WO2021060551A1 - Olefin-based resin and hot-melt adhesive - Google Patents

Olefin-based resin and hot-melt adhesive Download PDF

Info

Publication number
WO2021060551A1
WO2021060551A1 PCT/JP2020/036501 JP2020036501W WO2021060551A1 WO 2021060551 A1 WO2021060551 A1 WO 2021060551A1 JP 2020036501 W JP2020036501 W JP 2020036501W WO 2021060551 A1 WO2021060551 A1 WO 2021060551A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
resin
mol
hot melt
olefin resin
Prior art date
Application number
PCT/JP2020/036501
Other languages
French (fr)
Japanese (ja)
Inventor
省二朗 棚瀬
俊希 長町
南 裕
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020227009403A priority Critical patent/KR20220070214A/en
Priority to JP2021548474A priority patent/JPWO2021060551A1/ja
Priority to DE112020004613.3T priority patent/DE112020004613T5/en
Publication of WO2021060551A1 publication Critical patent/WO2021060551A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J145/00Adhesives based on homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic system; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F132/00Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F132/08Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C

Definitions

  • the present invention relates to an olefin resin and a hot melt adhesive.
  • the hot melt adhesive is a solvent-free adhesive, which is applied to the adherend by heating and melting, and then solidified by cooling to develop adhesiveness.
  • hot melt adhesives have been widely used in various fields because they are excellent in high-speed coating property, quick-curing property, solvent-free property, barrier property, energy saving property, economy, and the like.
  • the hot melt adhesive does not use a solvent, the solvent does not volatilize, but since it is made from petroleum products, it contains a small amount of volatile organic compounds derived from them.
  • the volatile organic compounds contained in the products can cause adverse health effects and discomfort due to odors. Due to their nature, studies have been made to reduce them (see, for example, Patent Documents 1 and 2).
  • the hot melt adhesive does not require a solvent, it has little effect on the environment and health, but it is derived from a volatile organic compound contained in a low molecular weight substance such as a styrene elastomer or a tackifier as a raw material. Odor is a problem, and it is required to further reduce the odor especially for sanitary materials such as paper diapers and masks and daily necessities such as cleaning tools. On the other hand, if low molecular weight substances such as the above-mentioned styrene-based elastomer and tackifier are not blended in order to reduce the odor, the adhesive performance and miscibility with other raw materials will be inferior, which is the basis of hot melt adhesives.
  • the problem to be solved by the technique of the present disclosure is to provide an olefin-based resin that has less odor, has excellent affinity with other materials when used as a raw material for a hot melt adhesive, and can improve adhesiveness. There is.
  • the olefin resin contains a constituent unit derived from an alicyclic olefin, and the aromatic portion is reduced to a certain amount or less to enhance the linearity of the structure.
  • the olefin-based resin of the present disclosure has little odor, and when used as a raw material for a hot melt adhesive, it has excellent compatibility with other materials and can improve adhesiveness.
  • the olefin-based resin of the present disclosure contains a structural unit derived from the alicyclic olefin (A), has an aromatic portion of 1% or less, and has a linearity of 70% or more.
  • the olefin-based resin of the present disclosure contains a structural unit derived from the alicyclic olefin (A).
  • the alicyclic olefin (A) include monocyclic olefins and polycyclic olefins, and polycyclic olefins are preferable.
  • the alicyclic olefin (A) preferably has 4 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and even more preferably 7 to 10 carbon atoms.
  • the alicyclic olefin (A) include dicyclopentadiene, cyclopentene, cyclohexene, norbornene and derivatives thereof, and one or more selected from dicyclopentadiene, cyclopentene, cyclohexene, norbornene and derivatives thereof. Is preferable, and one or more selected from dicyclopentadiene, norbornene and derivatives thereof is more preferable, and when the olefin-based resin of the present disclosure is used as a tackifier, dicyclopentadiene is further preferable, and the olefin-based resin of the present disclosure is used. Norbornene is even more preferred when the resin is used as the base polymer.
  • the obtained resin is suitable as a tackifier, has high reactivity, and is a straight chain of the obtained resin. Since a resin having a high molecular weight and a high glass transition temperature can be obtained by using norbornene having excellent properties, it is considered that the obtained resin is suitable as a base polymer.
  • the derivative include 5-ethylidene-2-norbornene, 5-ethyl-2-norbornene, 5,6-dihydrodicyclopentadiene, tricyclopentadiene, tetracyclopentadiene and the like.
  • the odor is less than that of the resin using other monomers, and when it is used as a raw material of a hot melt adhesive, it can be used with other materials. It has excellent compatibility with.
  • the olefin-based resin of the present disclosure preferably contains a structural unit derived from an ⁇ -olefin (B) in addition to a structural unit derived from the alicyclic olefin (A).
  • a structural unit derived from the alicyclic olefin (A) By containing the ⁇ -olefin (B) in the olefin-based resin of the present disclosure, when used as a raw material for a hot melt adhesive, compatibility with other materials and adhesiveness can be further improved.
  • the carbon number of the ⁇ -olefin (B) is preferably 2 to 10, and more preferably 2 to 8.
  • the ⁇ -olefin (B) is preferably one or more selected from linear ⁇ -olefins and branched ⁇ -olefins.
  • the number of carbon atoms of the linear ⁇ -olefin is preferably 2 to 6, more preferably 2 to 4, and the number of carbon atoms of the branched ⁇ -olefin is preferably 5 to 8 and more preferably 5 to 6. preferable.
  • the specific ⁇ -olefin (B) shall be one or more selected from ethylene, propylene, butene, 3-methyl-1-butene, 4-methyl-1-pentene and 2-ethyl-1-hexene.
  • an olefin resin when used as a tackifier, it is important that it is amorphous, has a low molecular weight, and has a high glass transition temperature (Tg), and the ⁇ -olefin (B) is propylene or 4-methyl-1. -Pentene is more preferred.
  • an olefin resin is used as a base polymer, it is important to have a high molecular weight and a relatively high glass transition temperature (Tg), and ethylene and propylene are more preferable as the ⁇ -olefin (B).
  • dicyclopentadiene or a derivative thereof is used as the alicyclic olefin (A)
  • it is preferably one or more selected from propylene and 4-methyl-1-pentene
  • norbornene and its derivatives are used as A
  • it is preferably one or more selected from ethylene and propylene, and more preferably propylene from the viewpoint of compatibility.
  • the olefin-based resin of the present disclosure contains a structural unit derived from the alicyclic olefin (A), but when used as a tackifier, it contains a structural unit derived from the alicyclic olefin (A).
  • the amount is preferably 50 mol% or more, more preferably 60 mol% or more, further preferably 70 mol% or more, still more preferably 80 mol% or more.
  • the upper limit may be 100 mol%, and when a structural unit derived from ⁇ -olefin (B) is contained, 90 mol% or less is preferable, and 85 mol% or less is more preferable.
  • the content of the structural unit derived from the alicyclic olefin (A) is preferably 1 mol% or more, more preferably 2 mol% or more, and further preferably 3 mol% or more. Preferably, 4 mol% or more is even more preferable. Further, 40 mol% or less is preferable, 38 mol% or less is more preferable, 35 mol% or less is further preferable, and 30 mol% or less is further preferable. From the viewpoint of compatibility, the content of the structural unit derived from the alicyclic olefin (A) is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 15 mol% or more. , 20 mol% or more is even more preferable.
  • the content of the constituent unit derived from the ⁇ -olefin (B) of the olefin resin of the present disclosure is preferably 3 to 50 mol%, more preferably 10 to 40 mol%, still more preferably 15 to 30 mol%. 15 to 20 mol% is even more preferable. The range is particularly good when used as a tackifier.
  • the content of the structural unit derived from ⁇ -olefin (B) is preferably 60 to 99 mol%, more preferably 62 to 98 mol%, and 65 to 97 mol%. Even more preferably, 70 to 96 mol% is even more preferable.
  • the content of the structural unit derived from the ⁇ -olefin (B) is preferably 60 to 95 mol%, more preferably 62 to 90 mol%, and further preferably 62 to 85 mol%. Preferably, 62-80 mol% is even more preferred.
  • the molar ratio [(A) / (B)] of the alicyclic olefin (A) to the ⁇ -olefin (B) is preferably 40/60 to 100/0 when used as a tackifier. It is more preferably 50/50 to 100/0, further preferably 60/40 to 100/0, even more preferably 70/30 to 95/5, and 80/60 to 95/5. Is even more preferable.
  • the molar ratio [(A) / (B)] of the alicyclic olefin (A) to the ⁇ -olefin (B) is 1/99 to 40/60. Is preferable.
  • it is preferably 10/90 to 40/60, more preferably 15/85 to 40/60, and even more preferably 20/80 to 40/60.
  • it when used as a base polymer, it is preferably 1/99 to 30/70, and when used as a component having both the properties of a base polymer and a tackifier, it is 5/95 to 40/60. Is preferable.
  • the olefin resin of the present disclosure has an aromatic portion of 1% or less, preferably 0.5% or less, more preferably 0.1% or less, further preferably 0.05% or less, and 0%. Is even more preferable.
  • the content of the aromatic moiety in the entire olefin resin can be estimated by measuring the aromatic hydrogen.
  • Aromatic hydrogen can be obtained from the ratio of the peak area integrated value to the proton bonded to unsaturated carbon in 1 H-NMR measurement of the resin after the hydrogenation reaction, and specifically, the method described in Examples.
  • the aromatic portion of the olefin-based resin of the present disclosure is in the range where the aromatic hydrogen is 1% or less, preferably in the range of 0.5% or less, and more preferably in the range of 0.1% or less.
  • the range of 0.05% or less is more preferable, and the range of aromatic hydrogen of 0% is even more preferable.
  • the aromatic portion of the olefin-based resin of the present disclosure may be a portion derived from an aromatic monomer, a portion obtained by modifying a non-aromatic monomer to have aromaticity, a decomposition product of the resin after polymerization, or the like. Be done. By setting the aromatic portion in the above range, the odor can be further reduced.
  • the volatile component contained in the olefin resin of the present disclosure is preferably 10 ppm or less, more preferably 5 ppm or less, further preferably 3 ppm or less, further preferably 2 ppm or less, still more preferably 1 ppm or less.
  • the component of the compound having 10 or less carbon atoms contained in the olefin resin of the present disclosure is preferably 2 ppm or less, more preferably 1 ppm or less, further preferably 0.5 ppm or less, and even more preferably 0.3 ppm. The following is even more preferable, and 0.1 ppm or less is even more preferable.
  • the olefin-based resin of the present disclosure may be a hydrogenated olefin-based resin.
  • the alicyclic olefin (A) as a raw material has two or more unsaturated bonds, or a monomer having two or more unsaturated bonds other than the alicyclic olefin (A) and the ⁇ -olefin (B) When used, it is preferably a hydrogenated olefin resin.
  • the hydrogenated olefin-based resin has further improved chemical stability and thermal stability, and further reduces odor. In particular, aromatic odors are reduced.
  • the glass transition temperature of the olefin resin of the present disclosure is preferably ⁇ 40 to 120 ° C.
  • 20 to 120 ° C. is preferable, 30 to 100 ° C. is more preferable, 50 to 80 ° C. is even more preferable, and 50 to 70 ° C. is even more preferable.
  • -40 to 80 ° C is preferable, -40 to 60 ° C is more preferable, -40 to 50 ° C is further preferable, and -40 to 20 ° C is preferable. Even more preferable.
  • the temperature is preferably -40 to 100 ° C, more preferably -20 to 100 ° C, and further preferably -20 to 80 ° C. It is more preferably ⁇ 20 to 60 ° C., even more preferably ⁇ 20 to 40 ° C.
  • the number average molecular weight (Mn) of the olefin resin of the present disclosure is preferably 100 to 100,000. Among them, when used as a component having properties as a tackifier, 100 to 2,000 is more preferable, 200 to 1,000 is more preferable, and 200 to 500 is even more preferable. Further, when used as a component having the properties of a base polymer of a hot melt adhesive, 1,000 to 100,000 is more preferable.
  • the weight average molecular weight (Mw) of the olefin resin of the present disclosure is preferably 300 to 200,000.
  • a component having properties as a tackifier when used as a component having properties as a tackifier, 300 to 5,000 is more preferable, 500 to 3,000 is more preferable, 600 to 2,000 is even more preferable, and 600 to 1, 200 is even more preferred. Further, when used as a component having the properties of a base polymer of a hot melt adhesive, 5,000 to 200,000 is more preferable, and when used as a base polymer, 20,000 to 200,000 is further preferable. More preferably 000 to 40,000, and even more preferably 5,000 to 100,000 when used as a component having both the properties of a base polymer and a tackifier.
  • the Z average molecular weight (Mz) of the olefin resin of the present disclosure is preferably 500 to 500,000.
  • ком ⁇ онент having properties as a tackifier 700 to 20,000 is more preferable, 1,000 to 7,000 is more preferable, and 1,200 to 4,000 is even more preferable. Further, when used as a component having the properties of a base polymer of a hot melt adhesive, 10,000 to 500,000 is more preferable.
  • the molecular weight distribution (Mw / Mn) of the olefin resin of the present disclosure is preferably 2.5 or more, and more preferably 3.0 or more.
  • the molecular weight distribution (Mz / Mw) is preferably 1.5 or more, more preferably 2.0 or more, further preferably more than 2.5, and more than 3.0. Is even more preferable.
  • the compatibility and adhesiveness with other materials can be further improved when used as a raw material for a hot melt adhesive. Specifically, for example, by setting Mw / Mn in the above range, it is possible to develop the tack of the hot melt adhesive, and by setting Mz / Mw in the above range, the holding power of the hot melt adhesive Can be expressed.
  • the olefin-based resin of the present disclosure has a linearity of 70% or more, preferably 80% or more.
  • Linearity is the ratio of alicyclic monomers polymerized in 1,2-bonds, and when one alicyclic monomer unit has two or more unsaturated bonds, the total number of carbon atoms of the alicyclic monomer is X, the number of unsaturated carbon bonds is y, 13
  • the olefin-based resin of the present disclosure is obtained by polymerizing a monomer containing an alicyclic olefin (A).
  • a metallocene catalyst it is preferable to use a metallocene catalyst. That is, it is preferable to have a step of polymerizing the monomer component containing the alicyclic olefin (A) at 0 to 240 ° C. in the presence of a metallocene catalyst.
  • the metallocene catalyst used in this step is a catalyst composed of a metallocene-based transition metal complex as a main catalyst and a co-catalyst, and a scavenger may be used, or the metallocene catalyst may be supported on an inorganic substance or the like.
  • a transition metal (titanium, zirconium, hafnium) selected from Group 4 contains a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a tetrahydroindenyl group, and the like.
  • a substituted tetrahydroindenyl group, a fluorenyl group or a substituted fluorenyl group is coordinated as one or two ligands, or two of these groups are coordinated by a covalent bond.
  • Other examples include those having a ligand such as a hydrogen atom, an oxygen atom, a nitrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, an acetylacetonate group, and an amide group.
  • Examples of the co-catalyst include alkylaluminoxane compounds and boron compounds.
  • alkylaluminoxane compound include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane and the like.
  • Examples of the boron compound include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetrafluorophenyl) borane, and tris (3,4).
  • 5-trifluorophenyl) borane tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6- Tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluorophenyl) borate, tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, Phenylbis (pentafluorophenyl) borate, tetrakis (3,5-bistrifluoromethylphenyl) borate and the like can be mentioned.
  • Examples of the scavenger include alkylaluminum compounds, and specific examples thereof include trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, tributylaluminum, and triisobutylaluminum.
  • the amount of the metallocene-based transition metal complex is preferably 0.1 to 50 mol%, more preferably 1 to 20 mol%, based on all the monomer components including the alicyclic olefin (A).
  • the amount of the co-catalyst is preferably 0.2 to 60 mol%, more preferably 2 to 30 mol%, based on all the monomer components including the alicyclic olefin (A).
  • two or more kinds of metallocene catalysts may be used, and it is preferable to use two or more kinds in combination. By using a plurality of catalysts in combination, the molecular weight distribution of the obtained olefin resin can be adjusted, and the adhesiveness can be improved while suppressing the odor.
  • the polymerization temperature in this step is preferably 0 to 240 ° C., more preferably 20 to 220 ° C., and even more preferably 40 to 200 ° C.
  • the method for producing an olefin resin of the present invention preferably includes a step of stripping.
  • the stripping step which is the main step, may be carried out after the polymerization of the olefin resin, or may be carried out after the hydrogenation step described below.
  • an inert gas such as nitrogen or argon gas as a medium, and it is more preferable to use nitrogen.
  • the interface between the gas and the resin in the container is renewed by stirring or the like, and the gas in the container is renewed with an inert gas medium to make the resin volatile. Remove impurities.
  • stripping treatment can be performed at 150 to 300 ° C. for 0.5 to 5 hours at a flow rate of 1 to 1000 L / min of nitrogen with respect to 100 g of the olefin resin.
  • the stripping temperature is preferably 100 to 300 ° C, more preferably 150 to 300 ° C, and even more preferably 150 to 250 ° C.
  • the time for stripping may be selected optimally depending on the amount of resin and the size of the container used, but is preferably 0.1 to 20 hours, more preferably 0.5 to 10 hours, and 0. .5-5 hours is more preferred.
  • the optimum flow rate of nitrogen when stripping with nitrogen may be selected according to the size of the container used, but 0.1 to 20 L / min is used for 100 g of the olefin resin. Preferably, 1 to 10 L / min is more preferable.
  • an olefin resin having less odor and suitable as a raw material for a hot melt adhesive can be efficiently obtained.
  • the method for producing an olefin-based resin of the present invention that is, the olefin-based resin obtained by polymerizing a monomer component containing an alicyclic olefin (A) at 0 to 240 ° C.
  • the obtained resin Since it has little odor by itself, it does not require excessive stripping conditions. Further, when the olefin resin obtained in the polymerization step satisfies the condition that the aromatic portion is 1% or less and the linearity is 70% or more, the odor of the resin itself is further reduced, which is excessive. No need for stripping.
  • the method for producing an olefin resin of the present invention preferably further includes a step of hydrogenation.
  • the alicyclic olefin (A) as a raw material has two or more unsaturated bonds, or a monomer having two or more unsaturated bonds other than the alicyclic olefin (A) and the ⁇ -olefin (B)
  • This step is more preferably a step of hydrogenating at 100 to 300 ° C. in the presence of a catalyst.
  • the catalyst used in this hydrogenation step is preferably a metal catalyst, and examples thereof include a palladium catalyst, a nickel catalyst, a platinum catalyst, a ruthenium catalyst, a renium catalyst, a copper catalyst, and a rhodium catalyst.
  • the palladium catalyst include palladium carbon, palladium alumina, palladium silica, palladium silica alumina, and zeolite-supported palladium.
  • the nickel catalyst include nickel diatomaceous earth, sponge nickel, nickel alumina, nickel silica, nickel carbon and the like.
  • the platinum catalyst include platinum silica, platinum silica alumina, and zeolite-supported platinum.
  • the ruthenium catalyst examples include ruthenium carbon, ruthenium alumina, ruthenium silica, ruthenium silica alumina, and zeolite-supported ruthenium.
  • the amount of the hydrogenation catalyst is preferably 1 to 40 parts by mass, more preferably 5 to 35 parts by mass with respect to 100 parts by mass of the olefin resin.
  • the hydrogenation reaction temperature in this step is preferably 30 to 300 ° C., more preferably 60 to 300 ° C., further preferably 100 to 300 ° C., still more preferably 100 to 250 ° C.
  • the hydrogen pressure in this step is preferably 1 to 20 MPa, more preferably 2 to 15 MPa, still more preferably 3 to 10 MPa.
  • the hot melt adhesive of the present disclosure contains the olefin resin. That is, the hot melt adhesive of the present disclosure contains a structural unit derived from the alicyclic olefin (A), has a structural unit derived from an aromatic monomer of 1 mol% or less, and has a volatile component of 10 ppm or less. Contains certain olefinic resins. By adjusting the molecular weight, molecular weight distribution, glass transition temperature, etc.
  • a component having the property of a tackifier among the components constituting the hot melt adhesive, a component having the property of a tackifier, a component having the property of a base polymer, or a component having the property of a base polymer, or It can be used as a component having both the properties of a tackifier and a base polymer.
  • the olefin-based resin of the present disclosure can be used as a component having both the properties of a tackifier and a base polymer, a hot melt having less odor and excellent tackiness even when a separate tackifier and base polymer are not contained. An adhesive is obtained.
  • the olefin-based resin of the present disclosure is used. Has excellent affinity with other materials, so that a good hot melt adhesive can be obtained.
  • the effect of the present disclosure technology of having less odor and excellent affinity with other materials can be exhibited, the adhesiveness of the obtained hot melt adhesive is improved, and the odor is also reduced. It can be suppressed.
  • the hot melt adhesive of the present disclosure may contain a base polymer, a tackifier, a plasticizer, and an additive in addition to the olefin resin.
  • the hot melt adhesive of the present disclosure preferably further contains a base polymer.
  • a base polymer When the olefin resin is used as a component having the properties of a base polymer or a component having both the properties of a tackifier and a base polymer, a good hot melt adhesive can be obtained even if the base polymer is not contained, but in particular.
  • the olefin resin When the olefin resin is used as a component having the properties of a tackifier, it preferably contains a base polymer.
  • the base polymer examples include natural rubber, olefin-based elastomer, styrene-based elastomer, and the like, and olefin-based elastomer and styrene-based elastomer are preferable. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • olefin-based elastomer examples include ethylene-based olefin polymers, amorphous olefin polymers, propylene-based elastomers, ethylene-vinyl acetate copolymers, and ethylene-acrylic acid ester copolymers.
  • the ethylene-based olefin polymer examples include polyethylene and a copolymer of ethylene and an olefin having 3 to 10 carbon atoms. It is not particularly limited as long as it can be used as a base polymer of a hot melt adhesive, but from the viewpoint of the adhesiveness of the hot melt adhesive, an ethylene- ⁇ -olefin copolymer is preferable.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 1-hexadecene.
  • 1-octene is preferable. From the viewpoint of the adhesiveness of the hot melt adhesive, it is more preferably an ethylene-1-octene copolymer, and more preferably an ethylene-1-octene copolymer containing 5 to 50% by mass of a 1-octene-derived structural unit. It is a coalescence.
  • the melting point of the ethylene-based olefin polymer is preferably 60 to 120 ° C., more preferably 60 to 90 ° C. from the viewpoint of heat-resistant creep property. The melting point of the ethylene-based olefin polymer can be measured by differential scanning calorimetry.
  • amorphous ones belong to the amorphous olefin polymers described later.
  • the amorphous olefin polymer is one or more homopolymers or copolymers selected from the group consisting of linear or branched ⁇ -olefins or dienes having 2 to 24 carbon atoms, and is not particularly limited. , Polybutene, polybutadiene, polyisoprene, and amorphous polyalphaolefins.
  • polybutene include isobutene and normal butene alone or copolymers and hydrogenated products thereof.
  • polybutadiene include 1,2-butadiene and 1,4-butadiene alone or copolymers and hydrogenated products thereof, and may have a hydroxyl group at the terminal.
  • polyisoprene examples include homopolymers or copolymers of isoprene and hydrogenated products thereof, and may have a hydroxyl group at the terminal.
  • amorphous polyalphaolefin examples include homopolymerizations and copolymers of olefins having 2 to 6 carbon atoms.
  • propylene-based elastomer examples include elastomers having a propylene unit as a main constituent unit, such as low melting point polypropylene.
  • the elastomer is not limited by the density as long as it has rubber elastic properties, and may be chemically crosslinked or not chemically crosslinked.
  • the vinyl acetate content of the ethylene-vinyl acetate copolymer is preferably 5 to 50% by mass, more preferably 10 to 40% by mass.
  • styrene-based elastomer a styrene-based block copolymer is preferable.
  • the styrene-based block copolymer is a copolymer in which a styrene-based compound and a conjugated diene compound are block-copolymerized, and usually has a styrene-based compound block and a conjugated diene compound block.
  • examples of the "styrene-based compound” include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, ⁇ -methylstyrene, vinylnaphthalene, vinylanthracene and the like. it can. Styrene is particularly preferable. These styrene compounds can be used alone or in combination.
  • conjugated diene compound is meant a diolefin compound having at least a pair of conjugated double bonds.
  • conjugated diene compound examples include 1,3-butadiene, 2-methyl-1,3-butadiene (or isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like.
  • 1,3-Hexadiene can be exemplified.
  • 1,3-butadiene and 2-methyl-1,3-butadiene are particularly preferable.
  • These conjugated diene compounds can be used alone or in combination.
  • the styrene-based block copolymer may be an unhydrogenated additive or a hydrogenated additive.
  • the "non-hydrogenated styrene block copolymer” can be specifically exemplified by a block based on a conjugated diene compound to which no hydrogenation has been added.
  • the "hydrogenated styrene-based block copolymer” can be specifically exemplified by a block copolymer in which all or part of a block based on a conjugated diene compound is hydrogenated.
  • the hydrogenated ratio of the "hydrogenated styrene block copolymer" can be indicated by the "hydrogenation rate".
  • the “hydrogenation rate” of the “hydrogenation of styrene-based block copolymer” is based on the total aliphatic double bond contained in the block based on the conjugated diene compound, in which hydrogenation is performed and saturated hydrocarbonation is performed. The ratio of double bonds converted to hydrogen bonds. This "hydrogenation rate” can be measured by an infrared spectrophotometer, a magnetic resonance imaging device, or the like.
  • non-hydrogenated styrene block copolymer examples include styrene-isoprene-styrene block copolymer (also referred to as "SIS”) and styrene-butadiene-styrene block copolymer (also referred to as "SBS”).
  • SIS styrene-isoprene-styrene block copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymers
  • the styrene block copolymer preferably has a styrene block ratio (styrene content) contained in the styrene block copolymer of 5 to 50% by mass, more preferably 10. ⁇ 40% by mass.
  • the difference between the Hansen solubility parameter of the base polymer used in the hot melt adhesive of the present disclosure and the Hansen solubility parameter of the olefin resin is preferably 5 or less, more preferably 4 or less, still more preferably 3 or less. 2, 2 or less is more preferable, and 1 or less is even more preferable.
  • the difference in the Hansen solubility parameter referred to here means the Ra value obtained by the following formula.
  • Ra [4 ( ⁇ d2- ⁇ d1 ) 2 + ( ⁇ p2- ⁇ p1 ) 2 + ( ⁇ h2- ⁇ h1 ) 2 ] 1/2
  • ⁇ d is the dispersive force
  • ⁇ p is the polarization force
  • ⁇ h is the solubility parameter based on the hydrogen bonding force
  • ⁇ d1 , ⁇ p1 , and ⁇ h1 are the solubility parameters of the olefin resin
  • ⁇ d2 , ⁇ p2 and ⁇ h2 are solubility parameters of the base polymer.
  • the content of the base polymer is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, still more preferably 30 parts by mass, based on 100 parts by mass of the hot melt adhesive. It is more than parts, and preferably 80 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 60 parts by mass or less, still more preferably 50 parts by mass or less. That is, in the hot melt adhesive, it is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, still more preferably 30% by mass or more, and preferably 80% by mass or less.
  • the glass transition temperature of the base polymer is preferably ⁇ 20 to 100 ° C., more preferably ⁇ 20 to 60 ° C.
  • the olefin resin may contain a second base polymer even when it is used as a component having the properties of a base polymer or a component having both the properties of a tackifier and the base polymer.
  • the second base polymer the olefin resin of the present disclosure, that is, the olefin resin described in the section of the [olefin resin], or the olefin elastomer is preferably used.
  • the melting point of the second base polymer is preferably 60 to 120 ° C., more preferably 60 to 110 ° C., and even more preferably 70 to 100 ° C.
  • the hot melt adhesive of the present disclosure preferably further contains a tackifier.
  • a tackifier When the olefin resin is used as a component having the properties of a tackifier or a component having both the properties of a tackifier and a base polymer, a good hot melt adhesive can be obtained even if the tackifier is not contained.
  • the olefin resin when used as a component having the properties of a base polymer, it preferably contains a tackifier.
  • the olefin resin preferably has the properties of a base polymer.
  • tackifier examples include hydrogenated derivatives of aliphatic hydrocarbon petroleum resins, rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenol resins, and the like, which are solid, semi-solid, or liquid at room temperature. be able to.
  • the content of the tackifier is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, still more preferably 20 parts by mass or more, based on 100 parts by mass of the hot melt adhesive. It is 30 parts by mass or more, and preferably 80 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 60 parts by mass or less, still more preferably 50 parts by mass or less. That is, in the hot melt adhesive, it is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, further preferably 30% by mass or more, and preferably 80% by mass or less. It is more preferably 70% by mass or less, further preferably 60% by mass or less, still more preferably 50% by mass or less.
  • the softening point of the tackifier is preferably ⁇ 20 ° C. or higher, more preferably ⁇ 15 ° C. or higher, further preferably ⁇ 10 ° C. or higher, and preferably 180 ° C. or lower, more preferably 170 ° C. or lower, further preferably. Is 160 ° C or lower.
  • the hot melt adhesive of the present disclosure preferably further contains a plasticizer.
  • the plasticizer is not particularly limited, but those used for hot melt adhesives are preferable, and oils or waxes are more preferable. Further, as the plasticizer, phthalates, adipates, fatty acid esters, glycols, epoxy-based polymer plasticizers and the like can also be used.
  • oil examples include paraffinic process oil, naphthenic process oil, and isoparaffinic oil.
  • paraffin-based process oils include "Diana Process Oil PW-32", “Diana Process Oil PW-90”, “Diana Process Oil PW-150”, and “Diana Process Oil PS-32” manufactured by Idemitsu Kosan Co., Ltd. , “Diana Process Oil PS-90”, “Diana Process Oil PS-430”; “Kaydol Oil”, “ParaLux Oil” manufactured by Chevron USA, etc. (all are trade names).
  • isoparaffin oils include “IP Solvent 1016”, “IP Solvent 1620”, “IP Solvent 2028”, “IP Solvent 2835”, and “IP Clean LX” manufactured by Idemitsu Kosan Co., Ltd .; “NA Solvent” series, etc. (both are product names).
  • waxes examples include animal wax, vegetable wax, carnauba wax, candelilla wax, wood wax, beeswax, mineral wax, petroleum wax, paraffin wax, microcrystallin wax, petroleum, higher fatty acid wax, higher fatty acid ester wax, and Fisher. Tropsch wax and the like can be exemplified.
  • the content of the plasticizer in the hot melt adhesive of the present disclosure is 2 parts by mass or more, preferably 5 parts by mass or more, out of 100 parts by mass of the hot melt adhesive from the viewpoint of improving the adhesiveness and the coatability. , More preferably 10 parts by mass or more, and 60 parts by mass or less, preferably 40 parts by mass or less, more preferably 30 parts by mass or less. That is, in the hot melt adhesive, 2% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and 60% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less. It is mass% or less.
  • the resin composition of the present disclosure further contains an inorganic filler, an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant and other arbitrary additives as necessary, as long as the object of the disclosed technology is not impaired. May be good.
  • Inorganic fillers include talc, calcium carbonate, barium carbonate, wollastonite, silica, clay, mica, kaolin, titanium oxide, silica soil, urea resin, styrene beads, starch, barium sulfate, calcium sulfate, magnesium silicate, Examples thereof include magnesium carbonate, alumina, and quartz powder.
  • Antioxidants include trisnonylphenylphosphite, distearylpentaerythritol diphosphite, "Adecastab 1178" (manufactured by ADEKA Co., Ltd.), “Stamylizer TNP” (manufactured by Sumitomo Chemical Co., Ltd.), “Irgafos 168" (BASF , “Sandstab P-EPQ” (manufactured by Sand), phosphorus-based antioxidants, 2,6-di-t-butyl-4-methylphenol, n-octadecil-3- (3', 5'- Di-t-butyl-4'-hydroxyphenyl) propionate, phenolic antioxidants such as “Smilizer BHT” (manufactured by Sumitomo Chemical Co., Ltd.), “Irganox 1010” (manufactured by BASF), dilauryl-3,3' -Thiodiprop
  • a base polymer, a tackifier, a plasticizer and an additive are dry-blended using a Henschel mixer or the like, and uniaxial or biaxial extrusion is performed. It can be manufactured by melt-kneading with a machine, a plastic mill, a Banbury mixer, or the like.
  • the hot melt adhesives of the present disclosure have excellent adhesiveness and low odor, and therefore, for example, for sanitary materials, packaging, bookbinding, textiles, woodworking, electrical materials, can making, construction, filters. It can be suitably used for low-pressure molding, bag making, and the like.
  • an adhesive for sanitary products such as disposable diapers and sanitary napkins represented by fixing non-woven fabrics or super absorbent polymers (SAPs)
  • SAPs super absorbent polymers
  • assemblies represented by automobile floor mats It can be preferably used, and it can be suitably used as an adhesive for sanitary products because it has a particularly low odor.
  • Aromatic components (benzene, toluene, xylene, styrene, etc.) that generate a gas component using a headspace gas chromatograph (device name: Agent7697A / Agent7890B) and have a retention time of less than 10 minutes when measured under the following conditions. ) was defined as the amount of aromatic volatile components (aroma). Further, the amount of components having a retention time of less than 13 minutes (generally below the boiling point of a compound having 10 or less carbon atoms) is defined as the amount of volatile components (VOC), and the amount of components having a retention time of less than 40 minutes for all volatile components to be desorbed.
  • VOC volatile components
  • HSP Hansen solubility parameter
  • olefin resins HP1 and HP2 are used using 20 kinds of solvents having known solubility parameters (dispersion force: ⁇ d , polarization force: ⁇ p , hydrogen bond force: ⁇ h).
  • HP5, HP6 and HP8 to HP11 evaluate the solubility, plot the solvent value on a three-dimensional plot, create the smallest sphere with the good solvent on the inside and the poor solvent on the outside, and create a sphere.
  • the coordinate at the center of was used as the solubility parameter of the olefin resin.
  • Reference 1 Hildebrand JH, Scott RL.
  • Low melting point polypropylene which is an olefin elastomer (manufactured by Idemitsu Kosan Co., Ltd., trade name: L-MODU S400, Mw: 45,000, melt viscosity (B viscosity) (190 ° C., ASTM D 3236): 8500 mPa.
  • Amorphous polyalphaolefin (manufactured by Evonik Industries AG, which is an olefin-based elastomer, trade name: VESTOPLAST (registered trademark) 708, melt viscosity (190 ° C., DIN 53 019): 8000 mPa ⁇ s, softening point (R & B) , DIN EN 1427): 108 ° C.) Styrene-isoprene-styrene block copolymer (SIS) (manufactured by Kraton Corporation, trade name: KRATON® D1161, MFR (190 ° C., 2.16 kg, ISO 1133): 1.3 to 3.
  • APAO Amorphous polyalphaolefin
  • Ra value which is an index of affinity, was calculated by the following formula. The smaller the Ra value, the better the affinity. Further, in the following formula, ⁇ d1 , ⁇ p1 , and ⁇ h1 are solubility parameters of the olefin resin, and ⁇ d2 , ⁇ p2 , and ⁇ h2 are solubility parameters of each of the elastomers.
  • Ra [4 ( ⁇ d2- ⁇ d1 ) 2 + ( ⁇ p2- ⁇ p1 ) 2 + ( ⁇ h2- ⁇ h1 ) 2 ] 1/2
  • Ra value ⁇ 1.5 ⁇ : 1.5 ⁇ Ra value ⁇ 3.0 ⁇ : 3.0 ⁇ Ra value ⁇ 5.0 X: 5.0 ⁇ Ra value
  • Dispersibility was evaluated as follows. The olefin resin and the base polymer (elastomer) were placed in a container at a mass ratio of 1: 1 and stirred at 180 ° C. for 1 hour, then allowed to stand to cool to room temperature, and after 1 day, the visually obtained mixture was obtained. Dispersibility was evaluated. ⁇ : Transparent ⁇ : Almost transparent (slightly cloudy) ⁇ : White turbidity (slightly transparent) ⁇ : Milky white
  • Tg change rate The rate of change in the glass transition temperature (Tg) before and after mixing was evaluated by the following method. It is presumed that the larger the Tg change rate, the higher the affinity between the two. Elastomer alone, olefin resin and elastomer are mixed at a mass ratio of 1: 1 and a strip-shaped test piece cut out from a sheet (1 mm thick) obtained by press molding is used, and the temperature is -150 ° C to 230 ° C (test piece is While raising the temperature at 2 ° C./min to the breaking temperature), perform dynamic viscoelasticity measurement (using a rheometer, manufactured by Hitachi High-Tech Science Co., Ltd., DMS6100) in the tensile test mode, and calculate Tg from the peak value of tan ⁇ .
  • Tg derived from the olefin-based elastomer low melting point polypropylene (PP) (L-MODU S-400): Tg-3 ° C., amorphous polyalphaolefin (APAO) (VESTOPLAST 708): Tg-35 ° C.
  • APAO amorphous polyalphaolefin
  • Tg shifts to the high temperature side.
  • the rate of change in Tg was evaluated according to the following criteria.
  • HMA styrene-based hot melt adhesive
  • SIS Styrene-isoprene-styrene block copolymer
  • Plasticizer Paraffin oil (Diana Process Oil PS-32, manufactured by Idemitsu Kosan Co., Ltd.)
  • Antioxidant Irganox 1010 (manufactured by BASF Japan Ltd.) ⁇ Adhesive strength> Measured according to JIS Z0237 (23 ° C
  • HMA polyolefin hot melt adhesive
  • HMA hot melt adhesive
  • Adhesive agent ⁇ Escorez5300 (DCPD system) ⁇ Escorez5600 (C9 aroma / C5 series) -Plasticizer: Paraffin oil (PW-90) -Antioxidant: Irganox 1010 (manufactured by BASF Japan Ltd.)
  • Adhesive> When the HMA sample was lightly tapped with a finger, the degree of adhesion to the finger was evaluated. The criteria were set so that the obtained evaluation results were generally correlated with the loop tack values in Table 3. ⁇ : Strongly adheres and follows ⁇ : Slightly strongly adheres ⁇ : Slightly weakly adheres ⁇ : Almost no adhesion
  • the obtained resin heptane solution was filtered to remove the catalyst residue, 20 mg of Irganox 1010 (antioxidant, manufactured by BASF Japan Co., Ltd.) was added, and heptane was retained at 70 ° C. and 100 hPa using an evaporator. After the removal, unreacted DCPD was distilled off at 160 ° C. and 25 hPa to obtain 12.2 g of an olefin resin (P1) (Mw: 321 and DCPD content: 100 mol%).
  • P1 an olefin resin
  • ⁇ Hydrogenation reaction process 1 g of nickel diatomaceous earth catalyst, 10.0 g of the olefin resin (P1), and 391 mL of heptane were placed in a stainless steel 1 L autoclave to replace nitrogen, and then hydrogen gas was introduced at room temperature until it reached 5 MPa while stirring at 500 rpm. Then, the temperature was raised and maintained at 230 ° C. for 30 minutes to carry out a hydrogenation reaction. The unreacted hydrogen gas was removed, the obtained resin heptane solution was hot-filtered to remove the catalyst residue, irganox 1010: 40 mg was added, and heptane was added at 70 ° C. and 25 hPa using an evaporator. Distilled away.
  • Production Example 3 (Production of hydrogenated olefin resin (HP3)) ⁇ Polymerization reaction process> The polymerization reaction was carried out under the same conditions as in Example 2 except that the pressure of the hydrogen gas was 0.02 MPa and the polymerization temperature was 90 ° C. to obtain 9.9 g of an olefin resin (P3). (Mw: 1,785, DCPD content: 100 mol%) ⁇ Hydrogenation reaction process / stripping process> Hydrogenated olefins by performing a hydrogenation reaction / stripping step under the same conditions as in Production Example 1 except that 9.0 g of olefin resin (P3), 392 mL of heptane, and 36 mg of Irganox 1010 were used. 7.2 g of resin (HP3) (Mw: 1,785, DCPD content: 100 mol%) was obtained.
  • Production Example 4 (Production of hydrogenated olefin resin (HP4)) ⁇ Polymerization reaction step 1> To a 1 L autoclave made of stainless steel, add 400 mL (2.73 mol) of a heptane solution of DCPD as a monomer at room temperature under a nitrogen atmosphere, and while stirring at 100 rpm, use TIBA (4 mmol) as a scavenger and Borate (300 ⁇ mol) as a cocatalyst.
  • TIBA 4 mmol
  • Borate 300 ⁇ mol
  • ⁇ Polymerization reaction step 2> Bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride ((Me 2 )) as the second main catalyst while stirring the reaction solution obtained in the above ⁇ polymerization reaction step 1> in a nitrogen atmosphere at 100 rpm. Si) 2 Cp 2 ZrCl 2 ) (50 ⁇ mol) was further added, the stirring speed was increased to 400 rpm, and then 0.02 MPa of hydrogen gas, which is a chain transfer agent, was introduced. Subsequently, the internal temperature was raised to 90 ° C. and polymerization was carried out for 1 hour, and then unreacted hydrogen gas was depressurized and removed.
  • ⁇ Hydrogenation reaction process / stripping process Perform the hydrogenation reaction step and stripping step under the same conditions as in Production Example 1 except that 3 g of nickel diatomaceous earth catalyst, 30.0 g of olefin resin (P4), 373 mL of heptane, and 120 mg of irganox 1010 were used. Obtained 27.8 g of a hydrogenated olefin resin (HP4) (Mw: 1,050, DCPD content: 100 mol%).
  • HP4 hydrogenated olefin resin
  • Production Example 5 (Production of hydrogenated olefin resin (HP5)) ⁇ Polymerization reaction process> A heptane solution of DCPD with a solvent of 80 mL as a solvent and a concentration of 95% by volume as the first monomer in a stainless steel 1 L autoclave under a nitrogen atmosphere (primary reagent, stabilizer and polar impurities have been removed with alumina).
  • Production Example 6 (Production of hydrogenated olefin resin (HP6)) ⁇ Polymerization reaction process> 283 mL of heptane as a solvent, 117 mL (0.80 mol) of a heptane solution of DCPD as the first monomer, Borate (60 ⁇ mol) as a co-catalyst, bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride ((Me) 2 Si) 2 Cp 2 ZrCl 2 ) (40 ⁇ mol), olefin-based by carrying out the polymerization reaction under the same conditions as in Production Example 5 except that the pressure of hydrogen gas was 0.03 MPa and the total pressure was 0.8 MPa. 19.7 g of a resin (P6) (Mw: 1,728, DCPD content: 76 mol%) was obtained.
  • Production Example 7 (Production of hydrogenated olefin resin (HP7)) ⁇ Polymerization reaction step 1> Add 283 mL of heptane as a solvent and 117 mL (0.80 mol) of a heptane solution of DCPD as the first monomer to a stainless steel 1 L autoclave under a nitrogen atmosphere at room temperature, and while stirring at 100 rpm, use TIBA (2 mmol) as a scavenger.
  • ⁇ Polymerization reaction step 2> 70 mL of heptane as a solvent and 330 mL (2.25 mol) of a heptane solution of DCPD as the first monomer were added to the same stainless steel 1 L autoclave used in the above ⁇ polymerization reaction step 1> under a nitrogen atmosphere at room temperature.
  • TIBA 2 mmol
  • Borate 60 ⁇ mol
  • bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride (Me 2 Si) 2 Cp 2 ZrCl)
  • ⁇ Hydrogenation reaction process / stripping process Perform the hydrogenation reaction step and stripping step under the same conditions as in Production Example 1 except that 4 g of nickel diatomaceous earth catalyst, 60.0 g of olefin resin (P7), 346 mL of heptane, and 240 mg of irganox 1010 were used. Obtained 57.0 g of a hydrogenated olefin resin (HP7) (Mw: 1,104, DCPD content: 83 mol%).
  • HP7 hydrogenated olefin resin
  • Production Example 8 (Production of hydrogenated olefin resin (HP8)) ⁇ Polymerization reaction process> A heptane solution of DCPD having a concentration of 95% by volume as the first monomer in a stainless steel 1L autoclave under a nitrogen atmosphere at room temperature (primary reagent, stabilizers and polar impurities have been removed with alumina) 264 mL (1. 90 mol), 120 mL (0.95 mol) of 4-methyl-1-pentene (4M1P) (polar impurities have been removed with alumina) as the second monomer, and while stirring at 100 rpm, as a scavenger of TIBA having a concentration of 2 M.
  • 4M1P 4-methyl-1-pentene
  • ⁇ Hydrogenation reaction process / stripping process Perform the hydrogenation reaction step and stripping step under the same conditions as in Production Example 5, except that 3 g of nickel diatomaceous earth catalyst, 30.0 g of olefin resin (P8), 373 mL of heptane, and 120 mg of irganox 1010 were used. Obtained 28.0 g of a hydrogenated olefin resin (HP8) (Mw: 613, DCPD content: 83 mol%).
  • HP8 hydrogenated olefin resin
  • Production Example 9 (Production of hydrogenated olefin resin (HP9)) ⁇ Polymerization reaction process> The polymerization reaction was carried out under the same conditions as in Production Example 8 except that 167 mL (1.14 mol) of a heptane solution of DCPD was used as the first monomer and 220 mL (1.74 mol) of 4M1P was used as the second monomer. 57.1 g of a resin (P9) (Mw: 762, DCPD content: 65 mol%) was obtained.
  • Hydrogenation is performed by performing a hydrogenation reaction step and a stripping step under the same conditions as in Production Example 8 except that an olefin resin (P9) is used instead of the olefin resin (P8) as the olefin resin. 28.5 g of the olefin resin (HP9) (Mw: 801 and DCPD content: 65 mol%) was obtained.
  • Comparative production example 2 (Production of hydrogenated petroleum resin (HP11)) Dicyclopentadiene (DCPD) and styrene were used as raw material monomers in the ratio shown in Table 1 according to Example 1 of International Publication No. 2004/056882, and dicyclopentadiene (DCPD) and styrene were combined by a thermal polymerization method. After obtaining the copolymer, partial hydrogenation using a nickel catalyst was carried out to obtain a hydrogenated petroleum resin (HP11).
  • DCPD dicyclopentadiene
  • styrene were combined by a thermal polymerization method. After obtaining the copolymer, partial hydrogenation using a nickel catalyst was carried out to obtain a hydrogenated petroleum resin (HP11).
  • Production Example 10 (Production of olefin resin (BP1)) In a stainless steel 1L autoclave, under a nitrogen atmosphere, at room temperature, 327 mL of toluene as a solvent and 73 mL (0.60 mol) of a toluene solution of norbornene (NB) having a concentration of 80% by weight as a monomer (first-class reagent, alumina-treated).
  • NB norbornene
  • the toluene solution of the olefin resin obtained by the above polymerization is added dropwise to a large amount of stirred ethanol, the polymer is reprecipitated, washed and filtered with ethanol several times, and then vacuum dried at 190 ° C. for 6 hours. Obtained 39 g of an olefin resin (BP1) (Mw: 33,000, NB content: 14 mol%).
  • Production Example 11 (Production of olefin resin (BP2)) Olefin resin (BP2) (Mw) was subjected to polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 10 except that the pressure of hydrogen gas, which is a chain transfer agent, was changed to 0.01 MPa. : 50,000, NB content: 14 mol%) 75 g was obtained.
  • BP2 olefin resin
  • Mw Olefin resin
  • Production Example 12 (Production of olefin resin (BP3)) Olefin resin (BP3) (Mw: 91,000) was subjected to polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 10 except that hydrogen gas, which is a chain transfer agent, was not used. , NB content: 14 mol%) 109 g was obtained.
  • Production Example 14 (Production of olefin resin (BP5)) Polymerization reaction, reprecipitation, washing, and drying were carried out under the same conditions as in Production Example 13 except that the amount of toluene was changed to 305 mL and the amount of norbornene (NB) in a toluene solution was changed to 95 mL (0.80 mol). By doing so, 30 g of an olefin resin (BP5) (Mw: 28,000, NB content: 21 mol%) was obtained.
  • Production Example 15 (Production of olefin resin (BP6)) Olefin resin (BP6) (Mw: 45,000, NB content: 24 mol) was subjected to polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 13 except that the solvent was changed to cyclohexane. %) 50 g was obtained.
  • BP6 Olefin resin (BP6) (Mw: 45,000, NB content: 24 mol) was subjected to polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 13 except that the solvent was changed to cyclohexane. %) 50 g was obtained.
  • Production Example 16 (Production of olefin resin (BP7)) In a stainless steel 1L autoclave, under a nitrogen atmosphere, at room temperature, 296 mL of toluene as a solvent and 104 mL (0.85 mol) of a toluene solution of norbornene (NB) having a concentration of 80% by weight as a monomer (first-class reagent, alumina-treated).
  • NB norbornene
  • Production Example 17 (Production of olefin resin (BP8)) The amount of toluene was changed to 272 mL, the amount of the toluene solution of norbornene (NB) was changed to 128 mL (1.05 mol), hydrogen gas as a chain transfer agent was introduced at a pressure of 0.10 MPa, and ethylene gas was introduced.
  • the olefin resin (BP8) (Mw: 25,000,) was subjected to the polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 16 except that the total pressure was 0.80 MPa.
  • NB content 27 mol%) 53 g was obtained.
  • Production Example 18 (Production of olefin resin (BP9))
  • BP9 Mw:
  • BP9 Mw:
  • hydrogen gas which is a chain transfer agent
  • Production Example 19 (Production of olefin resin (BP10)) Production Example 16 except that the amount of toluene was changed to 242 mL, the amount of norbornene (NB) in a toluene solution was changed to 158 mL (1.30 mol), and hydrogen gas, which is a chain transfer agent, was introduced at a pressure of 0.10 MPa.
  • BP10 olefin resin
  • the polymerization reaction, reprecipitation, washing, and drying were carried out under the same conditions as in Production Example 5, except that the hydrogenation reaction was carried out for 3 hours, and a part of the polymerization yield of 137 g was hydrogenated and stripped to form an olefin. 137 g of a resin (BP13) (Mw: 64,000, DCPD content: 6 mol%) was obtained.
  • Production Example 21 (Production of olefin resin (BP14)) The polymerization reaction was carried out under the same conditions as in Production Example 20 except that the amount of heptane was 188 mL, the amount of the heptane solution of DCPD was 200 mL (1.42 mol), and the pressure of hydrogen gas was 0.30 MPa. 158 g of a resin (BP14) (Mw: 29000, DCPD content: 22 mol%) was obtained.
  • Production Example 22 (Production of olefin resin (BP15)) By carrying out the polymerization reaction under the same conditions as in Production Example 21 except that the pressure of hydrogen gas was set to 0.05 MPa, 72 g of an olefin resin (BP15) (Mw: 48,000, DCPD content: 23 mol%) was obtained. Obtained.
  • Production Example 23 (Production of olefin resin (BP16)) 188 mL of toluene as a solvent, 200 mL (1.42 mol) of a toluene solution of dicyclopentadiene (DCPD) (primary reagent, treated with alumina), 3.0 mL (60 ⁇ mol) of a toluene solution of Borate, and dimethylsilylene- (tetra) as the main catalyst. Except for 2.0 mL (40 ⁇ mol) of a toluene solution of methylcyclopentadiene (t-butylamide) titanium dichloride (Me 2 Si (Me 4 Cp) (t-BuN) Tycol 2) and propylene as the second monomer.
  • BP16 dicyclopentadiene
  • styrene elastomer styrene elastomer
  • SBS Styrene-butadiene-styrene block copolymer
  • BP12 olefin elastomer
  • PP Low melting point polypropylene
  • L-MODU S400 Low melting point polypropylene
  • the olefin-based resin of the present disclosure has little odor and has an excellent affinity with other materials that are raw materials for hot melt adhesives.
  • the olefin-based resin of the present disclosure has good adhesiveness when blended with a styrene-based elastomer and a polyolefin-based elastomer.
  • the olefin-based resin of the present disclosure has little odor and has an excellent affinity with other materials that are raw materials for hot melt adhesives.
  • the olefin-based resin of the present disclosure has good adhesiveness even when used as a base polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

