WO2021045233A1 - Odor detection kit, odor detection kit manufacturing method, and odor detection method - Google Patents

Odor detection kit, odor detection kit manufacturing method, and odor detection method Download PDF

Info

Publication number
WO2021045233A1
WO2021045233A1 PCT/JP2020/033831 JP2020033831W WO2021045233A1 WO 2021045233 A1 WO2021045233 A1 WO 2021045233A1 JP 2020033831 W JP2020033831 W JP 2020033831W WO 2021045233 A1 WO2021045233 A1 WO 2021045233A1
Authority
WO
WIPO (PCT)
Prior art keywords
odor
odor detection
cells
cell
detection kit
Prior art date
Application number
PCT/JP2020/033831
Other languages
French (fr)
Japanese (ja)
Inventor
秀文 光野
章吾 荒木
駿佑 藤林
大悟 照月
健志 櫻井
哲志 山口
久美子 小熊
亮平 神崎
佐和子 二木
侑司 祐川
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2021544075A priority Critical patent/JPWO2021045233A1/ja
Publication of WO2021045233A1 publication Critical patent/WO2021045233A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/06Enzymes or microbial cells immobilised on or in an organic carrier attached to the carrier via a bridging agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances

Definitions

  • the present invention relates to a detection technique, a method for manufacturing an odor detection kit, and a method for detecting an odor.
  • Water is obtained from a water source, treated at a water purification plant, and then supplied as tap water to homes, stores, and business establishments.
  • food factories and the like acquire water from their own water sources and use the water to produce beverages and food.
  • water sources include dam lakes, natural lakes, rivers, and groundwater.
  • dam lakes, natural lakes, rivers, and groundwater When the temperature of the water source rises, floating algae and actinomycetes are generated, and the water obtained from the water source may have a musty odor.
  • the musty odor of water may not disappear even after purified water. Therefore, it is desirable to quantify the musty odor of water before supplying it to consumers.
  • the degree of musty odor of water can be accurately quantified by gas chromatography-mass spectrometry (GC / MS).
  • GC / MS gas chromatography-mass spectrometry
  • it takes time to carry out GC / MS even if the GC / MS detects a musty odor exceeding the specified value when water purification and supply are continuously carried out, it is a sample source. Water may already be supplied to consumers.
  • the device for performing GC / MS is difficult to move, the device for performing GC / MS cannot be used to evaluate the musty odor of water immediately after being obtained from an outdoor water source.
  • the inspector can perform a sensory evaluation of the musty odor of water, it takes time to train the inspector, and the result of the sensory evaluation can vary depending on the inspector.
  • one of the objects of the present invention is to provide an odor detection kit capable of easily and stably detecting an odor, a method for producing an odor detection kit, and a method for detecting an odor.
  • an odor detection cell having a substrate and a single layer arranged on the substrate, and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of odor molecules. And, an odor detection kit for a fluorometer is provided.
  • the odor detection cells may be fixed to the substrate via a cell membrane modifier.
  • the above odor detection kit may further include a tube capable of fixing the substrate inside.
  • the odor detection cells may express the olfactory receptor by the transgene.
  • the odor detection cells may express the olfactory receptor of an insect.
  • the olfactory receptor may be an ion channel type receptor.
  • the fluorescent protein may change the fluorescence intensity according to the ion concentration.
  • the olfactory receptor may be selected from BmOR1, BmOR3, DmOr13a, DmOr56a, DmOr82a, DmOr49b, DmOr85b and PxOR1.
  • the odor detection cell may be an insect cell.
  • the insect cell may be a cell derived from ga.
  • insect cells may be selected from Sf21, Sf9, High Five, and Tni-derived cells.
  • the insect cells may be cells derived from Drosophila.
  • the insect cells may be Drosophila S2 cells.
  • the substrate may be transparent.
  • an odor detection cell having an olfactory receptor and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of an odor molecule is prepared, and a substrate is prepared.
  • a method for producing an odor detection kit for a fluorometer is provided, which comprises arranging odor detection cells in a single layer on a substrate.
  • odor detection cells may be fixed to a substrate via a cell membrane modifier.
  • the above-mentioned method for manufacturing an odor detection kit may further include fixing a substrate on which odor detection cells are arranged in a tube.
  • the method for producing the above-mentioned odor detection kit is as follows: (a) a part of cells are selected from a group of cells having an olfactory receptor and expressing a fluorescent protein, and (b) the selected cells are proliferated. c) Performing multiple steps (a) to (c) to confirm the responsiveness of the proliferated cells to the odorant, and odorizing the proliferated cells whose responsiveness to the odorant is equal to or higher than the standard value. It may further include selection as detection cells.
  • the method for producing the above-mentioned odor detection kit is as follows: (a) a part of cells are selected from a group of cells having an olfactory receptor and expressing a fluorescent protein, and (b) the selected cells are proliferated. c) Perform multiple steps (a) to (c) to confirm the responsiveness of the proliferated cells to the odorant, and select the proliferated cells with the highest responsiveness to the odorant as odor detection cells. And may further include.
  • the above-mentioned method for producing an odor detection kit may include expressing a second olfactory receptor in cells expressing the first olfactory receptor.
  • the first olfactory receptor and the second olfactory receptor may be different.
  • the first olfactory receptor and the second olfactory receptor may react with different odor molecules.
  • some of the selected cells may be a single cell.
  • an odor detecting cell having an olfactory receptor arranged in a single layer on a substrate and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of an odor molecule.
  • An odor detection method includes contacting the fluid to be tested for odor and measuring the fluorescence emitted by the odor detecting cells.
  • the odor detection cells may be fixed to the substrate via a cell membrane modifier.
  • the substrate may be fixed in the tube, and the above odor detection method may further include putting a fluid in the tube.
  • the fluid may be a liquid.
  • an odor detection kit capable of easily and stably detecting an odor
  • a method for producing an odor detection kit and a method for detecting an odor.
  • the odor detection kit for a fluorometer has a substrate 10 and an olfactory receptor arranged in a single layer on the substrate 10, depending on the concentration of odor molecules. It comprises an odor detecting cell 20 expressing a fluorescent protein whose fluorescence intensity changes.
  • the substrate 10 is transparent, for example, and is made of glass, resin, or the like.
  • the odor detection cell 20 expresses an olfactory receptor on the cell membrane.
  • the olfactory receptor may be naturally expressed or may be expressed by a transgene.
  • the olfactory receptor may be an insect olfactory receptor.
  • the odor detection cell 20 may be an insect cell.
  • Insect cells may be cells derived from moths such as Spodoptera frugiperda and Cabbage looper (Trichoplusia ni). Examples of cells derived from Spodoptera frugiperda include Sf21 and Sf9.
  • Sf21 cells are derived from ovarian cells. Sf21 cells can divide infinitely and establish a stable expression line that permanently expresses the introduced gene. In addition, Sf21 cells can survive in a wide temperature range of 18 ° C to 40 ° C and do not require carbon dioxide to adjust the pH of the culture medium.
  • Sf21 cells do not have an olfactory receptor, but it is possible to express an olfactory receptor by introducing an olfactory receptor gene.
  • Sf9 cells are clones of Sf21. Examples of cells derived from cabbage looper include High Five and Tni. Tni-derived cells are derived from ovarian cells.
  • the insect cell may be a cell derived from Drosophila.
  • Drosophila-derived cells include Drosophila S2 cells.
  • the olfactory receptor may be a G protein-coupled receptor or an ion channel receptor.
  • the ion channel type receptor has a site that interacts with a ligand that is an odor molecule and a site through which ions flow.
  • a ligand that is an odor molecule
  • ions flow into the odor detecting cell 20.
  • the influx of ions can occur within a few tens of milliseconds from the binding of the ligand.
  • the amount of inflow to ion Many, for binding one ligand, the amount of ions flowing into the cell is said to be 10 7.
  • certain types of olfactory receptors have specificity for certain odor molecules.
  • only one type of olfactory receptor corresponding to one type of odor molecule may be expressed, or a plurality of types of olfactory receptors corresponding to a plurality of types of odor molecules may be expressed.
  • the amount of olfactory receptor to be expressed may be adjusted.
  • Examples of olfactory receptors are DmOr56a, which is a receptor for Drosophila and is a receptor for geosmine, which has a musty odor, and DmOr82a, which is a receptor for geranyl acetate, which is a receptor for Drosophila and has an aromatic or fruity odor.
  • DmOr49b a receptor for Drosophila and a receptor for 2-methylphenol (o-cresol) having a human sweat odor, and 1-octen-3-, a receptor for Drosophila and a musty odor.
  • DmOr13a which is a receptor for ol, BmOR1, which is a receptor for Bombycol, which is a sex pheromone of Kaikoga, BmOR3, which is a receptor for Bombykal, which is a subcomponent of the sex pheromone of Kaikoga, and general Examples include, but are not limited to, the odor receptor DmOr85b and the sex pheromone receptor of Konaga, PxOR1.
  • “geosmin” is also called “geosmin”.
  • the gene encoding the olfactory receptor is incorporated into the vector, and the constructed vector is transfected into the host cell.
  • the gene encoding the olfactory receptor can be isolated, for example, by extracting mRNA from the olfactory organ of an insect and synthesizing the cDNA. From the isolated cDNA, it is possible to amplify a part of the gene encoding the olfactory receptor by the PCR method using PCR primers.
  • a part of the gene encoding the olfactory receptor can also be obtained by incorporating the synthesized double-stranded cDNA into an appropriate vector and transforming Escherichia coli or the like with the vector to prepare a cDNA library. it can.
  • the cDNA can be incorporated into a vector by a usual method using a restriction enzyme and a ligase, for example, by cutting the obtained cDNA with a restriction enzyme, inserting it into the restriction enzyme site of the vector DNA, and ligating it to the vector.
  • Fluorescent protein is expressed in the odor detection cell 20.
  • the odor detecting cell 20 when an odor molecule binds to the ion channel type olfactory receptor, ions flow in the odor detecting cell 20. Therefore, by introducing a gene that expresses a fluorescent protein whose fluorescence intensity changes according to ions into the odor detecting cell 20, it is confirmed whether or not the odor detecting cell 20 detects the odor molecule from the change in the fluorescence intensity. It is possible to do.
  • fluorescent proteins include GCaMP3, GCaMP6s and aequorin, which fluoresce by reacting with calcium ions.
  • the concentration of odor molecules When the concentration of odor molecules is high, the concentration of ions flowing into the odor detection cells 20 is also high, and many fluorescent proteins fluoresce. Therefore, the fluorescence intensity emitted by the odor detecting cells 20 becomes stronger.
  • the concentration of odor molecules is low, the concentration of ions flowing into the odor detection cells 20 is also low, and a small amount of fluorescent protein fluoresces. Therefore, the fluorescence intensity emitted by the odor detecting cells 20 is weakened. Therefore, it is possible to evaluate the concentration of odor molecules based on the fluorescence intensity.
  • the interaction between odor molecules and odor molecule receptors is weak, and the same odor molecule interacts with the same odor molecule receptor many times, or the same odor molecule interacts with multiple odor molecule receptors of the same cell. Or, the same odor molecule can be thought of as interacting with odor molecule receptors in multiple different cells. Therefore, it is considered that the odor molecules can be detected with high sensitivity because the ion inflow into the cell is repeatedly generated at least with the number of odor molecules.
  • the surface of the substrate 10 shown in FIG. 1 may be coated with a protein such as collagen or bovine serum albumin (BSA).
  • the odor detection cells 20 may be immobilized on the substrate 10 via a protein that covers the surface of the substrate 10.
  • the odor detection cells 20 may be immobilized on the substrate via a cell membrane modifier.
  • the odor detecting cell 20 may be fixed on the substrate 10 via a cell membrane modifier and a protein such as collagen or BSA that covers the surface of the substrate 10.
  • the cell membrane modifier has a cell membrane binding group that binds to the cell membrane of the odor detection cell 20.
  • Lipids can be used as the cell membrane binding group.
  • an oleyl group, a diorail group, a cholesterol group, and a tetraethylene glycol group can be used.
  • the cell membrane modifier has a substrate-binding group that binds to the surface of the substrate 10 or the protein that covers the substrate 10.
  • An N-hydroxysuccinimide (NHS) group can be used as the substrate-binding group that binds to the protein that covers the substrate 10.
  • the cell membrane modifier may have polyethylene glycol (PEG) that enhances water solubility between the cell membrane binding group and the substrate binding group. In order to keep an appropriate distance between the substrate 10 and the odor detecting cells 20, the number of repetitions of ethylene oxide units of PEG may be appropriately set.
  • cell membrane modifier examples include oleyl-O-poly (ethylene glycol) succinyl-N-hydroxy-succinimidyl ester (oleyl-PEG-NHS) represented by the following chemical formula (1). Note that n represents a natural number.
  • the odor detection kit for the fluorometer further includes a tube 30 to which the substrate 10 can be fixed inside.
  • a tube 30 to which the substrate 10 can be fixed inside For example, by making the inner diameter of the tube 30 and the width of the substrate 10 substantially the same, it is possible to suppress the substrate 10 inserted in the tube 30 from moving in the tube 30.
  • the odor detecting cell 20 When the odor detecting cell 20 is a non-adhering cell, the odor detecting cell 20 may not adhere to the surface of the substrate 10 even if the odor detecting cell 20 is brought into contact with the surface of the substrate 10. Alternatively, even if the odor detecting cell 20 is an adherent cell, the adhesive force to the substrate 10 is weak and the odor detecting cell 20 may be easily peeled off from the substrate 10. On the other hand, if a cell membrane modifier is used, even if the odor detection cells 20 are non-adhesive cells or adherent cells with weak adhesion, the odor detection cells 20 are fixed to the surface of the substrate 10 with a single layer. It is possible.
  • odor detection cells 20 having an olfactory receptor and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of odor molecules are prepared. This includes preparing the substrate 10 and arranging the odor detection cells 20 in a single layer on the substrate 10.
  • the odor detection cell 20 (a) selected some cells from the group of cells having an olfactory receptor and expressing a fluorescent protein, (b) proliferated the selected cells, and (c) proliferated. A plurality of steps (a) to (c) for confirming the responsiveness of the cell to the odorant may be carried out, and the responsiveness to the odorant may be selected from the proliferated cells having a reference value or more.
  • the cell selected in step (a) may be a single cell (single cell).
  • the odor detection cell 20 may (a) select some cells from the group of cells having an olfactory receptor and expressing a fluorescent protein, (b) proliferate the selected cells, and (c) A plurality of steps (a) to (c) for confirming the responsiveness of the proliferated cells to the odorant may be carried out, and the proliferated cells having the highest responsiveness to the odorant may be selected.
  • the cell selected in step (a) may be a single cell (single cell).
  • a single cell or a small number of cells are selected by repeating dilution of a cell lineage having an olfactory receptor and expressing a fluorescent protein, and the selected cells are selected.
  • a cell line may be established by culturing and proliferating. By carrying out a plurality of the steps, a plurality of cell lines are established.
  • a cell line whose responsiveness to an odorant is equal to or higher than a predetermined reference value may be used as the odor detection cell 20.
  • the cell line having the highest responsiveness to the odorant may be used as the odor detection cell 20.
  • another olfactory receptor may be expressed in the cells expressing the established olfactory receptor. That is, the second olfactory receptor may be further expressed in the cells expressing the first olfactory receptor established by the above method or the like. For example, by incorporating a gene encoding a second olfactory receptor into a vector and transfecting the constructed vector into cells expressing the first olfactory receptor, the first olfactory receptor and the second olfactory receptor are used. It is possible to establish cells expressing the olfactory receptor of. A plurality of different olfactory receptors may be further expressed in cells expressing the first olfactory receptor. FIG.
  • FIG. 5 shows that a vector containing a gene for Or-X, which is a second olfactory receptor, and a vector containing an antibiotic resistance gene are introduced into cells expressing Or56a as the first olfactory receptor.
  • FIG. 6 shows an example of introducing a vector containing both the gene of Or-X, which is the second olfactory receptor, and the antibiotic resistance gene into cells expressing Or56a as the first olfactory receptor.
  • the odor detection cells 20 may be fixed to the substrate 10 via a cell membrane modifier as described above.
  • the substrate 10 is coated with a protein, and a solution containing a cell membrane modifier is dropped onto the protein covering the substrate 10 to react the protein covering the substrate 10 with the substrate binding group of the cell membrane modifier to cause the substrate 10 to react.
  • the cell membrane modifier is bound to the protein that covers the protein.
  • a solution containing the odor detecting cell 20 is dropped onto the substrate 10 to react the cell membrane-binding group of the cell membrane modifier bound to the substrate 10 with the odor detecting cell 20 to modify the cell membrane on the substrate 10.
  • the odor detection cells 20 are fixed via the agent.
  • the substrate 10 on which the odor detection cells 20 are arranged is fixed in the tube 30.
  • the odor detection method according to the embodiment is an odor detection cell 20 having an olfactory receptor arranged in a single layer on a substrate 10 and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of odor molecules. Includes contacting the fluid 40 to be tested for odor and measuring the fluorescence emitted by the odor detecting cells 20.
  • the tube 30 may contain a buffer solution or a solution containing a substance necessary for the survival of the odor detecting cells 20 as appropriate.
  • the fluid 40 to be tested for odor may be brought into contact with the odor detecting cells 20.
  • the fluid 40 to be tested for odor is a liquid such as water.
  • the tube 30 is placed on a fluorometer and the odor detection cells 20 are irradiated with excitation light.
  • the odor detecting cell 20 irradiated with the excitation light emits intense fluorescence corresponding to the concentration of the odor molecule contained in the fluid 40 to be inspected for odor.
  • the fluorescent protein is GCAMP6s
  • the wavelength of the excitation light is, for example, 495 nm
  • the wavelength of fluorescence is 510 nm to 580 nm.
  • the odor of the fluid 40 to be inspected for odor is evaluated based on the intensity of fluorescence emitted by the odor detection cells 20.
  • the odor of the fluid 40 may be quantified based on the relationship between the intensity of fluorescence acquired in advance and the concentration of odor molecules and the intensity of odor.
  • the intensity of fluorescence emitted by the odor detecting cell 20 is equal to or higher than a preset reference value, it may be evaluated that the odor of the fluid 40 to be tested for odor is equal to or higher than the reference value.
  • the odor of the fluid 40 to be tested for odor is easily evaluated by bringing the fluid 40 to be tested for odor into contact with the odor detection cells 20 fixed to the substrate 10 in advance. It is possible to do.
  • the odor of the fluid 40 to be inspected for odor can be detected in a short time not only in the laboratory but also in any place. It is possible to evaluate with. For example, when the fluid 40 to be inspected for odor is water and the odor to be inspected is a musty odor, it is possible to collect water from an outdoor water source and inspect the musty odor of the water on the spot. ..
  • Example 1 Preparation of cells expressing DmOr56a
  • DmOrco Forward: 5'-TTCGAATTTAAAGCTGCCGCCATGACAACCTCTATGCAACC-3'
  • Gene amplification by PCR uses forward and reverse primers at a concentration of 100 pmol / L, PrimeSTAR HS DNA polymerase (Takara Bio Co., Ltd. R010A), the reaction buffer attached to the polymerase, and dNTP, and attaches to the polymerase. I followed the protocol of.
  • the PCR temperature conditions are a step of 94 ° C. for 2 minutes, then a step of repeating a temperature cycle of 98 ° C. for 10 seconds, 55 ° C. for 10 seconds, 72 ° C. for 2 minutes for 30 cycles, and then at 72 ° C. for 10 minutes. It was a step of.
  • the start codon to stop codon of the receptor DmOr56a gene derived from the tactile cDNA of Drosophila melanogaster is amplified with a primer containing the following gene-specific sequence to obtain the DmOr56a gene (full length of ORF). Obtained.
  • the obtained DmOr56a gene was inserted into the multi-cloning site of the pIB vector to construct the pIB-DmOr56a vector.
  • the protein expression cassette of the pIB-DmOrco vector (the portion linked to the OpIE2 promoter (P (OpIE2)), DmOrco, and OpIE2 polyA addition signal (OpIE2pA)) was amplified and amplified to the Pci1 site of the pIB-DmOr56a vector.
  • the protein expression cassette was inserted to construct the olfactory receptor expression vector pIB-DmOr56a-DmOrco.
  • GCaMP6s calcium sensitive protein expression vector
  • the GCaMP6s gene was obtained from Dr. Douglas Kim (Janelia Farm Research Campus, Howard Hughes Medical Institute) via Addgene. From the start codon to the stop codon of the GCaMP6s gene was amplified with a primer containing the following gene-specific sequence to obtain the GCaMP6s gene (full length of ORF). The obtained GCaMP6s gene was inserted into a multicloning site of a pIZ vector (manufactured by Invitrogen) to construct a pIZ-GCaMP6s vector.
  • the constructed olfactory receptor expression vector and calcium-sensitive protein expression vector were introduced into Sf21 cells by the lipofection method (TransIT-Insect; registered trademark of Mirus) according to the attached manual of TransIT-Insect.
  • TransIT-Insect registered trademark of Mirus
  • Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and calciu-sensitive protein (GCaMP6s) were obtained.
  • the DmOr56a receptor reacts with musty odor molecules.
  • Example 2 Concentration dependence of response of DmOr56a expressing cells
  • the assay buffer 140 mmol / L NaCl
  • Example 3 Smell molecule specificity of response of DmOr56a expressing cells
  • a solution containing geosmin was prepared in.
  • Linalool is an odor molecule that produces lily of the valley, lavender, and bergamot-like scents.
  • Decanal is an odor molecule that produces a citrus scent.
  • Octanal is an odor molecule that gives rise to the scent of fruits.
  • Citral is an odor molecule that gives the scent of lemon.
  • Example 4 Detection of odor molecules using a suspension of DmOr56a expressing cells
  • Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s were adherently cultured in a T-25 flask.
  • the cells were then stripped from the T-25 flask with a scraper (IWAKI; 9020-250) and the cell suspension was transferred to a 50 mL tube. After centrifuging the tube at 500 xg, the supernatant was removed from the tube.
  • assay buffer was added to the tube at 1 ⁇ 10 7 cells / mL, and the cells were suspended to obtain a cell suspension.
  • Example 5 Establishment of homogeneous odor detection cell line
  • Reagent Solution Gibco; 15710-064
  • Blasticidin S HCl Gibco; A11139-03
  • Zeocin Invitrogen; R25001
  • Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s were subcultured in a flask (FALCON; 353082).
  • the volume of the cell suspension at the time of passage was 6 mL.
  • 6 mL of supernatant was collected from the flask and placed in a 15 mL tube (TPP; 91015).
  • TPP 15 mL tube was centrifuged at 400 xg at 4 ° C. for 3 minutes using a micro high speed centrifuge.
  • the supernatant was sterilized using a 10 mL syringe (TOP; 01007) and a 0.45 ⁇ m filter (CORNING; 431220).
  • a 10 mL condition medium was prepared by mixing the sterilized supernatant with an equal volume of new passage medium containing antibiotics (Blastidin S HCl with a final concentration of 10 ⁇ g / mL, Zeocin with a final concentration of 100 ⁇ g / mL). ..
  • the cells adhered to the bottom of the flask from which the supernatant was collected were peeled off and suspended in 1 mL of a new medium, and the cell suspension was collected in a 1.5 mL tube (AXYGEN; MCT-150-C).
  • a cell suspension containing 40 cells was extracted, added to the above-mentioned condition medium, and pipetted well. The entire volume of the condition medium to which the cells were added was transferred to a reservoir (BMBio; BM-0850-1).
  • the cells in the wells where single cells were confirmed at the time of seeding were continuously cultured until they became about 80% to about 90% confluent.
  • the cells were then scaled up in the order of a 24-well plate (IWAKI; 3820-024), a 35 mm dish (CORNING; 353801), and a T-25 flask.
  • the amount of medium was adjusted so that the liquid volumes were 500 ⁇ L, 2.5 mL, and 5 mL, respectively, and the cells were cultured at 27 ° C.
  • the responsiveness of the cells scaled up to the T-25 flask was investigated by calcium imaging, and the cell line showing good responsiveness was obtained as a homogeneous odor detection cell line.
  • Example 6 Reactivity of homogeneous odor detection cell line
  • Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s which are not homogenized
  • Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s The fluorescence response of the homogenized Sf21 cells to the odorant was measured by the following procedure.
  • a cover glass (CS-12R: Warner Instruments, LLC) having a diameter of 12 mm
  • the cover glass was inserted into an open bath chamber (RC-48LP: Warner Instruments, LLC) for a circular cover glass. ..
  • a silicon tube with an inner diameter of 1 mm and an outer diameter of 3 mm connected to a peristaltic tube pump (MP-2010: Tokyo Rikakai Co. Ltd.) was placed in the chamber by a self-made holder. It was installed at the inlet and outlet respectively.
  • the cells were stimulated under the perfusion conditions with a flow rate of about 1.5 mL / min and a volume of liquid in the chamber of about 200 ⁇ L, and an odor stimulation time of 10 ⁇ mol / L with geosmin was set to 15 seconds.
  • the fluorescence response of the cells in the chamber was measured using a microscope.
  • a microscope an upright fluorescence microscope (BX51WI: Olympus) equipped with a 20x water immersion objective lens (UMPlanFI 20x / 0.50 W: Olympus) was used.
  • An EM-CCD camera (DU-897E: Andor Technology PLC) was used to measure the change in fluorescence intensity of cells.
  • an image of 512 ⁇ 512 pixels was acquired using AndoriQ (Andor Technology).
  • a fluorescent filter set for GFP U-MGFPHQ: Olympus
  • a 100 W halogen lamp (TH4-100, Olympus) was used as the light source, and the exposure time during fluorescence observation was set to 500 milliseconds. Shooting was done every second.
  • FIG. 11 shows a graph showing the relationship between the rate of change in fluorescence intensity before and after giving an odor molecule and the ratio of the number of cells.
  • Example 7 Long-term stability of odor detection cells
  • a homogenized cell line having a fluorescence change rate of 36.1% at the time of odor stimulation immediately after cloning was passaged for a long period of time, and the change in fluorescence change rate at the time of odor stimulation was examined.
  • the rate of change in fluorescence with respect to the odor stimulus equal to or higher than that immediately after cloning was shown for three and a half months after cloning.
  • the homogenized cell line was frozen and stored for 3 and a half months immediately after cloning, and after thawing, the cell line was subcultured for a long period of time, and the change in the fluorescence change rate at the time of odor stimulation was examined.
  • the fluorescence change rate was equal to or higher than that immediately after cloning for 2 months after thawing.
  • the homogenized cell line was stored frozen for 6 and a half months immediately after cloning, and after thawing, the cell line was subcultured for a long period of time, and the change in the fluorescence change rate at the time of odor stimulation was examined.
  • the fluorescence change rate was equal to or higher than that immediately after cloning with respect to the odor stimulus.
  • Example 8 Preparation of odor detection kit
  • a 76 mm ⁇ 26 mm slide glass (MATSUNAMI, S9441) was cut into 4 mm ⁇ 26 mm with a glass cutting diamond cutter (TRUSCO, 419-9847).
  • TRUSCO glass cutting diamond cutter
  • Approximately 100 ⁇ L of collagen solution was added dropwise to the cut glass, and the slide glass was allowed to stand in a clean bench for 30 minutes.
  • the excess collagen solution was removed from the slide glass, an appropriate amount of a 100 ⁇ mol / L cell membrane modifier (oleyl-PEG-NHS) solution was added dropwise to the slide glass, and the mixture was allowed to stand at 37 ° C. for 30 minutes.
  • the cell membrane modifier solution was prepared by diluting 0.4 mg of SUNBRIGHT (NOF, OE-040CS) and 10 mL of ultra-dehydrated DMSO 100-fold with D-PBS (Fuji Film Wako Pure Chemical Industries, Ltd., 045-29795). After 30 minutes, the excess cell membrane modifier solution was removed from the slide glass and allowed to stand for 20 minutes.
  • a suspension of about 1 ⁇ 10 7 homogenized odor-detecting cells (solvent was assay buffer) was added dropwise to a slide glass surface treated with a cell membrane modifier, and the mixture was allowed to stand for 10 minutes.
  • the odor detection kit according to the example was prepared by fixing a slide glass in which odor detection cells were fixed with a single layer in a 0.5 mL tube filled with 400 ⁇ L of assay buffer containing 0.1% DMSO.
  • Example 9 Smell measurement using a kit and a fluorometer
  • the odor detection kit according to the example is mounted on a fluorometer (Quantus, Fluorometer, registered trademark). It was installed and waited until 10 points with a range of change rate of fluorescence intensity within ⁇ 2% could be measured.
  • 200 ⁇ L of 10 ⁇ mol / L geosmin was added to 400 ⁇ L of the assay buffer in the tube of the odor detection kit according to the example, and the solution in the tube was pipetted for 10 seconds. Then, the rate of change in fluorescence intensity was measured every 20 seconds for 140 seconds.
  • the fluorescence response to geosmin was measured.
  • the fluorescence response to geosmin was stably measured in each of them. If the slide glass was not fixed in the tube, the base fluorescence intensity was not stable, and the fluorescence response to geosmin could not be measured stably.
  • Geosmin was added to the odor detection kit according to the examples so that the final concentrations were 0 mol / L, 10 pmol / L, 100 pmol / L, 1 nmol / L, 10 nmol / L, 100 nmol / L, 1 ⁇ mol / L, and 10 ⁇ mol / L, respectively. Then, the rate of change in fluorescence intensity was measured with a fluorometer (Quantus, Fluorometer, registered trademark). The results are shown in FIG.
  • the rate of change in fluorescence intensity is 1.5 ⁇ 0.4%
  • the rate of change in fluorescence intensity is 2.7 ⁇ 0.5%
  • the rate of change in fluorescence intensity when the concentration of geosmin is 100 pmol / L is 5.5 ⁇ 1.0%
  • the rate of change in fluorescence intensity when the concentration of geosmin is 1 nmol / L is 8.1 ⁇ 0.8.
  • the rate of change in fluorescence intensity when the concentration of geosmin is 10 nmol / L is 12.0 ⁇ 1.0%, and the rate of change in fluorescence intensity when the concentration of geosmin is 100 nmol / L is 21.3 ⁇ 2.
  • the rate of change in fluorescence intensity is 35.0 ⁇ 5.3%, and when the concentration of geosmin is 10 ⁇ mol / L, the rate of change in fluorescence intensity is 29.4. It was ⁇ 4.3%, and the fluorescence intensity increased depending on the concentration of geosmin.
  • geosmin of 100 pmol / L or more was compared with geosmin of 0 mol / L. A significant difference was observed. Therefore, it was shown that the odor molecule can be detected with the same sensitivity as GC / MS by using the odor detection kit and the fluorometer according to the examples.
  • the concentration of geosmin in the dam lake which is the source of tap water in Japan, was 33.5 nmol / L or less.
  • the musty odor of water collected from the dam lake can be detected by using the odor detection kit and the fluorometer according to the examples.
  • the lower limit of human sensory evaluation of the geosmin solution prepared as described above was about 10 nmol / L. Therefore, it was shown that a low-concentration mold odor that cannot be detected by a human sensory evaluation can be detected by using the odor detection kit and the fluorometer according to the examples.
  • Example 11 Specific detection of odor molecules using a kit and a fluorometer
  • Multiple types of musty odors such as geosmin and 2-methylisoborneol (2-MIB) are generated in the dam lake water. Therefore, in order to evaluate the mold odor selectivity of the odor detection kit according to the prepared example, geosmin 10 ⁇ mol / L, 2-MIB 10 ⁇ mol / L, and an assay buffer (control) containing neither mold odor were used. It was added dropwise to the odor detection kit according to the example, and the rate of change in fluorescence intensity was measured with a fluorometer (Quantus, Fluorometer, registered trademark).
  • the rate of change in fluorescence intensity when the control was dropped was 0.1 ⁇ 0.6%
  • the rate of change in fluorescence intensity when 2-MIB was dropped was ⁇ 0.3 ⁇ .
  • the rate of change in fluorescence intensity was 1.1%
  • the rate of change in fluorescence intensity when geosmin was added dropwise was 13.7 ⁇ 3.2%.
  • Example 12 Comparison of cell suspension and kit stability
  • the suspension of odor detection cells to which no odor molecule was added was placed on a fluorometer (Quantus, Fluorometer, registered trademark), and the time until the rate of change of the base fluorescence intensity became stable at ⁇ 2%.
  • the odor detection kit according to the example to which no odor molecule was added was placed on a fluorometer, and the rate of change in the base fluorescence intensity was ⁇ 2%, which was compared with the time until it became stable.
  • the time until stabilization was 300 ⁇ 30 seconds for the suspension of the odor detection cells and 70 ⁇ 6 seconds for the odor detection kit according to the example. Therefore, it was shown that the odor detection kit according to the example in which the odor detection cells are arranged in a single layer on the substrate has a shorter time to stabilize.
  • Example 13 Comparison of responsiveness between cell suspension and kit
  • each of the assay buffer (control) and geosmin 10 ⁇ mol / L was used.
  • the rate of change in fluorescence intensity 120 seconds after the addition was measured with a fluorometer (Quantus, Fluorometer, registered trademark).
  • the rate of change in fluorescence intensity after the addition of the control was -3.9 ⁇ 6.5%
  • the rate of change in the fluorescence intensity after the addition of geosmin was It was 3.2 ⁇ 3.6%.
  • the rate of change in fluorescence intensity after the addition of the control was 2.4 ⁇ 1.7%
  • the rate of change in the fluorescence intensity after the addition of geosmin was 27.5 ⁇ 4.3%. .. Therefore, it was shown that when the odor detection kit according to the example was used, the rate of change in fluorescence intensity when the control was added was small, and the rate of change in fluorescence intensity when the odor molecule was added was large.
  • Example 14 Comparison of variation in measurement results between cell suspension and kit
  • the absolute value of the coefficient of variation of the rate of change of each fluorescence intensity was obtained.
  • the absolute value of the coefficient of variation represents the variation.
  • the absolute value of the coefficient of variation of the change rate of the fluorescence intensity after the addition of the control was 165.9%, and the change rate of the fluorescence intensity after the addition of geosmin.
  • the absolute value of the coefficient of variation of was 113.8%.
  • the absolute value of the coefficient of variation of the rate of change in fluorescence intensity after the addition of the control is 71.2%
  • the absolute value of the coefficient of variation of the coefficient of variation of the rate of change in fluorescence intensity after the addition of geosmin is 15.5. %Met. Therefore, it was shown that the variation in the measurement results was small when the odor detection kit according to the example was used.
  • Example 15 Measurement of water obtained from a dam lake
  • the assay buffer alone (control) was added to the kit and geosmin 100 ⁇ mol / L was added using the odor detection kit and the fluorometer (registered trademark) according to the examples.
  • the rate of change in fluorescence intensity when the assay buffer was added to the kit was measured.
  • the rate of change in fluorescence intensity was 2.8%
  • the assay buffer containing 100 ⁇ mol / L of geosmin was added to the kit.
  • the rate of change in fluorescence intensity was 21.2%. Therefore, it was shown that the odor molecule can be detected even outdoors by using the odor detection kit according to the example.
  • the surface water of the dam water was analyzed by GC / MS, the surface water of the dam water contained 300 pmol / L of geosmin. Therefore, it was shown that by using the odor detection kit according to the examples, it is possible to detect specific odor molecules even when dam lake water containing background odors and contaminants is inspected.
  • Example 16 Preparation of DmOr56a receptor and DmOr82a receptor-expressing cells
  • a homogeneous odor detection cell line was prepared from Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s by the method described in Example 5.
  • the start codon to the stop codon of the receptor DmOr82a gene derived from the tactile cDNA of Drosophila melanogaster was amplified with a primer containing the following gene-specific sequence, and the pIEx4 vector (Novagen) multicloning site (Novagen) It was inserted into BamHI, NotI) to construct a pIEx4-DmOr82a vector.
  • the constructed pIEx4-DmOr82a vector is received by the lipofection method (TransIT-insect; Mirus, registered trademark) together with the pIE1-neo vector (Novagen; G418 resistance gene) according to the attached manual of TransIT-Insect.
  • the gene was introduced into a homogeneous odor detection cell line expressing the body.
  • cells expressing the DmOr82a receptor in addition to the DmOr56a receptor were prepared.
  • Example 17 Preparation of DmOr56a receptor and DmOr49b receptor-expressing cells
  • a homogeneous odor detection cell line was prepared from Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s by the method described in Example 5.
  • the start codon to the stop codon of the G418 resistance gene derived from the pIE1-neo vector is amplified with a primer containing the following gene-specific sequence, and the pIZ vector (pIZ / V5-His (manufactured by Invitrogen)) is multicloned. It was inserted into the site (HindIII, SacII) to construct a pIZ-neo vector.
  • the protein expression cassette of the pIZ-neo vector (the portion linked to the OpIE2 promoter (P (OpIE2)), neo gene, and OpIE2 polyA addition signal (OpIE2pA)) was amplified and amplified at the Pci1 site of the pIB vector.
  • a protein expression cassette was inserted to construct a G418 resistance gene insertion vector, pIB-neo vector.
  • the start codon to the stop codon of the receptor DmOr49b gene derived from the tactile cDNA of Drosophila melanogaster was amplified with a primer containing the following gene-specific sequence, and the pIB-neo vector (above) was mulched. It was inserted into a cloning site (EcoRI, XhoI) to construct a pIB-DmOr49b-neo vector.
  • the constructed pIB-DmOr49b-neo vector was applied to a homogeneous odor detection cell line expressing the DmOr56a receptor by the lipofection method (TransIT-insect; registered trademark of Mirus) according to the attached manual of TransIT-Insect.
  • the gene was introduced.
  • cells expressing the DmOr49b receptor in addition to the DmOr56a receptor were prepared.
  • Example 18 Reactivity of DmOr56a receptor and DmOr82a receptor expressing cells
  • Cells expressing the DmOr56a receptor and the DmOr82a receptor were prepared by the method described in Example 16.
  • a solution containing no odor (negative control), a solution containing geranyl acetate at a concentration of 300 ⁇ mol / L, and a solution containing geosmin at a concentration of 10 ⁇ mol / L were prepared.
  • Geranyl acetate is the target odor of the DmOr82a receptor.
  • Geosmin is the target odor of the DmOr56a receptor.
  • the negative control solution, the solution containing geranyl acetate, and the solution containing geosmin were contacted with the cells expressing the DmOr56a receptor and the DmOr82a receptor in this order.
  • the fluorescence intensity of the cells expressing the DmOr56a receptor and the DmOr82a receptor changed by 23.2% with respect to geranyl acetate and 16.4% with respect to geosmin.
  • Example 19 Reactivity of DmOr56a receptor and DmOr49b receptor expressing cells
  • Cells expressing the DmOr56a receptor and the DmOr49b receptor were prepared by the method described in Example 17.
  • a solution containing no odor (negative control), a solution containing 2-methylphenol at a concentration of 300 ⁇ mol / L, and a solution containing geosmin at a concentration of 10 ⁇ mol / L were prepared.
  • 2-Methylphenol is the target odor of the DmOr49b receptor.
  • Geosmin is the target odor of the DmOr56a receptor.
  • the negative control solution, the solution containing 2-methylphenol, and the solution containing geosmin were contacted with the cells expressing the DmOr56a receptor and the DmOr49b receptor in this order.
  • the fluorescence intensity of the cells expressing the DmOr56a receptor and the DmOr49b receptor changed by 37.6% with respect to 2-methylphenol and by 29.4% with respect to geosmin.
  • Example 20 Concentration-dependent reactivity of DmOr56a receptor and DmOr82a receptor-expressing cells
  • Cells expressing the DmOr56a receptor and the DmOr82a receptor were prepared by the method described in Example 16.
  • the assay buffer (140 mmol / L) was prepared so that the final concentration of geranyl acetate was 0 mol / L (control), 1 ⁇ mol / L, 3 ⁇ mol / L, 10 ⁇ mol / L, 30 ⁇ mol / L, 100 ⁇ mol / L, and 300 ⁇ mol / L. NaCl, 5.6 mmol / L KCl, 4.5 mmol / L CaCl2, 11.26 mmol / L MgCl2, 10 mmol / L HEPES, 9.4 mmol / L D-glucose, pH 7.2). did. Also, as a positive control, geosmin was diluted in assay buffer to a final concentration of 10 ⁇ mol / L. All solutions were prepared to contain DMSO at a final concentration of 0.1%.
  • each of the solutions was contacted with cells expressing the DmOr56a receptor and the DmOr82a receptor at 6-minute intervals.
  • the cells expressing the DmOr56a receptor and the DmOr82a receptor emitted intense fluorescence according to the concentration of geranyl acetate. It also fluoresces against the positive control geosmin.
  • Example 21 Concentration-dependent reactivity of DmOr56a receptor and DmOr49b receptor-expressing cells
  • Cells expressing the DmOr56a receptor and the DmOr49b receptor were prepared by the method described in Example 17.
  • 2-methylphenol is stepped in assay buffer so that the final concentration is 0 mol / L (control), 1 ⁇ mol / L, 3 ⁇ mol / L, 10 ⁇ mol / L, 30 ⁇ mol / L, 100 ⁇ mol / L, and 300 ⁇ mol / L. Diluted.
  • geosmin was diluted in assay buffer to a final concentration of 10 ⁇ mol / L. All solutions were prepared to contain DMSO at a final concentration of 0.1%.
  • each of the solutions was contacted with cells expressing the DmOr56a receptor and the DmOr49b receptor at 6-minute intervals.
  • the cells expressing the DmOr56a receptor and the DmOr49b receptor emitted intense fluorescence according to the concentration of 2-methylphenol. It also fluoresces against the positive control geosmin.
  • Example 22 Specific reactivity of olfactory receptor-expressing cells
  • the cells expressing the DmOr56a receptor were prepared by the method described in Example 5, and the cells expressing the DmOr56a receptor and the DmOr82a receptor were prepared by the method described in Example 16.
  • Cells expressing the DmOr56a receptor and the DmOr49b receptor were prepared by the method described in 17.
  • a solution containing 2-methylphenol at a concentration of 300 ⁇ mol / L, a solution containing geranyl acetate at a concentration of 300 ⁇ mol / L, and a solution containing geosmine at a concentration of 10 ⁇ mol / L were prepared.
  • the fluorescence intensity of the cells expressing the DmOr56a receptor changed by 68.1% with respect to geosmin.
  • the fluorescence intensity of cells expressing the DmOr56a receptor and the DmOr82a receptor changed 7.4% with respect to benzaldehyde, 34.5% with respect to geranyl acetate, and 4.3% with respect to geosmin.
  • the fluorescence intensity of cells expressing the DmOr56a and DmOr49b receptors changed 19.4% with respect to benzaldehyde, 58.5% with respect to 2-methylphenol, and 29.6% with respect to geosmin. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

An odor detection kit for a fluorometer, said odor detection kit comprising: a substrate 10; and odor detection cells 20 that are positioned in a single layer on the substrate 10, have olfactory receptors, and express a fluorescent protein, the fluorescence intensity thereof changing in accordance with the concentration of odor molecules.

