JP2007197736A - Modifier for polyolefin-based resin - Google Patents

Modifier for polyolefin-based resin Download PDF

Info

Publication number
JP2007197736A
JP2007197736A JP2007126763A JP2007126763A JP2007197736A JP 2007197736 A JP2007197736 A JP 2007197736A JP 2007126763 A JP2007126763 A JP 2007126763A JP 2007126763 A JP2007126763 A JP 2007126763A JP 2007197736 A JP2007197736 A JP 2007197736A
Authority
JP
Japan
Prior art keywords
group
butene
dimethylsilylene
zirconium dichloride
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007126763A
Other languages
Japanese (ja)
Inventor
Yutaka Minami
裕 南
Masami Kanamaru
正実 金丸
Toyozou Fujioka
東洋蔵 藤岡
Tomoaki Takebe
智明 武部
Masao Inoue
雅雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2007126763A priority Critical patent/JP2007197736A/en
Publication of JP2007197736A publication Critical patent/JP2007197736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin modifier comprising 1-butene-based polymer having uniform composition, controlled stereoregularity, high flowability and high flexibility. <P>SOLUTION: The modifier for polyolefin-based resin comprises a 1-butene-based polymer satisfying following (1) to (3). (1) The intrinsic viscosity [η] as measured in tetralin solvent at 135°C is 0.01 to 0.5 dL/g. (2) The crystalline resin has a melting point (Tm-D) of 0 to 100°C, wherein the melting point is defined as the top of the peak observed on the highest-temperature side in a melting endothermic curve obtained with a differential scanning calorimeter (DSC) in a test in which a sample is held in a nitrogen atmosphere at -10°C for 5 min and then heated at a rate of 10°C/min. (3) The stereoregularity index ä(mmmm)/(mmrr+rmmr)} is 30 or lower. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高流動、更には流動性、引張弾性率及び伸び、二次加工性のバランスが良好な1−ブテン系重合体、該1−ブテン系重合体の製造方法、該1−ブテン系重合体からなる樹脂改質剤及び該1−ブテン系重合体を含有するホットメルト接着剤に関する。
本発明の1−ブテン系重合体は、ホットメルト接着剤、シーリング剤、樹脂・エラストマー改質剤、ワックスブレンド剤、フィラーブレンド剤などの用途に好適なものである。
The present invention relates to a 1-butene polymer having a good balance of high flow, further fluidity, tensile elastic modulus and elongation, and secondary processability, a method for producing the 1-butene polymer, and the 1-butene system. The present invention relates to a resin modifier comprising a polymer and a hot melt adhesive containing the 1-butene polymer.
The 1-butene polymer of the present invention is suitable for applications such as hot melt adhesives, sealing agents, resin / elastomer modifiers, wax blending agents, filler blending agents and the like.

従来から、分子量や結晶性が比較的低く、ホットメルト接着剤などとして使用されるポリマーとして、プロピレン単独重合体、あるいはプロピレンと、エチレンや1−ブテンを共重合させたオレフィン系ポリマーが知られている。
しかしながら、このようなポリマーは、分子量分布や組成分布が広いため、均一性に欠けるものであった。
ところで、これまで、マグネシウム担持型チタン触媒により1−ブテン重合体が製造されているが(特許文献1)、組成が不均一でべたつきの発生や透明性の低下など物性に悪影響を与えていた。
Conventionally, propylene homopolymers or olefin polymers obtained by copolymerizing propylene with ethylene or 1-butene have been known as polymers having relatively low molecular weight and crystallinity and used as hot melt adhesives. Yes.
However, such a polymer lacks uniformity because of its wide molecular weight distribution and composition distribution.
Until now, 1-butene polymers have been produced with magnesium-supported titanium catalysts (Patent Document 1), but the composition was non-uniform and had adverse effects on physical properties such as stickiness and reduced transparency.

この点に関しては、近年、メタロセン触媒により組成の均一な1−ブテン重合体が得られている(特許文献2〜6)。
また、特許文献7には高流動1−ブテン系重合体が開示されている。
しかしながら、いずれにおいても無架橋のメタロセン化合物が用いられているため、得られるのは液状の非結晶性の1−ブテン系重合体であり、この1−ブテン系重合体においては表面特性の悪化等が引き起こされるという問題があった。
また、高分子を熱で溶融し接着させるホットメルト法による接着において用いられるホットメルト接着剤は、高速塗工性、速硬化性、無溶剤性、バリヤ性、省エネルギー性、経済性等に優れるため各種分野において利用が拡大している。
In this regard, in recent years, 1-butene polymers having a uniform composition have been obtained with metallocene catalysts (Patent Documents 2 to 6).
Patent Document 7 discloses a highly fluid 1-butene polymer.
However, in any case, since a non-crosslinked metallocene compound is used, a liquid non-crystalline 1-butene polymer is obtained. In this 1-butene polymer, surface characteristics are deteriorated. There was a problem that caused.
In addition, hot melt adhesives used in hot melt bonding, which melts and bonds polymers with heat, are excellent in high-speed coating properties, fast curing properties, solvent-free properties, barrier properties, energy savings, economic efficiency, etc. Use is expanding in various fields.

従来のホットメルト接着剤としては、天然ゴム、エチレン−酢酸ビニル共重合体、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体などのベースポリマーに粘着性付与樹脂や可塑剤を配合した樹脂が主に使用されている。
しかしながら、上記のようなベースポリマーは、二重結合を多量に含有するため、前記ベースポリマーを用いて配合されたホットメルト接着剤は、加熱時の熱安定性が悪く、塗工時に酸化、ゲル化、分解、着色などを起こしたり、接着部の強度が経時変化を起こすといったような問題があった。
また、ポリエチレン、ポリプロピレンなどの低極性物質に対する接着性にも劣るという欠点もあった。
Conventional hot melt adhesives include natural rubber, ethylene-vinyl acetate copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, and other base polymers such as tackifier resins and plastics. The resin which mix | blended the agent is mainly used.
However, since the base polymer as described above contains a large amount of double bonds, the hot melt adhesive compounded using the base polymer has poor thermal stability during heating, and is oxidized and gelated during coating. There have been problems such as causing aging, decomposition, coloring, etc., and causing the strength of the bonded portion to change over time.
In addition, there is a drawback that the adhesiveness to low polar substances such as polyethylene and polypropylene is poor.

このような低極性物質向けには、従来からもポリプロピレンなどをベースとする樹脂は存在したが、これらは、熱安定性には優れるものの、ベースポリマーの硬度が高すぎ、流動性に劣るため高温下で塗工する必要が有り、高温下での熱安定性が低くかつ、充分な接着性が得られないという問題があった。
これに関して、上記のように、ホットメルト接着剤のベースポリマーとして使用されるポリマーには、プロピレン単独重合体、あるいはプロピレンと、エチレンや1−ブテンを共重合させた分子量や結晶性が比較的低いオレフィン系ポリマーが知られている(特許文献8)。
For such low-polarity substances, there have been resins based on polypropylene or the like, but these are excellent in thermal stability, but the base polymer has too high hardness and poor fluidity, so that the temperature is high. There is a problem that it is necessary to apply the coating underneath, the thermal stability at high temperature is low, and sufficient adhesion cannot be obtained.
In this regard, as described above, the polymer used as the base polymer of the hot melt adhesive has a relatively low molecular weight and crystallinity obtained by copolymerizing propylene homopolymer or propylene with ethylene or 1-butene. Olefin polymers are known (Patent Document 8).

しかしながら、これらのポリマーは流動性、柔軟性、二次加工性のバランスには優れるものの、靭性に劣るため、弾性体と不織布の接着剤として用いた場合、接着強度に劣る場合があるという問題点があった。
例えば、ポリマーの靭性を高めるために、立体規則性を下げて低結晶性のものを用いる方法があるが(特許文献9)、あまりに立体規則性を下げたものでは、物理的架橋点たる結晶部が不足して却って靭性が低下してしまう。
一方、ポリマーの絡み合いにより靭性を発現させるべく、分子量を増大させると、靭性は高いが流動性に劣るものとなってしまう。
このようにホットメルト接着剤においては、ベースポリマーの流動性と靭性のバランスを調整する必要があった。
However, these polymers have a good balance of fluidity, flexibility, and secondary processability, but have poor toughness, so that when used as an adhesive between an elastic body and a nonwoven fabric, the adhesive strength may be inferior. was there.
For example, in order to increase the toughness of the polymer, there is a method of reducing the stereoregularity and using a low crystallinity (Patent Document 9), but if the stereoregularity is too low, the crystal part which is a physical crosslinking point In short, the toughness is reduced.
On the other hand, if the molecular weight is increased in order to develop toughness due to polymer entanglement, the toughness is high but the fluidity is poor.
As described above, in the hot melt adhesive, it is necessary to adjust the balance between fluidity and toughness of the base polymer.

特開平7−145205号公報JP 7-145205 A 特開昭62−119214号公報Japanese Patent Laid-Open No. 62-119214 特開昭62−121707号公報Japanese Patent Laid-Open No. 62-121707 特開昭62−121708号公報JP 62-121708 A 特開昭62−119213号公報Japanese Patent Laid-Open No. 62-119213 特開平8−225605号公報JP-A-8-225605 特開昭63−57615号公報JP-A-63-57615 特開平7−145205号公報JP 7-145205 A 特開2002−322213号公報JP 2002-322213 A

本発明は、上記事情に鑑みなされたもので、組成が均一で、立体規則性が制御され、高流動で柔軟性の高い1−ブテン系重合体、該1−ブテン系重合体の製造方法及び該1−ブテン系重合体からなる樹脂改質剤を提供することを目的とするものである。
更に、本発明は、ホットメルト接着剤用ベースポリマーにおける靭性不足の問題点を解決し、流動性と靭性のバランスに優れ、高温下での熱安定性や低極性物質への接着性にも優れ、かつ、その接着面が耐熱性にも優れる該1−ブテン系重合体を含有するホットメルト接着剤を提供することを目的とするものである。
The present invention has been made in view of the above circumstances. A 1-butene polymer having a uniform composition, controlled stereoregularity, high fluidity and high flexibility, a method for producing the 1-butene polymer, and An object of the present invention is to provide a resin modifier comprising the 1-butene polymer.
Furthermore, the present invention solves the problem of lack of toughness in the base polymer for hot melt adhesives, has an excellent balance between fluidity and toughness, and has excellent thermal stability at high temperatures and adhesion to low polar substances. And it aims at providing the hot-melt-adhesive containing this 1-butene type polymer which the adhesive surface is excellent also in heat resistance.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、(A)特定の遷移金属化合物及び(B)(B−1)該(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒を用いることにより、高活性で1−ブテン系重合体を製造することができ、得られた1−ブテン系重合体は、分子量分布及び組成分布が適性で、流動性と物性(弾性率)と二次加工性(融点)のバランスが良好であることを見出した。
また、本発明者らは、流動性の指標であるゼロせん断粘度η0が300Pa・s以下であって、かつ靭性の指標である引張り破断伸びが100%以上の1−ブテン系重合体が流動性及び靭性のバランスに優れ、かつ二次加工性(融点)に優れ、ホットメルト接着剤用ベースポリマーとして好適であることを見出した。
本発明はかかる知見に基づいて完成したものである。
即ち、本発明は、以下の1−ブテン系重合体、1−ブテン系重合体の製造方法、該重合体からなる樹脂改質剤及び該1−ブテン系重合体を含有するホットメルト接着剤を提供するものである。
As a result of intensive studies to achieve the above object, the present inventors have reacted with (A) a specific transition metal compound and (B) (B-1) the transition metal compound of the (A) component. A highly active 1-butene polymer can be produced by using a polymerization catalyst containing at least one component selected from compounds capable of forming an ionic complex and (B-2) aluminoxane. The obtained 1-butene polymer was found to have an appropriate molecular weight distribution and composition distribution, and a good balance of fluidity, physical properties (elastic modulus), and secondary processability (melting point).
Further, the present inventors have found that a 1-butene polymer having a zero shear viscosity η 0 as an index of fluidity of 300 Pa · s or less and a tensile elongation at break of 100% or more as an index of toughness flows. The present invention has been found to be excellent as a base polymer for hot melt adhesives because of its excellent balance between workability and toughness and excellent secondary workability (melting point).
The present invention has been completed based on such findings.
That is, the present invention provides the following 1-butene polymer, a method for producing a 1-butene polymer, a resin modifier comprising the polymer, and a hot melt adhesive containing the 1-butene polymer. It is to provide.

1.下記の(1)〜(3)を満たす高流動1−ブテン系重合体。
(1)テトラリン溶媒中135℃にて測定した極限粘度〔η〕が0.01〜0.5デシリットル/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm−D)が0〜100℃の結晶性樹脂
(3)立体規則性指数{(mmmm)/(mmrr+rmmr)}が30以下
2.下記の(1)、(2)及び(3’)を満たす高流動1−ブテン系重合体。
(1)テトラリン溶媒中135℃にて測定した極限粘度〔η〕が0.25〜0.5デシリットル/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下―10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm−D)が0〜100℃の結晶性樹脂
(3’)核磁気共鳴(NMR)スペクトルから求めたメソペンタッド分率(mmmm)が68〜73%
3.ゼロせん断粘度η0が300Pa・s以下であり、かつ引張り破断伸びが100%以上である上記2に記載の高流動1−ブテン系重合体。
4.下記の(4)及び(5)を満たす上記1又は2に記載の高流動1−ブテン系重合体。
(4)ゲルパーミエイションクロマトグラフ(GPC)法により測定した分子量分布(Mw/Mn)が4以下
(5)GPC法により測定した重量平均分子量(Mw)が10,000〜100,000
5.(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、1−ブテンを単独重合、又は1−ブテンとエチレン及び/又は炭素数3〜20のα−オレフィン(但し、1−ブテン除く)を共重合させることを特徴とする高流動1−ブテン系重合体の製造方法。
1. A highly fluid 1-butene polymer satisfying the following (1) to (3).
(1) The intrinsic viscosity [η] measured at 135 ° C. in a tetralin solvent is 0.01 to 0.5 deciliter / g.
(2) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. 1. A crystalline resin having a melting point (Tm-D) of 0 to 100 ° C. defined as the peak top of the observed peak (3) Stereoregularity index {(mmmm) / (mmrr + rmmr)} is 30 or less. A highly fluid 1-butene polymer satisfying the following (1), (2) and (3 ′).
(1) Intrinsic viscosity [η] measured at 135 ° C. in a tetralin solvent is 0.25 to 0.5 deciliter / g
(2) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. The mesopentad fraction (mmmm) determined from the crystalline resin (3 ′) nuclear magnetic resonance (NMR) spectrum having a melting point (Tm-D) of 0 to 100 ° C. defined as the peak top of the observed peak is 68 to 73. %
3. 3. The high fluid 1-butene polymer as described in 2 above, wherein the zero shear viscosity η 0 is 300 Pa · s or less and the tensile elongation at break is 100% or more.
4). 3. The highly fluid 1-butene polymer according to 1 or 2 that satisfies the following (4) and (5).
(4) Molecular weight distribution (Mw / Mn) measured by gel permeation chromatograph (GPC) method is 4 or less (5) Weight average molecular weight (Mw) measured by GPC method is 10,000 to 100,000
5). (A) a transition metal compound represented by the following general formula (I), and (B) (B-1) a compound capable of reacting with the transition metal compound of the component (A) to form an ionic complex, and (B-2) 1-butene is homopolymerized in the presence of a polymerization catalyst containing at least one component selected from aluminoxane, or 1-butene and ethylene and / or an α-olefin having 3 to 20 carbon atoms ( However, 1-butene is excluded). A method for producing a highly fluid 1-butene polymer.

Figure 2007197736
Figure 2007197736

〔式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基,ホスフィド基,炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又、それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
6.(B)成分が有機ホウ素化合物である重合用触媒の存在下、1−ブテンを単独重合させることを特徴とする上記5に記載の高流動1−ブテン系重合体の製造方法。
7.(B)成分が有機ホウ素化合物である重合用触媒の存在下、1−ブテンとエチレン及び/又は炭素数3〜20のα−オレフィン(但し、1−ブテンを除く)を共重合させることを特徴とする上記5に記載の高流動1−ブテン系重合体の製造方法。
8.(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、1−ブテンを単独重合、又は1−ブテンとエチレン及び/又は炭素数3〜20のα−オレフィン(但し、1−ブテンを除く)を共重合させ上記1又は2に記載の高流動1−ブテン系重合体を製造することを特徴とする高流動1−ブテン系重合体の製造方法。
9.(B)成分が有機ホウ素化合物であることを特徴とする上記8に記載の高流動1−ブテン系重合体の製造方法。
10.上記6又は7に記載の製造方法により得られる高流動1−ブテン系重合体。
11.上記1に記載の高流動1−ブテン系重合体からなる1−ブテン系樹脂改質剤。
12.上記2に記載の高流動1−ブテン系重合体を含有するホットメルト接着剤。
[Wherein M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and E 1 and E 2 represent a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, and a heterocyclopentadienyl group, respectively. , A substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group and a silicon-containing group, which form a cross-linked structure via A 1 and A 2 In addition, they may be the same as or different from each other, X represents a σ-binding ligand, and when there are a plurality of X, the plurality of X may be the same or different, and other X, E 1 , E 2 or Y may be cross-linked. Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, which may be the same as or different from each other. q is an integer of 1 to 5 and represents [(M valence) -2], and r represents an integer of 0 to 3. ]
6). 6. The process for producing a highly fluid 1-butene polymer according to 5 above, wherein 1-butene is homopolymerized in the presence of a polymerization catalyst whose component is an organic boron compound.
7). (B) In the presence of a polymerization catalyst whose component is an organic boron compound, 1-butene and ethylene and / or an α-olefin having 3 to 20 carbon atoms (excluding 1-butene) are copolymerized. 6. The process for producing a highly fluid 1-butene polymer as described in 5 above.
8). (A) a transition metal compound represented by the following general formula (I), and (B) (B-1) a compound capable of reacting with the transition metal compound of the component (A) to form an ionic complex, and (B-2) 1-butene is homopolymerized in the presence of a polymerization catalyst containing at least one component selected from aluminoxane, or 1-butene and ethylene and / or an α-olefin having 3 to 20 carbon atoms ( However, a high fluid 1-butene polymer production method according to the above 1 or 2 is produced by copolymerizing 1) butene).
9. (B) Component is an organoboron compound, The manufacturing method of the high fluid 1-butene polymer of said 8 characterized by the above-mentioned.
10. A highly fluid 1-butene polymer obtained by the production method according to 6 or 7 above.
11. A 1-butene resin modifier comprising the highly fluid 1-butene polymer described in 1 above.
12 3. A hot melt adhesive containing the highly fluid 1-butene polymer described in 2 above.