This olefin-based resin contains a structural unit derived from an alicyclic olefin (A), and has 1% or less of an aromatic moiety and 70% or more of a straight-chain moiety.

Description

オレフィン系樹脂及びホットメルト接着剤Olefin resin and hot melt adhesive
 本発明は、オレフィン系樹脂及びホットメルト接着剤に関する。 The present invention relates to an olefin resin and a hot melt adhesive.
 ホットメルト接着剤は、無溶剤の接着剤であり、加熱溶融することで被着体に塗工後、冷却することで固化して接着性を発現する。近年、ホットメルト接着剤は、高速塗工性、速硬化性、無溶剤性、バリヤ性、省エネルギー性、経済性等に優れるため、各種分野において利用が拡大している。 The hot melt adhesive is a solvent-free adhesive, which is applied to the adherend by heating and melting, and then solidified by cooling to develop adhesiveness. In recent years, hot melt adhesives have been widely used in various fields because they are excellent in high-speed coating property, quick-curing property, solvent-free property, barrier property, energy saving property, economy, and the like.
 ホットメルト接着剤は溶剤を使用しないため、溶剤の揮発はないが、石油製品を原料とするため、それらに由来する揮発性有機化合物が微量に含まれる。特に衛生用品や、自動車や住宅等の室内に用いられる部材にホットメルト接着剤が用いられた場合、製品中に含まれる揮発性有機化合物が、健康への悪影響や臭気による不快感を発生させる可能性があるため、それらを低減する検討がなされている(例えば、特許文献1及び2参照)。 Since the hot melt adhesive does not use a solvent, the solvent does not volatilize, but since it is made from petroleum products, it contains a small amount of volatile organic compounds derived from them. In particular, when hot melt adhesives are used for hygiene products and indoor parts such as automobiles and houses, the volatile organic compounds contained in the products can cause adverse health effects and discomfort due to odors. Due to their nature, studies have been made to reduce them (see, for example, Patent Documents 1 and 2).
特開2007-204519号公報Japanese Unexamined Patent Publication No. 2007-204519 特開2013-064056号公報Japanese Unexamined Patent Publication No. 2013-064056
 前記のようにホットメルト接着剤は溶媒を必要としないため、環境や健康への影響は少ないものの、原料のスチレン系エラストマーや粘着付与剤等の低分子量物に含まれる揮発性有機化合物に由来する臭気が問題となっており、特に紙おむつやマスク等の衛生材料や掃除用具等の日用品の用途に対しては、臭気をより低減することが求められている。
 一方で、臭気を低減するために、前記のスチレン系エラストマーや粘着付与剤等の低分子量物を配合しない場合、粘着性能や他の原料との混和性が劣るものとなり、ホットメルト接着剤の基本性能が低下する場合がある。
 したがって、本開示の技術が解決しようとする課題は、臭気が少なく、ホットメルト接着剤の原料として用いた場合、他の材料との親和性に優れ、粘着性も向上できるオレフィン系樹脂を提供することにある。
As described above, since the hot melt adhesive does not require a solvent, it has little effect on the environment and health, but it is derived from a volatile organic compound contained in a low molecular weight substance such as a styrene elastomer or a tackifier as a raw material. Odor is a problem, and it is required to further reduce the odor especially for sanitary materials such as paper diapers and masks and daily necessities such as cleaning tools.
On the other hand, if low molecular weight substances such as the above-mentioned styrene-based elastomer and tackifier are not blended in order to reduce the odor, the adhesive performance and miscibility with other raw materials will be inferior, which is the basis of hot melt adhesives. Performance may be reduced.
Therefore, the problem to be solved by the technique of the present disclosure is to provide an olefin-based resin that has less odor, has excellent affinity with other materials when used as a raw material for a hot melt adhesive, and can improve adhesiveness. There is.
 本発明者らは、鋭意検討を重ねた結果、オレフィン系樹脂の脂環式オレフィン由来の構成単位を含み、さらに、芳香族性部分を一定量以下とし、構造の直鎖性を高めることで、前記課題が解決することを見出した。 As a result of diligent studies, the present inventors have found that the olefin resin contains a constituent unit derived from an alicyclic olefin, and the aromatic portion is reduced to a certain amount or less to enhance the linearity of the structure. We have found that the above problems can be solved.
 すなわち本開示の一態様によれば、脂環式オレフィン(A)を由来とする構成単位を含み、以下の(a)及び(b)を満たす、オレフィン系樹脂に関する技術を提供することができる。
 (a)芳香族性部分が1%以下
 (b)直鎖性が70%以上
That is, according to one aspect of the present disclosure, it is possible to provide a technique relating to an olefin resin containing a structural unit derived from an alicyclic olefin (A) and satisfying the following (a) and (b).
(A) Aromatic part is 1% or less (b) Linearity is 70% or more
 本開示のオレフィン系樹脂は、臭気が少なく、ホットメルト接着剤の原料として用いた場合、他の材料との相溶性に優れ、粘着性も向上することができる。 The olefin-based resin of the present disclosure has little odor, and when used as a raw material for a hot melt adhesive, it has excellent compatibility with other materials and can improve adhesiveness.
[オレフィン系樹脂]
 本開示のオレフィン系樹脂は、脂環式オレフィン(A)を由来とする構成単位を含み、かつ、芳香族性部分が1%以下であり、直鎖性が70%以上である。
[Olefin resin]
The olefin-based resin of the present disclosure contains a structural unit derived from the alicyclic olefin (A), has an aromatic portion of 1% or less, and has a linearity of 70% or more.
<脂環式オレフィン(A)>
 本開示のオレフィン系樹脂は、脂環式オレフィン(A)を由来とする構成単位を含む。
 脂環式オレフィン(A)は、単環式オレフィン、多環式オレフィンが挙げられ、多環式オレフィンが好ましい。
 脂環式オレフィン(A)の炭素数は、4~12が好ましく、6~10がより好ましく、7~10が更に好ましい。
 脂環式オレフィン(A)の具体例としては、ジシクロペンタジエン、シクロペンテン、シクロヘキセン、ノルボルネン及びこれらの誘導体等が挙げられ、ジシクロペンタジエン、シクロペンテン、シクロヘキセン、ノルボルネン及びこれらの誘導体から選ばれる1つ以上が好ましく、ジシクロペンタジエン、ノルボルネン及びこれらの誘導体から選ばれる1つ以上がより好ましく、本開示のオレフィン系樹脂を粘着付与剤として用いる場合には、ジシクロペンタジエンが更に好ましく、本開示のオレフィン系樹脂をベースポリマーとして用いる場合にはノルボルネンがより更に好ましい。ジシクロペンタジエンを用いることで分子量が低いが、高いガラス転移温度を有する樹脂を得ることができるため、得られる樹脂は粘着付与剤として好適であり、反応性が高く、かつ得られる樹脂の直鎖性に優れるノルボルネンを用いることで高分子量かつ高いガラス転移温度を有する樹脂を得ることができるため、得られる樹脂はベースポリマーとして好適であると考えられる。
 前記誘導体としては、例えば、5-エチリデン-2-ノルボルネン、5-エチル-2-ノルボルネン、5,6-ジヒドロジシクロペンタジエン、トリシクロペンタジエン、テトラシクロペンタジエン等が挙げられる。
 本開示のオレフィン系樹脂に、該脂環式オレフィン(A)を用いることで、他のモノマーを用いた樹脂に比べ、臭気が少なく、ホットメルト接着剤の原料として用いた場合、他の材料との相溶性に優れるものとなる。
<Alicyclic olefin (A)>
The olefin-based resin of the present disclosure contains a structural unit derived from the alicyclic olefin (A).
Examples of the alicyclic olefin (A) include monocyclic olefins and polycyclic olefins, and polycyclic olefins are preferable.
The alicyclic olefin (A) preferably has 4 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and even more preferably 7 to 10 carbon atoms.
Specific examples of the alicyclic olefin (A) include dicyclopentadiene, cyclopentene, cyclohexene, norbornene and derivatives thereof, and one or more selected from dicyclopentadiene, cyclopentene, cyclohexene, norbornene and derivatives thereof. Is preferable, and one or more selected from dicyclopentadiene, norbornene and derivatives thereof is more preferable, and when the olefin-based resin of the present disclosure is used as a tackifier, dicyclopentadiene is further preferable, and the olefin-based resin of the present disclosure is used. Norbornene is even more preferred when the resin is used as the base polymer. By using dicyclopentadiene, a resin having a low molecular weight but a high glass transition temperature can be obtained. Therefore, the obtained resin is suitable as a tackifier, has high reactivity, and is a straight chain of the obtained resin. Since a resin having a high molecular weight and a high glass transition temperature can be obtained by using norbornene having excellent properties, it is considered that the obtained resin is suitable as a base polymer.
Examples of the derivative include 5-ethylidene-2-norbornene, 5-ethyl-2-norbornene, 5,6-dihydrodicyclopentadiene, tricyclopentadiene, tetracyclopentadiene and the like.
By using the alicyclic olefin (A) in the olefin resin of the present disclosure, the odor is less than that of the resin using other monomers, and when it is used as a raw material of a hot melt adhesive, it can be used with other materials. It has excellent compatibility with.
<α-オレフィン(B)>
 本開示のオレフィン系樹脂は、脂環式オレフィン(A)を由来とする構成単位に加え、更にα-オレフィン(B)を由来とする構成単位を含むことが好ましい。
 本開示のオレフィン系樹脂にα-オレフィン(B)を含むことで、ホットメルト接着剤の原料として用いた場合、より他の材料との相溶性と粘着性を向上することができる。
 α-オレフィン(B)の炭素数は、2~10であることが好ましく、2~8であることがより好ましい。
 α-オレフィン(B)は、直鎖状α-オレフィン及び分岐状α-オレフィンから選ばれる1つ以上であることが好ましい。
 直鎖状α-オレフィンの炭素数としては、2~6であることが好ましく、2~4がより好ましく、分岐状α-オレフィンの炭素数としては、5~8が好ましく、5~6がより好ましい。
 具体的なα-オレフィン(B)としては、エチレン、プロピレン、ブテン、3-メチル-1-ブテン、4-メチル-1-ペンテン及び2-エチル-1-ヘキセンから選ばれる1つ以上であることが好ましく、エチレン、プロピレン及び4-メチル-1-ペンテンから選ばれる1つ以上であることが好ましい。
 特に、オレフィン樹脂を粘着付与剤として用いる場合は、非晶、低分子量、高ガラス転移温度(Tg)であることが重要であり、α-オレフィン(B)としては、プロピレン、4-メチル-1-ペンテンがより好ましい。オレフィン樹脂をベースポリマーとして用いる場合は、高分子量、且つ比較的高いガラス転移温度(Tg)を有することが重要であり、α-オレフィン(B)としては、エチレン、プロピレンがより好ましい。
 さらに、脂環式オレフィン(A)として、ジシクロペンタジエン及びその誘導体を用いた場合には、プロピレン及び4-メチル-1-ペンテンから選ばれる1つ以上であることが好ましく、脂環式オレフィン(A)として、ノルボルネン及びその誘導体を用いた場合には、エチレン及びプロピレンから選ばれる1つ以上であることが好ましく、特に相溶性の点からはプロピレンであることがより好ましい。
<Α-olefin (B)>
The olefin-based resin of the present disclosure preferably contains a structural unit derived from an α-olefin (B) in addition to a structural unit derived from the alicyclic olefin (A).
By containing the α-olefin (B) in the olefin-based resin of the present disclosure, when used as a raw material for a hot melt adhesive, compatibility with other materials and adhesiveness can be further improved.
The carbon number of the α-olefin (B) is preferably 2 to 10, and more preferably 2 to 8.
The α-olefin (B) is preferably one or more selected from linear α-olefins and branched α-olefins.
The number of carbon atoms of the linear α-olefin is preferably 2 to 6, more preferably 2 to 4, and the number of carbon atoms of the branched α-olefin is preferably 5 to 8 and more preferably 5 to 6. preferable.
The specific α-olefin (B) shall be one or more selected from ethylene, propylene, butene, 3-methyl-1-butene, 4-methyl-1-pentene and 2-ethyl-1-hexene. Is preferable, and one or more selected from ethylene, propylene and 4-methyl-1-pentene is preferable.
In particular, when an olefin resin is used as a tackifier, it is important that it is amorphous, has a low molecular weight, and has a high glass transition temperature (Tg), and the α-olefin (B) is propylene or 4-methyl-1. -Pentene is more preferred. When an olefin resin is used as a base polymer, it is important to have a high molecular weight and a relatively high glass transition temperature (Tg), and ethylene and propylene are more preferable as the α-olefin (B).
Further, when dicyclopentadiene or a derivative thereof is used as the alicyclic olefin (A), it is preferably one or more selected from propylene and 4-methyl-1-pentene, and the alicyclic olefin (A) When norbornene and its derivatives are used as A), it is preferably one or more selected from ethylene and propylene, and more preferably propylene from the viewpoint of compatibility.
<オレフィン系樹脂の組成及び特性>
 本開示のオレフィン系樹脂は、脂環式オレフィン(A)を由来とする構成単位を含むが、粘着付与剤として用いる場合には、該脂環式オレフィン(A)を由来とする構成単位の含有量は、50モル%以上が好ましく、60モル%以上がより好ましく、70モル%以上が更に好ましく、80モル%以上がより更に好ましい。上限値は100モル%でもよく、α-オレフィン(B)を由来とする構成単位を含む場合には、90モル%以下が好ましく、85モル%以下がより好ましい。
 また、ベースポリマーとして用いる場合には、該脂環式オレフィン(A)を由来とする構成単位の含有量は、1モル%以上が好ましく、2モル%以上がより好ましく、3モル%以上が更に好ましく、4モル%以上がより更に好ましい。また、40モル%以下が好ましく、38モル%以下がより好ましく、35モル%以下が更に好ましく、30モル%以下がより更に好ましい。なお、相溶性の観点からは、該脂環式オレフィン(A)を由来とする構成単位の含有量は、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましく、20モル%以上がより更に好ましい。
<Composition and characteristics of olefin resin>
The olefin-based resin of the present disclosure contains a structural unit derived from the alicyclic olefin (A), but when used as a tackifier, it contains a structural unit derived from the alicyclic olefin (A). The amount is preferably 50 mol% or more, more preferably 60 mol% or more, further preferably 70 mol% or more, still more preferably 80 mol% or more. The upper limit may be 100 mol%, and when a structural unit derived from α-olefin (B) is contained, 90 mol% or less is preferable, and 85 mol% or less is more preferable.
When used as a base polymer, the content of the structural unit derived from the alicyclic olefin (A) is preferably 1 mol% or more, more preferably 2 mol% or more, and further preferably 3 mol% or more. Preferably, 4 mol% or more is even more preferable. Further, 40 mol% or less is preferable, 38 mol% or less is more preferable, 35 mol% or less is further preferable, and 30 mol% or less is further preferable. From the viewpoint of compatibility, the content of the structural unit derived from the alicyclic olefin (A) is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 15 mol% or more. , 20 mol% or more is even more preferable.
 本開示のオレフィン系樹脂のα-オレフィン(B)を由来とする構成単位の含有量は、3~50モル%が好ましく、10~40モル%がより好ましく、15~30モル%が更に好ましく、15~20モル%がより更に好ましい。前記範囲は特に粘着付与剤として用いたときに良好である。
 一方、ベースポリマーとして用いる場合には、α-オレフィン(B)を由来とする構成単位の含有量は、60~99モル%が好ましく、62~98モル%がより好ましく、65~97モル%が更に好ましく、70~96モル%がより更に好ましい。なお、相溶性の観点からは、α-オレフィン(B)を由来とする構成単位の含有量は、60~95モル%が好ましく、62~90モル%がより好ましく、62~85モル%が更に好ましく、62~80モル%がより更に好ましい。α-オレフィン(B)を前記の割合で含むことで、ホットメルト接着剤の原料として用いた場合、より他の材料との相溶性と粘着性を向上することができる。
The content of the constituent unit derived from the α-olefin (B) of the olefin resin of the present disclosure is preferably 3 to 50 mol%, more preferably 10 to 40 mol%, still more preferably 15 to 30 mol%. 15 to 20 mol% is even more preferable. The range is particularly good when used as a tackifier.
On the other hand, when used as a base polymer, the content of the structural unit derived from α-olefin (B) is preferably 60 to 99 mol%, more preferably 62 to 98 mol%, and 65 to 97 mol%. Even more preferably, 70 to 96 mol% is even more preferable. From the viewpoint of compatibility, the content of the structural unit derived from the α-olefin (B) is preferably 60 to 95 mol%, more preferably 62 to 90 mol%, and further preferably 62 to 85 mol%. Preferably, 62-80 mol% is even more preferred. By containing α-olefin (B) in the above ratio, compatibility with other materials and adhesiveness can be further improved when used as a raw material for a hot melt adhesive.
 脂環式オレフィン(A)とα-オレフィン(B)のモル比[(A)/(B)]は、粘着付与剤として用いる場合には、40/60~100/0であることが好ましく、50/50~100/0であることがより好ましく、60/40~100/0であることが更に好ましく、70/30~95/5であることがより更に好ましく、80/60~95/5であることがより更に好ましい。また、ベースポリマーの性質を有する成分として用いる場合、脂環式オレフィン(A)とα-オレフィン(B)のモル比[(A)/(B)]は、1/99~40/60であることが好ましい。特に相溶性の観点からは、10/90~40/60であることが好ましく、15/85~40/60であることがより好ましく、20/80~40/60であることが更に好ましい。
 なかでも、ベースポリマーとして用いる場合には、1/99~30/70であることが好ましく、ベースポリマーと粘着付与剤の性質を併せ持つ成分として用いる場合には、5/95~40/60であることが好ましい。
The molar ratio [(A) / (B)] of the alicyclic olefin (A) to the α-olefin (B) is preferably 40/60 to 100/0 when used as a tackifier. It is more preferably 50/50 to 100/0, further preferably 60/40 to 100/0, even more preferably 70/30 to 95/5, and 80/60 to 95/5. Is even more preferable. When used as a component having the properties of a base polymer, the molar ratio [(A) / (B)] of the alicyclic olefin (A) to the α-olefin (B) is 1/99 to 40/60. Is preferable. In particular, from the viewpoint of compatibility, it is preferably 10/90 to 40/60, more preferably 15/85 to 40/60, and even more preferably 20/80 to 40/60.
Among them, when used as a base polymer, it is preferably 1/99 to 30/70, and when used as a component having both the properties of a base polymer and a tackifier, it is 5/95 to 40/60. Is preferable.
 本開示のオレフィン系樹脂は、芳香族性部分が1%以下であり、0.5%以下が好ましく、0.1%以下がより好ましく、0.05%以下が更に好ましく、0%であることがより更に好ましい。
 芳香族性部分は、芳香族性水素を測定することによって、オレフィン系樹脂全体の芳香族性部分の含有量を見積もることができる。
 芳香族性水素は、水素化反応後の樹脂の1H-NMR測定における、不飽和炭素に結合したプロトンに対するピーク面積積分値の比率から求めることができ、具体的には実施例に記載した方法により求めることができる。
 したがって、本開示のオレフィン系樹脂における芳香族性部分は、芳香族性水素が1%以下となる範囲であり、0.5%以下となる範囲が好ましく、0.1%以下となる範囲がより好ましく、0.05%以下となる範囲が更に好ましく、芳香族性水素が0%となる範囲がより更に好ましい。
 本開示のオレフィン系樹脂における芳香族性部分は、芳香族モノマーを由来とする部分、芳香族を有しないモノマーが変性して芳香族性を有した部分、重合後の樹脂の分解物等が考えられる。
 芳香族性部分を前記の範囲にすることによって、臭気をより低減することができる。なかでも衛生材料に用いた際に製品の品質を低下させる芳香族系の臭気を効率的に低減することが可能となる。この理由は定かではないが、オレフィン系樹脂を含むホットメルト接着剤を使用した際、芳香族性部分は少量で臭気の原因となる成分を発生しやすいため、オレフィン系樹脂中の芳香族性部分の割合を少ない範囲とすることで、臭気の低減効果が達成されるものと考えられる。
The olefin resin of the present disclosure has an aromatic portion of 1% or less, preferably 0.5% or less, more preferably 0.1% or less, further preferably 0.05% or less, and 0%. Is even more preferable.
For the aromatic moiety, the content of the aromatic moiety in the entire olefin resin can be estimated by measuring the aromatic hydrogen.
Aromatic hydrogen can be obtained from the ratio of the peak area integrated value to the proton bonded to unsaturated carbon in 1 H-NMR measurement of the resin after the hydrogenation reaction, and specifically, the method described in Examples. Can be obtained by
Therefore, the aromatic portion of the olefin-based resin of the present disclosure is in the range where the aromatic hydrogen is 1% or less, preferably in the range of 0.5% or less, and more preferably in the range of 0.1% or less. The range of 0.05% or less is more preferable, and the range of aromatic hydrogen of 0% is even more preferable.
The aromatic portion of the olefin-based resin of the present disclosure may be a portion derived from an aromatic monomer, a portion obtained by modifying a non-aromatic monomer to have aromaticity, a decomposition product of the resin after polymerization, or the like. Be done.
By setting the aromatic portion in the above range, the odor can be further reduced. In particular, it is possible to efficiently reduce aromatic odors that deteriorate the quality of products when used as sanitary materials. The reason for this is not clear, but when a hot melt adhesive containing an olefin resin is used, the aromatic portion tends to generate odor-causing components in a small amount, so that the aromatic portion in the olefin resin is likely to be generated. It is considered that the effect of reducing the odor is achieved by setting the ratio of the above to a small range.
 また、本開示のオレフィン系樹脂に含まれる揮発成分は、10ppm以下であることが好ましく、5ppm以下がより好ましく、3ppm以下が更に好ましく、2ppm以下がより更に好ましく、1ppm以下がより更に好ましい。
 揮発成分のなかでも、本開示のオレフィン系樹脂に含まれる炭素数10以下の化合物の成分は、2ppm以下であることが好ましく、1ppm以下がより好ましく、0.5ppm以下が更に好ましく、0.3ppm以下がより更に好ましく、0.1ppm以下がより更に好ましい。
 樹脂に含まれる揮発成分の量を前記の範囲にすることによって、臭気をより低減することができる。
The volatile component contained in the olefin resin of the present disclosure is preferably 10 ppm or less, more preferably 5 ppm or less, further preferably 3 ppm or less, further preferably 2 ppm or less, still more preferably 1 ppm or less.
Among the volatile components, the component of the compound having 10 or less carbon atoms contained in the olefin resin of the present disclosure is preferably 2 ppm or less, more preferably 1 ppm or less, further preferably 0.5 ppm or less, and even more preferably 0.3 ppm. The following is even more preferable, and 0.1 ppm or less is even more preferable.
By setting the amount of the volatile component contained in the resin within the above range, the odor can be further reduced.
 本開示のオレフィン系樹脂は、水素化した水素化オレフィン系樹脂であってもよい。
 原料である脂環式オレフィン(A)に2つ以上の不飽和結合を有する場合、又は脂環式オレフィン(A)とα-オレフィン(B)以外に2つ以上の不飽和結合を有するモノマーを用いた場合に、水素化オレフィン系樹脂とすることが好ましい。
 水素化オレフィン系樹脂は、化学的安定性や熱的安定性がより向上し、更に臭気も低減するものとなる。なかでも芳香族系の臭気が低減される。
The olefin-based resin of the present disclosure may be a hydrogenated olefin-based resin.
When the alicyclic olefin (A) as a raw material has two or more unsaturated bonds, or a monomer having two or more unsaturated bonds other than the alicyclic olefin (A) and the α-olefin (B) When used, it is preferably a hydrogenated olefin resin.
The hydrogenated olefin-based resin has further improved chemical stability and thermal stability, and further reduces odor. In particular, aromatic odors are reduced.
 本開示のオレフィン系樹脂のガラス転移温度は、-40~120℃が好ましい。ホットメルト接着剤の粘着付与剤の性質を有する成分として用いる場合、20~120℃が好ましく、30~100℃がより好ましく、50~80℃が更に好ましく、50~70℃がより更に好ましい。また、ホットメルト接着剤のベースポリマーの性質を有する成分として用いる場合、-40~80℃が好ましく、-40~60℃がより好ましく、-40~50℃が更に好ましく、-40~20℃がより更に好ましい。ベースポリマーと粘着付与剤の性質を併せ持つ成分として用いる場合には、-40~100℃であることが好ましく、-20~100℃であることがより好ましく、-20~80℃であることが更に好ましく、-20~60℃であることがより更に好ましく、-20~40℃であることがより更に好ましい。 The glass transition temperature of the olefin resin of the present disclosure is preferably −40 to 120 ° C. When used as a component having the properties of a tackifier for hot melt adhesives, 20 to 120 ° C. is preferable, 30 to 100 ° C. is more preferable, 50 to 80 ° C. is even more preferable, and 50 to 70 ° C. is even more preferable. When used as a component having the properties of a base polymer of a hot melt adhesive, -40 to 80 ° C is preferable, -40 to 60 ° C is more preferable, -40 to 50 ° C is further preferable, and -40 to 20 ° C is preferable. Even more preferable. When used as a component having both the properties of a base polymer and a tackifier, the temperature is preferably -40 to 100 ° C, more preferably -20 to 100 ° C, and further preferably -20 to 80 ° C. It is more preferably −20 to 60 ° C., even more preferably −20 to 40 ° C.
 本開示のオレフィン系樹脂の数平均分子量(Mn)は、100~100,000が好ましい。なかでも、粘着付与剤としての性質を有する成分として用いる場合には、100~2,000がより好ましく、200~1,000が更に好ましく、200~500がより更に好ましい。また、ホットメルト接着剤のベースポリマーの性質を有する成分として用いる場合、1,000~100,000がより好ましい。
 本開示のオレフィン系樹脂の重量平均分子量(Mw)は、300~200,000が好ましい。なかでも、粘着付与剤としての性質を有する成分として用いる場合には、300~5,000がより好ましく、500~3,000が更に好ましく、600~2,000がより更に好ましく、600~1,200がより更に好ましい。また、ホットメルト接着剤のベースポリマーの性質を有する成分として用いる場合、5,000~200,000がより好ましく、ベースポリマーとして用いる場合には、20,000~200,000が更に好ましく、20,000~40,000がより更に好ましく、ベースポリマーと粘着付与剤の性質を併せ持つ成分として用いる場合には、5,000~100,000が更に好ましい。
 本開示のオレフィン系樹脂のZ平均分子量(Mz)は、500~500,000が好ましい。なかでも、粘着付与剤としての性質を有する成分として用いる場合には、700~20,000がより好ましく、1,000~7,000が更に好ましく、1,200~4,000がより更に好ましい。また、ホットメルト接着剤のベースポリマーの性質を有する成分として用いる場合、10,000~500,000がより好ましい。
The number average molecular weight (Mn) of the olefin resin of the present disclosure is preferably 100 to 100,000. Among them, when used as a component having properties as a tackifier, 100 to 2,000 is more preferable, 200 to 1,000 is more preferable, and 200 to 500 is even more preferable. Further, when used as a component having the properties of a base polymer of a hot melt adhesive, 1,000 to 100,000 is more preferable.
The weight average molecular weight (Mw) of the olefin resin of the present disclosure is preferably 300 to 200,000. Among them, when used as a component having properties as a tackifier, 300 to 5,000 is more preferable, 500 to 3,000 is more preferable, 600 to 2,000 is even more preferable, and 600 to 1, 200 is even more preferred. Further, when used as a component having the properties of a base polymer of a hot melt adhesive, 5,000 to 200,000 is more preferable, and when used as a base polymer, 20,000 to 200,000 is further preferable. More preferably 000 to 40,000, and even more preferably 5,000 to 100,000 when used as a component having both the properties of a base polymer and a tackifier.
The Z average molecular weight (Mz) of the olefin resin of the present disclosure is preferably 500 to 500,000. Among them, when used as a component having properties as a tackifier, 700 to 20,000 is more preferable, 1,000 to 7,000 is more preferable, and 1,200 to 4,000 is even more preferable. Further, when used as a component having the properties of a base polymer of a hot melt adhesive, 10,000 to 500,000 is more preferable.
 本開示のオレフィン系樹脂の分子量分布(Mw/Mn)は、2.5以上であることが好ましく、3.0以上であることがより好ましい。
 また、分子量分布(Mz/Mw)は、1.5以上であることが好ましく、2.0以上であることがより好ましく、2.5超であることが更に好ましく、3.0以上であることがより更に好ましい。
 分子量分布が前記の範囲であることで、ホットメルト接着剤の原料として用いた場合、他の材料との相溶性と粘着性をより向上することができる。具体的には、例えばMw/Mnを上記の範囲とすることによってホットメルト接着剤のタックを発現することが可能となり、Mz/Mwを上記の範囲とすることで、ホットメルト接着剤の保持力を発現することが可能となる。
The molecular weight distribution (Mw / Mn) of the olefin resin of the present disclosure is preferably 2.5 or more, and more preferably 3.0 or more.
The molecular weight distribution (Mz / Mw) is preferably 1.5 or more, more preferably 2.0 or more, further preferably more than 2.5, and more than 3.0. Is even more preferable.
When the molecular weight distribution is in the above range, the compatibility and adhesiveness with other materials can be further improved when used as a raw material for a hot melt adhesive. Specifically, for example, by setting Mw / Mn in the above range, it is possible to develop the tack of the hot melt adhesive, and by setting Mz / Mw in the above range, the holding power of the hot melt adhesive Can be expressed.
 本開示のオレフィン系樹脂は、直鎖性が70%以上であり、80%以上であることが好ましい。
 直鎖性は、脂環式モノマーが1,2-結合にて重合した割合であり、1つの脂環式モノマー単位に2つ以上の不飽和結合を有する場合、脂環式モノマーの全炭素数をx、不飽和炭素結合数をy、13C-NMR測定によって得られた脂環式モノマー由来の構成単位に対するピーク面積の積分値をSAlicyclic、そのうち、不飽和炭素に由来するピーク面積の積分値をSCH=CHとすると、
      直鎖性(%)=(x/2(y-1))×SCH=CH/SAlicyclic×100
と示すことができる。これは、脂環式モノマーの二つの二重結合が両方とも重合反応に寄与した分岐構造形成に関わっていないモノマー及びディールス・アルダー反応等による環形成(環サイズを大きくする反応)に関わっていないモノマーの比率を示している。
 一方、1つの脂環式モノマー単位に1つの不飽和結合を有する場合、脂環式モノマーの全炭素数をx、不飽和炭素結合数をy、13C-NMR測定によって得られた脂環式モノマー由来の構成単位に対するピーク面積の積分値をSAlicyclic、そのうち、1,2-結合に由来する飽和炭素に対するピーク面積の積分値をSCH-CHとすると、
      直鎖性(%)=(x/2y)×SCH-CH/SAlicyclic×100
と示すことができる。
 直鎖性が前記の範囲であることで、ホットメルト接着剤の原料として用いた場合、加熱時の粘度を低減し、冷却時の凝集力に優れるため、粘着性をより向上することができる。更に直鎖性が高いため、加熱時にも分解が生じにくく、本開示のオレフィン系樹脂は臭気が少ないものと考えられる。
The olefin-based resin of the present disclosure has a linearity of 70% or more, preferably 80% or more.
Linearity is the ratio of alicyclic monomers polymerized in 1,2-bonds, and when one alicyclic monomer unit has two or more unsaturated bonds, the total number of carbon atoms of the alicyclic monomer is X, the number of unsaturated carbon bonds is y, 13 The integrated value of the peak area with respect to the alicyclic monomer-derived structural unit obtained by C-NMR measurement is S Alicyclic , of which the integral of the peak area derived from unsaturated carbon If the value is S CH = CH
Linearity (%) = (x / 2 (y-1)) x S CH = CH / S Alicyclic x 100
Can be shown. This is because both of the two double bonds of the alicyclic monomer are not involved in the formation of a branched structure that contributed to the polymerization reaction, and are not involved in the ring formation (reaction that increases the ring size) by the Diels-Alder reaction or the like. It shows the ratio of monomers.
On the other hand, when one alicyclic monomer unit has one unsaturated bond, the total number of carbon atoms of the alicyclic monomer is x, the number of unsaturated carbon bonds is y, and 13 the alicyclic compound obtained by C-NMR measurement. Let S Alicyclic be the integrated value of the peak area for the building blocks derived from the monomer, and S CH-CH be the integrated value of the peak area for the saturated carbon derived from the 1,2-bond.
