. Once the cleaning of one photovoltaic device is complete, the vehicle can move to another photovoltaic device and perform similar cleaning.
  • this is a cleaning method for a solar power generation device, which uses a cleaning device having a wiper made of microfiber to clean the light receiving surfaces of a plurality of solar power generation devices installed apart from each other.
  • the cleaning device In a state where the cleaning device is mounted on a hoverable flying object, the cleaning device is approached to an arbitrary solar power generation device, the cleaning device is attached to a predetermined position on the light receiving surface, and the cleaning device receives the light.
  • the body is a cleaning method for a solar power generation device, in which a plurality of solar power generation devices are cleaned by repeating the process of transporting the cleaning device to another uncleaned solar power generation device in the air.
  • the cleaning device is attached to a predetermined position on the light receiving surface of an arbitrary photovoltaic power generation device by the flying object, and then the light receiving surface is cleaned by dry wiping by moving the cleaning device. Then, the cleaning result is checked, and if the cleaning result is not good, the same place is passed a plurality of times to execute the cleaning work. In this way, dirt on the light receiving surface can be wiped multiple times, and more reliable cleaning can be performed. In addition, since it is a dry wipe, no water is used, no water supply device is required, and the entire device is simplified. If the flying object carries the cleaning devices in the air one after another to the plurality of photovoltaic power generation devices, the cleaning of the plurality of photovoltaic power generation devices can be performed by one cleaning device.
  • FIG. 1 shows a photovoltaic power generation device 100 in a completed state
  • FIG. 2 shows a photovoltaic power generation device 100 in a state in the middle of assembly.
  • FIG. 2 shows a state in which the skeleton of the tracking gantry 25 can be seen in the right half, and a state in which a concentrating photovoltaic power generation module (hereinafter, also simply referred to as a module) 1M is attached in the left half.
  • a module 1M a concentrating photovoltaic power generation module
  • the photovoltaic power generation device 100 includes an array (photovoltaic power generation panel) 1 which is continuous on the upper side and is divided into left and right on the lower side to form a planar light receiving surface as a whole, and a support mechanism 2 thereof.
  • the array 1 is configured by arranging the modules 1M on the tracking pedestal 25 (FIG. 2) on the back side.
  • the module 1M a known configuration in which optical systems that collect sunlight and guide it to a power generation element are arranged in a matrix is mounted.
  • the support mechanism 2 includes a support column 21, a foundation 22, a drive unit 23, a horizontal axis 24 (FIG. 2) as a drive axis, and a tracking mount 25.
  • the lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a drive unit 23.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal.
  • the drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24).
  • a reinforcing member 25a for reinforcing the tracking mount 25 is attached to the horizontal shaft 24.
  • a plurality of horizontal rails 25b are attached to the reinforcing member 25a.
  • Module 1M is mounted so as to fit into this rail. If the horizontal axis 24 rotates in the direction of the azimuth or elevation, the array 1 also rotates in that direction.
  • Array 1 is usually vertical as shown in FIG. 1 before dawn and sunset.
  • the drive unit 23 operates so that the light receiving surface of the array 1 always faces the sun, and the array 1 performs the tracking operation of the sun.
  • FIG. 3 is an example of a graph showing how the particle size of the sand collected from the ground (left) and the sand deposited after being blown up by the wind (right) are different.
  • the measured location is Ouarzazate, Morocco.
  • the horizontal axis represents the particle size [ ⁇ m], and the vertical axis represents the percentage [%] contained.
  • the curve in the graph shows the cumulative percentage [%] from the smallest particle size. Naturally, the total amount is 100%.
  • the centriole of the proportion of sand collected from the ground was 178 [ ⁇ m].
  • the central particle size of the sand that was rolled up and deposited by the wind was 46.8 [ ⁇ m]. That is, it can be seen that the sand that has been rolled up and deposited by the wind is finer sand with a smaller particle size than the sand collected from the ground.
  • microfiber cloth which is a cloth material made of microfiber, is suitable for removing such fine sand. Compared to other fiber cloths used for cleaning, the microfiber cloth has more fiber gaps and can adsorb dirt by static electricity. Therefore, no water is required to adsorb the sand.
  • FIG. 15 is a schematic view showing a state of sand cleaning with a microfiber cloth. Assuming the cross section of the microfiber cloth, the closer to the surface, the more the aggregates of fibers are split apart. Therefore, as shown on the right side of FIG. 15, the protrusion-shaped fibers are randomly present. The individual size of the fibers is about 5 ⁇ m. When such a microfiber cloth is moved in the cleaning direction, a part of sand (fine sand) is trapped in the gap between the fibers, but most of the sand is gathered together. The collected sand is extruded from the light receiving surface 1f of the array 1.
  • FIG. 4 is a diagram showing an outline of the mechanical configuration of the cleaning device 200.
  • the cleaning device 200 is like a self-propelled traveling robot, and has a body 201 as a moving body.
  • the body 201 is movable along the surface to be cleaned.
  • the material of the body 201 may be metal, but resin is preferable for weight reduction. Further, a resin that does not easily deteriorate with ultraviolet rays is preferable.
  • the body 201 can freely move in the X direction of FIG. 4 as a normal moving direction, and is provided with drive units 202 in front of and behind the X direction.
  • the drive unit 202 is specifically a wheel and a drive mechanism (motor or the like) thereof, and the wheels are, for example, four wheels.
  • the body 201 can also move in the backward ( ⁇ X) direction.
  • the front wheels or the rear wheels are steering wheels, and lateral movement (change of travel path) in the Z direction (or ⁇ Z direction) is also possible.
  • the wheels of the drive unit 202 preferably have adhesion to the surface F to be cleaned so as not to slip easily.
  • the wiper 203 is mounted on the body 201.
  • the wiper 203 is composed of a first roller 203a and a second roller 203b that roll in the X direction (or ⁇ X direction) on the cleaning target surface F due to the movement of the body 201.
  • Auxiliary rollers 204 are provided before and after the wiper 203.
  • the wipers 203 (203a and 203b) and the auxiliary roller 204 are fixed to the movable plate 207 via the legs 205 and 206 extending in the Y direction, respectively.
  • the movable plate 207, the legs 205 and 206, the auxiliary roller 204, and the wiper 203 form a group like a wiper carriage.
  • the movable plate 207 is attached to the fixed plate 209 via a spring 208.
  • the fixing plate 209 is fixed to the body 201.
  • the body 201 is equipped with the first sensor 211 and the second sensor 212.
  • the first sensor 211 is provided in front of the body 201 in the moving direction, and faces the cleaning target surface F with a slight predetermined gap.
  • the second sensor 212 is provided behind the body 201 in the moving direction, and faces the surface F to be cleaned with a slight predetermined gap.
  • Both the first sensor 211 and the second sensor 212 are, for example, an optical sensor integrated with light emitting and receiving.
  • the first sensor 211 and the second sensor 212 are arranged so as to be hidden under the body 201 in order to make them less susceptible to the influence of excess scattered light in the surroundings. The shorter the predetermined gap as possible is suitable for accurate measurement, for example, 1 mm or less is preferable.
  • a camera 213 as an imaging device is mounted at the tip of the body 201 in the moving direction.
  • the camera 213 faces the surface F to be cleaned.
  • FIG. 5 is a diagram showing an outline of a control configuration of the cleaning device 200.
  • the cleaning device 200 includes a control unit 215.
  • the control unit 215 includes, for example, a computer, and the computer executes software (computer program) to realize necessary control functions.
  • the software is stored in the storage unit 217.
  • the control unit 215 is connected to the above-mentioned first sensor 211, second sensor 212, and camera 213, and receives detection outputs from each. Further, the control unit 215 drives the drive unit 202 to move the body 201.
  • the power supply unit 216 supplies the control unit 215 with a power source for driving the drive unit 202 and a power source for control.
  • the power supply unit 216 is typically a storage battery, but a solar cell can also be used alone or in combination.
  • the wiper 203 is not electrically controlled, but an electric actuator can be used to adjust the force of pressing the wiper 203 against the surface F to be cleaned.
  • the storage unit 217 can store information on the shape and size of the cleaning target surface F in order to recognize the positional relationship with the cleaning target surface F.
  • the control unit 215 is connected to the communication unit 218, and can transmit information to the external monitoring control unit 300 via the communication unit 218 and can also receive information from the monitoring control unit 300.
  • FIG. 6A and 6B are diagrams for explaining that the optical sensor detects the dirt on the surface F to be cleaned.
  • the optical sensor detects the dirt on the surface F to be cleaned.
  • FIG. 6A when the cleaning target surface F is not dirty, the light emitted from the light projecting unit T of the first sensor 211 (or the second sensor 212) is reflected by the cleaning target surface F and received. Detected by part R.
  • FIG. 6B when sand Sa adheres to the surface F to be cleaned as dirt, the light emitted from the light projecting unit T is scattered and the reflected light reaching the light receiving unit R is reduced.
  • the intensity of the reflected light becomes a value depending on the level of dirt on the surface F to be cleaned.
  • FIG. 7 is a comparative photograph showing the difference in the fiber structure of the wiper 203.
  • the photograph of (b) is the fiber structure of the first roller 203a
  • the photograph of (a) is the fiber structure of the second roller 203b.
  • the first roller 203a of (b) is a cloth material in which microfiber fibers are entangled with each other, and is suitable for initial cleaning.
  • the second roller 203b (a) is a cloth material in which the directions of the microfiber fibers are aligned with those of the first roller 203a, and is suitable for finish cleaning. In this way, the two types of rollers roll on the surface F to be cleaned, so that dirt can be effectively adsorbed on the microfibers.
  • FIG. 8 is a photograph showing a state in which sand is adsorbed on the microfiber
  • the photograph of (b) is an enlarged view of the central part of the photograph of (a). Looking at the photograph of (b), it can be seen that the sand is adsorbed on the surface of each microfiber rather than the sand entering between the fibers of the microfiber.
  • FIG. 9 is a diagram showing an example of a state in which the light receiving surface 1f of the array 1 of the photovoltaic power generation device 100 is cleaned by using the cleaning device 200.
  • FIG. 9 shows a state in which the array 1 faces straight up and is horizontal, but the cleaning device 200 may be slightly tilted as long as it does not fall due to gravity. From such a state, cleaning can be performed by moving the cleaning device 200 on the light receiving surface 1f.
  • a method of movement for example, the process of starting movement from a predetermined start position, going straight in parallel with one side of the contour of the array 1, turning when it comes to the end, shifting a little to the side, and going straight in the opposite direction. By repeating the above steps, the entire light receiving surface 1f of the array 1 can be cleaned.
  • control unit 215 controls the drive unit 202 based on the stored information, and can move the cleaning device 200 by a predetermined movement path.
  • information of the camera 213 can also be used when moving. It should be noted that the control unit 215 may be made to learn a large number of trials in advance so as to make trial and error, and the vehicle may travel based on the learning result.
  • FIG. 9 also shows an enlarged view of the circled portion of the alternate long and short dash line at the right end of the array 1.
  • the control unit 215 can recognize that the cleaning device 200 has reached the end of the array 1 from the sudden change in the captured image. .. If the end portion is accurately recognized from the image information actually measured by the camera 213, the cleaning device 200 can be more reliably suppressed from falling off. It is also possible to inspect the module 1M or the array 1 for an abnormality in appearance based on image recognition using the camera 213.
  • a position sensor can be used instead of the camera 213.
  • a hangar for the cleaning device 200 may be provided in the vicinity of the light receiving surface 1f other than the light receiving surface 1f of the array 1.
  • the cleaning device 200 may perform cleaning of the light receiving surface 1f with the hangar as the origin, and return to the hangar when the cleaning is completed.
  • FIG. 10 is an example of a flowchart showing processing by the control unit 215 from the start to the end of cleaning by the cleaning device 200.
  • the control unit 215 determines whether or not there is a stop command (step S1).
  • the start command and the stop command are transmitted from, for example, the monitoring control unit 300 (FIG. 5). Since there is no stop command immediately after the start, the control unit 215 moves the cleaning device 200 and executes cleaning by the wiper 203 (step S2). While performing cleaning, the control unit 215 acquires information sent from the first sensor 211, the second sensor 212, and the camera 213 (step S3).
  • control unit 215 determines whether or not the detection output of the second sensor 212 is equal to or less than the threshold value in order to confirm the cleanliness of the light receiving surface 1f after the dirt is removed by the wiper 203 (step S4). .. If the detection output of the second sensor 212 is equal to or less than the threshold value, the cleaning result is good, and the control unit 215 determines whether or not the cleaning device 200 has reached the end of the array 1 (step S5). If not, the process returns to step S1 and the same process (steps S1, S2, S3, S4, S5) is repeated.
  • step S4 if the detection output of the second sensor 212 is higher than the threshold value (“NO” in step S4), the cleaning result is poor.
  • the control unit 215 reverses the moving direction so as to pass through the same place as the place just passed, and returns by a predetermined distance (step S6). After that, the control unit 215 executes steps S1 to S4. The movement in step S2 is in the original direction.
  • step S4 if the detection output of the second sensor 212 is equal to or less than the threshold value, the cleaning result is good.
  • control unit 215 determines whether or not the end of the array 1 has been reached ( Step S5), if not reached, returns to step S1 and repeats the same process (steps S1, S2, S3, S4, S5). In this way, if the dirt is not sufficiently removed by one pass, it can be passed again and "wipe twice". In addition, it can be said to be "wiping three times" including when retreating. Further, if the detection output of the second sensor 212 does not fall below the threshold value even after passing again, the pass may be performed a plurality of times until the detection output falls below the threshold value.
  • control unit 215 determines whether or not the cleaning device 200 has reached the end of the array 1 (step S5), and if not, returns to step S1 and performs the same processing (steps S1, S2, S3). Repeat S4 and S5). When it comes to the end of the array 1, the control unit 215 repeats the same process while changing the traveling path (step S8) until the entire surface is cleaned (step S7). When the entire surface is cleaned (“YES” in step S7), the cleaning is completed.
  • the hangar waits without starting the cleaning. If a strong wind above the specified value is detected during cleaning, the cleaning will be stopped immediately, the hangar will be returned, and the system will stand by.
  • the cleaning device 200 produces a cleaning result when the level of dirt detected by the second sensor 212 rearward in the moving direction while moving on the light receiving surface 1f is a predetermined level (threshold value) or lower. It is good and the body moves as it is.
  • a predetermined level threshold value
  • control is performed so as to pass through the same place again, and at least "wiping twice" is performed. In this way, the dirt can be wiped a plurality of times, and more reliable cleaning can be performed.
  • the wiper 203 has a material that adsorbs dirt, it can be wiped dry without using water. Since the wiper 203 adsorbs fine sand with static electricity, it is possible to prevent the light receiving surface 1f from being scratched. Further, since water is not used, a water supply device is not required and the entire device is simplified.
  • the control unit 215 determines that it is time to replace the wiper 203.
  • the wiper 203 becomes dirty, such a state occurs, so that the replacement time can be known without looking directly at the wiper 203.
  • FIG. 11 is a diagram showing an outline of the mechanical configuration of the cleaning device 200 as in FIG. 4, but the difference from FIG. 4 is a diagram in the case where the surface F to be cleaned has a protrusion F1 as a step. is there.
  • the wiper 203 rides on the protrusion F1
  • the movable plate 207 tilts and the spring 208 contracts as shown in the drawing, and the ground contact property of the first roller 203a and the second roller 203b is maintained. Therefore, even if there is a protrusion F1, the cleaning ability does not decrease.