本発明によれば、組成が均一で、立体規則性が制御され、高流動で柔軟性の高い1−ブテン系重合体を製造することができる。
また、本発明の1−ブテン系樹脂改質剤は、軟質性があり、べたつきが少なくポリレフィン樹脂との相溶性に優れた成形体を与える。
更に、本発明のホットメルト用接着剤は、高温下での熱安定性や流動性に優れ、低極性物質への接着性にも優れ、かつ、その接着面が耐熱性にも優れている。
According to the present invention, a 1-butene polymer having a uniform composition, controlled stereoregularity, high fluidity and high flexibility can be produced.
Further, the 1-butene resin modifier of the present invention gives a molded article that is flexible and has little stickiness and excellent compatibility with the polyolefin resin.
Furthermore, the hot melt adhesive of the present invention is excellent in thermal stability and fluidity at high temperatures, excellent in adhesion to low-polar substances, and its adhesive surface is also excellent in heat resistance.

以下に、本発明について詳細に説明する。
以下、〔1〕1−ブテン系重合体、〔2〕1−ブテン系重合体の製造方法、〔3〕1−ブテン系樹脂改質剤、〔4〕1−ブテン系重合体を含有するホットメルト接着剤について詳しく説明する。
The present invention is described in detail below.
[1] 1-butene polymer, [2] 1-butene polymer production method, [3] 1-butene resin modifier, [4] hot containing 1-butene polymer The melt adhesive will be described in detail.

〔1〕1−ブテン系重合体
本発明1の1−ブテン系重合体は、下記の(1)〜(3)を要件とするものである。
(1)テトラリン溶媒中135℃にて測定した極限粘度〔η〕が0.01〜0.5デシリットル/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm−D)が0〜100℃の結晶性樹脂
(3)立体規則性指数{(mmmm)/(mmrr+rmmr)}が30以下
本発明2の1−ブテン系重合体は、下記の(1)、(2)及び(3’)を要件とするものである。
(1)テトラリン溶媒中135℃にて測定した極限粘度〔η〕が0.25〜0.5デシリットル/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm−D)が0〜100℃の結晶性樹脂
(3)メソペンタッド分率(mmmm)が68〜73%
[1] 1-butene-based polymer The 1-butene-based polymer of the present invention 1 has the following (1) to (3) as requirements.
(1) The intrinsic viscosity [η] measured at 135 ° C. in a tetralin solvent is 0.01 to 0.5 deciliter / g.
(2) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. Crystalline resin (3) Stereoregularity index {(mmmm) / (mmrr + rmmr)} having a melting point (Tm-D) of 0 to 100 ° C. defined as the peak top of the observed peak is 30 or less. -A butene type | system | group requires following (1), (2) and (3 ') as a requirement.
(1) Intrinsic viscosity [η] measured at 135 ° C. in a tetralin solvent is 0.25 to 0.5 deciliter / g
(2) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. Crystalline resin having a melting point (Tm-D) defined as the peak top of the observed peak of 0 to 100 ° C. (3) Mesopentad fraction (mmmm) of 68 to 73%

本発明1の1−ブテン系重合体は、テトラリン溶媒中135℃にて測定した極限粘度〔η〕が0.01〜0.5デシリットル/gのものであり、この極限粘度〔η〕は、好ましくは0.1〜0.5デシリットル/gである。
極限粘度〔η〕が、0.01デシリットル/g未満では、物性(強度)が低下し、0.5デシリットル/gを超えると、流動性が悪化する。
The 1-butene polymer of the present invention 1 has an intrinsic viscosity [η] measured at 135 ° C. in a tetralin solvent of 0.01 to 0.5 deciliter / g, and this intrinsic viscosity [η] is Preferably it is 0.1-0.5 deciliter / g.
If the intrinsic viscosity [η] is less than 0.01 deciliter / g, the physical properties (strength) decrease, and if it exceeds 0.5 deciliter / g, the fluidity deteriorates.

本発明2の1−ブテン系重合体は、テトラリン溶媒中135℃にて測定した極限粘度〔η〕が0.25〜0.5デシリットル/gのものであり、この極限粘度〔η〕は、好ましくは0.30〜0.5デシリットル/gである。
極限粘度〔η〕が、0.25デシリットル/g未満では、ホットメルト接着剤用ポリマーとしては結晶間を結びつける分子が不足して靭性(引張り破断伸び)が低下し、0.5デシリットル/gを超えると、粘度が上昇し過ぎるため流動性が低下して成形不良が発生する。
The 1-butene polymer of the present invention 2 has an intrinsic viscosity [η] measured at 135 ° C. in a tetralin solvent of 0.25 to 0.5 deciliter / g, and this intrinsic viscosity [η] is Preferably it is 0.30-0.5 deciliter / g.
When the intrinsic viscosity [η] is less than 0.25 deciliter / g, the polymer for hot melt adhesive lacks the molecules that connect the crystals and the toughness (tensile elongation at break) decreases, and 0.5 deciliter / g If it exceeds, the viscosity will increase too much, and the fluidity will decrease, resulting in molding failure.

本発明1及び2の1−ブテン系重合体は、融点(Tm−D)が軟質性の点から示差走査熱量計(DSC)で0〜100℃の結晶性樹脂であることを必要とするものであり、好ましくは0〜80℃である。
尚、Tm−Dは、DSC測定により求める。
即ち、示差走査型熱量計(パーキン・エルマー社製、DSC−7)を用い、試料10mgを窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップが融点:Tm−Dである。
The 1-butene polymers of the present invention 1 and 2 require that the melting point (Tm-D) is a crystalline resin of 0 to 100 ° C. by a differential scanning calorimeter (DSC) from the viewpoint of softness. Preferably, it is 0-80 degreeC.
Tm-D is determined by DSC measurement.
That is, using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer Co., Ltd.), 10 mg of the sample was held at −10 ° C. for 5 minutes in a nitrogen atmosphere and then heated at 10 ° C./min. The peak top of the peak observed on the highest temperature side of the melting endothermic curve is the melting point: Tm-D.

本発明において、結晶性樹脂とは、上記Tm−Dが観測される樹脂のことをいう。
本発明1の1−ブテン系重合体は、立体規則性指数{(mmmm)/(mmrr+rmmr)}が30以下であり、好ましくは20以下、更に好ましくは15以下である。
立体規則性指数が30を超えると、柔軟性の低下や二次加工性の低下が生じる。
ここで、メソペンタッド分率(mmmm)は20〜90%であることが好ましく、40〜85%であると更に好ましく、60〜80%であると最も好ましい。
メソペンタッド分率が20%未満の場合、成形体表面のべたつきや透明性の低下が生じる可能性がある。
一方、90%を超えると、柔軟性の低下や二次加工性の低下が生じる場合がある。
In the present invention, the crystalline resin refers to a resin in which the above Tm-D is observed.
The 1-butene polymer of the present invention 1 has a stereoregularity index {(mmmm) / (mmrr + rmmr)} of 30 or less, preferably 20 or less, more preferably 15 or less.
When the stereoregularity index exceeds 30, a decrease in flexibility and a decrease in secondary workability occur.
Here, the mesopentad fraction (mmmm) is preferably 20 to 90%, more preferably 40 to 85%, and most preferably 60 to 80%.
If the mesopentad fraction is less than 20%, stickiness of the surface of the molded body and a decrease in transparency may occur.
On the other hand, if it exceeds 90%, flexibility and secondary workability may be deteriorated.

本発明2の1−ブテン系重合体は、メソペンタッド分率(mmmm)が68〜73%であり、好ましくは69〜73%である。
メソペンタッド分率が68%未満の場合、結晶化度が低すぎるため、物理的架橋点となるべき結晶が不足する結果、ホットメルト接着剤用ポリマーとしては引張り破断伸びが低すぎる。
一方、73%を超えると、物理的架橋点が過剰になりすぎるため柔軟性の低下や引張り破断伸びの低下が生じる場合がある。
本発明1及び2の1−ブテン系重合体は、1,4挿入部分が5%以下であることが好ましい。
5%を超えると、重合体の組成分布が広がるため、物性に悪影響を与える可能性があるからである。
The 1-butene polymer of the present invention 2 has a mesopentad fraction (mmmm) of 68 to 73%, preferably 69 to 73%.
When the mesopentad fraction is less than 68%, the degree of crystallinity is too low, and as a result of insufficient crystals to serve as a physical crosslinking point, the tensile elongation at break is too low for a polymer for hot melt adhesives.
On the other hand, if it exceeds 73%, the physical cross-linking point becomes excessive, so that the flexibility and the tensile elongation at break may be reduced.
In the 1-butene polymers of the present inventions 1 and 2, the 1,4 insertion portion is preferably 5% or less.
If it exceeds 5%, the composition distribution of the polymer is widened, which may adversely affect the physical properties.

本発明において、メソペンタッド分率(mmmm)及び異常挿入含有量(1,4挿入分率)は、朝倉らにより報告された「Polymer Journal,16,717(1984)」、J.Randallらにより報告された「Macromol.Chem.Phys.,C29,201(1989)」及びV.Busicoらにより報告された「Macromol.Chem.Phys.,198,1257(1997)」で提案された方法に準拠して求めた。
即ち、13C核磁気共鳴スペクトルを用いてメチレン基、メチン基のシグナルを測定し、ポリ(1−ブテン)分子中のメソペンタッド分率及び異常挿入含有量を求めた。
13C核磁気共鳴スペクトルの測定は、下記の装置及び条件にて行った。
装置:日本電子(株)製JNM−EX400型13C−NMR装置
方法:プロトン完全デカップリング法
濃度:230mg/ミリリットル
溶媒:1,2,4−トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
積算:10000回
In the present invention, the mesopentad fraction (mmmm) and abnormal insertion content (1,4 insertion fraction) are reported in “Polymer Journal, 16, 717 (1984)”, J. Asakura et al. “Macromol. Chem. Phys., C29, 201 (1989)” reported by Randall et al. It was determined according to the method proposed in “Macromol. Chem. Phys., 198, 1257 (1997)” reported by Busico et al.
That is, the signals of methylene group and methine group were measured using 13 C nuclear magnetic resonance spectrum to determine the mesopentad fraction and abnormal insertion content in the poly (1-butene) molecule.
The 13 C nuclear magnetic resonance spectrum was measured by the following apparatus and conditions.
Apparatus: JNM-EX400 type 13 C-NMR apparatus manufactured by JEOL Ltd. Method: Complete proton decoupling method Concentration: 230 mg / ml Solvent: 90:10 (volume ratio) of 1,2,4-trichlorobenzene and heavy benzene Mixed solvent temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 4 seconds Integration: 10,000 times

本発明において、立体規則性指数{(mmmm)/(mmrr+rmmr)}は、上記方法により、(mmmm)、(mmmr)及び(rmmr)を測定した値から算出した。
本発明1及び2の1−ブテン系重合体は、上記の要件の他に、GPC法により測定した分子量分布(Mw/Mn)が4以下であることが好ましく、より好ましくは3.5以下、特に好ましくは3.0以下である。
分子量分布(Mw/Mn)が4を超えるとべたつきが発生することがある。
また、本発明1及び2の1−ブテン系重合体は、上記の要件の他に、GPC法により測定した重量平均分子量(Mw)が10,000〜100,000であることが好ましい。
Mwが10,000未満では、物性(強度)が低下することがある。
また、100,000を超えると、流動性が低下するため加工性が不良となることがある。
尚、上記Mw/Mnは、GPC法により、下記の装置及び条件で測定したポリスチレン換算の質量平均分子量Mw及び数平均分子量Mnより算出した値である。
GPC測定装置
カラム :TOSO GMHHR−H(S)HT
検出器 :液体クロマトグラム用RI検出器 WATERS 150C測定条件
溶媒 :1,2,4−トリクロロベンゼン
測定温度 :145℃
流速 :1.0ミリリットル/分
試料濃度 :2.2mg/ミリリットル
注入量 :160マイクロリットル
検量線 :Universal Calibration
解析プログラム:HT−GPC(Ver.1.0)
In the present invention, the stereoregularity index {(mmmm) / (mmrr + rmmr)} was calculated from the values obtained by measuring (mmmm), (mmmr), and (rmmr) by the above method.
In addition to the above requirements, the 1-butene polymers of the present inventions 1 and 2 preferably have a molecular weight distribution (Mw / Mn) measured by GPC method of 4 or less, more preferably 3.5 or less, Especially preferably, it is 3.0 or less.
If the molecular weight distribution (Mw / Mn) exceeds 4, stickiness may occur.
In addition to the above requirements, the 1-butene polymers of Inventions 1 and 2 preferably have a weight average molecular weight (Mw) measured by the GPC method of 10,000 to 100,000.
If Mw is less than 10,000, the physical properties (strength) may decrease.
Moreover, when it exceeds 100,000, since fluidity | liquidity falls, workability may become bad.
In addition, said Mw / Mn is the value computed from the weight average molecular weight Mw and number average molecular weight Mn of polystyrene conversion measured by the following apparatus and conditions with GPC method.
GPC measurement device Column: TOSO GMHHR-H (S) HT
Detector: RI detector for liquid chromatogram WATERS 150C measurement conditions Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml Injection volume: 160 microliter Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)

本発明1の1−ブテン系重合体は、JIS K−7113に準拠した引張試験により測定した引張弾性率が500MPa以下であることが好ましく、300MPa以下であることが更に好ましい。
引張弾性率が500MPaを超えると十分な軟質性が得られない場合があるからである。
本発明2の1−ブテン系重合体は、JIS K−7113に準拠した引張試験により測定した引張破断伸びが100%以上であり、かつ、ゼロせん断粘度η0が300Pa・s未満である。
引張伸びが100%未満であると1−ブテン系重合体の靭性が不足するため、ホットメルト接着剤として用いた場合に、十分な接着強度が得られない場合があり、η0が300Pa・s以上であると、1−ブテン系重合体の流動性が悪いため、被接着体への塗布性に劣り、成形不良を引き起こすことがある。
尚、上記η0は、以下の装置及び条件を用いて測定した値である。
The 1-butene polymer of the present invention 1 preferably has a tensile modulus measured by a tensile test in accordance with JIS K-7113 of 500 MPa or less, and more preferably 300 MPa or less.
This is because if the tensile modulus exceeds 500 MPa, sufficient softness may not be obtained.
The 1-butene polymer of the present invention 2 has a tensile elongation at break as measured by a tensile test according to JIS K-7113 of 100% or more and a zero shear viscosity η 0 of less than 300 Pa · s.
When the tensile elongation is less than 100%, the toughness of the 1-butene polymer is insufficient, so that when it is used as a hot melt adhesive, sufficient adhesive strength may not be obtained, and η 0 is 300 Pa · s. If it is as described above, the fluidity of the 1-butene polymer is poor, so that the applicability to the adherend is inferior and molding defects may be caused.
The above η 0 is a value measured using the following apparatus and conditions.

即ち、レオメトリックス社製RMS800〔平行円板型回転式レオメータ、プレート(50mmφ)、プレート間隔(0.9mm)〕を用い、温度120℃において角周波数ω=0.1〜100/secの範囲で正弦的な20%のせん断ひずみを加え、得られた複素粘度の絶対値|η*|をω=0/secに外挿してゼロせん断粘度η0を算出した。
ホットメルト接着剤においては、1−ブテン系重合体の引張り破断伸び及びゼロせん断粘度が重要な制御因子である。
前者の因子は、結晶間を結ぶ分子の数及び物理的架橋点となる結晶部の数によって制御され、主として、1−ブテン系重合体の極限粘度〔η〕又は分子量及び立体規則性により制御することができ、後者は、極限粘度〔η〕又は分子量で制御することができる。
本発明の1−ブテン系重合体が共重合体である場合、ランダム共重合体が好ましい。
また、1−ブテンから得られる構造単位は50%モル以上であることが好ましく、より好ましくは70モル%以上である。
1−ブテンに由来する構造単位が50モル%未満の場合には、二次加工性の悪化が生じる可能性がある。
That is, RMS800 [parallel disk type rotary rheometer, plate (50 mmφ), plate interval (0.9 mm)] manufactured by Rheometrics Co., Ltd., at an angular frequency ω = 0.1 to 100 / sec at a temperature of 120 ° C. A sinusoidal 20% shear strain was applied, and the absolute value | η * | of the obtained complex viscosity was extrapolated to ω = 0 / sec to calculate the zero shear viscosity η 0 .
In hot melt adhesives, the tensile elongation at break and zero shear viscosity of 1-butene polymers are important control factors.
The former factor is controlled by the number of molecules connecting the crystals and the number of crystal parts serving as physical crosslinking points, and is mainly controlled by the intrinsic viscosity [η] or molecular weight and stereoregularity of the 1-butene polymer. The latter can be controlled by intrinsic viscosity [η] or molecular weight.
When the 1-butene polymer of the present invention is a copolymer, a random copolymer is preferable.
The structural unit obtained from 1-butene is preferably 50% by mole or more, more preferably 70% by mole or more.
When the structural unit derived from 1-butene is less than 50 mol%, the secondary workability may be deteriorated.

本発明の1−ブテン系重合体が共重合体である場合、α−オレフィン連鎖より得られる下記ランダム性指数Rが1以下であることが好ましい。
R=4[αα][BB]/[αB]2
([αα]はα−オレフィン連鎖分率、[BB]はブテン連鎖分率、[αB]はα−オレフィン−ブテン連鎖分率を表す。)
Rは、ランダム性を表す指標であって、Rが小さいほどα−オレフィン(コモノマー)の孤立性が高く、組成が均一になる。
Rは0.5以下が好ましく、0.2以下が更に好ましい。
Rが0のときαα連鎖はなくなり、α−オレフィン連鎖は完全に孤立連鎖のみになる。
1−ブテン系重合体がプロピレン・ブテン共重合体である場合のブテン含有量及びRは以下のようにして測定した。
When the 1-butene polymer of the present invention is a copolymer, the following randomness index R obtained from an α-olefin chain is preferably 1 or less.
R = 4 [αα] [BB] / [αB] 2
([Αα] represents the α-olefin chain fraction, [BB] represents the butene chain fraction, and [αB] represents the α-olefin-butene chain fraction.)
R is an index representing randomness, and the smaller the R, the higher the isolation of the α-olefin (comonomer) and the more uniform the composition.
R is preferably 0.5 or less, and more preferably 0.2 or less.
When R is 0, there is no αα chain, and the α-olefin chain is completely isolated.
The butene content and R when the 1-butene polymer was a propylene / butene copolymer were measured as follows.

ブテン含有量及びRは、日本電子社製のJNM−EX400型NMR装置を用い、以下の条件で13C−NMRスペクトルを測定し、以下の方法により算出した。
試料濃度:220mg/NMR溶液 3ミリリットル
NMR溶液:1,2,4−トリクロロベンゼン/ベンゼン−d6(90
/10vol%)
測定温度:130℃
パルス幅:45°
パルス繰り返し時間:10秒
積算回数:4000回
上記条件で、PP、PB、BB連鎖は、J.C.Randall,Macromolecules,1978,11,592で提案された方法に準拠し、13C核磁気共鳴スペクトルのSαα炭素のシグナルを測定し、共重合体分子鎖中のPP、PB、BBダイアッド連鎖分率を求めた。
Butene content and R were calculated by the following method using a JNM-EX400 type NMR apparatus manufactured by JEOL Ltd., measuring a 13 C-NMR spectrum under the following conditions.
Sample concentration: 220 mg / NMR solution 3 ml NMR solution: 1,2,4-trichlorobenzene / benzene-d6 (90
/ 10 vol%)
Measurement temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 10 seconds Integration count: 4000 times Under the above conditions, PP, PB, BB chain C. In accordance with the method proposed in Randall, Macromolecules, 1978, 11, 592, the Sαα carbon signal of the 13 C nuclear magnetic resonance spectrum was measured, and the PP, PB, and BB dyad chain fractions in the copolymer molecular chain were determined. Asked.