Linearity (%) = (x / 2y) x S CH-CH / S Alicyclic x 100
Can be shown.
When the linearity is in the above range, when used as a raw material for a hot melt adhesive, the viscosity at the time of heating is reduced and the cohesive force at the time of cooling is excellent, so that the adhesiveness can be further improved. Further, since it has high linearity, decomposition is unlikely to occur even during heating, and it is considered that the olefin-based resin of the present disclosure has little odor.
<オレフィン系樹脂の製造方法>
 本開示のオレフィン系樹脂は、脂環式オレフィン(A)を含むモノマーを重合して得られる。重合反応においては、メタロセン触媒を使用することが好ましい。すなわち、メタロセン触媒の存在下、脂環式オレフィン(A)を含むモノマー成分を0~240℃で重合する工程を有することが好ましい。
<Manufacturing method of olefin resin>
The olefin-based resin of the present disclosure is obtained by polymerizing a monomer containing an alicyclic olefin (A). In the polymerization reaction, it is preferable to use a metallocene catalyst. That is, it is preferable to have a step of polymerizing the monomer component containing the alicyclic olefin (A) at 0 to 240 ° C. in the presence of a metallocene catalyst.
 本工程で用いられるメタロセン触媒は、主触媒としてのメタロセン系遷移金属錯体と助触媒とからなる触媒であり、スカベンジャーを用いてもよく、更に無機物等に担持されていてもよい。
 メタロセン系遷移金属錯体としては、第4族から選ばれる遷移金属(チタン、ジルコニウム、ハフニウム)に、シクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基、テトラヒドロインデニル基、置換テトラヒドロインデニル基、フルオレニル基又は置換フルオレニル基が配位子として1個または2個配位しているか、またはこれらのうちの2つの基が共有結合で架橋したものが配位しており、他に水素原子、酸素原子、窒素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アセチルアセトナート基、アミド基等の配位子を有するものが挙げられる。
The metallocene catalyst used in this step is a catalyst composed of a metallocene-based transition metal complex as a main catalyst and a co-catalyst, and a scavenger may be used, or the metallocene catalyst may be supported on an inorganic substance or the like.
As the metallocene-based transition metal complex, a transition metal (titanium, zirconium, hafnium) selected from Group 4 contains a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a tetrahydroindenyl group, and the like. A substituted tetrahydroindenyl group, a fluorenyl group or a substituted fluorenyl group is coordinated as one or two ligands, or two of these groups are coordinated by a covalent bond. Other examples include those having a ligand such as a hydrogen atom, an oxygen atom, a nitrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, an acetylacetonate group, and an amide group.
 助触媒としては、アルキルアルミノキサン化合物、ホウ素化合物等が挙げられる。
 アルキルアルミノキサン化合物としては、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、イソブチルアルミノキサン等が挙げられる。
 ホウ素化合物としては、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6-テトラフルオロフェニル)ボラン、トリス(2,3,4,5-テトラフルオロフェニル)ボラン、トリス(3,4,5-トリフルオロフェニル)ボラン、トリス(2,3,4-トリフルオロフェニル)ボラン、フェニルビス(ペンタフルオロフェニル)ボラン、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(2,3,5,6-テトラフルオロフェニル)ボレート、テトラキス(2,3,4,5-テトラフルオロフェニル)ボレート、テトラキス(3,4,5-トリフルオロフェニル)ボレート、テトラキス(2,2,4-トリフルオロフェニル)ボレート、フェニルビス(ペンタフルオロフェニル)ボレート、テトラキス(3,5-ビストリフルオロメチルフェニル)ボレート等が挙げられる。
 また、スカベンジャーとしては、アルキルアルミニウム化合物が挙げられ、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソプロピルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。
Examples of the co-catalyst include alkylaluminoxane compounds and boron compounds.
Examples of the alkylaluminoxane compound include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane and the like.
Examples of the boron compound include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetrafluorophenyl) borane, and tris (3,4). , 5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6- Tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluorophenyl) borate, tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, Phenylbis (pentafluorophenyl) borate, tetrakis (3,5-bistrifluoromethylphenyl) borate and the like can be mentioned.
Examples of the scavenger include alkylaluminum compounds, and specific examples thereof include trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, tributylaluminum, and triisobutylaluminum.
 メタロセン系遷移金属錯体の量は、脂環式オレフィン(A)を含む全モノマー成分に対して、0.1~50モル%が好ましく、1~20モル%がより好ましい。
 また、助触媒の量は、脂環式オレフィン(A)を含む全モノマー成分に対して、0.2~60モル%が好ましく、2~30モル%がより好ましい。
 本工程において、メタロセン触媒は2種以上用いてもよく、2種以上を併用することが好ましい。複数の触媒を併用することによって、得られるオレフィン系樹脂の分子量分布を調整することができ、臭気を抑制しつつ、粘着性を向上させることが可能となる。
 本工程における重合温度は、0~240℃が好ましく、20~220℃がより好ましく、40~200℃が更に好ましい。
The amount of the metallocene-based transition metal complex is preferably 0.1 to 50 mol%, more preferably 1 to 20 mol%, based on all the monomer components including the alicyclic olefin (A).
The amount of the co-catalyst is preferably 0.2 to 60 mol%, more preferably 2 to 30 mol%, based on all the monomer components including the alicyclic olefin (A).
In this step, two or more kinds of metallocene catalysts may be used, and it is preferable to use two or more kinds in combination. By using a plurality of catalysts in combination, the molecular weight distribution of the obtained olefin resin can be adjusted, and the adhesiveness can be improved while suppressing the odor.
The polymerization temperature in this step is preferably 0 to 240 ° C., more preferably 20 to 220 ° C., and even more preferably 40 to 200 ° C.
 本発明のオレフィン系樹脂の製造方法は、ストリッピングを行う工程を含むことが好ましい。本工程であるストリッピング工程は、オレフィン系樹脂の重合後に行ってもよいし、次に説明する水素化工程の後に行ってもよい。
 ストリッピングは、窒素、アルゴンガス等の不活性ガスを媒体として用いることが好ましく、窒素を用いることがより好ましい。具体的には、樹脂を容器中で加熱溶融した状態で、攪拌等により容器中の気体と樹脂の界面を更新し、更に容器中の気体を不活性ガス媒体で更新することにより、揮発性の不純物を除去する。例えば、窒素を含有する不活性ガスを媒体として、150~300℃、0.5~5時間、オレフィン樹脂100gに対して窒素1~1000L/分の流量でストリッピング処理を行うことができる。
 ここで、上述したストリッピング処理の各パラメータはこれに限られず、例えばストリッピングの温度は、100~300℃が好ましく、150~300℃がより好ましく、150~250℃が更に好ましい。
 また、例えばストリッピングを行う時間は、樹脂の量や用いる容器の大きさによって、最適な時間を選べばよいが、0.1~20時間が好ましく、0.5~10時間がより好ましく、0.5~5時間が更に好ましい。
 また、窒素を用いてストリッピングを行う際の窒素の流量は、用いる容器の大きさによって、最適な流量を選べばよいが、オレフィン系樹脂量100gに対して、0.1~20L/minが好ましく、1~10L/minがより好ましい。
 前記の温度、前記の時間、前記の窒素の流量のそれぞれの条件でストリッピングを行うことで、臭気が少なく、ホットメルト接着剤の原料に適してオレフィン系樹脂を効率的に得ることができる。本発明のオレフィン系樹脂の製造方法、すなわち、メタロセン触媒の存在下、脂環式オレフィン(A)を含むモノマー成分を0~240℃で重合して得られたオレフィン系樹脂は、得られた樹脂そのもので臭気が少ないため、過度なストリッピングの条件を必要としない。更に前記重合工程で得られたオレフィン系樹脂が、芳香族性部分が1%以下であり、直鎖性が70%以上である条件を満たす場合には、更に樹脂そのものの臭気が少ないため、過度なストリッピングが不要となる。
The method for producing an olefin resin of the present invention preferably includes a step of stripping. The stripping step, which is the main step, may be carried out after the polymerization of the olefin resin, or may be carried out after the hydrogenation step described below.
For stripping, it is preferable to use an inert gas such as nitrogen or argon gas as a medium, and it is more preferable to use nitrogen. Specifically, in a state where the resin is heated and melted in the container, the interface between the gas and the resin in the container is renewed by stirring or the like, and the gas in the container is renewed with an inert gas medium to make the resin volatile. Remove impurities. For example, using an inert gas containing nitrogen as a medium, stripping treatment can be performed at 150 to 300 ° C. for 0.5 to 5 hours at a flow rate of 1 to 1000 L / min of nitrogen with respect to 100 g of the olefin resin.
Here, each parameter of the stripping treatment described above is not limited to this, and for example, the stripping temperature is preferably 100 to 300 ° C, more preferably 150 to 300 ° C, and even more preferably 150 to 250 ° C.
Further, for example, the time for stripping may be selected optimally depending on the amount of resin and the size of the container used, but is preferably 0.1 to 20 hours, more preferably 0.5 to 10 hours, and 0. .5-5 hours is more preferred.
The optimum flow rate of nitrogen when stripping with nitrogen may be selected according to the size of the container used, but 0.1 to 20 L / min is used for 100 g of the olefin resin. Preferably, 1 to 10 L / min is more preferable.
By performing stripping under the respective conditions of the above temperature, the above time, and the flow rate of nitrogen, an olefin resin having less odor and suitable as a raw material for a hot melt adhesive can be efficiently obtained. The method for producing an olefin-based resin of the present invention, that is, the olefin-based resin obtained by polymerizing a monomer component containing an alicyclic olefin (A) at 0 to 240 ° C. in the presence of a metallocene catalyst is the obtained resin. Since it has little odor by itself, it does not require excessive stripping conditions. Further, when the olefin resin obtained in the polymerization step satisfies the condition that the aromatic portion is 1% or less and the linearity is 70% or more, the odor of the resin itself is further reduced, which is excessive. No need for stripping.
 本発明のオレフィン系樹脂の製造方法は、更に水素化する工程を含むことが好ましい。
 原料である脂環式オレフィン(A)に2つ以上の不飽和結合を有する場合、又は脂環式オレフィン(A)とα-オレフィン(B)以外に2つ以上の不飽和結合を有するモノマーを用いた場合に、水素化する工程を含むことがより好ましい。
 本工程は、触媒の存在下、100~300℃で水素化する工程であることがより好ましい。前記の重合工程で得られたオレフィン系樹脂を水素化することによって、化学的安定性や熱的安定性が向上し、更に臭気も低減することができる。なかでも芳香族系の臭気を低減することが可能となる。
 本水素化工程で用いられる触媒は、金属触媒が好ましく、パラジウム触媒、ニッケル触媒、白金触媒、ルテニウム触媒、レニウム触媒、銅触媒、ロジウム触媒等が挙げられる。
 パラジウム触媒としては、パラジウムカーボン、パラジウムアルミナ、パラジウムシリカ、パラジウムシリカアルミナ、ゼオライト担持パラジウム等が挙げられる。
 ニッケル触媒としては、ニッケル珪藻土、スポンジニッケル、ニッケルアルミナ、ニッケルシリカ、ニッケルカーボン等が挙げられる。
 白金触媒としては、白金シリカ、白金シリカアルミナ、ゼオライト担持白金等が挙げられる。
 ルテニウム触媒としては、ルテニウムカーボン、ルテニウムアルミナ、ルテニウムシリカ、ルテニウムシリカアルミナ、ゼオライト担持ルテニウム等が挙げられる。
 水素化触媒の量は、オレフィン系樹脂100質量部に対して、1~40質量部が好ましく、5~35質量部がより好ましい。
 本工程における水素化反応温度は、30~300℃が好ましく、60~300℃がより好ましく、100~300℃が更に好ましく、100~250℃がより更に好ましい。
 本工程における水素圧は、1~20MPaが好ましく、2~15MPaがより好ましく、3~10MPaが更に好ましい。
The method for producing an olefin resin of the present invention preferably further includes a step of hydrogenation.
When the alicyclic olefin (A) as a raw material has two or more unsaturated bonds, or a monomer having two or more unsaturated bonds other than the alicyclic olefin (A) and the α-olefin (B) When used, it is more preferred to include a step of hydrogenation.
This step is more preferably a step of hydrogenating at 100 to 300 ° C. in the presence of a catalyst. By hydrogenating the olefin-based resin obtained in the above polymerization step, chemical stability and thermal stability can be improved, and odor can also be reduced. In particular, it is possible to reduce aromatic odors.
The catalyst used in this hydrogenation step is preferably a metal catalyst, and examples thereof include a palladium catalyst, a nickel catalyst, a platinum catalyst, a ruthenium catalyst, a renium catalyst, a copper catalyst, and a rhodium catalyst.
Examples of the palladium catalyst include palladium carbon, palladium alumina, palladium silica, palladium silica alumina, and zeolite-supported palladium.
Examples of the nickel catalyst include nickel diatomaceous earth, sponge nickel, nickel alumina, nickel silica, nickel carbon and the like.
Examples of the platinum catalyst include platinum silica, platinum silica alumina, and zeolite-supported platinum.
Examples of the ruthenium catalyst include ruthenium carbon, ruthenium alumina, ruthenium silica, ruthenium silica alumina, and zeolite-supported ruthenium.
The amount of the hydrogenation catalyst is preferably 1 to 40 parts by mass, more preferably 5 to 35 parts by mass with respect to 100 parts by mass of the olefin resin.
The hydrogenation reaction temperature in this step is preferably 30 to 300 ° C., more preferably 60 to 300 ° C., further preferably 100 to 300 ° C., still more preferably 100 to 250 ° C.
The hydrogen pressure in this step is preferably 1 to 20 MPa, more preferably 2 to 15 MPa, still more preferably 3 to 10 MPa.
[ホットメルト接着剤]
 本開示のホットメルト接着剤は、前記オレフィン系樹脂を含む。
 すなわち、本開示のホットメルト接着剤は、脂環式オレフィン(A)を由来とする構成単位を含み、芳香族モノマーを由来とする構成単位が1モル%以下であり、揮発成分が10ppm以下であるオレフィン系樹脂を含む。
 前記オレフィン樹脂は、その分子量、分子量分布、ガラス転移温度等を調節することにより、ホットメルト接着剤を構成する成分のうち、粘着付与剤の性質を有する成分、ベースポリマーの性質を有する成分、又は粘着付与剤とベースポリマーの性質を併せ持つ成分として用いることができる。
 特に本開示の前記オレフィン系樹脂は、粘着付与剤とベースポリマーの性質を併せ持つ成分として用いることができるため、別途粘着付与剤やベースポリマーを含まない場合でも臭気が少なく、粘着性に優れるホットメルト接着剤が得られる。一方、粘着付与剤の性質を有する成分、又はベースポリマーの性質を有する成分として用いた場合、それぞれ別途ベースポリマーや粘着付与剤を含むことが好ましいが、この場合にも本開示の前記オレフィン系樹脂は、他の材料との親和性に優れるため、良好なホットメルト接着剤を得ることができる。
 いずれの成分として用いた場合も、臭気が少なく、他の材料との親和性に優れるという本開示技術の効果を発揮することができ、得られるホットメルト接着剤の粘着性を向上させ、臭気も抑制することができる。
[Hot melt adhesive]
The hot melt adhesive of the present disclosure contains the olefin resin.
That is, the hot melt adhesive of the present disclosure contains a structural unit derived from the alicyclic olefin (A), has a structural unit derived from an aromatic monomer of 1 mol% or less, and has a volatile component of 10 ppm or less. Contains certain olefinic resins.
By adjusting the molecular weight, molecular weight distribution, glass transition temperature, etc. of the olefin resin, among the components constituting the hot melt adhesive, a component having the property of a tackifier, a component having the property of a base polymer, or a component having the property of a base polymer, or It can be used as a component having both the properties of a tackifier and a base polymer.
In particular, since the olefin-based resin of the present disclosure can be used as a component having both the properties of a tackifier and a base polymer, a hot melt having less odor and excellent tackiness even when a separate tackifier and base polymer are not contained. An adhesive is obtained. On the other hand, when used as a component having the properties of a tackifier or a component having the properties of a base polymer, it is preferable to separately contain a base polymer and a tackifier, respectively. In this case as well, the olefin-based resin of the present disclosure is used. Has excellent affinity with other materials, so that a good hot melt adhesive can be obtained.
When used as any of the components, the effect of the present disclosure technology of having less odor and excellent affinity with other materials can be exhibited, the adhesiveness of the obtained hot melt adhesive is improved, and the odor is also reduced. It can be suppressed.
 本開示のホットメルト接着剤は、前記オレフィン系樹脂に加え、ベースポリマー、粘着付与剤、可塑剤、添加剤を含むことができる。 The hot melt adhesive of the present disclosure may contain a base polymer, a tackifier, a plasticizer, and an additive in addition to the olefin resin.
<ベースポリマー>
 本開示のホットメルト接着剤は、ベースポリマーを更に含むことが好ましい。
 前記オレフィン樹脂が、ベースポリマーの性質を有する成分、又は粘着付与剤とベースポリマーの性質を併せ持つ成分として用いられた場合、ベースポリマーを含まなくても良好なホットメルト接着剤が得られるが、特に前記オレフィン樹脂が、粘着付与剤の性質を有する成分として用いられた場合、ベースポリマーを含むことが好ましい。
 ベースポリマーの具体例としては、天然ゴム、オレフィン系エラストマー、スチレン系エラストマー等が挙げられ、オレフィン系エラストマー、スチレン系エラストマーが好ましい。
 これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
<Base polymer>
The hot melt adhesive of the present disclosure preferably further contains a base polymer.
When the olefin resin is used as a component having the properties of a base polymer or a component having both the properties of a tackifier and a base polymer, a good hot melt adhesive can be obtained even if the base polymer is not contained, but in particular. When the olefin resin is used as a component having the properties of a tackifier, it preferably contains a base polymer.
Specific examples of the base polymer include natural rubber, olefin-based elastomer, styrene-based elastomer, and the like, and olefin-based elastomer and styrene-based elastomer are preferable.
These may be used individually by 1 type, and may be used in combination of 2 or more type.
 オレフィン系エラストマーとしては、エチレン系オレフィン重合体、非晶性オレフィン重合体、プロピレン系エラストマー、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エステル共重合体等が挙げられる。 Examples of the olefin-based elastomer include ethylene-based olefin polymers, amorphous olefin polymers, propylene-based elastomers, ethylene-vinyl acetate copolymers, and ethylene-acrylic acid ester copolymers.
 エチレン系オレフィン重合体は、具体的には、ポリエチレンや、エチレンと炭素数3~10のオレフィンとの共重合体が挙げられる。ホットメルト接着剤のベースポリマーとして使用できるものであれば特に限定されないが、ホットメルト接着剤の粘着性の観点からは、好ましくはエチレン-α-オレフィン共重合体である。α-オレフィンの具体例としては、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられ、これらのうち一種又は二種以上を用いることができる。これらのα-オレフィンの中でも1-オクテンが好ましい。ホットメルト接着剤の粘着性の観点から、より好ましくはエチレン-1-オクテン共重合体であり、更に好ましくは1-オクテン由来の構成単位を5~50質量%含有するエチレン-1-オクテン共重合体である。
 エチレン系オレフィン重合体の融点は、耐熱クリープ性の観点から、好ましくは60~120℃、より好ましくは60~90℃である。エチレン系オレフィン重合体の融点は、示差走査熱量測定により測定することができる。なお、エチレン系オレフィン重合体のうち非晶性のものは、後述する非晶性オレフィン重合体に属する。
Specific examples of the ethylene-based olefin polymer include polyethylene and a copolymer of ethylene and an olefin having 3 to 10 carbon atoms. It is not particularly limited as long as it can be used as a base polymer of a hot melt adhesive, but from the viewpoint of the adhesiveness of the hot melt adhesive, an ethylene-α-olefin copolymer is preferable. Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 1-hexadecene. , 1-Octadecene, 1-Eikosen and the like, and one or more of these can be used. Among these α-olefins, 1-octene is preferable. From the viewpoint of the adhesiveness of the hot melt adhesive, it is more preferably an ethylene-1-octene copolymer, and more preferably an ethylene-1-octene copolymer containing 5 to 50% by mass of a 1-octene-derived structural unit. It is a coalescence.
The melting point of the ethylene-based olefin polymer is preferably 60 to 120 ° C., more preferably 60 to 90 ° C. from the viewpoint of heat-resistant creep property. The melting point of the ethylene-based olefin polymer can be measured by differential scanning calorimetry. Of the ethylene-based olefin polymers, amorphous ones belong to the amorphous olefin polymers described later.
 非晶性オレフィン重合体としては、炭素数2~24の直鎖若しくは分岐状のα-オレフィン若しくはジエンからなる群から選ばれる1種以上の単独重合体または共重合体であり、特に限定されないが、ポリブテン、ポリブタジエン、ポリイソプレン、非晶性ポリアルファオレフィンが挙げられる。
 ポリブテンとしては、イソブテン、ノルマルブテンのそれぞれ単独或いは共重合体及びその水素添加体が挙げられる。
 ポリブタジエンとしては、1,2-ブタジエンや1,4-ブタジエンの単独或いは共重合体及びその水素添加体が挙げられ、末端に水酸基を有していてもよい。
 ポリイソプレンとしては、イソプレンの単独重合体或いは共重合体及びその水素添加体が挙げられ、末端に水酸基を有していてもよい。
 非晶性ポリアルファオレフィンとしては、炭素数2~6のオレフィンの単独重合あるいは共重合体が挙げられる。
The amorphous olefin polymer is one or more homopolymers or copolymers selected from the group consisting of linear or branched α-olefins or dienes having 2 to 24 carbon atoms, and is not particularly limited. , Polybutene, polybutadiene, polyisoprene, and amorphous polyalphaolefins.
Examples of polybutene include isobutene and normal butene alone or copolymers and hydrogenated products thereof.
Examples of polybutadiene include 1,2-butadiene and 1,4-butadiene alone or copolymers and hydrogenated products thereof, and may have a hydroxyl group at the terminal.
Examples of polyisoprene include homopolymers or copolymers of isoprene and hydrogenated products thereof, and may have a hydroxyl group at the terminal.
Examples of the amorphous polyalphaolefin include homopolymerizations and copolymers of olefins having 2 to 6 carbon atoms.
 プロピレン系エラストマーとしては、プロピレン単位を主な構成単位とするエラストマーであり、低融点ポリプロピレン等が挙げられる。エラストマーは、ゴム弾性的な性質を持つものであれば密度によって制限されることはなく、化学的架橋されているものでも化学的架橋されていないものでもよい。 Examples of the propylene-based elastomer include elastomers having a propylene unit as a main constituent unit, such as low melting point polypropylene. The elastomer is not limited by the density as long as it has rubber elastic properties, and may be chemically crosslinked or not chemically crosslinked.
 エチレン-酢酸ビニル共重合体の酢酸ビニル含有率は、5~50質量%が好ましく、10~40質量%がより好ましい。 The vinyl acetate content of the ethylene-vinyl acetate copolymer is preferably 5 to 50% by mass, more preferably 10 to 40% by mass.
 スチレン系エラストマーとしては、スチレン系ブロック共重合体が好ましい。
 スチレン系ブロック共重合体は、スチレン系化合物と共役ジエン化合物とがブロック共重合した共重合体であって、通常、スチレン系化合物ブロックと共役ジエン化合物ブロックとを有する。
As the styrene-based elastomer, a styrene-based block copolymer is preferable.
The styrene-based block copolymer is a copolymer in which a styrene-based compound and a conjugated diene compound are block-copolymerized, and usually has a styrene-based compound block and a conjugated diene compound block.
 ここで、「スチレン系化合物」としては、スチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、1,3-ジメチルスチレン、α-メチルスチレン、ビニルナフタレン及びビニルアントラセン等を例示できる。特にスチレンが好ましい。これらのスチレン系化合物は、単独で又は組み合わせて使用することができる。
 「共役ジエン化合物」とは、少なくとも一対の共役二重結合を有するジオレフィン化合物を意味する。「共役ジエン化合物」として、具体的には、1,3-ブタジエン、2-メチル-1,3-ブタジエン(又はイソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンを例示することができる。1,3-ブタジエン、2-メチル-1,3-ブタジエンが特に好ましい。これらの共役ジエン化合物は、単独で又は組み合わせて使用することができる。
Here, examples of the "styrene-based compound" include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, α-methylstyrene, vinylnaphthalene, vinylanthracene and the like. it can. Styrene is particularly preferable. These styrene compounds can be used alone or in combination.
By "conjugated diene compound" is meant a diolefin compound having at least a pair of conjugated double bonds. Specific examples of the "conjugated diene compound" include 1,3-butadiene, 2-methyl-1,3-butadiene (or isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like. 1,3-Hexadiene can be exemplified. 1,3-butadiene and 2-methyl-1,3-butadiene are particularly preferable. These conjugated diene compounds can be used alone or in combination.
 スチレン系ブロック共重合体は、未水素添加物であっても、水素添加物であってもよい。「スチレン系ブロック共重合体の未水素添加物」とは、具体的には、共役ジエン化合物に基づくブロックが水素添加されていないものを例示できる。また、「スチレン系ブロック共重合体の水素添加物」とは、具体的には、共役ジエン化合物に基づくブロックの全部、若しくは一部が水素添加されたブロック共重合体を例示できる。
 「スチレン系ブロック共重合体の水素添加物」の水素添加された割合を、「水素添加率」で示すことができる。「スチレン系ブロック共重合体の水素添加物」の「水素添加率」とは、共役ジエン化合物に基づくブロックに含まれる全脂肪族二重結合を基準とし、その中で、水素添加されて飽和炭化水素結合に転換された二重結合の割合をいう。この「水素添加率」は、赤外分光光度計及び核磁器共鳴装置等によって測定することができる。
The styrene-based block copolymer may be an unhydrogenated additive or a hydrogenated additive. The "non-hydrogenated styrene block copolymer" can be specifically exemplified by a block based on a conjugated diene compound to which no hydrogenation has been added. Further, the "hydrogenated styrene-based block copolymer" can be specifically exemplified by a block copolymer in which all or part of a block based on a conjugated diene compound is hydrogenated.
The hydrogenated ratio of the "hydrogenated styrene block copolymer" can be indicated by the "hydrogenation rate". The "hydrogenation rate" of the "hydrogenation of styrene-based block copolymer" is based on the total aliphatic double bond contained in the block based on the conjugated diene compound, in which hydrogenation is performed and saturated hydrocarbonation is performed. The ratio of double bonds converted to hydrogen bonds. This "hydrogenation rate" can be measured by an infrared spectrophotometer, a magnetic resonance imaging device, or the like.
 「スチレン系ブロック共重合体の未水素添加物」として、具体的には、例えばスチレン-イソプレン-スチレンブロックコポリマー(「SIS」ともいう)、スチレン-ブタジエン-スチレンブロックコポリマー(「SBS」ともいう)を例示できる。「スチレン系ブロック共重合体の水素添加物」として、具体的には、例えば水素添加されたスチレン-イソプレン-スチレンブロックコポリマー(「SEPS」ともいう)及び水素添加されたスチレン-ブタジエン-スチレンブロックコポリマー(「SEBS」ともいう)を例示できる。
 スチレン系ブロック共重合体は、単独で又は組み合わせて用いることができる。
Specific examples of the "non-hydrogenated styrene block copolymer" include styrene-isoprene-styrene block copolymer (also referred to as "SIS") and styrene-butadiene-styrene block copolymer (also referred to as "SBS"). Can be exemplified. Specific examples of "hydrogenated styrene block copolymers" include hydrogenated styrene-isoprene-styrene block copolymers (also referred to as "SEPS") and hydrogenated styrene-butadiene-styrene block copolymers. (Also referred to as "SEBS") can be exemplified.
Styrene-based block copolymers can be used alone or in combination.
 スチレン系ブロック共重合体は、ホットメルト接着剤の接着強度の観点から、スチレン系ブロック共重合体に含まれるスチレンブロックの割合(スチレン含有率)が好ましくは5~50質量%、より好ましくは10~40質量%である。 From the viewpoint of the adhesive strength of the hot melt adhesive, the styrene block copolymer preferably has a styrene block ratio (styrene content) contained in the styrene block copolymer of 5 to 50% by mass, more preferably 10. ~ 40% by mass.
 本開示のホットメルト接着剤に用いられるベースポリマーのハンセン溶解度パラメータと、前記オレフィン系樹脂のハンセン溶解度パラメータとの差は、5以下であることが好ましく、4以下がより好ましく、3以下が更に好ましく、2以下がより更に好ましく、1以下がより更に好ましい。
 ここでいうハンセン溶解度パラメータの差とは、以下の式で求められるRa値をいう。
     Ra=[4(δd2-δd12+(δp2-δp12+(δh2-δh121/2
(式中、δdは分散力、δpは分極力、δhは水素結合力に基づく溶解度パラメータであり、δd1、δp1、δh1はオレフィン系樹脂の溶解度パラメータであり、δd2、δp2、δh2はベースポリマーの溶解度パラメーターである。)
The difference between the Hansen solubility parameter of the base polymer used in the hot melt adhesive of the present disclosure and the Hansen solubility parameter of the olefin resin is preferably 5 or less, more preferably 4 or less, still more preferably 3 or less. 2, 2 or less is more preferable, and 1 or less is even more preferable.
The difference in the Hansen solubility parameter referred to here means the Ra value obtained by the following formula.
Ra = [4 (δ d2- δ d1 ) 2 + (δ p2- δ p1 ) 2 + (δ h2- δ h1 ) 2 ] 1/2
(In the equation, δ d is the dispersive force, δ p is the polarization force, δ h is the solubility parameter based on the hydrogen bonding force, and δ d1 , δ p1 , and δ h1 are the solubility parameters of the olefin resin, and δ d2 , δ p2 and δ h2 are solubility parameters of the base polymer.)
 ベースポリマーの含有量は、凝集性の観点から、ホットメルト接着剤100質量部中、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上、更に好ましくは30質量部以上であり、そして、好ましくは80質量部以下、より好ましくは70質量部以下、更に好ましくは60質量部以下、更に好ましくは50質量部以下である。すなわち、ホットメルト接着剤中、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上、更に好ましくは30質量%以上であり、そして、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下、更に好ましくは50質量%以下である。
 ベースポリマーのガラス転移温度は、-20~100℃が好ましく、-20~60℃がより好ましい。
From the viewpoint of cohesiveness, the content of the base polymer is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, still more preferably 30 parts by mass, based on 100 parts by mass of the hot melt adhesive. It is more than parts, and preferably 80 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 60 parts by mass or less, still more preferably 50 parts by mass or less. That is, in the hot melt adhesive, it is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, still more preferably 30% by mass or more, and preferably 80% by mass or less. It is more preferably 70% by mass or less, further preferably 60% by mass or less, still more preferably 50% by mass or less.
The glass transition temperature of the base polymer is preferably −20 to 100 ° C., more preferably −20 to 60 ° C.
 前記オレフィン樹脂が、ベースポリマーの性質を有する成分、又は粘着付与剤とベースポリマーの性質を併せ持つ成分として用いられた場合でも、第二のベースポリマーを含んでもよい。
 第二のベースポリマーとしては、本開示の前記オレフィン樹脂、すなわち前記[オレフィン系樹脂]の項で説明したオレフィン樹脂、又は前記オレフィン系エラストマーが好ましく用いられる。
 第二のベースポリマーの融点は、60~120℃であることが好ましく、60~110℃であることがより好ましく、70~100℃であることが更に好ましい。
The olefin resin may contain a second base polymer even when it is used as a component having the properties of a base polymer or a component having both the properties of a tackifier and the base polymer.
As the second base polymer, the olefin resin of the present disclosure, that is, the olefin resin described in the section of the [olefin resin], or the olefin elastomer is preferably used.
The melting point of the second base polymer is preferably 60 to 120 ° C., more preferably 60 to 110 ° C., and even more preferably 70 to 100 ° C.
<粘着付与剤>
 本開示のホットメルト接着剤は、粘着付与剤を更に含むことが好ましい。
 前記オレフィン樹脂が、粘着付与剤の性質を有する成分、又は粘着付与剤とベースポリマーの性質を併せ持つ成分として用いられた場合、粘着付与剤を含まなくても良好なホットメルト接着剤が得られるが、特に前記オレフィン樹脂が、ベースポリマーの性質を有する成分として用いられた場合、粘着付与剤を含むことが好ましい。
 本開示のホットメルト接着剤が、粘着付与剤を含む場合、前記オレフィン系樹脂は、ベースポリマーの性質を備えることが好ましい。
 粘着付与剤としては、例えば、脂肪族系炭化水素石油樹脂の水素化誘導体、ロジン誘導体樹脂、ポリテルペン樹脂、石油樹脂、油溶性フェノール樹脂等からなる常温で固体、半固体あるいは液状のもの等を挙げることができる。具体的には、天然ロジン、変性ロジン、水添ロジン、天然ロジンのグリセロールエステル、変性ロジンのグリセロールエステル、天然ロジンのペンタエリスリトールエステル、変性ロジンのペンタエリスリトールエステル、水添ロジンのペンタエリスリトールエステル、天然テルペンのコポリマー、天然テルペンの3次元ポリマー、水添テルペンのコポリマーの水素化誘導体、ポリテルペン樹脂、フェノール系変性テルペン樹脂の水素化誘導体、脂肪族石油炭化水素樹脂、脂肪族石油炭化水素樹脂の水素化誘導体、芳香族石油炭化水素樹脂、芳香族石油炭化水素樹脂の水素化誘導体、環状脂肪族石油炭化水素樹脂、環状脂肪族石油炭化水素樹脂の水素化誘導体を例示することができる。これらは単独で又は二種以上を組み合わせて用いてもよい。
<Adhesive imparting agent>
The hot melt adhesive of the present disclosure preferably further contains a tackifier.
When the olefin resin is used as a component having the properties of a tackifier or a component having both the properties of a tackifier and a base polymer, a good hot melt adhesive can be obtained even if the tackifier is not contained. In particular, when the olefin resin is used as a component having the properties of a base polymer, it preferably contains a tackifier.
When the hot melt adhesive of the present disclosure contains a tackifier, the olefin resin preferably has the properties of a base polymer.
Examples of the tackifier include hydrogenated derivatives of aliphatic hydrocarbon petroleum resins, rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenol resins, and the like, which are solid, semi-solid, or liquid at room temperature. be able to. Specifically, natural rosin, modified rosin, hydrocarbon rosin, glycerol ester of natural rosin, glycerol ester of modified rosin, pentaerythritol ester of natural rosin, pentaerythritol ester of modified rosin, pentaerythritol ester of hydrogenated rosin, natural Terpene copolymers, natural terpene three-dimensional polymers, hydrogenated terpene copolymer hydride derivatives, polyterpene resins, phenolic modified terpene resin hydride derivatives, aliphatic petroleum hydrocarbon resins, aliphatic petroleum hydrocarbon resin hydrides Examples thereof include derivatives, aromatic petroleum hydrocarbon resins, hydrides of aromatic petroleum hydrocarbon resins, cyclic aliphatic petroleum hydrocarbon resins, and hydrides of cyclic aliphatic petroleum hydrocarbon resins. These may be used alone or in combination of two or more.
 粘着付与剤の含有量は、粘着性向上の観点から、ホットメルト接着剤100質量部中、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上、更に好ましくは30質量部以上であり、そして、好ましくは80質量部以下、より好ましくは70質量部以下、更に好ましくは60質量部以下、更に好ましくは50質量部以下である。すなわち、ホットメルト接着剤中、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上、更に好ましくは30質量%以上であり、そして、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下、更に好ましくは50質量%以下である。 From the viewpoint of improving the tackiness, the content of the tackifier is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, still more preferably 20 parts by mass or more, based on 100 parts by mass of the hot melt adhesive. It is 30 parts by mass or more, and preferably 80 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 60 parts by mass or less, still more preferably 50 parts by mass or less. That is, in the hot melt adhesive, it is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, further preferably 30% by mass or more, and preferably 80% by mass or less. It is more preferably 70% by mass or less, further preferably 60% by mass or less, still more preferably 50% by mass or less.
 粘着付与剤の軟化点は、好ましくは-20℃以上、より好ましくは-15℃以上、更に好ましくは-10℃以上であり、そして、好ましくは180℃以下、より好ましくは170℃以下、更に好ましくは160℃以下である。 The softening point of the tackifier is preferably −20 ° C. or higher, more preferably −15 ° C. or higher, further preferably −10 ° C. or higher, and preferably 180 ° C. or lower, more preferably 170 ° C. or lower, further preferably. Is 160 ° C or lower.
<可塑剤>
 本開示のホットメルト接着剤は、可塑剤を更に含むことが好ましい。
 可塑剤としては、特に限定されないが、ホットメルト接着剤に使用されるものが好ましく、より好ましくはオイル又はワックスである。また、可塑剤としては、フタル酸エステル類、アジピン酸エステル類、脂肪酸エステル類、グリコール類、エポキシ系高分子可塑剤等を使用することもできる。
<Plasticizer>
The hot melt adhesive of the present disclosure preferably further contains a plasticizer.
The plasticizer is not particularly limited, but those used for hot melt adhesives are preferable, and oils or waxes are more preferable. Further, as the plasticizer, phthalates, adipates, fatty acid esters, glycols, epoxy-based polymer plasticizers and the like can also be used.
 オイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、イソパラフィン系オイル等を例示できる。 Examples of the oil include paraffinic process oil, naphthenic process oil, and isoparaffinic oil.
 パラフィン系プロセスオイルの市販品としては、出光興産株式会社製の「ダイアナプロセスオイルPW-32」、「ダイアナプロセスオイルPW-90」、「ダイアナプロセスオイルPW-150」、「ダイアナプロセスオイルPS-32」、「ダイアナプロセスオイルPS-90」、「ダイアナプロセスオイルPS-430」;シェブロンUSA社製の「Kaydolオイル」、「ParaLuxオイル」等が挙げられる(いずれも商品名)。 Commercially available paraffin-based process oils include "Diana Process Oil PW-32", "Diana Process Oil PW-90", "Diana Process Oil PW-150", and "Diana Process Oil PS-32" manufactured by Idemitsu Kosan Co., Ltd. , "Diana Process Oil PS-90", "Diana Process Oil PS-430"; "Kaydol Oil", "ParaLux Oil" manufactured by Chevron USA, etc. (all are trade names).
 イソパラフィン系オイルの市販品としては、出光興産株式会社製の「IPソルベント1016」、「IPソルベント1620」、「IPソルベント2028」、「IPソルベント2835」、「IPクリーンLX」;日油株式会社製の「NAソルベント」シリーズ等が挙げられる(いずれも商品名)。 Commercially available isoparaffin oils include "IP Solvent 1016", "IP Solvent 1620", "IP Solvent 2028", "IP Solvent 2835", and "IP Clean LX" manufactured by Idemitsu Kosan Co., Ltd .; "NA Solvent" series, etc. (both are product names).
 ワックスとしては、例えば、動物ワックス、植物ワックス、カルナウバワックス、キャンデリラワックス、木蝋、蜜蝋、鉱物ワックス、石油ワックス、パラフィンワックス、マイクロクリスタリンワックス、ペトロラタム、高級脂肪酸ワックス、高級脂肪酸エステルワックス、フィッシャー・トロプシュワックス等を例示できる。 Examples of waxes include animal wax, vegetable wax, carnauba wax, candelilla wax, wood wax, beeswax, mineral wax, petroleum wax, paraffin wax, microcrystallin wax, petroleum, higher fatty acid wax, higher fatty acid ester wax, and Fisher. Tropsch wax and the like can be exemplified.
 本開示のホットメルト接着剤における可塑剤の含有量は、粘着性向上の観点及び塗布性向上の観点から、ホットメルト接着剤100質量部中、2質量部以上、好ましくは5質量部以上であり、より好ましくは10質量部以上であり、そして、60質量部以下、好ましくは40質量部以下、より好ましくは30質量部以下である。すなわち、ホットメルト接着剤中、2質量%以上、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、そして、60質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下である。 The content of the plasticizer in the hot melt adhesive of the present disclosure is 2 parts by mass or more, preferably 5 parts by mass or more, out of 100 parts by mass of the hot melt adhesive from the viewpoint of improving the adhesiveness and the coatability. , More preferably 10 parts by mass or more, and 60 parts by mass or less, preferably 40 parts by mass or less, more preferably 30 parts by mass or less. That is, in the hot melt adhesive, 2% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and 60% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less. It is mass% or less.
<その他の添加剤>
 本開示の樹脂組成物は、本開示技術の目的を損なわない範囲で、必要に応じて更に無機フィラーや酸化防止剤、紫外線吸収剤、光安定剤、滑剤等の任意の添加剤を含有してもよい。
<Other additives>
The resin composition of the present disclosure further contains an inorganic filler, an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant and other arbitrary additives as necessary, as long as the object of the disclosed technology is not impaired. May be good.
 無機フィラーとしては、タルク、炭酸カルシウム、炭酸バリウム、ウォラストナイト、シリカ、クレー、雲母、カオリン、酸化チタン、ケイソウ土、尿素系樹脂、スチレンビーズ、澱粉、硫酸バリウム、硫酸カルシウム、ケイ酸マグネシウム、炭酸マグネシウム、アルミナ、石英粉末等を例示できる。 Inorganic fillers include talc, calcium carbonate, barium carbonate, wollastonite, silica, clay, mica, kaolin, titanium oxide, silica soil, urea resin, styrene beads, starch, barium sulfate, calcium sulfate, magnesium silicate, Examples thereof include magnesium carbonate, alumina, and quartz powder.
 酸化防止剤としては、トリスノニルフェニルホスファイト、ジステアリルペンタエリスリトールジホスファイト、「アデカスタブ1178」(株式会社ADEKA製)、「スタミライザーTNP」(住友化学株式会社製)、「イルガフォス168」(BASF社製)、「SandstabP-EPQ」(サンド社製)等のリン系酸化防止剤、2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、「スミライザーBHT」(住友化学株式会社製)、「イルガノックス1010」(BASF社製)等のフェノール系酸化防止剤、ジラウリル-3,3’-チオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、「スミライザーTPL」(住友化学株式会社製)、「DLTP「ヨシトミ」」(三菱ケミカル株式会社製)、「アンチオックスL」(日油株式会社製)等のイオウ系酸化防止剤を例示できる。 Antioxidants include trisnonylphenylphosphite, distearylpentaerythritol diphosphite, "Adecastab 1178" (manufactured by ADEKA Co., Ltd.), "Stamylizer TNP" (manufactured by Sumitomo Chemical Co., Ltd.), "Irgafos 168" (BASF , "Sandstab P-EPQ" (manufactured by Sand), phosphorus-based antioxidants, 2,6-di-t-butyl-4-methylphenol, n-octadecil-3- (3', 5'- Di-t-butyl-4'-hydroxyphenyl) propionate, phenolic antioxidants such as "Smilizer BHT" (manufactured by Sumitomo Chemical Co., Ltd.), "Irganox 1010" (manufactured by BASF), dilauryl-3,3' -Thiodipropionate, pentaerythritol tetrakis (3-laurylthiopropionate), "Smilizer TPL" (manufactured by Sumitomo Chemical Co., Ltd.), "DLTP" Yoshitomi "(manufactured by Mitsubishi Chemical Co., Ltd.)," Antiox L " Examples thereof include sulfur-based antioxidants (manufactured by Nichiyu Co., Ltd.).
<ホットメルト接着剤の製造方法と用途>
 本開示のホットメルト接着剤は、前記オレフィン系樹脂に加え、必要に応じ、ベースポリマー、粘着付与剤、可塑剤及び添加剤を、ヘンシェルミキサー等を用いてドライブレンドし、単軸又は二軸押出機、プラストミルやバンバリーミキサー等により溶融混練することで製造することができる。
<Manufacturing method and application of hot melt adhesive>
In the hot melt adhesive of the present disclosure, in addition to the olefin resin, if necessary, a base polymer, a tackifier, a plasticizer and an additive are dry-blended using a Henschel mixer or the like, and uniaxial or biaxial extrusion is performed. It can be manufactured by melt-kneading with a machine, a plastic mill, a Banbury mixer, or the like.
 本開示のホットメルト接着剤は、粘着性に優れ、臭気が少ないことから、例えば、衛生材料用、包装用、製本用、繊維用、木工用、電気材料用、製缶用、建築用、フィルター用、低圧成形用及び製袋用等に好適に用いることができる。
 具体的には、不織布又は高吸水性高分子(SAP)の固定に代表される紙おむつや生理用品等の衛生用品用の接着剤、また、自動車のフロアマットに代表されるアッセンブリー用の接着剤として好ましく使用することができ、特に臭気が少ない点から、衛生用品用の接着剤として好適に用いることができる。
The hot melt adhesives of the present disclosure have excellent adhesiveness and low odor, and therefore, for example, for sanitary materials, packaging, bookbinding, textiles, woodworking, electrical materials, can making, construction, filters. It can be suitably used for low-pressure molding, bag making, and the like.
Specifically, as an adhesive for sanitary products such as disposable diapers and sanitary napkins represented by fixing non-woven fabrics or super absorbent polymers (SAPs), and as an adhesive for assemblies represented by automobile floor mats. It can be preferably used, and it can be suitably used as an adhesive for sanitary products because it has a particularly low odor.
 次に、本開示技術の一態様を実施例により更に詳細に説明するが、本開示技術はこれらの例によって何ら限定されるものではない。 Next, one aspect of the disclosed technology will be described in more detail with reference to Examples, but the disclosed technology is not limited to these examples.
[オレフィン系樹脂の分析・評価]
〔1.共重合体の組成〕
 後述の樹脂HP1~HP11については、核磁気共鳴(NMR)装置(ECA500、日本電子株式会社製、1H共鳴周波数:500MHz)を用い、溶媒は重水素化クロロホルム(クロロホルム-d)、積算回数10,000回、温度25℃の条件で13C-NMR測定を行い、全ピーク面積の積分値に対する、各モノマー成分(構成単位)に対するピーク面積の積分値の比率から共重合体の組成(モル%)を求めた。具体的には、各モノマー成分(構成単位)に対するピーク面積の積分値を構成するモノマーの炭素数で割り、その比率から共重合体の組成(モル%)を求めた。結果を表1及び表2に示す。
 後述の樹脂BP1~BP10及びBP12~BP16については、溶媒に重水素化1,2-テトラクロロエタンを使用、温度120℃とした以外は、上記と同じ方法で組成を測定した。結果を表5、表6及び表10に示す。
[Analysis and evaluation of olefin resins]
[1. Copolymer composition]
The resin HP1 ~ HP11 below, nuclear magnetic resonance (NMR) apparatus (ECA500, manufactured by JEOL Ltd., 1 H resonance frequency: 500 MHz) used, the solvent is deuterated chloroform (chloroform -d), accumulated number 10 13 C-NMR measurements were performed 000 times under the condition of a temperature of 25 ° C., and the composition of the copolymer (mol%) was obtained from the ratio of the integrated value of the peak area to each monomer component (constituent unit) to the integrated value of the total peak area. ) Was asked. Specifically, the integral value of the peak area for each monomer component (constituent unit) was divided by the number of carbon atoms of the monomer, and the composition (mol%) of the copolymer was obtained from the ratio. The results are shown in Tables 1 and 2.
The compositions of the resins BP1 to BP10 and BP12 to BP16, which will be described later, were measured by the same method as above except that deuterated 1,2-tetrachloroethane was used as a solvent and the temperature was set to 120 ° C. The results are shown in Tables 5, 6 and 10.
〔2.芳香族性水素量%〕
 後述の樹脂HP1~HP11については、核磁気共鳴(NMR)装置(ECA500、日本電子株式会社製、1H共鳴周波数:500MHz)を用い、溶媒は重水素化クロロホルム、積算回数256回、温度25℃の条件で、実施例及び比較例で得られた水素化反応後の樹脂の1H-NMR測定を行い、全ピーク面積の積分値に対する、不飽和炭素に結合したプロトン(6~8ppm)に対するピーク面積積分値の比率から芳香族性水素量を求めた。結果を表1及び表2に示す。
 検出限界は0.1%以下である。表1及び表2において「n.d.」は検出限界未満であることを示す。
 後述の樹脂BP1~BP12については、溶媒に重水素化1,2-テトラクロロエタンを使用した以外は、上記と同じ方法で芳香族性水素量を測定した。結果を表5及び表6に示す。
[2. Aromatic hydrogen content%]
The resin HP1 ~ HP11 below, nuclear magnetic resonance (NMR) apparatus (ECA500, manufactured by JEOL Ltd., 1 H resonance frequency: 500 MHz) was used, the solvent is deuterated chloroform, integration 256 times, temperature 25 ° C. Under the conditions of, 1 H-NMR measurement of the resin after the hydrogenation reaction obtained in Examples and Comparative Examples was performed, and the peak for the proton (6 to 8 ppm) bonded to the unsaturated carbon with respect to the integrated value of the total peak area. The amount of aromatic hydrogen was determined from the ratio of the area integrated values. The results are shown in Tables 1 and 2.
The detection limit is 0.1% or less. In Tables 1 and 2, "nd" indicates that it is below the detection limit.
For the resins BP1 to BP12 described later, the amount of aromatic hydrogen was measured by the same method as above except that deuterated 1,2-tetrachloroethane was used as the solvent. The results are shown in Tables 5 and 6.
〔3.平均分子量〕
 後述の樹脂HP1~HP11については、ゲルパーミエイションクロマトグラフィ(GPC)法により、平均分子量を測定した。測定には、GPC測定装置(HLC8220、検出器:RI、カラム:TSK-GEL GHXL-L、G4000HXL、G2000HXL(いずれも東ソー株式会社製))を使用し、溶離液にはテトラヒドロフランを用い、オーブン温度40℃として、ポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)及びZ平均分子量(Mz)を得た。結果を表1及び表2に示す。
 後述の樹脂BP1~BP16については、GPC測定装置(HLC8321GPC/HT、検出器:RI、カラム:TSK-GEL GMHHR-H(S)HTを二本(いずれも東ソー株式会社製))を使用し、溶離液には1,2,4-トリクロロベンゼンを用い、オーブン温度145℃とした以外は、上記と同じ方法で平均分子量を測定した。結果を表5、表6及び表10に示す。
[3. Average molecular weight]
For the resins HP1 to HP11 described later, the average molecular weight was measured by the gel permeation chromatography (GPC) method. A GPC measuring device (HLC8220, detector: RI, column: TSK-GEL GHXL-L, G4000HXL, G2000HXL (all manufactured by Toso Co., Ltd.)) was used for the measurement, and tetrahydrofuran was used as the eluent, and the oven temperature was used. At 40 ° C., polystyrene-equivalent number average molecular weight (Mn), weight average molecular weight (Mw) and Z average molecular weight (Mz) were obtained. The results are shown in Tables 1 and 2.
For the resins BP1 to BP16 described later, a GPC measuring device (HLC8321GPC / HT, detector: RI, column: TSK-GEL GMHHR-H (S) HT two (both manufactured by Tosoh Corporation)) was used. 1,2,4-Trichlorobenzene was used as the eluent, and the average molecular weight was measured by the same method as above except that the oven temperature was 145 ° C. The results are shown in Tables 5, 6 and 10.
〔4.ガラス転移温度〕
 後述の樹脂HP1~HP11については、示差走査熱量計(DSC8500、Parkin Elmer社製)を使用して、温度プログラムを-40℃~220℃、10℃/minで昇温として、ガラス転移温度を測定した。結果を表1及び表2に示す。
 後述の樹脂BP1~BP10及びBP12~BP16については、-30℃から150℃まで5℃/minで昇温しながら、ずりせん断モードにて動的粘弾性測定(レオメーター、Anton Paar社製、MCR302を使用)を行い、tanδのピーク値からガラス転移温度を求めた。BP11のガラス転移温度は、文献値であり、ブタジエン連鎖が-100℃、スチレン連鎖が100℃である。結果を表5、表6及び表10に示す。
[4. Glass-transition temperature〕
For the resins HP1 to HP11 described later, the glass transition temperature was measured by using a differential scanning calorimeter (DSC8500, manufactured by PerkinElmer) and setting the temperature program to -40 ° C to 220 ° C and 10 ° C / min. did. The results are shown in Tables 1 and 2.
For the resins BP1 to BP10 and BP12 to BP16 described later, dynamic viscoelasticity measurement (rheometer, manufactured by Antonio Par, MCR302) was performed in a shear shear mode while raising the temperature from -30 ° C to 150 ° C at 5 ° C / min. Was used), and the glass transition temperature was determined from the peak value of tan δ. The glass transition temperature of BP11 is a literature value, and is -100 ° C for the butadiene chain and 100 ° C for the styrene chain. The results are shown in Tables 5, 6 and 10.
〔5.直鎖性〕
 水素化反応前の樹脂の13C-NMR測定を、前記〔1.共重合体の組成〕と同様の条件で行った。
 後述の樹脂HP1~HP10については、直鎖の場合、使用するジシクロペンタジエンモノマーの二つのうち一つは不飽和結合が消費されてないため、1つのジシクロペンタジエン由来の構成単位には、全炭素数は10、不飽和炭素数2である。そこで、ジシクロペンタジエン由来の構成単位に対するピーク面積の積分値をSDCPD、そのうち、不飽和炭素に由来するピーク面積の積分値をSCH=CHとし、下記式により直鎖性(%)を求めた。結果を表1及び表2に示す。
      直鎖性(%)=5SCH=CH/SDCPD×100
 後述の樹脂BP1~BP10については、使用するノルボルネンモノマーの構成単位には、全炭素数は7、不飽和炭素数2である。そこで、ノルボルネン由来の構成単位に対するピーク面積の積分値をSNB、そのうち、1,2-結合形式を有する飽和炭素に由来するピーク面積の積分値をSCH-CHとし、下記式により直鎖性(%)を求めた。結果を表5及び表6に示す。
      直鎖性(%)=3.5SCH-CH/SNB×100
[5. Linearity]
The 13 C-NMR measurement of the resin before the hydrogenation reaction was carried out in the above [1. The composition of the copolymer] was the same as that of the above.
Regarding the resins HP1 to HP10 described later, in the case of a straight chain, one of the two dicyclopentadiene monomers used does not consume an unsaturated bond, so that one dicyclopentadiene-derived structural unit includes all. It has 10 carbon atoms and 2 unsaturated carbon atoms. Therefore, the integral value of the peak area with respect to the constituent unit derived from dicyclopentadiene is S DCPD , and the integral value of the peak area derived from unsaturated carbon is S CH = CH , and the linearity (%) is calculated by the following formula. It was. The results are shown in Tables 1 and 2.
Linearity (%) = 5S CH = CH / S DCPD x 100
Regarding the resins BP1 to BP10 described later, the structural unit of the norbornene monomer used has a total carbon number of 7 and an unsaturated carbon number of 2. Therefore, the integral value of the peak area with respect to the constituent unit derived from norbornene is S NB , and the integral value of the peak area derived from saturated carbon having a 1,2-bonded form is S CH-CH . (%) Was calculated. The results are shown in Tables 5 and 6.
Linearity (%) = 3.5S CH-CH / S NB x 100
〔6.揮発成分量及び芳香族揮発成分量〕
 ヘッドスペースガスクロマトグラフ(機器名:Agilent7697A/Agilent7890B)を用いて、ガス成分を発生させ、下記の条件で測定したときの保持時間が10分未満である芳香族成分(ベンゼン、トルエン、キシレン、スチレン等)の量を芳香族揮発成分量(アロマ)とした。また、保持時間が13分未満(おおむね炭素数10以下の化合物の沸点以下)の成分の量を揮発成分量(VOC)として、全ての揮発成分が脱着する保持時間40分未満である成分の量を総揮発成分量(TVOC)とした。
 結果を表1、表2、表5及び表6に示す。
 なお、表1、表2、表5及び表6においては、オレフィン系樹脂の質量に対する芳香族揮発成分、揮発成分、及び総揮発成分のトルエン換算質量(ppm)として表した。なお、検出限界は1ppb程度である。
 (測定条件:サンプル熱処理:150℃、20min、カラム:BPX5 30m×0.32m i.d.×1.0μm、注入口:300℃、温度プログラム:50℃~300℃、10℃/min、昇温)
[6. Amount of volatile components and amount of aromatic volatile components]
Aromatic components (benzene, toluene, xylene, styrene, etc.) that generate a gas component using a headspace gas chromatograph (device name: Agent7697A / Agent7890B) and have a retention time of less than 10 minutes when measured under the following conditions. ) Was defined as the amount of aromatic volatile components (aroma). Further, the amount of components having a retention time of less than 13 minutes (generally below the boiling point of a compound having 10 or less carbon atoms) is defined as the amount of volatile components (VOC), and the amount of components having a retention time of less than 40 minutes for all volatile components to be desorbed. Was defined as the total amount of volatile components (TVOC).
The results are shown in Table 1, Table 2, Table 5 and Table 6.
In Tables 1, 2, 5, and 6, the aromatic volatile components, the volatile components, and the total volatile components are represented as toluene-equivalent mass (ppm) with respect to the mass of the olefin resin. The detection limit is about 1 ppb.
(Measurement conditions: sample heat treatment: 150 ° C., 20 min, column: BPX5 30 m × 0.32 m id × 1.0 μm, injection port: 300 ° C., temperature program: 50 ° C. to 300 ° C., 10 ° C./min, rise Warm)
〔7.ハンセン溶解度パラメータ(HSP)値〕
 以下に示す文献1~3の方法に従って、溶解度パラメータ(分散力:δd、分極力:δp、水素結合力:δh)が既知である20種の溶媒を用い、オレフィン系樹脂HP1、HP2、HP5、HP6及びHP8~HP11との溶解性を評価して、三次元プロットに溶媒の値をプロットし、良溶媒が内側、貧溶媒が外側となるような最小の球を作成して、球の中心となる座標をオレフィン系樹脂の溶解度パラメータとした。結果を表1及び表2に示す。
 文献1:Hildebrand JH,Scott RL. The solubility of nonelectrolytes,3rd ed.New York,NY: Dover Publications;1964
 文献2:C.M.Hansen et al.,Carbon,42,1591-1597,2004
 文献3:Masato Morimoto et al.,Energy Fuels,32,11296-11303,2018
[7. Hansen solubility parameter (HSP) value]
According to the methods of Documents 1 to 3 shown below, olefin resins HP1 and HP2 are used using 20 kinds of solvents having known solubility parameters (dispersion force: δ d , polarization force: δ p , hydrogen bond force: δ h). , HP5, HP6 and HP8 to HP11, evaluate the solubility, plot the solvent value on a three-dimensional plot, create the smallest sphere with the good solvent on the inside and the poor solvent on the outside, and create a sphere. The coordinate at the center of was used as the solubility parameter of the olefin resin. The results are shown in Tables 1 and 2.
Reference 1: Hildebrand JH, Scott RL. The Solubility of non-conductorrytes, 3rd ed. New York, NY: Dover Publications; 1964
Reference 2: C.I. M. Hansen et al. , Carbon, 42, 1591-1597, 2004
Reference 3: Masato Morimoto et al. , Energy Fuels, 32, 11296-11303, 2018
〔8.親和性〕
 〔7.ハンセン溶解度パラメータ(HSP)値〕と同様の評価を、ホットメルト接着剤に用いられる次の3種類のエラストマーに対して実施して、親和性を評価した。具体的には、各エラストマーに対して各種溶媒の溶解性を評価し、エラストマーの溶解度パラメータを求め、下記Ra値によりオレフィン系樹脂と各エラストマーとの親和性を評価した。また、分散性及びTg変化率によっても親和性を評価した。結果を表1及び表2に示す。
<エラストマー>
 ・オレフィン系エラストマーである低融点ポリプロピレン(PP)(出光興産株式会社製、商品名:L-MODU S400、Mw:45,000、溶融粘度(B粘度)(190℃、ASTM D 3236):8500mPa・s、軟化点(R&B、ISO4635):93℃)
 ・オレフィン系エラストマーである非晶性ポリアルファオレフィン(APAO)(Evonik Industries AG製、商品名:VESTOPLAST(登録商標)708、溶融粘度(190℃、DIN 53 019):8000mPa・s、軟化点(R&B、DIN EN 1427):108℃)
 ・スチレン系エラストマーであるスチレン-イソプレン-スチレンブロックコポリマー(SIS)(Kraton Corporation製、商品名:KRATON(登録商標)D1161、MFR(190℃、2.16kg、ISO 1133):1.3~3.7g/10min、スチレン含量:15wt%)
<Ra値>
 下記式によって、親和性の指標であるRa値を算出した。なお、Ra値が小さいほど、親和性が良好である。また、下記式中δd1、δp1、δh1はオレフィン系樹脂の溶解度パラメータであり、δd2、δp2、δh2は前記各エラストマーの溶解度パラメータである。
     Ra=[4(δd2-δd12+(δp2-δp12+(δh2-δh121/2
 ここで、Ra値は小さい程、相溶性に優れることを示しており、以下の基準で評価した。
  ◎:Ra値≦1.5
  〇:1.5<Ra値≦3.0
  △:3.0<Ra値≦5.0
  ×:5.0<Ra値
[8. Affinity〕
[7. The same evaluation as the Hansen solubility parameter (HSP) value] was performed on the following three types of elastomers used in hot melt adhesives to evaluate the affinity. Specifically, the solubility of various solvents was evaluated for each elastomer, the solubility parameter of the elastomer was determined, and the affinity between the olefin resin and each elastomer was evaluated by the following Ra value. The affinity was also evaluated by the dispersibility and the rate of change in Tg. The results are shown in Tables 1 and 2.
<Elastomer>
Low melting point polypropylene (PP), which is an olefin elastomer (manufactured by Idemitsu Kosan Co., Ltd., trade name: L-MODU S400, Mw: 45,000, melt viscosity (B viscosity) (190 ° C., ASTM D 3236): 8500 mPa. s, softening point (R & B, ISO4635): 93 ° C.)
Amorphous polyalphaolefin (APAO) (manufactured by Evonik Industries AG, which is an olefin-based elastomer, trade name: VESTOPLAST (registered trademark) 708, melt viscosity (190 ° C., DIN 53 019): 8000 mPa · s, softening point (R & B) , DIN EN 1427): 108 ° C.)
Styrene-isoprene-styrene block copolymer (SIS) (manufactured by Kraton Corporation, trade name: KRATON® D1161, MFR (190 ° C., 2.16 kg, ISO 1133): 1.3 to 3. 7g / 10min, styrene content: 15wt%)
<Ra value>
The Ra value, which is an index of affinity, was calculated by the following formula. The smaller the Ra value, the better the affinity. Further, in the following formula, δ d1 , δ p1 , and δ h1 are solubility parameters of the olefin resin, and δ d2 , δ p2 , and δ h2 are solubility parameters of each of the elastomers.
Ra = [4 (δ d2- δ d1 ) 2 + (δ p2- δ p1 ) 2 + (δ h2- δ h1 ) 2 ] 1/2
Here, the smaller the Ra value, the better the compatibility, and the evaluation was made according to the following criteria.
⊚: Ra value ≤ 1.5
〇: 1.5 <Ra value ≤ 3.0
Δ: 3.0 <Ra value ≤ 5.0
X: 5.0 <Ra value
<分散性>
 分散性を次のように評価した。
 オレフィン系樹脂とベースポリマー(エラストマー)を質量比1:1で容器に入れ、180℃で1時間攪拌した後、静置して室温まで放冷し、1日経過後、目視により得られた混合物の分散性を評価した。
  ◎:透明
  〇:略透明(やや白濁あり)
  △:白濁(やや透明性あり)
  ×:乳白色
<Dispersibility>
The dispersibility was evaluated as follows.
The olefin resin and the base polymer (elastomer) were placed in a container at a mass ratio of 1: 1 and stirred at 180 ° C. for 1 hour, then allowed to stand to cool to room temperature, and after 1 day, the visually obtained mixture was obtained. Dispersibility was evaluated.
◎: Transparent 〇: Almost transparent (slightly cloudy)
Δ: White turbidity (slightly transparent)
×: Milky white
<Tg変化率>
 混合前後のガラス転移温度(Tg)の変化率を次の方法で評価した。なお、Tg変化率がが大きいほど、両者の親和性が高いと推定される。
 エラストマー単品、オレフィン系樹脂とエラストマーを質量比1:1で混合し、プレス成形して得たシート(1mm厚)から切り出した短冊状の試験片を用い、-150℃から230℃(試験片が破断する温度)まで2℃/minで昇温しながら、引張試験モードにて動的粘弾性測定(レオメーター、株式会社日立ハイテクサイエンス製、DMS6100を使用)を行い、tanδのピーク値からTgを求めた。前記オレフィン系エラストマー由来のTg(低融点ポリプロピレン(PP)(L-MODU S-400):Tg-3℃、非晶性ポリアルファオレフィン(APAO)(VESTOPLAST 708):Tg-35℃)が、オレフィン系樹脂(Tg36℃以上)の配合に伴い、Tgが高温側へシフトする。Tg変化率を次の基準で評価した。なお、オレフィン系エラストマー由来のTgから変化がない場合を0%、オレフィン系樹脂と同一のTgまで変化した場合を100%とした。
  ◎:80%以上
  〇:60%以上80%未満
  △:40%以上60%未満
  ×:40%未満
<親和性の総合評価>
 親和性の総合評価は以下の基準で行った。上述のRa値(HSP)、分散性及びTg変化率の3つの評価結果につき、それぞれ◎を4点、〇を3点、△を2点、×を1点として平均値を算出し、得られた平均値を四捨五入して総合評価とし、前記記号で示した。
<Tg change rate>
The rate of change in the glass transition temperature (Tg) before and after mixing was evaluated by the following method. It is presumed that the larger the Tg change rate, the higher the affinity between the two.
Elastomer alone, olefin resin and elastomer are mixed at a mass ratio of 1: 1 and a strip-shaped test piece cut out from a sheet (1 mm thick) obtained by press molding is used, and the temperature is -150 ° C to 230 ° C (test piece is While raising the temperature at 2 ° C./min to the breaking temperature), perform dynamic viscoelasticity measurement (using a rheometer, manufactured by Hitachi High-Tech Science Co., Ltd., DMS6100) in the tensile test mode, and calculate Tg from the peak value of tan δ. I asked. Tg derived from the olefin-based elastomer (low melting point polypropylene (PP) (L-MODU S-400): Tg-3 ° C., amorphous polyalphaolefin (APAO) (VESTOPLAST 708): Tg-35 ° C.) is an olefin. With the blending of the based resin (Tg 36 ° C. or higher), Tg shifts to the high temperature side. The rate of change in Tg was evaluated according to the following criteria. The case where there was no change from the Tg derived from the olefin elastomer was defined as 0%, and the case where the Tg was changed to the same Tg as the olefin resin was defined as 100%.
⊚: 80% or more 〇: 60% or more and less than 80% Δ: 40% or more and less than 60% ×: less than 40% <Comprehensive evaluation of affinity>
The comprehensive evaluation of affinity was performed according to the following criteria. For the above three evaluation results of Ra value (HSP), dispersibility and Tg change rate, the average value was calculated with ◎ as 4 points, 〇 as 3 points, △ as 2 points, and × as 1 point, respectively. The average value was rounded off to obtain a comprehensive evaluation, which is indicated by the above symbol.
〔9.スチレン系ホットメルト接着剤(HMA)(感圧接着剤)における粘着三物性評価〕
 表3に示す配合比にて、サンプル瓶に各原料を採取して、トルエン溶媒を加えて攪拌・溶解し、HMA溶液を調製した。PET(ポリエチレンテレフタレート)フィルムにHMA溶液を塗布して、トルエン溶媒を揮発させ、HMAサンプルを調製した。被着体にはSUS板を用い、下記の試験法にて粘着三物性を評価した。なお、本評価においては、樹脂HP2、HP4及びHP7~HP11を粘着付与剤として用いた。
<原料>
 ・ベースポリマー:スチレン-イソプレン-スチレンブロックコポリマー(SIS)(Kraton Corporation製、商品名:KRATON(登録商標)D1161)
 ・可塑剤:パラフィン系オイル(ダイアナプロセスオイルPS-32、出光興産株式会社製)
 ・酸化防止剤:イルガノックス1010(BASFジャパン株式会社製)
<粘着力>
 JIS Z0237に準じて測定した(23℃、180°ピール)。
  ◎:10N/cm以上
  〇:6N/cm以上10N/cm未満
  △:3N/cm以上6N/cm未満
  ×:3N/cm未満
<ループタック>
 JIS Z0237、FINATテスト規格に準じて測定した(23℃、2秒間接触)。
  ◎:10N/cm以上
  〇:6N/cm以上10N/cm未満
  △:3N/cm以上6N/cm未満
  ×:3N/cm未満
<保持力>
 JIS Z0237に準じて測定した(50℃、1kg荷重クリープ)。
  ◎:500min以上
  〇:300min以上500min未満
  △:100min以上300min未満
  ×:100min未満
<粘着性の総合評価>
 粘着性の総合評価は以下の基準で行った。上述の粘着力、ループタック及び保持力の3つの評価結果につき、それぞれ◎を4点、〇を3点、△を2点、×を1点として平均値を算出し、得られた平均値を四捨五入して総合評価とし、前記記号で示した。
[9. Evaluation of three adhesive properties of styrene-based hot melt adhesive (HMA) (pressure sensitive adhesive)]
Each raw material was collected in a sample bottle at the compounding ratio shown in Table 3, and a toluene solvent was added and stirred / dissolved to prepare an HMA solution. An HMA solution was applied to a PET (polyethylene terephthalate) film to volatilize the toluene solvent to prepare an HMA sample. A SUS plate was used as the adherend, and the three physical characteristics of the adhesive were evaluated by the following test method. In this evaluation, resins HP2, HP4 and HP7 to HP11 were used as tackifiers.
<Raw materials>
-Base polymer: Styrene-isoprene-styrene block copolymer (SIS) (manufactured by Kraton Corporation, trade name: KRATON® D1161)
-Plasticizer: Paraffin oil (Diana Process Oil PS-32, manufactured by Idemitsu Kosan Co., Ltd.)
-Antioxidant: Irganox 1010 (manufactured by BASF Japan Ltd.)
<Adhesive strength>
Measured according to JIS Z0237 (23 ° C, 180 ° peel).
⊚: 10 N / cm or more 〇: 6 N / cm or more and less than 10 N / cm Δ: 3 N / cm or more and less than 6 N / cm ×: 3 N / cm or less <loop tack>
Measured according to JIS Z0237, FINAT test standard (23 ° C, contact for 2 seconds).
⊚: 10 N / cm or more 〇: 6 N / cm or more and less than 10 N / cm Δ: 3 N / cm or more and less than 6 N / cm ×: 3 N / cm or less <holding power>
Measured according to JIS Z0237 (50 ° C, 1 kg load creep).
⊚: 500 min or more 〇: 300 min or more and less than 500 min Δ: 100 min or more and less than 300 min ×: less than 100 min <Comprehensive evaluation of adhesiveness>
The comprehensive evaluation of adhesiveness was performed according to the following criteria. For the above-mentioned three evaluation results of adhesive strength, loop tack, and holding power, the average value was calculated with ◎ as 4 points, 〇 as 3 points, △ as 2 points, and × as 1 point, and the obtained average value was calculated. Rounded off to give a comprehensive evaluation, indicated by the above symbols.
〔10.ポリオレフィン系ホットメルト接着剤(HMA)における配合性評価〕
 表4に示す配合比にて、サンプル瓶に各原料を採取して、140℃、30分間、溶融・攪拌した後、PETフィルム上に内容物を移して室温で放冷して、HMAサンプルを調製した。得られたHMAサンプルの粘着力(粘着性)を以下の方法で評価した。なお、本評価においては、樹脂HP5、HP7及びHP10を粘着付与剤として用いた。
<原料>
 ・粘着付与剤:テルペン樹脂、ヤスハラケミカル(株)製、YSレジンPX300N(軟化点:30℃、室温にて液状)
 ・ベースポリマー:低融点ポリプロピレン(L-MODU S400、出光興産株式会社製)
 ・可塑剤:パラフィン系オイル(ダイアナプロセスオイルPS-32、出光興産株式会社製)、ポリイソブテン(INEOS Oligomers製、Indopol(登録商標)H-18000、Mw:6,000、粘度(100℃):40,500cSt)
 ・酸化防止剤:イルガノックス1010(BASFジャパン株式会社製)
<粘着性>
 HMAサンプルを軽く指で叩いた際、指に付着する度合いを評価した。得られる評価結果は、表3のループタックの値とおおむね相関するように、基準を設定した。
  ◎:強く付着し、追随する
  〇:やや強く付着する
  △:やや弱く付着する
  ×:ほとんど付着しない
[10. Evaluation of compoundability in polyolefin hot melt adhesive (HMA)]
Each raw material was collected in a sample bottle at the compounding ratio shown in Table 4, melted and stirred at 140 ° C. for 30 minutes, and then the contents were transferred onto a PET film and allowed to cool at room temperature to prepare an HMA sample. Prepared. The adhesive strength (adhesiveness) of the obtained HMA sample was evaluated by the following method. In this evaluation, resins HP5, HP7 and HP10 were used as tackifiers.
<Raw materials>
-Adhesive imparting agent: Terpene resin, manufactured by Yasuhara Chemical Co., Ltd., YS resin PX300N (softening point: 30 ° C, liquid at room temperature)
-Base polymer: Low melting point polypropylene (L-MODU S400, manufactured by Idemitsu Kosan Co., Ltd.)
-Plasticizer: Paraffin-based oil (Diana Process Oil PS-32, manufactured by Idemitsu Kosan Co., Ltd.), Polyisobutene (manufactured by INEOS Oligomers, Indopol (registered trademark) H-18000, Mw: 6,000, viscosity (100 ° C.): 40 , 500cSt)
-Antioxidant: Irganox 1010 (manufactured by BASF Japan Ltd.)
<Adhesive>
When the HMA sample was lightly tapped with a finger, the degree of adhesion to the finger was evaluated. The criteria were set so that the obtained evaluation results were generally correlated with the loop tack values in Table 3.
◎: Strongly adheres and follows 〇: Slightly strongly adheres △: Slightly weakly adheres ×: Almost no adhesion
〔11.融点〕
 後述の樹脂BP1~BP10及びBP12~BP16について、-30℃から150℃まで5℃/minで昇温しながら、ずりせん断モードにて動的粘弾性測定(レオメーター、アントンパール社製、MCR302を使用)を行い、貯蔵弾性率G’と損失弾性率G”の値が同一となる温度を融点として求めた。結果を表5、表6及び表10に示す。
 尚、示差走査熱量計(DSC8500、Parkin Elmer社製)を使用して、温度プログラムを-40℃~220℃、10℃/minで昇温して、融点が観測されない場合には、前述のレオメーターでの値は非晶ポリマーの軟化点に相当する為、表5及び表6において「n.d.」と示した。
[11. Melting point]
For the resins BP1 to BP10 and BP12 to BP16 described later, dynamic viscoelasticity measurement (rheometer, manufactured by Anton Pearl Co., Ltd., MCR302) was performed in a shear shear mode while raising the temperature from -30 ° C to 150 ° C at 5 ° C / min. The temperature at which the values of the storage elastic modulus G'and the loss elastic modulus G'are the same was determined as the melting point. The results are shown in Tables 5, 6 and 10.
If the temperature program is heated at -40 ° C to 220 ° C and 10 ° C / min using a differential scanning calorimeter (DSC8500, manufactured by PerkinElmer) and the melting point is not observed, the above-mentioned Leo Since the value on the meter corresponds to the softening point of the amorphous polymer, it is shown as "nd" in Tables 5 and 6.
〔12.オイル相溶性〕
 後述の樹脂BP1~BP12とパラフィン系オイル(ダイアナプロセスオイルPW-90、出光興産株式会社製)を質量比3:1で容器に入れ、180℃で1時間攪拌した後、そのままの温度で5分静置後、目視により得られた混合物の分散性を評価した。結果を表5及び表6に示す。
  ◎:透明(均一)
  〇:略透明(乱反射有)
  △:一部塊状(膨潤物有)
  ×:塊状(膨潤)
[12. Oil compatibility]
Resins BP1 to BP12 and paraffin oil (Diana Process Oil PW-90, manufactured by Idemitsu Kosan Co., Ltd.), which will be described later, are placed in a container at a mass ratio of 3: 1 and stirred at 180 ° C. for 1 hour, and then kept at the same temperature for 5 minutes. After standing, the dispersibility of the obtained mixture was evaluated visually. The results are shown in Tables 5 and 6.
⊚: Transparent (uniform)
〇: Almost transparent (with diffuse reflection)
Δ: Partially lumpy (with swelling)
×: Massive (swelling)
〔13.TF相溶性〕
 後述の樹脂BP1~BP10及びBP12と、DCPD系粘着付与剤(Escorez5300、Exxon Mobil製)を質量比2:1で容器に入れ、180℃で1時間攪拌した後、静置して室温まで放冷し、1週間経過後、目視により得られた混合物の分散性を評価した。
 また、BP11の樹脂とC9アロマ/C5系粘着付与剤(Escorez5600、Exxon Mobil製)を質量比2:1で容器に入れ、180℃で1時間攪拌した後、静置して室温まで放冷し、1週間経過後、目視により得られた混合物の分散性を評価した。結果を表5及び表6に示す。
  ◎:透明
  〇:略透明(やや白濁あり)
  △:白濁(やや透明性あり)
  ×:乳白色
[13. TF compatibility]
Resins BP1 to BP10 and BP12, which will be described later, and a DCPD-based tackifier (Escorez5300, manufactured by ExxonMobil) are placed in a container at a mass ratio of 2: 1, stirred at 180 ° C. for 1 hour, and then allowed to stand to cool to room temperature. After 1 week, the dispersibility of the obtained mixture was evaluated visually.
Further, the resin of BP11 and the C9 aroma / C5 adhesive (Escorez5600, manufactured by ExxonMobil) were placed in a container at a mass ratio of 2: 1 and stirred at 180 ° C. for 1 hour, then allowed to stand and allowed to cool to room temperature. After 1 week, the dispersibility of the obtained mixture was evaluated visually. The results are shown in Tables 5 and 6.
◎: Transparent 〇: Almost transparent (slightly cloudy)
Δ: White turbidity (slightly transparent)
×: Milky white
〔14.ホットメルト接着剤(HMA)の粘着性評価〕
 表7、表8、表9及び表10に示す配合比にて、サンプル瓶に各原料を採取して、180℃、30分間、溶融・攪拌した後、PETフィルム上に内容物を移して室温で放冷して、HMAサンプルを調製した。得られたHMAサンプルの粘着性を以下の方法で評価した。なお、本評価においては、樹脂BP1~BP3、BP5、BP8~BP16を用いた。これらの樹脂は、ベースポリマー、またはベースポリマーと粘着付与剤を兼ねる成分として用いた。
<原料>
 ・粘着付与剤:
  ・Escorez5300(DCPD系)
  ・Escorez5600(C9アロマ/C5系)
 ・可塑剤:パラフィン系オイル(PW-90)
 ・酸化防止剤:イルガノックス1010(BASFジャパン株式会社製)
<粘着性>
 HMAサンプルを軽く指で叩いた際、指に付着する度合いを評価した。得られる評価結果は、表3のループタックの値とおおむね相関するように、基準を設定した。
  ◎:強く付着し、追随する
  〇:やや強く付着する
  △:やや弱く付着する
  ×:ほとんど付着しない
[14. Adhesiveness evaluation of hot melt adhesive (HMA)]
Each raw material was collected in a sample bottle at the compounding ratios shown in Tables 7, 8, 9 and 10, melted and stirred at 180 ° C. for 30 minutes, and then the contents were transferred onto a PET film at room temperature. The HMA sample was prepared by allowing to cool in. The adhesiveness of the obtained HMA sample was evaluated by the following method. In this evaluation, resins BP1 to BP3, BP5, and BP8 to BP16 were used. These resins were used as a base polymer or a component that also serves as a base polymer and a tackifier.
<Raw materials>
・ Adhesive agent:
・ Escorez5300 (DCPD system)
・ Escorez5600 (C9 aroma / C5 series)
-Plasticizer: Paraffin oil (PW-90)
-Antioxidant: Irganox 1010 (manufactured by BASF Japan Ltd.)
<Adhesive>
When the HMA sample was lightly tapped with a finger, the degree of adhesion to the finger was evaluated. The criteria were set so that the obtained evaluation results were generally correlated with the loop tack values in Table 3.
◎: Strongly adheres and follows 〇: Slightly strongly adheres △: Slightly weakly adheres ×: Almost no adhesion
[オレフィン系樹脂の製造]
製造例1(水素化したオレフィン系樹脂(HP1)の製造)
<重合反応工程>
 ステンレス製の1Lオートクレーブに窒素雰囲気下、室温にて、モノマーとして濃度95体積%のジシクロペンタジエン(DCPD)のヘプタン溶液(試薬1級品、安定剤及び極性不純物をアルミナにて除去済み)400mL(2.73mol)を加え、100rpmで攪拌しながら、スカベンジャーとして濃度2Mのトリイソブチルアルミニウム(TIBA)のヘプタン溶液1.0mL、助触媒として濃度20mMのジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(Borate)のヘプタン溶液6.0mL(120mmol)、主触媒としてビス(シクロペンタジエニル)ジルコニウムジクロリド(Cp2ZrCl2)のヘプタン溶液4.0mL(80mmol)を加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガスを圧力0.05MPaで導入した。
 続いて、内温を80℃まで昇温して1時間重合した後、未反応の水素ガスを脱圧除去して、少量のエタノールを投入して重合を停止させた。
 得られた樹脂のヘプタン溶液を濾過して触媒残渣を除去し、イルガノックス1010(酸化防止剤、BASFジャパン株式会社製)を20mg添加して、エバポレーターを用い、70℃、100hPaにてヘプタンを留去した後、160℃、25hPaにて未反応DCPDを留去することにより、オレフィン系樹脂(P1)(Mw:321、DCPD含量:100mol%)12.2gを得た。
[Manufacturing of olefin resin]
Production Example 1 (Production of hydrogenated olefin resin (HP1))
<Polymerization reaction process>
A heptane solution of dicyclopentadiene (DCPD) having a concentration of 95% by volume as a monomer in a stainless steel 1L autoclave under a nitrogen atmosphere at room temperature (first-class reagent, stabilizers and polar impurities removed with alumina) 400 mL ( 2.73 mol) was added, and while stirring at 100 rpm, 1.0 mL of a heptane solution of triisobutylaluminum (TIBA) having a concentration of 2 M as a scavenger and a dimethylanilinium tetrakis (pentafluorophenyl) borate (Borate) having a concentration of 20 mM as a co-catalyst. Add 6.0 mL (120 mmol) of the heptane solution of Heptane and 4.0 mL ( 80 mmol) of the heptane solution of bis (cyclopentadienyl) zirconium dichloride (Cp 2 ZrCl 2 ) as the main catalyst, increase the stirring rate to 400 rpm, and then chain. Hydrogen gas, which is a transfer agent, was introduced at a pressure of 0.05 MPa.
Subsequently, the internal temperature was raised to 80 ° C. and polymerization was carried out for 1 hour, then unreacted hydrogen gas was depressurized and removed, and a small amount of ethanol was added to stop the polymerization.
The obtained resin heptane solution was filtered to remove the catalyst residue, 20 mg of Irganox 1010 (antioxidant, manufactured by BASF Japan Co., Ltd.) was added, and heptane was retained at 70 ° C. and 100 hPa using an evaporator. After the removal, unreacted DCPD was distilled off at 160 ° C. and 25 hPa to obtain 12.2 g of an olefin resin (P1) (Mw: 321 and DCPD content: 100 mol%).
<水素化反応工程>
 ステンレス製の1Lオートクレーブに、ニッケル珪藻土触媒1g、前記のオレフィン系樹脂(P1)10.0g、ヘプタン391mLを入れて窒素置換した後、500rpmで攪拌しながら、常温で水素ガスを5MPaになるまで導入し、昇温して230℃、30分間維持して、水素化反応を行った。
 未反応の水素ガスを除去して、得られた樹脂のヘプタン溶液を熱濾過して触媒残渣を除去し、イルガノックス1010:40mgを添加して、エバポレーターを用い、70℃、25hPaにてヘプタンを留去した。
<Hydrogenation reaction process>
1 g of nickel diatomaceous earth catalyst, 10.0 g of the olefin resin (P1), and 391 mL of heptane were placed in a stainless steel 1 L autoclave to replace nitrogen, and then hydrogen gas was introduced at room temperature until it reached 5 MPa while stirring at 500 rpm. Then, the temperature was raised and maintained at 230 ° C. for 30 minutes to carry out a hydrogenation reaction.
The unreacted hydrogen gas was removed, the obtained resin heptane solution was hot-filtered to remove the catalyst residue, irganox 1010: 40 mg was added, and heptane was added at 70 ° C. and 25 hPa using an evaporator. Distilled away.
<ストリッピング工程>
 更に、上記のサンプル全量を1Lフラスコに入れ、エバポレーターを用いて回転させながら、200℃に加熱して、120分間、流量1500mL/minで窒素ブローすることにより、窒素ストリッピングを行い、水素化したオレフィン系樹脂(HP1)(Mw:338、DCPD含量:100mol%)8.0gを得た。
<Stripping process>
Further, the entire amount of the above sample was placed in a 1 L flask, heated to 200 ° C. while rotating using an evaporator, and nitrogen was blown at a flow rate of 1500 mL / min for 120 minutes to perform nitrogen stripping and hydrogenation. 8.0 g of an olefin resin (HP1) (Mw: 338, DCPD content: 100 mol%) was obtained.
製造例2(水素化したオレフィン系樹脂(HP2)の製造)
<重合反応工程>
主触媒として、ビス(シクロペンタジエニル)ジルコニウムジクロリド(Cp2ZrCl2)に替えて、ビス(ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド((Me2Si)2Cp2ZrCl2)を用いた以外は、製造例1と同じ条件にて重合反応を行うことにより、オレフィン系樹脂(P2)9.2gを得た。(Mw:623、DCPD含量:100mol%)
<水素化反応工程・ストリッピング工程>
 オレフィン系樹脂(P2)を8.0g、ヘプタンを393mL、イルガノックス1010を32mg用いた以外は、実施例1と同じ条件にて水素化反応工程及びストリッピング工程を行うことにより、水素化したオレフィン系樹脂(HP2)(Mw:645、DCPD含量:100mol%)6.4gを得た。
Production Example 2 (Production of hydrogenated olefin resin (HP2))
<Polymerization reaction process>
As the main catalyst, instead of bis (cyclopentadienyl) zirconium dichloride (Cp 2 ZrCl 2 ), bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride ((Me 2 Si) 2 Cp 2 ZrCl 2 ) The polymerization reaction was carried out under the same conditions as in Production Example 1 except that 9.2 g of an olefin resin (P2) was obtained. (Mw: 623, DCPD content: 100 mol%)
<Hydrogenation reaction process / stripping process>
Hydrogenated olefins by performing a hydrogenation reaction step and a stripping step under the same conditions as in Example 1 except that 8.0 g of an olefin resin (P2), 393 mL of heptane, and 32 mg of Irganox 1010 were used. 6.4 g of the system resin (HP2) (Mw: 645, DCPD content: 100 mol%) was obtained.
製造例3(水素化したオレフィン系樹脂(HP3)の製造)
<重合反応工程>
 水素ガスの圧力を0.02MPa、重合温度を90℃とした以外は、実施例2と同じ条件にて重合反応を行うことにより、オレフィン系樹脂(P3)9.9gを得た。(Mw:1,785、DCPD含量:100mol%)
<水素化反応工程・ストリッピング工程>
 オレフィン系樹脂(P3)を9.0g、ヘプタンを392mL、イルガノックス1010を36mg用いた以外は、製造例1と同じ条件にて水素化反応・ストリッピング工程を行うことにより、水素化したオレフィン系樹脂(HP3)(Mw:1,785、DCPD含量:100mol%)7.2gを得た。
Production Example 3 (Production of hydrogenated olefin resin (HP3))
<Polymerization reaction process>
The polymerization reaction was carried out under the same conditions as in Example 2 except that the pressure of the hydrogen gas was 0.02 MPa and the polymerization temperature was 90 ° C. to obtain 9.9 g of an olefin resin (P3). (Mw: 1,785, DCPD content: 100 mol%)
<Hydrogenation reaction process / stripping process>
Hydrogenated olefins by performing a hydrogenation reaction / stripping step under the same conditions as in Production Example 1 except that 9.0 g of olefin resin (P3), 392 mL of heptane, and 36 mg of Irganox 1010 were used. 7.2 g of resin (HP3) (Mw: 1,785, DCPD content: 100 mol%) was obtained.
製造例4(水素化したオレフィン系樹脂(HP4)の製造)
<重合反応工程1>
 ステンレス製の1Lオートクレーブに窒素雰囲気下、室温にて、モノマーとしてDCPDのヘプタン溶液400mL(2.73mol)を加え、100rpmで攪拌しながら、スカベンジャーとしてTIBA(4mmol)、助触媒としてBorate(300μmol)、第一の主触媒としてビス(シクロペンタジエニル)ジルコニウムジクロリド(Cp2ZrCl2)(75μmol)、第二の主触媒としてビス(ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド((Me2Si)2Cp2ZrCl2)(75μmol)を加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガスを圧力0.10MPaで導入した。
 続いて、内温を80℃まで昇温して2時間重合した後、未反応の水素ガスを脱圧除去した。
Production Example 4 (Production of hydrogenated olefin resin (HP4))
<Polymerization reaction step 1>
To a 1 L autoclave made of stainless steel, add 400 mL (2.73 mol) of a heptane solution of DCPD as a monomer at room temperature under a nitrogen atmosphere, and while stirring at 100 rpm, use TIBA (4 mmol) as a scavenger and Borate (300 μmol) as a cocatalyst. Bis (cyclopentadienyl) zirconium dichloride (Cp 2 ZrCl 2 ) (75 μmol) as the first main catalyst, bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride ((Me 2)) as the second main catalyst Si) 2 Cp 2 ZrCl 2 ) (75 μmol) was added, the stirring speed was increased to 400 rpm, and then hydrogen gas as a chain transfer agent was introduced at a pressure of 0.10 MPa.
Subsequently, the internal temperature was raised to 80 ° C. and polymerization was carried out for 2 hours, and then unreacted hydrogen gas was depressurized and removed.
<重合反応工程2>
 上記の<重合反応工程1>で得られた反応溶液へ窒素雰囲気下、100rpmで攪拌しながら、第二の主触媒としてビス(ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド((Me2Si)2Cp2ZrCl2)(50μmol)を更に加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガス0.02MPaを導入した。
 続いて、内温を90℃まで昇温して1時間重合した後、未反応の水素ガスを脱圧除去した。
 得られた樹脂のヘプタン溶液を濾過して触媒残渣を除去し、エバポレーターを用い、イルガノックス1010を20mg添加して、70℃、100hPaにてヘプタンを留去した後、160℃、25hPaにて未反応DCPDを留去することにより、オレフィン系樹脂(P4)(Mw:1,005、DCPD含量:100mol%)34.2gを得た。
<Polymerization reaction step 2>
Bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride ((Me 2 )) as the second main catalyst while stirring the reaction solution obtained in the above <polymerization reaction step 1> in a nitrogen atmosphere at 100 rpm. Si) 2 Cp 2 ZrCl 2 ) (50 μmol) was further added, the stirring speed was increased to 400 rpm, and then 0.02 MPa of hydrogen gas, which is a chain transfer agent, was introduced.
Subsequently, the internal temperature was raised to 90 ° C. and polymerization was carried out for 1 hour, and then unreacted hydrogen gas was depressurized and removed.
The obtained resin heptane solution was filtered to remove the catalyst residue, 20 mg of Irganox 1010 was added using an evaporator, heptane was distilled off at 70 ° C. and 100 hPa, and then not at 160 ° C. and 25 hPa. By distilling off the reaction DCPD, 34.2 g of an olefin resin (P4) (Mw: 1,005, DCPD content: 100 mol%) was obtained.
<水素化反応工程・ストリッピング工程>
 ニッケル珪藻土触媒を3g、オレフィン系樹脂(P4)を30.0g、ヘプタンを373mL、イルガノックス1010を120mg用いた以外は、製造例1と同じ条件にて水素化反応工程及びストリッピング工程を行うことにより、水素化したオレフィン系樹脂(HP4)(Mw:1,050、DCPD含量:100mol%)27.8gを得た。
<Hydrogenation reaction process / stripping process>
Perform the hydrogenation reaction step and stripping step under the same conditions as in Production Example 1 except that 3 g of nickel diatomaceous earth catalyst, 30.0 g of olefin resin (P4), 373 mL of heptane, and 120 mg of irganox 1010 were used. Obtained 27.8 g of a hydrogenated olefin resin (HP4) (Mw: 1,050, DCPD content: 100 mol%).
製造例5(水素化したオレフィン系樹脂(HP5)の製造)
<重合反応工程>
 ステンレス製の1Lオートクレーブに窒素雰囲気下、室温にて、溶媒としてヘプタン80mL、第一のモノマーとして濃度95体積%のDCPDのヘプタン溶液(試薬1級品、安定剤及び極性不純物をアルミナにて除去済み)320mL(2.19mol)を加え、100rpmで攪拌しながら、スカベンジャーとして濃度2MのTIBAのヘプタン溶液1.0mL(2mmol)、助触媒として濃度20mMのBorateのヘプタン溶液6.0mL(120μmol)、主触媒として濃度20mMのビス(シクロペンタジエニル)ジルコニウムジクロリド(Cp2ZrCl2)のヘプタン溶液4.0mL(80μmol)を加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガスを圧力0.10MPaで導入した。
 続いて、第二のモノマーとしてプロピレンガスを導入しながら、内温を80℃、全圧を0.45MPaまで昇温昇圧して1時間重合した後、未反応のプロピレンガス、水素ガスを脱圧除去して、少量のエタノールを投入して重合を停止させた。
 得られた樹脂のヘプタン溶液を濾過して触媒残渣を除去し、エバポレーターを用い、70℃、100hPaにてヘプタンを留去した後、160℃、25hPaにて未反応DCPDを留去することにより、オレフィン系樹脂(P5)(Mw:749、DCPD含量:96mol%)30.4gを得た。
Production Example 5 (Production of hydrogenated olefin resin (HP5))
<Polymerization reaction process>
A heptane solution of DCPD with a solvent of 80 mL as a solvent and a concentration of 95% by volume as the first monomer in a stainless steel 1 L autoclave under a nitrogen atmosphere (primary reagent, stabilizer and polar impurities have been removed with alumina). ) 320 mL (2.19 mol) is added, and while stirring at 100 rpm, 1.0 mL (2 mmol) of TIBA heptane solution having a concentration of 2 M as a scavenger and 6.0 mL (120 μmol) of Borate heptane solution having a concentration of 20 mM as a co-catalyst are mainly used. Add 4.0 mL (80 μmol) of a heptane solution of bis (cyclopentadienyl) zirconium dichloride (Cp 2 ZrCl 2 ) at a concentration of 20 mM as a catalyst, increase the stirring rate to 400 rpm, and then pressurize hydrogen gas, which is a chain transfer agent. It was introduced at 0.10 MPa.
Subsequently, while introducing propylene gas as the second monomer, the internal temperature was raised to 80 ° C. and the total pressure was raised to 0.45 MPa to polymerize for 1 hour, and then the unreacted propylene gas and hydrogen gas were depressurized. After removal, a small amount of ethanol was added to terminate the polymerization.
The obtained resin heptane solution was filtered to remove the catalyst residue, and heptane was distilled off at 70 ° C. and 100 hPa using an evaporator, and then unreacted DCPD was distilled off at 160 ° C. and 25 hPa. 30.4 g of an olefin resin (P5) (Mw: 749, DCPD content: 96 mol%) was obtained.
<水素化反応工程・ストリッピング工程>
 ニッケル珪藻土触媒を2g、オレフィン系樹脂(P5)を20.0g、ヘプタンを382mL用いた以外は、製造例1と同じ条件にて水素化反応工程及びストリッピング工程を行うことにより、水素化したオレフィン系樹脂(HP5)(Mw:813、DCPD含量:96mol%)19.0gを得た。
<Hydrogenation reaction process / stripping process>
Hydrogenated olefins by performing a hydrogenation reaction step and a stripping step under the same conditions as in Production Example 1 except that 2 g of a nickel diatomaceous earth catalyst, 20.0 g of an olefin resin (P5), and 382 mL of heptane were used. 19.0 g of a system resin (HP5) (Mw: 813, DCPD content: 96 mol%) was obtained.
製造例6(水素化したオレフィン系樹脂(HP6)の製造)
<重合反応工程>
 溶媒としてヘプタン283mL、第一のモノマーとしてDCPDのヘプタン溶液117mL(0.80mol)、助触媒としてBorate(60μmol)、主触媒としてビス(ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド((Me2Si)2Cp2ZrCl2)(40μmol)、水素ガスの圧力を0.03MPa、全圧を0.8MPaとした以外は、製造例5と同じ条件にて重合反応を行うことにより、オレフィン系樹脂(P6)(Mw:1,728、DCPD含量:76mol%)19.7gを得た。
Production Example 6 (Production of hydrogenated olefin resin (HP6))
<Polymerization reaction process>
283 mL of heptane as a solvent, 117 mL (0.80 mol) of a heptane solution of DCPD as the first monomer, Borate (60 μmol) as a co-catalyst, bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride ((Me) 2 Si) 2 Cp 2 ZrCl 2 ) (40 μmol), olefin-based by carrying out the polymerization reaction under the same conditions as in Production Example 5 except that the pressure of hydrogen gas was 0.03 MPa and the total pressure was 0.8 MPa. 19.7 g of a resin (P6) (Mw: 1,728, DCPD content: 76 mol%) was obtained.
<水素化反応工程・ストリッピング工程>
 オレフィン系樹脂(P6)16.0g、ヘプタン386mL、イルガノックス1010:64mgを用いた以外は、製造例5と同じ条件にて水素化反応工程及びストリッピング工程を行うことにより、水素化したオレフィン系樹脂(HP6)(Mw:1,751、DCPD含量:76mol%)14.5gを得た。
<Hydrogenation reaction process / stripping process>
Hydrogenated olefins by performing a hydrogenation reaction step and a stripping step under the same conditions as in Production Example 5 except that 16.0 g of an olefin resin (P6), 386 mL of heptane, and 1010: 64 mg of Irganox were used. 14.5 g of a resin (HP6) (Mw: 1,751, DCPD content: 76 mol%) was obtained.
製造例7(水素化したオレフィン系樹脂(HP7)の製造)
<重合反応工程1>
 ステンレス製の1Lオートクレーブに窒素雰囲気下、室温にて、溶媒としてヘプタン283mL、第一のモノマーとしてDCPDのヘプタン溶液117mL(0.80mol)を加え、100rpmで攪拌しながら、スカベンジャーとしてTIBA(2mmol)、助触媒としてBorate(180μmol)、第一の主触媒としてビス(シクロペンタジエニル)ジルコニウムジクロリド(Cp2ZrCl2)(80μmol)、第二の主触媒としてビス(ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド((Me2Si)2Cp2ZrCl2)(40μmol)を加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガス0.05MPaを導入した。
 続いて、第二のモノマーとしてプロピレンガスを導入しながら、内温を80℃、全圧を0.80MPaまで昇温昇圧して1時間重合した後、未反応のプロピレンガス、水素ガスを脱圧除去した。重合溶液は、1Lオートクレーブを洗浄したヘプタンと共に、5Lフラスコへ全て移送した後、少量のエタノールを投入して触媒を失活させ、1Lオートクレーブは80℃で真空乾燥後に窒素パージした。
Production Example 7 (Production of hydrogenated olefin resin (HP7))
<Polymerization reaction step 1>
Add 283 mL of heptane as a solvent and 117 mL (0.80 mol) of a heptane solution of DCPD as the first monomer to a stainless steel 1 L autoclave under a nitrogen atmosphere at room temperature, and while stirring at 100 rpm, use TIBA (2 mmol) as a scavenger. Borate (180 μmol) as a co-catalyst, bis (cyclopentadienyl) zirconium dichloride (Cp 2 ZrCl 2 ) (80 μmol) as the first main catalyst, and bis (dimethylsilylene) -bis (cyclopentadi) as the second main catalyst. Enyl) Zirconium dichloride ((Me 2 Si) 2 Cp 2 ZrCl 2 ) (40 μmol) was added, the stirring rate was increased to 400 rpm, and then a chain transfer agent, hydrogen gas 0.05 MPa, was introduced.
Subsequently, while introducing propylene gas as the second monomer, the internal temperature was raised to 80 ° C. and the total pressure was raised to 0.80 MPa to polymerize for 1 hour, and then the unreacted propylene gas and hydrogen gas were depressurized. Removed. The polymerization solution was completely transferred to a 5 L flask together with the washed heptane of the 1 L autoclave, and then a small amount of ethanol was added to inactivate the catalyst, and the 1 L autoclave was vacuum dried at 80 ° C. and then purged with nitrogen.
<重合反応工程2>
 上記の<重合反応工程1>で用いたものと同じステンレス製の1Lオートクレーブに窒素雰囲気下、室温にて、溶媒としてヘプタン70mL、第一のモノマーとしてDCPDのヘプタン溶液330mL(2.25mol)を加え、100rpmで攪拌しながら、スカベンジャーとしてTIBA(2mmol)、助触媒としてBorate(60μmol)、主触媒としてビス(ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド((Me2Si)2Cp2ZrCl2)(40μmol)を加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガスを圧力0.50MPaで導入した。
 続いて、第二のモノマーとしてプロピレンガスを導入しながら、内温を80℃、全圧を0.80MPaまで昇温昇圧して1時間重合した後、未反応のプロピレンガス、水素ガスを脱圧除去した。重合溶液は、1Lオートクレーブを洗浄したヘプタンと共に、上記の<重合反応工程1>で用いたものと同じ5Lフラスコへ全て移送した。
 得られた樹脂のヘプタン溶液を濾過して触媒残渣を除去し、イルガノックス1010を20mg添加して、エバポレーターを用い、70℃、100hPaにてヘプタンを留去した後、160℃、25hPaにて未反応DCPDを留去することにより、オレフィン系樹脂(P7)(Mw:1,085、DCPD含量:83mol%)102.0gを得た。
<Polymerization reaction step 2>
70 mL of heptane as a solvent and 330 mL (2.25 mol) of a heptane solution of DCPD as the first monomer were added to the same stainless steel 1 L autoclave used in the above <polymerization reaction step 1> under a nitrogen atmosphere at room temperature. , TIBA (2 mmol) as a scavenger, Borate (60 μmol) as a co-catalyst, and bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride ((Me 2 Si) 2 Cp 2 ZrCl) as a main catalyst while stirring at 100 rpm. 2 ) (40 μmol) was added, the stirring speed was increased to 400 rpm, and then hydrogen gas as a chain transfer agent was introduced at a pressure of 0.50 MPa.
Subsequently, while introducing propylene gas as the second monomer, the internal temperature was raised to 80 ° C. and the total pressure was raised to 0.80 MPa to polymerize for 1 hour, and then the unreacted propylene gas and hydrogen gas were depressurized. Removed. The polymerization solution was completely transferred to the same 5L flask as that used in the above <polymerization reaction step 1> together with the washed heptane of the 1L autoclave.
The obtained resin heptane solution was filtered to remove the catalyst residue, 20 mg of Irganox 1010 was added, heptane was distilled off at 70 ° C. and 100 hPa using an evaporator, and then not at 160 ° C. and 25 hPa. By distilling off the reaction DCPD, 102.0 g of an olefin resin (P7) (Mw: 1,085, DCPD content: 83 mol%) was obtained.
<水素化反応工程・ストリッピング工程>
 ニッケル珪藻土触媒を4g、オレフィン系樹脂(P7)を60.0g、ヘプタンを346mL、イルガノックス1010を240mg用いた以外は、製造例1と同じ条件にて水素化反応工程及びストリッピング工程を行うことにより、水素化したオレフィン系樹脂(HP7)(Mw:1,104、DCPD含量:83mol%)57.0gを得た。
<Hydrogenation reaction process / stripping process>
Perform the hydrogenation reaction step and stripping step under the same conditions as in Production Example 1 except that 4 g of nickel diatomaceous earth catalyst, 60.0 g of olefin resin (P7), 346 mL of heptane, and 240 mg of irganox 1010 were used. Obtained 57.0 g of a hydrogenated olefin resin (HP7) (Mw: 1,104, DCPD content: 83 mol%).
製造例8(水素化したオレフィン系樹脂(HP8)の製造)
<重合反応工程>
 ステンレス製の1Lオートクレーブに窒素雰囲気下、室温にて、第一のモノマーとして濃度95体積%のDCPDのヘプタン溶液(試薬1級品、安定剤及び極性不純物をアルミナにて除去済み)264mL(1.90mol)、第二のモノマーとして4-メチル-1-ペンテン(4M1P)(極性不純物をアルミナにて除去済み)120mL(0.95mol)を加え、100rpmで攪拌しながら、スカベンジャーとして濃度2MのTIBAのヘプタン溶液1.0mL(2mmol)、助触媒として濃度20mMのBorateのヘプタン溶液3.0mL(60μmol)、主触媒として濃度20mMのビス(ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド((Me2Si)2Cp2ZrCl2)のヘプタン溶液4.0mL(40μmol)を加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガスを圧力0.10MPaで導入した。
 続いて、内温を80℃まで昇温して1時間重合した後、未反応の水素ガスを脱圧除去して、少量のエタノールを投入して重合を停止させた。
 得られた樹脂のヘプタン溶液を濾過して触媒残渣を除去し、一昼夜風乾した後、イルガノックス1010を20mg添加して、エバポレーターを用い、70℃、100hPaにてヘプタンを留去した後、160℃、25hPaにて未反応DCPDを留去することにより、オレフィン系樹脂(P8)(Mw:555、DCPD含量:83mol%)35.5gを得た。
Production Example 8 (Production of hydrogenated olefin resin (HP8))
<Polymerization reaction process>
A heptane solution of DCPD having a concentration of 95% by volume as the first monomer in a stainless steel 1L autoclave under a nitrogen atmosphere at room temperature (primary reagent, stabilizers and polar impurities have been removed with alumina) 264 mL (1. 90 mol), 120 mL (0.95 mol) of 4-methyl-1-pentene (4M1P) (polar impurities have been removed with alumina) as the second monomer, and while stirring at 100 rpm, as a scavenger of TIBA having a concentration of 2 M. Heptan solution 1.0 mL (2 mmol), Borate heptane solution 3.0 mL (60 μmol) with a concentration of 20 mM as a co-catalyst, bis (dimethylsilylene) -bis (cyclopentadienyl) zirconium dichloride ((Me)) with a concentration of 20 mM as a main catalyst. 2 Si) 4.0 mL (40 μmol) of a heptane solution of 2 Cp 2 ZrCl 2 ) was added, the stirring rate was increased to 400 rpm, and then hydrogen gas as a chain transfer agent was introduced at a pressure of 0.10 MPa.
Subsequently, the internal temperature was raised to 80 ° C. and polymerization was carried out for 1 hour, then unreacted hydrogen gas was depressurized and removed, and a small amount of ethanol was added to stop the polymerization.
The obtained resin heptane solution was filtered to remove the catalyst residue, air-dried for a whole day and night, 20 mg of Irganox 1010 was added, and heptane was distilled off at 70 ° C. and 100 hPa using an evaporator, and then 160 ° C. , Unreacted DCPD was distilled off at 25 hPa to obtain 35.5 g of an olefin resin (P8) (Mw: 555, DCPD content: 83 mol%).
<水素化反応工程・ストリッピング工程>
 ニッケル珪藻土触媒を3g、オレフィン系樹脂(P8)を30.0g、ヘプタンを373mL、イルガノックス1010を120mg用いた以外は、製造例5と同じ条件にて水素化反応工程及びストリッピング工程を行うことにより、水素化したオレフィン系樹脂(HP8)(Mw:613、DCPD含量:83mol%)28.0gを得た。
<Hydrogenation reaction process / stripping process>
Perform the hydrogenation reaction step and stripping step under the same conditions as in Production Example 5, except that 3 g of nickel diatomaceous earth catalyst, 30.0 g of olefin resin (P8), 373 mL of heptane, and 120 mg of irganox 1010 were used. Obtained 28.0 g of a hydrogenated olefin resin (HP8) (Mw: 613, DCPD content: 83 mol%).
製造例9(水素化したオレフィン系樹脂(HP9)の製造)
<重合反応工程>
 第一のモノマーとしてDCPDのヘプタン溶液167mL(1.14mol)、第二のモノマーとして4M1P220mL(1.74mol)を用いた以外は、製造例8と同じ条件にて重合反応を行うことにより、オレフィン系樹脂(P9)(Mw:762、DCPD含量:65mol%)57.1gを得た。
<水素化反応工程・ストリッピング工程>
 オレフィン系樹脂として、オレフィン系樹脂(P8)の代わりにオレフィン系樹脂(P9)を用いた以外は、製造例8と同じ条件にて、水素化反応工程及びストリッピング工程を行うことにより、水素化したオレフィン系樹脂(HP9)(Mw:801、DCPD含量:65mol%)28.5gを得た。
Production Example 9 (Production of hydrogenated olefin resin (HP9))
<Polymerization reaction process>
The polymerization reaction was carried out under the same conditions as in Production Example 8 except that 167 mL (1.14 mol) of a heptane solution of DCPD was used as the first monomer and 220 mL (1.74 mol) of 4M1P was used as the second monomer. 57.1 g of a resin (P9) (Mw: 762, DCPD content: 65 mol%) was obtained.
<Hydrogenation reaction process / stripping process>
Hydrogenation is performed by performing a hydrogenation reaction step and a stripping step under the same conditions as in Production Example 8 except that an olefin resin (P9) is used instead of the olefin resin (P8) as the olefin resin. 28.5 g of the olefin resin (HP9) (Mw: 801 and DCPD content: 65 mol%) was obtained.
比較製造例1(水添石油樹脂(HP10)の製造)
 国際公開2004/056882号の実施例1に準じて、原料モノマーとしてジシクロペンタジエン(DCPD)のみを用い、熱重合法(重合温度:260℃)によりジシクロペンタジエン(DCPD)の単独重合体を得た後、ニッケル触媒を用いた部分水素添加を行い、水添石油樹脂(HP10)を得た。
Comparative Production Example 1 (Production of Hydrogenated Petroleum Resin (HP10))
A homopolymer of dicyclopentadiene (DCPD) is obtained by a thermal polymerization method (polymerization temperature: 260 ° C.) using only dicyclopentadiene (DCPD) as a raw material monomer according to Example 1 of International Publication No. 2004/056882. After that, partial hydrogenation using a nickel catalyst was carried out to obtain a hydrogenated petroleum resin (HP10).
比較製造例2(水添石油樹脂(HP11)の製造)
 国際公開2004/056882号の実施例1に準じて、原料モノマーとしてジシクロペンタジエン(DCPD)とスチレンを表1の比率となるように用い、熱重合法によりジシクロペンタジエン(DCPD)とスチレンとの共重合体を得た後、ニッケル触媒を用いた部分水素添加を行い、水添石油樹脂(HP11)を得た。
Comparative production example 2 (Production of hydrogenated petroleum resin (HP11))
Dicyclopentadiene (DCPD) and styrene were used as raw material monomers in the ratio shown in Table 1 according to Example 1 of International Publication No. 2004/056882, and dicyclopentadiene (DCPD) and styrene were combined by a thermal polymerization method. After obtaining the copolymer, partial hydrogenation using a nickel catalyst was carried out to obtain a hydrogenated petroleum resin (HP11).
製造例10(オレフィン系樹脂(BP1)の製造)
 ステンレス製の1Lオートクレーブに窒素雰囲気下、室温にて、溶媒としてトルエン327mL、モノマーとして濃度80重量%のノルボルネン(NB)のトルエン溶液(試薬1級品、アルミナ処理済み)73mL(0.60mol)を加え、100rpmで攪拌しながら、スカベンジャーとして濃度2Mのトリイソブチルアルミニウム(TIBA)のヘプタン溶液1.0mL、助触媒として濃度5mMのジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(Borate)のトルエン溶液2.0mL(10μmol)、主触媒として濃度5mMのビス(シクロペンタジエニル)ジルコニウムジクロリド(Cp2ZrCl2)のトルエン溶液1.0mL(5μmol)を加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガスを圧力0.05MPaで導入した。
 続いて、第二のモノマーとしてエチレンガスを導入しながら、内温を90℃、全圧を0.70MPaまで昇温昇圧して1時間重合した後、未反応のエチレンガス、水素ガスを脱圧除去して、少量のエタノールを投入して重合を停止させた。
 上記の重合で得られたオレフィン系樹脂のトルエン溶液を攪拌した多量のエタノールへ滴下して、ポリマーを再沈させ、エタノールで数回洗浄・濾過した後、190℃、6時間、真空乾燥することにより、オレフィン系樹脂(BP1)(Mw:3.3万、NB含量:14mol%)39gを得た。
Production Example 10 (Production of olefin resin (BP1))
In a stainless steel 1L autoclave, under a nitrogen atmosphere, at room temperature, 327 mL of toluene as a solvent and 73 mL (0.60 mol) of a toluene solution of norbornene (NB) having a concentration of 80% by weight as a monomer (first-class reagent, alumina-treated). In addition, while stirring at 100 rpm, 1.0 mL of a heptane solution of triisobutylaluminum (TIBA) having a concentration of 2 M as a scavenger and a toluene solution of dimethylanilinium tetrakis (pentafluorophenyl) borate (Borate) having a concentration of 5 mM as a co-catalyst 2. Add 1.0 mL (5 μmol) of a toluene solution of 0 mL (10 μmol) and a concentration of 5 mM bis (cyclopentadienyl) zirconium dichloride (Cp 2 ZrCl 2 ) as the main catalyst, increase the stirring rate to 400 rpm, and then the chain transfer agent. Hydrogen gas was introduced at a pressure of 0.05 MPa.
Subsequently, while introducing ethylene gas as the second monomer, the internal temperature was raised to 90 ° C. and the total pressure was raised to 0.70 MPa to polymerize for 1 hour, and then the unreacted ethylene gas and hydrogen gas were depressurized. After removal, a small amount of ethanol was added to terminate the polymerization.
The toluene solution of the olefin resin obtained by the above polymerization is added dropwise to a large amount of stirred ethanol, the polymer is reprecipitated, washed and filtered with ethanol several times, and then vacuum dried at 190 ° C. for 6 hours. Obtained 39 g of an olefin resin (BP1) (Mw: 33,000, NB content: 14 mol%).
製造例11(オレフィン系樹脂(BP2)の製造)
 連鎖移動剤である水素ガスの圧力を0.01MPaに変更した以外は、製造例10と同じ条件にて重合反応、再沈、洗浄、及び乾燥を行うことにより、オレフィン系樹脂(BP2)(Mw:5.0万、NB含量:14mol%)75gを得た。
Production Example 11 (Production of olefin resin (BP2))
Olefin resin (BP2) (Mw) was subjected to polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 10 except that the pressure of hydrogen gas, which is a chain transfer agent, was changed to 0.01 MPa. : 50,000, NB content: 14 mol%) 75 g was obtained.
製造例12(オレフィン系樹脂(BP3)の製造)
 連鎖移動剤である水素ガスを用いなかった以外は、製造例10と同じ条件にて重合反応、再沈、洗浄、及び乾燥を行うことにより、オレフィン系樹脂(BP3)(Mw:9.1万、NB含量:14mol%)109gを得た。
Production Example 12 (Production of olefin resin (BP3))
Olefin resin (BP3) (Mw: 91,000) was subjected to polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 10 except that hydrogen gas, which is a chain transfer agent, was not used. , NB content: 14 mol%) 109 g was obtained.
製造例13(オレフィン系樹脂(BP4)の製造)
 濃度5mMのジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(Borate)のトルエン溶液の量を0.40mL(2μmol)に変更し、主触媒として濃度5mMのビス(シクロペンタジエニル)ジルコニウムジクロリド(Cp2ZrCl2)のトルエン溶液を濃度5mMのジメチルシリレン-(テトラメチルシクロペンタジエニル)(t-ブチルアミド)チタニウムジクロリド(Me2Si(Me4Cp)(t-BuN)TiCl2)のトルエン溶液0.20mL(1μmol)に変更し、エチレンガスを導入した後の、内温を80℃とした以外は、製造例10と同じ条件にて重合反応、再沈、洗浄、及び乾燥を行うことにより、オレフィン系樹脂(BP4)(Mw:8.4万、NB含量:18mol%)111gを得た。
Production Example 13 (Production of olefin resin (BP4))
The amount of toluene solution of dimethylanilinium tetrakis (pentafluorophenyl) borate (Borate) at a concentration of 5 mM was changed to 0.40 mL (2 μmol), and bis (cyclopentadienyl) zirconium dichloride (Cp 2) at a concentration of 5 mM was used as the main catalyst. Toluene solution of ZrCl 2 ) at a concentration of 5 mM dimethylsilylene- (tetramethylcyclopentadienyl ) (t-butylamide) titanium dichloride (Me 2 Si (Me 4 Cp) (t-BuN) Tycol 2 ) toluene solution 0. After changing to 20 mL (1 μmol) and introducing ethylene gas, the olefin was subjected to polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 10 except that the internal temperature was 80 ° C. 111 g of the system resin (BP4) (Mw: 84,000, NB content: 18 mol%) was obtained.
製造例14(オレフィン系樹脂(BP5)の製造)
 トルエンの量を305mLに変更し、ノルボルネン(NB)のトルエン溶液の量を95mL(0.80mol)に変更した以外は、製造例13と同じ条件にて重合反応、再沈、洗浄、及び乾燥を行うことにより、オレフィン系樹脂(BP5)(Mw:2.8万、NB含量:21mol%)30gを得た。
Production Example 14 (Production of olefin resin (BP5))
Polymerization reaction, reprecipitation, washing, and drying were carried out under the same conditions as in Production Example 13 except that the amount of toluene was changed to 305 mL and the amount of norbornene (NB) in a toluene solution was changed to 95 mL (0.80 mol). By doing so, 30 g of an olefin resin (BP5) (Mw: 28,000, NB content: 21 mol%) was obtained.
製造例15(オレフィン系樹脂(BP6)の製造)
 溶媒をシクロヘキサンに変更した以外は、製造例13と同じ条件にて重合反応、再沈、洗浄、及び乾燥を行うことにより、オレフィン系樹脂(BP6)(Mw:4.5万、NB含量:24mol%)50gを得た。
Production Example 15 (Production of olefin resin (BP6))
Olefin resin (BP6) (Mw: 45,000, NB content: 24 mol) was subjected to polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 13 except that the solvent was changed to cyclohexane. %) 50 g was obtained.
製造例16(オレフィン系樹脂(BP7)の製造)
 ステンレス製の1Lオートクレーブに窒素雰囲気下、室温にて、溶媒としてトルエン296mL、モノマーとして濃度80重量%のノルボルネン(NB)のトルエン溶液(試薬1級品、アルミナ処理済み)104mL(0.85mol)を加え、100rpmで攪拌しながら、スカベンジャーとして濃度2Mのトリイソブチルアルミニウム(TIBA)のヘプタン溶液1.0mL、助触媒として濃度20mMのジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(Borate)のトルエン溶液1.5mL(30μmol)、主触媒として濃度10mMのジメチルシリレン-(テトラメチルシクロペンタジエニル)(t-ブチルアミド)チタニウムジクロリド(Me2Si(Me4Cp)(t-BuN)TiCl2)のトルエン溶液2.0mL(20μmol)を加え、攪拌数を400rpmまで上げてから、連鎖移動剤である水素ガスを圧力0.05MPaで導入した。
 続いて、第二のモノマーとしてプロピレンガスを導入しながら、内温を80℃、全圧を0.70MPaまで昇温昇圧して1時間重合した後、未反応のプロピレンガス、水素ガスを脱圧除去して、少量のエタノールを投入して重合を停止させた。
 上記の重合で得られたオレフィン系樹脂のトルエン溶液を攪拌した多量のエタノールへ滴下して、ポリマーを再沈させ、エタノールで数回洗浄・濾過した後、190℃、6時間、真空乾燥することにより、オレフィン系樹脂(BP7)(Mw:4.3万、NB含量:18mol%)73gを得た。
Production Example 16 (Production of olefin resin (BP7))
In a stainless steel 1L autoclave, under a nitrogen atmosphere, at room temperature, 296 mL of toluene as a solvent and 104 mL (0.85 mol) of a toluene solution of norbornene (NB) having a concentration of 80% by weight as a monomer (first-class reagent, alumina-treated). In addition, while stirring at 100 rpm, 1.0 mL of a heptane solution of triisobutylaluminum (TIBA) having a concentration of 2 M as a scavenger and a toluene solution of dimethylanilinium tetrakis (pentafluorophenyl) borate (Borate) having a concentration of 20 mM as a co-catalyst 1. Toluene solution 2 of 5 mL (30 μmol), 10 mM dimethylsilylene- (tetramethylcyclopentadienyl ) (t-butylamide) titanium dichloride (Me 2 Si (Me 4 Cp) (t-BuN) Tycol 2) as the main catalyst After adding 0.0 mL (20 μmol) and increasing the stirring rate to 400 rpm, hydrogen gas as a chain transfer agent was introduced at a pressure of 0.05 MPa.
Subsequently, while introducing propylene gas as the second monomer, the internal temperature was raised to 80 ° C. and the total pressure was raised to 0.70 MPa to polymerize for 1 hour, and then the unreacted propylene gas and hydrogen gas were depressurized. After removal, a small amount of ethanol was added to terminate the polymerization.
The toluene solution of the olefin resin obtained by the above polymerization is added dropwise to a large amount of stirred ethanol, the polymer is reprecipitated, washed and filtered with ethanol several times, and then vacuum dried at 190 ° C. for 6 hours. Obtained 73 g of an olefin resin (BP7) (Mw: 43,000, NB content: 18 mol%).
製造例17(オレフィン系樹脂(BP8)の製造)
 トルエンの量を272mLに変更し、ノルボルネン(NB)のトルエン溶液の量を128mL(1.05mol)に変更し、連鎖移動剤である水素ガスを圧力0.10MPaで導入し、エチレンガスを導入した後の全圧を0.80MPaとした以外は、製造例16と同じ条件にて重合反応、再沈、洗浄、及び乾燥を行うことにより、オレフィン系樹脂(BP8)(Mw:2.5万、NB含量:27mol%)53gを得た。
Production Example 17 (Production of olefin resin (BP8))
The amount of toluene was changed to 272 mL, the amount of the toluene solution of norbornene (NB) was changed to 128 mL (1.05 mol), hydrogen gas as a chain transfer agent was introduced at a pressure of 0.10 MPa, and ethylene gas was introduced. The olefin resin (BP8) (Mw: 25,000,) was subjected to the polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 16 except that the total pressure was 0.80 MPa. NB content: 27 mol%) 53 g was obtained.
製造例18(オレフィン系樹脂(BP9)の製造)
 連鎖移動剤である水素ガスを圧力0.05MPaで導入した以外は、製造例17と同じ条件にて重合反応、再沈、洗浄、及び乾燥を行うことにより、オレフィン系樹脂(BP9)(Mw:4.0万、NB含量:27mol%)66gを得た。
Production Example 18 (Production of olefin resin (BP9))
The olefin resin (BP9) (Mw:) was subjected to a polymerization reaction, reprecipitation, washing, and drying under the same conditions as in Production Example 17 except that hydrogen gas, which is a chain transfer agent, was introduced at a pressure of 0.05 MPa. 4,000,000, NB content: 27 mol%) 66 g was obtained.
製造例19(オレフィン系樹脂(BP10)の製造)
 トルエンの量を242mLに変更し、ノルボルネン(NB)のトルエン溶液の量を158mL(1.30mol)に変更し、連鎖移動剤である水素ガスを圧力0.10MPaで導入した以外は、製造例16と同じ条件にて重合反応を行うことにより、オレフィン系樹脂(BP10)(Mw:2.2万、NB含量:32mol%)27gを得た。
Production Example 19 (Production of olefin resin (BP10))
Production Example 16 except that the amount of toluene was changed to 242 mL, the amount of norbornene (NB) in a toluene solution was changed to 158 mL (1.30 mol), and hydrogen gas, which is a chain transfer agent, was introduced at a pressure of 0.10 MPa. By carrying out the polymerization reaction under the same conditions as above, 27 g of an olefin resin (BP10) (Mw: 22,000, NB content: 32 mol%) was obtained.
製造例20(オレフィン系樹脂(BP13)の製造)
 <重合反応工程>において、ヘプタンの量を347mL、ジシクロペンタジエン(DCPD)のヘプタン溶液(試薬1級品、アルミナ処理済み)50mL(0.36mol)、Borateのヘプタン溶液3.0mL(60μmol)、Cp2ZrCl2のヘプタン溶液2.0mL(40μmol)、第二のモノマーとしてエチレンを用い、水素ガスの圧力を0.05MPa、全圧を0.80MPaとし、<水素化反応工程>において、150℃で3時間水素化反応を行った以外は、製造例5と同じ条件にて重合反応、再沈、洗浄、乾燥を行い、重合収量137gの一部を水素化、ストリッピングすることにより、オレフィン系樹脂(BP13)(Mw:6.4万、DCPD含量:6mol%)137gをを得た。
Production Example 20 (Production of Olefin Resin (BP13))
In the <polymerization reaction step>, the amount of heptane was 347 mL, dicyclopentadiene (DCPD) heptane solution (primary reagent, alumina-treated) 50 mL (0.36 mol), boronate heptane solution 3.0 mL (60 μmol), 2.0 mL (40 μmol) of Cp 2 ZrCl 2 heptane solution, ethylene was used as the second monomer, the pressure of hydrogen gas was 0.05 MPa, the total pressure was 0.80 MPa, and in the <hydrogenation reaction step>, 150 ° C. The polymerization reaction, reprecipitation, washing, and drying were carried out under the same conditions as in Production Example 5, except that the hydrogenation reaction was carried out for 3 hours, and a part of the polymerization yield of 137 g was hydrogenated and stripped to form an olefin. 137 g of a resin (BP13) (Mw: 64,000, DCPD content: 6 mol%) was obtained.
製造例21(オレフィン系樹脂(BP14)の製造)
 ヘプタンの量を188mL、DCPDのヘプタン溶液の量を200mL(1.42mol)、水素ガスの圧力を0.30MPaとした以外は、製造例20と同じ条件にて重合反応を行うことにより、オレフィン系樹脂(BP14)(Mw:2.9万、DCPD含量:22mol%)158gを得た。
Production Example 21 (Production of olefin resin (BP14))
The polymerization reaction was carried out under the same conditions as in Production Example 20 except that the amount of heptane was 188 mL, the amount of the heptane solution of DCPD was 200 mL (1.42 mol), and the pressure of hydrogen gas was 0.30 MPa. 158 g of a resin (BP14) (Mw: 29000, DCPD content: 22 mol%) was obtained.
製造例22(オレフィン系樹脂(BP15)の製造)
 水素ガスの圧力を0.05MPaとした以外は、製造例21と同じ条件にて重合反応を行うことにより、オレフィン系樹脂(BP15)(Mw:4.8万、DCPD含量:23mol%)72gを得た。
Production Example 22 (Production of olefin resin (BP15))
By carrying out the polymerization reaction under the same conditions as in Production Example 21 except that the pressure of hydrogen gas was set to 0.05 MPa, 72 g of an olefin resin (BP15) (Mw: 48,000, DCPD content: 23 mol%) was obtained. Obtained.
製造例23(オレフィン系樹脂(BP16)の製造)
 溶媒としてトルエン188mL、ジシクロペンタジエン(DCPD)のトルエン溶液(試薬1級品、アルミナ処理済み)200mL(1.42mol)、Borateのトルエン溶液3.0mL(60μmol)、主触媒としてジメチルシリレン-(テトラメチルシクロペンタジエニル)(t-ブチルアミド)チタニウムジクロリド(Me2Si(Me4Cp)(t-BuN)TiCl2)のトルエン溶液2.0mL(40μmol)、第二モノマーをプロピレンとした以外は、製造例20と同じ条件にて重合反応を行うことにより、オレフィン系樹脂(BP16)(Mw:2.4万、DCPD含量:36mol%)35gを得た。
Production Example 23 (Production of olefin resin (BP16))
188 mL of toluene as a solvent, 200 mL (1.42 mol) of a toluene solution of dicyclopentadiene (DCPD) (primary reagent, treated with alumina), 3.0 mL (60 μmol) of a toluene solution of Borate, and dimethylsilylene- (tetra) as the main catalyst. Except for 2.0 mL (40 μmol) of a toluene solution of methylcyclopentadiene (t-butylamide) titanium dichloride (Me 2 Si (Me 4 Cp) (t-BuN) Tycol 2) and propylene as the second monomer. By carrying out the polymerization reaction under the same conditions as in Production Example 20, 35 g of an olefin resin (BP16) (Mw: 24,000, DCPD content: 36 mol%) was obtained.
その他の樹脂原料(スチレン系エラストマー(BP11))
 スチレン系エラストマーであるスチレン-ブタジエン-スチレンブロックコポリマー(SBS)(Kraton Corporation製、商品名:KRATON(D1102)、MFR(200℃、5kg、ISO 1133):6g/10min、スチレン含量:30wt%)をBP11とし、ベースポリマーとしての評価に用いた。
Other resin raw materials (styrene elastomer (BP11))
Styrene-butadiene-styrene block copolymer (SBS) (manufactured by Kraton Corporation, trade name: KRATON (D1102), MFR (200 ° C., 5 kg, ISO 1133): 6 g / 10 min, styrene content: 30 wt%), which is a styrene-based elastomer. It was designated as BP11 and used for evaluation as a base polymer.
その他の樹脂原料(オレフィン系エラストマー(BP12))
 オレフィン系エラストマーである低融点ポリプロピレン(PP)(出光興産株式会社製、商品名:L-MODU S400)をBP12とし、ベースポリマーとしての評価に用いた。
Other resin raw materials (olefin elastomer (BP12))
Low melting point polypropylene (PP) (manufactured by Idemitsu Kosan Co., Ltd., trade name: L-MODU S400), which is an olefin-based elastomer, was designated as BP12 and used for evaluation as a base polymer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果から明らかなように、本開示のオレフィン系樹脂は、臭気が少なく、ホットメルト接着剤の原料である他の材料との親和性に優れていることがわかる。 As is clear from the results in Tables 1 and 2, it can be seen that the olefin-based resin of the present disclosure has little odor and has an excellent affinity with other materials that are raw materials for hot melt adhesives.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び表4に明示されているように、本開示のオレフィン系樹脂は、スチレン系エラストマー及びポリオレフィン系エラストマーとの配合において、良好な粘着性を有することがわかる。 As clearly shown in Tables 3 and 4, it can be seen that the olefin-based resin of the present disclosure has good adhesiveness when blended with a styrene-based elastomer and a polyolefin-based elastomer.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5及び6の結果から明らかなように、本開示のオレフィン系樹脂は、臭気が少なく、ホットメルト接着剤の原料である他の材料との親和性に優れていることがわかる。 As is clear from the results in Tables 5 and 6, it can be seen that the olefin-based resin of the present disclosure has little odor and has an excellent affinity with other materials that are raw materials for hot melt adhesives.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表7~10に明示されているように、本開示のオレフィン系樹脂は、ベースポリマーとして用いた場合にも良好な粘着性を有することがわかる。  As clearly shown in Tables 7 to 10, it can be seen that the olefin-based resin of the present disclosure has good adhesiveness even when used as a base polymer.

Claims (20)

  1.  脂環式オレフィン(A)を由来とする構成単位を含み、以下の(a)及び(b)を満たす、オレフィン系樹脂。
     (a)芳香族性部分が1%以下
     (b)直鎖性が70%以上
    An olefin-based resin containing a structural unit derived from an alicyclic olefin (A) and satisfying the following (a) and (b).
    (A) Aromatic part is 1% or less (b) Linearity is 70% or more
  2.  脂環式オレフィン(A)が、ジシクロペンタジエン、シクロペンテン、シクロヘキセン、ノルボルネン及びこれらの誘導体から選ばれる1つ以上である、請求項1に記載のオレフィン系樹脂。 The olefin-based resin according to claim 1, wherein the alicyclic olefin (A) is one or more selected from dicyclopentadiene, cyclopentene, cyclohexene, norbornene and derivatives thereof.
  3.  更にα-オレフィン(B)を由来とする構成単位を含む、請求項1又は2に記載のオレフィン系樹脂。 The olefin-based resin according to claim 1 or 2, further comprising a structural unit derived from α-olefin (B).
  4.  α-オレフィン(B)の炭素数が2~10である、請求項3に記載のオレフィン系樹脂。 The olefin-based resin according to claim 3, wherein the α-olefin (B) has 2 to 10 carbon atoms.
  5.  α-オレフィン(B)が直鎖状α-オレフィン及び分岐状α-オレフィンから選ばれる1つ以上である、請求項3又は4に記載のオレフィン系樹脂。 The olefin-based resin according to claim 3 or 4, wherein the α-olefin (B) is one or more selected from a linear α-olefin and a branched α-olefin.
  6.  α-オレフィン(B)がエチレン、プロピレン、ブテン、3-メチル-1-ブテン、4-メチル-1-ペンテン及び2-エチル-1-ヘキセンから選ばれる1つ以上である、請求項3~5のいずれか1つに記載のオレフィン系樹脂。 Claims 3-5, wherein the α-olefin (B) is one or more selected from ethylene, propylene, butene, 3-methyl-1-butene, 4-methyl-1-pentene and 2-ethyl-1-hexene. The olefin-based resin according to any one of the above.
  7.  オレフィン系樹脂に含まれる揮発成分が、10ppm以下である、請求項1~6のいずれか1つに記載のオレフィン系樹脂。 The olefin resin according to any one of claims 1 to 6, wherein the volatile component contained in the olefin resin is 10 ppm or less.
  8.  分子量分布(Mw/Mn)が2.5以上である、請求項1~7のいずれか1つに記載のオレフィン系樹脂。 The olefin-based resin according to any one of claims 1 to 7, which has a molecular weight distribution (Mw / Mn) of 2.5 or more.
  9.  分子量分布(Mz/Mw)が2.5超である、請求項1~8のいずれか1つに記載のオレフィン系樹脂。 The olefin-based resin according to any one of claims 1 to 8, which has a molecular weight distribution (Mz / Mw) of more than 2.5.
  10.  重量平均分子量が、5,000~200,000である、請求項1~9のいずれか1つに記載のオレフィン系樹脂。 The olefin-based resin according to any one of claims 1 to 9, wherein the weight average molecular weight is 5,000 to 200,000.
  11.  脂環式オレフィン(A)とα-オレフィン(B)のモル比[(A)/(B)]が40/60~100/0である、請求項3~10のいずれか1つに記載のオレフィン系樹脂。 The invention according to any one of claims 3 to 10, wherein the molar ratio [(A) / (B)] of the alicyclic olefin (A) to the α-olefin (B) is 40/60 to 100/0. Olefin resin.
  12.  脂環式オレフィン(A)とα-オレフィン(B)のモル比[(A)/(B)]が1/99~40/60である、請求項3~10のいずれか1つに記載のオレフィン系樹脂。 The invention according to any one of claims 3 to 10, wherein the molar ratio [(A) / (B)] of the alicyclic olefin (A) to the α-olefin (B) is 1/99 to 40/60. Olefin resin.
  13.  請求項1~12のいずれか1つに記載のオレフィン系樹脂を含む、ホットメルト接着剤。 A hot melt adhesive containing the olefin resin according to any one of claims 1 to 12.
  14.  ベースポリマーを更に含む、請求項13に記載のホットメルト接着剤。 The hot melt adhesive according to claim 13, further comprising a base polymer.
  15.  前記ベースポリマーのハンセン溶解度パラメータと、前記オレフィン系樹脂のハンセン溶解度パラメータとの差が5以下である、請求項14に記載のホットメルト接着剤。 The hot melt adhesive according to claim 14, wherein the difference between the Hansen solubility parameter of the base polymer and the Hansen solubility parameter of the olefin resin is 5 or less.
  16.  粘着付与樹脂を更に含む、請求項13~15のいずれか1つに記載のホットメルト接着剤。 The hot melt adhesive according to any one of claims 13 to 15, further comprising a tackifier resin.
  17.  メタロセン触媒の存在下、脂環式オレフィン(A)を含むモノマー成分を0~240℃で重合する工程、及びストリッピングを行う工程を含む、オレフィン系樹脂の製造方法。 A method for producing an olefin resin, which comprises a step of polymerizing a monomer component containing an alicyclic olefin (A) at 0 to 240 ° C. in the presence of a metallocene catalyst, and a step of stripping.
  18.  更に触媒の存在下、100~300℃で水素化する工程を含む、請求項17に記載のオレフィン系樹脂の製造方法。 The method for producing an olefin resin according to claim 17, further comprising a step of hydrogenating at 100 to 300 ° C. in the presence of a catalyst.
  19.  ストリッピングを行う工程が、不活性ガスを媒体として用い、150~300℃でストリッピング処理を0.5~5時間行う、請求項17又は18に記載のオレフィン系樹脂の製造方法。 The method for producing an olefin resin according to claim 17 or 18, wherein the stripping step uses an inert gas as a medium and the stripping treatment is performed at 150 to 300 ° C. for 0.5 to 5 hours.
  20.  メタロセン触媒の存在下、脂環式オレフィン(A)を含むモノマー成分を0~240℃で重合する前記の工程において、2種以上のメタロセン触媒存在下で重合する、請求項17~19のいずれか1つに記載のオレフィン系樹脂の製造方法。 Any of claims 17 to 19, which polymerizes in the presence of two or more metallocene catalysts in the above step of polymerizing a monomer component containing an alicyclic olefin (A) at 0 to 240 ° C. in the presence of a metallocene catalyst. The method for producing an olefin resin according to one.
PCT/JP2020/036501 2019-09-27 2020-09-28 Olefin-based resin and hot-melt adhesive WO2021060551A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227009403A KR20220070214A (en) 2019-09-27 2020-09-28 Olefin-based resins and hot melt adhesives
JP2021548474A JPWO2021060551A1 (en) 2019-09-27 2020-09-28
DE112020004613.3T DE112020004613T5 (en) 2019-09-27 2020-09-28 Olefin based resin and hot melt adhesive

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019177811 2019-09-27
JP2019-177811 2019-09-27
JP2020-064519 2020-03-31
JP2020064519 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021060551A1 true WO2021060551A1 (en) 2021-04-01

Family

ID=75165261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036501 WO2021060551A1 (en) 2019-09-27 2020-09-28 Olefin-based resin and hot-melt adhesive

Country Status (4)

Country Link
JP (1) JPWO2021060551A1 (en)
KR (1) KR20220070214A (en)
DE (1) DE112020004613T5 (en)
WO (1) WO2021060551A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503237A (en) * 1994-07-22 1998-03-24 エクソン・ケミカル・パテンツ・インク Tackifier and method for obtaining tackifier
JP2000502130A (en) * 1995-12-07 2000-02-22 エクソン・ケミカル・パテンツ・インク Tackifier and method for obtaining tackifier
JP2000509754A (en) * 1997-01-31 2000-08-02 帝人株式会社 α-olefin-cycloolefin copolymer and method for producing the same
JP2001288436A (en) * 2000-02-04 2001-10-16 Sumitomo Chem Co Ltd Rubber bonding hot-melt adhesive
JP2002506452A (en) * 1997-06-25 2002-02-26 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Ruthenium and osmium carbene catalysts
WO2006004068A1 (en) * 2004-07-02 2006-01-12 Riken Polymerization catalyst compositions containing metallocene complexes and polymers produced by using the same
JP2015025126A (en) * 2013-06-21 2015-02-05 日本ポリエチレン株式会社 Compatibilizing material for thermoplastic resin, modifier and resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056882A1 (en) 2002-12-20 2004-07-08 Idemitsu Kosan Co., Ltd. Process for the production of hydrogenated petroleum resin
JP4910409B2 (en) 2006-01-31 2012-04-04 東ソー株式会社 Petroleum resin and method for producing the same
JP5850683B2 (en) 2011-09-16 2016-02-03 ヘンケルジャパン株式会社 Hot melt adhesive

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503237A (en) * 1994-07-22 1998-03-24 エクソン・ケミカル・パテンツ・インク Tackifier and method for obtaining tackifier
JP2000502130A (en) * 1995-12-07 2000-02-22 エクソン・ケミカル・パテンツ・インク Tackifier and method for obtaining tackifier
JP2000509754A (en) * 1997-01-31 2000-08-02 帝人株式会社 α-olefin-cycloolefin copolymer and method for producing the same
JP2002506452A (en) * 1997-06-25 2002-02-26 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Ruthenium and osmium carbene catalysts
JP2001288436A (en) * 2000-02-04 2001-10-16 Sumitomo Chem Co Ltd Rubber bonding hot-melt adhesive
WO2006004068A1 (en) * 2004-07-02 2006-01-12 Riken Polymerization catalyst compositions containing metallocene complexes and polymers produced by using the same
JP2015025126A (en) * 2013-06-21 2015-02-05 日本ポリエチレン株式会社 Compatibilizing material for thermoplastic resin, modifier and resin composition

Also Published As

Publication number Publication date
KR20220070214A (en) 2022-05-30
JPWO2021060551A1 (en) 2021-04-01
DE112020004613T5 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP4053993B2 (en) Method for producing high fluid propylene polymer
KR100386372B1 (en) Hot melt adhesive compositions
JP4938199B2 (en) Polyolefin hot melt adhesive resin
JP6297071B2 (en) Block copolymer composition and adhesive composition
JP3979997B2 (en) Highly fluid 1-butene polymer and process for producing the same
JP5942103B2 (en) Block copolymer composition for adhesive and adhesive composition
EP1799765A1 (en) Combinations of tackifier and polyalphaolefin oil
TWI504709B (en) A block copolymer for bonding agent, a method for producing the same, and a binder composition
KR19990071951A (en) Method of obtaining tackifier and tackifier
JP6677378B2 (en) Base polymer for hot melt adhesive
WO2018088359A1 (en) Propylene polymer, propylene resin composition, and hot-melt adhesive including said polymer and composition
CA3038443C (en) Contact adhesives
JP6328536B2 (en) Adhesive composition
WO2012124345A1 (en) Reactive polyolefin, method for producing same, and composition containing same
WO2021060551A1 (en) Olefin-based resin and hot-melt adhesive
JP2007197736A (en) Modifier for polyolefin-based resin
JP7477262B2 (en) Block copolymer composition and adhesive composition
CN110305273B (en) Block copolymer composition and adhesive composition
JP2022063038A (en) Block copolymer composition and adhesive composition
JP2013082793A (en) Tacky adhesive composition
JP2023062570A (en) Carbonyl group-containing hydrogenated petroleum resin
MXPA99011727A (en) Aromatic modified crude c5

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548474

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20869455

Country of ref document: EP

Kind code of ref document: A1