  • the wiper 203 can be stably maintained even if the surface F to be cleaned has some irregularities. It can be pressed against the surface F to be cleaned.
  • the spring 208 natural rubber, synthetic rubber, sponge or the like can be used as the elastic member.
  • a large number (for example, several tens) of photovoltaic power generation devices 100 are usually installed on a vast land. It is not economical to prepare one cleaning device 200 for each unit. Therefore, it is more preferable if one cleaning device 200 can clean the light receiving surfaces of a large number of arrays 1. For that purpose, the cleaning device 200 must move between a plurality of arrays. This movement can be done by the hands of the workers, but it is time consuming and inefficient as it roams the vast land. Therefore, consider using it in combination with a hoverable aircraft.
  • the air vehicle is not particularly limited, but a so-called drone is preferable. Current drone technology can carry loads up to 15 kg.
  • the cleaning device 200 can be manufactured with a weight of 15 kg or less.
  • FIG. 12 is a diagram showing an example of a state in which the light receiving surface 1f of the array 1 of the photovoltaic power generation device 100 is cleaned by using the cleaning device 200 connected to the flying object 400 (drone).
  • the role of the flying object 400 is to land the cleaning device 200 at the start position on the light receiving surface 1f. After landing, the aircraft 400 has stopped. For the subsequent cleaning, the cleaning device 200 performs this by itself. When the cleaning is completed, the flying object 400 carries the cleaning device 200 to the next array. In this way, one cleaning device 200 can sequentially clean the light receiving surfaces 1f of the plurality of arrays.
  • the flying object 400 and the cleaning device 200 do not necessarily have to be always connected. During cleaning, the air vehicle 400 is separated from the cleaning device 200, the air vehicle 400 works elsewhere, returns after cleaning, and is connected again to the next array. You may proceed.
  • FIG. 13 is a diagram showing another example of a state in which the light receiving surface 1f of the array 1 of the photovoltaic power generation device 100 is cleaned by using the cleaning device 200 connected to the flying object 400.
  • the array 1 is in a horizontal posture, and the light receiving surface 1f faces the ground. This is usually the attitude of Array 1 at night.
  • the role of the flying object 400 is to support the cleaning device 200 turned upside down in the air in the hovering state, and to press the cleaning device 200 against the light receiving surface 1f with a constant force.
  • the flying object 400 presses the cleaning device 200 against the start position on the light receiving surface 1f. Maintains the pressing force, but does not move horizontally. For the subsequent cleaning, the cleaning device 200 performs this by itself. When the cleaning is completed, the flying object 400 carries the cleaning device 200 to the next array. In this way, one cleaning device 200 can sequentially clean the light receiving surfaces 1f of the plurality of arrays.
  • FIGS. 12 and 13 both show an example in which the attitude of the array 1 is horizontal, the cleaning device 200 when used in combination with an air vehicle has a surface to be cleaned vertically or relatively inclined. Cleaning is possible even on steep surfaces.
  • FIG. 14 is a diagram showing an example of a state in which the light receiving surface 1f of the array 1 of the photovoltaic power generation device 100 is cleaned by using the cleaning device 200 mounted on the vehicle 500.
  • the array 1 is in a horizontal posture, and the light receiving surface 1f faces the ground. This is usually the attitude of Array 1 at night.
  • the vehicle 500 includes an elevating device 501 that can freely expand and contract in the vertical direction, a table 502 provided on the elevating device 501, and a control unit 503 that controls the elevating device 501.
  • the cleaning device 200 is mounted on the table 502. The cleaning device 200 can freely move horizontally on the table 502.
  • the vehicle 500 is stopped so that the table 502 comes below the light receiving surface 1f of the array 1.
  • the elevating device 501 is vertically extended, and the cleaning device 200 is pressed against the light receiving surface 1f.
  • the elevating device 501 is provided with a certain degree of elasticity in the vertical direction so that the force of pressing the cleaning device 200 against the light receiving surface 1f is not excessive.
  • the cleaning device 200 performs this by itself.
  • the stop position of the vehicle is moved so that the entire light receiving surface 1f can be cleaned.
  • the cleaning of the next array 1 is performed for each vehicle 500.
  • one cleaning device 200, the vehicle 500, and the like can sequentially clean the light receiving surfaces 1f of the plurality of arrays. It is also possible to provide the table 502 itself with a horizontal two-dimensional slide function (so-called XY table) and control it by the control unit 503. In that case, the cleaning device 200 does not have to run on its own.
  • XY table horizontal two-dimensional slide function
  • FIG. 16 is a graph examining how the output (generated power) of the array changes under the same weather conditions when the conditions of the wiper pressing pressure are changed in the presence of a certain amount of sand.
  • the output reduction rate when the wiper is not used is 0%.
  • the wiper pressing pressure set to 735 Pa without spraying sand the output reduction rate was -2.4%.
  • the wiper After spraying sand, the wiper was cleaned 360 times with a pressing pressure of 735 Pa, and the output reduction rate was -4.0%. Further, when sand was sprayed and the wiper was cleaned 360 times with a pressing pressure of 14700 Pa, the output reduction rate reached -19.3%.
  • FIG. 17 is a diagram showing a state in which the array 1 is imaged using the flying object 400.
  • the flying object 400 has an image pickup device 401.
  • the aircraft body 400 can hover.
  • the image pickup apparatus 401 is a high-resolution camera, and can image the entire light receiving surface of the array 1 with high accuracy.
  • the sand On the surface of the array 1, the sand becomes muddy and collects due to the rainfall on the sand stains. Such a collection of sand becomes spots that spread by subsequent drying. Such spots are attached everywhere on the surface of the array 1. The spots are light brownish, and it is easy to distinguish the boundary from other parts. Therefore, by analyzing the image captured by the imaging device 401, it is possible to know the ratio of the total area of the spots to the entire area of the surface of the array 1.
  • FIG. 18 is a diagram showing an example of a dirt determination system mounted on the flying object 400.
  • the aircraft body 400 includes an image pickup device 401, a stain calculation unit 402, a target determination unit 403, and a communication unit 404 for dirt determination.
  • the dirt calculation unit 402 analyzes the image of the array 1 captured by the image pickup apparatus 401, and calculates the ratio of the total area of the spots to the entire surface area of the array 1. It can be estimated that the larger this ratio is, the more dirty the surface of the array 1 is.
  • the target determination unit 403 can set a threshold value, for example, and determine that “cleaning is required” if the above ratio exceeds the threshold value and “cleaning is not required” if the ratio does not exceed the threshold value.
  • the target determination unit 403 determines whether or not the imaged array should be the target of cleaning, and the determination result is determined by the communication unit 404 by the communication unit 218 (FIG. 5) or the monitoring control unit 300 (FIG. 5) of the cleaning device 200. ).
  • the aircraft body 400 can sequentially image the array 1 to notify the necessity of cleaning. In this way, the array to be cleaned can be accurately detected in advance.
  • the functions of the dirt calculation unit 402 and the target determination unit 403 may be configured as artificial intelligence that accurately provides an output of cleaning necessity from the input data of array imaging data.
  • the cleaning device 200 applied to the concentrating type photovoltaic power generation device 100 has been described, but the same cleaning device 200 is also applied to the solar power generation device of the crystalline silicon module which is not the condensing type. can do. Further, the cleaning device 200 can be applied regardless of whether it is a sun tracking type or a fixed type. Further, the cleaning device 200 can be similarly applied not only to a photovoltaic power generation device but also to a device having a panel-like structure in which dirt such as sand adhering outdoors affects the performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Cleaning In General (AREA)

Abstract

The invention is provided with: a body that can move along a surface to be cleaned; a wiper that is installed on the body in contact with the surface to be cleaned and that has a material for adsorbing dirt on the surface to be cleaned; a first sensor that is installed facing the surface to be cleaned at the front of the body in the direction of motion and that detects dirt on the surface to be cleaned; a second sensor that is installed facing the surface to be cleaned at the rear of the body in the direction of motion and that detects, on the side opposite to the first sensor as seen from the wiper, dirt on the surface to be cleaned; and a control unit that controls motion of the body along the surface to be cleaned. While the body is moving, the control unit controls the direction of motion of the body so that motion continues when the level of dirt detected by the second sensor is lower than a designated level and so that the same location is passed over again when the detected level is higher than the designated level.

Description

清掃装置、太陽光発電装置の清掃システム、及び、太陽光発電装置の清掃方法Cleaning equipment, photovoltaic power generation equipment cleaning system, and photovoltaic power generation equipment cleaning method
 本発明は、清掃装置、太陽光発電装置の清掃システム、及び、太陽光発電装置の清掃方法に関する。
 本出願は、2019年3月18日出願の日本出願第2019-049450号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a cleaning device, a cleaning system for a photovoltaic power generation device, and a cleaning method for the photovoltaic power generation device.
This application claims priority based on Japanese Application No. 2019-049450 filed on March 18, 2019, and incorporates all the contents described in the Japanese application.
 太陽光発電装置のアレイ(パネル)はその表面に砂等の汚れが付着することがある。雨の多い地域では雨によって自然に汚れが洗い流される場合もあるが、雨の少ない地域では、砂が堆積する。砂の汚れを放置すると発電効率が下がるので、定期的な清掃作業が必要となる。従来、主として手作業で清掃を行っているが、人件費がかさむので、清掃装置も提案されている(例えば特許文献1及び特許文献2参照)。 The surface of the array (panel) of the photovoltaic power generation device may be contaminated with sand or the like. In areas with heavy rain, the rain may naturally wash away dirt, but in areas with low rain, sand accumulates. If the sand is left unclean, the power generation efficiency will decrease, so regular cleaning work will be required. Conventionally, cleaning is mainly performed manually, but since labor costs are high, a cleaning device has also been proposed (see, for example, Patent Document 1 and Patent Document 2).
特開2013-221473号公報Japanese Unexamined Patent Publication No. 2013-221473 米国特許出願公開US2014/0041138 A1US Patent Application Publication US2014 / 0041138 A1
 本開示は、以下の発明を含む。但し、本発明は請求の範囲によって定められるものである。 The present disclosure includes the following inventions. However, the present invention is defined by the claims.
 本開示の清掃装置は、清掃対象面を清掃する清掃装置であって、前記清掃対象面に沿って移動可能なボディと、前記清掃対象面に接する状態で前記ボディに搭載され、前記清掃対象面に付着した汚れを吸着する素材を有するワイパーと、前記清掃対象面に対向する状態で前記ボディの移動方向における前方に搭載され、前記清掃対象面の汚れを検知する第1センサと、前記清掃対象面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記清掃対象面の汚れを検知する第2センサと、前記清掃対象面に沿って前記ボディを移動させる制御を行う制御部と、を備え、前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、前記所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、清掃装置である。
 なお、吸着とは、寄せ集めることも含む(以下同様。)。
The cleaning device of the present disclosure is a cleaning device that cleans a surface to be cleaned, and is mounted on the body in a state of being in contact with the surface to be cleaned and a body that can move along the surface to be cleaned. A wiper having a material that adsorbs dirt adhering to the cleaning target surface, a first sensor mounted in front of the body in the moving direction in a state of facing the cleaning target surface, and detecting dirt on the cleaning target surface, and the cleaning target. A second sensor, which is mounted rearward in the moving direction of the body while facing the surface, is on the opposite side of the first sensor when viewed from the wiper, and detects dirt on the surface to be cleaned, and the cleaning target. A control unit that controls the movement of the body along a surface is provided, and the control unit moves the body when the level of dirt detected by the second sensor is lower than a predetermined level during the movement of the body. It is a cleaning device that controls the moving direction of the body so as to continue and pass through the same place again when the level is higher than the predetermined level.
In addition, adsorption also includes gathering (the same shall apply hereinafter).
 本開示の清掃システムは、アレイを有する太陽光発電装置、及び、前記アレイの受光面を清掃する清掃装置を備えている太陽光発電装置の清掃システムであって、前記清掃装置は、前記受光面に沿って移動可能なボディと、前記受光面に接する状態で前記ボディに搭載され、前記受光面に付着した汚れを吸着する素材を有するワイパーと、前記受光面に対向する状態で前記ボディの移動方向における前方に搭載され、前記受光面の汚れを検知する第1センサと、前記受光面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記受光面の汚れを検知する第2センサと、前記受光面に沿って前記ボディを移動させる制御を行う制御部と、を備え、前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、太陽光発電装置の清掃システムである。 The cleaning system of the present disclosure is a photovoltaic power generation device having an array and a photovoltaic power generation device including a photovoltaic power generation device for cleaning the light receiving surface of the array, and the cleaning device is the light receiving surface. A body that can move along the light-receiving surface, a wiper that is mounted on the body in contact with the light-receiving surface and has a material that adsorbs dirt adhering to the light-receiving surface, and a body that faces the light-receiving surface. The first sensor mounted in the front in the direction to detect the dirt on the light receiving surface and the first sensor mounted in the rear in the moving direction of the body facing the light receiving surface are opposite to the first sensor when viewed from the wiper. On the side, a second sensor that detects dirt on the light receiving surface and a control unit that controls the movement of the body along the light receiving surface are provided, and the control unit is provided during the movement of the body. When the level of dirt detected by the second sensor is lower than the predetermined level, the movement is continued, and when the level is higher than the predetermined level, the movement direction of the body is controlled so as to pass through the same place again. Cleaning system.
 また、本開示の清掃システムは、アレイの受光面を地面に向けることが可能な太陽光発電装置の清掃システムであって、前記アレイの受光面を水平にして地面に向けた状態の太陽光発電装置と、前記アレイの下方に駐車した車両と、前記車両に搭載され、鉛直方向に伸縮可能な昇降装置と、前記昇降装置の上面に乗って水平方向に移動可能であり、前記受光面を清掃する清掃装置と、を備え、前記清掃装置は、前記受光面に沿って移動可能なボディと、前記受光面に接する状態で前記ボディに搭載され、前記受光面に付着した汚れを吸着する素材を有するワイパーと、前記受光面に対向する状態で前記ボディの移動方向における前方に搭載され、前記受光面の汚れを検知する第1センサと、前記受光面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記受光面の汚れを検知する第2センサと、前記受光面に沿って前記ボディを移動させる制御を行う制御部と、を備え、前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、太陽光発電装置の清掃システムである。 Further, the cleaning system of the present disclosure is a cleaning system for a solar power generation device capable of directing the light receiving surface of the array to the ground, and solar power generation in a state where the light receiving surface of the array is oriented horizontally and facing the ground. A device, a vehicle parked below the array, a lifting device mounted on the vehicle that can expand and contract in the vertical direction, and a lifting device that can move horizontally on the upper surface of the lifting device to clean the light receiving surface. The cleaning device includes a body that can move along the light receiving surface and a material that is mounted on the body in contact with the light receiving surface and adsorbs dirt adhering to the light receiving surface. A wiper to be mounted, a first sensor mounted on the front in the moving direction of the body in a state of facing the light receiving surface and detecting dirt on the light receiving surface, and a first sensor in the moving direction of the body facing the light receiving surface. A second sensor mounted rearward and opposite to the first sensor when viewed from the wiper to detect dirt on the light receiving surface, and a control unit that controls movement of the body along the light receiving surface. When the level of dirt detected by the second sensor is lower than the predetermined level, the control unit continues the movement while the body is moving, and when the level is higher than the predetermined level, the control unit relocates to the same place. It is a cleaning system of a solar power generation device that controls the moving direction of the body so as to pass through.