Description

匂い検出キット、匂い検出キットの製造方法、及び匂い検出方法Smell detection kit, manufacturing method of odor detection kit, and odor detection method
 本発明は検出技術に関し、匂い検出キットの製造方法、及び匂い検出方法に関する。 The present invention relates to a detection technique, a method for manufacturing an odor detection kit, and a method for detecting an odor.
 水は水源から取得され、浄水場で処理された後、水道水として家庭、店舗、及び事業所等に供給される。あるいは、食品工場等は、自ら水源から水を取得し、水を利用して飲料及び食料を生産している。水源の例としては、ダム湖、天然の湖沼、川、及び地下水等が挙げられる。水源の温度が上昇すると、浮遊性藻類や放線菌が発生し、水源から取得する水にカビ臭さが生じ得る。水のカビ臭は、浄水しても消えない場合がある。したがって、水を需要者に供給する前に、水のカビ臭を定量することが望まれる。 Water is obtained from a water source, treated at a water purification plant, and then supplied as tap water to homes, stores, and business establishments. Alternatively, food factories and the like acquire water from their own water sources and use the water to produce beverages and food. Examples of water sources include dam lakes, natural lakes, rivers, and groundwater. When the temperature of the water source rises, floating algae and actinomycetes are generated, and the water obtained from the water source may have a musty odor. The musty odor of water may not disappear even after purified water. Therefore, it is desirable to quantify the musty odor of water before supplying it to consumers.
 水のカビ臭の程度は、ガスクロマトグラフィー質量分析法(GC/MS)で正確に定量できる。しかし、GC/MSの実施には時間がかかるため、水の浄化と供給を連続的に実施している場合に、GC/MSで規定以上のカビ臭を検出しても、サンプル元となった水はすでに需要者に供給されている場合がある。また、GC/MSを実施する装置は移動することが困難であるため、GC/MSを実施する装置は、屋外の水源から取得した直後の水のカビ臭を現地で評価するには利用できない。さらに、検査員が水のカビ臭を官能評価することが可能であるが、検査員の育成には時間がかかり、かつ、官能評価の結果は検査員によって変化し得る。 The degree of musty odor of water can be accurately quantified by gas chromatography-mass spectrometry (GC / MS). However, since it takes time to carry out GC / MS, even if the GC / MS detects a musty odor exceeding the specified value when water purification and supply are continuously carried out, it is a sample source. Water may already be supplied to consumers. In addition, since the device for performing GC / MS is difficult to move, the device for performing GC / MS cannot be used to evaluate the musty odor of water immediately after being obtained from an outdoor water source. Further, although the inspector can perform a sensory evaluation of the musty odor of water, it takes time to train the inspector, and the result of the sensory evaluation can vary depending on the inspector.
 そこで、GC/MSとは異なる簡便な匂いの検査方法が提案されている(例えば、特許文献1から3参照。)。しかし、これらの方法は、匂いを安定的に正確に検査できない場合がある。 Therefore, a simple odor inspection method different from GC / MS has been proposed (see, for example, Patent Documents 1 to 3). However, these methods may not be able to inspect odors stably and accurately.
特許5127783号公報Japanese Patent No. 5127783 特許6474945号公報Japanese Patent No. 6474945 特表2002-518035号公報Special Table 2002-518305
 水のカビ臭のみならず、様々な検査対象の匂いを簡便かつ安定に検出可能な技術が望まれている。そこで、本発明は、匂いを簡便かつ安定に検出可能な匂い検出キット、匂い検出キットの製造方法、及び匂い検出方法を提供することを目的の一つとする。 There is a demand for a technology that can easily and stably detect not only the musty odor of water but also the odor of various inspection targets. Therefore, one of the objects of the present invention is to provide an odor detection kit capable of easily and stably detecting an odor, a method for producing an odor detection kit, and a method for detecting an odor.
 本発明の態様によれば、基板と、基板上に単層で配置された、嗅覚受容体を有し、匂い分子の濃度に応じて蛍光強度が変化する蛍光タンパク質を発現している匂い検出細胞と、を備える、蛍光光度計用の匂い検出キットが提供される。 According to the aspect of the present invention, an odor detection cell having a substrate and a single layer arranged on the substrate, and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of odor molecules. And, an odor detection kit for a fluorometer is provided.
 上記の匂い検出キットにおいて、匂い検出細胞が、細胞膜修飾剤を介して基板に固定されていてもよい。 In the above odor detection kit, the odor detection cells may be fixed to the substrate via a cell membrane modifier.
 上記の匂い検出キットが、基板を内部に固定可能なチューブをさらに備えていてもよい。 The above odor detection kit may further include a tube capable of fixing the substrate inside.
 上記の匂い検出キットにおいて、匂い検出細胞が、導入遺伝子によって嗅覚受容体を発現していてもよい。 In the above odor detection kit, the odor detection cells may express the olfactory receptor by the transgene.
 上記の匂い検出キットにおいて、匂い検出細胞が、昆虫の嗅覚受容体を発現していてもよい。 In the above odor detection kit, the odor detection cells may express the olfactory receptor of an insect.
 上記の匂い検出キットにおいて、嗅覚受容体が、イオンチャネル型受容体であってもよい。 In the above odor detection kit, the olfactory receptor may be an ion channel type receptor.
 上記の匂い検出キットにおいて、蛍光タンパク質が、イオン濃度に応じて蛍光強度を変化させてもよい。 In the above odor detection kit, the fluorescent protein may change the fluorescence intensity according to the ion concentration.
 上記の匂い検出キットにおいて、嗅覚受容体が、BmOR1、BmOR3、DmOr13a、DmOr56a、DmOr82a、DmOr49b、DmOr85b及びPxOR1から選択されてもよい。 In the above odor detection kit, the olfactory receptor may be selected from BmOR1, BmOR3, DmOr13a, DmOr56a, DmOr82a, DmOr49b, DmOr85b and PxOR1.
 上記の匂い検出キットにおいて、匂い検出細胞が昆虫細胞であってもよい。 In the above odor detection kit, the odor detection cell may be an insect cell.
 上記の匂い検出キットにおいて、昆虫細胞が、ガ由来の細胞であってもよい。 In the above odor detection kit, the insect cell may be a cell derived from ga.
 上記の匂い検出キットにおいて、昆虫細胞が、Sf21、Sf9、High Five、及びTni由来細胞から選択されてもよい。 In the above odor detection kit, insect cells may be selected from Sf21, Sf9, High Five, and Tni-derived cells.
 上記の匂い検出キットにおいて、昆虫細胞が、ショウジョウバエ由来の細胞であってもよい。 In the above odor detection kit, the insect cells may be cells derived from Drosophila.
 上記の匂い検出キットにおいて、昆虫細胞が、Drosophila S2細胞であってもよい。 In the above odor detection kit, the insect cells may be Drosophila S2 cells.
 上記の匂い検出キットにおいて、基板が透明であってもよい。 In the above odor detection kit, the substrate may be transparent.
 また、本発明の態様によれば、嗅覚受容体を有し、匂い分子の濃度に応じて蛍光強度が変化する蛍光タンパク質を発現している匂い検出細胞を用意することと、基板を用意することと、基板上に、匂い検出細胞を単層で配置することと、を含む、蛍光光度計用の匂い検出キットの製造方法が提供される。 Further, according to the aspect of the present invention, an odor detection cell having an olfactory receptor and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of an odor molecule is prepared, and a substrate is prepared. A method for producing an odor detection kit for a fluorometer is provided, which comprises arranging odor detection cells in a single layer on a substrate.
 上記の匂い検出キットの製造方法において、匂い検出細胞を、細胞膜修飾剤を介して基板に固定してもよい。 In the above method for manufacturing an odor detection kit, odor detection cells may be fixed to a substrate via a cell membrane modifier.
 上記の匂い検出キットの製造方法が、匂い検出細胞を配置した基板をチューブ内に固定することをさらに含んでいてもよい。 The above-mentioned method for manufacturing an odor detection kit may further include fixing a substrate on which odor detection cells are arranged in a tube.
 上記の匂い検出キットの製造方法が、(a)嗅覚受容体を有し、蛍光タンパク質を発現している細胞群から一部の細胞を選択し、(b)選択された細胞を増殖し、(c)増殖した細胞の匂い物質への応答性を確認することの(a)工程から(c)工程を複数実施することと、匂い物質への応答性が基準値以上の増殖した細胞を、匂い検出細胞として選択することと、をさらに含んでいてもよい。 The method for producing the above-mentioned odor detection kit is as follows: (a) a part of cells are selected from a group of cells having an olfactory receptor and expressing a fluorescent protein, and (b) the selected cells are proliferated. c) Performing multiple steps (a) to (c) to confirm the responsiveness of the proliferated cells to the odorant, and odorizing the proliferated cells whose responsiveness to the odorant is equal to or higher than the standard value. It may further include selection as detection cells.
 上記の匂い検出キットの製造方法が、(a)嗅覚受容体を有し、蛍光タンパク質を発現している細胞群から一部の細胞を選択し、(b)選択された細胞を増殖し、(c)増殖した細胞の匂い物質への応答性を確認することの(a)工程から(c)工程を複数実施することと、匂い物質への応答性が最も高い増殖した細胞を、匂い検出細胞として選択することと、をさらに含んでいてもよい。 The method for producing the above-mentioned odor detection kit is as follows: (a) a part of cells are selected from a group of cells having an olfactory receptor and expressing a fluorescent protein, and (b) the selected cells are proliferated. c) Perform multiple steps (a) to (c) to confirm the responsiveness of the proliferated cells to the odorant, and select the proliferated cells with the highest responsiveness to the odorant as odor detection cells. And may further include.
 上記の匂い検出キットの製造方法が、第1の嗅覚受容体を発現している細胞に、第2の嗅覚受容体を発現させることを含んでいてもよい。第1の嗅覚受容体と第2の嗅覚受容体が、異なっていてもよい。第1の嗅覚受容体と第2の嗅覚受容体が、異なる匂い分子に反応してもよい。 The above-mentioned method for producing an odor detection kit may include expressing a second olfactory receptor in cells expressing the first olfactory receptor. The first olfactory receptor and the second olfactory receptor may be different. The first olfactory receptor and the second olfactory receptor may react with different odor molecules.
 上記の匂い検出キットの製造方法において、選択される一部の細胞が単一の細胞であってもよい。 In the above method for producing an odor detection kit, some of the selected cells may be a single cell.
 また、本発明の態様によれば、基板上に単層で配置された、嗅覚受容体を有し、匂い分子の濃度に応じて蛍光強度が変化する蛍光タンパク質を発現している匂い検出細胞に、匂い検査の対象の流体を接触させることと、匂い検出細胞が発する蛍光を計測することと、を含む、匂い検出方法が提供される。 Further, according to the aspect of the present invention, an odor detecting cell having an olfactory receptor arranged in a single layer on a substrate and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of an odor molecule. , An odor detection method is provided that includes contacting the fluid to be tested for odor and measuring the fluorescence emitted by the odor detecting cells.
 上記の匂い検出方法において、匂い検出細胞が、細胞膜修飾剤を介して基板に固定されていてもよい。 In the above odor detection method, the odor detection cells may be fixed to the substrate via a cell membrane modifier.
 上記の匂い検出方法において、基板がチューブ内に固定されており、上記の匂い検出方法が、チューブ内に流体を入れることをさらに含んでいてもよい。 In the above odor detection method, the substrate may be fixed in the tube, and the above odor detection method may further include putting a fluid in the tube.
 上記の匂い検出方法において、流体が液体であってもよい。 In the above odor detection method, the fluid may be a liquid.
 本発明によれば、匂いを簡便かつ安定に検出可能な匂い検出キット、匂い検出キットの製造方法、及び匂い検出方法を提供可能である。 According to the present invention, it is possible to provide an odor detection kit capable of easily and stably detecting an odor, a method for producing an odor detection kit, and a method for detecting an odor.
実施形態に係る蛍光光度計用の匂い検出キットの模式図である。It is a schematic diagram of the odor detection kit for the fluorometer according to the embodiment. 実施形態に係る嗅覚受容体を匂い検出細胞に発現される方法を示す模式図である。It is a schematic diagram which shows the method which expresses the olfactory receptor which concerns on embodiment in an odor detection cell. 実施形態に係る基板への匂い検出細胞の固定方法を示す模式図である。It is a schematic diagram which shows the method of fixing the odor detection cell to the substrate which concerns on embodiment. 実施形態に係る匂い検出細胞を均一化する方法を示す模式図である。It is a schematic diagram which shows the method of homogenizing the odor detection cell which concerns on embodiment. 実施形態に係る複数の嗅覚受容体を匂い検出細胞に発現される方法を示す模式図である。It is a schematic diagram which shows the method of expressing a plurality of olfactory receptors according to an embodiment in an odor detection cell. 実施形態に係る複数の嗅覚受容体を匂い検出細胞に発現される方法を示す模式図である。It is a schematic diagram which shows the method of expressing a plurality of olfactory receptors according to an embodiment in an odor detection cell. 実施形態に係る匂い分子に対する匂い検出細胞の応答を示す模式図である。It is a schematic diagram which shows the response of the odor detection cell to the odor molecule which concerns on embodiment. 実施例に係る匂い分子に対する匂い検出細胞の濃度依存的な応答を示す写真とグラフである。It is a photograph and the graph which show the concentration-dependent response of the odor detection cell to the odor molecule which concerns on Example. 実施例に係る匂い分子に対する匂い検出細胞の特異的な応答を示すグラフである。It is a graph which shows the specific response of the odor detection cell to the odor molecule which concerns on Example. 実施例に係る匂い検出細胞の懸濁液が発する蛍光の時間変化を示すグラフである。It is a graph which shows the time change of the fluorescence emitted by the suspension of the odor detection cell which concerns on Example. 実施例に係る均質化された匂い検出細胞と均質化されていない匂い検出細胞の匂い分子に対する応答を示すグラフである。It is a graph which shows the response to the odor molecule of the homogenized odor detection cell and the non-homogenized odor detection cell which concerns on Example. 実施例に係る長期間継代培養された匂い検出細胞の匂い分子に対する応答を示すグラフである。It is a graph which shows the response to the odor molecule of the odor detection cell which was subcultured for a long time which concerns on an Example. 実施例に係る3か月半の冷凍保存後に長期間継代培養された匂い検出細胞の匂い分子に対する応答を示すグラフである。It is a graph which shows the response to the odor molecule of the odor detection cell which was subcultured for a long time after the frozen storage of 3 and a half months which concerns on Example. 実施例に係る6か月半の冷凍保存後に長期間継代培養された匂い検出細胞の匂い分子に対する応答を示すグラフである。It is a graph which shows the response to the odor molecule of the odor detection cell which was subcultured for a long time after freezing storage for 6 and a half months which concerns on Example. 実施例に係る匂い検出キットを用いた測定結果を示すグラフである。It is a graph which shows the measurement result using the odor detection kit which concerns on Example. 実施例に係るゲオスミン濃度と検出された蛍光強度の変化率との関係を示すグラフである。It is a graph which shows the relationship between the geosmin concentration which concerns on Example, and the change rate of the detected fluorescence intensity. 実施例に係る匂い検出キットの匂い分子特異性を示すグラフである。It is a graph which shows the odor molecule specificity of the odor detection kit which concerns on Example. 実施例に係る匂い検出キットと細胞懸濁液が安定になるまでの時間比較を示すグラフである。It is a graph which shows the time comparison until the odor detection kit and the cell suspension which concerns on an Example become stable. 実施例に係る匂い検出キットと細胞懸濁液の匂い分子への応答性比較を示すグラフである。It is a graph which shows the responsiveness comparison to the odor molecule of the odor detection kit and the cell suspension which concerns on Example. 実施例に係る匂い検出キットと細胞懸濁液の匂い分子への応答性のばらつき比較を示すグラフである。It is a graph which shows the variation comparison of the responsiveness to the odor molecule of the odor detection kit and the cell suspension which concerns on Example. 実施例に係る匂い検出キットを用いた屋外での測定結果を示すグラフである。It is a graph which shows the measurement result in the outdoors using the odor detection kit which concerns on Example. 実施例に係る匂い検出細胞が発する蛍光の時間変化を示すグラフである。It is a graph which shows the time change of the fluorescence emitted by the odor detection cell which concerns on Example. 実施例に係る匂い検出細胞が発する蛍光の時間変化を示すグラフである。It is a graph which shows the time change of the fluorescence emitted by the odor detection cell which concerns on Example. 実施例に係る匂い検出細胞が発する蛍光の時間変化を示すグラフである。It is a graph which shows the time change of the fluorescence emitted by the odor detection cell which concerns on Example. 実施例に係る匂い検出細胞が発する蛍光の変化と、匂い物質の濃度と、の関係を示すグラフである。It is a graph which shows the relationship between the change of fluorescence emitted by the odor detection cell which concerns on Example, and the concentration of an odor substance. 実施例に係る匂い検出細胞が発する蛍光の時間変化を示すグラフである。It is a graph which shows the time change of the fluorescence emitted by the odor detection cell which concerns on Example. 実施例に係る匂い検出細胞が発する蛍光の変化と、匂い物質の濃度と、の関係を示すグラフである。It is a graph which shows the relationship between the change of fluorescence emitted by the odor detection cell which concerns on Example, and the concentration of an odor substance. 実施例に係る匂い検出細胞が発する蛍光の変化と、匂い物質と、の関係を示すグラフである。It is a graph which shows the relationship between the change of fluorescence emitted by the odor detection cell which concerns on Example, and an odor substance.
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 An embodiment of the present invention will be described below. In the description of the drawings below, the same or similar parts are represented by the same or similar reference numerals. However, the drawings are schematic. Therefore, the specific dimensions and the like should be determined in light of the following explanations. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.
 実施形態に係る蛍光光度計用の匂い検出キットは、図1に示すように、基板10と、基板10上に単層で配置された、嗅覚受容体を有し、匂い分子の濃度に応じて蛍光強度が変化する蛍光タンパク質を発現している匂い検出細胞20と、を備える。 As shown in FIG. 1, the odor detection kit for a fluorometer according to the embodiment has a substrate 10 and an olfactory receptor arranged in a single layer on the substrate 10, depending on the concentration of odor molecules. It comprises an odor detecting cell 20 expressing a fluorescent protein whose fluorescence intensity changes.
 基板10は、例えば透明であり、ガラス及び樹脂等からなる。 The substrate 10 is transparent, for example, and is made of glass, resin, or the like.
 匂い検出細胞20は、細胞膜に嗅覚受容体を発現している。匂い検出細胞20において、嗅覚受容体は天然に発現されていてもよいし、導入遺伝子によって発現されていてもよい。嗅覚受容体は、昆虫の嗅覚受容体であってもよい。 The odor detection cell 20 expresses an olfactory receptor on the cell membrane. In the odor detection cell 20, the olfactory receptor may be naturally expressed or may be expressed by a transgene. The olfactory receptor may be an insect olfactory receptor.
 匂い検出細胞20は、昆虫細胞であってもよい。昆虫細胞は、ヨトウガ(Spodoptera frugiperda)及びイラクサギンウワバ(Trichoplusia ni)等のガ由来の細胞であってもよい。ヨトウガ由来の細胞の例としては、Sf21及びSf9が挙げられる。Sf21細胞は、卵巣細胞由来である。Sf21細胞は、無限分裂し、導入した遺伝子を永続的に発現する安定発現系統を樹立することが可能である。また、Sf21細胞は、18℃から40℃の広い温度範囲で生存可能であり、培養液のpHを調整するための二酸化炭素も不要である。Sf21細胞は、本来、嗅覚受容体を有しないが、嗅覚受容体の遺伝子を導入することにより、嗅覚受容体を発現させることが可能である。Sf9細胞は、Sf21のクローンである。イラクサギンウワバ由来の細胞の例としては、High Five及びTniが挙げられる。Tni由来細胞は、卵巣細胞由来である。 The odor detection cell 20 may be an insect cell. Insect cells may be cells derived from moths such as Spodoptera frugiperda and Cabbage looper (Trichoplusia ni). Examples of cells derived from Spodoptera frugiperda include Sf21 and Sf9. Sf21 cells are derived from ovarian cells. Sf21 cells can divide infinitely and establish a stable expression line that permanently expresses the introduced gene. In addition, Sf21 cells can survive in a wide temperature range of 18 ° C to 40 ° C and do not require carbon dioxide to adjust the pH of the culture medium. Originally, Sf21 cells do not have an olfactory receptor, but it is possible to express an olfactory receptor by introducing an olfactory receptor gene. Sf9 cells are clones of Sf21. Examples of cells derived from cabbage looper include High Five and Tni. Tni-derived cells are derived from ovarian cells.