得られた各ダイアット連鎖分率(モル%)より、以下の式よりブテン含有量及びランダム性指数Rを求めた。
ブテン含有量(モル%)=[BB]+[PB]/2
ランダム性指数R=4[PP][BB]/[PB]2
([PP]はプロピレン連鎖分率、[BB]はブテン連鎖分率、[PB]はプロピレン−ブテン連鎖分率を表す。)
1−ブテン系重合体がオクテン・ブテン共重合体である場合のブテン含有量及びRは以下のようにして測定した。
ブテン含有量及びRは、日本電子社製のJNM−EX400型NMR装置を用い、以下の条件で13C−NMRスペクトルを測定し、以下の方法により算出した。
試料濃度:220mg/NMR溶液 3ミリリットル
NMR溶液:1,2,4−トリクロロベンゼン/ベンゼン−d6(90/10vol%)
測定温度:130℃
パルス幅:45°
パルス繰り返し時間:10秒
積算回数:4000回
The butene content and the randomness index R were determined from the following formulas from the obtained diat chain fractions (mol%).
Butene content (mol%) = [BB] + [PB] / 2
Randomness index R = 4 [PP] [BB] / [PB] 2
([PP] represents the propylene chain fraction, [BB] represents the butene chain fraction, and [PB] represents the propylene-butene chain fraction.)
The butene content and R when the 1-butene polymer was an octene / butene copolymer were measured as follows.
Butene content and R were calculated by the following method using a JNM-EX400 type NMR apparatus manufactured by JEOL Ltd., measuring a 13 C-NMR spectrum under the following conditions.
Sample concentration: 220 mg / NMR solution 3 ml NMR solution: 1,2,4-trichlorobenzene / benzene-d6 (90/10 vol%)
Measurement temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 10 seconds Integration count: 4000 times

上記条件で、13C核磁気共鳴スペクトルのSαα炭素のシグナルを測定し、40.8〜40.0ppmに観測されるBB連鎖、41.3〜40.8ppmに観測されるOB連鎖、42.5〜41.3ppmに観測されるOO連鎖由来のピーク強度から共重合体分子鎖中のOO、OB、BBダイアッド連鎖分率を求めた。
得られた各ダイアット連鎖分率(モル%)より、以下の式よりブテン含有量及びランダム性指数Rを求めた。
ブテン含有量(モル%)=[BB]+[OB]/2
ランダム性指数R=4[OO][BB]/[OB]2
([OO]はオクテン連鎖分率、[BB]はブテン連鎖分率、[OB]はオクテン−ブテン連鎖分率を表す。)
Under the above conditions, the signal of Sαα carbon in the 13 C nuclear magnetic resonance spectrum was measured, and the BB chain observed at 40.8 to 40.0 ppm, the OB chain observed at 41.3 to 40.8 ppm, 42.5 The OO, OB, and BB dyad chain fractions in the copolymer molecular chain were determined from the peak intensity derived from the OO chain observed at ˜41.3 ppm.
The butene content and the randomness index R were determined from the following formulas from the obtained diat chain fractions (mol%).
Butene content (mol%) = [BB] + [OB] / 2
Randomness index R = 4 [OO] [BB] / [OB] 2
([OO] represents the octene chain fraction, [BB] represents the butene chain fraction, and [OB] represents the octene-butene chain fraction.)

〔2〕1−ブテン系重合体の製造方法
本発明における1−ブテン系重合体の製造方法は、(A)下記一般式(I)
[2] Method for Producing 1-Butene Polymer The method for producing a 1-butene polymer in the present invention comprises: (A) the following general formula (I)

Figure 2007197736
Figure 2007197736

〔式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基,ホスフィド基,炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又、それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、1−ブテンを単独重合、又は1−ブテンとエチレン及び/又は炭素数3〜20のα−オレフィン(ただし、1−ブテン除く)を共重合させる製造方法である。
[Wherein M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and E 1 and E 2 represent a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, and a heterocyclopentadienyl group, respectively. , A substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group and a silicon-containing group, which form a cross-linked structure via A 1 and A 2 In addition, they may be the same as or different from each other, X represents a σ-binding ligand, and when there are a plurality of X, the plurality of X may be the same or different, and other X, E 1 , E 2 or Y may be cross-linked. Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, which may be the same as or different from each other. q is an integer of 1 to 5 and represents [(M valence) -2], and r represents an integer of 0 to 3. ]
And (B) (B-1) a compound capable of reacting with the transition metal compound of the component (A) to form an ionic complex and (B-2) an aluminoxane. 1-butene is homopolymerized in the presence of a polymerization catalyst containing at least one component, or 1-butene and ethylene and / or an α-olefin having 3 to 20 carbon atoms (excluding 1-butene) are co-polymerized. This is a production method for polymerization.

上記一般式(I)において、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、具体例としてはチタン,ジルコニウム,ハフニウム,イットリウム,バナジウム,クロム,マンガン,ニッケル,コバルト,パラジウム及びランタノイド系金属などが挙げられるが、これらの中ではオレフィン重合活性などの点からチタン,ジルコニウム及びハフニウムが好適である。
1及びE2はそれぞれ、置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基(−N<),ホスフィン基(−P<),炭化水素基〔>CR−,>C<〕及び珪素含有基〔>SiR−,>Si<〕(但し、Rは水素又は炭素数1〜20の炭化水素基あるいはヘテロ原子含有基である)の中から選ばれた配位子を示し、A1及びA2を介して架橋構造を形成している。
In the above general formula (I), M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium. Among them, titanium, zirconium and hafnium are preferable from the viewpoint of olefin polymerization activity.
E 1 and E 2 are respectively substituted cyclopentadienyl group, indenyl group, substituted indenyl group, heterocyclopentadienyl group, substituted heterocyclopentadienyl group, amide group (—N <), phosphine group (—P <), Hydrocarbon group [>CR-,> C <] and silicon-containing group [>SiR-,> Si <] (where R is hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, or a heteroatom-containing group) A ligand selected from (A) and a cross-linked structure is formed via A 1 and A 2 .

また、E1及びE2は互いに同一でも異なっていてもよい。
このE1及びE2としては、置換シクロペンタジエニル基,インデニル基及び置換インデニル基が好ましい。
また、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。
該Xの具体例としては、ハロゲン原子,炭素数1〜20の炭化水素基,炭素数1〜20のアルコキシ基,炭素数6〜20のアリールオキシ基,炭素数1〜20のアミド基,炭素数1〜20の珪素含有基,炭素数1〜20のホスフィド基,炭素数1〜20のスルフィド基,炭素数1〜20のアシル基などが挙げられる。
E 1 and E 2 may be the same as or different from each other.
As E 1 and E 2 , a substituted cyclopentadienyl group, an indenyl group and a substituted indenyl group are preferable.
X represents a σ-bonding ligand, and when there are a plurality of X, the plurality of Xs may be the same or different and may be cross-linked with other X, E 1 , E 2 or Y. .
Specific examples of X include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, carbon Examples thereof include a silicon-containing group having 1 to 20 carbon atoms, a phosphide group having 1 to 20 carbon atoms, a sulfide group having 1 to 20 carbon atoms, and an acyl group having 1 to 20 carbon atoms.

一方、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のYやE1,E2又はXと架橋していてもよい。
該Yのルイス塩基の具体例としては、アミン類,エーテル類,ホスフィン類,チオエーテル類などを挙げることができる。
次に、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子又は炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。
このような架橋基としては、例えば、一般式
On the other hand, Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X.
Specific examples of the Lewis base of Y include amines, ethers, phosphines, thioethers and the like.
Next, A 1 and A 2 are divalent bridging groups for bonding two ligands, which are a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and a silicon-containing group. Group, germanium-containing group, tin-containing group, —O—, —CO—, —S—, —SO 2 —, —Se—, —NR 1 —, —PR 1 —, —P (O) R 1 —, —BR 1 — or —AlR 1 —, wherein R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, May be different.
Examples of such a bridging group include a general formula

Figure 2007197736
Figure 2007197736

(Dは炭素、珪素又はスズ、R2及びR3はそれぞれ水素原子又は炭素数1〜20の炭化水素基で、それらは互いに同一でも異なっていてもよく、又、互いに結合して環構造を形成していてもよい。eは1〜4の整数を示す。)
で表されるものが挙げられ、その具体例としては、メチレン基,エチレン基,エチリデン基,プロピリデン基,イソプロピリデン基,シクロヘキシリデン基,1,2−シクロヘキシレン基,ビニリデン基(CH2=C=),ジメチルシリレン基,ジフェニルシリレン基,メチルフェニルシリレン基,ジメチルゲルミレン基,ジメチルスタニレン基,テトラメチルジシリレン基,ジフェニルジシリレン基などを挙げることができる。
これらの中で、エチレン基,イソプロピリデン基及びジメチルシリレン基が好適である。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。
このような一般式(I)で表される遷移金属化合物の中では、一般式(II)
(D is carbon, silicon or tin, R 2 and R 3 are each a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different from each other, and are bonded to each other to form a ring structure. (E may represent an integer of 1 to 4)
Specific examples thereof include methylene group, ethylene group, ethylidene group, propylidene group, isopropylidene group, cyclohexylidene group, 1,2-cyclohexylene group, vinylidene group (CH 2 = C =), a dimethylsilylene group, a diphenylsilylene group, a methylphenylsilylene group, a dimethylgermylene group, a dimethylstannylene group, a tetramethyldisylylene group, and a diphenyldisilylene group.
Among these, an ethylene group, an isopropylidene group, and a dimethylsilylene group are preferable. q is an integer of 1 to 5 and represents [(M valence) -2], and r represents an integer of 0 to 3.
Among the transition metal compounds represented by the general formula (I), the general formula (II)

Figure 2007197736
Figure 2007197736

で表される二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物が好ましい。
上記一般式(II)において、M,A1,A2,q及びrは上記と同じである。
1はσ結合性の配位子を示し、X1が複数ある場合、複数のX1は同じでも異なっていてもよく、他のX1又はY1と架橋していてもよい。
このX1の具体例としては、一般式(I)のXの説明で例示したものと同じものを挙げることができる。
1はルイス塩基を示し、Y1が複数ある場合、複数のY1は同じでも異なっていてもよく、他のY1又はX1と架橋していてもよい。
このY1の具体例としては、一般式(I)のYの説明で例示したものと同じものを挙げることができる。
The transition metal compound which makes the ligand the double bridge type biscyclopentadienyl derivative represented by these is preferable.
In the above general formula (II), M, A 1 , A 2 , q and r are the same as described above.
X 1 represents a σ-bonding ligand, and when plural X 1, a plurality of X 1 may be the same or different, may be crosslinked with other X 1 or Y 1.
Specific examples of X 1 include the same examples as those exemplified in the description of X in formula (I).
Y 1 represents a Lewis base, if Y 1 is plural, Y 1 may be the same or different, may be crosslinked with other Y 1 or X 1.
Specific examples of Y 1 are the same as those exemplified in the description of Y in the general formula (I).

4〜R9はそれぞれ水素原子,ハロゲン原子,炭素数1〜20の炭化水素基,炭素数1〜20のハロゲン含有炭化水素基,珪素含有基又はヘテロ原子含有基を示すが、その少なくとも一つは水素原子でないことが必要である。
また、R4〜R9は互いに同一でも異なっていてもよく、隣接する基同士が互いに結合して環を形成していてもよい。
なかでも、R6とR7は環を形成していること及びR8とR9は環を形成していることが好ましい。
4及びR5としては、酸素、ハロゲン、珪素等のヘテロ原子を含有する基が重合活性が高くなり好ましい。
R 4 to R 9 each represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group. One must not be a hydrogen atom.
R 4 to R 9 may be the same as or different from each other, and adjacent groups may be bonded to each other to form a ring.
Among these, it is preferable that R 6 and R 7 form a ring and R 8 and R 9 form a ring.
As R 4 and R 5 , a group containing a hetero atom such as oxygen, halogen, or silicon is preferable because of high polymerization activity.

この二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物は、配位子間の架橋基に珪素を含むものが好ましい。
一般式(I)で表される遷移金属化合物の具体例としては、(1,2’−エチレン)(2,1’−エチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4,5−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(5,6−ジメチルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4,7−ジイソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4−フェニルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(3−メチル−4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(5,6−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−エチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−フェニルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4,5−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(5,6−ジメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4,7−ジ−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4−フェニルインデニル)ジルコニウムジクロリド,(1 ,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−メチル−4−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(5,6−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−フェニルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−イソプロピルシクロペンタジエニル)(3’−メチル−5’−イソプロピルシクロペンタジエニル)ジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−フェニルシクロペンジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロ

ペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン)ビスインデニルジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジイソプロピルシリレン)ビスインデニルジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,2’−ジフェニルシリレン)(2,1’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,2’−ジフェニルシリレン)(2,1’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,2’−ジイソプロピルシリレン)(2,1’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,2’−ジイソプロピルシリレン)(2,1’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’−ジフェニルシリレン)(2,1’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’−ジフェニルシリレン)(2,1’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’−ジイソプロピルシリレン)(2,1’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’−ジイソプロピルシリレン)(2,1’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリドなど及びこれらの化合物におけるジルコニウムをチタン又はハフニウムに置換したものを挙げることができる。もちろんこれらに限定されるものではない。
The transition metal compound having the double-bridged biscyclopentadienyl derivative as a ligand preferably contains silicon in the bridging group between the ligands.
Specific examples of the transition metal compound represented by the general formula (I) include (1,2′-ethylene) (2,1′-ethylene) -bis (indenyl) zirconium dichloride, (1,2′-methylene). (2,1′-methylene) -bis (indenyl) zirconium dichloride, (1,2′-isopropylidene) (2,1′-isopropylidene) -bis (indenyl) zirconium dichloride, (1,2′-ethylene) (2,1′-ethylene) -bis (3-methylindenyl) zirconium dichloride, (1,2′-ethylene) (2,1′-ethylene) -bis (4,5-benzoindenyl) zirconium dichloride, (1,2′-ethylene) (2,1′-ethylene) -bis (4-isopropylindenyl) zirconium dichloride, (1,2′-ethylene) (2,1′-ethylene)- (5,6-dimethylindenyl) zirconium dichloride, (1,2'-ethylene) (2,1'-ethylene) -bis (4,7-diisopropylindenyl) zirconium dichloride, (1,2'-ethylene ) (2,1′-ethylene) -bis (4-phenylindenyl) zirconium dichloride, (1,2′-ethylene) (2,1′-ethylene) -bis (3-methyl-4-isopropylindenyl) Zirconium dichloride, (1,2'-ethylene) (2,1'-ethylene) -bis (5,6-benzoindenyl) zirconium dichloride, (1,2'-ethylene) (2,1'-isopropylidene) -Bis (indenyl) zirconium dichloride, (1,2'-methylene) (2,1'-ethylene) -bis (indenyl) zirconium dichloride, (1,2'-me Len) (2,1'-isopropylidene) -bis (indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (indenyl) zirconium dichloride, (1,2'- Dimethylsilylene) (2,1′-dimethylsilylene) bis (3-methylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-n-butylindenyl) ) Zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-i-propylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'- Dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2'-dimethylsilyl) ) (2,1′-dimethylsilylene) bis (3-phenylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (4,5-benzoindenyl) Zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (4-isopropylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) Bis (5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (4,7-di-i-propylindenyl) zirconium dichloride, (1 , 2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (4-phenylindenyl) zirconium dichloride, 1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-methyl-4-i-propylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethyl Silylene) bis (5,6-benzoindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-isopropylidene) -bis (indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1′-isopropylidene) -bis (3-methylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-isopropylidene) -bis (3-i-propylindenyl) Zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-isopropylidene) -bis (3-n-butylindenyl) zyl Nium dichloride, (1,2′-dimethylsilylene) (2,1′-isopropylidene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-isopropylidene) Ridene) -bis (3-trimethylsilylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-isopropylidene) -bis (3-phenylindenyl) zirconium dichloride, (1,2'- Dimethylsilylene) (2,1′-methylene) -bis (indenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-methylene) -bis (3-methylindenyl) zirconium dichloride, (1 , 2′-dimethylsilylene) (2,1′-methylene) -bis (3-i-propylindenyl) zyl Conium dichloride, (1,2′-dimethylsilylene) (2,1′-methylene) -bis (3-n-butylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′- Methylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-methylene) -bis (3-trimethylsilylindenyl) zirconium dichloride, (1,2'- Diphenylsilylene) (2,1′-methylene) -bis (indenyl) zirconium dichloride, (1,2′-diphenylsilylene) (2,1′-methylene) -bis (3-methylindenyl) zirconium dichloride, (1 , 2′-Diphenylsilylene) (2,1′-methylene) -bis (3-i-propylindenyl) zirconium dichrome (1,2'-diphenylsilylene) (2,1'-methylene) -bis (3-n-butylindenyl) zirconium dichloride, (1,2'-diphenylsilylene) (2,1'-methylene) -Bis (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2'-diphenylsilylene) (2,1'-methylene) -bis (3-trimethylsilylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) ) (2,1'-dimethylsilylene) (3-methylcyclopentadienyl) (3'-methylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-isopropylidene) (3-methylcyclopentadienyl) (3′-methylcyclopentadienyl) zirconium dichloride, (1,2′-dimethyl) Lucylylene) (2,1′-ethylene) (3-methylcyclopentadienyl) (3′-methylcyclopentadienyl) zirconium dichloride, (1,2′-ethylene) (2,1′-methylene) (3 -Methylcyclopentadienyl) (3'-methylcyclopentadienyl) zirconium dichloride, (1,2'-ethylene) (2,1'-isopropylidene) (3-methylcyclopentadienyl) (3'- Methylcyclopentadienyl) zirconium dichloride, (1,2'-methylene) (2,1'-methylene) (3-methylcyclopentadienyl) (3'-methylcyclopentadienyl) zirconium dichloride, (1, 2'-methylene) (2,1'-isopropylidene) (3-methylcyclopentadienyl) (3'-methylcyclopentadienyl) zirconium Dichloride, (1,2'-isopropylidene) (2,1'-isopropylidene) (3-methylcyclopentadienyl) (3'-methylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) ) (2,1′-dimethylsilylene) (3,4-dimethylcyclopentadienyl) (3 ′, 4′-dimethylcyclopentadienyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1 '-Isopropylidene) (3,4-dimethylcyclopentadienyl) (3', 4'-dimethylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-ethylene) ( 3,4-dimethylcyclopentadienyl) (3 ′, 4′-dimethylcyclopentadienyl) zirconium dichloride, (1,2′-ethylene) (2 , 1′-methylene) (3,4-dimethylcyclopentadienyl) (3 ′, 4′-dimethylcyclopentadienyl) zirconium dichloride, (1,2′-ethylene) (2,1′-isopropylidene) (3,4-dimethylcyclopentadienyl) (3 ', 4'-dimethylcyclopentadienyl) zirconium dichloride, (1,2'-methylene) (2,1'-methylene) (3,4-dimethylcyclo Pentadienyl) (3 ′, 4′-dimethylcyclopentadienyl) zirconium dichloride, (1,2′-methylene) (2,1′-isopropylidene) (3,4-dimethylcyclopentadienyl) (3 ', 4'-Dimethylcyclopentadienyl) zirconium dichloride, (1,2'-isopropylidene) (2,1'-isopropylidene) (3,4-dimethylcyclopenta Enyl) (3 ′, 4′-dimethylcyclopentadienyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) (3-methyl-5-ethylcyclopentadienyl) ( 3'-methyl-5'-ethylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (3-methyl-5-ethylcyclopentadienyl) (3 '-Methyl-5'-ethylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (3-methyl-5-isopropylcyclopentadienyl) (3'-Methyl-5'-isopropylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (3-Methyl-5-n-butylcyclopentadienyl) (3′-methyl-5′-n-butylcyclopentadienyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′- Dimethylsilylene) (3-methyl-5-phenylcyclopentadienyl) (3′-methyl-5′-phenylcyclopentadienyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-isopropylidene ) (3-Methyl-5-ethylcyclopentadienyl) (3'-methyl-5'-ethylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-isopropylidene) (3-methyl-5-i-propylcyclopentadienyl) (3'-methyl-5'-i-propylcyclopentadienyl) zirconium dichloride, ( , 2′-dimethylsilylene) (2,1′-isopropylidene) (3-methyl-5-n-butylcyclopentadienyl) (3′-methyl-5′-n-butylcyclopentadienyl) zirconium dichloride , (1,2′-dimethylsilylene) (2,1′-isopropylidene) (3-methyl-5-phenylcyclopentadienyl) (3′-methyl-5′-phenylcyclopentadienyl) zirconium dichloride, ( 1,2′-dimethylsilylene) (2,1′-ethylene) (3-methyl-5-ethylcyclopentadienyl) (3′-methyl-5′-ethylcyclopentadienyl) zirconium dichloride, (1, 2'-dimethylsilylene) (2,1'-ethylene) (3-methyl-5-i-propylcyclopentadienyl) (3'-methyl-5'-i-propylcyclopen Dienyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-ethylene) (3-methyl-5-n-butylcyclopentadienyl) (3′-methyl-5′-n-butylcyclo) Pentadienyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-ethylene) (3-methyl-5-phenylcyclopentadienyl) (3′-methyl-5′-phenylcyclopentadiene) Enyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-methylene) (3-methyl-5-ethylcyclopentadienyl) (3'-methyl-5'-ethylcyclopentadienyl) zirconium Dichloride, (1,2'-dimethylsilylene) (2,1'-methylene) (3-methyl-5-i-propylcyclo