 一方、本開示の清掃方法は、マイクロファイバー製のワイパーを有する清掃装置を用いて、互いに離れて設置された複数基の太陽光発電装置の各々の受光面を清掃する、太陽光発電装置の清掃方法であって、ホバリング可能な飛行体に前記清掃装置を搭載した状態で、任意の太陽光発電装置に接近して、前記清掃装置を前記受光面の所定位置に取り付かせ、前記清掃装置が前記受光面に沿って移動することにより乾拭きで清掃し、かつ、清掃結果をチェックして、清掃結果が良好でなければ同じ箇所を複数回通過して清掃作業を実行し、清掃が終了すると、前記飛行体は、未清掃の他の太陽光発電装置に前記清掃装置を空中搬送する、という工程を繰り返して複数基の太陽光発電装置を清掃する、太陽光発電装置の清掃方法である。 On the other hand, in the cleaning method of the present disclosure, a cleaning device having a wiper made of microfiber is used to clean the light receiving surfaces of a plurality of solar power generation devices installed apart from each other. In the method, with the cleaning device mounted on a hoverable flying object, the cleaning device is approached to an arbitrary solar power generation device, the cleaning device is attached to a predetermined position on the light receiving surface, and the cleaning device is said. Clean with a dry wipe by moving along the light receiving surface, check the cleaning result, and if the cleaning result is not good, pass through the same place multiple times to execute the cleaning work, and when the cleaning is completed, the above The flying object is a cleaning method for a solar power generation device, in which a plurality of solar power generation devices are cleaned by repeating the process of transporting the cleaning device to another uncleaned solar power generation device in the air.
図1は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、完成した状態での太陽光発電装置を示している。FIG. 1 is a perspective view of an example of a concentrating type photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the photovoltaic power generation device in a completed state. 図2は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、組立途中の状態での太陽光発電装置を示している。FIG. 2 is a perspective view of an example of a concentrating type photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the photovoltaic power generation device in a state during assembly. 図3は、地面から採取した砂(左)と、風でまきあがってから堆積した砂(右)とが、どのように粒径が違うかを示すグラフの一例である。FIG. 3 is an example of a graph showing how the particle size of the sand collected from the ground (left) and the sand deposited after being blown up by the wind (right) are different. 図4は、清掃装置の機械的な構成の概略を示す図である。FIG. 4 is a diagram showing an outline of the mechanical configuration of the cleaning device. 図5は、清掃装置の制御上の構成の概略を示す図である。FIG. 5 is a diagram showing an outline of a control configuration of the cleaning device. 図6Aは、汚れていない清掃対象面に対する光センサの投受光の状態を示す図である。FIG. 6A is a diagram showing a state of light reception and reception of the optical sensor on a clean surface to be cleaned. 図6Bは、汚れが付着している清掃対象面に対する光センサの投受光の状態を示す図である。FIG. 6B is a diagram showing a state of light reception and reception of the optical sensor on the surface to be cleaned to which dirt is attached. 図7は、ワイパーの繊維構造の違いを示す対比写真である。FIG. 7 is a comparative photograph showing the difference in the fiber structure of the wiper. 図8は、マイクロファイバーに砂が吸着された状態を示す写真であり、(a)の写真の中心部を拡大したものが(b)の写真である。FIG. 8 is a photograph showing a state in which sand is adsorbed on the microfiber, and an enlarged view of the central portion of the photograph of (a) is a photograph of (b). 図9は、清掃装置を用いて太陽光発電装置のアレイの受光面を清掃する状態の一例を示す図である。FIG. 9 is a diagram showing an example of a state in which the light receiving surface of the array of the photovoltaic power generation device is cleaned by using the cleaning device. 図10は、清掃装置による清掃の開始から終了までの、制御部による処理を示すフローチャートの一例である。FIG. 10 is an example of a flowchart showing processing by the control unit from the start to the end of cleaning by the cleaning device. 図11は、図4と同様に、清掃装置の機械的な構成の概略を示す図であるが、図4との違いは、清掃対象面に段差となる突起がある場合の図である。FIG. 11 is a diagram showing an outline of the mechanical configuration of the cleaning device as in FIG. 4, but the difference from FIG. 4 is a diagram when there is a protrusion as a step on the surface to be cleaned. 図12は、飛行体(ドローン)と連結させた清掃装置を用いて太陽光発電装置のアレイの受光面を清掃する状態の一例を示す図である。FIG. 12 is a diagram showing an example of a state in which the light receiving surface of the array of the photovoltaic power generation device is cleaned by using the cleaning device connected to the flying object (drone). 図13は、飛行体と連結させた清掃装置を用いて太陽光発電装置のアレイの受光面を清掃する状態の他の例を示す図である。FIG. 13 is a diagram showing another example of a state in which the light receiving surface of the array of the photovoltaic power generation device is cleaned by using the cleaning device connected to the flying object. 図14は、車両に搭載した清掃装置を用いて太陽光発電装置のアレイの受光面を清掃する状態の一例を示す図である。FIG. 14 is a diagram showing an example of a state in which the light receiving surface of the array of the photovoltaic power generation device is cleaned by using the cleaning device mounted on the vehicle. 図15は、マイクロファイバークロスによる砂の清掃の様子を示す概略図である。FIG. 15 is a schematic view showing a state of sand cleaning with a microfiber cloth. 図16は、一定量の砂の存在下でワイパーの押し圧の条件を変えた場合に、同等の気象条件でアレイの出力(発電電力)がどのように変化するかを調べたグラフである。FIG. 16 is a graph examining how the output (generated power) of the array changes under the same weather conditions when the conditions of the wiper pressing pressure are changed in the presence of a certain amount of sand. 図17は、飛行体を用いてアレイを撮像する様子を示す図である。FIG. 17 is a diagram showing a state in which an array is imaged using an air vehicle. 図18は、飛行体に搭載される、汚れ判定システムの一例を示す図である。FIG. 18 is a diagram showing an example of a dirt determination system mounted on an air vehicle.
 [本開示が解決しようとする課題]
 水資源の乏しい乾燥した高地では、洗浄のための水の確保及び貯水管理が難しい。十分でない量の水をかけて清掃装置で擦ると、かえって汚れが拡がったり、また、表面に傷がついたりすることもある。
[Issues to be solved by this disclosure]
In dry highlands where water resources are scarce, it is difficult to secure water for washing and manage water storage. If you sprinkle an insufficient amount of water and rub it with a cleaning device, the dirt may spread and the surface may be scratched.
 かかる課題に鑑み、本開示は、水が無くても汚れがとれる清掃装置、太陽光発電装置の清掃システム、及び、太陽光発電装置の清掃方法を提供することを目的とする。 In view of such a problem, an object of the present disclosure is to provide a cleaning device that can remove stains without water, a cleaning system for a photovoltaic power generation device, and a cleaning method for the photovoltaic power generation device.
 [本開示の効果]
 本開示によれば、水が無くても汚れがとれる清掃装置、太陽光発電装置の清掃システム、及び、太陽光発電装置の清掃方法を提供することができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a cleaning device that can remove stains without water, a cleaning system for a photovoltaic power generation device, and a cleaning method for the photovoltaic power generation device.
 [本開示の実施形態の説明]
 本開示の実施形態には、その要旨として、少なくとも以下のものが含まれる。
[Explanation of Embodiments of the present disclosure]
The embodiments of the present disclosure include at least the following as a gist thereof.
 (1)これは、清掃対象面を清掃する清掃装置であって、前記清掃対象面に沿って移動可能なボディと、前記清掃対象面に接する状態で前記ボディに搭載され、前記清掃対象面に付着した汚れを吸着する素材を有するワイパーと、前記清掃対象面に対向する状態で前記ボディの移動方向における前方に搭載され、前記清掃対象面の汚れを検知する第1センサと、前記清掃対象面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記清掃対象面の汚れを検知する第2センサと、前記清掃対象面に沿って前記ボディを移動させる制御を行う制御部と、を備え、前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、前記所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、清掃装置である。 (1) This is a cleaning device for cleaning the surface to be cleaned, and is mounted on the body in contact with the surface to be cleaned and a body that can move along the surface to be cleaned, and is mounted on the surface to be cleaned. A wiper having a material that adsorbs the adhered dirt, a first sensor mounted in front of the body in the moving direction while facing the cleaning target surface, and detecting dirt on the cleaning target surface, and the cleaning target surface. A second sensor, which is mounted rearward in the moving direction of the body in a state of facing the body, is on the opposite side of the first sensor when viewed from the wiper, and detects dirt on the surface to be cleaned, and the surface to be cleaned. The control unit includes a control unit that controls the movement of the body along the body, and the control unit continues the movement when the level of dirt detected by the second sensor is lower than a predetermined level during the movement of the body. It is a cleaning device that controls the moving direction of the body so as to pass through the same place again when the level is higher than the predetermined level.
 このような清掃装置では、ボディの移動により、ワイパーによって清掃対象面に付着した汚れが除去される。ボディの移動中に移動方向における後方にある第2センサが検知する汚れのレベルが所定レベルより低いときは清掃結果が良好であり、ボディはそのまま移動する。一方、第2センサが検知する汚れのレベルが所定レベルより高いときは、同じ場所を再度通るように制御が行われ、少なくとも「2度拭き」が行われる。こうして、汚れの複数回拭きが可能となり、より確実な清掃を行うことができる。また、ワイパーは汚れを吸着する素材を有するので、水を使用せずに乾拭きの清掃が可能である。水を使用しないため、給水装置が不要となり装置全体が簡素化される。 In such a cleaning device, the dirt adhering to the surface to be cleaned is removed by the wiper by moving the body. When the level of dirt detected by the second sensor behind in the moving direction during the movement of the body is lower than a predetermined level, the cleaning result is good and the body moves as it is. On the other hand, when the level of dirt detected by the second sensor is higher than a predetermined level, control is performed so as to pass through the same place again, and at least "wiping twice" is performed. In this way, the dirt can be wiped a plurality of times, and more reliable cleaning can be performed. In addition, since the wiper has a material that adsorbs dirt, it can be wiped dry without using water. Since no water is used, a water supply device is not required and the entire device is simplified.
 (2)例えば(1)において、前記汚れには砂が含まれており、前記素材とはマイクロファイバーである。
 マイクロファイバーは微小な砂を静電気で吸い上げるので、水を使用せずとも汚れが取れ、清掃対象面にワイパーによる傷がつくことも抑制できる。
(2) For example, in (1), the dirt contains sand, and the material is microfiber.
Since the microfiber sucks up minute sand with static electricity, dirt can be removed without using water, and it is possible to prevent the surface to be cleaned from being scratched by the wiper.
 (3)なお、(1)又は(2)において、前記第1センサ及び前記第2センサは共に光センサであり、反射光の強度に基づいて前記汚れのレベルを検知することができる。
 清掃対象面の汚れの程度(付着量)に応じて光の散乱の量が異なり、反射光の強度が異なる。このことに基づいて、光センサが検知した反射光の強度に基づいて汚れのレベルを検知することができる。
(3) In (1) or (2), both the first sensor and the second sensor are optical sensors, and the level of dirt can be detected based on the intensity of reflected light.
The amount of light scattered differs depending on the degree of dirt (adhesion amount) on the surface to be cleaned, and the intensity of reflected light differs. Based on this, the level of dirt can be detected based on the intensity of the reflected light detected by the optical sensor.
 (4)前記(1)から(3)のいずれかの清掃装置において、例えば、前記ワイパーは、前記ボディの移動により前記清掃対象面上を転がる初期清掃のための第1ローラと、前記第1ローラより前記移動方向における後ろ側にあって、前記ボディの移動により前記清掃対象面上を転がる仕上げ清掃のための第2ローラと、を備えている。
 この場合、移動方向の前後に配置された第1ローラ及び後続の第2ローラが清掃対象面上を転がることで、それぞれ、初期清掃及び仕上げ清掃を行うことができる。
(4) In any of the cleaning devices (1) to (3), for example, the wiper has a first roller for initial cleaning that rolls on the surface to be cleaned due to the movement of the body, and the first roller. A second roller for finish cleaning, which is located behind the roller in the moving direction and rolls on the cleaning target surface due to the movement of the body, is provided.
In this case, the first roller and the subsequent second roller arranged in the front-rear direction in the moving direction roll on the surface to be cleaned, so that initial cleaning and finish cleaning can be performed, respectively.
 (5)前記(1)から(4)のいずれかの清掃装置において、前記第1センサの検知する汚れのレベルと、前記第2センサの検知する汚れのレベルとが共に第1の所定値より高いにも関わらず、2つのレベルの差は、微小であることを示す第2の所定値より小さい、という状態になった場合、前記制御部は、前記ワイパーの交換時期と判定する。
 ワイパーが汚れるとこのような状態となるので、ワイパーを直接見なくても、その交換時期を知ることができる。
(5) In any of the cleaning devices (1) to (4), the dirt level detected by the first sensor and the dirt level detected by the second sensor are both from the first predetermined value. When the difference between the two levels is smaller than the second predetermined value indicating that the wiper is minute, the control unit determines that it is time to replace the wiper.
When the wiper becomes dirty, this happens, so you can know when to replace the wiper without looking directly at it.
 (6)前記(1)から(5)のいずれかの清掃装置において、前記ワイパーが前記清掃対象面に圧接するように前記ボディから前記ワイパーを押し出す弾性部材を備えたものであってもよい。
 この場合、清掃対象面に多少の凹凸があっても、ワイパーを、安定して清掃対象面に押しつけることができる。
(6) The cleaning device according to any one of (1) to (5) may be provided with an elastic member that pushes the wiper out of the body so that the wiper is in pressure contact with the surface to be cleaned.
In this case, the wiper can be stably pressed against the cleaning target surface even if the cleaning target surface has some irregularities.
 (7)前記(1)から(6)のいずれかの清掃装置において、例えば、前記清掃対象面とは太陽光発電装置のアレイにおける受光面である。
 乾燥した高地に設置される太陽光発電装置のアレイには特に、微小な砂が付着しやすい。清掃装置は、このような微小な砂の汚れを除去するのに適する。
(7) In any of the cleaning devices (1) to (6), for example, the surface to be cleaned is a light receiving surface in an array of photovoltaic power generation devices.
Fine sand is particularly likely to adhere to the array of photovoltaic power plants installed in dry highlands. The cleaning device is suitable for removing such fine sand stains.
 (8)前記(1)から(7)のいずれかの清掃装置において、前記ボディの端部に、前記清掃対象面に対向してカメラが搭載されていてもよい。
 この場合、カメラが撮像した実測の画像情報に基づいて、ボディが移動して清掃対象面の終端に来たことを検知することができる。
(8) In any of the cleaning devices (1) to (7), a camera may be mounted on an end portion of the body so as to face the surface to be cleaned.
In this case, it is possible to detect that the body has moved to the end of the surface to be cleaned based on the actually measured image information captured by the camera.
 (9)前記(1)から(8)のいずれかの清掃装置において、前記ボディに、ホバリングが可能な飛行体が取り付けられていてもよい。
 この場合、重力で落下しそうな姿勢の清掃装置であっても、飛行体によりこれを支えることができる。飛行体とは例えば、いわゆるドローンである。
(9) In any of the cleaning devices (1) to (8), a hoverable flying object may be attached to the body.
In this case, even a cleaning device in a posture that is likely to fall due to gravity can be supported by the flying object. An air vehicle is, for example, a so-called drone.