 あるいは、昆虫細胞は、ショウジョウバエ由来の細胞であってもよい。ショウジョウバエ由来の細胞の例としては、Drosophila S2細胞が挙げられる。 Alternatively, the insect cell may be a cell derived from Drosophila. Examples of Drosophila-derived cells include Drosophila S2 cells.
 嗅覚受容体は、Gタンパク質共役型受容体であってもよいし、イオンチャネル型受容体であってもよい。イオンチャネル型受容体は、匂い分子であるリガンドと相互作用する部位と、イオンが流入する部位と、を有する。匂い検出細胞20のイオンチャネル型受容体がリガンドと結合すると、匂い検出細胞20内にナトリウムイオンやカルシウムイオン等の陽イオンが流入する。匂い検出細胞20において、イオンの流入は、リガンドの結合から数10ミリ秒程度で生じ得る。流入するイオンの量は多く、1個のリガンドの結合に対し、細胞内に流入するイオンの量は107個ともいわれている。 The olfactory receptor may be a G protein-coupled receptor or an ion channel receptor. The ion channel type receptor has a site that interacts with a ligand that is an odor molecule and a site through which ions flow. When the ion channel type receptor of the odor detecting cell 20 binds to the ligand, cations such as sodium ion and calcium ion flow into the odor detecting cell 20. In the odor detection cell 20, the influx of ions can occur within a few tens of milliseconds from the binding of the ligand. The amount of inflow to ion Many, for binding one ligand, the amount of ions flowing into the cell is said to be 10 7.
 一般に、特定の種類の嗅覚受容体は、特定の匂い分子に対する特異性を有する。匂い検出細胞20において、1種類の匂い分子に対応する1種類の嗅覚受容体のみを発現させてもよいし、複数種類の匂い分子に対応する複数種類の嗅覚受容体を発現させてもよい。また、発現させる嗅覚受容体の量を調整してもよい。 In general, certain types of olfactory receptors have specificity for certain odor molecules. In the odor detection cell 20, only one type of olfactory receptor corresponding to one type of odor molecule may be expressed, or a plurality of types of olfactory receptors corresponding to a plurality of types of odor molecules may be expressed. In addition, the amount of olfactory receptor to be expressed may be adjusted.
 嗅覚受容体の例としては、ショウジョウバエの受容体であって、カビ臭であるゲオスミンの受容体であるDmOr56a、ショウジョウバエの受容体であって、芳香あるいは果実臭を有する酢酸ゲラニルの受容体であるDmOr82a、ショウジョウバエの受容体であって、ヒトの汗の臭いを有する2-メチルフェノール(o-クレゾール)の受容体であるDmOr49b、ショウジョウバエの受容体であって、カビ臭である1-octen-3-olの受容体であるDmOr13a、カイコガの性フェロモンであるボンビコール(Bombykol)の受容体であるBmOR1、カイコガの性フェロモンの副成分であるボンビカール(Bombykal)の受容体であるBmOR3、キイロショウジョウバエの一般臭受容体であるDmOr85b、及びコナガの性フェロモン受容体であるPxOR1が挙げられるが、これらに限定されない。なお、「ゲオスミン」は「ジェオスミン」とも呼ばれる。 Examples of olfactory receptors are DmOr56a, which is a receptor for Drosophila and is a receptor for geosmine, which has a musty odor, and DmOr82a, which is a receptor for geranyl acetate, which is a receptor for Drosophila and has an aromatic or fruity odor. DmOr49b, a receptor for Drosophila and a receptor for 2-methylphenol (o-cresol) having a human sweat odor, and 1-octen-3-, a receptor for Drosophila and a musty odor. DmOr13a, which is a receptor for ol, BmOR1, which is a receptor for Bombycol, which is a sex pheromone of Kaikoga, BmOR3, which is a receptor for Bombykal, which is a subcomponent of the sex pheromone of Kaikoga, and general Examples include, but are not limited to, the odor receptor DmOr85b and the sex pheromone receptor of Konaga, PxOR1. In addition, "geosmin" is also called "geosmin".
 遺伝子工学的に嗅覚受容体を匂い検出細胞20に発現させる場合、例えば、図2に示すように、嗅覚受容体をコードする遺伝子をベクターに組み込み、構築されたベクターを宿主細胞にトランスフェクトさせる。嗅覚受容体をコードする遺伝子は、例えば、昆虫の嗅覚器官からmRNAを抽出し、cDNAを合成して単離することができる。単離されたcDNAから、PCRプライマーを用いて、嗅覚受容体をコードする遺伝子の一部をPCR法にて増幅することが可能である。 When the olfactory receptor is expressed in the odor detection cell 20 by genetic engineering, for example, as shown in FIG. 2, the gene encoding the olfactory receptor is incorporated into the vector, and the constructed vector is transfected into the host cell. The gene encoding the olfactory receptor can be isolated, for example, by extracting mRNA from the olfactory organ of an insect and synthesizing the cDNA. From the isolated cDNA, it is possible to amplify a part of the gene encoding the olfactory receptor by the PCR method using PCR primers.
 嗅覚受容体をコードする遺伝子の一部は、合成した二本鎖cDNAを適当なベクターに組み込み、当該ベクターを用いて大腸菌等を形質転換してcDNAライブラリーを作製することによっても取得することができる。cDNAは、制限酵素とリガーゼを用いる通常の方法、例えば、得られたcDNAを制限酵素で切断し、ベクターDNAの制限酵素部位に挿入してベクターに連結する方法によって、ベクターに組込むことができる。 A part of the gene encoding the olfactory receptor can also be obtained by incorporating the synthesized double-stranded cDNA into an appropriate vector and transforming Escherichia coli or the like with the vector to prepare a cDNA library. it can. The cDNA can be incorporated into a vector by a usual method using a restriction enzyme and a ligase, for example, by cutting the obtained cDNA with a restriction enzyme, inserting it into the restriction enzyme site of the vector DNA, and ligating it to the vector.
 匂い検出細胞20内において、蛍光タンパク質が発現している。上述したように、匂い検出細胞20において、イオンチャネル型嗅覚受容体に匂い分子が結合すると、匂い検出細胞20内にイオンが流れる。したがって、イオンに応じて蛍光強度が変化する蛍光タンパク質を発現させる遺伝子を匂い検出細胞20に導入することにより、蛍光強度の変化から、匂い検出細胞20が匂い分子を検出しているか否かを確認することが可能である。蛍光タンパク質の例としては、カルシウムイオンと反応して蛍光を発するGCaMP3、GCaMP6s及びエクオリンが挙げられる。 Fluorescent protein is expressed in the odor detection cell 20. As described above, in the odor detecting cell 20, when an odor molecule binds to the ion channel type olfactory receptor, ions flow in the odor detecting cell 20. Therefore, by introducing a gene that expresses a fluorescent protein whose fluorescence intensity changes according to ions into the odor detecting cell 20, it is confirmed whether or not the odor detecting cell 20 detects the odor molecule from the change in the fluorescence intensity. It is possible to do. Examples of fluorescent proteins include GCaMP3, GCaMP6s and aequorin, which fluoresce by reacting with calcium ions.
 匂い分子の濃度が高いと、匂い検出細胞20内に流入するイオンの濃度も高くなり、多くの蛍光タンパク質が蛍光を発する。そのため、匂い検出細胞20が発する蛍光強度が強くなる。匂い分子の濃度が低いと、匂い検出細胞20内に流入するイオンの濃度も低くなり、少ない蛍光タンパク質が蛍光を発する。そのため、匂い検出細胞20が発する蛍光強度が弱くなる。したがって、蛍光強度に基づき、匂い分子の濃度を評価することが可能である。 When the concentration of odor molecules is high, the concentration of ions flowing into the odor detection cells 20 is also high, and many fluorescent proteins fluoresce. Therefore, the fluorescence intensity emitted by the odor detecting cells 20 becomes stronger. When the concentration of odor molecules is low, the concentration of ions flowing into the odor detection cells 20 is also low, and a small amount of fluorescent protein fluoresces. Therefore, the fluorescence intensity emitted by the odor detecting cells 20 is weakened. Therefore, it is possible to evaluate the concentration of odor molecules based on the fluorescence intensity.
 また、匂い分子と匂い分子受容体との相互作用は弱く、同じ匂い分子が何度も同じ匂い分子受容体と相互作用したり、同じ匂い分子が同じ細胞の複数の匂い分子受容体と相互作用したり、同じ匂い分子が複数の異なる細胞の匂い分子受容体と相互作用したりするものと考えらえる。そのため、匂い分子数が少なくとも、細胞内へのイオン流入が繰り返し発生するため、高い感度で匂い分子を検出可能であるものと考えられる。 In addition, the interaction between odor molecules and odor molecule receptors is weak, and the same odor molecule interacts with the same odor molecule receptor many times, or the same odor molecule interacts with multiple odor molecule receptors of the same cell. Or, the same odor molecule can be thought of as interacting with odor molecule receptors in multiple different cells. Therefore, it is considered that the odor molecules can be detected with high sensitivity because the ion inflow into the cell is repeatedly generated at least with the number of odor molecules.
 図1に示す基板10の表面は、コラーゲンやウシ血清アルブミン(BSA)等のタンパク質でコートされていてもよい。匂い検出細胞20は、基板10表面を覆うタンパク質を介して、基板10上に固定されていてもよい。あるいは、匂い検出細胞20は、細胞膜修飾剤を介して基板上に固定されていてもよい。またあるいは、図3に示すように、匂い検出細胞20は、細胞膜修飾剤と、基板10表面を覆うコラーゲンやBSA等のタンパク質と、を介して、基板10上に固定されていてもよい。 The surface of the substrate 10 shown in FIG. 1 may be coated with a protein such as collagen or bovine serum albumin (BSA). The odor detection cells 20 may be immobilized on the substrate 10 via a protein that covers the surface of the substrate 10. Alternatively, the odor detection cells 20 may be immobilized on the substrate via a cell membrane modifier. Alternatively, as shown in FIG. 3, the odor detecting cell 20 may be fixed on the substrate 10 via a cell membrane modifier and a protein such as collagen or BSA that covers the surface of the substrate 10.
 細胞膜修飾剤は、匂い検出細胞20の細胞膜に結合する細胞膜結合基を有する。細胞膜結合基としては、脂質が使用可能である。例えば、細胞膜結合基としては、オレイル基、ジオレイル基、コレステロール基、及びテトラエチレングリコール基が使用可能である。また、細胞膜修飾剤は、基板10表面又は基板10を覆うタンパク質に結合する基板結合基を有する。基板10を覆うタンパク質に結合する基板結合基としては、N-ヒドロキシスクシンイミド(NHS)基が使用可能である。細胞膜修飾剤は、細胞膜結合基と基板結合基との間に、水溶性を高めるポリエチレングリコール(PEG)を有していてもよい。基板10と匂い検出細胞20の間に適当な距離をおくために、PEGのエチレンオキシド単位の繰り返し数を適宜設定してもよい。 The cell membrane modifier has a cell membrane binding group that binds to the cell membrane of the odor detection cell 20. Lipids can be used as the cell membrane binding group. For example, as the cell membrane binding group, an oleyl group, a diorail group, a cholesterol group, and a tetraethylene glycol group can be used. In addition, the cell membrane modifier has a substrate-binding group that binds to the surface of the substrate 10 or the protein that covers the substrate 10. An N-hydroxysuccinimide (NHS) group can be used as the substrate-binding group that binds to the protein that covers the substrate 10. The cell membrane modifier may have polyethylene glycol (PEG) that enhances water solubility between the cell membrane binding group and the substrate binding group. In order to keep an appropriate distance between the substrate 10 and the odor detecting cells 20, the number of repetitions of ethylene oxide units of PEG may be appropriately set.
 細胞膜修飾剤の例としては、下記化学式(1)で示されるオレイル-O-ポリ(エチレングリコール)スクシニル-N-ヒドロキシ-スクシンイミジルエステル(oleyl-PEG-NHS)が挙げられる。なお、nは自然数を表す。
Figure JPOXMLDOC01-appb-C000001
Examples of the cell membrane modifier include oleyl-O-poly (ethylene glycol) succinyl-N-hydroxy-succinimidyl ester (oleyl-PEG-NHS) represented by the following chemical formula (1). Note that n represents a natural number.
Figure JPOXMLDOC01-appb-C000001
 実施形態に係る蛍光光度計用の匂い検出キットは、図1に示すように、基板10を内部に固定可能なチューブ30をさらに備える。例えば、チューブ30の内径と、基板10の幅と、を略同一にすることにより、チューブ30に挿入された基板10が、チューブ30内で動くことを抑制することが可能である。 As shown in FIG. 1, the odor detection kit for the fluorometer according to the embodiment further includes a tube 30 to which the substrate 10 can be fixed inside. For example, by making the inner diameter of the tube 30 and the width of the substrate 10 substantially the same, it is possible to suppress the substrate 10 inserted in the tube 30 from moving in the tube 30.
 匂い検出細胞20が非接着細胞である場合、匂い検出細胞20を基板10表面に接触させても、匂い検出細胞20が基板10表面に接着しない場合がある。あるいは、匂い検出細胞20が接着細胞であっても、基板10への接着力が弱く、基板10から簡単にはがれる場合がある。これに対し、細胞膜修飾剤を用いれば、匂い検出細胞20が非接着細胞であったり、接着力の弱い接着細胞であったりしても、匂い検出細胞20を基板10表面に単層で固定することが可能である。 When the odor detecting cell 20 is a non-adhering cell, the odor detecting cell 20 may not adhere to the surface of the substrate 10 even if the odor detecting cell 20 is brought into contact with the surface of the substrate 10. Alternatively, even if the odor detecting cell 20 is an adherent cell, the adhesive force to the substrate 10 is weak and the odor detecting cell 20 may be easily peeled off from the substrate 10. On the other hand, if a cell membrane modifier is used, even if the odor detection cells 20 are non-adhesive cells or adherent cells with weak adhesion, the odor detection cells 20 are fixed to the surface of the substrate 10 with a single layer. It is possible.
 次に、実施形態に係る蛍光光度計用の匂い検出キットの製造方法を説明する。実施形態に係る蛍光光度計用の匂い検出キットの製造方法は、嗅覚受容体を有し、匂い分子の濃度に応じて蛍光強度が変化する蛍光タンパク質を発現している匂い検出細胞20を用意することと、基板10を用意することと、基板10上に、匂い検出細胞20を単層で配置することと、を含む。 Next, a method of manufacturing an odor detection kit for a fluorometer according to the embodiment will be described. In the method for producing an odor detection kit for a fluorometer according to the embodiment, odor detection cells 20 having an olfactory receptor and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of odor molecules are prepared. This includes preparing the substrate 10 and arranging the odor detection cells 20 in a single layer on the substrate 10.
 匂い検出細胞20は、(a)嗅覚受容体を有し、蛍光タンパク質を発現している細胞群から一部の細胞を選択し、(b)選択された細胞を増殖し、(c)増殖した細胞の匂い物質への応答性を確認することの(a)工程から(c)工程を複数実施し、匂い物質への応答性が基準値以上の増殖した細胞から選択されてもよい。(a)工程で選択される細胞は、単一の細胞(シングルセル)であってもよい。 The odor detection cell 20 (a) selected some cells from the group of cells having an olfactory receptor and expressing a fluorescent protein, (b) proliferated the selected cells, and (c) proliferated. A plurality of steps (a) to (c) for confirming the responsiveness of the cell to the odorant may be carried out, and the responsiveness to the odorant may be selected from the proliferated cells having a reference value or more. The cell selected in step (a) may be a single cell (single cell).
 あるいは、匂い検出細胞20は、(a)嗅覚受容体を有し、蛍光タンパク質を発現している細胞群から一部の細胞を選択し、(b)選択された細胞を増殖し、(c)増殖した細胞の匂い物質への応答性を確認することの(a)工程から(c)工程を複数実施し、匂い物質への応答性が最も高い増殖した細胞から選択されてもよい。(a)工程で選択される細胞は、単一の細胞(シングルセル)であってもよい。 Alternatively, the odor detection cell 20 may (a) select some cells from the group of cells having an olfactory receptor and expressing a fluorescent protein, (b) proliferate the selected cells, and (c) A plurality of steps (a) to (c) for confirming the responsiveness of the proliferated cells to the odorant may be carried out, and the proliferated cells having the highest responsiveness to the odorant may be selected. The cell selected in step (a) may be a single cell (single cell).
 具体的には、図4に示すように、嗅覚受容体を有し、蛍光タンパク質を発現している細胞系統群の希釈を繰り返すことにより、単一又は少数の細胞を選択し、選択した細胞を培養して増殖させることにより、細胞系統を樹立してもよい。当該工程を複数実施することにより、複数の細胞系統が樹立される。樹立された複数の細胞系統のうち、匂い物質への応答性が所定の基準値以上の細胞系統を、匂い検出細胞20として使用してもよい。あるいは、樹立された複数の細胞系統のうち、匂い物質への応答性が最も高い細胞系統を、匂い検出細胞20として使用してもよい。 Specifically, as shown in FIG. 4, a single cell or a small number of cells are selected by repeating dilution of a cell lineage having an olfactory receptor and expressing a fluorescent protein, and the selected cells are selected. A cell line may be established by culturing and proliferating. By carrying out a plurality of the steps, a plurality of cell lines are established. Among the plurality of established cell lines, a cell line whose responsiveness to an odorant is equal to or higher than a predetermined reference value may be used as the odor detection cell 20. Alternatively, among the plurality of established cell lines, the cell line having the highest responsiveness to the odorant may be used as the odor detection cell 20.
 図5及び図6に示すように、樹立した嗅覚受容体を発現している細胞に、さらに別の嗅覚受容体を発現させてもよい。すなわち、上記の方法等で樹立した第1の嗅覚受容体を発現している細胞に、さらに第2の嗅覚受容体を発現させてもよい。例えば、第2の嗅覚受容体をコードする遺伝子をベクターに組み込み、構築されたベクターを第1の嗅覚受容体を発現している細胞にトランスフェクトさせることにより、第1の嗅覚受容体及び第2の嗅覚受容体を発現している細胞を樹立することが可能である。第1の嗅覚受容体を発現している細胞に、さらに複数の異なる嗅覚受容体を発現させてもよい。図5は、第1の嗅覚受容体としてOr56aを発現している細胞に、第2の嗅覚受容体であるOr-Xの遺伝子を含むベクターと、抗生物質耐性遺伝子を含むベクターと、を導入する例を示している。図6は、第1の嗅覚受容体としてOr56aを発現している細胞に、第2の嗅覚受容体であるOr-Xの遺伝子と抗生物質耐性遺伝子の両方を含むベクターを導入する例を示している。 As shown in FIGS. 5 and 6, another olfactory receptor may be expressed in the cells expressing the established olfactory receptor. That is, the second olfactory receptor may be further expressed in the cells expressing the first olfactory receptor established by the above method or the like. For example, by incorporating a gene encoding a second olfactory receptor into a vector and transfecting the constructed vector into cells expressing the first olfactory receptor, the first olfactory receptor and the second olfactory receptor are used. It is possible to establish cells expressing the olfactory receptor of. A plurality of different olfactory receptors may be further expressed in cells expressing the first olfactory receptor. FIG. 5 shows that a vector containing a gene for Or-X, which is a second olfactory receptor, and a vector containing an antibiotic resistance gene are introduced into cells expressing Or56a as the first olfactory receptor. An example is shown. FIG. 6 shows an example of introducing a vector containing both the gene of Or-X, which is the second olfactory receptor, and the antibiotic resistance gene into cells expressing Or56a as the first olfactory receptor. There is.
 図1に示す基板10上に匂い検出細胞20を単層で配置する際には、上述したように、匂い検出細胞20を、細胞膜修飾剤を介して基板10に固定してもよい。例えば、基板10をタンパク質でコートし、基板10を覆うタンパク質上に細胞膜修飾剤を含む溶液を滴下して、基板10を覆うタンパク質と、細胞膜修飾剤の基板結合基と、を反応させ、基板10を覆うタンパク質に細胞膜修飾剤を結合させる。その後、基板10上に匂い検出細胞20を含む溶液を滴下して、基板10に結合している細胞膜修飾剤の細胞膜結合基と、匂い検出細胞20と、を反応させ、基板10上に細胞膜修飾剤を介して匂い検出細胞20を固定する。 When the odor detection cells 20 are arranged in a single layer on the substrate 10 shown in FIG. 1, the odor detection cells 20 may be fixed to the substrate 10 via a cell membrane modifier as described above. For example, the substrate 10 is coated with a protein, and a solution containing a cell membrane modifier is dropped onto the protein covering the substrate 10 to react the protein covering the substrate 10 with the substrate binding group of the cell membrane modifier to cause the substrate 10 to react. The cell membrane modifier is bound to the protein that covers the protein. Then, a solution containing the odor detecting cell 20 is dropped onto the substrate 10 to react the cell membrane-binding group of the cell membrane modifier bound to the substrate 10 with the odor detecting cell 20 to modify the cell membrane on the substrate 10. The odor detection cells 20 are fixed via the agent.
 その後、匂い検出細胞20を配置した基板10を、チューブ30内に固定する。 After that, the substrate 10 on which the odor detection cells 20 are arranged is fixed in the tube 30.
 次に、実施形態に係る匂い検出方法を説明する。実施形態に係る匂い検出方法は、基板10上に単層で配置された、嗅覚受容体を有し、匂い分子の濃度に応じて蛍光強度が変化する蛍光タンパク質を発現している匂い検出細胞20に、匂い検査の対象の流体40を接触させることと、匂い検出細胞20が発する蛍光を計測することと、を含む。 Next, the odor detection method according to the embodiment will be described. The odor detection method according to the embodiment is an odor detection cell 20 having an olfactory receptor arranged in a single layer on a substrate 10 and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of odor molecules. Includes contacting the fluid 40 to be tested for odor and measuring the fluorescence emitted by the odor detecting cells 20.