Pentadienyl) (3'-methyl-5'-i-propylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-methylene) (3-methyl-5-n-butylcyclo Pentadienyl) (3'-methyl-5'-n-butylcyclopentadienyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-methylene) (3-methyl-5-phenylcyclo Pentadienyl) (3'-methyl-5'-phenylcyclopentadienyl) zirconium dichloride, (1,2'-ethylene) (2,1'-methylene) (3-methyl-5-i-propylcyclopenta Dienyl) (3′-methyl-5′-i-propylcyclopentadienyl) zirconium dichloride, (1,2′-ethylene) (2,1′-isopropylidene) (3-methyl) Til-5-i-propylcyclopentadienyl) (3'-methyl-5'-i-propylcyclopentadienyl) zirconium dichloride, (1,2'-methylene) (2,1'-methylene) (3 -Methyl-5-i-propylcyclopentadienyl) (3'-methyl-5'-i-propylcyclopentadienyl) zirconium dichloride, (1,2'-methylene) (2,1'-isopropylidene) (3-Methyl-5-i-propylcyclopentadienyl) (3′-methyl-5′-i-propylcyclopentadienyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′- Dimethylsilylene) bisindenylzirconium dichloride, (1,1′-diphenylsilylene) (2,2′-dimethylsilylene) bisindenylzirconium dichloride, (1 1'-dimethylsilylene) (2,2'-dimethylsilylene) bisindenylzirconium dichloride, (1,1'-diisopropylsilylene) (2,2'-dimethylsilylene) bisindenylzirconium dichloride, (1,1 ' -Dimethylsilylene) (2,2'-diisopropylsilylene) bisindenylzirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (indenyl) (3-trimethylsilylindenyl) zirconium dichloride, (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) (indenyl) (3-trimethylsilylindenyl) zirconium dichloride, (1,2′-diphenylsilylene) (2,1′-dimethylsilylene) ( Indenyl) (3-trimethylsilylindenyl) zyl Conium dichloride, (1,2'-dimethylsilylene) (2,1'-diphenylsilylene) (indenyl) (3-trimethylsilylindenyl) zirconium dichloride, (1,2'-diisopropylsilylene) (2,1'- Dimethylsilylene) (indenyl) (3-trimethylsilylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-diisopropylsilylene) (indenyl) (3-trimethylsilylindenyl) zirconium dichloride, (1, 2'-diisopropylsilylene) (2,1'-diisopropylsilylene) (indenyl) (3-trimethylsilylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (indenyl) ( 3-Trimethylsilylmethylin (Denyl) zirconium dichloride, (1,2'-diphenylsilylene) (2,1'-diphenylsilylene) (indenyl) (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2'-diphenylsilylene) (2,1 '-Dimethylsilylene) (indenyl) (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-diphenylsilylene) (indenyl) (3-trimethylsilylmethylindenyl) zirconium dichloride , (1,2'-diisopropylsilylene) (2,1'-dimethylsilylene) (indenyl) (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-diisopropylsilylene) ) (Indenyl) ( 3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2'-diisopropylsilylene) (2,1'-diisopropylsilylene) (indenyl) (3-trimethylsilylmethylindenyl) zirconium dichloride, and the like, and zirconium in these compounds is titanium. Or the thing substituted by hafnium can be mentioned. Of course, it is not limited to these.

また、他の族又はランタノイド系列の金属元素の類似化合物であってもよい。
また、上記化合物において、(1,1’−)(2,2’−)が(1,2’−)(2,1’−)であってもよく、(1,2’−)(2,1’−)が(1,1’−)(2,2’−)であってもよい。
(B)成分のうちの(B−1)成分としては、上記(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物であれば、いずれのものでも使用できるが、複数の基が金属に結合したアニオンとカチオンとからなる配位錯化合物又はルイス酸を挙げることができる。
複数の基が金属に結合したアニオンとカチオンとからなる配位錯化合物としては様々なものがあるが、例えば、下記一般式(III)又は(IV)で表される化合物を好適に使用することができる。
Further, it may be an analogous compound of another group or a lanthanoid series metal element.
In the above compound, (1,1 ′ −) (2,2′−) may be (1,2 ′ −) (2,1′−), or (1,2 ′ −) (2 , 1'-) may be (1, 1'-) (2, 2'-).
As the component (B-1) of the component (B), any compound that can react with the transition metal compound of the component (A) to form an ionic complex can be used. And a coordination complex compound or Lewis acid composed of an anion and a cation in which a plurality of groups are bonded to a metal.
There are various coordination complex compounds composed of an anion and a cation in which a plurality of groups are bonded to a metal. For example, a compound represented by the following general formula (III) or (IV) is preferably used. Can do.

(〔L1−H〕p+q(〔M234・・・Xn(n-m)-1・・・ (III)
(〔L2p+q(〔M334・・・Xn(n-m)-1・・・ (IV)
([L 1 −H] p + ) q ([M 2 X 3 X 4 ... X n ] (nm) − ) 1 ... (III)
([L 2 ] p + ) q ([M 3 X 3 X 4 ... X n ] (nm)- ) 1 ... (IV)

〔式中、L1はルイス塩基、L2は後述のM4,R10115又はR12 3Cであり、M2及びM3は周期律表第5〜15族元素から選ばれる金属を示す。M4は周期律表の1族及び8族〜12族から選ばれる金属、M5は周期律表の8族〜10族から選ばれる金属、X3〜Xnはそれぞれ水素原子,ジアルキルアミノ基,アルコキシ基,アリールオキシ基,炭素数1〜20のアルキル基,炭素数6〜20のアリール基,アルキルアリール基,アリールアルキル基,置換アルキル基,有機メタロイド基又はハロゲン原子を示す。R10及びR11はそれぞれシクロペンタジエニル基,置換シクロペンタジエニル基,インデニル基又はフルオレニル基、R12はアルキル基を示す。mはM2,M3の原子価で1〜7の整数、nは2〜8の整数、pはL1−H,L2のイオン価数で1〜7の整数、qは1以上の整数,l=q×p/(n−m)である。〕 [Wherein L 1 is a Lewis base, L 2 is M 4 , R 10 R 11 M 5 or R 12 3 C described later, and M 2 and M 3 are selected from Group 5 to 15 elements of the periodic table. Indicates metal. M 4 is a metal selected from Groups 1 and 8 to 12 of the periodic table, M 5 is a metal selected from Groups 8 to 10 of the periodic table, and X 3 to X n are a hydrogen atom and a dialkylamino group, respectively. , An alkoxy group, an aryloxy group, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, an arylalkyl group, a substituted alkyl group, an organic metalloid group, or a halogen atom. R 10 and R 11 each represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group, and R 12 represents an alkyl group. m is an integer of 1 to 7 in terms of the valence of M 2 and M 3 , n is an integer of 2 to 8, p is an integer of 1 to 7 in terms of ionic valence of L 1 -H and L 2 , and q is 1 or more An integer, l = q × p / (nm). ]

2及びM3は周期律表第5〜15族元素から選ばれる金属、好ましくは周期律表第13〜15族元素から選ばれる金属、更に好ましくはホウ素原子である。
4は周期律表の1族及び8族〜12族から選ばれる金属、具体例としてはAg,Cu,Na,Liなどの各原子、M5は周期律表の8族〜10族から選ばれる金属、具体例としてはFe,Co,Niなどの各原子が挙げられる。
3〜Xnの具体例としては、例えば、ジアルキルアミノ基としてジメチルアミノ基,ジエチルアミノ基など、アルコキシ基としてメトキシ基,エトキシ基,n−ブトキシ基など、アリールオキシ基としてフェノキシ基,2,6−ジメチルフェノキシ基,ナフチルオキシ基など、炭素数1〜20のアルキル基としてメチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,n−オクチル基,2−エチルヘキシル基など、炭素数6〜20のアリール基,アルキルアリール基若しくはアリールアルキル基としてフェニル基,p−トリル基,ベンジル基,ペンタフルオロフェニル基,3,5−ジ(トリフルオロメチル)フェニル基,4−ターシャリ−ブチルフェニル基,2,6−ジメチルフェニル基,3,5−ジメチルフェニル基,2,4−ジメチルフェニル基,1,2−ジメチルフェニル基など、ハロゲンとしてF,Cl,Br,I、有機メタロイド基として五メチルアンチモン基,トリメチルシリル基,トリメチルゲルミル基,ジフェニルアルシン基,ジシクロヘキシルアンチモン基,ジフェニル硼素基などが挙げられる。
M 2 and M 3 are metals selected from Group 5-15 elements of the periodic table, preferably metals selected from Group 13-15 elements of the periodic table, and more preferably boron atoms.
M 4 is a metal selected from Groups 1 and 8 to 12 of the periodic table, specific examples are each atom such as Ag, Cu, Na, Li, etc., and M 5 is selected from Groups 8 to 10 of the periodic table. Examples of such metals include specific atoms such as Fe, Co, and Ni.
Specific examples of X 3 to X n include, for example, dimethylamino group and diethylamino group as dialkylamino groups, methoxy group, ethoxy group, n-butoxy group as alkoxy groups, phenoxy group as aryloxy groups, 2, 6 -As a C1-C20 alkyl group, such as a dimethylphenoxy group and a naphthyloxy group, carbon such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-octyl group, and a 2-ethylhexyl group As aryl groups, alkylaryl groups or arylalkyl groups of formulas 6 to 20, phenyl group, p-tolyl group, benzyl group, pentafluorophenyl group, 3,5-di (trifluoromethyl) phenyl group, 4-tert-butyl Phenyl group, 2,6-dimethylphenyl group, 3,5-dimethylphenyl group, , 4-dimethylphenyl group, 1,2-dimethylphenyl group and the like, F, Cl, Br, I as halogen, pentamethylantimony group, trimethylsilyl group, trimethylgermyl group, diphenylarsine group, dicyclohexylantimony group as organic metalloid group, And diphenylboron group.

10及びR11のそれぞれで表される置換シクロペンタジエニル基の具体例としては、メチルシクロペンタジエニル基,ブチルシクロペンタジエニル基,ペンタメチルシクロペンタジエニル基などが挙げられる。
本発明において、複数の基が金属に結合したアニオンとしては、具体的には、B(C65)4 -,B(C6HF4)4 -,B(C623)4 -,B(C632)4 -,B(C64F)4 -,B(C6(CF3)F4)4 -,B(C65)4 -,BF4 -などが挙げられる。
また、金属カチオンとしては、Cp2Fe+,(MeCp)2Fe+,(tBuCp)2Fe+,(Me2Cp)2Fe+,(Me3Cp)2Fe+,(Me4Cp)2Fe+,(Me5Cp)2Fe+,Ag+, Na+,Li+などが挙げられ、又その他カチオンとしては、ピリジニウム,2,4−ジニトロ−N,N−ジエチルアニリニウム,ジフェニルアンモニウム,p−ニトロアニリニウム,2,5−ジクロロアニリン,p−ニトロ−N,N−ジメチルアニリニウム,キノリニウム,N,N−ジメチルアニリニウム,N,N−ジエチルアニリニウムなどの窒素含有化合物、トリフェニルカルベニウム,トリ(4−メチルフェニル)カルベニウム,トリ(4−メトキシフェニル)カルベニウムなどのカルベニウム化合物、CH3PH3 +,C25PH3 +,C37PH3 +,(CH32PH2 +,(C252PH2 +,(C372PH2 +,(CH33PH+,(C253PH+,(C367PH+,(CF33PH+,(CH34+,(C254+,(C374+等のアルキルフォスフォニウムイオン,及びC45PH3 +,(C652PH2 +,(C653PH+,(C654+,(C252(C65)PH+,(CH3)(C65)PH2 +,(CH32(C65)PH+,(C252(C652+などのアリールフォスフォニウムイオンなどが挙げられる。
Specific examples of the substituted cyclopentadienyl group represented by each of R 10 and R 11 include a methylcyclopentadienyl group, a butylcyclopentadienyl group, and a pentamethylcyclopentadienyl group.
In the present invention, specific examples of anions in which a plurality of groups are bonded to a metal include B (C 6 F 5 ) 4 , B (C 6 HF 4 ) 4 , B (C 6 H 2 F 3 ). 4 , B (C 6 H 3 F 2 ) 4 , B (C 6 H 4 F) 4 , B (C 6 (CF 3 ) F 4 ) 4 , B (C 6 H 5 ) 4 , BF 4- and the like can be mentioned.
Further, as metal cations, Cp 2 Fe + , (MeCp) 2 Fe + , (tBuCp) 2 Fe + , (Me 2 Cp) 2 Fe + , (Me 3 Cp) 2 Fe + , (Me 4 Cp) 2 Fe + , (Me 5 Cp) 2 Fe + , Ag + , Na + , Li + and the like, and other cations include pyridinium, 2,4-dinitro-N, N-diethylanilinium, diphenylammonium, Nitrogen-containing compounds such as p-nitroanilinium, 2,5-dichloroaniline, p-nitro-N, N-dimethylanilinium, quinolinium, N, N-dimethylanilinium, N, N-diethylanilinium, triphenyl carbenium, tri (4-methylphenyl) carbenium, tri (4-methoxyphenyl) carbenium carbenium compounds such as, CH 3 PH 3 +, 2 H 5 PH 3 +, C 3 H 7 PH 3 +, (CH 3) 2 PH 2 +, (C 2 H 5) 2 PH 2 +, (C 3 H 7) 2 PH 2 +, (CH 3) 3 PH + , (C 2 H 5 ) 3 PH + , (C 3 H 6 ) 7 PH + , (CF 3 ) 3 PH + , (CH 3 ) 4 P + , (C 2 H 5 ) 4 P + , Alkylphosphonium ions such as (C 3 H 7 ) 4 P + , and C 4 H 5 PH 3 + , (C 6 H 5 ) 2 PH 2 + , (C 6 H 5 ) 3 PH + , (C 6 H 5) 4 P +, (C 2 H 5) 2 (C 6 H 5) PH +, (CH 3) (C 6 H 5) PH 2 +, (CH 3) 2 (C 6 H 5) PH +, And arylphosphonium ions such as (C 2 H 5 ) 2 (C 6 H 5 ) 2 P + .

本発明においては、上記金属カチオンとアニオンの任意の組み合わせによる配位錯化合物が挙げられる。
一般式(III)及び(IV)の化合物の中で、具体的には、下記のものを特に好適に使用できる。
一般式(III)の化合物としては、例えば、テトラフェニル硼酸トリエチルアンモニウム,テトラフェニル硼酸トリ(n−ブチル)アンモニウム,テトラフェニル硼酸トリメチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリ(n−ブチル)アンモニウム,ヘキサフルオロ砒素酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸ピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸ピロリニウム,テトラキス(ペンタフルオロフェニル)硼酸N,N−ジメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウムなどが挙げられる。
一方、一般式(IV)の化合物としては、例えば、テトラフェニル硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸ジメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸アセチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸ホルミルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸シアノフェロセニウム,テトラフェニル硼酸銀,テトラキス(ペンタフルオロフェニル)硼酸銀,テトラフェニル硼酸トリチル,テトラキス(ペンタフルオロフェニル)硼酸トリチル,テトラフルオロ硼酸銀などが挙げられる。
好適な配位錯化合物としては、非配位性アニオンと置換トリアリールカルベニウムとからなるものであって、該非配位性アニオンとしては、例えば、一般式(V)
(M123・・・Xn(n-m)- ・・・(V)
〔式中、M1は周期律表第5〜15族元素、好ましくは周期律表第13〜15族元素、更に好ましくはホウ素原子を示す。X2〜Xnはそれぞれ水素原子,ジアルキルアミノ基,アルコキシ基,アリールオキシ基,炭素数1〜20のアルキル基,炭素数6〜20のアリール基(ハロゲン置換アリール基を含む),アルキルアリール基,アリールアルキル基,置換アルキル基,有機メタロイド基又はハロゲン原子を示し、mはM1の原子価であり、nは2〜8の整数である。〕
で表されるものを挙げることができる。
In the present invention, a coordination complex compound comprising any combination of the above metal cation and anion is exemplified.
Among the compounds of the general formulas (III) and (IV), specifically, the following can be used particularly preferably.
Examples of the compound of the general formula (III) include triethylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetraphenylborate, triethylammonium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) ) Tri (n-butyl) ammonium borate, triethylammonium hexafluoroarsenate, pyridinium tetrakis (pentafluorophenyl) borate, pyrrolonium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, Examples include tetrakis (pentafluorophenyl) methyldiphenylammonium borate.
On the other hand, as the compound of the general formula (IV), for example, ferrocenium tetraphenylborate, dimethylferrocenium tetrakis (pentafluorophenyl) borate, ferrocenium tetrakis (pentafluorophenyl) borate, decamethyl ferroborate tetrakis (pentafluorophenyl) borate Cenium, tetrakis (pentafluorophenyl) acetylferrocenium borate, tetrakis (pentafluorophenyl) formylferrocenium borate, tetrakis (pentafluorophenyl) cyanoferrocenium borate, silver tetraphenylborate, tetrakis (pentafluorophenyl) Examples include silver borate, trityl tetraphenylborate, tetrakis (pentafluorophenyl) trityl borate, and silver tetrafluoroborate.
Suitable coordination complex compounds are those comprising a non-coordinating anion and a substituted triarylcarbenium, and examples of the non-coordinating anion include those represented by the general formula (V)
(M 1 X 2 X 3 ... X n ) (nm) − (V)
[Wherein, M 1 represents a group 5-15 element of the periodic table, preferably a group 13-15 element of the periodic table, more preferably a boron atom. X 2 to X n are each a hydrogen atom, a dialkylamino group, an alkoxy group, an aryloxy group, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms (including a halogen-substituted aryl group), or an alkylaryl group. , An arylalkyl group, a substituted alkyl group, an organic metalloid group, or a halogen atom, m is a valence of M 1 , and n is an integer of 2 to 8. ]
Can be mentioned.