 (10)前記(1)から(9)のいずれかの清掃装置において、前記ワイパーを前記清掃対象面に押しつける押し圧は、500Paから5000Paの範囲内であることが好ましい。
 押し圧が500Pa未満では十分な清掃効果が出ない。押し圧が5000Paを超えると清掃対象面にダメージを与える可能性がある。押し圧を、500Paから5000Paの範囲内とすることにより、清掃効果を確保しつつ、清掃対象面にダメージを与えることを抑制できる。
(10) In any of the cleaning devices (1) to (9), the pressing pressure for pressing the wiper against the surface to be cleaned is preferably in the range of 500 Pa to 5000 Pa.
If the pressing pressure is less than 500 Pa, a sufficient cleaning effect cannot be obtained. If the pressing pressure exceeds 5000 Pa, the surface to be cleaned may be damaged. By setting the pressing pressure within the range of 500 Pa to 5000 Pa, it is possible to suppress damage to the surface to be cleaned while ensuring the cleaning effect.
 (11)また、これは、アレイを有する太陽光発電装置、及び、前記アレイの受光面を清掃する清掃装置を備えている太陽光発電装置の清掃システムであって、前記清掃装置は、前記受光面に沿って移動可能なボディと、前記受光面に接する状態で前記ボディに搭載され、前記受光面に付着した汚れを吸着する素材を有するワイパーと、前記受光面に対向する状態で前記ボディの移動方向における前方に搭載され、前記受光面の汚れを検知する第1センサと、前記受光面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記受光面の汚れを検知する第2センサと、前記受光面に沿って前記ボディを移動させる制御を行う制御部と、を備え、
 前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、太陽光発電装置の清掃システムである。
(11) Further, this is a cleaning system of a photovoltaic power generation device including a photovoltaic power generation device having an array and a cleaning device for cleaning the light receiving surface of the array, and the cleaning device is the light receiving device. A body that can move along the surface, a wiper that is mounted on the body in contact with the light receiving surface and has a material that adsorbs dirt adhering to the light receiving surface, and a body that faces the light receiving surface. The first sensor mounted in the front in the moving direction and detecting the dirt on the light receiving surface, and the first sensor mounted in the rear in the moving direction of the body in a state facing the light receiving surface and viewed from the wiper. On the opposite side, a second sensor for detecting dirt on the light receiving surface and a control unit for controlling the movement of the body along the light receiving surface are provided.
During the movement of the body, the control unit continues the movement when the level of dirt detected by the second sensor is lower than the predetermined level, and when the level is higher than the predetermined level, the body passes through the same place again. It is a cleaning system for photovoltaic power generation equipment that controls the direction of movement.
 このような太陽光発電装置の清掃システムにおける清掃装置では、ボディの移動により、ワイパーによって受光面に付着した汚れが除去される。ボディの移動中に移動方向における後方にある第2センサが検知する汚れのレベルが所定レベルより低いときは清掃結果が良好であり、ボディはそのまま移動する。一方、第2センサが検知する汚れのレベルが所定レベルより高いときは、同じ場所を再度通るように制御が行われ、少なくとも「2度拭き」が行われる。こうして、汚れの複数回拭きが可能となり、より確実な清掃を行うことができる。また、ワイパーは汚れを吸着する素材を有するので、水を使用せずに乾拭きの清掃が可能である。水を使用しないため、給水装置が不要となり装置全体が簡素化される。 In the cleaning device in such a cleaning system of the photovoltaic power generation device, the dirt adhering to the light receiving surface is removed by the wiper by moving the body. When the level of dirt detected by the second sensor behind in the moving direction during the movement of the body is lower than a predetermined level, the cleaning result is good and the body moves as it is. On the other hand, when the level of dirt detected by the second sensor is higher than a predetermined level, control is performed so as to pass through the same place again, and at least "wiping twice" is performed. In this way, the dirt can be wiped a plurality of times, and more reliable cleaning can be performed. In addition, since the wiper has a material that adsorbs dirt, it can be wiped dry without using water. Since no water is used, a water supply device is not required and the entire device is simplified.
 (12)前記(11)の太陽光発電装置の清掃システムは、撮像装置を搭載してホバリング可能な飛行体を含み、前記飛行体は、撮像した前記アレイの受光面の全面積に対する汚れの面積の割合に基づいて、前記清掃装置による清掃対象となるアレイを決定するようにしてもよい。
 この場合、清掃対象とすべきアレイを事前に的確に察知することができる。
(12) The cleaning system for the photovoltaic power generation device according to (11) includes a hoverable flying object equipped with an imaging device, and the flying object includes an area of dirt with respect to the total area of the light receiving surface of the imaged array. The array to be cleaned by the cleaning device may be determined based on the ratio of.
In this case, the array to be cleaned can be accurately detected in advance.
 (13)また、これは、アレイの受光面を地面に向けることが可能な太陽光発電装置の清掃システムであって、前記アレイの受光面を水平にして地面に向けた状態の太陽光発電装置と、前記アレイの下方に駐車した車両と、前記車両に搭載され、鉛直方向に伸縮可能な昇降装置と、前記昇降装置の上面に乗って水平方向に移動可能であり、前記受光面を清掃する清掃装置と、を備え、前記清掃装置は、前記受光面に沿って移動可能なボディと、前記受光面に接する状態で前記ボディに搭載され、前記受光面に付着した汚れを吸着する素材を有するワイパーと、前記受光面に対向する状態で前記ボディの移動方向における前方に搭載され、前記受光面の汚れを検知する第1センサと、前記受光面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記受光面の汚れを検知する第2センサと、前記受光面に沿って前記ボディを移動させる制御を行う制御部と、を備え、前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、太陽光発電装置の清掃システムである。 (13) Further, this is a cleaning system for a solar power generation device capable of directing the light receiving surface of the array to the ground, and the solar power generation device in a state where the light receiving surface of the array is oriented horizontally and facing the ground. A vehicle parked below the array, a lifting device mounted on the vehicle that can expand and contract in the vertical direction, and a lifting device that can move horizontally on the upper surface of the lifting device to clean the light receiving surface. A cleaning device is provided, and the cleaning device has a body that can move along the light receiving surface and a material that is mounted on the body in contact with the light receiving surface and adsorbs dirt adhering to the light receiving surface. A wiper, a first sensor mounted in front of the body in the moving direction while facing the light receiving surface, and a first sensor for detecting dirt on the light receiving surface, and a rear sensor in the moving direction of the body facing the light receiving surface. A second sensor that is mounted on the wiper and is on the opposite side of the first sensor to detect dirt on the light receiving surface, and a control unit that controls the movement of the body along the light receiving surface. When the level of dirt detected by the second sensor is lower than a predetermined level, the control unit continues the movement while the body is moving, and when the level is higher than the predetermined level, the control unit passes through the same place again. This is a cleaning system for a solar power generation device that controls the moving direction of the body.
 このような太陽光発電装置の清掃システムにおける清掃装置では、ボディの移動により、ワイパーによって受光面に付着した汚れが除去される。ボディの移動中に移動方向における後方にある第2センサが検知する汚れのレベルが所定レベルより低いときは清掃結果が良好であり、ボディはそのまま移動する。一方、第2センサが検知する汚れのレベルが所定レベルより高いときは、同じ場所を再度通るように制御が行われ、少なくとも「2度拭き」が行われる。こうして、汚れの複数回拭きが可能となり、より確実な清掃を行うことができる。また、ワイパーは汚れを吸着する素材を有するので、水を使用せずに乾拭きの清掃が可能である。水を使用しないため、給水装置が不要となり装置全体が簡素化される。1基の太陽光発電装置の清掃が完了すれば、車両が他の太陽光発電装置に移動して、同様の清掃を実行することができる。 In the cleaning device in such a cleaning system of the photovoltaic power generation device, the dirt adhering to the light receiving surface is removed by the wiper by moving the body. When the level of dirt detected by the second sensor behind in the moving direction during the movement of the body is lower than a predetermined level, the cleaning result is good and the body moves as it is. On the other hand, when the level of dirt detected by the second sensor is higher than a predetermined level, control is performed so as to pass through the same place again, and at least "wiping twice" is performed. In this way, the dirt can be wiped a plurality of times, and more reliable cleaning can be performed. In addition, since the wiper has a material that adsorbs dirt, it can be wiped dry without using water. Since no water is used, a water supply device is not required and the entire device is simplified. Once the cleaning of one photovoltaic device is complete, the vehicle can move to another photovoltaic device and perform similar cleaning.
 (14)また、これは、マイクロファイバー製のワイパーを有する清掃装置を用いて、互いに離れて設置された複数基の太陽光発電装置の各々の受光面を清掃する、太陽光発電装置の清掃方法であって、ホバリング可能な飛行体に前記清掃装置を搭載した状態で、任意の太陽光発電装置に接近して、前記清掃装置を前記受光面の所定位置に取り付かせ、前記清掃装置が前記受光面に沿って移動することにより乾拭きで清掃し、かつ、清掃結果をチェックして、清掃結果が良好でなければ同じ箇所を複数回通過して清掃作業を実行し、清掃が終了すると、前記飛行体は、未清掃の他の太陽光発電装置に前記清掃装置を空中搬送する、という工程を繰り返して複数基の太陽光発電装置を清掃する、太陽光発電装置の清掃方法である。 (14) Further, this is a cleaning method for a solar power generation device, which uses a cleaning device having a wiper made of microfiber to clean the light receiving surfaces of a plurality of solar power generation devices installed apart from each other. In a state where the cleaning device is mounted on a hoverable flying object, the cleaning device is approached to an arbitrary solar power generation device, the cleaning device is attached to a predetermined position on the light receiving surface, and the cleaning device receives the light. Clean with a dry wipe by moving along the surface, check the cleaning result, and if the cleaning result is not good, pass the same place multiple times to perform the cleaning work, and when the cleaning is completed, the flight The body is a cleaning method for a solar power generation device, in which a plurality of solar power generation devices are cleaned by repeating the process of transporting the cleaning device to another uncleaned solar power generation device in the air.
 この場合、まず、飛行体によって清掃装置を任意の太陽光発電装置の受光面の所定位置に取り付かせた後、清掃装置の移動により、乾拭きでの受光面の清掃が行われる。そして、清掃結果をチェックして、清掃結果が良好でなければ同じ箇所を複数回通過して清掃作業を実行する。こうして、受光面の汚れの複数回拭きが可能となり、より確実な清掃を行うことができる。また、乾拭きであるため、水を使用せず、給水装置が不要となり装置全体が簡素化される。複数基の太陽光発電装置に対して、飛行体が清掃装置を次々と空中搬送すれば、1つの清掃装置で複数基の太陽光発電装置の清掃を実行することができる。 In this case, first, the cleaning device is attached to a predetermined position on the light receiving surface of an arbitrary photovoltaic power generation device by the flying object, and then the light receiving surface is cleaned by dry wiping by moving the cleaning device. Then, the cleaning result is checked, and if the cleaning result is not good, the same place is passed a plurality of times to execute the cleaning work. In this way, dirt on the light receiving surface can be wiped multiple times, and more reliable cleaning can be performed. In addition, since it is a dry wipe, no water is used, no water supply device is required, and the entire device is simplified. If the flying object carries the cleaning devices in the air one after another to the plurality of photovoltaic power generation devices, the cleaning of the plurality of photovoltaic power generation devices can be performed by one cleaning device.
 [本開示の実施形態の詳細]
 以下、本開示の清掃装置又は清掃システムの具体例について、図面を参照して説明する。まず、清掃装置の適用対象の典型例である太陽光発電装置から説明する。
[Details of Embodiments of the present disclosure]
Hereinafter, specific examples of the cleaning device or cleaning system of the present disclosure will be described with reference to the drawings. First, a photovoltaic power generation device, which is a typical example of the application target of the cleaning device, will be described.
 《太陽光発電装置の主な構成》
 図1及び図2はそれぞれ、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。図1は、完成した状態での太陽光発電装置100を示し、図2は、組立途中の状態での太陽光発電装置100を示している。図2は、追尾架台25の骨組みが見える状態を右半分に示し、集光型太陽光発電モジュール(以下、単にモジュールとも言う。)1Mが取り付けられた状態を左半分に示している。なお、実際にモジュール1Mを追尾架台25に取り付ける際は、追尾架台25を地面に寝かせた状態で取り付けを行う。
<< Main configuration of photovoltaic power generation equipment >>
1 and 2 are perspective views of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side. FIG. 1 shows a photovoltaic power generation device 100 in a completed state, and FIG. 2 shows a photovoltaic power generation device 100 in a state in the middle of assembly. FIG. 2 shows a state in which the skeleton of the tracking gantry 25 can be seen in the right half, and a state in which a concentrating photovoltaic power generation module (hereinafter, also simply referred to as a module) 1M is attached in the left half. When actually attaching the module 1M to the tracking pedestal 25, the tracking pedestal 25 is attached while lying on the ground.
 図1において、この太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた全体として面状の受光面を成すアレイ(太陽光発電パネル)1と、その支持機構2とを備えている。アレイ1は、背面側の追尾架台25(図2)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。モジュール1M内には、太陽光を集光させて発電素子に導く光学系がマトリックス状に並んで設けられた既知の構成が搭載されている。 In FIG. 1, the photovoltaic power generation device 100 includes an array (photovoltaic power generation panel) 1 which is continuous on the upper side and is divided into left and right on the lower side to form a planar light receiving surface as a whole, and a support mechanism 2 thereof. I have. The array 1 is configured by arranging the modules 1M on the tracking pedestal 25 (FIG. 2) on the back side. In the example of FIG. 1, the array 1 is an aggregate of 200 modules 1M in total, consisting of (96 (= 12 × 8) × 2) pieces constituting the left and right wings and 8 pieces in the central crossover portion. It is configured. In the module 1M, a known configuration in which optical systems that collect sunlight and guide it to a power generation element are arranged in a matrix is mounted.
 支持機構2は、支柱21と、基礎22と、駆動部23と、駆動軸となる水平軸24(図2)と、追尾架台25とを備えている。支柱21は、下端が基礎22に固定され、上端に駆動部23を備えている。 The support mechanism 2 includes a support column 21, a foundation 22, a drive unit 23, a horizontal axis 24 (FIG. 2) as a drive axis, and a tracking mount 25. The lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a drive unit 23.
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24(図2)は水平となる。駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。図2において、水平軸24には、追尾架台25を補強する補強材25aが取り付けられている。また、補強材25aには、複数本の水平方向へのレール25bが取り付けられている。モジュール1Mは、このレールに嵌め込むように取り付けられる。水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。 In FIG. 1, the foundation 22 is firmly buried in the ground so that only the upper surface can be seen. With the foundation 22 buried in the ground, the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal. The drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24). In FIG. 2, a reinforcing member 25a for reinforcing the tracking mount 25 is attached to the horizontal shaft 24. Further, a plurality of horizontal rails 25b are attached to the reinforcing member 25a. Module 1M is mounted so as to fit into this rail. If the horizontal axis 24 rotates in the direction of the azimuth or elevation, the array 1 also rotates in that direction.
 図1のようにアレイ1が鉛直になっているのは、通常、夜明け及び日没前である。
 日中は、アレイ1の受光面が常に太陽に正対する姿勢となるよう、駆動部23が動作し、アレイ1は太陽の追尾動作を行う。
Array 1 is usually vertical as shown in FIG. 1 before dawn and sunset.
During the daytime, the drive unit 23 operates so that the light receiving surface of the array 1 always faces the sun, and the array 1 performs the tracking operation of the sun.