 基板10がチューブ30内に固定されている場合、チューブ30内には、緩衝液あるいは匂い検出細胞20の生存に必要な物質を適宜含む溶液が入れられていてもよい。チューブ30内に匂い検査の対象の流体40を入れることにより、匂い検出細胞20に、匂い検査の対象の流体40を接触させてもよい。匂い検査の対象の流体40は、例えば水等の液体である。 When the substrate 10 is fixed in the tube 30, the tube 30 may contain a buffer solution or a solution containing a substance necessary for the survival of the odor detecting cells 20 as appropriate. By putting the fluid 40 to be tested for odor in the tube 30, the fluid 40 to be tested for odor may be brought into contact with the odor detecting cells 20. The fluid 40 to be tested for odor is a liquid such as water.
 例えば、チューブ30に匂い検査の対象の流体40を入れた後、チューブ30を蛍光光度計(フルオロメーター)に設置し、匂い検出細胞20に励起光を照射する。図7に示すように、励起光を照射された匂い検出細胞20は、匂い検査の対象の流体40に含まれる匂い分子の濃度に応じた強度の蛍光を発する。蛍光タンパク質がGCaMP6sである場合、励起光の波長は例えば495nmであり、蛍光の波長は510nmから580nmである。 For example, after the fluid 40 to be tested for odor is put into the tube 30, the tube 30 is placed on a fluorometer and the odor detection cells 20 are irradiated with excitation light. As shown in FIG. 7, the odor detecting cell 20 irradiated with the excitation light emits intense fluorescence corresponding to the concentration of the odor molecule contained in the fluid 40 to be inspected for odor. When the fluorescent protein is GCAMP6s, the wavelength of the excitation light is, for example, 495 nm, and the wavelength of fluorescence is 510 nm to 580 nm.
 匂い検出細胞20が発した蛍光の強度に基づき、匂い検査の対象の流体40の匂いを評価する。例えば、予め取得した蛍光の強度と、匂い分子の濃度や匂いの強さと、の関係に基づき、流体40の匂いを定量化してもよい。あるいは、匂い検出細胞20が発した蛍光の強度が、予め設定された基準値以上である場合、匂い検査の対象の流体40の匂いが基準値以上であると評価してもよい。 The odor of the fluid 40 to be inspected for odor is evaluated based on the intensity of fluorescence emitted by the odor detection cells 20. For example, the odor of the fluid 40 may be quantified based on the relationship between the intensity of fluorescence acquired in advance and the concentration of odor molecules and the intensity of odor. Alternatively, when the intensity of fluorescence emitted by the odor detecting cell 20 is equal to or higher than a preset reference value, it may be evaluated that the odor of the fluid 40 to be tested for odor is equal to or higher than the reference value.
 本実施形態に係る匂い検出方法によれば、予め基板10に固定された匂い検出細胞20に匂い検査の対象の流体40を接触させることによって、簡便に匂い検査の対象の流体40の匂いを評価することが可能である。 According to the odor detection method according to the present embodiment, the odor of the fluid 40 to be tested for odor is easily evaluated by bringing the fluid 40 to be tested for odor into contact with the odor detection cells 20 fixed to the substrate 10 in advance. It is possible to do.
 また、本実施形態に係る匂い検出方法において、例えば蛍光光度計として、持ち運び可能な卓上フルオロメーターを用いると、実験室に限らず任意の場所で、匂い検査の対象の流体40の匂いを短時間で評価することが可能である。例えば、匂い検査の対象の流体40が水であり、検査対象の匂いがカビ臭である場合、屋外の水源で水を採取し、その場で、水のカビ臭を検査することが可能である。 Further, in the odor detection method according to the present embodiment, for example, when a portable desktop fluorometer is used as a fluorometer, the odor of the fluid 40 to be inspected for odor can be detected in a short time not only in the laboratory but also in any place. It is possible to evaluate with. For example, when the fluid 40 to be inspected for odor is water and the odor to be inspected is a musty odor, it is possible to collect water from an outdoor water source and inspect the musty odor of the water on the spot. ..
 (実施例)
 (実施例1:DmOr56a発現細胞の作製)
 キイロショウジョウバエの触角cDNA由来の、共受容体であるDmOrcoの遺伝子の開始コドンから終止コドンまでを、以下の遺伝子特異的な配列を含むプライマーで増幅し、DmOrco遺伝子(ORFの完全長)を得た。得られたDmOrco遺伝子を、pIBベクター(Invitrogen社製)のマルチクローニングサイトに挿入し、pIB-DmOrcoベクターを構築した。
 DmOrco:
 フォワード:5'-TTCGAATTTAAAGCTGCCGCCATGACAACCTCTATGCAACC-3'
 リバース:5'-TTACCTTCGAACCGCTTACTTAAGCTGAACAAGAACCATGAAG-3'
(Example)
(Example 1: Preparation of cells expressing DmOr56a)
From the start codon to the stop codon of the codon DmOrco gene derived from the antennal cDNA of Drosophila melanogaster was amplified with a primer containing the following gene-specific sequence to obtain the DmOrco gene (full length of ORF). .. The obtained DmOrco gene was inserted into a multicloning site of a pIB vector (manufactured by Invitrogen) to construct a pIB-DmOrco vector.
DmOrco:
Forward: 5'-TTCGAATTTAAAGCTGCCGCCATGACAACCTCTATGCAACC-3'
Reverse: 5'-TTACCTTCGAACCGCTTACTTAAGCTGAACAAGAACCATGAAG-3'
 PCRによる遺伝子の増幅は、各100pmol/Lの濃度のフォワードプライマー及びリバースプライマー、PrimeSTAR HS DNAポリメラーゼ(タカラバイオ(株)R010A)、当該ポリメラーゼに添付の反応バッファー、並びにdNTPを使用し、ポリメラーゼに添付のプロトコールに従って行った。PCRの温度条件は、94℃で2分間のステップ、次に、98℃で10秒間、55℃で10秒間、72℃で2分間の温度サイクルを30サイクル繰り返すステップ、その後、72℃で10分間のステップとした。 Gene amplification by PCR uses forward and reverse primers at a concentration of 100 pmol / L, PrimeSTAR HS DNA polymerase (Takara Bio Co., Ltd. R010A), the reaction buffer attached to the polymerase, and dNTP, and attaches to the polymerase. I followed the protocol of. The PCR temperature conditions are a step of 94 ° C. for 2 minutes, then a step of repeating a temperature cycle of 98 ° C. for 10 seconds, 55 ° C. for 10 seconds, 72 ° C. for 2 minutes for 30 cycles, and then at 72 ° C. for 10 minutes. It was a step of.
 同様に、キイロショウジョウバエの触角cDNA由来の、受容体であるDmOr56aの遺伝子の開始コドンから終止コドンまでを、以下の遺伝子特異的な配列を含むプライマーで増幅し、DmOr56a遺伝子(ORFの完全長)を得た。得られたDmOr56a遺伝子を、pIBベクターのマルチクローニングサイトに挿入し、pIB-DmOr56aベクターを構築した。
 DmOr56a:
 フォワード:5'-CAGTGTGGTGGAATTGCCGCCATGTTTAAAGTTAAGGATCTGTTGC-3'
 リバース:5'-GCCCTCTAGACTCGACTAATACAAGTGGGAGCTAC-3'
Similarly, the start codon to stop codon of the receptor DmOr56a gene derived from the tactile cDNA of Drosophila melanogaster is amplified with a primer containing the following gene-specific sequence to obtain the DmOr56a gene (full length of ORF). Obtained. The obtained DmOr56a gene was inserted into the multi-cloning site of the pIB vector to construct the pIB-DmOr56a vector.
DmOr56a:
Forward: 5'-CAGTGTGGTGGAATTGCCGCCATGTTTAAAGTTAAGGATCTGTTGC-3'
Reverse: 5'-GCCCTCTAGACTCGACTAATACAAGTGGGAGCTAC-3'
 次に、pIB-DmOrcoベクターのタンパク質発現カセット(OpIE2プロモーター(P(OpIE2))、DmOrco、OpIE2ポリA付加シグナル(OpIE2pA)と連なる部分)を増幅し、pIB-DmOr56aベクターのPci1部位に、増幅されたタンパク質発現カセットを挿入し、嗅覚受容体発現ベクターpIB-DmOr56a-DmOrcoを構築した。 Next, the protein expression cassette of the pIB-DmOrco vector (the portion linked to the OpIE2 promoter (P (OpIE2)), DmOrco, and OpIE2 polyA addition signal (OpIE2pA)) was amplified and amplified to the Pci1 site of the pIB-DmOr56a vector. The protein expression cassette was inserted to construct the olfactory receptor expression vector pIB-DmOr56a-DmOrco.
 また、カルシウ感受性タンパク質(GCaMP6s)発現ベクターを構築した。GCaMP6s遺伝子は、Addgeneを介して、Douglas Kim博士(Janelia Farm Research Campus,Howard Hughes Medical Institute)より入手した。GCaMP6sの遺伝子の開始コドンから終止コドンまでを、以下の遺伝子特異的な配列を含むプライマーで増幅し、GCaMP6s遺伝子(ORFの完全長)を得た。得られたGCaMP6s遺伝子を、pIZベクター(Invitrogen社製)のマルチクローニングサイトに挿入し、pIZ-GCaMP6sベクターを構築した。
 GCaMP6s:
 フォワード:5'-TTCGAATTTAAAGCTGCCGCCATGGGTTCTCATCATCATCATC-3'
 リバース:5'-TTACCTTCGAACCGCTCACTTCGCTGTCATCATTTGTAC-3'
In addition, a calcium sensitive protein (GCaMP6s) expression vector was constructed. The GCaMP6s gene was obtained from Dr. Douglas Kim (Janelia Farm Research Campus, Howard Hughes Medical Institute) via Addgene. From the start codon to the stop codon of the GCaMP6s gene was amplified with a primer containing the following gene-specific sequence to obtain the GCaMP6s gene (full length of ORF). The obtained GCaMP6s gene was inserted into a multicloning site of a pIZ vector (manufactured by Invitrogen) to construct a pIZ-GCaMP6s vector.
GCaMP6s:
Forward: 5'-TTCGAATTTAAAGCTGCCGCCATGGGTTCTCATCATCATCATC-3'
Reverse: 5'-TTACCTTCGAACCGCTCACTTCGCTGTCATCATTTGTAC-3'
 構築した嗅覚受容体発現ベクター及びカルシウ感受性タンパク質発現ベクターを、リポフェクション法(TransIT-Insect;Mirus社製、登録商標)により、TransIT-Insectの添付のマニュアルに従って、Sf21細胞に導入した。これにより、DmOr56a受容体及び共受容体DmOrco、並びにカルシウ感受性タンパク質(GCaMP6s)を発現しているSf21細胞を得た。DmOr56a受容体は、カビ臭の匂い分子に反応する。 The constructed olfactory receptor expression vector and calcium-sensitive protein expression vector were introduced into Sf21 cells by the lipofection method (TransIT-Insect; registered trademark of Mirus) according to the attached manual of TransIT-Insect. As a result, Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and calciu-sensitive protein (GCaMP6s) were obtained. The DmOr56a receptor reacts with musty odor molecules.
 (実施例2:DmOr56a発現細胞の応答の濃度依存性)
 カビ臭の原因物質であるゲオスミンを0mol/L、30nmol/L、100nmol/L、300nmol/L、1μmol/L、3μmol/L、10μmol/L、及び30μmol/Lにアッセイバッファー(140mmol/LのNaCl、5.6mmol/LのKCl、4.5mmol/LのCaCl2、11.26mmol/LのMgCl2、10mmol/LのHEPES、9.4mmol/LのD-glucose、pH7.2)で段階希釈した。なお、応答測定用アッセイバッファーおよび匂い溶液はすべて終濃度0.1%DMSOを含むように調製した。次に、希釈液のそれぞれを、DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞に接触させた。その結果、図8に示すように、DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞は、ゲオスミンの濃度に応じた強度の蛍光を発した。
(Example 2: Concentration dependence of response of DmOr56a expressing cells)
The assay buffer (140 mmol / L NaCl) was added to 0 mol / L, 30 nmol / L, 100 nmol / L, 300 nmol / L, 1 μmol / L, 3 μmol / L, 10 μmol / L, and 30 μmol / L of geosmine, which is the causative agent of musty odor. Serial dilution with 5.6 mmol / L KCl, 4.5 mmol / L CaCl 2 , 11.26 mmol / L MgCl 2 , 10 mmol / L HEPES, 9.4 mmol / L D-glucose, pH 7.2) did. The assay buffer for response measurement and the odor solution were all prepared to contain a final concentration of 0.1% DMSO. Next, each of the diluents was contacted with Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s. As a result, as shown in FIG. 8, Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s emitted intense fluorescence according to the concentration of geosmin.
 (実施例3:DmOr56a発現細胞の応答の匂い分子特異性)
 10μmol/Lの濃度でリナロールを含む溶液、10μmol/Lの濃度でデカナールを含む溶液、10μmol/Lの濃度でオクタナールを含む溶液、10μmol/Lの濃度でシトラールを含む溶液、及び10μmol/Lの濃度でゲオスミンを含む溶液を用意した。リナロールは、スズラン、ラベンダー、ベルガモット様の香りをもたらす匂い分子である。デカナールは、柑橘系の香りをもたらす匂い分子である。オクタナールは、果実の香りをもたらす匂い分子である。シトラールは、レモンの香りをもたらす匂い分子である。
(Example 3: Smell molecule specificity of response of DmOr56a expressing cells)
A solution containing linalol at a concentration of 10 μmol / L, a solution containing decanal at a concentration of 10 μmol / L, a solution containing octanal at a concentration of 10 μmol / L, and a solution containing citral at a concentration of 10 μmol / L, and a concentration of 10 μmol / L. A solution containing geosmin was prepared in. Linalool is an odor molecule that produces lily of the valley, lavender, and bergamot-like scents. Decanal is an odor molecule that produces a citrus scent. Octanal is an odor molecule that gives rise to the scent of fruits. Citral is an odor molecule that gives the scent of lemon.
 それぞれの匂い分子を含む溶液を、DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞に接触させた。その結果、図9に示すように、DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞は、ゲオスミンに特異的に反応して蛍光を発した。 The solution containing each odor molecule was contacted with Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s. As a result, as shown in FIG. 9, Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s reacted specifically with geosmin to fluoresce.
 (実施例4:DmOr56a発現細胞の懸濁液を用いた匂い分子の検出)
 T-25フラスコでDmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞を接着培養した。その後、T-25フラスコから細胞をスクレイパー(IWAKI;9020-250)で剥がし、細胞懸濁液を50mLチューブに移した。500×gでチューブを遠心後、チューブから上清を取り除いた。
(Example 4: Detection of odor molecules using a suspension of DmOr56a expressing cells)
Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s were adherently cultured in a T-25 flask. The cells were then stripped from the T-25 flask with a scraper (IWAKI; 9020-250) and the cell suspension was transferred to a 50 mL tube. After centrifuging the tube at 500 xg, the supernatant was removed from the tube.
 チューブに、アッセイバッファーを20mL添加し、細胞ペレットをアッセイバッファー中に懸濁した。その後、チューブを500×gで遠心した。遠心後、チューブから上清を取り除き、1×107cells/mLとなるようにアッセイバッファーをチューブに添加し、細胞を懸濁することで、細胞懸濁液を得た。 To the tube, 20 mL of assay buffer was added and the cell pellet was suspended in assay buffer. The tube was then centrifuged at 500 xg. After centrifugation, the supernatant was removed from the tube , assay buffer was added to the tube at 1 × 10 7 cells / mL, and the cells were suspended to obtain a cell suspension.
 0.5mLチューブ(プロメガ;E4941)に180μLの細胞懸濁液を入れ、チューブを蛍光光度計(Quantus、Fluorometer、登録商標)に設置して、図10に示すように、ベースとなる蛍光強度を測定した。変動が±2%以内の蛍光強度が連続して10回取得できるまで、5秒間のピペッティングと蛍光計測を繰り返し、ベースとなる蛍光強度を安定させた。ベースとなる蛍光強度が安定した後、10μmol/Lのゲオスミン20μLをチューブ内の細胞懸濁液に滴下した。滴下後、20秒ごとに蛍光強度を測定した。その結果、ゲオスミンに反応して、細胞が蛍光を発することが確認された。しかし、細胞を固定していないと、ベースとなる蛍光強度が安定するまでに、時間がかかることが示された。 Place 180 μL of cell suspension in a 0.5 mL tube (Promega; E4941) and place the tube on a fluorometer (Quantus, Fluorometer, registered trademark) to determine the base fluorescence intensity as shown in FIG. It was measured. The base fluorescence intensity was stabilized by repeating pipetting and fluorescence measurement for 5 seconds until the fluorescence intensity with a fluctuation of ± 2% or less could be obtained 10 times in succession. After the base fluorescence intensity was stabilized, 20 μL of 10 μmol / L geosmin was added dropwise to the cell suspension in the tube. After the dropping, the fluorescence intensity was measured every 20 seconds. As a result, it was confirmed that the cells fluoresce in response to geosmin. However, it has been shown that it takes time for the base fluorescence intensity to stabilize if the cells are not immobilized.
 (実施例5:均質な匂い検出細胞系統の樹立)
 Grace's Insect Medium, Supplemented(Gibco;11605-094)に、終濃度10%のUS Insect Cell Screened FBS(GEヘルスケア;SH30070.03)と、3種類の抗生物質(終濃度10μg/mLのGentamicin Reagent Solution(Gibco;15710-064)、終濃度10μg/mLのBlasticidin S HCl(Gibco;A11139-03)、終濃度100μg/mLのZeocin(Invitrogen;R25001))を添加して、継代培地を用意した。当該継代培地を用いて、DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞をフラスコ(FALCON;353082)内で継代培養した。継代時の細胞懸濁液の液量は6mLとした。細胞がコンフルエントになったら、フラスコから6mLの上清を回収し、15mLチューブ(TPP;91015)に入れた。微量高速遠心機を用いて、15mLチューブを400×g、4℃で3分間遠心した。
(Example 5: Establishment of homogeneous odor detection cell line)
Grace's Insec Medium, Supermented (Gibco; 11605-094), US Insect Cell Selected FBS (GE Healthcare; SH30070.03) with a final concentration of 10%, and 3 types of antibiotics (final concentration of 10 μg / mL Gentamicin) Prepare a subculture medium by adding Reagent Solution (Gibco; 15710-064), Blasticidin S HCl (Gibco; A11139-03) with a final concentration of 10 μg / mL, and Zeocin (Invitrogen; R25001) with a final concentration of 100 μg / mL. did. Using the subculture medium, Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s were subcultured in a flask (FALCON; 353082). The volume of the cell suspension at the time of passage was 6 mL. When the cells became confluent, 6 mL of supernatant was collected from the flask and placed in a 15 mL tube (TPP; 91015). A 15 mL tube was centrifuged at 400 xg at 4 ° C. for 3 minutes using a micro high speed centrifuge.
 遠心後、上清を10mLシリンジ(TOP;01007)と0.45μmフィルター(CORNING;431220)を用いて滅菌した。滅菌した上清を、抗生物質(終濃度10μg/mLのBlasticidin S HCl、終濃度100μg/mLのZeocin)を含む、等量の新しい継代培地と混合することで、10mLのコンディション培地を調製した。 After centrifugation, the supernatant was sterilized using a 10 mL syringe (TOP; 01007) and a 0.45 μm filter (CORNING; 431220). A 10 mL condition medium was prepared by mixing the sterilized supernatant with an equal volume of new passage medium containing antibiotics (Blastidin S HCl with a final concentration of 10 μg / mL, Zeocin with a final concentration of 100 μg / mL). ..
 上清を回収したフラスコ底面に接着した細胞を剥がして新しい培地1mLに懸濁し、細胞懸濁液を1.5mLチューブ(AXYGEN;MCT-150-C)に回収した。細胞を40個含む細胞懸濁液を抽出し、上記のコンディション培地に加え、よくピペッティングをした。細胞を加えられたコンディション培地の全量をリザーバー(BMBio;BM-0850-1)に移した。さらに、8マルチチャンネルピペット(HTL;HT5123)を用いて、96ウェルプレート(IWAKI;3860-096)に細胞を加えられたコンディション培地を100μLずつ滴下し、その後、細胞を27℃で培養した。細胞がウェルに接着した後、倒立顕微鏡でウェルを観察し、単一細胞(シングルセル)のみがコンディション培地中に存在するウェルを確認した。 The cells adhered to the bottom of the flask from which the supernatant was collected were peeled off and suspended in 1 mL of a new medium, and the cell suspension was collected in a 1.5 mL tube (AXYGEN; MCT-150-C). A cell suspension containing 40 cells was extracted, added to the above-mentioned condition medium, and pipetted well. The entire volume of the condition medium to which the cells were added was transferred to a reservoir (BMBio; BM-0850-1). Further, using an 8-channel pipette (HTL; HT5123), 100 μL of the condition medium in which the cells were added to a 96-well plate (IWAKI; 3860-096) was added dropwise, and then the cells were cultured at 27 ° C. After the cells adhered to the wells, the wells were observed under an inverted microscope to confirm the wells in which only single cells (single cells) were present in the condition medium.
 播種時に単一細胞が確認できたウェルの細胞を約80%から約90%コンフルエントになるまで培養を続けた。その後、24ウェルプレート(IWAKI;3820-024)、35mmディッシュ(CORNING;353801)、T-25フラスコの順で、細胞をスケールアップした。24ウェルプレート、35mmディッシュ、T-25フラスコでの培養は、それぞれ液量が500μL、2.5mL、5mLとなるように培地の量を調整し、27℃で培養した。T-25フラスコまでスケールアップができた細胞は、カルシウムイメージングにより応答性を調査し、良好な応答性を示した細胞系統を、均質な匂い検出細胞系統として取得した。 The cells in the wells where single cells were confirmed at the time of seeding were continuously cultured until they became about 80% to about 90% confluent. The cells were then scaled up in the order of a 24-well plate (IWAKI; 3820-024), a 35 mm dish (CORNING; 353801), and a T-25 flask. For culturing in a 24-well plate, a 35 mm dish, and a T-25 flask, the amount of medium was adjusted so that the liquid volumes were 500 μL, 2.5 mL, and 5 mL, respectively, and the cells were cultured at 27 ° C. The responsiveness of the cells scaled up to the T-25 flask was investigated by calcium imaging, and the cell line showing good responsiveness was obtained as a homogeneous odor detection cell line.
 (実施例6:均質な匂い検出細胞系統の反応性)
 DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞であって、均質化していないSf21細胞と、DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞であって、均質化しているSf21細胞と、の、匂い物質への蛍光応答を下記手順で測定した。