また、一般にカルボランと呼ばれる化合物も非配位性アニオンである。
一方、置換トリアリールカルベニウムとしては、例えば、一般式(VI)
〔CR131415+ ・・・(VI)
で表わされるものを挙げることができる。
上記一般式(VI)におけるR13,R14及びR15は、それぞれフェニル基,置換フェニル基,ナフチル基,アントラセニル基などのアリール基であって、それらは互いに同一であっても、異なっていてもよいが、その中の少なくとも一つは、置換フェニル基,ナフチル基又はアントラセニル基である。
該置換フェニル基は、例えば、一般式(VII)
65-k16 k ・・・(VII)
で表わすことができる。
A compound generally called carborane is also a non-coordinating anion.
On the other hand, examples of the substituted triarylcarbenium include, for example, the general formula (VI)
[CR 13 R 14 R 15 ] + ... (VI)
Can be mentioned.
R 13 , R 14 and R 15 in the general formula (VI) are aryl groups such as a phenyl group, a substituted phenyl group, a naphthyl group and an anthracenyl group, and they may be the same or different from each other. However, at least one of them is a substituted phenyl group, a naphthyl group, or an anthracenyl group.
The substituted phenyl group includes, for example, the general formula (VII)
C 6 H 5-k R 16 k (VII)
It can be expressed as

一般式(VII)におけるR16は、炭素数1〜10のヒドロカルビル基,アルコキシ基,アリーロキシ基,チオアルコキシ基,チオアリーロキシ基,アミノ基,アミド基,カルボキシル基,ハロゲン原子を示し、kは1〜5の整数である。
kが2以上の場合、複数のR16は同一であってもよく、異なっていてもよい。
上記一般式(V)で表される非配位性アニオンの具体例としては、テトラ(フルオロフェニル)ボレート,テトラキス(ジフルオロフェニル)ボレート,テトラキス(トリフルオロフェニル)ボレート,テトラキス(テトラフルオロフェニル)ボレート,テトラキス(ペンタフルオロフェニル)ボレート,テトラキス(トリフルオロメチルフェニル)ボレート,テトラ(トルイル)ボレート,テトラ(キシリル)ボレート,(トリフェニル,ペンタフルオロフェニル)ボレート,〔トリス(ペンタフルオロフェニル),フェニル〕ボレート,トリデカハイドライド−7,8−ジカルバウンデカボレートなどを挙げることができる。
一方、上記一般式(VI)で表される置換トリアリールカルベニウムの具体例としては、トリ(トルイル)カルベニウム,トリ(メトキシフェニル)カルベニウム,トリ(クロロフェニル)カルベニウム,トリ(フルオロフェニル)カルベニウム,トリ(キシリル)カルベニウム,〔ジ(トルイル),フェニル〕カルベニウム,〔ジ(メトキシフェニル),フェニル〕カルベニウム,〔ジ(クロロフェニル),フェニル〕カルベニウム,〔トルイル,ジ(フェニル)〕カルベニウム,〔メトキシフェニル,ジ(フェニル)〕カルベニウム,〔クロロフェニル,ジ(フェニル)〕カルベニウムなどが挙げられる。
また、本発明の触媒の(B−1)成分としては、下記一般式
R 16 in the general formula (VII) represents a hydrocarbyl group having 1 to 10 carbon atoms, an alkoxy group, an aryloxy group, a thioalkoxy group, a thioaryloxy group, an amino group, an amide group, a carboxyl group, or a halogen atom, and k is It is an integer of 1-5.
When k is 2 or more, the plurality of R 16 may be the same or different.
Specific examples of the non-coordinating anion represented by the general formula (V) include tetra (fluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate. , Tetrakis (pentafluorophenyl) borate, tetrakis (trifluoromethylphenyl) borate, tetra (toluyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] Examples thereof include borates and tridecahydride-7,8-dicarbaoundecaborate.
On the other hand, specific examples of the substituted triarylcarbenium represented by the general formula (VI) include tri (toluyl) carbenium, tri (methoxyphenyl) carbenium, tri (chlorophenyl) carbenium, tri (fluorophenyl) carbenium, tri (Xylyl) carbenium, [di (toluyl), phenyl] carbenium, [di (methoxyphenyl), phenyl] carbenium, [di (chlorophenyl), phenyl] carbenium, [toluyl, di (phenyl)] carbenium, [methoxyphenyl, And di (phenyl)] carbenium and [chlorophenyl, di (phenyl)] carbenium.
In addition, the component (B-1) of the catalyst of the present invention includes the following general formula:

BR171819 ・・・(VIII)
〔式中、R17,R18及びR19は、炭素数1〜20のアルキル基又は炭素数6〜20のアリール基である。〕
で表される化合物を挙げることもでき、ホウ素に置換基としてアルキル基又はアリール基が結合したホウ素化合物であれば特に制限されるものではなく、いずれのものでも使用できる。
ここで、アルキル基としては、ハロゲン置換アルキル基をも包含し、又アリール基としてはハロゲン置換アリール基,アルキル置換アリール基をも包含するものである。
上記一般式(VIII)中のR17,R18及びR19は、それぞれ炭素数1〜20のアルキル基又は炭素数6〜20のアリール基を示し、具体例には、メチル基,エチル基,プロピル基,ブチル基,アミル基,イソアミル基,イソブチル基,オクチル基,2−エチルヘキシル基などのアルキル基あるいはフェニル基,フルオロフェニル基,トリル基,キシリル基,ベンジル基などのアリール基である。
BR 17 R 18 R 19 (VIII)
[In formula, R <17> , R < 18 > and R < 19 > are a C1-C20 alkyl group or a C6-C20 aryl group. ]
There is no particular limitation as long as it is a boron compound in which an alkyl group or an aryl group is bonded as a substituent to boron, and any compound can be used.
Here, the alkyl group includes a halogen-substituted alkyl group, and the aryl group includes a halogen-substituted aryl group and an alkyl-substituted aryl group.
R 17 , R 18 and R 19 in the general formula (VIII) each represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, These are alkyl groups such as propyl group, butyl group, amyl group, isoamyl group, isobutyl group, octyl group and 2-ethylhexyl group, or aryl groups such as phenyl group, fluorophenyl group, tolyl group, xylyl group and benzyl group.

尚、ここでR17〜R19は、互いに同じであっても異なっていてもよい。
このような一般式(VIII)で表される化合物の具体例としては、トリフェニルホウ素,トリ(ペンタフルオロフェニル)ホウ素,トリ(2,3,4,5−テトラフルオロフェニル)ホウ素,トリ(2,4,5,6−テトラフルオロフェニル)ホウ素,トリ(2,3,5,6−テトラフルオロフェニル)ホウ素,トリ(2,4,6−トリフルオロフェニル)ホウ素,トリ(3,4,5−トリフルオロフェニル)ホウ素,トリ(2,3,4−トリフルオロフェニル)ホウ素,トリ(3,4,6−トリフルオロフェニル)ホウ素,トリ(2,3−ジフルオロフェニル)ホウ素,トリ(2,6−ジフルオロフェニル)ホウ素,トリ(3,5−ジフルオロフェニル)ホウ素,トリ(2,5−ジフルオロフェニル)ホウ素,トリ(2−フルオロフェニル)ホウ素,トリ(3−フルオロフェニル)ホウ素,トリ(4−フルオロフェニル)ホウ素,トリ〔3,5−ジ(トリフルオロメチル)フェニル〕ホウ素,トリ〔(4−フルオロメチル)フェニル〕ホウ素,ジエチルホウ素,ジエチルブチルホウ素,トリメチルホウ素,トリエチルホウ素,トリ(n−ブチル)ホウ素,トリ(トリフルオロメチル)ホウ素,トリ(ペンタフルオロエチル)ホウ素,トリ(ノナフルオロブチル)ホウ素,トリ(2,4,6−トリフルオロフェニル)ホウ素,トリ(3,5−ジフルオロフェニル)ホウ素,ジ(ペンタフルオロフェニル)フルオロホウ素,ジフェニルフルオロホウ素,ジ(ペンタフルオロフェニル)クロロホウ素,ジメチルフルオロホウ素,ジエチルフルオロホウ素,ジ(n−ブチル)フルオロホウ素,(ペンタフルオロフェニル)ジフルオロホウ素,フェニルフルオロホウ素,(ペンタフルオロフェニル)ジクロロホウ素,メチルジフルオロホウ素,エチルジフルオロホウ素,(n−ブチル)ジフルオロホウ素などが挙げられる。
これらの中では、トリ(ペンタフルオロフェニル)ホウ素が特に好ましい。
一方、(B−2)成分のアルミノキサンとしては、一般式(IX)
Here, R 17 to R 19 may be the same as or different from each other.
Specific examples of the compound represented by the general formula (VIII) include triphenyl boron, tri (pentafluorophenyl) boron, tri (2,3,4,5-tetrafluorophenyl) boron, tri (2 , 4,5,6-tetrafluorophenyl) boron, tri (2,3,5,6-tetrafluorophenyl) boron, tri (2,4,6-trifluorophenyl) boron, tri (3,4,5 -Trifluorophenyl) boron, tri (2,3,4-trifluorophenyl) boron, tri (3,4,6-trifluorophenyl) boron, tri (2,3-difluorophenyl) boron, tri (2, 6-difluorophenyl) boron, tri (3,5-difluorophenyl) boron, tri (2,5-difluorophenyl) boron, tri (2-fluorophenyl) phospho Boron, tri (3-fluorophenyl) boron, tri (4-fluorophenyl) boron, tri [3,5-di (trifluoromethyl) phenyl] boron, tri [(4-fluoromethyl) phenyl] boron, diethyl Boron, diethylbutyl boron, trimethyl boron, triethyl boron, tri (n-butyl) boron, tri (trifluoromethyl) boron, tri (pentafluoroethyl) boron, tri (nonafluorobutyl) boron, tri (2, 4, 6-trifluorophenyl) boron, tri (3,5-difluorophenyl) boron, di (pentafluorophenyl) fluoroboron, diphenylfluoroboron, di (pentafluorophenyl) chloroboron, dimethylfluoroboron, diethylfluoroboron, di (N-butyl) fluoroboron, Pentafluorophenyl) difluoro boron, phenyl fluoro boron, (pentafluorophenyl) Jikurorohou arsenide, difluoromethyl boron, difluoromethyl boron, and the like (n- butyl) difluoro borate.
Of these, tri (pentafluorophenyl) boron is particularly preferred.
On the other hand, as the aluminoxane of the component (B-2), the general formula (IX)

Figure 2007197736
Figure 2007197736

(式中、R20は炭素数1〜20、好ましくは1〜12のアルキル基,アルケニル基,アリール基,アリールアルキル基などの炭化水素基又はハロゲン原子を示し、wは平均重合度を示し、通常2〜50、好ましくは2〜40の整数である。尚、各R20は同じでも異なっていてもよい。)
で示される鎖状アルミノキサン、及び一般式(X)
(Wherein R 20 represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group or arylalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms or a halogen atom, and w represents an average degree of polymerization. Usually, it is an integer of 2-50, preferably 2-40, wherein each R 20 may be the same or different.
A chain aluminoxane represented by the general formula (X)

Figure 2007197736
Figure 2007197736

(式中、R20及びwは前記一般式(IX)におけるものと同じである。)
で示される環状アルミノキサンを挙げることができる。
前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。
例えば、(1)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、(2)重合時に当初有機アルミニウム化合物を加えておき、後に水を添加する方法、(3)金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(4)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、更に水を反応させる方法などがある。
尚、アルミノキサンとしては、トルエン不溶性のものであってもよい。
(Wherein R 20 and w are the same as those in the general formula (IX)).
The cyclic aluminoxane shown by these can be mentioned.
Examples of the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means thereof is not particularly limited and may be reacted according to a known method.
For example, (1) a method in which an organoaluminum compound is dissolved in an organic solvent and contacting it with water, (2) a method in which an organoaluminum compound is initially added during polymerization, and water is added later, (3) metal There are a method for reacting water adsorbed on salt and the like, water adsorbed on inorganic and organic substances with an organoaluminum compound, and (4) a method for reacting tetraalkyldialuminoxane with trialkylaluminum and further reacting with water. .
The aluminoxane may be insoluble in toluene.

これらのアルミノキサンは一種用いてもよく、二種以上を組み合わせて用いてもよい。
(A)触媒成分と(B)触媒成分との使用割合は、(B)触媒成分として(B−1)化合物を用いた場合には、モル比で好ましくは10:1〜1:100、より好ましくは2:1〜1:10の範囲が望ましく、上記範囲を逸脱する場合は、単位質量ポリマー当りの触媒コストが高くなり、実用的でない。
また、(B−2)化合物を用いた場合には、モル比で好ましくは1:1〜1:1000000、より好ましくは1:10〜1:10000の範囲が望ましい。
この範囲を逸脱する場合は単位質量ポリマー当りの触媒コストが高くなり、実用的でない。
These aluminoxanes may be used alone or in combination of two or more.
The use ratio of (A) catalyst component and (B) catalyst component is preferably 10: 1 to 1: 100 in terms of molar ratio when (B-1) compound is used as (B) catalyst component. Preferably, the range of 2: 1 to 1:10 is desirable, and if it deviates from the above range, the catalyst cost per unit mass polymer becomes high, which is not practical.
Further, when the compound (B-2) is used, the molar ratio is preferably 1: 1 to 1: 1000000, more preferably 1:10 to 1: 10000.
When deviating from this range, the catalyst cost per unit mass polymer becomes high, which is not practical.

また、触媒成分(B)としては(B−1),(B−2)を単独又は二種以上組み合わせて用いることもできる。
(A)成分と(B)成分との使用割合は、モル比で好ましくは10:1〜1:100、より好ましくは1:1〜1:10の範囲が望ましく、上記範囲を逸脱する場合は、単位質量ポリマー当りの触媒コストが高くなり、実用的でない。
本発明の1−ブテン系重合体の製造方法において、(A)特定の遷移金属化合物及び(B−1)該(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物、特にホウ素原子を含有する重合用触媒を用いることにより、(B−2)成分としてアルミノキサンを用いた場合と比較して、著しく高活性で本発明1の1−ブテン系重合体を製造することができる。
また、本発明2の1−ブテン系重合体の製造方法としては、(A)特定の遷移金属化合物及び(B−2)成分としてアルミノキサンを含有する重合用触媒を用いることが好ましい。
Moreover, (B-1) and (B-2) can also be used individually or in combination of 2 or more types as a catalyst component (B).
The use ratio of the component (A) and the component (B) is preferably a molar ratio of preferably 10: 1 to 1: 100, more preferably 1: 1 to 1:10. The catalyst cost per unit mass polymer becomes high and is not practical.
In the method for producing a 1-butene polymer of the present invention, an ionic complex can be formed by reacting with (A) a specific transition metal compound and (B-1) the transition metal compound of the component (A). By using a polymerization catalyst containing a compound, particularly a boron atom, the 1-butene polymer of the present invention 1 is produced with significantly higher activity than when aluminoxane is used as component (B-2). be able to.
Moreover, as a manufacturing method of 1-butene polymer of this invention 2, it is preferable to use the polymerization catalyst which contains aluminoxane as (A) specific transition metal compound and (B-2) component.

本発明の製造方法における重合用触媒は、上記(A)成分及び(B)成分に加えて、(C)成分として有機アルミニウム化合物を用いることができる。
ここで、(C)成分の有機アルミニウム化合物としては、一般式(X)
21 vAlJ3-v ・・・(XI)
〔式中、R21は炭素数1〜10のアルキル基、Jは水素原子、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基又はハロゲン原子を示し、vは1〜3の整数である〕
で示される化合物が用いられる。
前記一般式(XI)で示される化合物の具体例としては、トリメチルアルミニウム,トリエチルアルミニウム,トリイソプロピルアルミニウム,トリイソブチルアルミニウム,ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,メチルアルミニウムジクロリド,エチルアルミニウムジクロリド,ジメチルアルミニウムフルオリド,ジイソブチルアルミニウムヒドリド,ジエチルアルミニウムヒドリド,エチルアルミニウムセスキクロリド等が挙げられる。
これらの有機アルミニウム化合物は一種用いてもよく、二種以上を組合せて用いてもよい。
In addition to the component (A) and the component (B), the polymerization catalyst in the production method of the present invention can use an organoaluminum compound as the component (C).
Here, as the organoaluminum compound of component (C), the general formula (X)
R 21 v AlJ 3-v (XI)
[In the formula, R 21 represents an alkyl group having 1 to 10 carbon atoms, J represents a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom, and v represents 1 to 3 carbon atoms. (It is an integer)
The compound shown by these is used.
Specific examples of the compound represented by the general formula (XI) include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride. , Diisobutylaluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride and the like.
These organoaluminum compounds may be used alone or in combination of two or more.