 《アレイに付着する砂とマイクロファイバー》
 図3は、地面から採取した砂(左)と、風でまきあがってから堆積した砂(右)とが、どのように粒径が違うかを示すグラフの一例である。測定した場所は、モロッコのワルザザードである。横軸は粒径[μm]、縦軸は含まれている割合[%]を表している。グラフ中の曲線は粒径の小さい方から累積した割合[%]を表している。総量としては当然に100%となる。
《Sand and microfiber adhering to the array》
FIG. 3 is an example of a graph showing how the particle size of the sand collected from the ground (left) and the sand deposited after being blown up by the wind (right) are different. The measured location is Ouarzazate, Morocco. The horizontal axis represents the particle size [μm], and the vertical axis represents the percentage [%] contained. The curve in the graph shows the cumulative percentage [%] from the smallest particle size. Naturally, the total amount is 100%.
 地面から採取した砂の割合の中心粒径は178[μm]であった。これに対して、風でまきあがって堆積した砂の中心粒径は46.8[μm]であった。すなわち、風でまきあがって堆積した砂は、地面から採取した砂よりも粒径が小さい、より細かい砂であることがわかる。このような細かい砂を除去するには、マイクロファイバーで出来た布材であるマイクロファイバークロスが好適であるという知見を得た。マイクロファイバークロスは、清掃等に使用される他の繊維クロスと比べて、繊維の隙間が多く、静電気により汚れを吸着できる。従って、砂を吸着するにあたって水は不要である。 The centriole of the proportion of sand collected from the ground was 178 [μm]. On the other hand, the central particle size of the sand that was rolled up and deposited by the wind was 46.8 [μm]. That is, it can be seen that the sand that has been rolled up and deposited by the wind is finer sand with a smaller particle size than the sand collected from the ground. It was found that microfiber cloth, which is a cloth material made of microfiber, is suitable for removing such fine sand. Compared to other fiber cloths used for cleaning, the microfiber cloth has more fiber gaps and can adsorb dirt by static electricity. Therefore, no water is required to adsorb the sand.
 図15は、マイクロファイバークロスによる砂の清掃の様子を示す概略図である。マイクロファイバークロスは、その断面を想定すると、表面に近いほど繊維の集合体がばらばらに分裂している。そのため、図15の右側に示すように、突起形状の繊維がランダムに存在している状態となっている。繊維の個々の大きさは5μm程度である。このようなマイクロファイバークロスを清掃方向に動かすと、砂の一部(微小な砂)は繊維間の隙間に捕捉されるが、大半の砂は寄せ集められた状態となる。寄せ集められた砂は、アレイ1の受光面1fから押し出される。 FIG. 15 is a schematic view showing a state of sand cleaning with a microfiber cloth. Assuming the cross section of the microfiber cloth, the closer to the surface, the more the aggregates of fibers are split apart. Therefore, as shown on the right side of FIG. 15, the protrusion-shaped fibers are randomly present. The individual size of the fibers is about 5 μm. When such a microfiber cloth is moved in the cleaning direction, a part of sand (fine sand) is trapped in the gap between the fibers, but most of the sand is gathered together. The collected sand is extruded from the light receiving surface 1f of the array 1.
 《清掃装置の一例》
 図4は、清掃装置200の機械的な構成の概略を示す図である。図において、清掃装置200は、自走可能な走行ロボットのようなものであり、移動体としてのボディ201を有している。ボディ201は、清掃対象面に沿って移動可能である。ボディ201の材質は、金属でもよいが、軽量化のためには樹脂製が好ましい。また、紫外線に対して劣化しにくい樹脂が好ましい。図4中の直交3方向をX,Y,Zとする。
<< Example of cleaning device >>
FIG. 4 is a diagram showing an outline of the mechanical configuration of the cleaning device 200. In the figure, the cleaning device 200 is like a self-propelled traveling robot, and has a body 201 as a moving body. The body 201 is movable along the surface to be cleaned. The material of the body 201 may be metal, but resin is preferable for weight reduction. Further, a resin that does not easily deteriorate with ultraviolet rays is preferable. Let X, Y, and Z be the three orthogonal directions in FIG.
 ボディ201は、図4のX方向を通常の移動方向として自在に移動することができ、X方向前後に駆動部202を備えている。駆動部202は、具体的には車輪とその駆動機構(モータ等)であり、車輪は例えば4輪である。ボディ201は、後退(-X)方向にも移動可能である。また、駆動部202のうち、前輪又は後輪は操舵輪となっており、Z方向(又は-Z方向)への横移動(走行路変更)も可能である。駆動部202の車輪は、清掃対象面Fに対してスリップしにくい密着性のあるものが好ましい。ボディ201にはワイパー203が搭載されている。ワイパー203は、ボディ201の移動により清掃対象面F上をX方向(又は-X方向)に転がる第1ローラ203a及び第2ローラ203bによって構成されている。 The body 201 can freely move in the X direction of FIG. 4 as a normal moving direction, and is provided with drive units 202 in front of and behind the X direction. The drive unit 202 is specifically a wheel and a drive mechanism (motor or the like) thereof, and the wheels are, for example, four wheels. The body 201 can also move in the backward (−X) direction. Further, in the drive unit 202, the front wheels or the rear wheels are steering wheels, and lateral movement (change of travel path) in the Z direction (or −Z direction) is also possible. The wheels of the drive unit 202 preferably have adhesion to the surface F to be cleaned so as not to slip easily. The wiper 203 is mounted on the body 201. The wiper 203 is composed of a first roller 203a and a second roller 203b that roll in the X direction (or −X direction) on the cleaning target surface F due to the movement of the body 201.
 ワイパー203の前後には、補助ローラ204が設けられている。ワイパー203(203a,203b)及び補助ローラ204は、それぞれ、Y方向に延びる脚部205,206を介して可動板207に固定されている。可動板207、脚部205,206、補助ローラ204、及び、ワイパー203は、ワイパー台車のようなひとかたまりの構成を成している。可動板207は、ばね208を介して固定板209に取り付けられている。固定板209は、ボディ201に固定されている。 Auxiliary rollers 204 are provided before and after the wiper 203. The wipers 203 (203a and 203b) and the auxiliary roller 204 are fixed to the movable plate 207 via the legs 205 and 206 extending in the Y direction, respectively. The movable plate 207, the legs 205 and 206, the auxiliary roller 204, and the wiper 203 form a group like a wiper carriage. The movable plate 207 is attached to the fixed plate 209 via a spring 208. The fixing plate 209 is fixed to the body 201.
 ボディ201には、第1センサ211及び第2センサ212が搭載されている。第1センサ211は、ボディ201の移動方向における前方に設けられ、清掃対象面Fとの間に僅かな所定の隙間を保って対向している。第2センサ212は、ボディ201の移動方向における後方に設けられ、清掃対象面Fとの間に僅かな所定の隙間を保って対向している。第1センサ211及び第2センサ212は、共に、例えば投受光一体型の光センサである。第1センサ211及び第2センサ212は、周囲の余分な散乱光による影響を受けにくくするため、ボディ201の下に隠れるように配置されている。上記の所定の隙間とは、できるだけ短い方が正確な測定には好適であり、例えば1mm以下が好ましい。 The body 201 is equipped with the first sensor 211 and the second sensor 212. The first sensor 211 is provided in front of the body 201 in the moving direction, and faces the cleaning target surface F with a slight predetermined gap. The second sensor 212 is provided behind the body 201 in the moving direction, and faces the surface F to be cleaned with a slight predetermined gap. Both the first sensor 211 and the second sensor 212 are, for example, an optical sensor integrated with light emitting and receiving. The first sensor 211 and the second sensor 212 are arranged so as to be hidden under the body 201 in order to make them less susceptible to the influence of excess scattered light in the surroundings. The shorter the predetermined gap as possible is suitable for accurate measurement, for example, 1 mm or less is preferable.
 ボディ201の移動方向の先端には、撮像装置としてのカメラ213が搭載されている。カメラ213は清掃対象面Fの方を向いている。 A camera 213 as an imaging device is mounted at the tip of the body 201 in the moving direction. The camera 213 faces the surface F to be cleaned.
 図5は、清掃装置200の制御上の構成の概略を示す図である。清掃装置200は、制御部215を備えている。制御部215は、例えばコンピュータを含み、コンピュータがソフトウェア(コンピュータプログラム)を実行することで、必要な制御機能を実現する。ソフトウェアは、記憶部217に格納される。制御部215は、前述の第1センサ211、第2センサ212、及び、カメラ213と接続されており、それぞれから検知出力を受け取る。また、制御部215は、駆動部202を駆動してボディ201を移動させる。 FIG. 5 is a diagram showing an outline of a control configuration of the cleaning device 200. The cleaning device 200 includes a control unit 215. The control unit 215 includes, for example, a computer, and the computer executes software (computer program) to realize necessary control functions. The software is stored in the storage unit 217. The control unit 215 is connected to the above-mentioned first sensor 211, second sensor 212, and camera 213, and receives detection outputs from each. Further, the control unit 215 drives the drive unit 202 to move the body 201.
 制御部215には、電源部216から、駆動部202の駆動用の電源と、制御用の電源とが供給される。電源部216は、典型的には蓄電池であるが、太陽電池を単独又は併用で用いることもできる。なお、この例ではワイパー203に対しては電気的な制御を行わないが、清掃対象面Fに対してワイパー203を押しつける力を調節するために電気的なアクチュエータを用いることもできる。 The power supply unit 216 supplies the control unit 215 with a power source for driving the drive unit 202 and a power source for control. The power supply unit 216 is typically a storage battery, but a solar cell can also be used alone or in combination. In this example, the wiper 203 is not electrically controlled, but an electric actuator can be used to adjust the force of pressing the wiper 203 against the surface F to be cleaned.
 記憶部217は、清掃対象面Fとの位置関係を認識するために、清掃対象面Fの形状や大きさの情報を記憶することができる。制御部215は通信部218と接続されていて、通信部218を介して外部の監視制御部300に情報を送信できるほか、監視制御部300から情報を受信することができる。 The storage unit 217 can store information on the shape and size of the cleaning target surface F in order to recognize the positional relationship with the cleaning target surface F. The control unit 215 is connected to the communication unit 218, and can transmit information to the external monitoring control unit 300 via the communication unit 218 and can also receive information from the monitoring control unit 300.
 図6A,図6Bは、光センサにて清掃対象面Fの汚れを検知することを説明する図である。まず、図6Aに示すように清掃対象面Fが汚れていない状態では、第1センサ211(又は第2センサ212)の投光部Tから出た光は、清掃対象面Fで反射して受光部Rにより検知される。一方、図6Bに示すように清掃対象面Fに、汚れとして砂Saが付着していると、投光部Tから出た光は散乱して受光部Rに届く反射光が少なくなる。汚れの度合いに応じて、汚れが多いほど散乱が増加して受光部Rに届く反射光は少なくなる。従って、反射光の強度(受光部Rの検知出力)が、清掃対象面Fの汚れのレベルに依存した値となる。 6A and 6B are diagrams for explaining that the optical sensor detects the dirt on the surface F to be cleaned. First, as shown in FIG. 6A, when the cleaning target surface F is not dirty, the light emitted from the light projecting unit T of the first sensor 211 (or the second sensor 212) is reflected by the cleaning target surface F and received. Detected by part R. On the other hand, as shown in FIG. 6B, when sand Sa adheres to the surface F to be cleaned as dirt, the light emitted from the light projecting unit T is scattered and the reflected light reaching the light receiving unit R is reduced. Depending on the degree of dirt, the more dirt there is, the more scattering increases and the less reflected light reaches the light receiving portion R. Therefore, the intensity of the reflected light (detection output of the light receiving portion R) becomes a value depending on the level of dirt on the surface F to be cleaned.
 図7は、ワイパー203の繊維構造の違いを示す対比写真である。(b)の写真が第1ローラ203aの繊維構造であり、(a)の写真が第2ローラ203bの繊維構造である。(b)の第1ローラ203aは、マイクロファイバーの繊維が互いに絡み合っている布材であり、初期清掃に適する。(a)の第2ローラ203bは、マイクロファイバーの繊維の向きが第1ローラ203aより揃っている布材であり、仕上げ清掃に適する。このように、2種類のローラが清掃対象面F上を転がることでマイクロファイバーに効果的に汚れを吸着させることができる。 FIG. 7 is a comparative photograph showing the difference in the fiber structure of the wiper 203. The photograph of (b) is the fiber structure of the first roller 203a, and the photograph of (a) is the fiber structure of the second roller 203b. The first roller 203a of (b) is a cloth material in which microfiber fibers are entangled with each other, and is suitable for initial cleaning. The second roller 203b (a) is a cloth material in which the directions of the microfiber fibers are aligned with those of the first roller 203a, and is suitable for finish cleaning. In this way, the two types of rollers roll on the surface F to be cleaned, so that dirt can be effectively adsorbed on the microfibers.
 図8は、マイクロファイバーに砂が吸着された状態を示す写真であり、(a)の写真の中心部を拡大したものが(b)の写真である。(b)の写真を見ると、砂がマイクロファイバーの繊維間に入り込んでいるというよりも、マイクロファイバーの1本1本の表面に砂が吸着されている様子がわかる。 FIG. 8 is a photograph showing a state in which sand is adsorbed on the microfiber, and the photograph of (b) is an enlarged view of the central part of the photograph of (a). Looking at the photograph of (b), it can be seen that the sand is adsorbed on the surface of each microfiber rather than the sand entering between the fibers of the microfiber.
 《清掃手順》
 図9は、清掃装置200を用いて太陽光発電装置100のアレイ1の受光面1fを清掃する状態の一例を示す図である。図9は、アレイ1が真上を向いて水平になっている状態を示しているが、清掃装置200が重力で落下しない程度であれば、若干傾斜していてもよい。このような状態から、受光面1f上で清掃装置200を移動させることにより清掃を行うことができる。移動の仕方としては、例えば、所定のスタート位置から移動開始し、アレイ1の輪郭の一辺と平行に直進し、端部へ来るとターンして少し横へずらして反対方向へ直進する、という工程を繰り返すことにより、アレイ1の受光面1f全体を清掃することができる。
《Cleaning procedure》
FIG. 9 is a diagram showing an example of a state in which the light receiving surface 1f of the array 1 of the photovoltaic power generation device 100 is cleaned by using the cleaning device 200. FIG. 9 shows a state in which the array 1 faces straight up and is horizontal, but the cleaning device 200 may be slightly tilted as long as it does not fall due to gravity. From such a state, cleaning can be performed by moving the cleaning device 200 on the light receiving surface 1f. As a method of movement, for example, the process of starting movement from a predetermined start position, going straight in parallel with one side of the contour of the array 1, turning when it comes to the end, shifting a little to the side, and going straight in the opposite direction. By repeating the above steps, the entire light receiving surface 1f of the array 1 can be cleaned.
 具体的には、例えば、図5における記憶部217に、受光面1fの形状及び寸法、所定のスタート位置、折り返し位置等、正確な移動に必要な情報を予め入力して記憶させておく。制御部215は、記憶されている情報に基づいて駆動部202を制御し、清掃装置200を所定の移動経路で移動させることができる。また、移動に際し、カメラ213の情報も利用することができる。なお、予め移動の仕方を試行錯誤するように数多くトライさせて制御部215に学習させ、その学習結果に基づいて走行するようにしてもよい。 Specifically, for example, in the storage unit 217 in FIG. 5, information necessary for accurate movement such as the shape and dimensions of the light receiving surface 1f, a predetermined start position, and a folding position is input and stored in advance. The control unit 215 controls the drive unit 202 based on the stored information, and can move the cleaning device 200 by a predetermined movement path. In addition, the information of the camera 213 can also be used when moving. It should be noted that the control unit 215 may be made to learn a large number of trials in advance so as to make trial and error, and the vehicle may travel based on the learning result.