(Example 6: Reactivity of homogeneous odor detection cell line)
Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s, which are not homogenized, and Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s. The fluorescence response of the homogenized Sf21 cells to the odorant was measured by the following procedure.
 細胞を直径12mmのカバーガラス(CS-12R:Warner Instruments,LLC)に播種して接着させた後、カバーガラスを円形カバーガラス用開放型バスチャンバー(RC-48LP:Warner Instruments,LLC)に挿入した。チャンバー内の溶液の潅流と匂い分子の添加のために、ペリスタルティックチューブポンプ(MP-2010:Tokyo Rikakikai Co.Ltd.)に接続した内径1mm、外径3mmのシリコンチューブを、自作ホルダーによってチャンバーのインレットとアウトレットにそれぞれ設置した。潅流条件を約1.5mL/分の流量、約200μLのチャンバー内液量とし、10μmol/Lのゲオスミンによる匂い刺激時間を15秒として細胞への刺激を行った。 After the cells were seeded and adhered to a cover glass (CS-12R: Warner Instruments, LLC) having a diameter of 12 mm, the cover glass was inserted into an open bath chamber (RC-48LP: Warner Instruments, LLC) for a circular cover glass. .. For perfusion of the solution in the chamber and addition of odor molecules, a silicon tube with an inner diameter of 1 mm and an outer diameter of 3 mm connected to a peristaltic tube pump (MP-2010: Tokyo Rikakai Co. Ltd.) was placed in the chamber by a self-made holder. It was installed at the inlet and outlet respectively. The cells were stimulated under the perfusion conditions with a flow rate of about 1.5 mL / min and a volume of liquid in the chamber of about 200 μL, and an odor stimulation time of 10 μmol / L with geosmin was set to 15 seconds.
 チャンバー内の細胞の蛍光応答は、顕微鏡を用いて測定した。顕微鏡は、20倍の水浸対物レンズ(UMPlanFI 20x/0.50 W:Olympus)を備えた正立蛍光顕微鏡(BX51WI: Olympus)を用いた。細胞の蛍光強度変化の計測には、EM-CCDカメラ(DU-897E:Andor Technology PLC)を使用した。カメラの操作はAndoriQ(Andor Technology)を用いて512×512ピクセルの画像を取得した。顕微鏡のフィルタには、GFP用の蛍光フィルターセット(U-MGFPHQ: Olympus)を使用した。光源には100Wハロゲンランプ(TH4-100, Olympus)を用い、蛍光観察時の露光時間は500ミリ秒に設定した。撮影は1秒ごとに行った。 The fluorescence response of the cells in the chamber was measured using a microscope. As a microscope, an upright fluorescence microscope (BX51WI: Olympus) equipped with a 20x water immersion objective lens (UMPlanFI 20x / 0.50 W: Olympus) was used. An EM-CCD camera (DU-897E: Andor Technology PLC) was used to measure the change in fluorescence intensity of cells. As for the operation of the camera, an image of 512 × 512 pixels was acquired using AndoriQ (Andor Technology). A fluorescent filter set for GFP (U-MGFPHQ: Olympus) was used as the filter of the microscope. A 100 W halogen lamp (TH4-100, Olympus) was used as the light source, and the exposure time during fluorescence observation was set to 500 milliseconds. Shooting was done every second.
 匂い分子を与えた前後の蛍光強度の変化率と、細胞数の割合と、の関係を示すグラフを図11に示す。均質化されていない細胞系統を用いた場合、5%以上の蛍光反応のあった細胞は全体のうち67.7%であった。また、匂い分子を与えた際の蛍光変化率が低い細胞が多く、変化率の平均は26.7%であった。これに対し、均質化された細胞系統を用いた場合、蛍光反応のあった細胞は全体のうち92.0%であった。また、匂い分子を与えた際の蛍光変化率が高い細胞が多く、変化率の平均は45.9%であった。したがって、均質化された細胞系統を用いた場合、匂い分子を高い感度で検出できることが示された。 FIG. 11 shows a graph showing the relationship between the rate of change in fluorescence intensity before and after giving an odor molecule and the ratio of the number of cells. When a non-homogenized cell line was used, 67.7% of the cells had a fluorescence reaction of 5% or more. In addition, many cells had a low rate of change in fluorescence when an odor molecule was given, and the average rate of change was 26.7%. On the other hand, when the homogenized cell line was used, 92.0% of the cells had a fluorescence reaction. In addition, many cells had a high rate of change in fluorescence when an odor molecule was given, and the average rate of change was 45.9%. Therefore, it was shown that odor molecules can be detected with high sensitivity when a homogenized cell line is used.
 (実施例7:匂い検出細胞の長期安定性)
 クローン化直後の匂い刺激時の蛍光変化率が36.1%の均質化された細胞系統を長期間継代し、匂い刺激時の蛍光変化率の継時変化を調べた。その結果、図12に示すように、クローン化後、3か月半にわたって、クローン化直後と同等以上の匂い刺激に対する蛍光変化率を示した。また、クローン化直後から3か月半、均質化された細胞系統を冷凍保存し、融解後、当該細胞系統を長期間継代し、匂い刺激時の蛍光変化率の継時変化を調べた。その結果、図13に示すように、融解後、2か月にわたって、匂い刺激に対してクローン化直後と同等以上の蛍光変化率を示した。また、クローン化直後から6か月半、均質化された細胞系統を冷凍保存し、融解後、当該細胞系統を長期間継代し、匂い刺激時の蛍光変化率の継時変化を調べた。その結果、図14に示すように、融解後、1か月半にわたって、匂い刺激に対してクローン化直後と同等以上の蛍光変化率を示した。
(Example 7: Long-term stability of odor detection cells)
A homogenized cell line having a fluorescence change rate of 36.1% at the time of odor stimulation immediately after cloning was passaged for a long period of time, and the change in fluorescence change rate at the time of odor stimulation was examined. As a result, as shown in FIG. 12, the rate of change in fluorescence with respect to the odor stimulus equal to or higher than that immediately after cloning was shown for three and a half months after cloning. In addition, the homogenized cell line was frozen and stored for 3 and a half months immediately after cloning, and after thawing, the cell line was subcultured for a long period of time, and the change in the fluorescence change rate at the time of odor stimulation was examined. As a result, as shown in FIG. 13, the fluorescence change rate was equal to or higher than that immediately after cloning for 2 months after thawing. In addition, the homogenized cell line was stored frozen for 6 and a half months immediately after cloning, and after thawing, the cell line was subcultured for a long period of time, and the change in the fluorescence change rate at the time of odor stimulation was examined. As a result, as shown in FIG. 14, for one and a half months after thawing, the fluorescence change rate was equal to or higher than that immediately after cloning with respect to the odor stimulus.
 (実施例8:匂い検出キットの作製)
 76mm×26mmのスライドガラス(MATSUNAMI、S9441)をガラス切断用ダイアモンドカッタ(TRUSCO、419-9847)で4mm×26mmに切断した。切断したガラスにコラーゲン溶液を約100μL滴下し、スライドガラスを30分間クリーンベンチ内で静置した。コラーゲン溶液はCellmatrix TypeI-C(新田ゼラチン株式会社、63100771)をHCl(富士フイルム和光純薬株式会社、pH=3)で10倍希釈して使用した。
(Example 8: Preparation of odor detection kit)
A 76 mm × 26 mm slide glass (MATSUNAMI, S9441) was cut into 4 mm × 26 mm with a glass cutting diamond cutter (TRUSCO, 419-9847). Approximately 100 μL of collagen solution was added dropwise to the cut glass, and the slide glass was allowed to stand in a clean bench for 30 minutes. The collagen solution used was Cellmatic Type IC (Nitta Gelatin Co., Ltd., 63100771) diluted 10-fold with HCl (Fujifilm Wako Pure Chemical Industries, Ltd., pH = 3).
 30分後、スライドガラスから余分なコラーゲン溶液を取り除き、100μmol/Lの細胞膜修飾剤(oleyl-PEG-NHS)溶液をスライドガラスに適量滴下し、37℃で30分間静置した。細胞膜修飾剤溶液は、SUNBRIGHT(NOF、OE-040CS)0.4mgと超脱水DMSO10mLの混合液をD-PBS(富士フィルム和光純薬株式会社、045-29795)で100倍希釈して調製した。30分後、スライドガラスから余分な細胞膜修飾剤溶液を取り除き、20分間静置した。 After 30 minutes, the excess collagen solution was removed from the slide glass, an appropriate amount of a 100 μmol / L cell membrane modifier (oleyl-PEG-NHS) solution was added dropwise to the slide glass, and the mixture was allowed to stand at 37 ° C. for 30 minutes. The cell membrane modifier solution was prepared by diluting 0.4 mg of SUNBRIGHT (NOF, OE-040CS) and 10 mL of ultra-dehydrated DMSO 100-fold with D-PBS (Fuji Film Wako Pure Chemical Industries, Ltd., 045-29795). After 30 minutes, the excess cell membrane modifier solution was removed from the slide glass and allowed to stand for 20 minutes.
 20分後、約1×107個の均質化された匂い検出細胞の懸濁液(溶媒はアッセイバッファー)を細胞膜修飾剤処理したスライドガラス表面に滴下し、10分間静置した。その後、DMSO0.1%を含むアッセイバッファー400μLで満たした0.5mLチューブ内に、匂い検出細胞を単層で固定したスライドガラスを固定することで、実施例に係る匂い検出キットを作製した。 After 20 minutes, a suspension of about 1 × 10 7 homogenized odor-detecting cells (solvent was assay buffer) was added dropwise to a slide glass surface treated with a cell membrane modifier, and the mixture was allowed to stand for 10 minutes. Then, the odor detection kit according to the example was prepared by fixing a slide glass in which odor detection cells were fixed with a single layer in a 0.5 mL tube filled with 400 μL of assay buffer containing 0.1% DMSO.
 (実施例9:キットと蛍光光度計を用いた匂い測定)
 実施例に係る匂い検出キットを作製してすぐに、ベースとなる蛍光強度が安定になるのを確認するために、実施例に係る匂い検出キットを蛍光光度計(Quantus、Fluorometer、登録商標)に設置し、蛍光強度の変化率の幅が±2%以内となる10点が測定できるまで待機した。次に、実施例に係る匂い検出キットのチューブ中のアッセイバッファー400μLに10μmol/Lのゲオスミンを200μL添加し、チューブ中の溶液を10秒間ピペッティングした。その後、20秒ごとに140秒間にわたって、蛍光強度の変化率を測定した。その結果、図15に示すように、ゲオスミンに対する蛍光応答が測定された。複数の実施例に係る匂い検出キットを用いて同様の計測を繰り返したところ、いずれも安定的にゲオスミンに対する蛍光応答が測定された。なお、スライドガラスをチューブ内に固定しなかった場合は、ベースとなる蛍光強度が安定せず、ゲオスミンに対する蛍光応答を安定的に測定できないことがあった。
(Example 9: Smell measurement using a kit and a fluorometer)
Immediately after preparing the odor detection kit according to the example, in order to confirm that the base fluorescence intensity becomes stable, the odor detection kit according to the example is mounted on a fluorometer (Quantus, Fluorometer, registered trademark). It was installed and waited until 10 points with a range of change rate of fluorescence intensity within ± 2% could be measured. Next, 200 μL of 10 μmol / L geosmin was added to 400 μL of the assay buffer in the tube of the odor detection kit according to the example, and the solution in the tube was pipetted for 10 seconds. Then, the rate of change in fluorescence intensity was measured every 20 seconds for 140 seconds. As a result, as shown in FIG. 15, the fluorescence response to geosmin was measured. When the same measurement was repeated using the odor detection kits according to a plurality of examples, the fluorescence response to geosmin was stably measured in each of them. If the slide glass was not fixed in the tube, the base fluorescence intensity was not stable, and the fluorescence response to geosmin could not be measured stably.
 (実施例10:キットと蛍光光度計を用いた低濃度匂い分子の検出)
 実施例に係る匂い検出キットに、終濃度がそれぞれ0mol/L、10pmol/L、100pmol/L、1nmol/L、10nmol/L、100nmol/L、1μmol/L、10μmol/Lとなるようゲオスミンを添加し、蛍光光度計(Quantus、Fluorometer、登録商標)により蛍光強度の変化率を測定した。結果を図16に示す。ゲオスミンの濃度が0mol/Lの時の蛍光強度変化率は1.5±0.4%であり、ゲオスミンの濃度が10pmol/Lの時の蛍光強度変化率は2.7±0.5%であり、ゲオスミンの濃度が100pmol/Lの時の蛍光強度変化率は5.5±1.0%であり、ゲオスミンの濃度が1nmol/Lの時の蛍光強度変化率は8.1±0.8%であり、ゲオスミンの濃度が10nmol/Lの時の蛍光強度変化率は12.0±1.0%であり、ゲオスミンの濃度が100nmol/Lの時の蛍光強度変化率は21.3±2.0%であり、ゲオスミンの濃度が1μmol/Lの時の蛍光強度変化率は35.0±5.3%であり、ゲオスミンの濃度が10μmol/Lの時の蛍光強度変化率は29.4±4.3%であり、ゲオスミンの濃度に依存して蛍光強度が増加した。
(Example 10: Detection of low-concentration odor molecules using a kit and a fluorometer)
Geosmin was added to the odor detection kit according to the examples so that the final concentrations were 0 mol / L, 10 pmol / L, 100 pmol / L, 1 nmol / L, 10 nmol / L, 100 nmol / L, 1 μmol / L, and 10 μmol / L, respectively. Then, the rate of change in fluorescence intensity was measured with a fluorometer (Quantus, Fluorometer, registered trademark). The results are shown in FIG. When the geosmin concentration is 0 mol / L, the rate of change in fluorescence intensity is 1.5 ± 0.4%, and when the concentration of geosmin is 10 pmol / L, the rate of change in fluorescence intensity is 2.7 ± 0.5%. Yes, the rate of change in fluorescence intensity when the concentration of geosmin is 100 pmol / L is 5.5 ± 1.0%, and the rate of change in fluorescence intensity when the concentration of geosmin is 1 nmol / L is 8.1 ± 0.8. %, The rate of change in fluorescence intensity when the concentration of geosmin is 10 nmol / L is 12.0 ± 1.0%, and the rate of change in fluorescence intensity when the concentration of geosmin is 100 nmol / L is 21.3 ± 2. When the concentration of geosmin is 1.0% and the concentration of geosmin is 1 μmol / L, the rate of change in fluorescence intensity is 35.0 ± 5.3%, and when the concentration of geosmin is 10 μmol / L, the rate of change in fluorescence intensity is 29.4. It was ± 4.3%, and the fluorescence intensity increased depending on the concentration of geosmin.
 測定された蛍光強度の変化率を、ウェルチのt検定で計算したp値をHolmの方法により補正した有意水準により検定した結果、0mol/Lのゲオスミンと比較して、100pmol/L以上のゲオスミンで有意差が認められた。したがって、実施例に係る匂い検出キットと蛍光光度計を用いれば、GC/MSと同等の感度で匂い分子を検出可能であることが示された。例えば、日本の水道水の水源となるダム湖におけるゲオスミンの濃度は33.5nmol/L以下であった。したがって、実施例に係る匂い検出キットと蛍光光度計を用いれば、ダム湖から採取した水のカビ臭を検出可能であることが示された。また、上述のように調製したゲオスミン溶液に対する人による官能評価の下限は約10nmol/Lであった。したがって、実施例に係る匂い検出キットと蛍光光度計を用いれば、人による官能評価では検出できない低濃度のカビ臭を検出可能であることが示された。 As a result of testing the measured rate of change in fluorescence intensity by the significance level obtained by correcting the p-value calculated by Welch's t-test by the Holm method, geosmin of 100 pmol / L or more was compared with geosmin of 0 mol / L. A significant difference was observed. Therefore, it was shown that the odor molecule can be detected with the same sensitivity as GC / MS by using the odor detection kit and the fluorometer according to the examples. For example, the concentration of geosmin in the dam lake, which is the source of tap water in Japan, was 33.5 nmol / L or less. Therefore, it was shown that the musty odor of water collected from the dam lake can be detected by using the odor detection kit and the fluorometer according to the examples. In addition, the lower limit of human sensory evaluation of the geosmin solution prepared as described above was about 10 nmol / L. Therefore, it was shown that a low-concentration mold odor that cannot be detected by a human sensory evaluation can be detected by using the odor detection kit and the fluorometer according to the examples.
 (実施例11:キットと蛍光光度計を用いた匂い分子の特異的な検出)
 ダム湖水中にはゲオスミンや2-メチルイソボルネオール(2-MIB)といった複数種類のカビ臭が発生する。そこで、作製した実施例に係る匂い検出キットのカビ臭選択性を評価するために、ゲオスミン10μmol/L、2-MIB 10μmol/L、及びどちらのカビ臭も含まないアッセイバッファー(コントロール)のそれぞれを実施例に係る匂い検出キットに滴下し、蛍光光度計(Quantus、Fluorometer、登録商標)で蛍光強度の変化率を測定した。
(Example 11: Specific detection of odor molecules using a kit and a fluorometer)
Multiple types of musty odors such as geosmin and 2-methylisoborneol (2-MIB) are generated in the dam lake water. Therefore, in order to evaluate the mold odor selectivity of the odor detection kit according to the prepared example, geosmin 10 μmol / L, 2-MIB 10 μmol / L, and an assay buffer (control) containing neither mold odor were used. It was added dropwise to the odor detection kit according to the example, and the rate of change in fluorescence intensity was measured with a fluorometer (Quantus, Fluorometer, registered trademark).
 その結果、図17に示すように、コントロールを滴下した場合の蛍光強度の変化率は0.1±0.6%、2-MIBを滴下した場合の蛍光強度の変化率は-0.3±1.1%、ゲオスミンを滴下した場合の蛍光強度の変化率は13.7±3.2%であった。測定された蛍光強度の変化率を、ウェルチのt検定で計算したp値をHolmの方法により補正した有意水準により検定した結果、コントロールと比較して、10μmol/Lのゲオスミンで有意差が認められ、10μmol/Lの2-MIBで有意差が認められなかった。よって、作製した実施例に係る匂い検出キットは、ゲオスミンを特異的に検出することが示された。 As a result, as shown in FIG. 17, the rate of change in fluorescence intensity when the control was dropped was 0.1 ± 0.6%, and the rate of change in fluorescence intensity when 2-MIB was dropped was −0.3 ±. The rate of change in fluorescence intensity was 1.1%, and the rate of change in fluorescence intensity when geosmin was added dropwise was 13.7 ± 3.2%. As a result of testing the measured rate of change in fluorescence intensity by the significance level obtained by correcting the p-value calculated by Welch's t-test by the Holm method, a significant difference was observed at 10 μmol / L geosmin compared with the control. No significant difference was observed in 2-MIB of 10 μmol / L. Therefore, it was shown that the odor detection kit according to the prepared example specifically detects geosmin.
 (実施例12:細胞懸濁液とキットの安定性の比較)
 匂い分子を加えていない匂い検出細胞の懸濁液を蛍光光度計(Quantus、Fluorometer、登録商標)に配置して、ベースとなる蛍光強度の変化率が±2%と安定になるまでの時間と、匂い分子を加えていない実施例に係る匂い検出キットを蛍光光度計に配置して、ベースとなる蛍光強度の変化率が±2%と安定になるまでの時間と、を比較した。その結果、安定になるまでの時間は、図18に示すように、匂い検出細胞の懸濁液で300±30秒、実施例に係る匂い検出キットで70±6秒であった。したがって、匂い検出細胞を基板上に単層で配置している実施例に係る匂い検出キットのほうが、安定になるまでの時間が短いことが示された。
(Example 12: Comparison of cell suspension and kit stability)
The suspension of odor detection cells to which no odor molecule was added was placed on a fluorometer (Quantus, Fluorometer, registered trademark), and the time until the rate of change of the base fluorescence intensity became stable at ± 2%. The odor detection kit according to the example to which no odor molecule was added was placed on a fluorometer, and the rate of change in the base fluorescence intensity was ± 2%, which was compared with the time until it became stable. As a result, as shown in FIG. 18, the time until stabilization was 300 ± 30 seconds for the suspension of the odor detection cells and 70 ± 6 seconds for the odor detection kit according to the example. Therefore, it was shown that the odor detection kit according to the example in which the odor detection cells are arranged in a single layer on the substrate has a shorter time to stabilize.
 (実施例13:細胞懸濁液とキットの応答性の比較)
 匂い検出細胞の懸濁液の匂い分子への応答と、実施例に係る匂い検出キットの匂い分子への応答と、を比較するため、それぞれにアッセイバッファー(コントロール)及びゲオスミン10μmol/Lのそれぞれを添加した後、120秒後の蛍光強度の変化率を蛍光光度計(Quantus、Fluorometer、登録商標)で測定した。その結果、図19に示すように、匂い検出細胞の懸濁液の場合、コントロール添加後の蛍光強度の変化率は-3.9±6.5%、ゲオスミン添加後の蛍光強度の変化率は3.2±3.6%であった。実施例に係る匂い検出キットの場合、コントロール添加後の蛍光強度の変化率は2.4±1.7%、ゲオスミン添加後の蛍光強度の変化率は27.5±4.3%であった。よって、実施例に係る匂い検出キットを用いると、コントロール添加時の蛍光強度の変化率が小さく、匂い分子添加時の蛍光強度の変化率が大きいことが示された。
(Example 13: Comparison of responsiveness between cell suspension and kit)
In order to compare the response of the odor detection cell suspension to the odor molecule and the response of the odor detection kit according to the example to the odor molecule, each of the assay buffer (control) and geosmin 10 μmol / L was used. The rate of change in fluorescence intensity 120 seconds after the addition was measured with a fluorometer (Quantus, Fluorometer, registered trademark). As a result, as shown in FIG. 19, in the case of the suspension of odor-detecting cells, the rate of change in fluorescence intensity after the addition of the control was -3.9 ± 6.5%, and the rate of change in the fluorescence intensity after the addition of geosmin was It was 3.2 ± 3.6%. In the case of the odor detection kit according to the example, the rate of change in fluorescence intensity after the addition of the control was 2.4 ± 1.7%, and the rate of change in the fluorescence intensity after the addition of geosmin was 27.5 ± 4.3%. .. Therefore, it was shown that when the odor detection kit according to the example was used, the rate of change in fluorescence intensity when the control was added was small, and the rate of change in fluorescence intensity when the odor molecule was added was large.