本発明の製造方法においては、上述した(A)成分、(B)成分及び(C)成分を用いて予備接触を行なうこともできる。
予備接触は、(A)成分に、例えば、(B)成分を接触させることにより行なうことができるが、その方法に特に制限はなく、公知の方法を用いることができる。
これら予備接触により触媒活性の向上や、助触媒である(B)成分の使用割合の低減など、触媒コストの低減に効果的である。
また、更に、(A)成分と(B)成分を接触させることにより、上記効果と共に、分子量向上効果も見られる。
また、予備接触温度は、通常−20℃〜200℃、好ましくは−10℃〜150℃、より好ましくは、0℃〜80℃である。
予備接触においては、溶媒の不活性炭化水素として、脂肪族炭化水素、芳香族炭化水素などを用いることができる。
In the production method of the present invention, preliminary contact can also be performed using the above-described component (A), component (B) and component (C).
The preliminary contact can be performed by bringing the component (A) into contact with, for example, the component (B). However, the method is not particularly limited, and a known method can be used.
These preliminary contacts are effective in reducing the catalyst cost, such as improving the catalytic activity and reducing the proportion of the (B) component that is the promoter.
Further, by bringing the component (A) and the component (B) into contact with each other, an effect of improving the molecular weight can be seen together with the above effect.
The preliminary contact temperature is usually -20 ° C to 200 ° C, preferably -10 ° C to 150 ° C, more preferably 0 ° C to 80 ° C.
In the preliminary contact, an aliphatic hydrocarbon, an aromatic hydrocarbon, or the like can be used as the inert hydrocarbon of the solvent.

これらの中で特に好ましいものは、脂肪族炭化水素である。
前記(A)触媒成分と(C)触媒成分との使用割合は、モル比で好ましくは1:1〜1:10000、より好ましくは1:5〜1:2500の範囲が望ましい。
該(C)触媒成分を用いることにより、遷移金属当たりの重合活性を向上させることができるが、あまり多いと有機アルミニウム化合物が無駄になるとともに、重合体中に多量に残存し、好ましくない。
本発明においては、触媒成分の少なくとも一種を適当な担体に担持して用いることができる。
該担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特に無機酸化物担体あるいはそれ以外の無機担体が好ましい。
無機酸化物担体としては、具体的には、SiO2,Al23,MgO,ZrO2,TiO2,Fe23,B23,CaO,ZnO,BaO,ThO2やこれらの混合物、例えばシリカアルミナ,ゼオライト,フェライト,グラスファイバーなどが挙げられる。
これらの中では、特にSiO2,Al23が好ましい。
Particularly preferred among these are aliphatic hydrocarbons.
The use ratio of the catalyst component (A) to the catalyst component (C) is preferably 1: 1 to 1: 10000, more preferably 1: 5 to 1: 2500 in terms of molar ratio.
By using the catalyst component (C), the polymerization activity per transition metal can be improved. However, if it is too much, the organoaluminum compound is wasted and a large amount remains in the polymer, which is not preferable.
In the present invention, at least one of the catalyst components can be supported on a suitable carrier and used.
The type of the carrier is not particularly limited, and any of inorganic oxide carriers, other inorganic carriers, and organic carriers can be used. In particular, inorganic oxide carriers or other inorganic carriers are preferable.
Specific examples of the inorganic oxide carrier include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , Fe 2 O 3 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and mixtures thereof. Examples thereof include silica alumina, zeolite, ferrite, and glass fiber.
Of these, SiO 2 and Al 2 O 3 are particularly preferable.

尚、上記無機酸化物担体は、少量の炭酸塩,硝酸塩,硫酸塩などを含有してもよい。
一方、上記以外の担体として、MgCl2,Mg(OC25)2などで代表される一般式MgR22 xq yで表されるマグネシウム化合物やその錯塩などを挙げることができる。
ここで、R22は炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基又は炭素数6〜20のアリール基、Xqはハロゲン原子又は炭素数1〜20のアルキル基を示し、xは0〜2、yは0〜2であり、かつx+y=2である。
各R22及び各X1はそれぞれ同一でもよく、又異なってもいてもよい。
また、有機担体としては、ポリスチレン,スチレン−ジビニルベンゼン共重合体,ポリエチレン,ポリ1−ブテン,置換ポリスチレン,ポリアリレートなどの重合体やスターチ,カーボンなどを挙げることができる。
The inorganic oxide carrier may contain a small amount of carbonate, nitrate, sulfate and the like.
On the other hand, as a carrier other than the above, a magnesium compound represented by the general formula MgR 22 x X q y typified by MgCl 2 , Mg (OC 2 H 5 ) 2 or the like, or a complex salt thereof can be used.
Here, R 22 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, X q represents a halogen atom or an alkyl group having 1 to 20 carbon atoms, x is 0 to 2, y is 0 to 2, and x + y = 2.
Each R 22 and each X 1 may be the same or different.
Examples of the organic carrier include polymers such as polystyrene, styrene-divinylbenzene copolymer, polyethylene, poly 1-butene, substituted polystyrene, and polyarylate, starch, and carbon.

本発明において用いられる担体としては、MgCl2,MgCl(OC25),Mg(OC25)2などが好ましい。
また、担体の性状は、その種類及び製法により異なるが、平均粒径は通常1〜300μm、好ましくは10〜200μm、より好ましくは20〜100μmである。
粒径が小さいと重合体中の微粉が増大し、粒径が大きいと重合体中の粗大粒子が増大し嵩密度の低下やホッパーの詰まりの原因になる。
また、担体の比表面積は、通常1〜1000m2/g、好ましくは50〜500m2/g、細孔容積は通常0.1〜5cm3/g、好ましくは0.3〜3cm3/gである。
比表面積又は細孔容積のいずれかが上記範囲を逸脱すると、触媒活性が低下することがある。
尚、比表面積及び細孔容積は、例えば、BET法に従って吸着された窒素ガスの体積から求めることができる。
As the carrier used in the present invention, MgCl 2 , MgCl (OC 2 H 5 ), Mg (OC 2 H 5 ) 2 and the like are preferable.
Moreover, although the property of a support | carrier changes with the kind and manufacturing method, an average particle diameter is 1-300 micrometers normally, Preferably it is 10-200 micrometers, More preferably, it is 20-100 micrometers.
When the particle size is small, fine powder in the polymer increases, and when the particle size is large, coarse particles in the polymer increase, which causes a decrease in bulk density and clogging of the hopper.
The specific surface area of the carrier is usually 1 to 1000 m 2 / g, preferably 50 to 500 m 2 / g, and the pore volume is usually 0.1 to 5 cm 3 / g, preferably 0.3 to 3 cm 3 / g. is there.
When either the specific surface area or the pore volume deviates from the above range, the catalytic activity may decrease.
The specific surface area and pore volume can be determined from the volume of nitrogen gas adsorbed according to the BET method, for example.

更に、上記担体が無機酸化物担体である場合には、通常150〜1000℃、好ましくは200〜800℃で焼成して用いることが望ましい。
触媒成分の少なくとも一種を前記担体に担持させる場合、(A)触媒成分及び(B)触媒成分の少なくとも一方を、好ましくは(A)触媒成分及び(B)触媒成分の両方を担持させるのが望ましい。
該担体に、(A)成分及び(B)成分の少なくとも一方を担持させる方法については、特に制限されないが、例えば、(1)(A)成分及び(B)成分の少なくとも一方と担体とを混合する方法、(2)担体を有機アルミニウム化合物又はハロゲン含有ケイ素化合物で処理した後、不活性溶媒中で(A)成分及び(B)成分の少なくとも一方と混合する方法、(3)担体と(A)成分及び/又は(B)成分と有機アルミニウム化合物又はハロゲン含有ケイ素化合物とを反応させる方法、(4)(A)成分又は(B)成分を担体に担持させた後、(B)成分又は(A)成分と混合する方法、(5)(A)成分と(B)成分との接触反応物を担体と混合する方法、(6)(A)成分と(B)成分との接触反応に際して、担体を共存させる方法などを用いることができる。
Further, when the carrier is an inorganic oxide carrier, it is usually desirable to use it after firing at 150 to 1000 ° C, preferably 200 to 800 ° C.
When at least one kind of catalyst component is supported on the carrier, it is desirable to support at least one of (A) catalyst component and (B) catalyst component, preferably both (A) catalyst component and (B) catalyst component. .
The method for supporting at least one of the component (A) and the component (B) on the carrier is not particularly limited. For example, (1) at least one of the component (A) and the component (B) is mixed with the carrier. (2) A method in which the support is treated with an organoaluminum compound or a halogen-containing silicon compound and then mixed with at least one of the components (A) and (B) in an inert solvent, (3) the support and (A (4) Method of reacting component and / or component (B) with organoaluminum compound or halogen-containing silicon compound, (4) After supporting component (A) or component (B) on a carrier, component (B) or ( (A) Method of mixing with component, (5) Method of mixing contact reaction product of (A) component and (B) component with carrier, (6) Upon contact reaction of component (A) and component (B) Method of coexisting carriers It can be used.

尚、上記(4)、(5)及び(6)の反応において、(C)成分の有機アルミニウム化合物を添加することもできる。
本発明においては、前記(A),(B),(C)を接触させる際に、弾性波を照射させて触媒を調製してもよい。
弾性波としては、通常音波、特に好ましくは超音波が挙げられる。
具体的には、周波数が1〜1000kHzの超音波、好ましくは10〜500kHzの超音波が挙げられる。
このようにして得られた触媒は、一旦溶媒留去を行って固体として取り出してから重合に用いてもよいし、そのまま重合に用いてもよい。
また、本発明においては、(A)成分及び(B)成分の少なくとも一方の担体への担持操作を重合系内で行うことにより触媒を生成させることができる。
例えば、(A)成分及び(B)成分の少なくとも一方と担体と更に必要により前記(C)成分の有機アルミニウム化合物を加え、エチレンなどのオレフィンを常圧〜2MPa(gauge)加えて、−20〜200℃で1分〜2時間程度予備重合を行い触媒粒子を生成させる方法を用いることができる。
In the above reactions (4), (5) and (6), an organoaluminum compound (C) can also be added.
In the present invention, when contacting the (A), (B), and (C), the catalyst may be prepared by irradiating elastic waves.
Examples of the elastic wave include a normal sound wave, particularly preferably an ultrasonic wave.
Specifically, an ultrasonic wave having a frequency of 1 to 1000 kHz, preferably an ultrasonic wave having a frequency of 10 to 500 kHz can be mentioned.
The catalyst thus obtained may be used for polymerization after once removing the solvent and taken out as a solid, or may be used for polymerization as it is.
Moreover, in this invention, a catalyst can be produced | generated by performing the carrying | support operation to the support | carrier of at least one of (A) component and (B) component within a polymerization system.
For example, at least one of the component (A) and the component (B), a carrier, and, if necessary, the organoaluminum compound of the component (C) are added, and an olefin such as ethylene is added at normal pressure to 2 MPa (gauge), and -20 to 20 A method of preliminarily polymerizing at 200 ° C. for about 1 minute to 2 hours to produce catalyst particles can be used.

本発明においては、(B−1)成分と担体との使用割合は、質量比で好ましくは1:5〜1:10000、より好ましくは1:10〜1:500とするのが望ましく、(B−2)成分と担体との使用割合は、質量比で好ましくは1:0.5〜1:1000、より好ましくは1:1〜1:50とするのが望ましい。
(B)成分として二種以上を混合して用いる場合は、各(B)成分と担体との使用割合が質量比で上記範囲内にあることが望ましい。
また、(A)成分と担体との使用割合は、質量比で、好ましくは1:5〜1:10000、より好ましくは1:10〜1:500とするのが望ましい。
(B)成分〔(B−1)成分又は(B−2)成分〕と担体との使用割合、又は(A)成分と担体との使用割合が上記範囲を逸脱すると、活性が低下することがある。
このようにして調製された本発明の重合用触媒の平均粒径は、通常、2〜200μm、好ましくは10〜150μm、特に好ましくは20〜100μmであり、比表面積は、通常20〜1000m2/g、好ましくは50〜500m2/gである。
平均粒径が2μm未満であると重合体中の微粉が増大することがあり、200μmを超えると重合体中の粗大粒子が増大することがある。
比表面積が20m2/g未満であると活性が低下することがあり、1000m2/gを超えると重合体の嵩密度が低下することがある。
In the present invention, the use ratio of the component (B-1) to the carrier is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500 in terms of mass ratio. -2) The use ratio of the component and the carrier is preferably 1: 0.5 to 1: 1000, more preferably 1: 1 to 1:50 in terms of mass ratio.
When using 2 or more types as a component (B), it is desirable that the use ratio of each component (B) and the carrier is within the above range in terms of mass ratio.
In addition, the ratio of the component (A) to the carrier used is, by mass ratio, preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500.
If the ratio of component (B) [component (B-1) or component (B-2)] and the carrier, or component (A) and carrier is outside the above range, the activity may decrease. is there.
The average particle diameter of the polymerization catalyst of the present invention thus prepared is usually 2 to 200 μm, preferably 10 to 150 μm, particularly preferably 20 to 100 μm, and the specific surface area is usually 20 to 1000 m 2 / g, preferably 50 to 500 m 2 / g.
If the average particle size is less than 2 μm, fine powder in the polymer may increase, and if it exceeds 200 μm, coarse particles in the polymer may increase.
When the specific surface area is less than 20 m 2 / g, the activity may decrease, and when it exceeds 1000 m 2 / g, the bulk density of the polymer may decrease.

また、本発明の触媒において、担体100g中の遷移金属量は、通常0.05〜10g、特に0.1〜2gであることが好ましい。
遷移金属量が上記範囲外であると、活性が低くなることがある。
担体に担持することによって工業的に有利な高い嵩密度と優れた粒径分布を有する重合体を得ることができる。
本発明の1−ブテン系重合体は、上述した重合用触媒を用いて、1−ブテンを単独重合、又は1−ブテン並びにエチレン及び/又は炭素数3〜20のα−オレフィン(ただし、1−ブテンを除く)とを共重合させることにより製造される。
炭素数3〜20のα−オレフィンとしては、プロピレン,1−ペンテン,4−メチル−1−ペンテン,1−ヘキセン,1−オクテン,1−デセン,1−ドデセン,1−テトラデセン,1−ヘキサデセン,1−オクタデセン,1−エイコセンなどが挙げられ、本発明においては、これらのうち一種又は二種以上を用いることができる。
In the catalyst of the present invention, the amount of transition metal in 100 g of the support is preferably 0.05 to 10 g, particularly preferably 0.1 to 2 g.
If the amount of transition metal is outside the above range, the activity may be lowered.
A polymer having a high bulk density and an excellent particle size distribution which are industrially advantageous can be obtained by supporting the carrier.
The 1-butene polymer of the present invention is obtained by homopolymerizing 1-butene or 1-butene and ethylene and / or an α-olefin having 3 to 20 carbon atoms (provided that 1-butene is used). And (butene is excluded).
Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene and the like can be mentioned, and one or more of these can be used in the present invention.

本発明において、重合方法は特に制限されず、スラリー重合法,気相重合法,塊状重合法,溶液重合法,懸濁重合法などのいずれの方法を用いてもよいが、スラリー重合法,気相重合法が特に好ましい。
重合条件については、重合温度は通常−100〜250℃、好ましくは−50〜200℃、より好ましくは0〜130℃である。
また、反応原料に対する触媒の使用割合は、原料モノマー/上記(A)成分(モル比)が好ましくは1〜108、特に100〜105となることが好ましい。
更に、重合時間は通常5分〜10時間、反応圧力は好ましくは常圧〜20MPa(gauge)更に好ましくは常圧〜10MPa(gauge)である。
重合体の分子量の調節方法としては、各触媒成分の種類,使用量,重合温度の選択、更には水素存在下での重合などがある。
In the present invention, the polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, and a suspension polymerization method may be used. A phase polymerization method is particularly preferred.
About polymerization conditions, superposition | polymerization temperature is -100-250 degreeC normally, Preferably it is -50-200 degreeC, More preferably, it is 0-130 degreeC.
The ratio of the catalyst to the reaction raw material is preferably 1 to 10 8 , particularly 100 to 10 5 , preferably from raw material monomer / component (A) (molar ratio).
Furthermore, the polymerization time is usually 5 minutes to 10 hours, and the reaction pressure is preferably normal pressure to 20 MPa (gauge), more preferably normal pressure to 10 MPa (gauge).
Examples of the method for adjusting the molecular weight of the polymer include selection of the type of each catalyst component, the amount used, and the polymerization temperature, and further polymerization in the presence of hydrogen.

重合溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタンなどのハロゲン化炭化水素などを用いることができる。
これらの溶媒は一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。
また、α−オレフィンなどのモノマーを溶媒として用いてもよい。
尚、重合方法によっては無溶媒で行うことができる。
重合に際しては、前記重合用触媒を用いて予備重合を行うことができる。
予備重合は、固体触媒成分に、例えば、少量のオレフィンを接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。
予備重合に用いるオレフィンについては特に制限はなく、前記に例示したものと同様のもの、例えば、エチレン、炭素数3〜20のα−オレフィン、あるいはこれらの混合物などを挙げることができるが、該重合において用いるオレフィンと同じオレフィンを用いることが有利である。
また、予備重合温度は、通常−20〜200℃、好ましくは−10〜130℃、より好ましくは0〜80℃である。
予備重合においては、溶媒として、脂肪族炭化水素,芳香族炭化水素,モノマーなどを用いることができる。
これらの中で特に好ましいのは脂肪族炭化水素である。
また、予備重合は無溶媒で行ってもよい。
When using a polymerization solvent, for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane, and aliphatic hydrocarbons such as pentane, hexane, heptane, and octane , Halogenated hydrocarbons such as chloroform and dichloromethane can be used.
These solvents may be used alone or in combination of two or more.
Moreover, you may use monomers, such as an alpha olefin, as a solvent.
Depending on the polymerization method, it can be carried out without solvent.
In the polymerization, prepolymerization can be performed using the polymerization catalyst.
The prepolymerization can be performed, for example, by bringing a small amount of olefin into contact with the solid catalyst component, but the method is not particularly limited, and a known method can be used.
The olefin used for the prepolymerization is not particularly limited, and examples thereof include those similar to those exemplified above, for example, ethylene, an α-olefin having 3 to 20 carbon atoms, or a mixture thereof. It is advantageous to use the same olefin as used in
Moreover, prepolymerization temperature is -20-200 degreeC normally, Preferably it is -10-130 degreeC, More preferably, it is 0-80 degreeC.
In the prepolymerization, an aliphatic hydrocarbon, aromatic hydrocarbon, monomer or the like can be used as a solvent.
Of these, aliphatic hydrocarbons are particularly preferred.
Moreover, you may perform prepolymerization without a solvent.

予備重合においては、予備重合生成物の極限粘度〔η〕(135℃デカリン中で測定)が0.2デシリットル/g以上、特に0.5デシリットル/g以上、触媒中の遷移金属成分1ミリモル当たりに対する予備重合生成物の量が1〜10000g、特に10〜1000gとなるように条件を調整することが望ましい。   In the prepolymerization, the intrinsic viscosity [η] (measured in decalin at 135 ° C.) of the prepolymerized product is 0.2 deciliter / g or more, particularly 0.5 deciliter / g or more, and per 1 millimole of transition metal component in the catalyst. It is desirable to adjust the conditions so that the amount of the prepolymerized product is 1 to 10000 g, particularly 10 to 1000 g.

〔3〕1−ブテン系樹脂改質剤
本発明の1−ブテン系樹脂改質剤は、本発明1の1−ブテン系重合体からなる樹脂改質剤である。
本発明の1−ブテン系樹脂改質剤は、低融点で軟質性があり、べたつきが少なくポリレフィン樹脂との相溶性に優れた成形体を与えることができるという特徴がある。
即ち、本発明の1−ブテン系樹脂改質剤は、1−ブテン系重合体が特定のものであり、特にポリ1−ブテン連鎖部分に結晶性の部分が若干存在するので、従来の改質剤である軟質ポリオレフィン樹脂に比較してべたつきが少なく、相溶性に優れる。
[3] 1-butene resin modifier The 1-butene resin modifier of the present invention is a resin modifier comprising the 1-butene polymer of the present invention 1.
The 1-butene-based resin modifier of the present invention is characterized in that it has a low melting point, is soft, has little stickiness, and can give a molded article excellent in compatibility with a polyolefin resin.
That is, the 1-butene-based resin modifier of the present invention is a specific 1-butene-based polymer, and in particular, there are some crystalline portions in the poly 1-butene chain portion. Compared to the soft polyolefin resin that is an agent, it is less sticky and has excellent compatibility.

更に、本発明の1−ブテン系樹脂改質剤は、ポリオレフィン系樹脂、特にポリプロピレン系樹脂との相溶性に優れる。
その結果、従来の改質剤であるエチレン系ゴム等を用いる場合に比べ、表面特性(べたつき等)の低下が少なく、透明性が高い。
以上のような特徴があり、本発明1の1−ブテン系樹脂改質剤は、柔軟性、透明性の物性改良剤として好適に使用することができる。
更に、ヒートシール性及びホットタック性の改良剤として好適に使用することができる。
Furthermore, the 1-butene resin modifier of the present invention is excellent in compatibility with polyolefin resins, particularly polypropylene resins.
As a result, the surface properties (stickiness, etc.) are less deteriorated and transparency is higher than in the case of using ethylene-based rubber as a conventional modifier.
Due to the above characteristics, the 1-butene resin modifier of the present invention 1 can be suitably used as a physical property improver having flexibility and transparency.
Furthermore, it can be suitably used as an improving agent for heat sealability and hot tackiness.

〔4〕ホットメルト接着剤
本発明2の1−ブテン系重合体は、ホットメルト接着剤ベースポリマーとして好適であり、粘着性付与樹脂及び可塑剤等との配合により、高温下での熱安定性や流動性に優れ、低極性物質への接着性にも優れ、かつ、その接着面が耐熱性にも優れるポリオレフィン系ホットメルト接着剤として用いることができる。
本発明2の1−ブテン系重合体を、ベースポリマーとして用いたポリオレフィン系ホットメルト接着剤に用いられる粘着性付与樹脂としては、生松ヤニを原料としたロジン樹脂、松の精油から得られるα−ピネン、β−ピネンを原料としたテルペン樹脂、石油ナフサなどの熱分解により副産物として生成する不飽和炭化水素を含む留分を重合して樹脂化して得られる石油樹脂、及びそれらの水素添加物などが挙げられる。
[4] Hot Melt Adhesive The 1-butene polymer of the present invention 2 is suitable as a hot melt adhesive base polymer, and is blended with a tackifier resin, a plasticizer, and the like, so that the heat stability at high temperatures is achieved. In addition, it can be used as a polyolefin-based hot-melt adhesive having excellent fluidity, excellent adhesion to a low-polarity substance, and excellent adhesion resistance.
As a tackifying resin used for a polyolefin hot melt adhesive using the 1-butene polymer of the present invention 2 as a base polymer, α obtained from rosin resin made from raw pine crab, pine essential oil -Perene, terpene resin made from β-pinene, petroleum resins obtained by polymerizing a fraction containing unsaturated hydrocarbons produced as a by-product by thermal decomposition such as petroleum naphtha, and hydrogenated products thereof Etc.

粘着性付与樹脂としては、出光石油化学(株)製アイマーブP−125、同アイマーブP−100、同アイマーブP−90、三洋化成工業(株)製ユーメックス1001、三井化学(株)製ハイレッツT1115、ヤスハラケミカル(株)製クリアロンK100、トーネックス(株)製ECR227、同エスコレッツ2101、荒川化学(株)製アルコンP100、ハーキュレス社(Hercules)製Regalrez1078などを挙げることができる。
尚、1−ブテン系重合体との相溶性を考慮し、水素添加物を用いることが好ましい。
中でも、熱安定性に優れる石油樹脂の水素化物がより好ましい。
また、本発明において、必要に応じて可塑剤、無機フィラー、酸化防止剤などの各種添加剤を配合することができる。
As tackifying resins, Idemitsu Petrochemical Co., Ltd. Imabu P-125, Imabu P-100, Imabu P-90, Sanyo Chemical Industries Co., Ltd. Umex 1001, Mitsui Chemicals, Inc. Highlets T1115, Examples include Clearon K100 manufactured by Yashara Chemical Co., Ltd., ECR227 manufactured by Tonex Co., Ltd., Escorez 2101, Alcon P100 manufactured by Arakawa Chemical Co., Ltd., Regalrez 1078 manufactured by Hercules Co., Ltd., and the like.
In view of compatibility with the 1-butene polymer, it is preferable to use a hydrogenated product.
Among them, a hydride of petroleum resin having excellent thermal stability is more preferable.
Moreover, in this invention, various additives, such as a plasticizer, an inorganic filler, and antioxidant, can be mix | blended as needed.

可塑剤としては、パラフィン系プロセスオイル、ポリオレフィン系ワックス、フタル酸エステル類、アジピン酸エステル類、脂肪酸エステル類、グリコール類、エポキシ系高分子可塑剤、ナフテン系オイルなど、無機フィラーとしては、クレー、タルク、炭酸カルシウム、炭酸バリウムなど、酸化防止剤としては、トリスノニフェニルホスファイト、ジステアリルペンタエリスリトールジホスファイト、アデカスタブ1178(旭電化(株))、スミライザーTNP(住友化学(株))、イルガフォス168(チバ・セペシャルティ・ケミカルズ(株))、SandstabP−EPQ(サンド(株))等のリン系酸化防止剤、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート、スミライザーBHT(住友化学(株))、イルガノックス1010(チバ・スペシャルティ・ケミカルズ(株))等のフェノール系酸化防止剤、ジラウリル−3,3’−チオジプロピオネート、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、スミライザーTPL(住友化学(株))、ヨシノックスDLTP(吉富製薬(株))アンチオックスL(日本油脂(株))等のイオウ系酸化防止剤などを例示できる。
本発明2の1−ブテン系重合体をベースポリマーとして用いたポリオレフィン系ホットメルト接着剤は、衛生材料用、包装用、製本用、繊維用、木工用、電気材料用、製缶用、建築用、製袋用など様々な分野に利用できる。
As plasticizers, paraffinic process oil, polyolefin wax, phthalates, adipates, fatty acid esters, glycols, epoxy polymer plasticizer, naphthenic oil, etc., inorganic fillers include clay, Antioxidants such as talc, calcium carbonate, and barium carbonate include trisnoniphenyl phosphite, distearyl pentaerythritol diphosphite, Adekastab 1178 (Asahi Denka Co., Ltd.), Sumilizer TNP (Sumitomo Chemical Co., Ltd.), Irgaphos 168 (Ciba Specialty Chemicals Co., Ltd.), Sandstab P-EPQ (Sand Co., Ltd.) and other phosphorus antioxidants, 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3- (3 ', 5'-di-t-butyl-4'- Roxyphenyl) propionate, Sumilizer BHT (Sumitomo Chemical Co., Ltd.), Irganox 1010 (Ciba Specialty Chemicals Co., Ltd.) and other phenolic antioxidants, dilauryl-3,3′-thiodipropionate, pentaerythritol Examples include sulfur-based antioxidants such as Tetrakis (3-laurylthiopropionate), Sumilizer TPL (Sumitomo Chemical Co., Ltd.), Yoshinox DLTP (Yoshitomi Pharmaceutical Co., Ltd.) Antiox L (Nippon Yushi Co., Ltd.), etc. it can.
Polyolefin hot melt adhesive using 1-butene polymer of the present invention 2 as a base polymer is for sanitary materials, packaging, bookbinding, textiles, woodworking, electrical materials, cans, and construction It can be used in various fields such as bag making.

以下に、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
まず、本発明の製造方法により得られた1−ブテン系重合体の樹脂特性及び物性の評価方法について説明する。
Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
First, a method for evaluating resin properties and physical properties of a 1-butene polymer obtained by the production method of the present invention will be described.

(1)プレス成形シートの作成
(イ)プレス成形試料の調製
1−ブテン系重合体40gに、酸化防止剤としてイルガノックス1010〔チバ・スペシャルティ・ケミカルズ(株)〕を1000ppm及びトルエン300mlを80℃でよく混合させて均一なポリマー溶液とする。
この1−ブテン系重合体溶液をドラフト内で12時間乾燥した後、60℃の乾燥機で8時間乾燥して完全にトルエンを除去し、試料とした。
(ロ)プレス成形方法
上記(1)の試料20gを、150℃で気泡が入らないよう注意しながら50kg/cm2で10分間加圧した後、室温に徐冷して200mm×200mm×1mmのシートを成形した。
(2)メソペンタッド分率、異常挿入量及び立体規則性指数の測定
明細書本文中に記載した方法により測定した。
(3)コモノマーの含量の測定
明細書本文中に記載した方法により測定した。
(4)極限粘度〔η〕の測定
(株)離合社のVMR−053型自動粘度計を用い、テトラリン溶媒中135℃において測定した。
(5)重量平均分子量(Mw)及び分子量分布(Mw/Mn)の測定
明細書本文中に記載した方法により測定した。
(6)DSC測定(融点:Tm−Dの測定)
明細書本文中に記載した方法により測定した。
即ち、示差走査型熱量計(パーキン・エルマー社製, DSC−7)を用い、試料10mgを窒素雰囲気下、−10℃で5分間保持した後、10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップを融点:Tm−Dとした。
また、このとき得られる融解吸熱量をΔH−Dとした。
(7)引張弾性率及び引張破断伸びの測定
(1)に記載の方法によりプレス成形したシートからダンベル型試験片を作製し、JIS K−7113に準拠した引張試験により以下の条件で測定した。
・クロスヘッド速度:50mm/min
(8)ゼロせん断粘度の測定
明細書本文中に記載した方法により測定した。
(1) Preparation of press-molded sheet (a) Preparation of press-molded sample 1-butene polymer 40 g, Irganox 1010 [Ciba Specialty Chemicals Co., Ltd.] as an antioxidant, 1000 ppm and toluene 300 ml, 80 ° C. Mix well to obtain a uniform polymer solution.
This 1-butene polymer solution was dried in a fume hood for 12 hours and then dried in a dryer at 60 ° C. for 8 hours to completely remove toluene, thereby preparing a sample.
(B) Press-molding method 20 g of the sample of (1) above was pressurized at 50 kg / cm 2 for 10 minutes at 150 ° C., taking care not to introduce bubbles, then slowly cooled to room temperature, and 200 mm × 200 mm × 1 mm. A sheet was formed.
(2) Measurement of mesopentad fraction, abnormal insertion amount and stereoregularity index Measurement was performed by the method described in the specification.
(3) Measurement of comonomer content The comonomer content was measured by the method described in the text of the specification.
(4) Measurement of intrinsic viscosity [η] The intrinsic viscosity [η] was measured at 135 ° C. in a tetralin solvent using a VMR-053 type automatic viscometer manufactured by Kosei Co., Ltd.
(5) Measurement of weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) It measured by the method described in the specification text.
(6) DSC measurement (melting point: measurement of Tm-D)
It was measured by the method described in the text of the specification.
That is, using a differential scanning calorimeter (manufactured by Perkin Elmer, DSC-7), 10 mg of a sample is held at −10 ° C. for 5 minutes in a nitrogen atmosphere and then heated at 10 ° C./min. The peak top of the peak observed on the highest temperature side of the melting endothermic curve was defined as melting point: Tm-D.
Further, the melting endotherm obtained at this time was defined as ΔH−D.
(7) Measurement of tensile modulus and tensile elongation at break A dumbbell-shaped test piece was produced from a sheet press-formed by the method described in (1), and measured under the following conditions by a tensile test based on JIS K-7113.
・ Crosshead speed: 50mm / min
(8) Measurement of zero shear viscosity It was measured by the method described in the text of the specification.

実施例1
(1)触媒調製
(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドの製造
シュレンク瓶に(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(インデン)のリチウム塩の3.0g(6.97ミリモル)をTHF(テトラヒドロフラン)50ミリリットルに溶解し−78℃に冷却する。
ヨードメチルトリメチルシラン2.1ミリリットル(14.2ミリモル)をゆっくりと滴下し室温で12時間撹拌した。
溶媒を留去しエーテル50ミリリットルを加えて飽和塩化アンモニウム溶液で洗浄した。
分液後、有機相を乾燥し溶媒を除去して(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデン)を3.04g(5.88ミリモル)を得た(収率84%)。
Example 1
(1) Preparation of catalyst (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride Production of (1,2'-dimethylsilylene) ( 3.0 g (6.97 mmol) of lithium salt of 2,1′-dimethylsilylene) -bis (indene) is dissolved in 50 ml of THF (tetrahydrofuran) and cooled to −78 ° C.
2.1 ml (14.2 mmol) of iodomethyltrimethylsilane was slowly added dropwise and stirred at room temperature for 12 hours.
The solvent was distilled off, 50 ml of ether was added, and the mixture was washed with a saturated ammonium chloride solution.
After liquid separation, the organic phase was dried, the solvent was removed, and 3.04 g (5.88 mmol) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindene) was obtained. ) Was obtained (yield 84%).

次に、窒素気流下においてシュレンク瓶に前記で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデン)を3.04g(5.88ミリモル)とエーテル50ミリリットルを入れた。
−78℃に冷却しn−BuLiのヘキサン溶液(1.54M、7.6ミリリットル(1.7ミリモル))を滴下した。
温度を室温とし12時間撹拌後、エーテルを留去した。
得られた固体をヘキサン40ミリリットルで洗浄することによりリチウム塩をエーテル付加体として3.06g(5.07ミリモル)を得た(収率73%)。
1H−NMR(90MHz、THF−d8)による測定の結果は、δ:0.04(s、18H、トリメチルシリル);0.48(s、12H、ジメチルシリレン);1.10(t、6H、メチル);2.59(s、4H、メチレン);3.38(q、4H、メチレン)、6.2−7.7(m,8H,Ar−H)であった。
窒素気流下で得られたリチウム塩をトルエン50ミリリットルに溶解した。
−78℃に冷却し、ここへ予め−78℃に冷却した四塩化ジルコニウム1.2g(5.1ミリモル)のトルエン(20ミリリットル)懸濁液を滴下した。
滴下後、室温で6時間撹拌した。その反応溶液の溶媒を留去した。
得られた残渣をジクロロメタンにより再結晶化することにより、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.9g(1.33ミリモル)を得た(収率26%)。
1H−NMR(90MHz、CDCl3)による測定の結果は、δ:0.0(s、18H、トリメチルシリル);1.02,1.12(s、12H、ジメチルシリレン);2.51(dd、4H、メチレン);7.1−7.6(m,8H,Ar−H)であった。
Next, 3.04 g (5.88) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindene) obtained above in a Schlenk bottle under a nitrogen stream. Millimoles) and 50 milliliters of ether.
After cooling to −78 ° C., a hexane solution of n-BuLi (1.54M, 7.6 ml (1.7 mmol)) was added dropwise.
After stirring at room temperature for 12 hours, ether was distilled off.
The obtained solid was washed with 40 ml of hexane to obtain 3.06 g (5.07 mmol) of lithium salt as an ether adduct (yield 73%).
The results of measurement by 1 H-NMR (90 MHz, THF-d 8 ) are as follows: δ: 0.04 (s, 18H, trimethylsilyl); 0.48 (s, 12H, dimethylsilylene); 1.10 (t, 6H) , Methyl); 2.59 (s, 4H, methylene); 3.38 (q, 4H, methylene), 6.2-7.7 (m, 8H, Ar-H).
The lithium salt obtained under a nitrogen stream was dissolved in 50 ml of toluene.
After cooling to -78 ° C, a suspension of 1.2 g (5.1 mmol) of zirconium tetrachloride, which had been cooled to -78 ° C in advance, in toluene (20 ml) was added dropwise.
After dropping, the mixture was stirred at room temperature for 6 hours. The solvent of the reaction solution was distilled off.
The obtained residue was recrystallized from dichloromethane to obtain 0.9 g (1 of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride. .33 mmol) (yield 26%).
The results of measurement by 1 H-NMR (90 MHz, CDCl 3 ) are as follows: δ: 0.0 (s, 18H, trimethylsilyl); 1.02, 1.12 (s, 12H, dimethylsilylene); 2.51 (dd 4H, methylene); 7.1-7.6 (m, 8H, Ar-H).

(2)重合
加熱乾燥した1リットルオートクレーブに、ヘプタン200ミリリットル、1−ブテン200ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、更に水素0.2MPa導入した。
撹絆しながら温度を65℃にした後、トリフェニルカルベニウムテトラキスペンタフルオロフェニルボレート0.8マイクロモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.2マイクロモル加え、5分間重合した。
重合反応終了後、反応物を減圧下で乾燥させることにより、1−ブテン重合体を13g得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表1に示す。
(2) Polymerization To a heat-dried 1 liter autoclave, 200 ml of heptane, 200 ml of 1-butene and 0.5 mmol of triisobutylaluminum were added, and 0.2 MPa of hydrogen was further introduced.
The temperature was raised to 65 ° C. while stirring, and then 0.8 μmol of triphenylcarbenium tetrakispentafluorophenylborate, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3- 0.2 micromol of trimethylsilylmethylindenyl) zirconium dichloride was added and polymerized for 5 minutes.
After completion of the polymerization reaction, 13 g of 1-butene polymer was obtained by drying the reaction product under reduced pressure.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 1.

実施例2
加熱乾燥した1リットルオートクレーブに、ヘプタン200ミリリットル、1−ブテン200ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、更に水素0.3MPa導入した。
撹絆しながら温度を65℃にした後、更にプロピレンを全圧が0.8MPaになるまで連続的に導入し、トリフェニルカルベニウムテトラキスペンタフルオロフェニルボレート0.8マイクロモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.2マイクロモル加え、5分間重合した。
重合反応終了後、反応物を減圧下で乾燥させることにより、1−ブテン共重合体を14g得た。
得られた1−ブテン共重合体について、上記方法により樹脂特性及び物性を評価した。結果を表1に示す。
Example 2
To a heat-dried 1 liter autoclave, 200 ml of heptane, 200 ml of 1-butene and 0.5 mmol of triisobutylaluminum were added, and 0.3 MPa of hydrogen was further introduced.
After stirring the temperature to 65 ° C., propylene was continuously introduced until the total pressure became 0.8 MPa, and triphenylcarbenium tetrakispentafluorophenylborate 0.8 micromol, (1,2 ′ -Dimethylsilylene) (2,1'-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride was added in 0.2 micromolar and polymerized for 5 minutes.
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 14 g of 1-butene copolymer.
About the obtained 1-butene copolymer, the resin characteristic and the physical property were evaluated by the said method. The results are shown in Table 1.