 図9には、アレイ1の右端における二点鎖線の丸で囲んだ部分を拡大した図を併記している。拡大した図において、カメラ213がアレイ1の端部から外れると、撮像した画像の急激な変化から、制御部215は、清掃装置200がアレイ1の端部に到達したことを認識することができる。このようなカメラ213による実測の画像情報から正確に端部を認識すれば、清掃装置200の脱落を、より確実に抑制することができる。
 なお、カメラ213を用いた画像認識に基づいて、モジュール1M又はアレイ1の外観異常の有無を検査することも可能である。一方、清掃装置200がアレイ1から脱落することを抑制する用途に限定する場合は、カメラ213に代えて位置センサを用いることも可能である。
FIG. 9 also shows an enlarged view of the circled portion of the alternate long and short dash line at the right end of the array 1. In the enlarged view, when the camera 213 is removed from the end of the array 1, the control unit 215 can recognize that the cleaning device 200 has reached the end of the array 1 from the sudden change in the captured image. .. If the end portion is accurately recognized from the image information actually measured by the camera 213, the cleaning device 200 can be more reliably suppressed from falling off.
It is also possible to inspect the module 1M or the array 1 for an abnormality in appearance based on image recognition using the camera 213. On the other hand, when the cleaning device 200 is limited to an application that prevents the cleaning device 200 from falling off from the array 1, a position sensor can be used instead of the camera 213.
 なお、アレイ1の受光面1f以外で、受光面1fの近傍に清掃装置200の格納庫を設けることもできる。この場合、清掃装置200は格納庫を原点として、受光面1fの清掃を実行し、清掃完了すれば格納庫に戻る、というようにしてもよい。 It should be noted that a hangar for the cleaning device 200 may be provided in the vicinity of the light receiving surface 1f other than the light receiving surface 1f of the array 1. In this case, the cleaning device 200 may perform cleaning of the light receiving surface 1f with the hangar as the origin, and return to the hangar when the cleaning is completed.
 《清掃結果の確認と再清掃》
 図10は、清掃装置200による清掃の開始から終了までの、制御部215による処理を示すフローチャートの一例である。清掃開始すると、制御部215は、停止指令があるか否かの判定を行う(ステップS1)。開始指令や停止指令は、例えば監視制御部300(図5)から送信されてくる。開始直後には停止指令はないので、制御部215は、清掃装置200を移動させ、ワイパー203による清掃を実行する(ステップS2)。清掃を実行しつつ、制御部215は、第1センサ211,第2センサ212,カメラ213から送られてくる情報を取得する(ステップS3)。
<< Confirmation of cleaning results and re-cleaning >>
FIG. 10 is an example of a flowchart showing processing by the control unit 215 from the start to the end of cleaning by the cleaning device 200. When the cleaning is started, the control unit 215 determines whether or not there is a stop command (step S1). The start command and the stop command are transmitted from, for example, the monitoring control unit 300 (FIG. 5). Since there is no stop command immediately after the start, the control unit 215 moves the cleaning device 200 and executes cleaning by the wiper 203 (step S2). While performing cleaning, the control unit 215 acquires information sent from the first sensor 211, the second sensor 212, and the camera 213 (step S3).
 ここで、制御部215は、ワイパー203で汚れを取った後の受光面1fの清浄度を確認すべく、第2センサ212の検知出力が閾値以下であるか否かを判定する(ステップS4)。第2センサ212の検知出力が閾値以下であれば清掃結果は良好であり、制御部215は、清掃装置200がアレイ1の端部に達したか否かを判定し(ステップS5)、達していなければステップS1に戻って同様の処理(ステップS1,S2,S3,S4,S5)を繰り返す。 Here, the control unit 215 determines whether or not the detection output of the second sensor 212 is equal to or less than the threshold value in order to confirm the cleanliness of the light receiving surface 1f after the dirt is removed by the wiper 203 (step S4). .. If the detection output of the second sensor 212 is equal to or less than the threshold value, the cleaning result is good, and the control unit 215 determines whether or not the cleaning device 200 has reached the end of the array 1 (step S5). If not, the process returns to step S1 and the same process (steps S1, S2, S3, S4, S5) is repeated.
 一方、ステップS4において、第2センサ212の検知出力が閾値より高ければ(ステップS4の「NO」)清掃結果は不良である。この場合、制御部215は、今通った場所と同じ場所を再度通るように移動方向を反転させ所定距離逆戻りする(ステップS6)。以後、制御部215は、ステップS1~S4を実行する。ステップS2での移動は元通りの方向である。ステップS4において、第2センサ212の検知出力が閾値以下であれば清掃結果は良好になったということであるので、制御部215は、アレイ1の端部に達したか否かを判定し(ステップS5)、達していなければステップS1に戻って同様の処理(ステップS1,S2,S3,S4,S5)を繰り返す。このようにして1回の通過では汚れが十分に取れなかった場合に再度通過して「二度拭き」を行うことができる。なお、後退時も含めれば「三度拭き」とも言える。さらに、再度通過しても第2センサ212の検知出力が閾値以下にならないときは、閾値以下になるまで複数回通過させればよい。 On the other hand, in step S4, if the detection output of the second sensor 212 is higher than the threshold value (“NO” in step S4), the cleaning result is poor. In this case, the control unit 215 reverses the moving direction so as to pass through the same place as the place just passed, and returns by a predetermined distance (step S6). After that, the control unit 215 executes steps S1 to S4. The movement in step S2 is in the original direction. In step S4, if the detection output of the second sensor 212 is equal to or less than the threshold value, the cleaning result is good. Therefore, the control unit 215 determines whether or not the end of the array 1 has been reached ( Step S5), if not reached, returns to step S1 and repeats the same process (steps S1, S2, S3, S4, S5). In this way, if the dirt is not sufficiently removed by one pass, it can be passed again and "wipe twice". In addition, it can be said to be "wiping three times" including when retreating. Further, if the detection output of the second sensor 212 does not fall below the threshold value even after passing again, the pass may be performed a plurality of times until the detection output falls below the threshold value.
 その後、制御部215は、清掃装置200がアレイ1の端部に達したか否かを判定し(ステップS5)、達していなければステップS1に戻って同様の処理(ステップS1,S2,S3,S4,S5)を繰り返す。アレイ1の端部に来れば、制御部215は、全面を清掃した状態になるまで(ステップS7)、走行路を変更しながら(ステップS8)同様の処理を繰り返す。全面を清掃した状態になれば(ステップS7の「YES」)、清掃終了となる。 After that, the control unit 215 determines whether or not the cleaning device 200 has reached the end of the array 1 (step S5), and if not, returns to step S1 and performs the same processing (steps S1, S2, S3). Repeat S4 and S5). When it comes to the end of the array 1, the control unit 215 repeats the same process while changing the traveling path (step S8) until the entire surface is cleaned (step S7). When the entire surface is cleaned (“YES” in step S7), the cleaning is completed.
 なお、図10のフローチャートでは省略しているが、清掃開始前に所定値以上の強風が検知された場合は、清掃を開始せずに格納庫で待機する。清掃中に所定値以上の強風が検知された場合は、清掃を速やかに中止して格納庫に戻り、待機する。 Although omitted in the flowchart of FIG. 10, if a strong wind exceeding a predetermined value is detected before the start of cleaning, the hangar waits without starting the cleaning. If a strong wind above the specified value is detected during cleaning, the cleaning will be stopped immediately, the hangar will be returned, and the system will stand by.
 以上のように、この清掃装置200は、受光面1f上を移動中に移動方向における後方にある第2センサ212が検知する汚れのレベルが所定レベル(閾値)又はそれより低いときは清掃結果が良好であり、ボディはそのまま移動する。一方、センサが検知する汚れのレベルが所定レベルより高いときは、同じ場所を再度通るように制御が行われ、少なくとも「2度拭き」が行われる。こうして、汚れの複数回拭きが可能となり、より確実な清掃を行うことができる。また、ワイパー203は汚れを吸着する素材を有するので、水を使用せずに乾拭きの清掃が可能である。ワイパー203は細かい砂を静電気で吸着するので、受光面1fに傷がつくことも抑制できる。さらに、水を使用しないため、給水装置が不要となり装置全体が簡素化される。 As described above, the cleaning device 200 produces a cleaning result when the level of dirt detected by the second sensor 212 rearward in the moving direction while moving on the light receiving surface 1f is a predetermined level (threshold value) or lower. It is good and the body moves as it is. On the other hand, when the level of dirt detected by the sensor is higher than a predetermined level, control is performed so as to pass through the same place again, and at least "wiping twice" is performed. In this way, the dirt can be wiped a plurality of times, and more reliable cleaning can be performed. Further, since the wiper 203 has a material that adsorbs dirt, it can be wiped dry without using water. Since the wiper 203 adsorbs fine sand with static electricity, it is possible to prevent the light receiving surface 1f from being scratched. Further, since water is not used, a water supply device is not required and the entire device is simplified.
 なお、図10のフローチャートには示していないが、第1センサ211の検知する汚れのレベルと、第2センサ212の検知する汚れのレベルとが共に第1の所定値より高いにも関わらず、2つのレベルの差は、微小であることを示す第2の所定値より小さい、という状態になった場合、制御部215は、ワイパー203の交換時期と判定する。ワイパー203が汚れるとこのような状態となるので、ワイパー203を直接見なくても、その交換時期を知ることができる。 Although not shown in the flowchart of FIG. 10, although the dirt level detected by the first sensor 211 and the dirt level detected by the second sensor 212 are both higher than the first predetermined value, they are higher than the first predetermined value. When the difference between the two levels is smaller than the second predetermined value indicating that the wiper is minute, the control unit 215 determines that it is time to replace the wiper 203. When the wiper 203 becomes dirty, such a state occurs, so that the replacement time can be known without looking directly at the wiper 203.
 《清掃装置の付加機能》
 図11は、図4と同様に、清掃装置200の機械的な構成の概略を示す図であるが、図4との違いは、清掃対象面Fに段差となる突起F1がある場合の図である。突起F1にワイパー203が乗り上げると、図示のように可動板207が傾いてばね208が縮み、第1ローラ203a及び第2ローラ203bの接地性は維持される。従って、突起F1があっても、清掃能力は落ちない。
<< Additional functions of cleaning device >>
FIG. 11 is a diagram showing an outline of the mechanical configuration of the cleaning device 200 as in FIG. 4, but the difference from FIG. 4 is a diagram in the case where the surface F to be cleaned has a protrusion F1 as a step. is there. When the wiper 203 rides on the protrusion F1, the movable plate 207 tilts and the spring 208 contracts as shown in the drawing, and the ground contact property of the first roller 203a and the second roller 203b is maintained. Therefore, even if there is a protrusion F1, the cleaning ability does not decrease.
 このように、ワイパー203が清掃対象面Fに圧接するようにボディ201からワイパー203を押し出すばね208を備えることで、清掃対象面Fに多少の凹凸があっても、ワイパー203を、安定して清掃対象面Fに押しつけることができる。なお、ばね208の代わりに天然ゴム、合成ゴム、スポンジ等を弾性部材として用いることもできる。 In this way, by providing the spring 208 that pushes the wiper 203 from the body 201 so that the wiper 203 is in pressure contact with the surface F to be cleaned, the wiper 203 can be stably maintained even if the surface F to be cleaned has some irregularities. It can be pressed against the surface F to be cleaned. In addition, instead of the spring 208, natural rubber, synthetic rubber, sponge or the like can be used as the elastic member.
 《飛行体との併用》
 太陽光発電装置100は、通常、広大な土地に多数(例えば数十基)設置されている。1基につき1台の清掃装置200を用意するのは、経済的ではない。そこで、1台の清掃装置200が多数のアレイ1の受光面を清掃できれば、より好ましい。そのためには、清掃装置200が複数基のアレイ間を移動しなければならない。この移動は、作業員の手によって行うこともできるが、広大な土地を歩き回るため時間がかかり、能率的ではない。そこで、ホバリング可能な飛行体との併用を考える。飛行体は、特に限定されるわけではないが、いわゆるドローンが好適である。現状でのドローン技術では、15kgまでの荷物を運ぶことができる。清掃装置200は、15kg以下で製作可能である。
《Use with flying object》
A large number (for example, several tens) of photovoltaic power generation devices 100 are usually installed on a vast land. It is not economical to prepare one cleaning device 200 for each unit. Therefore, it is more preferable if one cleaning device 200 can clean the light receiving surfaces of a large number of arrays 1. For that purpose, the cleaning device 200 must move between a plurality of arrays. This movement can be done by the hands of the workers, but it is time consuming and inefficient as it roams the vast land. Therefore, consider using it in combination with a hoverable aircraft. The air vehicle is not particularly limited, but a so-called drone is preferable. Current drone technology can carry loads up to 15 kg. The cleaning device 200 can be manufactured with a weight of 15 kg or less.
 (第1例)
 図12は、飛行体400(ドローン)と連結させた清掃装置200を用いて太陽光発電装置100のアレイ1の受光面1fを清掃する状態の一例を示す図である。この場合、飛行体400の役目は、清掃装置200を受光面1f上のスタート位置に着陸させることである。着陸後、飛行体400は停止している。その後の清掃については、清掃装置200が自力で、これを行う。清掃が終了すれば、飛行体400が次のアレイへ清掃装置200を運んでいく。このようにして、1台の清掃装置200で、複数のアレイの受光面1fを逐次、清掃することができる。
(1st example)
FIG. 12 is a diagram showing an example of a state in which the light receiving surface 1f of the array 1 of the photovoltaic power generation device 100 is cleaned by using the cleaning device 200 connected to the flying object 400 (drone). In this case, the role of the flying object 400 is to land the cleaning device 200 at the start position on the light receiving surface 1f. After landing, the aircraft 400 has stopped. For the subsequent cleaning, the cleaning device 200 performs this by itself. When the cleaning is completed, the flying object 400 carries the cleaning device 200 to the next array. In this way, one cleaning device 200 can sequentially clean the light receiving surfaces 1f of the plurality of arrays.
 なお、飛行体400と清掃装置200とは必ずしも常時連結していなくてもよい。清掃中は、飛行体400が清掃装置200から分離され、飛行体400は他の場所で仕事をして、清掃終了後に舞い戻り、再び両者が連結して次のアレイに向かう、という手順で清掃を進めてもよい。 Note that the flying object 400 and the cleaning device 200 do not necessarily have to be always connected. During cleaning, the air vehicle 400 is separated from the cleaning device 200, the air vehicle 400 works elsewhere, returns after cleaning, and is connected again to the next array. You may proceed.
 (第2例)
 図13は、飛行体400と連結させた清掃装置200を用いて太陽光発電装置100のアレイ1の受光面1fを清掃する状態の他の例を示す図である。アレイ1は水平な姿勢であり、受光面1fは地面を向いている。これは、通常、夜間におけるアレイ1の姿勢である。この場合、飛行体400の役目は、ホバリング状態で、逆さにした清掃装置200を空中支持し、一定の力で清掃装置200を受光面1fに押しつけることである。
(2nd example)
FIG. 13 is a diagram showing another example of a state in which the light receiving surface 1f of the array 1 of the photovoltaic power generation device 100 is cleaned by using the cleaning device 200 connected to the flying object 400. The array 1 is in a horizontal posture, and the light receiving surface 1f faces the ground. This is usually the attitude of Array 1 at night. In this case, the role of the flying object 400 is to support the cleaning device 200 turned upside down in the air in the hovering state, and to press the cleaning device 200 against the light receiving surface 1f with a constant force.