 (実施例14:細胞懸濁液とキットの測定結果のばらつきの比較)
 図19に示した結果にもとづき、それぞれの蛍光強度の変化率の変動係数の絶対値を求めた。変動係数の絶対値は、ばらつきを表す。その結果、図20に示すように、匂い検出細胞の懸濁液の場合、コントロール添加後の蛍光強度の変化率の変動係数の絶対値は165.9%、ゲオスミン添加後の蛍光強度の変化率の変動係数の絶対値は113.8%であった。実施例に係る匂い検出キットの場合、コントロール添加後の蛍光強度の変化率の変動係数の絶対値は71.2%、ゲオスミン添加後の蛍光強度の変化率の変動係数の絶対値は15.5%であった。よって、実施例に係る匂い検出キットを用いると、測定結果のばらつきが小さいことが示された。
(Example 14: Comparison of variation in measurement results between cell suspension and kit)
Based on the results shown in FIG. 19, the absolute value of the coefficient of variation of the rate of change of each fluorescence intensity was obtained. The absolute value of the coefficient of variation represents the variation. As a result, as shown in FIG. 20, in the case of the suspension of odor detection cells, the absolute value of the coefficient of variation of the change rate of the fluorescence intensity after the addition of the control was 165.9%, and the change rate of the fluorescence intensity after the addition of geosmin. The absolute value of the coefficient of variation of was 113.8%. In the case of the odor detection kit according to the example, the absolute value of the coefficient of variation of the rate of change in fluorescence intensity after the addition of the control is 71.2%, and the absolute value of the coefficient of variation of the coefficient of variation of the rate of change in fluorescence intensity after the addition of geosmin is 15.5. %Met. Therefore, it was shown that the variation in the measurement results was small when the odor detection kit according to the example was used.
 (実施例15:ダム湖から取得した水の測定)
 ダム湖湖畔にて、実施例に係る匂い検出キットと蛍光光度計(Quantus、Fluorometer、登録商標)を用いて、アッセイバッファー単独(コントロール)をキットに添加した場合と、ゲオスミン100μmol/Lを添加したアッセイバッファーをキットに添加した場合の蛍光強度の変化率を測定した。その結果、図21に示すように、アッセイバッファー単独(コントロール)をキットに添加した場合、蛍光強度の変化率は2.8%であり、ゲオスミン100μmol/Lを添加したアッセイバッファーをキットに添加した場合、蛍光強度の変化率は21.2%であった。よって、実施例に係る匂い検出キットを用いれば、屋外であっても、匂い分子の検出が可能であることが示された。
(Example 15: Measurement of water obtained from a dam lake)
At the shore of the dam lake, the assay buffer alone (control) was added to the kit and geosmin 100 μmol / L was added using the odor detection kit and the fluorometer (registered trademark) according to the examples. The rate of change in fluorescence intensity when the assay buffer was added to the kit was measured. As a result, as shown in FIG. 21, when the assay buffer alone (control) was added to the kit, the rate of change in fluorescence intensity was 2.8%, and the assay buffer containing 100 μmol / L of geosmin was added to the kit. In the case, the rate of change in fluorescence intensity was 21.2%. Therefore, it was shown that the odor molecule can be detected even outdoors by using the odor detection kit according to the example.
 次に、ダム湖湖畔にて、実施例に係る匂い検出キットと蛍光光度計(Quantus、Fluorometer、登録商標)を用いて、ダム水の表層水をキットに添加した場合と、ゲオスミン100μmol/Lを添加したダム水の表層水をキットに添加した場合の蛍光強度の変化率を測定した。その結果、図21に示すように、ダム水の表層水単独をキットに添加した場合、蛍光強度の変化率は6.0%であり、ゲオスミン100μmol/Lを添加したダム水の表層水をキットに添加した場合、蛍光強度の変化率は13.7%であった。ダム水の表層水をGC/MSで分析したところ、ダム水の表層水は、300pmol/Lのゲオスミンを含んでいた。したがって、実施例に係る匂い検出キットを用いれば、背景臭や夾雑物質が含まれるダム湖水を検査対象としても、特定の匂い分子を検出可能であることが示された。 Next, at the shore of the dam lake, when the surface water of the dam water was added to the kit using the odor detection kit and the fluorometer (registered trademark) according to the examples, and geosmin 100 μmol / L was added. The rate of change in fluorescence intensity when the surface water of the added dam water was added to the kit was measured. As a result, as shown in FIG. 21, when the surface water of the dam water alone was added to the kit, the rate of change in the fluorescence intensity was 6.0%, and the surface water of the dam water to which 100 μmol / L of geosmin was added was added to the kit. When added to, the rate of change in fluorescence intensity was 13.7%. When the surface water of the dam water was analyzed by GC / MS, the surface water of the dam water contained 300 pmol / L of geosmin. Therefore, it was shown that by using the odor detection kit according to the examples, it is possible to detect specific odor molecules even when dam lake water containing background odors and contaminants is inspected.
 (実施例16:DmOr56a受容体及びDmOr82a受容体発現細胞の作製)
 実施例5で述べた方法で、DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞から、均質な匂い検出細胞系統を作製した。
(Example 16: Preparation of DmOr56a receptor and DmOr82a receptor-expressing cells)
A homogeneous odor detection cell line was prepared from Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s by the method described in Example 5.
 また、キイロショウジョウバエの触角cDNA由来の、受容体であるDmOr82aの遺伝子の開始コドンから終止コドンまでを、以下の遺伝子特異的な配列を含むプライマーで増幅し、pIEx4ベクター(Novagen)のマルチクローニングサイト(BamHI、NotI)に挿入し、pIEx4-DmOr82aベクターを構築した。
 DmOr82a
 フォーワード; 5'-ACGTCAAGAGCTCGCGGATCGCCGCCATGGGTAGGCTGTTTCAACTG-3'
 リバース; 5'-CTTTACCAGAAGATGCGGCCTTACTCAATAGATTTGATGAG-3'
In addition, the start codon to the stop codon of the receptor DmOr82a gene derived from the tactile cDNA of Drosophila melanogaster was amplified with a primer containing the following gene-specific sequence, and the pIEx4 vector (Novagen) multicloning site (Novagen) It was inserted into BamHI, NotI) to construct a pIEx4-DmOr82a vector.
DmOr82a
Forward; 5'-ACGTCAAGAGCTCGCGGATCGCCGCCATGGGTAGGCTGTTTCAACTG-3'
Reverse; 5'-CTTTACCAGAAGATGCGGCCTTACTCAATAGATTTGATGAG-3'
 構築したpIEx4-DmOr82aベクターを、pIE1-neoベクター(Novagen社; G418耐性遺伝子含有)とともに、リポフェクション法(TransIT-insect; Mirus社製、登録商標)により、TransIT-Insectの添付のマニュアルに従って、DmOr56a受容体を発現している均質な匂い検出細胞系統に遺伝子導入した。これにより、DmOr56a受容体に加えて、DmOr82a受容体を発現している細胞を作製した。 The constructed pIEx4-DmOr82a vector is received by the lipofection method (TransIT-insect; Mirus, registered trademark) together with the pIE1-neo vector (Novagen; G418 resistance gene) according to the attached manual of TransIT-Insect. The gene was introduced into a homogeneous odor detection cell line expressing the body. As a result, cells expressing the DmOr82a receptor in addition to the DmOr56a receptor were prepared.
 (実施例17:DmOr56a受容体及びDmOr49b受容体発現細胞の作製)
 実施例5で述べた方法で、DmOr56a受容体及び共受容体DmOrco、並びにGCaMP6sを発現しているSf21細胞から、均質な匂い検出細胞系統を作製した。
(Example 17: Preparation of DmOr56a receptor and DmOr49b receptor-expressing cells)
A homogeneous odor detection cell line was prepared from Sf21 cells expressing DmOr56a receptor and co-receptor DmOrco, and GCaMP6s by the method described in Example 5.
 また、pIE1-neoベクター由来のG418耐性遺伝子の開始コドンから終止コドンまでを、以下の遺伝子特異的な配列を含むプライマーで増幅し、pIZベクター(pIZ/V5-His(Invitrogen社製)のマルチクローニングサイト(HindIII、SacII)に挿入し、pIZ-neoベクターを構築した。
 G418(neo)
 フォーワード; 5'-ATCTGTTCGAATTTAAAGCTGCCGCCATGATTGAACAAGATGGATTGC-3'
 リバース; 5'-GATAGGCTTACCTTCGAACCTCAGAAGAACTCGTCAAGAAG-3'
Further, the start codon to the stop codon of the G418 resistance gene derived from the pIE1-neo vector is amplified with a primer containing the following gene-specific sequence, and the pIZ vector (pIZ / V5-His (manufactured by Invitrogen)) is multicloned. It was inserted into the site (HindIII, SacII) to construct a pIZ-neo vector.
G418 (neo)
Forward; 5'-ATCTGTTCGAATTTAAAGCTGCCGCCATGATTGAACAAGATGGATTGC-3'
Reverse; 5'-GATAGGCTTACCTTCGAACCTCAGAAGAACTCGTCAAGAAG-3'
 次に、pIZ-neoベクターのタンパク質発現カセット(OpIE2プロモーター(P(OpIE2))、neo遺伝子、OpIE2ポリA付加シグナル(OpIE2pA)と連なる部分)を増幅し、pIBベクターのPci1部位に、増幅されたタンパク質発現カセットを挿入し、G418耐性遺伝子挿入ベクターpIB-neoベクターを構築した。 Next, the protein expression cassette of the pIZ-neo vector (the portion linked to the OpIE2 promoter (P (OpIE2)), neo gene, and OpIE2 polyA addition signal (OpIE2pA)) was amplified and amplified at the Pci1 site of the pIB vector. A protein expression cassette was inserted to construct a G418 resistance gene insertion vector, pIB-neo vector.
 次に、キイロショウジョウバエの触角cDNA由来の、受容体であるDmOr49bの遺伝子の開始コドンから終止コドンまでを、以下の遺伝子特異的な配列を含むプライマーで増幅し、pIB-neoベクター(上記)のマルチクローニングサイト(EcoRI、XhoI)に挿入し、pIB-DmOr49b-neoベクターを構築した。
 DmOr49b
 フォーワード; 5'-CAGTGTGGTGGAATTGCCGCCATGTTTGAAGACATTCAGCTAATC-3'
 リバース; 5'-GCCCTCTAGACTCGATCATCCGTAGACTCGCTTG-3'
Next, the start codon to the stop codon of the receptor DmOr49b gene derived from the tactile cDNA of Drosophila melanogaster was amplified with a primer containing the following gene-specific sequence, and the pIB-neo vector (above) was mulched. It was inserted into a cloning site (EcoRI, XhoI) to construct a pIB-DmOr49b-neo vector.
DmOr49b
Forward; 5'-CAGTGTGGTGGAATTGCCGCCATGTTTGAAGACATTCAGCTAATC-3'
Reverse; 5'-GCCCTCTAGACTCGATCATCCGTAGACTCGCTTG-3'
 構築したpIB-DmOr49b-neoベクターを、リポフェクション法(TransIT-insect; Mirus社製、登録商標)により、TransIT-Insectの添付のマニュアルに従って、DmOr56a受容体を発現している均質な匂い検出細胞系統に遺伝子導入した。これにより、DmOr56a受容体に加えて、DmOr49b受容体を発現している細胞を作製した。 The constructed pIB-DmOr49b-neo vector was applied to a homogeneous odor detection cell line expressing the DmOr56a receptor by the lipofection method (TransIT-insect; registered trademark of Mirus) according to the attached manual of TransIT-Insect. The gene was introduced. As a result, cells expressing the DmOr49b receptor in addition to the DmOr56a receptor were prepared.
 (実施例18:DmOr56a受容体及びDmOr82a受容体発現細胞の反応性)
 実施例16で述べた方法で、DmOr56a受容体及びDmOr82a受容体を発現している細胞を作製した。
(Example 18: Reactivity of DmOr56a receptor and DmOr82a receptor expressing cells)
Cells expressing the DmOr56a receptor and the DmOr82a receptor were prepared by the method described in Example 16.
 また、匂いを含まない溶液(ネガティブコントロール)、300μmol/Lの濃度で酢酸ゲラニルを含む溶液、及び10μmol/Lの濃度でゲオスミンを含む溶液を用意した。酢酸ゲラニルは、DmOr82a受容体の対象臭である。ゲオスミンは、DmOr56a受容体の対象臭である。図22に示すように、ネガティブコントロールの溶液、酢酸ゲラニルを含む溶液、ゲオスミンを含む溶液の順で、それぞれの溶液をDmOr56a受容体及びDmOr82a受容体を発現している細胞に接触させた。その結果、DmOr56a受容体及びDmOr82a受容体を発現している細胞の蛍光強度は、酢酸ゲラニルに対し23.2%変化し、ゲオスミンに対し16.4%変化した。 In addition, a solution containing no odor (negative control), a solution containing geranyl acetate at a concentration of 300 μmol / L, and a solution containing geosmin at a concentration of 10 μmol / L were prepared. Geranyl acetate is the target odor of the DmOr82a receptor. Geosmin is the target odor of the DmOr56a receptor. As shown in FIG. 22, the negative control solution, the solution containing geranyl acetate, and the solution containing geosmin were contacted with the cells expressing the DmOr56a receptor and the DmOr82a receptor in this order. As a result, the fluorescence intensity of the cells expressing the DmOr56a receptor and the DmOr82a receptor changed by 23.2% with respect to geranyl acetate and 16.4% with respect to geosmin.
 (実施例19:DmOr56a受容体及びDmOr49b受容体発現細胞の反応性)
 実施例17で述べた方法で、DmOr56a受容体及びDmOr49b受容体を発現している細胞を作製した。
(Example 19: Reactivity of DmOr56a receptor and DmOr49b receptor expressing cells)
Cells expressing the DmOr56a receptor and the DmOr49b receptor were prepared by the method described in Example 17.
 また、匂いを含まない溶液(ネガティブコントロール)、300μmol/Lの濃度で2-メチルフェノールを含む溶液、及び10μmol/Lの濃度でゲオスミンを含む溶液を用意した。2-メチルフェノールは、DmOr49b受容体の対象臭である。ゲオスミンは、DmOr56a受容体の対象臭である。図23に示すように、ネガティブコントロールの溶液、2-メチルフェノールを含む溶液、ゲオスミンを含む溶液の順で、それぞれの溶液をDmOr56a受容体及びDmOr49b受容体を発現している細胞に接触させた。その結果、DmOr56a受容体及びDmOr49b受容体を発現している細胞の蛍光強度は、2-メチルフェノールに対し37.6%変化し、ゲオスミンに対し29.4%変化した。 In addition, a solution containing no odor (negative control), a solution containing 2-methylphenol at a concentration of 300 μmol / L, and a solution containing geosmin at a concentration of 10 μmol / L were prepared. 2-Methylphenol is the target odor of the DmOr49b receptor. Geosmin is the target odor of the DmOr56a receptor. As shown in FIG. 23, the negative control solution, the solution containing 2-methylphenol, and the solution containing geosmin were contacted with the cells expressing the DmOr56a receptor and the DmOr49b receptor in this order. As a result, the fluorescence intensity of the cells expressing the DmOr56a receptor and the DmOr49b receptor changed by 37.6% with respect to 2-methylphenol and by 29.4% with respect to geosmin.
 (実施例20:DmOr56a受容体及びDmOr82a受容体発現細胞の濃度依存的反応性)
 実施例16で述べた方法で、DmOr56a受容体及びDmOr82a受容体を発現している細胞を作製した。
(Example 20: Concentration-dependent reactivity of DmOr56a receptor and DmOr82a receptor-expressing cells)
Cells expressing the DmOr56a receptor and the DmOr82a receptor were prepared by the method described in Example 16.
 また、酢酸ゲラニルを、終濃度が0mol/L(コントロール)、1μmol/L、3μmol/L、10μmol/L、30μmol/L、100μmol/L、及び300μmol/Lになるよう、アッセイバッファー(140mmol/LのNaCl、5.6mmol/LのKCl、4.5mmol/LのCaCl2、11.26mmol/LのMgCl2、10mmol/LのHEPES、9.4mmol/LのD-glucose、pH7.2)で段階希釈した。また、ポジティブコントロールとして、ゲオスミンを、終濃度が10μmol/Lになるよう、アッセイバッファーに希釈した。なお、全ての溶液は、終濃度0.1%でDMSOを含むように調製した。 Further, the assay buffer (140 mmol / L) was prepared so that the final concentration of geranyl acetate was 0 mol / L (control), 1 μmol / L, 3 μmol / L, 10 μmol / L, 30 μmol / L, 100 μmol / L, and 300 μmol / L. NaCl, 5.6 mmol / L KCl, 4.5 mmol / L CaCl2, 11.26 mmol / L MgCl2, 10 mmol / L HEPES, 9.4 mmol / L D-glucose, pH 7.2). did. Also, as a positive control, geosmin was diluted in assay buffer to a final concentration of 10 μmol / L. All solutions were prepared to contain DMSO at a final concentration of 0.1%.
 次に、図24に示すように、溶液のそれぞれを、DmOr56a受容体及びDmOr82a受容体を発現している細胞に、6分間隔で接触させた。その結果、図24及び図25に示すように、DmOr56a受容体及びDmOr82a受容体を発現している細胞は、酢酸ゲラニルの濃度に応じた強度の蛍光を発した。また、ポジティブコントロールであるゲオスミンにも対しても蛍光を発した。 Next, as shown in FIG. 24, each of the solutions was contacted with cells expressing the DmOr56a receptor and the DmOr82a receptor at 6-minute intervals. As a result, as shown in FIGS. 24 and 25, the cells expressing the DmOr56a receptor and the DmOr82a receptor emitted intense fluorescence according to the concentration of geranyl acetate. It also fluoresces against the positive control geosmin.
 (実施例21:DmOr56a受容体及びDmOr49b受容体発現細胞の濃度依存的反応性)
 実施例17で述べた方法で、DmOr56a受容体及びDmOr49b受容体を発現している細胞を作製した。
(Example 21: Concentration-dependent reactivity of DmOr56a receptor and DmOr49b receptor-expressing cells)
Cells expressing the DmOr56a receptor and the DmOr49b receptor were prepared by the method described in Example 17.
 また、2-メチルフェノールを、終濃度が0mol/L(コントロール)、1μmol/L、3μmol/L、10μmol/L、30μmol/L、100μmol/L、及び300μmol/Lになるよう、アッセイバッファーで段階希釈した。また、ポジティブコントロールとして、ゲオスミンを、終濃度が10μmol/Lになるよう、アッセイバッファーに希釈した。なお、全ての溶液は、終濃度0.1%でDMSOを含むように調製した。 In addition, 2-methylphenol is stepped in assay buffer so that the final concentration is 0 mol / L (control), 1 μmol / L, 3 μmol / L, 10 μmol / L, 30 μmol / L, 100 μmol / L, and 300 μmol / L. Diluted. Also, as a positive control, geosmin was diluted in assay buffer to a final concentration of 10 μmol / L. All solutions were prepared to contain DMSO at a final concentration of 0.1%.
 次に、図26に示すように、溶液のそれぞれを、DmOr56a受容体及びDmOr49b受容体を発現している細胞に、6分間隔で接触させた。その結果、図26及び図27に示すように、DmOr56a受容体及びDmOr49b受容体を発現している細胞は、2-メチルフェノールの濃度に応じた強度の蛍光を発した。また、ポジティブコントロールであるゲオスミンにも対しても蛍光を発した。 Next, as shown in FIG. 26, each of the solutions was contacted with cells expressing the DmOr56a receptor and the DmOr49b receptor at 6-minute intervals. As a result, as shown in FIGS. 26 and 27, the cells expressing the DmOr56a receptor and the DmOr49b receptor emitted intense fluorescence according to the concentration of 2-methylphenol. It also fluoresces against the positive control geosmin.
 (実施例22:嗅覚受容体発現細胞の特異的反応性)
 実施例5で述べた方法で、DmOr56a受容体を発現している細胞を作製し、実施例16で述べた方法で、DmOr56a受容体及びDmOr82a受容体を発現している細胞を作製し、実施例17で述べた方法で、DmOr56a受容体及びDmOr49b受容体を発現している細胞を作製した。
(Example 22: Specific reactivity of olfactory receptor-expressing cells)
The cells expressing the DmOr56a receptor were prepared by the method described in Example 5, and the cells expressing the DmOr56a receptor and the DmOr82a receptor were prepared by the method described in Example 16. Cells expressing the DmOr56a receptor and the DmOr49b receptor were prepared by the method described in 17.
 また、匂いを含まない溶液(ネガティブコントロール)、300μmol/Lの濃度でベンズアルデヒドを含む溶液、300μmol/Lの濃度で安息香酸メチルを含む溶液、300μmol/Lの濃度で1-オクテン-3-オールを含む溶液、300μmol/Lの濃度で2-メチルフェノールを含む溶液、300μmol/Lの濃度で酢酸ゲラニルを含む溶液、及び10μmol/Lの濃度でゲオスミンを含む溶液を用意した。 In addition, a solution containing no odor (negative control), a solution containing benzaldehyde at a concentration of 300 μmol / L, a solution containing methyl benzoate at a concentration of 300 μmol / L, and 1-octen-3-ol at a concentration of 300 μmol / L. A solution containing 2-methylphenol at a concentration of 300 μmol / L, a solution containing geranyl acetate at a concentration of 300 μmol / L, and a solution containing geosmine at a concentration of 10 μmol / L were prepared.
 それぞれの溶液をDmOr56a受容体を発現している細胞に接触させたところ、図28に示すように、DmOr56a受容体を発現している細胞の蛍光強度は、ゲオスミンに対し68.1%変化した。DmOr56a受容体及びDmOr82a受容体を発現している細胞の蛍光強度は、ベンズアルデヒドに対し7.4%変化し、酢酸ゲラニルに対し34.5%変化し、ゲオスミンに対し4.3%変化した。DmOr56a受容体及びDmOr49b受容体を発現している細胞の蛍光強度は、ベンズアルデヒドに対し19.4%変化し、2-メチルフェノールに対し58.5%変化し、ゲオスミンに対し29.6%変化した。 When each solution was brought into contact with cells expressing the DmOr56a receptor, as shown in FIG. 28, the fluorescence intensity of the cells expressing the DmOr56a receptor changed by 68.1% with respect to geosmin. The fluorescence intensity of cells expressing the DmOr56a receptor and the DmOr82a receptor changed 7.4% with respect to benzaldehyde, 34.5% with respect to geranyl acetate, and 4.3% with respect to geosmin. The fluorescence intensity of cells expressing the DmOr56a and DmOr49b receptors changed 19.4% with respect to benzaldehyde, 58.5% with respect to 2-methylphenol, and 29.6% with respect to geosmin. ..
 10・・・基板、20・・・匂い検出細胞、30・・・チューブ、40・・・流体 10 ... substrate, 20 ... odor detection cells, 30 ... tubes, 40 ... fluid

Claims (15)

  1.  基板と、
     前記基板上に単層で配置された、嗅覚受容体を有し、匂い分子の濃度に応じて蛍光強度が変化する蛍光タンパク質を発現している匂い検出細胞と、
     を備える、蛍光光度計用の匂い検出キット。
    With the board
    An odor detection cell having an olfactory receptor and expressing a fluorescent protein whose fluorescence intensity changes according to the concentration of an odor molecule, which is arranged in a single layer on the substrate.
    An odor detection kit for fluorometers.
  2.  前記匂い検出細胞が、細胞膜修飾剤を介して前記基板に固定されている、請求項1に記載の匂い検出キット。 The odor detection kit according to claim 1, wherein the odor detection cells are fixed to the substrate via a cell membrane modifier.
  3.  前記基板を内部に固定可能なチューブをさらに備える、請求項1又は2に記載の匂い検出キット。 The odor detection kit according to claim 1 or 2, further comprising a tube capable of fixing the substrate inside.
  4.  前記匂い検出細胞が、導入遺伝子によって嗅覚受容体を発現している、請求項1から3のいずれか1項に記載の匂い検出キット。 The odor detection kit according to any one of claims 1 to 3, wherein the odor detection cell expresses an olfactory receptor by a transgene.
  5.  前記匂い検出細胞が、昆虫の嗅覚受容体を発現している、請求項1から4のいずれか1項に記載の匂い検出キット。 The odor detection kit according to any one of claims 1 to 4, wherein the odor detection cells express an insect olfactory receptor.
  6.  前記嗅覚受容体が、イオンチャネル型受容体である、請求項1から5のいずれか1項に記載の匂い検出キット。 The odor detection kit according to any one of claims 1 to 5, wherein the olfactory receptor is an ion channel type receptor.
  7.  前記蛍光タンパク質が、イオン濃度に応じて前記蛍光強度を変化させる、請求項6に記載の匂い検出キット。 The odor detection kit according to claim 6, wherein the fluorescent protein changes the fluorescence intensity according to the ion concentration.
  8.  前記嗅覚受容体が、BmOR1、BmOR3、DmOr13a、DmOr56a、DmOr82a、DmOr49b、DmOr85b及びPxOR1から選択される、請求項1から7のいずれか1項に記載の匂い検出キット。 The odor detection kit according to any one of claims 1 to 7, wherein the olfactory receptor is selected from BmOR1, BmOR3, DmOr13a, DmOr56a, DmOr82a, DmOr49b, DmOr85b and PxOR1.
  9.  前記匂い検出細胞が昆虫細胞である、請求項1から8のいずれか1項に記載の匂い検出キット。 The odor detection kit according to any one of claims 1 to 8, wherein the odor detection cell is an insect cell.
  10.  前記昆虫細胞が、ガ由来の細胞である、請求項9に記載の匂い検出キット。 The odor detection kit according to claim 9, wherein the insect cell is a cell derived from ga.
  11.  前記昆虫細胞が、Sf21、Sf9、High Five、及びTni由来細胞から選択される、請求項9又は10に記載の匂い検出キット。 The odor detection kit according to claim 9 or 10, wherein the insect cells are selected from Sf21, Sf9, High Five, and Tni-derived cells.
  12.  前記昆虫細胞が、ショウジョウバエ由来の細胞である、請求項9から11のいずれか1項に記載の匂い検出キット。 The odor detection kit according to any one of claims 9 to 11, wherein the insect cell is a cell derived from Drosophila.
  13.  前記昆虫細胞が、Drosophila S2細胞である、請求項9から12のいずれか1項に記載の匂い検出キット。 The odor detection kit according to any one of claims 9 to 12, wherein the insect cell is a Drosophila S2 cell.
  14.  前記基板が透明である、請求項1から13のいずれか1項に記載の匂い検出キット。 The odor detection kit according to any one of claims 1 to 13, wherein the substrate is transparent.
  15.  嗅覚受容体を有し、匂い分子の濃度に応じて蛍光強度が変化する蛍光タンパク質を発現している匂い検出細胞を用意することと、
     基板を用意することと、
     前記基板上に、前記匂い検出細胞を単層で配置することと、
     を含む、蛍光光度計用の匂い検出キットの製造方法。
    To prepare odor detection cells that have olfactory receptors and express fluorescent proteins whose fluorescence intensity changes according to the concentration of odor molecules.
    Preparing the board and
    By arranging the odor detection cells in a single layer on the substrate,
    A method of manufacturing an odor detection kit for a fluorometer, including.
PCT/JP2020/033831 2019-09-06 2020-09-07 Odor detection kit, odor detection kit manufacturing method, and odor detection method WO2021045233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021544075A JPWO2021045233A1 (en) 2019-09-06 2020-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-162985 2019-09-06
JP2019162985 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021045233A1 true WO2021045233A1 (en) 2021-03-11

Family

ID=74853353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033831 WO2021045233A1 (en) 2019-09-06 2020-09-07 Odor detection kit, odor detection kit manufacturing method, and odor detection method

Country Status (2)

Country Link
JP (1) JPWO2021045233A1 (en)
WO (1) WO2021045233A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074691A1 (en) * 2002-03-01 2003-09-12 National Institute Of Advanced Industrial Science And Technology Immobilized cells and liposomes and method of immobilizing the same
WO2003100057A1 (en) * 2002-05-28 2003-12-04 National Institute Of Advanced Industrial Science And Technology Chemical sensor system
JP2005027659A (en) * 2003-06-20 2005-02-03 Nitto Denko Corp Cell microchip
JP2005046121A (en) * 2003-07-31 2005-02-24 Japan Science & Technology Agency On-chip bioassay method and kit
JP2005269902A (en) * 2004-03-22 2005-10-06 Seiko Epson Corp Method for immobilizing cell on solid-phase surface
JP2011007741A (en) * 2009-06-29 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Odor sensor, and odor detecting method
JP2013027376A (en) * 2011-07-29 2013-02-07 Ryohei Kanzaki Smell sensor
WO2018043533A1 (en) * 2016-09-02 2018-03-08 国立大学法人東京大学 Detection device and cell-containing matter
US20180199921A1 (en) * 2017-01-19 2018-07-19 David R. Hall Cell-Based Artificial Olfactory Detector
WO2018135550A1 (en) * 2017-01-19 2018-07-26 国立大学法人東京大学 Odor sensor
WO2019156180A1 (en) * 2018-02-09 2019-08-15 国立大学法人東京大学 Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074691A1 (en) * 2002-03-01 2003-09-12 National Institute Of Advanced Industrial Science And Technology Immobilized cells and liposomes and method of immobilizing the same
WO2003100057A1 (en) * 2002-05-28 2003-12-04 National Institute Of Advanced Industrial Science And Technology Chemical sensor system
JP2005027659A (en) * 2003-06-20 2005-02-03 Nitto Denko Corp Cell microchip
JP2005046121A (en) * 2003-07-31 2005-02-24 Japan Science & Technology Agency On-chip bioassay method and kit
JP2005269902A (en) * 2004-03-22 2005-10-06 Seiko Epson Corp Method for immobilizing cell on solid-phase surface
JP2011007741A (en) * 2009-06-29 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Odor sensor, and odor detecting method
JP2013027376A (en) * 2011-07-29 2013-02-07 Ryohei Kanzaki Smell sensor
WO2018043533A1 (en) * 2016-09-02 2018-03-08 国立大学法人東京大学 Detection device and cell-containing matter
US20180199921A1 (en) * 2017-01-19 2018-07-19 David R. Hall Cell-Based Artificial Olfactory Detector
WO2018135550A1 (en) * 2017-01-19 2018-07-26 国立大学法人東京大学 Odor sensor
WO2019156180A1 (en) * 2018-02-09 2019-08-15 国立大学法人東京大学 Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MISAWA N., MITSUNO H., KANZAKI R., TAKEUCHI S.: "Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES (PNAS), vol. 107, no. 35, 31 August 2010 (2010-08-31), pages 15340 - 15344, XP055798699, DOI: 10.1073/pnas.1004334107 *
MITSUNO, HIDEFWNI ET AL.: "Novel cell -based odorant sensor elements based on insect odorant receptors", BIOSENS. BIOELECTRON., vol. 65, 17 October 2014 (2014-10-17), pages 287 - 294, XP055450716, DOI: 10.1016/j.bios. 2014.10.02 6 *
TERMTANASOMBAT, MANEERAT ET AL.: "Cell -Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors", TERMTANASOMBAT MANEERAT; MITSUNO HIDEFUMI; MISAWA NOBUO; YAMAHIRA SHINYA; SAKURAI TAKESHI; YAMAGUCHI SATOSHI; NAGAMUNE TERUYUKI; KANZAKI RYOHEI TERMTANASOMBAT MANEERAT; MITSUNO HIDEFUMI; MISAWA NOBUO; YAMAHIRA SHINYA; SAKURAI TAKESHI; YAMAGUCHI SATOS, no. 7, 16 July 2016 (2016-07-16), pages 716 - 724, XP036049672, DOI: 10.1007/s10886-016-0726-7 *

Also Published As

Publication number Publication date
JPWO2021045233A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
Sanz et al. Comparison of odorant specificity of two human olfactory receptors from different phylogenetic classes and evidence for antagonism
WO2018135550A1 (en) Odor sensor
Dai et al. Programmable synthetic biomolecular condensates for cellular control
JP2009523447A (en) Rapid detection and evaluation of cultured cell proliferation
JP6583602B2 (en) Method for analyzing intracellular nucleic acid, and system and kit therefor
JP6444856B2 (en) Novel polypeptide exhibiting fluorescence characteristics and use thereof
Mathew et al. ABCG2-mediated DyeCycle Violet efflux defined side population in benign and malignant prostate
WO2022215532A1 (en) Novel polypeptide exhibiting fluorescent properties and use for same
CN110418801A (en) The method for identifying stench modulating compound
JP2013027376A (en) Smell sensor
Reynolds et al. Acute growth inhibition & toxicity analysis of nano-polystyrene spheres on Raphidocelis subcapitata
WO2021045233A1 (en) Odor detection kit, odor detection kit manufacturing method, and odor detection method
Veiksina et al. Homogeneous Fluorescence Anisotropy-Based Assay for Characterization of Ligand Binding Dynamics to GPCRs in Budded Baculoviruses: The Case of Cy3B-NDP-α-MSH Binding to MC 4 Receptors
JP4406183B2 (en) Method for testing substances interacting with hormone receptors
WO2022241295A2 (en) Engineered cells for expressing olfactory receptors and methods for their use
Bonekamp et al. Cytochemical detection of peroxisomes and mitochondria
DK2687847T3 (en) PROBE TO ANALYZE BIOLOGICAL Tissue AND PROCEDURE FOR USING SAME
EP1442298B1 (en) Method for selecting bioactive agents by luminescence coupling and living cell system therefor
JP6973772B2 (en) Smell sensor
JP5959248B2 (en) Methods for detecting cell-cell interactions
JP5940057B2 (en) Method for quantitatively detecting 8-oxo-2&#39;-deoxyguanosine in an aqueous sample solution with high sensitivity
JP5877741B2 (en) Cell number monitoring method
JP4352024B2 (en) Cells and methods for assessing effects on neurological dysfunction
Kasahara et al. Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis
Xiao-Wei et al. Advances in Microfluidic Biosensors Based on Luminescent Bacteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860610

Country of ref document: EP

Kind code of ref document: A1