実施例3
加熱乾燥した1リットルオートクレーブに、ヘプタン200ミリリットル、1−ブテン200ミリリットル、1−オクテン10ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、更に水素0.2MPa導入した。
撹絆しながら温度を65℃にした後、トリフェニルカルベニウムテトラキスペンタフルオロフェニルボレート2マイクロモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.5マイクロモル加え、5分間重合した。
重合反応終了後、反応物を減圧下で乾燥させることにより、1−ブテン共重合体を13g得た。
得られた1−ブテン共重合体について、上記方法により樹脂特性及び物性を評価した。結果を表1に示す。
Example 3
To a heat-dried 1 liter autoclave, 200 ml of heptane, 200 ml of 1-butene, 10 ml of 1-octene and 0.5 mmol of triisobutylaluminum were added, and 0.2 MPa of hydrogen was further introduced.
After stirring to a temperature of 65 ° C., 2 μmol of triphenylcarbenium tetrakispentafluorophenylborate, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethyl) 0.5 micromol of indenyl) zirconium dichloride was added and polymerized for 5 minutes.
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 13 g of 1-butene copolymer.
About the obtained 1-butene copolymer, the resin characteristic and the physical property were evaluated by the said method. The results are shown in Table 1.

実施例4
加熱乾燥した1リットルオートクレーブに、ヘプタン4リットル、1−ブテン2.5kgを加え、更に水素0.2Pa導入した。
攪拌しながら温度を80℃にした後、トリイソブチルアルミニウム5ミリモル、(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライド5マイクロモル、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート25マイクロモルを加え、60分間重合した。
重合反応終了後、反応物を減圧下、乾燥することにより、1−ブテン重合体1.2kgを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表1に示す。
Example 4
To a heat-dried 1 liter autoclave, 4 liters of heptane and 2.5 kg of 1-butene were added, and 0.2 Pa of hydrogen was further introduced.
After the temperature was raised to 80 ° C. with stirring, 5 mmol of triisobutylaluminum, 5 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride Then, 25 micromol of dimethylanilinium tetrakispentafluorophenylborate was added and polymerized for 60 minutes.
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 1.2 kg of 1-butene polymer.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 1.

実施例5
加熱乾燥した1リットルオートクレーブに、ヘプタン4リットル、1−ブテン2.5kgを加え、更に水素0.03Pa導入した。
攪拌しながら温度を80℃にした後、トリイソブチルアルミニウム5ミリモル、(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)(3−トリメチルシリルメチルインデニル)(インデニル)ジルコニウムジクロライド10マイクロモル、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート50マイクロモルを加え、40分間重合した。
重合反応終了後、反応物を減圧下、乾燥することにより、1−ブテン重合体1.3kgを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表1に示す。
Example 5
To a heat-dried 1 liter autoclave, 4 liters of heptane and 2.5 kg of 1-butene were added, and 0.03 Pa of hydrogen was further introduced.
After the temperature was raised to 80 ° C. with stirring, 5 mmol of triisobutylaluminum, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) (3-trimethylsilylmethylindenyl) (indenyl) zirconium dichloride 10 μm Mole and 50 micromol of dimethylanilinium tetrakispentafluorophenylborate were added and polymerized for 40 minutes.
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 1.3 kg of 1-butene polymer.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 1.

比較例1
実施例1において、トリフェニルカルベニウムテトラキスペンタフルオロフェニルボレート0.8マイクロモルをメチルアルミノキサン0.25ミリモルに変更し、又(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロライドを0.25マイクロモルに変更した以外は、実施例1と同様にして30分間重合を行ない、同様に乾燥させることにより、1−ブテン重合体10gを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表1に示す。
実施例1と比較例1は、共に1−ブテン系重合体の製造例であるが、有機ホウ素化合物に代えてメチルアルミノキサンを使用した比較例1では触媒活性が低い。同様の傾向は、実施例2〜3の1−ブテン系共重合体の製造例、実施例4〜5の1−ブテン重合体製造例においてもみられ、比較例1では触媒活性が低い。
また、実施例は、比較例と比べ重量平均分子量が低く、極限粘度〔η〕も低い。
即ち、実施例では、高流動な1−ブテン系重合体が得られている。
実施例4〜5に見られるように、実施例で用いた触媒は、耐熱性に優れているため、高い触媒活性を維持したまま、重合温度を上昇することができ、又、水素感度も高く、好適な高流動1−ブテン系重合体を製造することができる。
Comparative Example 1
In Example 1, 0.8 micromol of triphenylcarbenium tetrakispentafluorophenylborate was changed to 0.25 mmol of methylaluminoxane, and (1,2'-dimethylsilylene) (2,1'-dimethylsilylene)- Except for changing bis (3-trimethylsilylindenyl) zirconium dichloride to 0.25 micromolar, the polymerization was carried out for 30 minutes in the same manner as in Example 1, followed by drying to obtain 10 g of 1-butene polymer. It was.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 1.
Example 1 and Comparative Example 1 are both production examples of a 1-butene polymer, but Comparative Example 1 using methylaluminoxane instead of the organoboron compound has low catalytic activity. The same tendency is also observed in the production examples of the 1-butene copolymer of Examples 2 to 3 and the production examples of 1-butene polymer of Examples 4 to 5. In Comparative Example 1, the catalytic activity is low.
Moreover, an Example has a low weight average molecular weight and a intrinsic viscosity [(eta)] compared with a comparative example.
That is, in the Examples, a highly fluid 1-butene polymer is obtained.
As seen in Examples 4 to 5, since the catalysts used in the examples are excellent in heat resistance, the polymerization temperature can be increased while maintaining high catalytic activity, and the hydrogen sensitivity is also high. A suitable high fluid 1-butene polymer can be produced.

Figure 2007197736
Figure 2007197736

実施例6
加熱乾燥した10リットルオートクレーブに、ヘプタン4000ml、1−ブテン4000ml、トリイソブチルアルミニウム4.0ミリモル、メチルアルミノキサン15ミリモルを加え、更に水素0.4Pa導入した。
攪拌しながら温度を70℃にした後、(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを15マイクロモル加え、120分間重合した。
重合反応終了後、反応物を減圧下、乾燥することにより、1−ブテン重合体1530gを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表2に示す。
Example 6
To a heat-dried 10 liter autoclave, heptane 4000 ml, 1-butene 4000 ml, triisobutylaluminum 4.0 mmol and methylaluminoxane 15 mmol were added, and hydrogen 0.4 Pa was further introduced.
After the temperature was raised to 70 ° C. with stirring, 15 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride was added and polymerized for 120 minutes. did.
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 1530 g of 1-butene polymer.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 2.

実施例7
加熱乾燥した1リットルオートクレーブに、ヘプタン200ml、1−ブテン200ml、トリイソブチルアルミニウム0.5ミリモル、メチルアルミノキサン0.4ミリモルを加え、更に水素0.4Pa導入した。
攪拌しながら温度を60℃にした後、(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.4マイクロモル加え、60分間重合した。
重合反応終了後、反応物を減圧下、乾燥することにより、1−ブテン重合体44gを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表2に示す。
Example 7
To a heat-dried 1 liter autoclave, 200 ml of heptane, 200 ml of 1-butene, 0.5 mmol of triisobutylaluminum and 0.4 mmol of methylaluminoxane were added, and 0.4 Pa of hydrogen was further introduced.
After the temperature was raised to 60 ° C. with stirring, 0.4 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride was added, Polymerized for minutes.
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 44 g of 1-butene polymer.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 2.

比較例2
加熱乾燥した10リットルオートクレーブに、ヘプタン4000ml、1−ブテン4000ml、トリイソブチルアルミニウム4.0ミリモル、ジメチルアニリニウムボレート20マイクロモルを加え、更に水素0.2Pa導入した。
攪拌しながら温度を60℃にした後、(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを5マイクロモル加え、60分間重合した。
重合反応終了後、反応物を減圧下、乾燥することにより、1−ブテン重合体1180gを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表2に示す。
Comparative Example 2
To a heat-dried 10 liter autoclave were added heptane 4000 ml, 1-butene 4000 ml, triisobutylaluminum 4.0 mmol, dimethylanilinium borate 20 micromol, and hydrogen 0.2 Pa was further introduced.
After the temperature was raised to 60 ° C. with stirring, 5 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride was added and polymerized for 60 minutes. did.
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 1180 g of a 1-butene polymer.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 2.

比較例3
重合温度を50℃に変更した以外は実施例6と同様にして、重合時間120分間で1−ブテン重合体980gを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表2に示す。
比較例4
加熱乾燥した10リットルオートクレーブに、ヘプタン4000ml、1−ブテン4000ml、トリイソブチルアルミニウム4.0ミリモル、メチルアルミノキサン5ミリモルを加え、更に水素0.6Pa導入した。
攪拌しながら温度を50℃にした後、(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを5マイクロモル加え180分間重合した。
重合反応終了後、反応物を減圧下、乾燥することにより、1−ブテン重合体450gを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表2に示す。
Comparative Example 3
980 g of 1-butene polymer was obtained in the same manner as in Example 6 except that the polymerization temperature was changed to 50 ° C. in a polymerization time of 120 minutes.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 2.
Comparative Example 4
To a heat-dried 10 liter autoclave, heptane 4000 ml, 1-butene 4000 ml, triisobutylaluminum 4.0 mmol and methylaluminoxane 5 mmol were added, and 0.6 Pa of hydrogen was further introduced.
The temperature was raised to 50 ° C. with stirring, and 5 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride was added and polymerized for 180 minutes. .
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 450 g of a 1-butene polymer.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 2.

比較例5
加熱乾燥した1リットルオートクレーブに、ヘプタン200ml、1−ブテン200ml、トリイソブチルアルミニウム0.5ミリモル、ジメチルアニリニウムボレート0.8マイクロモルを加え、更に水素0.03Pa導入した。
攪拌しながら温度を80℃にした後、(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.2マイクロモル加え30分間重合した。
重合反応終了後、反応物を減圧下、乾燥することにより、1−ブテン重合体25gを得た。
得られた1−ブテン重合体について、上記方法により樹脂特性及び物性を評価した。結果を表2に示す。
実施例1〜7及び比較例2,4〜5では、比較例1に比べ、高流動で柔軟性が高い1−ブテン重合体が得られているが、特に、実施例1、6〜7では高流動で柔軟性が高く、更に靭性の高い1−ブテン重合体が得られている。
比較例2は、極限粘度〔η〕が小さいため、引張破断伸びが低く、一方、比較例3のように極限粘度〔η〕が大きすぎると、引張破断伸びは良好となるものの、ゼロ剪断粘度が大きくなり、流動性が低下している。
比較例4は、立体規則性が高すぎ、又、比較例5は立体規則性が低すぎるため、いずれも引張破断伸びが低下している。
Comparative Example 5
To a heat-dried 1 liter autoclave, 200 ml of heptane, 200 ml of 1-butene, 0.5 mmol of triisobutylaluminum and 0.8 μmol of dimethylanilinium borate were added, and 0.03 Pa of hydrogen was further introduced.
After the temperature was raised to 80 ° C. with stirring, 0.2 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride was added for 30 minutes. Polymerized.
After completion of the polymerization reaction, the reaction product was dried under reduced pressure to obtain 25 g of 1-butene polymer.
About the obtained 1-butene polymer, the resin characteristic and physical property were evaluated by the said method. The results are shown in Table 2.
In Examples 1 to 7 and Comparative Examples 2 and 4 to 5, a 1-butene polymer having higher fluidity and higher flexibility than that of Comparative Example 1 was obtained. In particular, in Examples 1 and 6 to 7, A 1-butene polymer having high fluidity, high flexibility, and toughness is obtained.
In Comparative Example 2, since the intrinsic viscosity [η] is small, the tensile elongation at break is low. On the other hand, if the intrinsic viscosity [η] is too large as in Comparative Example 3, the tensile elongation at break is good, but the zero shear viscosity is Has increased and the fluidity has decreased.
Since Comparative Example 4 has too high stereoregularity and Comparative Example 5 has too low stereoregularity, the tensile elongation at break is reduced in all cases.

Figure 2007197736
Figure 2007197736

Claims (2)

下記の(1)〜(3)を満たす1−ブテン系重合体からなるポリオレフィン系樹脂用改質剤。
(1)テトラリン溶媒中135℃にて測定した極限粘度〔η〕が0.01〜0.5デシリットル/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm−D)が0〜100℃の結晶性樹脂
(3)立体規則性指数{(mmmm)/(mmrr+rmmr)}が30以下
A polyolefin resin modifier comprising a 1-butene polymer satisfying the following (1) to (3).
(1) The intrinsic viscosity [η] measured at 135 ° C. in a tetralin solvent is 0.01 to 0.5 deciliter / g.
(2) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. Crystalline resin (3) Stereoregularity index {(mmmm) / (mmrr + rmmr)} having a melting point (Tm-D) defined as the peak top of the observed peak of 0 to 100 ° C. is 30 or less
下記の(4)及び(5)を満たす1−ブテン系重合体からなる請求項1に記載のポリオレフィン系樹脂用改質剤。
(4)ゲルパーミエイションクロマトグラフ(GPC)法により測定した分子量分布(Mw/Mn)が4以下
(5)GPC法により測定した重量平均分子量(Mw)が10,000〜100,000
The modifier for polyolefin resin according to claim 1, comprising a 1-butene polymer satisfying the following (4) and (5).
(4) Molecular weight distribution (Mw / Mn) measured by gel permeation chromatograph (GPC) method is 4 or less (5) Weight average molecular weight (Mw) measured by GPC method is 10,000 to 100,000
JP2007126763A 2002-02-21 2007-05-11 Modifier for polyolefin-based resin Pending JP2007197736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126763A JP2007197736A (en) 2002-02-21 2007-05-11 Modifier for polyolefin-based resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002044362 2002-02-21
JP2007126763A JP2007197736A (en) 2002-02-21 2007-05-11 Modifier for polyolefin-based resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003569695A Division JP3979997B2 (en) 2002-02-21 2003-02-19 Highly fluid 1-butene polymer and process for producing the same

Publications (1)

Publication Number Publication Date
JP2007197736A true JP2007197736A (en) 2007-08-09

Family

ID=38452623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126763A Pending JP2007197736A (en) 2002-02-21 2007-05-11 Modifier for polyolefin-based resin

Country Status (1)

Country Link
JP (1) JP2007197736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515519A (en) * 2008-03-20 2011-05-19 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 1-butene terpolymer
JP2013249459A (en) * 2012-06-04 2013-12-12 Idemitsu Kosan Co Ltd α-OLEFIN POLYMER
WO2013183600A1 (en) * 2012-06-04 2013-12-12 出光興産株式会社 Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape using same
JP2020527184A (en) * 2017-08-04 2020-09-03 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Butene-1 polymer with high melt flow rate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119213A (en) * 1985-11-20 1987-05-30 Mitsui Petrochem Ind Ltd 1-butene random copolymer and use thereof
WO1995009172A1 (en) * 1993-09-30 1995-04-06 Idemitsu Kosan Co., Ltd. Transition metal compound, olefin polymerization catalyst, and process for producing olefin polymer by using said catalyst
JPH08225605A (en) * 1994-12-20 1996-09-03 Mitsui Petrochem Ind Ltd Production of poly-1-butene
WO1996030380A1 (en) * 1995-03-30 1996-10-03 Idemitsu Kosan Co., Ltd. Transition metal compound, polymerization catalyst for olefins, and process for producing olefinic polymers
JPH08269417A (en) * 1995-03-29 1996-10-15 Sekisui Chem Co Ltd Hot melt adhesive composition
WO2002016450A1 (en) * 2000-08-22 2002-02-28 Idemitsu Petrochemical Co., Ltd. 1-butene polymer and molded product consisting of the polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119213A (en) * 1985-11-20 1987-05-30 Mitsui Petrochem Ind Ltd 1-butene random copolymer and use thereof
WO1995009172A1 (en) * 1993-09-30 1995-04-06 Idemitsu Kosan Co., Ltd. Transition metal compound, olefin polymerization catalyst, and process for producing olefin polymer by using said catalyst
JPH08225605A (en) * 1994-12-20 1996-09-03 Mitsui Petrochem Ind Ltd Production of poly-1-butene
JPH08269417A (en) * 1995-03-29 1996-10-15 Sekisui Chem Co Ltd Hot melt adhesive composition
WO1996030380A1 (en) * 1995-03-30 1996-10-03 Idemitsu Kosan Co., Ltd. Transition metal compound, polymerization catalyst for olefins, and process for producing olefinic polymers
WO2002016450A1 (en) * 2000-08-22 2002-02-28 Idemitsu Petrochemical Co., Ltd. 1-butene polymer and molded product consisting of the polymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515519A (en) * 2008-03-20 2011-05-19 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 1-butene terpolymer
JP2013249459A (en) * 2012-06-04 2013-12-12 Idemitsu Kosan Co Ltd α-OLEFIN POLYMER
WO2013183600A1 (en) * 2012-06-04 2013-12-12 出光興産株式会社 Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape using same
JP2020527184A (en) * 2017-08-04 2020-09-03 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Butene-1 polymer with high melt flow rate
US11041033B2 (en) 2017-08-04 2021-06-22 Basell Poliolefine Italia S.R.L. Butene-1 polymer having a high melt flow rate

Similar Documents

Publication Publication Date Title
JP3979997B2 (en) Highly fluid 1-butene polymer and process for producing the same
JP4053993B2 (en) Method for producing high fluid propylene polymer
JP5048694B2 (en) Method for producing modified propylene polymer and modified propylene polymer obtained by the method
EP1295925B1 (en) Polyolefin resin for hot-melt adhesive
JP6357464B2 (en) Propylene polymer and hot melt adhesive
JP6263126B2 (en) Propylene polymer and hot melt adhesive
JP5000896B2 (en) Method for producing modified propylene polymer
WO2014192767A1 (en) Base polymer for hot-melt adhesive agent, and hot-melt adhesive agent
JP4620206B2 (en) PROPYLENE POLYMER, RESIN COMPOSITION COMPRISING THE POLYMER, AND MOLDED BODY
JP4847638B2 (en) PROPYLENE RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE
JP2007197736A (en) Modifier for polyolefin-based resin
JP4242498B2 (en) Propylene polymer and composition containing the same
JP6470952B2 (en) Hot melt adhesive for woodworking
JP6326253B2 (en) Hot melt adhesive composition
JP4902050B2 (en) Polyolefin resin composition, molded product and film thereof
JP2010265473A (en) Propylene-based copolymer, resin composition consisting of the propylene-based copolymer, and molded article
JP4916055B2 (en) 1-butene polymer and molded article comprising the polymer
JP2012036411A (en) 1-butene-based copolymer and molding comprising the copolymer
JP4971554B2 (en) 1-butene resin composition and molded article
JP2009013424A (en) Propylene polymer and composition containing the same
JP2021109895A (en) Adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110420

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130