 飛行体400は、清掃装置200を受光面1f上のスタート位置に押し当てる。押し当てる力は維持するが、水平方向には動かさない。その後の清掃については、清掃装置200が自力で、これを行う。清掃が終了すれば、飛行体400が次のアレイへ清掃装置200を運んでいく。このようにして、1台の清掃装置200で、複数のアレイの受光面1fを逐次、清掃することができる。 The flying object 400 presses the cleaning device 200 against the start position on the light receiving surface 1f. Maintains the pressing force, but does not move horizontally. For the subsequent cleaning, the cleaning device 200 performs this by itself. When the cleaning is completed, the flying object 400 carries the cleaning device 200 to the next array. In this way, one cleaning device 200 can sequentially clean the light receiving surfaces 1f of the plurality of arrays.
 (補足)
 なお、図12及び図13は、いずれも、アレイ1の姿勢が水平である例を示しているが、飛行体と併用する場合の清掃装置200は、清掃対象面が鉛直面又は比較的傾斜が急な面であっても清掃が可能である。
(Supplement)
Although FIGS. 12 and 13 both show an example in which the attitude of the array 1 is horizontal, the cleaning device 200 when used in combination with an air vehicle has a surface to be cleaned vertically or relatively inclined. Cleaning is possible even on steep surfaces.
 《車両との併用》
 図14は、車両500に搭載した清掃装置200を用いて太陽光発電装置100のアレイ1の受光面1fを清掃する状態の一例を示す図である。アレイ1は水平な姿勢であり、受光面1fは地面を向いている。これは、通常、夜間におけるアレイ1の姿勢である。車両500は、鉛直方向へ自在に伸縮できる昇降装置501と、その上部に設けられたテーブル502と、昇降装置501を制御する制御部503とを備えている。テーブル502の上に清掃装置200が載っている。清掃装置200は、テーブル502上を自在に水平移動できる。
《Use with vehicle》
FIG. 14 is a diagram showing an example of a state in which the light receiving surface 1f of the array 1 of the photovoltaic power generation device 100 is cleaned by using the cleaning device 200 mounted on the vehicle 500. The array 1 is in a horizontal posture, and the light receiving surface 1f faces the ground. This is usually the attitude of Array 1 at night. The vehicle 500 includes an elevating device 501 that can freely expand and contract in the vertical direction, a table 502 provided on the elevating device 501, and a control unit 503 that controls the elevating device 501. The cleaning device 200 is mounted on the table 502. The cleaning device 200 can freely move horizontally on the table 502.
 この場合、まず、アレイ1の受光面1fの下方にテーブル502が来るように、車両500を停車させる。次に昇降装置501を鉛直に伸ばして、清掃装置200を受光面1fに押し当てる。なお、昇降装置501には、鉛直方向へのある程度の弾性を持たせ、清掃装置200を受光面1fに押し当てる力が過剰にならないよう配慮する。その後の清掃については、清掃装置200が自力で、これを行う。テーブル502上で動ける範囲で清掃装置200による清掃が終了すれば、車両の停車位置を動かして、受光面1f全体を清掃できるようにする。受光面1f全体の清掃が終われば、車両500ごと、次のアレイ1の清掃に向かう。 In this case, first, the vehicle 500 is stopped so that the table 502 comes below the light receiving surface 1f of the array 1. Next, the elevating device 501 is vertically extended, and the cleaning device 200 is pressed against the light receiving surface 1f. The elevating device 501 is provided with a certain degree of elasticity in the vertical direction so that the force of pressing the cleaning device 200 against the light receiving surface 1f is not excessive. For the subsequent cleaning, the cleaning device 200 performs this by itself. When the cleaning by the cleaning device 200 is completed within the range that can be moved on the table 502, the stop position of the vehicle is moved so that the entire light receiving surface 1f can be cleaned. When the cleaning of the entire light receiving surface 1f is completed, the cleaning of the next array 1 is performed for each vehicle 500.
 このようにして、1台の清掃装置200と、車両500等とにより、複数のアレイの受光面1fを逐次、清掃することができる。
 なお、テーブル502自体に、水平2次元のスライド機能(いわゆるXYテーブル)をもたせて、制御部503により制御することも可能である。その場合は、清掃装置200は自走しなくてもよい。
In this way, one cleaning device 200, the vehicle 500, and the like can sequentially clean the light receiving surfaces 1f of the plurality of arrays.
It is also possible to provide the table 502 itself with a horizontal two-dimensional slide function (so-called XY table) and control it by the control unit 503. In that case, the cleaning device 200 does not have to run on its own.
 《ワイパーの押し圧について》
 次に、「乾拭き」における、アレイ1の受光面1fに対するワイパー203の適切な押し圧について検討する。図16は、一定量の砂の存在下でワイパーの押し圧の条件を変えた場合に、同等の気象条件でアレイの出力(発電電力)がどのように変化するかを調べたグラフである。図において、まず、ワイパーを使用しない場合の出力低下率を0%であるとする。次に、砂を散布せずワイパーの押し圧を735Paとして360回(毎月1回清掃で30年経過を想定した回数)清掃すると、出力低下率は-2.4%であった。砂を散布した上で、ワイパーの押し圧を735Paとして360回清掃すると、出力低下率は-4.0%であった。さらに、砂を散布した上で、ワイパーの押し圧を14700Paとして360回清掃すると、出力低下率は-19.3%に達した。
<< About the pressure of the wiper >>
Next, an appropriate pressing force of the wiper 203 with respect to the light receiving surface 1f of the array 1 in "dry wiping" will be examined. FIG. 16 is a graph examining how the output (generated power) of the array changes under the same weather conditions when the conditions of the wiper pressing pressure are changed in the presence of a certain amount of sand. In the figure, first, it is assumed that the output reduction rate when the wiper is not used is 0%. Next, when the wiper was cleaned 360 times (the number of times that 30 years had passed by cleaning once a month) with the wiper pressing pressure set to 735 Pa without spraying sand, the output reduction rate was -2.4%. After spraying sand, the wiper was cleaned 360 times with a pressing pressure of 735 Pa, and the output reduction rate was -4.0%. Further, when sand was sprayed and the wiper was cleaned 360 times with a pressing pressure of 14700 Pa, the output reduction rate reached -19.3%.
 上記結果から、砂の汚れの乾拭きの際、ワイパーの押し圧により受光面に微細な傷が生じると推定される。また、押し圧が強いほど、出力の低下が大きくなる。押し圧と出力低下率との関係が概ね直線的な関係であるとすると、例えば、出力低下率の絶対値が10%となる押し圧P[Pa]は、下記の関係から求められる。
(P-735):(14700-P)=(10-4):(19.3-10)
この場合のPは、6211[Pa]となる。但し、もう少し余裕をみて、安定して出力低下率の絶対値が10%未満となるようにするには、P=5000[Pa]を上限値とすることが好ましい。押し圧P=5000[Pa]の場合の、出力低下率の絶対値は約8.7%と推定される。
From the above results, it is presumed that when the sand is wiped dry, the light receiving surface is finely scratched by the pressing pressure of the wiper. Further, the stronger the pressing pressure, the greater the decrease in output. Assuming that the relationship between the pressing pressure and the output reduction rate is a substantially linear relationship, for example, the pressing pressure P [Pa] at which the absolute value of the output reduction rate is 10% can be obtained from the following relationship.
(P-735): (14700-P) = (10-4): (19.3-10)
In this case, P is 6211 [Pa]. However, in order to allow a little more margin and ensure that the absolute value of the output reduction rate is less than 10%, it is preferable to set P = 5000 [Pa] as the upper limit value. When the pressing pressure P = 5000 [Pa], the absolute value of the output reduction rate is estimated to be about 8.7%.
 一方、受光面に付着した汚れを落とすために最小限必要な押し圧は、P=500[Pa]である。500[Pa]未満の押し圧では、付着した汚れを落とす効果が、顕著に低下するからである。
 従って、押し圧P[Pa]の好ましい範囲は、500から5000の範囲である。
On the other hand, the minimum pressing pressure required to remove the dirt adhering to the light receiving surface is P = 500 [Pa]. This is because when the pressing pressure is less than 500 [Pa], the effect of removing the adhered dirt is remarkably reduced.
Therefore, the preferred range of pressing pressure P [Pa] is in the range of 500 to 5000.
 《アレイの汚れ判定について》
 次に、アレイ1の受光面の汚れを判定するシステムの一例について説明する。図17は、飛行体400を用いてアレイ1を撮像する様子を示す図である。図において、飛行体400は、撮像装置401を有する。飛行体400はホバリング可能である。撮像装置401は、高解像度なカメラであり、アレイ1の受光面全体を高精度に撮像することができる。
<< About dirt judgment of array >>
Next, an example of a system for determining the dirt on the light receiving surface of the array 1 will be described. FIG. 17 is a diagram showing a state in which the array 1 is imaged using the flying object 400. In the figure, the flying object 400 has an image pickup device 401. The aircraft body 400 can hover. The image pickup apparatus 401 is a high-resolution camera, and can image the entire light receiving surface of the array 1 with high accuracy.
 アレイ1の表面では、砂汚れの上への降雨により、砂が泥状になって集まる。このような砂の集まりが、その後の乾燥により、拡がりを成す斑点となる。このような斑点は、アレイ1の表面の、至る所に付着している。斑点は薄茶色っぽく、それ以外の部分との境界の見分けがつきやすい。そこで、撮像装置401が撮像した画像の解析により、アレイ1の表面全体の面積中に占める斑点のトータル面積の割合を知ることができる。 On the surface of the array 1, the sand becomes muddy and collects due to the rainfall on the sand stains. Such a collection of sand becomes spots that spread by subsequent drying. Such spots are attached everywhere on the surface of the array 1. The spots are light brownish, and it is easy to distinguish the boundary from other parts. Therefore, by analyzing the image captured by the imaging device 401, it is possible to know the ratio of the total area of the spots to the entire area of the surface of the array 1.
 図18は、飛行体400に搭載される、汚れ判定システムの一例を示す図である。飛行体400は、自己の飛行を制御する飛行制御部405のほかに、汚れ判定に関して、撮像装置401、汚れ演算部402、対象決定部403、及び、通信部404を備えている。汚れ演算部402は、撮像装置401が撮像したアレイ1の画像を解析し、アレイ1の表面全体の面積中に占める斑点のトータル面積の割合を演算する。この割合が大きいほど、アレイ1の表面が汚れていると推定できる。そこで、対象決定部403は、例えば閾値を設定し、上記割合が閾値を超えれば「清掃要」、超えなければ「清掃不要」と判定することができる。対象決定部403は、撮像したアレイを、清掃の対象とすべきか否かを決定し、判定結果を通信部404により、清掃装置200の通信部218(図5)又は監視制御部300(図5)に知らせる。飛行体400は順次、アレイ1を撮像し、清掃の要否を知らせることができる。こうして、清掃対象とすべきアレイを事前に的確に察知することができる。 FIG. 18 is a diagram showing an example of a dirt determination system mounted on the flying object 400. In addition to the flight control unit 405 that controls its own flight, the aircraft body 400 includes an image pickup device 401, a stain calculation unit 402, a target determination unit 403, and a communication unit 404 for dirt determination. The dirt calculation unit 402 analyzes the image of the array 1 captured by the image pickup apparatus 401, and calculates the ratio of the total area of the spots to the entire surface area of the array 1. It can be estimated that the larger this ratio is, the more dirty the surface of the array 1 is. Therefore, the target determination unit 403 can set a threshold value, for example, and determine that “cleaning is required” if the above ratio exceeds the threshold value and “cleaning is not required” if the ratio does not exceed the threshold value. The target determination unit 403 determines whether or not the imaged array should be the target of cleaning, and the determination result is determined by the communication unit 404 by the communication unit 218 (FIG. 5) or the monitoring control unit 300 (FIG. 5) of the cleaning device 200. ). The aircraft body 400 can sequentially image the array 1 to notify the necessity of cleaning. In this way, the array to be cleaned can be accurately detected in advance.
 なお、汚れ演算部402及び対象決定部403の機能は、アレイの撮像データという入力データから、清掃要否という出力を、精度良く提供する人工知能として構成してもよい。 Note that the functions of the dirt calculation unit 402 and the target determination unit 403 may be configured as artificial intelligence that accurately provides an output of cleaning necessity from the input data of array imaging data.
 《その他》
 上記実施形態では、集光型の太陽光発電装置100に適用される清掃装置200について説明したが、集光型ではない結晶シリコンモジュールの太陽光発電装置に対しても同様の清掃装置200を適用することができる。また、清掃装置200は、太陽追尾型か固定型かに関わらず、適用可能である。さらに、太陽光発電装置に限らず、パネル状の構造を有し、屋外で付着する砂等の汚れが性能に影響するような装置にも同様に当該清掃装置200を適用することができる。
<< Other >>
In the above embodiment, the cleaning device 200 applied to the concentrating type photovoltaic power generation device 100 has been described, but the same cleaning device 200 is also applied to the solar power generation device of the crystalline silicon module which is not the condensing type. can do. Further, the cleaning device 200 can be applied regardless of whether it is a sun tracking type or a fixed type. Further, the cleaning device 200 can be similarly applied not only to a photovoltaic power generation device but also to a device having a panel-like structure in which dirt such as sand adhering outdoors affects the performance.
 《補記》
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
<< Supplement >>
It should be noted that the embodiments disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 アレイ
 1f 受光面
 1M 集光型太陽光発電モジュール(モジュール)
 2 支持機構
 21 支柱
 22 基礎
 23 駆動部
 24 水平軸
 25 追尾架台
 25a 補強材
 25b レール
 100 太陽光発電装置
 200 清掃装置
 201 ボディ
 202 駆動部
 203 ワイパー
 203a 第1ローラ
 203b 第2ローラ
 204 補助ローラ
 205,206 脚部
 207 可動板
 208 ばね
 209 固定板
 211 第1センサ
 212 第2センサ
 213 カメラ
 215 制御部
 216 電源部
 217 記憶部
 218 通信部
 300 監視制御部
 400 飛行体
 401 撮像装置
 402 汚れ演算部
 403 対象決定部
 404 通信部
 405 飛行制御部
 500 車両
 501 昇降装置
 502 テーブル
 503 制御部
 F 清掃対象面
 F1 突起
 R 受光部
 Sa 砂
 T 投光部
1 Array 1f Light receiving surface 1M Condensing type photovoltaic power generation module (module)
2 Support mechanism 21 Strut 22 Foundation 23 Drive unit 24 Horizontal axis 25 Tracking stand 25a Reinforcing material 25b Rail 100 Solar power generation device 200 Cleaning device 201 Body 202 Drive unit 203 Wiper 203a 1st roller 203b 2nd roller 204 Auxiliary roller 205, 206 Leg 207 Movable plate 208 Spring 209 Fixed plate 211 1st sensor 212 2nd sensor 213 Camera 215 Control unit 216 Power supply unit 217 Storage unit 218 Communication unit 300 Monitoring control unit 400 Air vehicle 401 Imaging device 402 Dirt calculation unit 403 Target determination unit 404 Communication unit 405 Flight control unit 500 Vehicle 501 Lifting device 502 Table 503 Control unit F Cleaning target surface F1 Protrusion R Light receiving unit Sa Sand T Flooding unit

Claims (14)

  1.  清掃対象面を清掃する清掃装置であって、
     前記清掃対象面に沿って移動可能なボディと、
     前記清掃対象面に接する状態で前記ボディに搭載され、前記清掃対象面に付着した汚れを吸着する素材を有するワイパーと、
     前記清掃対象面に対向する状態で前記ボディの移動方向における前方に搭載され、前記清掃対象面の汚れを検知する第1センサと、
     前記清掃対象面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記清掃対象面の汚れを検知する第2センサと、
     前記清掃対象面に沿って前記ボディを移動させる制御を行う制御部と、を備え、
     前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、前記所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、清掃装置。
    A cleaning device that cleans the surface to be cleaned.
    A body that can move along the surface to be cleaned and
    A wiper that is mounted on the body in contact with the surface to be cleaned and has a material that adsorbs dirt adhering to the surface to be cleaned.
    A first sensor mounted in front of the body in the moving direction while facing the surface to be cleaned and detecting dirt on the surface to be cleaned.
    A second sensor that is mounted rearward in the moving direction of the body while facing the surface to be cleaned, is on the side opposite to the first sensor when viewed from the wiper, and detects dirt on the surface to be cleaned.
    A control unit that controls the movement of the body along the surface to be cleaned is provided.
    During the movement of the body, the control unit continues the movement when the level of dirt detected by the second sensor is lower than the predetermined level, and when the level is higher than the predetermined level, the control unit passes through the same place again. A cleaning device that controls the moving direction of the body.
  2.  前記汚れには砂が含まれており、前記素材とはマイクロファイバーである、請求項1に記載の清掃装置。 The cleaning device according to claim 1, wherein the dirt contains sand and the material is microfiber.
  3.  前記第1センサ及び前記第2センサは共に光センサであり、反射光の強度に基づいて前記汚れのレベルを検知する請求項1又は請求項2に記載の清掃装置。 The cleaning device according to claim 1 or 2, wherein both the first sensor and the second sensor are optical sensors and detect the level of dirt based on the intensity of reflected light.
  4.  前記ワイパーは、
     前記ボディの移動により前記清掃対象面上を転がる初期清掃のための第1ローラと、
     前記第1ローラより前記移動方向における後ろ側にあって、前記ボディの移動により前記清掃対象面上を転がる仕上げ清掃のための第2ローラと、
     を備えている、請求項1から請求項3のいずれか1項に記載の清掃装置。
    The wiper
    A first roller for initial cleaning that rolls on the surface to be cleaned due to the movement of the body,
    A second roller for finish cleaning, which is behind the first roller in the moving direction and rolls on the cleaning target surface due to the movement of the body.
    The cleaning device according to any one of claims 1 to 3, further comprising.
  5.  前記第1センサの検知する汚れのレベルと、前記第2センサの検知する汚れのレベルとが共に第1の所定値より高いにも関わらず、2つのレベルの差は、微小であることを示す第2の所定値より小さい、という状態になった場合、前記制御部は、前記ワイパーの交換時期と判定する請求項1から請求項4のいずれか1項に記載の清掃装置。 Although the dirt level detected by the first sensor and the dirt level detected by the second sensor are both higher than the first predetermined value, the difference between the two levels indicates that the difference between the two levels is small. The cleaning device according to any one of claims 1 to 4, wherein when the value is smaller than the second predetermined value, the control unit determines that it is time to replace the wiper.
  6.  前記ワイパーが前記清掃対象面に圧接するように前記ボディから前記ワイパーを押し出す弾性部材を備えた請求項1から請求項5のいずれか1項に記載の清掃装置。 The cleaning device according to any one of claims 1 to 5, further comprising an elastic member that pushes the wiper out of the body so that the wiper is in pressure contact with the surface to be cleaned.
  7.  前記清掃対象面とは太陽光発電装置のアレイにおける受光面である請求項1から請求項6のいずれか1項に記載の清掃装置。 The cleaning device according to any one of claims 1 to 6, wherein the cleaning target surface is a light receiving surface in an array of photovoltaic power generation devices.
  8.  前記ボディの端部に、前記清掃対象面に対向してカメラが搭載されている請求項1から請求項7のいずれか1項に記載の清掃装置。 The cleaning device according to any one of claims 1 to 7, wherein a camera is mounted on an end portion of the body so as to face the surface to be cleaned.
  9.  前記ボディに、ホバリングが可能な飛行体が取り付けられた請求項1から請求項8のいずれか1項に記載の清掃装置。 The cleaning device according to any one of claims 1 to 8, wherein a hoverable flying object is attached to the body.
  10.  前記ワイパーを前記清掃対象面に押しつける押し圧は、500Paから5000Paの範囲内である請求項1から請求項9のいずれか1項に記載の清掃装置。 The cleaning device according to any one of claims 1 to 9, wherein the pressing pressure for pressing the wiper against the surface to be cleaned is in the range of 500 Pa to 5000 Pa.
  11.  アレイを有する太陽光発電装置、及び、前記アレイの受光面を清掃する清掃装置を備えている太陽光発電装置の清掃システムであって、
     前記清掃装置は、
     前記受光面に沿って移動可能なボディと、
     前記受光面に接する状態で前記ボディに搭載され、前記受光面に付着した汚れを吸着する素材を有するワイパーと、
     前記受光面に対向する状態で前記ボディの移動方向における前方に搭載され、前記受光面の汚れを検知する第1センサと、
     前記受光面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記受光面の汚れを検知する第2センサと、
     前記受光面に沿って前記ボディを移動させる制御を行う制御部と、を備え、
     前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、太陽光発電装置の清掃システム。
    A photovoltaic power generation device having an array and a cleaning system for a photovoltaic power generation device including a cleaning device for cleaning the light receiving surface of the array.
    The cleaning device
    A body that can move along the light receiving surface and
    A wiper that is mounted on the body in contact with the light receiving surface and has a material that adsorbs dirt adhering to the light receiving surface.
    A first sensor mounted in front of the body in the moving direction while facing the light receiving surface and detecting dirt on the light receiving surface, and
    A second sensor that is mounted rearward in the moving direction of the body while facing the light receiving surface, is on the side opposite to the first sensor when viewed from the wiper, and detects dirt on the light receiving surface.
    A control unit that controls the movement of the body along the light receiving surface is provided.
    During the movement of the body, the control unit continues the movement when the level of dirt detected by the second sensor is lower than the predetermined level, and when the level is higher than the predetermined level, the body passes through the same place again. A cleaning system for photovoltaic power generation equipment that controls the direction of movement.
  12.  撮像装置を搭載してホバリング可能な飛行体を含み、
     前記飛行体は、撮像した前記アレイの受光面の全面積に対する汚れの面積の割合に基づいて、前記清掃装置による清掃対象となるアレイを決定する、請求項11に記載の太陽光発電装置の清掃システム。
    Including a hoverable flying object equipped with an imaging device,
    The cleaning of the photovoltaic power generation device according to claim 11, wherein the flying object determines an array to be cleaned by the cleaning device based on the ratio of the area of dirt to the total area of the light receiving surface of the array imaged. system.
  13.  アレイの受光面を地面に向けることが可能な太陽光発電装置の清掃システムであって、
     前記アレイの受光面を水平にして地面に向けた状態の太陽光発電装置と、
     前記アレイの下方に駐車した車両と、
     前記車両に搭載され、鉛直方向に伸縮可能な昇降装置と、
     前記昇降装置の上面に乗って水平方向に移動可能であり、前記受光面を清掃する清掃装置と、を備え、
     前記清掃装置は、
     前記受光面に沿って移動可能なボディと、
     前記受光面に接する状態で前記ボディに搭載され、前記受光面に付着した汚れを吸着する素材を有するワイパーと、
     前記受光面に対向する状態で前記ボディの移動方向における前方に搭載され、前記受光面の汚れを検知する第1センサと、
     前記受光面に対向する状態で前記ボディの移動方向における後方に搭載され、前記ワイパーから見て前記第1センサと反対側にあって、前記受光面の汚れを検知する第2センサと、
     前記受光面に沿って前記ボディを移動させる制御を行う制御部と、を備え、
     前記制御部は、前記ボディの移動中に、前記第2センサが検知する汚れのレベルが所定レベルより低いときは移動を継続させ、所定レベルより高いときは、同じ場所を再度通るように前記ボディの移動方向を制御する、太陽光発電装置の清掃システム。
    It is a cleaning system for photovoltaic power generation equipment that can direct the light receiving surface of the array to the ground.
    A photovoltaic power generator with the light receiving surface of the array horizontal and facing the ground,
    Vehicles parked below the array and
    An elevating device mounted on the vehicle that can expand and contract in the vertical direction,
    It is provided with a cleaning device which can move horizontally on the upper surface of the elevating device and cleans the light receiving surface.
    The cleaning device
    A body that can move along the light receiving surface and
    A wiper that is mounted on the body in contact with the light receiving surface and has a material that adsorbs dirt adhering to the light receiving surface.
    A first sensor mounted in front of the body in the moving direction while facing the light receiving surface and detecting dirt on the light receiving surface, and
    A second sensor that is mounted rearward in the moving direction of the body while facing the light receiving surface, is on the side opposite to the first sensor when viewed from the wiper, and detects dirt on the light receiving surface.
    A control unit that controls the movement of the body along the light receiving surface is provided.
    During the movement of the body, the control unit continues the movement when the level of dirt detected by the second sensor is lower than the predetermined level, and when the level is higher than the predetermined level, the body passes through the same place again. A cleaning system for photovoltaic power generation equipment that controls the direction of movement.
  14.  マイクロファイバー製のワイパーを有する清掃装置を用いて、互いに離れて設置された複数基の太陽光発電装置の各々の受光面を清掃する、太陽光発電装置の清掃方法であって、
     ホバリング可能な飛行体に前記清掃装置を搭載した状態で、任意の太陽光発電装置に接近して、前記清掃装置を前記受光面の所定位置に取り付かせ、
     前記清掃装置が前記受光面に沿って移動することにより乾拭きで清掃し、かつ、清掃結果をチェックして、清掃結果が良好でなければ同じ箇所を複数回通過して清掃作業を実行し、
     清掃が終了すると、前記飛行体は、未清掃の他の太陽光発電装置に前記清掃装置を空中搬送する、
     という工程を繰り返して複数基の太陽光発電装置を清掃する、太陽光発電装置の清掃方法。
    A method of cleaning a photovoltaic power generation device, which cleans the light receiving surface of each of a plurality of photovoltaic power generation devices installed apart from each other by using a cleaning device having a wiper made of microfiber.
    With the cleaning device mounted on a hoverable flying object, the cleaning device is approached to an arbitrary solar power generation device to be attached to a predetermined position on the light receiving surface.
    The cleaning device moves along the light receiving surface to clean with a dry wipe, and the cleaning result is checked. If the cleaning result is not good, the cleaning work is executed by passing through the same place a plurality of times.
    When the cleaning is completed, the flying object carries the cleaning device in the air to another uncleaned photovoltaic power generation device.
    A method of cleaning photovoltaic power generation equipment, which repeats the process of cleaning multiple photovoltaic power generation equipment.
PCT/JP2020/011418 2019-03-18 2020-03-16 Cleaning device, cleaning system for solar photovoltaic devices, and cleaning method for solar photovoltaic devices WO2020189620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049450 2019-03-18
JP2019-049450 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189620A1 true WO2020189620A1 (en) 2020-09-24

Family

ID=72519273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011418 WO2020189620A1 (en) 2019-03-18 2020-03-16 Cleaning device, cleaning system for solar photovoltaic devices, and cleaning method for solar photovoltaic devices

Country Status (1)

Country Link
WO (1) WO2020189620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117252588A (en) * 2023-11-13 2023-12-19 南京同庆科技有限公司 Intelligent inspection system for overhauling clean energy power station

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243202A (en) * 2003-02-13 2004-09-02 Matsushita Electric Ind Co Ltd Self-propelled device and program thereof
JP2014236838A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Self-propelled vacuum cleaner
JP2016178769A (en) * 2015-03-19 2016-10-06 綜合警備保障株式会社 Inspection target identification system and inspection target identification method
JP2016209801A (en) * 2015-05-07 2016-12-15 和也 石坂 Drone-incorporated cleaning device and cleaning unit of the same
JP2017034932A (en) * 2015-08-05 2017-02-09 株式会社スマートエナジーサービス Maintenance method for photovoltaic power generation facility
JP2017038873A (en) * 2015-08-21 2017-02-23 シャープ株式会社 Travel device
JP2018057066A (en) * 2016-09-26 2018-04-05 聡 高埜 Solar panel maintenance device
JP2019005422A (en) * 2017-06-28 2019-01-17 株式会社北村製作所 Cleaning tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243202A (en) * 2003-02-13 2004-09-02 Matsushita Electric Ind Co Ltd Self-propelled device and program thereof
JP2014236838A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Self-propelled vacuum cleaner
JP2016178769A (en) * 2015-03-19 2016-10-06 綜合警備保障株式会社 Inspection target identification system and inspection target identification method
JP2016209801A (en) * 2015-05-07 2016-12-15 和也 石坂 Drone-incorporated cleaning device and cleaning unit of the same
JP2017034932A (en) * 2015-08-05 2017-02-09 株式会社スマートエナジーサービス Maintenance method for photovoltaic power generation facility
JP2017038873A (en) * 2015-08-21 2017-02-23 シャープ株式会社 Travel device
JP2018057066A (en) * 2016-09-26 2018-04-05 聡 高埜 Solar panel maintenance device
JP2019005422A (en) * 2017-06-28 2019-01-17 株式会社北村製作所 Cleaning tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117252588A (en) * 2023-11-13 2023-12-19 南京同庆科技有限公司 Intelligent inspection system for overhauling clean energy power station
CN117252588B (en) * 2023-11-13 2024-03-22 南京同庆科技有限公司 Intelligent inspection system for overhauling clean energy power station

Similar Documents

Publication Publication Date Title
JP6732230B2 (en) Self-propelled robot
US11345016B2 (en) Robot for solar farms
KR102474107B1 (en) Solar module cleaner
CN109420629B (en) Operation device on inclined plane and cleaning method applied to photovoltaic power station
JP3200455U (en) Solar power panel cleaning robot
US11045059B2 (en) Self-propelled robot
JP2016510257A (en) Mechanism for cleaning of solar concentrator surfaces.
WO2014196480A1 (en) Solar panel cleaning device
KR20160147715A (en) Flying robot for precessing and cleaning smooth, curved and modular surfaces
CN110000132B (en) Portable photovoltaic cleaning robot
JP2015013281A (en) Solar panel cleaning device
CN106712694A (en) Photovoltaic array cross-panel cleaning method and device
WO2020189620A1 (en) Cleaning device, cleaning system for solar photovoltaic devices, and cleaning method for solar photovoltaic devices
WO2014208192A1 (en) Cleaning device
CN105662266A (en) Window wiping robot and working method thereof
CN116865659A (en) Intelligent photovoltaic cleaning inspection vehicle
WO2021024968A1 (en) Cleaning robot, and solar power generating facility
Kochan Robot cleans glass roof of Louvre pyramid
WO2021070960A1 (en) Work device
TR202017625U5 (en) ROBOTIC SOLAR PANEL CLEANING MACHINE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP