WO2021019666A1 - Power supply control apparatus, vehicle-mounted information device, and power supply control method - Google Patents

Power supply control apparatus, vehicle-mounted information device, and power supply control method Download PDF

Info

Publication number
WO2021019666A1
WO2021019666A1 PCT/JP2019/029766 JP2019029766W WO2021019666A1 WO 2021019666 A1 WO2021019666 A1 WO 2021019666A1 JP 2019029766 W JP2019029766 W JP 2019029766W WO 2021019666 A1 WO2021019666 A1 WO 2021019666A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
dark current
temperature
supply control
unit
Prior art date
Application number
PCT/JP2019/029766
Other languages
French (fr)
Japanese (ja)
Inventor
政幸 橋本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/029766 priority Critical patent/WO2021019666A1/en
Publication of WO2021019666A1 publication Critical patent/WO2021019666A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system

Definitions

  • the present invention relates to a power supply control device, an in-vehicle information device, and a power supply control method.
  • OS operating system
  • ANDROID registered trademark
  • Linux registered trademark
  • WINDOWS registered trademark
  • ACC power supply When the accessory power supply (hereinafter sometimes referred to as "ACC power supply”) is turned on, various functions by the OS are executed. At this time, electric power is consumed by consuming current by the in-vehicle information device.
  • the consumed power is supplied by, for example, a constant power source (hereinafter, may be referred to as "+ B power source”).
  • the dark current includes a leak current due to a passive element in an in-vehicle information device.
  • the passive element is composed of, for example, an electrolytic capacitor.
  • this dark current may be referred to as a "first dark current”.
  • the dark current includes the current for holding the information stored in the volatile memory in the in-vehicle information device.
  • the volatile memory is composed of, for example, a DRAM (Dynamic Random Access Memory) or a SRAM (Static Random Access Memory). Volatile memory is used for each function by the OS.
  • this dark current may be referred to as a "second dark current”.
  • the dark current includes a current for operating an IC (Integrated Circuit) in an in-vehicle information device at a low speed.
  • the IC includes, for example, a microcontroller (hereinafter referred to as "microcomputer") and a SoC (System-on-a-Chip).
  • microcomputer microcontroller
  • SoC System-on-a-Chip
  • Each function by the OS is realized by, for example, SoC.
  • this dark current may be referred to as a "third dark current”.
  • the dark current in the in-vehicle information device from the viewpoint of achieving both high-speed restart of the in-vehicle information device and avoidance of battery exhaustion. Further, it is preferable to control the on / off of the second dark current and the third dark current based on the detected dark current. More specifically, it is preferable to control the stop timing of the second dark current and the third dark current based on the detected dark current.
  • Patent Document 1 discloses a technique for detecting a dark current in an in-vehicle information device.
  • the technique described in Patent Document 1 uses a dedicated sensor (dark current sensor SN2) for detecting dark current. This sensor has a problem of increasing the manufacturing cost of an in-vehicle information device.
  • the present invention has been made to solve the above problems, and an object of the present invention is to eliminate the need for a dedicated sensor for detecting dark current.
  • the power supply control device of the present invention uses a temperature information acquisition unit that acquires temperature information indicating a temperature in an in-vehicle information device and a dark current estimation that estimates a dark current in an in-vehicle information device based on the temperature using the temperature information. It is provided with a unit and a power supply control unit that executes control for setting the power supply circuit in the in-vehicle information device to the off state according to the estimation result by the dark current estimation unit.
  • FIG. It is a block diagram which shows the main part of the vehicle-mounted information device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the power supply control apparatus which concerns on Embodiment 1.
  • FIG. It is a characteristic diagram which shows the example of the temperature dark current characteristic in an in-vehicle information device. It is explanatory drawing which shows the example of the time change of temperature in an in-vehicle information device. It is explanatory drawing which shows the example of the time change of a dark current in an in-vehicle information device. It is explanatory drawing which shows the example of the time change of the power consumption in an in-vehicle information device.
  • FIG. It is a flowchart which shows the operation of the power-source control apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of another power supply control device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of another power supply control device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of another power supply control device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the in-vehicle information device which concerns on Embodiment 2.
  • It is a block diagram which shows the main part of the power supply control device which concerns on Embodiment 2.
  • It is a flowchart which shows the operation of the power-source control device which concerns on Embodiment 2.
  • FIG. 1 is a block diagram showing a main part of an in-vehicle information device according to the first embodiment.
  • the vehicle-mounted information device according to the first embodiment will be described with reference to FIG.
  • the solid arrows between the blocks in FIG. 1 correspond to signals or information.
  • the dashed arrows between the blocks in FIG. 1 correspond to electric power or current.
  • the in-vehicle information device 300 is mounted on the vehicle 1.
  • the vehicle 1 has an accessory power supply 2.
  • the vehicle 1 has an in-vehicle network 3.
  • the in-vehicle network 3 is configured by, for example, CAN (Control Area Network).
  • the vehicle 1 has a constant power supply 4.
  • the constant power supply 4 is electrically connected to the vehicle-mounted battery 5.
  • the vehicle-mounted battery 5 is mounted on the vehicle 1.
  • the in-vehicle information device 300 has a clock 11. Further, the in-vehicle information device 300 has a thermometer 12. The thermometer 12 measures the temperature Temp in the in-vehicle information device 300.
  • the thermometer 12 is composed of, for example, a thermistor.
  • the temperature measured by the thermometer 12 (hereinafter sometimes referred to as "measured temperature") Temp is used for controlling a part or function having a temperature dependence in the in-vehicle information device 300.
  • the measurement temperature Temp is used for controlling the time in the clock 11.
  • the measurement temperature Temp is used for controlling the laser diode in the optical pickup.
  • the measurement temperature Temp is used for controlling the liquid crystal display.
  • the in-vehicle information device 300 has a processor 13 for power supply control.
  • the processor 13 is composed of, for example, a microcomputer.
  • the processor 13 constitutes a main part of the power supply control device 100.
  • the power supply control device 100 will be described later with reference to FIG.
  • the in-vehicle information device 300 has a processing circuit 14. Further, the in-vehicle information device 300 has a volatile memory 15.
  • the processing circuit 14 is composed of, for example, SoC.
  • the memory 15 is composed of, for example, a DRAM or an SRAM.
  • the processing circuit 14 and the memory 15 form a main part of the information processing apparatus 200.
  • the information processing device 200 has an OS.
  • the OS for example, ANDROID (registered trademark), Linux (registered trademark) or WINDOWS (registered trademark) is used.
  • Each function by the OS is realized by the processing circuit 14. Further, the memory 15 is used for each function by the OS.
  • the information processing device 200 consumes less power than the power consumption in the activated state in addition to the activated state (hereinafter referred to as “started state”) and the stopped state (hereinafter referred to as “shutdown state”). It has a state of standby by electric power (hereinafter referred to as “power saving standby state”).
  • the information processing device 200 is selectively set to a start state, a shutdown state, or a power saving standby state by the power control device 100.
  • the power supply control device 100 will be described later with reference to FIG.
  • the activation state corresponds to, for example, the state of S0 in ACPI (Advanced Configuration and Power Interface).
  • the shutdown state corresponds to, for example, the state of S5 in ACPI.
  • the power saving standby state corresponds to, for example, the state of S1, S2, S3 or S4 in ACPI. That is, the power saving standby state corresponds to the so-called “suspend state", "standby state", or "sleep state”.
  • the in-vehicle information device 300 has a power supply circuit 16. More specifically, the in-vehicle information device 300 has two power supply circuits 16_1 and 16_2.
  • first power supply circuit 16_1 of the two power supply circuits 16_1 and 16_2 supplies electric power to the clock 11 and the processor 13. This electric power is, for example, always supplied by the power source 4.
  • the first power supply circuit 16_1 is composed of, for example, a linear regulator.
  • the other one of the two power supply circuits 16_1 and 16_2 (hereinafter referred to as "second power supply circuit") 16_2 supplies electric power to the processing circuit 14 and the memory 15. This electric power is, for example, always supplied by the power source 4.
  • the second power supply circuit 16_2 is composed of, for example, a linear regulator.
  • the first power supply circuit 16_1 and the second power supply circuit 16_2 supply electric power to different parts of the in-vehicle information device 300.
  • Each of the first power supply circuit 16_1 and the second power supply circuit 16_2 is selectively set to an on state or an off state by the power supply control device 100.
  • the power supply control device 100 will be described with reference to FIG.
  • the power supply control device 100 When the accessory power supply 2 is turned on, the power supply control device 100 acquires a signal indicating that fact. Further, when the accessory power supply 2 is turned off, the power supply control device 100 acquires a signal to that effect. These signals are obtained from, for example, the accessory power supply 2 or the vehicle-mounted network 3. The power control device 100 has a function of determining whether the accessory power supply 2 is on or off by using these signals.
  • the power supply control device 100 has a function of setting the information processing device 200 to the power saving standby state when the accessory power supply 2 is turned off. As a result, the information processing apparatus 200 switches from the activated state to the power saving standby state.
  • the power supply control device 100 has a function of setting the information processing device 200 to the shutdown state when the second power supply circuit 16_2 is set to the off state while the accessory power supply 2 is off. .. As a result, the information processing apparatus 200 switches from the power saving standby state to the shutdown state.
  • the power supply control device 100 has a function of setting the information processing device 200 to the activated state when the accessory power supply 2 is turned on. As a result, the information processing apparatus 200 switches from the power saving standby state or the shutdown state to the startup state.
  • the time required to switch from the power saving standby state to the start state is shorter than the time required to switch from the shutdown state to the start state.
  • these times may be collectively referred to as "restart time”. That is, the restart time from the power saving standby state is shorter than the restart time from the shutdown state.
  • the power supply control device 100 has the following functions.
  • the temperature information acquisition unit 21 acquires information indicating the measurement temperature Temp (hereinafter referred to as "temperature information") in a state where the accessory power supply 2 is turned off.
  • the temperature information is acquired from the thermometer 12.
  • the temperature information is acquired every T for a predetermined time (for example, 10 seconds).
  • a clock 11 is used for counting the predetermined time T.
  • the dark current estimation unit 22 estimates the dark current I in the in-vehicle information device 300 based on the measured temperature Temp using the temperature information acquired by the temperature information acquisition unit 21.
  • the characteristic C indicating the dark current I with respect to the temperature Temp in the in-vehicle information device 300 is referred to as the "temperature dark current characteristic”.
  • FIG. 3 shows an example of the temperature dark current characteristic C.
  • the dark current I gradually increases as the temperature Temp increases. Therefore, the dark current estimation unit 22 stores information indicating the temperature dark current characteristic C (hereinafter, referred to as “temperature dark current characteristic information”) in advance.
  • the dark current estimation unit 22 estimates the dark current I based on the measured temperature Temp and the temperature dark current characteristic C by using the acquired temperature information and the temperature dark current characteristic information stored in advance.
  • the power consumption calculation unit 23 integrates the dark current I estimated by the dark current estimation unit 22 over time. As a result, the power consumption calculation unit 23 calculates the integrated value (hereinafter referred to as “power consumption”) P of the power consumption when the accessory power supply 2 is turned off. That is, the power consumption P indicates the integrated value of the power consumption due to the dark current I.
  • the power consumption calculation unit 23 sets the value of the power consumption P to a predetermined initial value (that is, 0) when the accessory power supply 2 is turned off. With the accessory power supply 2 turned off, the power consumption calculation unit 23 uses the following equation (1) to calculate the power consumption P every predetermined time T, that is, every time the dark current I is estimated. To update. As a result, the power consumption P is calculated.
  • FIG. 4 shows an example of the time change of the temperature Temp when the accessory power supply 2 is turned off.
  • FIG. 5 shows an example of the time change of the dark current I in the state where the accessory power supply 2 is turned off.
  • FIG. 6 shows an example of the time change of the power consumption P in the state where the accessory power supply 2 is turned off.
  • the horizontal axis in each of FIGS. 4, 5 and 6 indicates the elapsed time with respect to the time when the accessory power supply 2 is turned off (0 in the figure).
  • the correspondence between the temperature Temp shown in FIG. 4 and the dark current I shown in FIG. 5 is based on the temperature dark current characteristic C shown in FIG. Further, the power consumption P shown in FIG. 6 is obtained by time-integrating the dark current I shown in FIG.
  • the power consumption comparison unit 24 compares the power consumption P calculated by the power consumption calculation unit 23 with a predetermined threshold value Th. As a result, the power consumption comparison unit 24 determines whether or not the power consumption P is equal to or greater than the threshold value Th.
  • the threshold value Th is set to, for example, a value obtained by multiplying the initial value of the battery capacity of the vehicle-mounted battery 5 by a predetermined coefficient. This coefficient is greater than 0 and less than 1.
  • the power supply control unit 25 executes control for setting the second power supply circuit 16_2 to the off state when the power consumption amount comparison unit 24 determines that the power consumption amount P is equal to or higher than the threshold value Th. As a result, the second power supply circuit 16_2 is switched from the on state to the off state. At this time, the information processing apparatus 200 switches from the power saving standby state to the shutdown state as described above.
  • the power supply control unit 25 executes control for setting the second power supply circuit 16_2 to the on state when the accessory power supply 2 is turned on and the second power supply circuit 16_2 is set to the off state. .. As a result, the second power supply circuit 16_2 is switched from the off state to the on state. At this time, the information processing apparatus 200 switches from the shutdown state to the startup state as described above.
  • the power supply control unit 25 always executes control for setting the first power supply circuit 16_1 to the ON state. That is, the power supply control unit 25 executes control for setting the first power supply circuit 16_1 to the on state regardless of whether the accessory power supply 2 is on or off. ..
  • the circuit scale of the processor 13 is smaller than the circuit scale of the processing circuit 14 and the memory 15. Therefore, the dark current in the processor 13 is smaller than the dark current in the processing circuit 14 and the memory 15. Therefore, it is unlikely that the battery will run out because the first power supply circuit 16_1 is set to the on state while the accessory power supply 2 is off. Further, usually, the importance of the function by the clock 11 (for example, the timekeeping function) is higher than the importance of the function by the OS (for example, the display function). Therefore, the power supply control unit 25 sets the first power supply circuit 16_1 to the on state not only when the accessory power supply 2 is turned on but also when the accessory power supply 2 is turned off.
  • the main part of the power supply control device 100 is composed of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24, and the power supply control unit 25.
  • the operation of the power supply control device 100 will be described with reference to the flowchart of FIG. 7, focusing on the operation in the state where the accessory power supply 2 is turned off. That is, the operations of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24, and the power supply control unit 25 will be mainly described.
  • the power supply control device 100 executes control for setting the information processing device 200 to the power saving standby state.
  • the information processing apparatus 200 switches from the activated state to the power saving standby state.
  • the process of step ST1 is executed.
  • step ST1 the power consumption calculation unit 23 sets the value of the power consumption P to a predetermined initial value (that is, 0).
  • step ST2 the power supply control device 100 waits for a predetermined time (for example, 10 seconds).
  • step ST3 the temperature information acquisition unit 21 acquires the temperature information.
  • the dark current estimation unit 22 estimates the dark current I based on the measured temperature Temp using the temperature information acquired in step ST3 (step ST4). More specifically, the dark current estimation unit 22 uses the acquired temperature information and the temperature dark current characteristic information stored in advance to generate the dark current I based on the measured temperature Temp and the temperature dark current characteristic C. presume.
  • the power consumption calculation unit 23 calculates the power consumption P based on the dark current I estimated in step ST4 (step ST5). More specifically, the power consumption calculation unit 23 updates the value of the power consumption P by the above formula (1).
  • the power consumption comparison unit 24 compares the power consumption P calculated in step ST5 with the threshold value Th (step ST6). As a result, the power consumption comparison unit 24 determines whether or not the power consumption P is equal to or greater than the threshold value Th.
  • step ST6 “NO”) the process of the power supply control device 100 proceeds to step ST2.
  • step ST6 “YES” the power supply control device 100 then executes a control for setting the information processing device 200 to the shutdown state.
  • the information processing apparatus 200 switches from the power saving standby state to the shutdown state.
  • the power supply control unit 25 executes control for setting the power supply circuit 16 to the off state (step ST7). More specifically, the power supply control unit 25 executes control for setting the second power supply circuit 16_2 to the off state. As a result, the second power supply circuit 16_2 is switched from the on state to the off state.
  • the power supply control device 100 When the accessory power supply 2 is turned on during the execution of the process shown in FIG. 7, that is, when the accessory power supply 2 is turned on before the execution of the process of step ST7, the power supply control device 100 performs the process shown in FIG. Suspend. Next, the power supply control device 100 executes control for setting the information processing device 200 to the activated state. As a result, the information processing device 200 switches from the power saving standby state to the activated state.
  • the power supply control unit 25 turns on the second power supply circuit 16_2. Executes the control set to. As a result, the second power supply circuit 16_2 is switched from the off state to the on state.
  • the power supply control device 100 executes control for setting the information processing device 200 to the activated state. As a result, the information processing apparatus 200 switches from the shutdown state to the startup state.
  • the temperature dark current characteristic information when estimating the dark current I, it is possible to consider the increase in the dark current I at high temperature. As a result, the dark current I can be accurately estimated regardless of the temperature Temp. As a result, the power consumption P can be calculated accurately.
  • the restart of the in-vehicle information device 300 can be speeded up and the occurrence of battery exhaustion can be avoided. It is possible to achieve both.
  • the processor 13 may have an operation mode (hereinafter referred to as "low-speed operation mode") having an operation speed lower than the operation speed in the normal operation mode in addition to the normal operation mode.
  • the processor 13 may operate in the low-speed operation mode when the accessory power supply 2 is turned off. As a result, the dark current in the power supply control device 100 can be reduced.
  • the power supply control unit 25 executes control for setting the second power supply circuit 16_2 to the off state when the power consumption amount comparison unit 24 determines that the power consumption amount P is equal to or higher than the threshold value Th.
  • the control for setting the first power supply circuit 16_1 to the off state may be executed.
  • the first power supply circuit 16_1 switches from the on state to the off state.
  • the power supply control unit 25 executes control for setting the first power supply circuit 16_1 to the on state.
  • the first power supply circuit 16_1 is switched from the off state to the on state.
  • control executed by the power supply control unit 25 may be a control in which at least one of the first power supply circuit 16_1 and the second power supply circuit 16_2 is set to the off state according to the estimation result by the dark current estimation unit 22. Just do it.
  • the functions of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, and the power supply control unit 25 are realized by the processor 13, and the functions of the power consumption comparison unit 24 are realized by another processor (non-function). It may be realized by (illustration). That is, as shown in FIG. 8, even if the main part of the power supply control device 100 is composed of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, and the power supply control unit 25. good.
  • the functions of the temperature information acquisition unit 21, the dark current estimation unit 22, and the power supply control unit 25 are realized by the processor 13, and the functions of the power consumption calculation unit 23 and the power consumption comparison unit 24 are other processors (non-function). It may be realized by (illustration). That is, as shown in FIG. 9, the main part of the power supply control device 100 may be configured by the temperature information acquisition unit 21, the dark current estimation unit 22, and the power supply control unit 25.
  • the power supply control device 100 is based on the temperature information acquisition unit 21 for acquiring the temperature information indicating the temperature Temp in the in-vehicle information device 300 and the temperature information based on the temperature Temp.
  • the dark current estimation unit 22 that estimates the dark current I in the vehicle-mounted information device 300 and the control that sets the power supply circuit 16 in the vehicle-mounted information device 300 to the off state are executed according to the estimation result by the dark current estimation unit 22. It includes a power supply control unit 25. This makes it possible to eliminate the need for a dedicated sensor for the amount of dark current detected. As a result, the manufacturing cost of the in-vehicle information device 300 can be reduced.
  • the dark current estimation unit 22 estimates the dark current I based on the temperature Temp and the temperature dark current characteristic C by using the temperature information and the temperature dark current characteristic information indicating the temperature dark current characteristic C in the in-vehicle information device 300. To do. As a result, the dark current I can be accurately estimated regardless of the temperature Temp.
  • the power supply control device 100 includes a power consumption calculation unit 23 that calculates the power consumption P of the in-vehicle information device 300 by time integration of the dark current I. Thereby, the control of the power supply circuit 16 according to the power consumption amount P can be realized.
  • the power supply control device 100 includes a power consumption comparison unit 24 that compares the power consumption P with the threshold Th, and the power control unit 25 turns off the power circuit 16 when the power consumption P is equal to or higher than the threshold Th. Set to state. As a result, it is possible to achieve both high-speed restart of the in-vehicle information device 300 and avoidance of battery exhaustion.
  • the in-vehicle information device 300 is an in-vehicle information device 300 including a power supply control device 100, and the power supply control device 100 acquires temperature information indicating a temperature Temp in the in-vehicle information device 300.
  • the dark current estimation unit 22 that estimates the dark current I in the in-vehicle information device 300 based on the temperature Temp, and the dark current estimation unit 22 that estimates the dark current I.
  • It has a power supply control unit 25 that executes control for setting the power supply circuit 16 in the in-vehicle information device 300 to an off state. This makes it possible to eliminate the need for a dedicated sensor for the amount of dark current detected. As a result, the manufacturing cost of the in-vehicle information device 300 can be reduced.
  • the temperature information acquisition unit 21 uses the temperature information in step ST3 for acquiring the temperature information indicating the temperature Temp in the in-vehicle information device 300, and the dark current estimation unit 22 uses the temperature information.
  • step ST4 which estimates the dark current I in the vehicle-mounted information device 300 based on the temperature Temp
  • the power supply control unit 25 determines the power supply circuit 16 in the vehicle-mounted information device 300 according to the estimation result by the dark current estimation unit 22.
  • Step ST7 which executes control for setting the temperature to the off state, is provided. This makes it possible to eliminate the need for a dedicated sensor for dark current detection. As a result, the manufacturing cost of the in-vehicle information device 300 can be reduced.
  • FIG. 10 is a block diagram showing a main part of the in-vehicle information device according to the second embodiment.
  • the vehicle-mounted information device according to the second embodiment will be described with reference to FIG.
  • the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the in-vehicle information device 300a has a processor 13a.
  • the processor 13a is composed of, for example, a microcomputer.
  • the processor 13a constitutes a main part of the power supply control device 100a.
  • the clock 11, the thermometer 12, the power supply circuit 16, the power supply control device 100a, and the information processing device 200 constitute a main part of the in-vehicle information device 300a.
  • FIG. 11 the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the power consumption comparison unit 24a compares the power consumption P calculated by the power consumption calculation unit 23 with a predetermined threshold value (hereinafter, may be referred to as “first threshold value”) Th_1. As a result, the power consumption comparison unit 24a determines whether or not the power consumption P is equal to or greater than the first threshold value Th_1.
  • the power consumption comparison unit 24a compares the power consumption P calculated by the power consumption calculation unit 23 with another predetermined threshold value (hereinafter, may be referred to as “second threshold value”) Th_2. .. As a result, the power consumption comparison unit 24a determines whether or not the power consumption P is equal to or higher than the second threshold value Th_2.
  • the first threshold value Th_1 is set to a value equivalent to the threshold value Th in the power consumption comparison unit 24 shown in FIG. 2, for example.
  • the second threshold value Th_2 is set to a value larger than the first threshold value Th_1.
  • the first threshold value Th_1 and the second threshold value Th_2 are set to different values.
  • the power supply control unit 25a executes a control for setting the second power supply circuit 16_2 to the off state when the power consumption amount comparison unit 24a determines that the power consumption amount P is equal to or higher than the first threshold value Th_1. Further, the power supply control unit 25a executes a control for setting the first power supply circuit 16_1 to the off state when the power consumption amount comparison unit 24a determines that the power consumption amount P is equal to or higher than the second threshold value Th_2. is there.
  • the power consumption comparison unit 24a compares the power consumption P with a plurality of threshold values Th_1 and Th_2. Based on the result of the comparison, the power supply control unit 25a sequentially sets the plurality of power supply circuits 16_1 and 16_2 to the off state according to the increase in the power consumption amount P.
  • the importance of the function by the clock 11 (for example, the timekeeping function) is usually higher than the importance of the function by the OS (for example, the display function). Therefore, the timing at which the first power supply circuit 16_1 is set to the off state is delayed with respect to the timing at which the second power supply circuit 16_1 is set to the off state. Thereby, the stop timing of the power supply to the clock 11 can be delayed with respect to the stop timing of the power supply to the information processing apparatus 200.
  • the main part of the power supply control device 100a is composed of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24a, and the power supply control unit 25a.
  • the operation of the power supply control device 100a will be described with reference to the flowchart of FIG. 12, focusing on the operation in the state where the accessory power supply 2 is turned off. That is, the operations of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24a, and the power supply control unit 25a will be mainly described.
  • the power supply control device 100a executes a control for setting the information processing device 200 to the power saving standby state.
  • the information processing apparatus 200 switches from the activated state to the power saving standby state.
  • the process of step ST11 is executed.
  • step ST11 the power consumption calculation unit 23 sets the value of the power consumption P to a predetermined initial value (that is, 0).
  • step ST12 the power supply control device 100a waits for a predetermined time (for example, 10 seconds).
  • step ST13 the temperature information acquisition unit 21 acquires the temperature information.
  • the dark current estimation unit 22 estimates the dark current I based on the measured temperature Temp using the temperature information acquired in step ST13 (step ST14). More specifically, the dark current estimation unit 22 uses the acquired temperature information and the temperature dark current characteristic information stored in advance to generate the dark current I based on the measured temperature Temp and the temperature dark current characteristic C. presume.
  • the power consumption calculation unit 23 calculates the power consumption P based on the dark current I estimated in step ST14 (step ST15). More specifically, the power consumption calculation unit 23 updates the value of the power consumption P by the above formula (1).
  • the power consumption comparison unit 24a compares the power consumption P calculated in step ST15 with the first threshold value Th_1 (step ST16). As a result, the power consumption comparison unit 24a determines whether or not the power consumption P is equal to or greater than the first threshold value Th_1.
  • step ST16 “NO”) the process of the power supply control device 100a proceeds to step ST12.
  • step ST16 “YES” when it is determined that the power consumption P is equal to or higher than the first threshold value Th_1 (step ST16 “YES”), the power supply control device 100a then executes a control for setting the information processing device 200 to the shutdown state. As a result, the information processing apparatus 200 switches from the power saving standby state to the shutdown state. At this time, the power supply control unit 25a executes a control for setting the second power supply circuit 16_2 to the off state (step ST17). As a result, the second power supply circuit 16_2 is switched from the on state to the off state.
  • step ST18 the power supply control device 100a waits for a predetermined time (for example, 10 seconds).
  • step ST19 the temperature information acquisition unit 21 acquires the temperature information.
  • the dark current estimation unit 22 estimates the dark current I based on the measured temperature Temp using the temperature information acquired in step ST19 (step ST20). More specifically, the dark current estimation unit 22 uses the acquired temperature information and the temperature dark current characteristic information stored in advance to generate the dark current I based on the measured temperature Temp and the temperature dark current characteristic C. presume.
  • the power consumption calculation unit 23 calculates the power consumption P based on the dark current I estimated in step ST20 (step ST21). More specifically, the power consumption calculation unit 23 updates the value of the power consumption P by the above formula (1).
  • the power consumption comparison unit 24a compares the power consumption P calculated in step ST21 with the second threshold value Th_2 (step ST22). As a result, the power consumption comparison unit 24a determines whether or not the power consumption P is equal to or greater than the second threshold value Th_2.
  • step ST22 “NO”) the process of the power supply control device 100a proceeds to step ST18.
  • step ST22 “YES” when it is determined that the power consumption P is equal to or higher than the second threshold value Th_2 (step ST22 “YES”), the power supply control unit 25a then executes a control for setting the first power supply circuit 16_1 to the off state. (Step ST23). As a result, the first power supply circuit 16_1 switches from the on state to the off state.
  • the power supply control device 100a When the accessory power supply 2 is turned on during the execution of the process shown in FIG. 12A, that is, when the accessory power supply 2 is turned on before the execution of the process of step ST17, the power supply control device 100a performs the process shown in FIG. Suspend. Next, the power supply control device 100a executes control for setting the information processing device 200 to the activated state. As a result, the information processing device 200 switches from the power saving standby state to the activated state.
  • the power supply control unit 25a executes the control to set the second power supply circuit 16_2 to the ON state. As a result, the second power supply circuit 16_2 is switched from the off state to the on state.
  • the power supply control device 100a executes control for setting the information processing device 200 to the activated state. As a result, the information processing apparatus 200 switches from the shutdown state to the startup state.
  • the power supply control unit 25a turns on the first power supply circuit 16_1. Executes the control set to. As a result, the first power supply circuit 16_1 is switched from the off state to the on state.
  • the power supply control unit 25a executes a control for setting the second power supply circuit 16_2 to the ON state. As a result, the second power supply circuit 16_2 is switched from the off state to the on state.
  • the power supply control device 100a executes control for setting the information processing device 200 to the activated state. As a result, the information processing apparatus 200 switches from the shutdown state to the startup state.
  • the dark current estimation unit 22 is provided with temperature dark current characteristic information indicating the temperature dark current characteristic (hereinafter referred to as “first temperature dark current characteristic”) C_1 when the second power supply circuit 16_2 is set to the ON state. (Hereinafter referred to as “first temperature dark current characteristic information”), and the temperature dark current characteristic when the second power supply circuit 16_2 is set to the off state (hereinafter referred to as “second temperature dark current characteristic”). ”)
  • the temperature dark current characteristic information indicating C_2 (hereinafter referred to as“ second temperature dark current characteristic information ”) may be stored.
  • step ST14 the dark current estimation unit 22 estimates the dark current I based on the first temperature dark current characteristic C_1 using the first temperature dark current characteristic information. Further, in step ST20, the dark current estimation unit 22 estimates the dark current I based on the second temperature dark current characteristic C_2 by using the second temperature dark current characteristic information. As a result, the estimation accuracy of the dark current I in each of steps ST14 and ST20 can be further improved.
  • the power supply control device 100a can employ various modifications similar to those described in the first embodiment. Further, as the in-vehicle information device 300a, various modifications similar to those described in the first embodiment can be adopted.
  • the threshold value Th includes the first threshold value Th_1 and the second threshold value Th_2 which are different from each other, and the power supply circuit 16 is located at different parts of the in-vehicle information device 300.
  • the power supply control unit 25a includes the corresponding first power supply circuit 16_1 and the second power supply circuit 16_2, and when the power consumption P is equal to or higher than the first threshold value Th_1, the second power supply circuit 16_2 is set to the off state and consumed.
  • the first power supply circuit 16_1 is set to the off state.
  • the plurality of power supply circuits 16_1 and 16_2 can be sequentially set to the off state according to the increase in the power consumption P.
  • the second threshold value Th_2 is set to a value larger than the first threshold value Th_1, the portion corresponding to the first power supply circuit 16_1 includes the clock 11, and the portion corresponding to the second power supply circuit 16_2 is information.
  • the processing device 200 is included. Thereby, the stop timing of the power supply to the clock 11 can be delayed with respect to the stop timing of the power supply to the information processing apparatus 200.
  • FIG. 13 is a block diagram showing a main part of the in-vehicle information device according to the third embodiment.
  • the vehicle-mounted information device according to the third embodiment will be described with reference to FIG.
  • the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the in-vehicle information device 300b has a processor 13b.
  • the processor 13b is composed of, for example, a microcomputer.
  • the processor 13b constitutes the main part of the power supply control device 100b.
  • the clock 11, the thermometer 12, the power supply circuit 16, the power supply control device 100b, and the information processing device 200 constitute a main part of the in-vehicle information device 300b.
  • FIG. 14 the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the deterioration degree determination unit 31 determines the deterioration degree D of the vehicle-mounted battery 5. Specifically, for example, the deterioration degree determination unit 31 determines the deterioration degree D by the following first determination method, second determination method, third determination method, or fourth determination method.
  • the deterioration degree determination unit 31 acquires information indicating the state of the vehicle-mounted battery 5 (hereinafter referred to as “battery state information”).
  • the battery status information is acquired from the ECU (Electronic Control Unit) in the vehicle 1 by using, for example, the in-vehicle network 3.
  • the deterioration degree determination unit 31 determines the deterioration degree D based on the state of the vehicle-mounted battery 5 by using the acquired battery state information.
  • the deterioration degree determination unit 31 acquires information (hereinafter referred to as “IG voltage information”) indicating a voltage waveform when the ignition power supply (hereinafter referred to as “IG power supply”) of the vehicle 1 is turned on.
  • IG voltage information is obtained from, for example, the IG power supply.
  • the deterioration degree determination unit 31 determines the deterioration degree D based on the amount of voltage decrease when the IG power supply is turned on, using the acquired IG voltage information.
  • the deterioration degree determination unit 31 acquires information indicating information indicating the mileage of the vehicle 1 (hereinafter referred to as “mileage information”).
  • the mileage information is acquired from the ECU in the vehicle 1 by using, for example, the in-vehicle network 3.
  • the deterioration degree determination unit 31 determines the deterioration degree D based on the mileage of the vehicle 1.
  • the deterioration degree determination unit 31 acquires information indicating the date and time when the vehicle-mounted battery 5 was replaced (hereinafter referred to as “battery replacement information”).
  • the battery replacement information is acquired from the ECU in the vehicle 1 by using, for example, the in-vehicle network 3.
  • the deterioration degree determination unit 31 counts the elapsed time after the replacement of the vehicle-mounted battery 5 by using the acquired battery replacement information. A clock 11 is used to count the elapsed time. The deterioration degree determination unit 31 determines the deterioration degree D based on the elapsed time.
  • the threshold value setting unit 32 sets the threshold value Th to a value corresponding to the deterioration degree D based on the determination result by the deterioration degree determination unit 31. As a result, when the degree of deterioration D is high, the threshold value Th is set to a smaller value than when the degree of deterioration D is low. That is, when the degree of deterioration D is low, the threshold value Th is set to a value larger than when the degree of deterioration D is high.
  • the higher the degree of deterioration D the smaller the threshold Th is set. That is, the lower the degree of deterioration D, the larger the threshold Th is set.
  • the battery capacity of the vehicle-mounted battery 5 decreases.
  • the threshold value Th the time from when the accessory power supply 2 is turned off until the power supply circuit 16 (more specifically, the second power supply circuit 16_2) is set to the off state is shortened. Can be done. As a result, it is possible to avoid the occurrence of battery exhaustion not only when the deterioration degree D is low but also when the deterioration degree D is high.
  • the main part of the power supply control device 100b is composed of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24, the power supply control unit 25, the deterioration degree determination unit 31 and the threshold value setting unit 32. Is configured.
  • the deterioration degree determination unit 31 determines the deterioration degree D (step ST31). At this time, the deterioration degree determination unit 31 determines the deterioration degree D by the first determination method, the second determination method, the third determination method, or the fourth determination method. Next, the threshold value setting unit 32 sets the threshold value Th to a value corresponding to the degree of deterioration D based on the determination result in step ST31 (step ST32). As a result, the higher the degree of deterioration D, the smaller the threshold Th is set.
  • step ST6 the process of step ST6 is executed.
  • the threshold value Th set in step ST32 is used. If step ST6 is “NO”, the process of the power supply control device 100b proceeds to step ST2. On the other hand, if step ST6 "YES”, then the process of step ST7 is executed.
  • the power supply control device 100b may have a power consumption comparison unit 24a and a power supply control unit 25a instead of the power consumption comparison unit 24 and the power control unit 25.
  • the threshold value setting unit 32 sets each of the first threshold value Th_1 and the second threshold value Th_2 to a value corresponding to the degree of deterioration D.
  • the first threshold value Th_1 is set to a smaller value and the second threshold value Th_1 is set to a smaller value. That is, as the degree of deterioration D is lower, the first threshold value Th_1 is set to a larger value and the second threshold value Th_1 is set to a larger value.
  • FIG. 17 shows a flowchart in this case.
  • the same reference numerals are given to the same steps as those shown in FIG. As shown in FIG. 17, first, the processes of steps ST11 to ST15 are executed.
  • the deterioration degree determination unit 31 determines the deterioration degree D (step ST41). At this time, the deterioration degree determination unit 31 determines the deterioration degree D by the first determination method, the second determination method, the third determination method, or the fourth determination method. Next, the threshold value setting unit 32 sets the first threshold value Th_1 to a value corresponding to the degree of deterioration D based on the determination result in step ST41 (step ST42). As a result, the higher the degree of deterioration D, the smaller the first threshold value Th_1 is set.
  • step ST16 the first threshold value Th_1 set in step ST42 is used. If step ST16 “NO”, the process of the power supply control device 100b proceeds to step ST12. On the other hand, if step ST16 "YES”, then the process of step ST17 is executed.
  • the deterioration degree determination unit 31 determines the deterioration degree D (step ST51). At this time, the deterioration degree determination unit 31 determines the deterioration degree D by the first determination method, the second determination method, the third determination method, or the fourth determination method. Next, the threshold value setting unit 32 sets the second threshold value Th_2 to a value corresponding to the degree of deterioration D based on the determination result in step ST51 (step ST52). As a result, the higher the degree of deterioration D, the smaller the second threshold value Th_2 is set.
  • step ST22 the second threshold value Th_2 set in step ST52 is used. If step ST22 “NO”, the process of the power supply control device 100b proceeds to step ST18. On the other hand, if step ST22 "YES”, then the process of step ST23 is executed.
  • the method for determining the degree of deterioration D is not limited to the first determination method, the second determination method, the third determination method, and the fourth determination method.
  • Various known techniques can be used to determine the degree of deterioration D.
  • the power supply control device 100b can employ various modifications similar to those described in the first and second embodiments. Further, as the in-vehicle information device 300b, various modifications similar to those described in the first and second embodiments can be adopted.
  • the power supply control device 100b has the deterioration degree determination unit 31 for determining the deterioration degree D of the vehicle-mounted battery 5 and the threshold value setting for setting the threshold value Th to a value corresponding to the deterioration degree D.
  • a unit 32 is provided. As a result, the timing at which the power supply circuit 16 is set to the off state can be adjusted according to the degree of deterioration D.
  • the power supply control device and power supply control method of the present invention can be used for in-vehicle information devices.
  • the in-vehicle information device of the present invention can be used, for example, in a navigation system or an audio system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Power Sources (AREA)

Abstract

A power supply control apparatus (100) is provided with: a temperature information acquisition unit (21) which acquires temperature information indicating a temperature (Temp) in a vehicle-mounted information device (300); a dark current estimation unit (22) which uses the temperature information to estimate a dark current (I) in the vehicle-mounted information device (300) on the basis of the temperature (Temp); and a power supply control unit (25) which performs control to set a power supply circuit (16) of the vehicle-mounted information device (300) to an off state depending on the result of the estimation performed by the dark current estimation unit (22).

Description

電源制御装置、車載用情報機器及び電源制御方法Power control device, in-vehicle information device and power control method
 本発明は、電源制御装置、車載用情報機器及び電源制御方法に関する。 The present invention relates to a power supply control device, an in-vehicle information device, and a power supply control method.
 従来、オペレーティングシステム(以下「OS」と記載する。)を有する車載用情報機器が開発されている。車載用情報機器のOSは、例えば、ANDROID(登録商標)、Linux(登録商標)又はWINDOWS(登録商標)を用いたものである。 Conventionally, in-vehicle information devices having an operating system (hereinafter referred to as "OS") have been developed. The OS of the in-vehicle information device uses, for example, ANDROID (registered trademark), Linux (registered trademark), or WINDOWS (registered trademark).
 アクセサリ電源(以下「ACC電源」と記載することがある。)がオンされている状態においては、OSによる種々の機能が実行される。このとき、車載用情報機器により電流が消費されることにより、電力が消費される。当該消費される電力は、例えば、常時電源(以下「+B電源」と記載することがある。)により供給される。 When the accessory power supply (hereinafter sometimes referred to as "ACC power supply") is turned on, various functions by the OS are executed. At this time, electric power is consumed by consuming current by the in-vehicle information device. The consumed power is supplied by, for example, a constant power source (hereinafter, may be referred to as "+ B power source").
 これに対して、ACC電源がオフされている状態においても、車載用情報機器により電流が消費されることにより、電力が消費される。以下、ACC電源がオフされている状態にて車載用情報機器により消費される電流を「暗電流」という。 On the other hand, even when the ACC power supply is off, power is consumed by consuming current from the in-vehicle information device. Hereinafter, the current consumed by the in-vehicle information device when the ACC power supply is turned off is referred to as "dark current".
 ここで、暗電流の具体例について説明する。第一に、暗電流は、車載用情報機器内の受動素子によるリーク電流を含むものである。受動素子は、例えば、電解コンデンサにより構成されている。以下、この暗電流を「第1暗電流」ということがある。 Here, a specific example of dark current will be described. First, the dark current includes a leak current due to a passive element in an in-vehicle information device. The passive element is composed of, for example, an electrolytic capacitor. Hereinafter, this dark current may be referred to as a "first dark current".
 第二に、暗電流は、車載用情報機器内の揮発性メモリに記憶されている情報を保持するための電流を含むものである。揮発性メモリは、例えば、DRAM(Dynamic Random Access Memory)又はSRAM(Static Random Access Memory)により構成されている。揮発性メモリは、OSによる各機能に用いられる。以下、この暗電流を「第2暗電流」ということがある。 Second, the dark current includes the current for holding the information stored in the volatile memory in the in-vehicle information device. The volatile memory is composed of, for example, a DRAM (Dynamic Random Access Memory) or a SRAM (Static Random Access Memory). Volatile memory is used for each function by the OS. Hereinafter, this dark current may be referred to as a "second dark current".
 第三に、暗電流は、車載用情報機器内のIC(Integrated Circuit)を低速にて動作させるための電流を含むものである。ICは、例えば、マイクロコントローラ(以下「マイコン」という。)及びSoC(System-on-a-Chip)を含むものである。OSによる各機能は、例えば、SoCにより実現される。以下、この暗電流を「第3暗電流」ということがある。 Thirdly, the dark current includes a current for operating an IC (Integrated Circuit) in an in-vehicle information device at a low speed. The IC includes, for example, a microcontroller (hereinafter referred to as "microcomputer") and a SoC (System-on-a-Chip). Each function by the OS is realized by, for example, SoC. Hereinafter, this dark current may be referred to as a "third dark current".
特開2015-95086号公報JP-A-2015-95086
 ACC電源がオフされている状態においては、車載用情報機器の再起動を高速にする観点から、第2暗電流及び第3暗電流を維持することが求められる。他方、この状態においては、いわゆる「バッテリ上がり」の発生を回避する観点から、第2暗電流及び第3暗電流を停止することが求められる。 When the ACC power supply is off, it is required to maintain the second dark current and the third dark current from the viewpoint of speeding up the restart of the in-vehicle information device. On the other hand, in this state, it is required to stop the second dark current and the third dark current from the viewpoint of avoiding the occurrence of so-called "battery exhaustion".
 そこで、車載用情報機器の再起動の高速化とバッテリ上がりの発生の回避との両立を図る観点から、車載用情報機器における暗電流を検出するのが好適である。また、当該検出された暗電流に基づき、第2暗電流及び第3暗電流のオンオフを制御するのが好適である。より具体的には、当該検出された暗電流に基づき、第2暗電流及び第3暗電流の停止タイミングを制御するのが好適である。 Therefore, it is preferable to detect the dark current in the in-vehicle information device from the viewpoint of achieving both high-speed restart of the in-vehicle information device and avoidance of battery exhaustion. Further, it is preferable to control the on / off of the second dark current and the third dark current based on the detected dark current. More specifically, it is preferable to control the stop timing of the second dark current and the third dark current based on the detected dark current.
 特許文献1には、車載用情報機器における暗電流を検出する技術が開示されている。特許文献1記載の技術は、暗電流の検出に専用のセンサ(暗電流センサSN2)を用いるものである。このセンサにより、車載用情報機器の製造コストが増加する問題があった。 Patent Document 1 discloses a technique for detecting a dark current in an in-vehicle information device. The technique described in Patent Document 1 uses a dedicated sensor (dark current sensor SN2) for detecting dark current. This sensor has a problem of increasing the manufacturing cost of an in-vehicle information device.
 本発明は、上記のような課題を解決するためになされたものであり、暗電流検出用の専用のセンサを不要とすることを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to eliminate the need for a dedicated sensor for detecting dark current.
 本発明の電源制御装置は、車載用情報機器における温度を示す温度情報を取得する温度情報取得部と、温度情報を用いて、温度に基づき、車載用情報機器における暗電流を推定する暗電流推定部と、暗電流推定部による推定結果に応じて、車載用情報機器における電源回路をオフ状態に設定する制御を実行する電源制御部と、を備えるものである。 The power supply control device of the present invention uses a temperature information acquisition unit that acquires temperature information indicating a temperature in an in-vehicle information device and a dark current estimation that estimates a dark current in an in-vehicle information device based on the temperature using the temperature information. It is provided with a unit and a power supply control unit that executes control for setting the power supply circuit in the in-vehicle information device to the off state according to the estimation result by the dark current estimation unit.
 本発明によれば、上記のように構成したので、暗電流検出用の専用のセンサを不要とすることができる。 According to the present invention, since it is configured as described above, it is possible to eliminate the need for a dedicated sensor for detecting dark current.
実施の形態1に係る車載用情報機器の要部を示すブロック図である。It is a block diagram which shows the main part of the vehicle-mounted information device which concerns on Embodiment 1. FIG. 実施の形態1に係る電源制御装置の要部を示すブロック図である。It is a block diagram which shows the main part of the power supply control apparatus which concerns on Embodiment 1. FIG. 車載用情報機器における温度暗電流特性の例を示す特性図である。It is a characteristic diagram which shows the example of the temperature dark current characteristic in an in-vehicle information device. 車載用情報機器における温度の時間変化の例を示す説明図である。It is explanatory drawing which shows the example of the time change of temperature in an in-vehicle information device. 車載用情報機器における暗電流の時間変化の例を示す説明図である。It is explanatory drawing which shows the example of the time change of a dark current in an in-vehicle information device. 車載用情報機器における消費電力量の時間変化の例を示す説明図である。It is explanatory drawing which shows the example of the time change of the power consumption in an in-vehicle information device. 実施の形態1に係る電源制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the power-source control apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る他の電源制御装置の要部を示すブロック図である。It is a block diagram which shows the main part of another power supply control device which concerns on Embodiment 1. FIG. 実施の形態1に係る他の電源制御装置の要部を示すブロック図である。It is a block diagram which shows the main part of another power supply control device which concerns on Embodiment 1. FIG. 実施の形態2に係る車載用情報機器の要部を示すブロック図である。It is a block diagram which shows the main part of the in-vehicle information device which concerns on Embodiment 2. 実施の形態2に係る電源制御装置の要部を示すブロック図である。It is a block diagram which shows the main part of the power supply control device which concerns on Embodiment 2. 実施の形態2に係る電源制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the power-source control device which concerns on Embodiment 2. 実施の形態2に係る電源制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the power-source control device which concerns on Embodiment 2. 実施の形態3に係る車載用情報機器の要部を示すブロック図である。It is a block diagram which shows the main part of the in-vehicle information device which concerns on Embodiment 3. 実施の形態3に係る電源制御装置の要部を示すブロック図である。It is a block diagram which shows the main part of the power supply control device which concerns on Embodiment 3. 実施の形態3に係る電源制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the power-source control device which concerns on Embodiment 3. 実施の形態3に係る他の電源制御装置の要部を示すブロック図である。It is a block diagram which shows the main part of another power supply control device which concerns on Embodiment 3. 実施の形態3に係る他の電源制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of another power-source control device which concerns on Embodiment 3. 実施の形態3に係る他の電源制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of another power-source control device which concerns on Embodiment 3.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る車載用情報機器の要部を示すブロック図である。図1を参照して、実施の形態1に係る車載用情報機器について説明する。なお、図1におけるブロック間の実線の矢印は、信号又は情報に対応している。また、図1におけるブロック間の破線の矢印は、電力又は電流に対応している。
Embodiment 1.
FIG. 1 is a block diagram showing a main part of an in-vehicle information device according to the first embodiment. The vehicle-mounted information device according to the first embodiment will be described with reference to FIG. The solid arrows between the blocks in FIG. 1 correspond to signals or information. Also, the dashed arrows between the blocks in FIG. 1 correspond to electric power or current.
 車載用情報機器300は、車両1に搭載されている。車両1は、アクセサリ電源2を有している。また、車両1は、車載用ネットワーク3を有している。車載用ネットワーク3は、例えば、CAN(Controller Area Network)により構成されている。また、車両1は、常時電源4を有している。常時電源4は、車載用バッテリ5と電気的に接続されている。車載用バッテリ5は、車両1に搭載されている。 The in-vehicle information device 300 is mounted on the vehicle 1. The vehicle 1 has an accessory power supply 2. Further, the vehicle 1 has an in-vehicle network 3. The in-vehicle network 3 is configured by, for example, CAN (Control Area Network). Further, the vehicle 1 has a constant power supply 4. The constant power supply 4 is electrically connected to the vehicle-mounted battery 5. The vehicle-mounted battery 5 is mounted on the vehicle 1.
 車載用情報機器300は、時計11を有している。また、車載用情報機器300は、温度計12を有している。温度計12は、車載用情報機器300における温度Tempを測定するものである。温度計12は、例えば、サーミスタにより構成されている。 The in-vehicle information device 300 has a clock 11. Further, the in-vehicle information device 300 has a thermometer 12. The thermometer 12 measures the temperature Temp in the in-vehicle information device 300. The thermometer 12 is composed of, for example, a thermistor.
 温度計12により測定された温度(以下「測定温度」ということがある。)Tempは、車載用情報機器300における温度依存性を有する部位又は機能の制御に用いられる。具体的には、例えば、測定温度Tempは、時計11における時刻を補正する制御に用いられる。また、例えば、車載用情報機器300が光ピックアップ(不図示)を有するものである場合、測定温度Tempは、光ピックアップにおけるレーザダイオードの制御に用いられる。また、例えば、車載用情報機器300が液晶ディスプレイ(不図示)を有するものである場合、測定温度Tempは、液晶ディスプレイの制御に用いられる。 The temperature measured by the thermometer 12 (hereinafter sometimes referred to as "measured temperature") Temp is used for controlling a part or function having a temperature dependence in the in-vehicle information device 300. Specifically, for example, the measurement temperature Temp is used for controlling the time in the clock 11. Further, for example, when the in-vehicle information device 300 has an optical pickup (not shown), the measurement temperature Temp is used for controlling the laser diode in the optical pickup. Further, for example, when the in-vehicle information device 300 has a liquid crystal display (not shown), the measurement temperature Temp is used for controlling the liquid crystal display.
 車載用情報機器300は、電源制御用のプロセッサ13を有している。プロセッサ13は、例えば、マイコンにより構成されている。プロセッサ13により、電源制御装置100の要部が構成されている。電源制御装置100については、図2を参照して後述する。 The in-vehicle information device 300 has a processor 13 for power supply control. The processor 13 is composed of, for example, a microcomputer. The processor 13 constitutes a main part of the power supply control device 100. The power supply control device 100 will be described later with reference to FIG.
 車載用情報機器300は、処理回路14を有している。また、車載用情報機器300は、揮発性のメモリ15を有している。処理回路14は、例えば、SoCにより構成されている。メモリ15は、例えば、DRAM又はSRAMにより構成されている。処理回路14及びメモリ15により、情報処理装置200の要部が構成されている。 The in-vehicle information device 300 has a processing circuit 14. Further, the in-vehicle information device 300 has a volatile memory 15. The processing circuit 14 is composed of, for example, SoC. The memory 15 is composed of, for example, a DRAM or an SRAM. The processing circuit 14 and the memory 15 form a main part of the information processing apparatus 200.
 ここで、情報処理装置200は、OSを有するものである。OSは、例えば、ANDROID(登録商標)、Linux(登録商標)又はWINDOWS(登録商標)を用いたものである。OSによる各機能は、処理回路14により実現されるものである。また、メモリ15は、OSによる各機能に用いられるものである。 Here, the information processing device 200 has an OS. As the OS, for example, ANDROID (registered trademark), Linux (registered trademark) or WINDOWS (registered trademark) is used. Each function by the OS is realized by the processing circuit 14. Further, the memory 15 is used for each function by the OS.
 また、情報処理装置200は、起動している状態(以下「起動状態」という。)及び停止している状態(以下「シャットダウン状態」という。)に加えて、起動状態における消費電力よりも小さい消費電力により待機している状態(以下「省電力待機状態」という。)を有している。情報処理装置200は、電源制御装置100により、起動状態、シャットダウン状態又は省電力待機状態に選択的に設定される。電源制御装置100については、図2を参照して後述する。 Further, the information processing device 200 consumes less power than the power consumption in the activated state in addition to the activated state (hereinafter referred to as "started state") and the stopped state (hereinafter referred to as "shutdown state"). It has a state of standby by electric power (hereinafter referred to as "power saving standby state"). The information processing device 200 is selectively set to a start state, a shutdown state, or a power saving standby state by the power control device 100. The power supply control device 100 will be described later with reference to FIG.
 起動状態は、例えば、ACPI(Advanced Configuration and Power Interface)におけるS0のステートに対応するものである。シャットダウン状態は、例えば、ACPIにおけるS5のステートに対応するものである。省電力待機状態は、例えば、ACPIにおけるS1、S2、S3又はS4のステートに対応するものである。すなわち、省電力待機状態は、いわゆる「サスペンド状態」、「スタンバイ状態」又は「スリープ状態」に対応するものである。 The activation state corresponds to, for example, the state of S0 in ACPI (Advanced Configuration and Power Interface). The shutdown state corresponds to, for example, the state of S5 in ACPI. The power saving standby state corresponds to, for example, the state of S1, S2, S3 or S4 in ACPI. That is, the power saving standby state corresponds to the so-called "suspend state", "standby state", or "sleep state".
 車載用情報機器300は、電源回路16を有している。より具体的には、車載用情報機器300は、2個の電源回路16_1,16_2を有している。 The in-vehicle information device 300 has a power supply circuit 16. More specifically, the in-vehicle information device 300 has two power supply circuits 16_1 and 16_2.
 2個の電源回路16_1,16_2のうちの1個の電源回路(以下「第1電源回路」という。)16_1は、時計11及びプロセッサ13に電力を供給するものである。この電力は、例えば、常時電源4により供給されるものである。第1電源回路16_1は、例えば、リニアレギュレータにより構成されている。 One power supply circuit (hereinafter referred to as "first power supply circuit") 16_1 of the two power supply circuits 16_1 and 16_2 supplies electric power to the clock 11 and the processor 13. This electric power is, for example, always supplied by the power source 4. The first power supply circuit 16_1 is composed of, for example, a linear regulator.
 2個の電源回路16_1,16_2のうちの他の1個の電源回路(以下「第2電源回路」という。)16_2は、処理回路14及びメモリ15に電力を供給するものである。この電力は、例えば、常時電源4により供給されるものである。第2電源回路16_2は、例えば、リニアレギュレータにより構成されている。 The other one of the two power supply circuits 16_1 and 16_2 (hereinafter referred to as "second power supply circuit") 16_2 supplies electric power to the processing circuit 14 and the memory 15. This electric power is, for example, always supplied by the power source 4. The second power supply circuit 16_2 is composed of, for example, a linear regulator.
 このように、第1電源回路16_1及び第2電源回路16_2は、車載用情報機器300における互いに異なる部位に電力を供給するものである。第1電源回路16_1及び第2電源回路16_2の各々は、電源制御装置100により、オン状態又はオフ状態に選択的に設定される。以下、図2を参照して、電源制御装置100について説明する。 As described above, the first power supply circuit 16_1 and the second power supply circuit 16_2 supply electric power to different parts of the in-vehicle information device 300. Each of the first power supply circuit 16_1 and the second power supply circuit 16_2 is selectively set to an on state or an off state by the power supply control device 100. Hereinafter, the power supply control device 100 will be described with reference to FIG.
 電源制御装置100は、アクセサリ電源2がオンされたとき、その旨を示す信号を取得する。また、電源制御装置100は、アクセサリ電源2がオフされたとき、その旨を示す信号を取得する。これらの信号は、例えば、アクセサリ電源2又は車載用ネットワーク3から取得される。電源制御装置100は、これらの信号を用いて、アクセサリ電源2がオンされている状態であるかオフされている状態であるかを判定する機能を有している。 When the accessory power supply 2 is turned on, the power supply control device 100 acquires a signal indicating that fact. Further, when the accessory power supply 2 is turned off, the power supply control device 100 acquires a signal to that effect. These signals are obtained from, for example, the accessory power supply 2 or the vehicle-mounted network 3. The power control device 100 has a function of determining whether the accessory power supply 2 is on or off by using these signals.
 また、電源制御装置100は、アクセサリ電源2がオフされたとき、情報処理装置200を省電力待機状態に設定する機能を有している。これにより、情報処理装置200は、起動状態から省電力待機状態に切り替わる。 Further, the power supply control device 100 has a function of setting the information processing device 200 to the power saving standby state when the accessory power supply 2 is turned off. As a result, the information processing apparatus 200 switches from the activated state to the power saving standby state.
 また、電源制御装置100は、アクセサリ電源2がオフされている状態にて、第2電源回路16_2がオフ状態に設定されるとき、情報処理装置200をシャットダウン状態に設定する機能を有している。これにより、情報処理装置200は、省電力待機状態からシャットダウン状態に切り替わる。 Further, the power supply control device 100 has a function of setting the information processing device 200 to the shutdown state when the second power supply circuit 16_2 is set to the off state while the accessory power supply 2 is off. .. As a result, the information processing apparatus 200 switches from the power saving standby state to the shutdown state.
 また、電源制御装置100は、アクセサリ電源2がオンされたとき、情報処理装置200を起動状態に設定する機能を有している。これにより、情報処理装置200は、省電力待機状態又はシャットダウン状態から起動状態に切り替わる。 Further, the power supply control device 100 has a function of setting the information processing device 200 to the activated state when the accessory power supply 2 is turned on. As a result, the information processing apparatus 200 switches from the power saving standby state or the shutdown state to the startup state.
 通常、省電力待機状態から起動状態への切替えに要する時間は、シャットダウン状態から起動状態への切替えに要する時間よりも短いものである。以下、これらの時間を総称して「再起動時間」ということがある。すなわち、省電力待機状態からの再起動時間は、シャットダウン状態からの再起動時間よりも短いものである。 Normally, the time required to switch from the power saving standby state to the start state is shorter than the time required to switch from the shutdown state to the start state. Hereinafter, these times may be collectively referred to as "restart time". That is, the restart time from the power saving standby state is shorter than the restart time from the shutdown state.
 これらの機能に加えて、電源制御装置100は、以下の機能を有している。 In addition to these functions, the power supply control device 100 has the following functions.
 温度情報取得部21は、アクセサリ電源2がオフされている状態にて、測定温度Tempを示す情報(以下「温度情報」という。)を取得するものである。温度情報は、温度計12から取得される。温度情報は、所定時間(例えば10秒)T毎に取得される。所定時間Tのカウントには、時計11が用いられる。 The temperature information acquisition unit 21 acquires information indicating the measurement temperature Temp (hereinafter referred to as "temperature information") in a state where the accessory power supply 2 is turned off. The temperature information is acquired from the thermometer 12. The temperature information is acquired every T for a predetermined time (for example, 10 seconds). A clock 11 is used for counting the predetermined time T.
 暗電流推定部22は、温度情報取得部21により取得された温度情報を用いて、測定温度Tempに基づき、車載用情報機器300における暗電流Iを推定するものである。 The dark current estimation unit 22 estimates the dark current I in the in-vehicle information device 300 based on the measured temperature Temp using the temperature information acquired by the temperature information acquisition unit 21.
 すなわち、以下、車載用情報機器300における温度Tempに対する暗電流Iを示す特性Cを「温度暗電流特性」という。図3は、温度暗電流特性Cの例を示している。図3に示す如く、温度Tempが高くなるにつれて次第に暗電流Iが大きくなるものである。そこで、暗電流推定部22には、温度暗電流特性Cを示す情報(以下「温度暗電流特性情報」という。)が予め記憶されている。暗電流推定部22は、上記取得された温度情報及び予め記憶されている温度暗電流特性情報を用いて、測定温度Temp及び温度暗電流特性Cに基づき、暗電流Iを推定する。 That is, hereinafter, the characteristic C indicating the dark current I with respect to the temperature Temp in the in-vehicle information device 300 is referred to as the "temperature dark current characteristic". FIG. 3 shows an example of the temperature dark current characteristic C. As shown in FIG. 3, the dark current I gradually increases as the temperature Temp increases. Therefore, the dark current estimation unit 22 stores information indicating the temperature dark current characteristic C (hereinafter, referred to as “temperature dark current characteristic information”) in advance. The dark current estimation unit 22 estimates the dark current I based on the measured temperature Temp and the temperature dark current characteristic C by using the acquired temperature information and the temperature dark current characteristic information stored in advance.
 消費電力量算出部23は、暗電流推定部22により推定された暗電流Iの時間積分をするものである。これにより、消費電力量算出部23は、アクセサリ電源2がオフされている状態における消費電力の積算値(以下「消費電力量」という。)Pを算出するものである。すなわち、消費電力量Pは、暗電流Iによる消費電力の積算値を示すものである。 The power consumption calculation unit 23 integrates the dark current I estimated by the dark current estimation unit 22 over time. As a result, the power consumption calculation unit 23 calculates the integrated value (hereinafter referred to as “power consumption”) P of the power consumption when the accessory power supply 2 is turned off. That is, the power consumption P indicates the integrated value of the power consumption due to the dark current I.
 具体的には、例えば、消費電力量算出部23は、アクセサリ電源2がオフされたとき、消費電力量Pの値を所定の初期値(すなわち0)に設定する。アクセサリ電源2がオフされている状態にて、消費電力量算出部23は、所定時間T毎に、すなわち暗電流Iが推定される毎に、以下の式(1)により消費電力量Pの値を更新する。これにより、消費電力量Pが算出される。 Specifically, for example, the power consumption calculation unit 23 sets the value of the power consumption P to a predetermined initial value (that is, 0) when the accessory power supply 2 is turned off. With the accessory power supply 2 turned off, the power consumption calculation unit 23 uses the following equation (1) to calculate the power consumption P every predetermined time T, that is, every time the dark current I is estimated. To update. As a result, the power consumption P is calculated.
 P=P+I×T  (1) P = P + I × T (1)
 図4は、アクセサリ電源2がオフされている状態における温度Tempの時間変化の例を示している。図5は、アクセサリ電源2がオフされている状態における暗電流Iの時間変化の例を示している。図6は、アクセサリ電源2がオフされている状態における消費電力量Pの時間変化の例を示している。図4、図5及び図6の各々における横軸は、アクセサリ電源2がオフされた時刻(図中0)に対する経過時間を示している。 FIG. 4 shows an example of the time change of the temperature Temp when the accessory power supply 2 is turned off. FIG. 5 shows an example of the time change of the dark current I in the state where the accessory power supply 2 is turned off. FIG. 6 shows an example of the time change of the power consumption P in the state where the accessory power supply 2 is turned off. The horizontal axis in each of FIGS. 4, 5 and 6 indicates the elapsed time with respect to the time when the accessory power supply 2 is turned off (0 in the figure).
 図4に示す温度Tempと図5に示す暗電流Iとの対応関係は、図3に示す温度暗電流特性Cに基づくものである。また、図6に示す消費電力量Pは、図5に示す暗電流Iの時間積分をしてなるものである。 The correspondence between the temperature Temp shown in FIG. 4 and the dark current I shown in FIG. 5 is based on the temperature dark current characteristic C shown in FIG. Further, the power consumption P shown in FIG. 6 is obtained by time-integrating the dark current I shown in FIG.
 消費電力量比較部24は、消費電力量算出部23により算出された消費電力量Pを所定の閾値Thと比較するものである。これにより、消費電力量比較部24は、消費電力量Pが閾値Th以上であるか否かを判定するものである。閾値Thは、例えば、車載用バッテリ5の電池容量の初期値に所定の係数を乗じてなる値に設定されている。この係数は、0よりも大きく、かつ、1よりも小さい値である。 The power consumption comparison unit 24 compares the power consumption P calculated by the power consumption calculation unit 23 with a predetermined threshold value Th. As a result, the power consumption comparison unit 24 determines whether or not the power consumption P is equal to or greater than the threshold value Th. The threshold value Th is set to, for example, a value obtained by multiplying the initial value of the battery capacity of the vehicle-mounted battery 5 by a predetermined coefficient. This coefficient is greater than 0 and less than 1.
 電源制御部25は、消費電力量比較部24により消費電力量Pが閾値Th以上であると判定されたとき、第2電源回路16_2をオフ状態に設定する制御を実行するものである。これにより、第2電源回路16_2は、オン状態からオフ状態に切り替わる。このとき、情報処理装置200は、上記のとおり、省電力待機状態からシャットダウン状態に切り替わる。 The power supply control unit 25 executes control for setting the second power supply circuit 16_2 to the off state when the power consumption amount comparison unit 24 determines that the power consumption amount P is equal to or higher than the threshold value Th. As a result, the second power supply circuit 16_2 is switched from the on state to the off state. At this time, the information processing apparatus 200 switches from the power saving standby state to the shutdown state as described above.
 また、電源制御部25は、アクセサリ電源2がオンされたとき、第2電源回路16_2がオフ状態に設定されている場合、第2電源回路16_2をオン状態に設定する制御を実行するものである。これにより、第2電源回路16_2は、オフ状態からオン状態に切り替わる。このとき、情報処理装置200は、上記のとおり、シャットダウン状態から起動状態に切り替わる。 Further, the power supply control unit 25 executes control for setting the second power supply circuit 16_2 to the on state when the accessory power supply 2 is turned on and the second power supply circuit 16_2 is set to the off state. .. As a result, the second power supply circuit 16_2 is switched from the off state to the on state. At this time, the information processing apparatus 200 switches from the shutdown state to the startup state as described above.
 また、電源制御部25は、常時、第1電源回路16_1をオン状態に設定する制御を実行するものである。すなわち、電源制御部25は、アクセサリ電源2がオンされている状態であるかオフされている状態であるかにかかわらず、第1電源回路16_1をオン状態に設定する制御を実行するものである。 Further, the power supply control unit 25 always executes control for setting the first power supply circuit 16_1 to the ON state. That is, the power supply control unit 25 executes control for setting the first power supply circuit 16_1 to the on state regardless of whether the accessory power supply 2 is on or off. ..
 通常、プロセッサ13における回路規模は、処理回路14及びメモリ15における回路規模に比して小さい。したがって、プロセッサ13における暗電流は、処理回路14及びメモリ15における暗電流に比して小さい。このため、アクセサリ電源2がオフされている状態にて、第1電源回路16_1がオン状態に設定されていることにより、バッテリ上がりが発生する可能性は低い。また、通常、時計11による機能(例えば計時機能)の重要度は、OSによる機能(例えば表示機能)の重要度に比して高い。そこで、電源制御部25は、アクセサリ電源2がオンされているときはもちろんのこと、アクセサリ電源2がオフされているときも、第1電源回路16_1をオン状態に設定するのである。 Normally, the circuit scale of the processor 13 is smaller than the circuit scale of the processing circuit 14 and the memory 15. Therefore, the dark current in the processor 13 is smaller than the dark current in the processing circuit 14 and the memory 15. Therefore, it is unlikely that the battery will run out because the first power supply circuit 16_1 is set to the on state while the accessory power supply 2 is off. Further, usually, the importance of the function by the clock 11 (for example, the timekeeping function) is higher than the importance of the function by the OS (for example, the display function). Therefore, the power supply control unit 25 sets the first power supply circuit 16_1 to the on state not only when the accessory power supply 2 is turned on but also when the accessory power supply 2 is turned off.
 温度情報取得部21、暗電流推定部22、消費電力量算出部23、消費電力量比較部24及び電源制御部25により、電源制御装置100の要部が構成されている。 The main part of the power supply control device 100 is composed of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24, and the power supply control unit 25.
 次に、図7のフローチャートを参照して、電源制御装置100の動作について、アクセサリ電源2がオフされている状態における動作を中心に説明する。すなわち、温度情報取得部21、暗電流推定部22、消費電力量算出部23、消費電力量比較部24及び電源制御部25の動作を中心に説明する。 Next, the operation of the power supply control device 100 will be described with reference to the flowchart of FIG. 7, focusing on the operation in the state where the accessory power supply 2 is turned off. That is, the operations of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24, and the power supply control unit 25 will be mainly described.
 アクセサリ電源2がオフされたとき、電源制御装置100は、情報処理装置200を省電力待機状態に設定する制御を実行する。これにより、情報処理装置200は、起動状態から省電力待機状態に切り替わる。このとき、ステップST1の処理が実行される。 When the accessory power supply 2 is turned off, the power supply control device 100 executes control for setting the information processing device 200 to the power saving standby state. As a result, the information processing apparatus 200 switches from the activated state to the power saving standby state. At this time, the process of step ST1 is executed.
 まず、ステップST1にて、消費電力量算出部23は、消費電力量Pの値を所定の初期値(すなわち0)に設定する。次いで、ステップST2にて、電源制御装置100は、所定時間(例えば10秒)T待機する。次いで、ステップST3にて、温度情報取得部21は、温度情報を取得する。 First, in step ST1, the power consumption calculation unit 23 sets the value of the power consumption P to a predetermined initial value (that is, 0). Next, in step ST2, the power supply control device 100 waits for a predetermined time (for example, 10 seconds). Next, in step ST3, the temperature information acquisition unit 21 acquires the temperature information.
 次いで、暗電流推定部22は、ステップST3にて取得された温度情報を用いて、測定温度Tempに基づき、暗電流Iを推定する(ステップST4)。より具体的には、暗電流推定部22は、当該取得された温度情報及び予め記憶されている温度暗電流特性情報を用いて、測定温度Temp及び温度暗電流特性Cに基づき、暗電流Iを推定する。 Next, the dark current estimation unit 22 estimates the dark current I based on the measured temperature Temp using the temperature information acquired in step ST3 (step ST4). More specifically, the dark current estimation unit 22 uses the acquired temperature information and the temperature dark current characteristic information stored in advance to generate the dark current I based on the measured temperature Temp and the temperature dark current characteristic C. presume.
 次いで、消費電力量算出部23は、ステップST4にて推定された暗電流Iに基づき、消費電力量Pを算出する(ステップST5)。より具体的には、消費電力量算出部23は、上記式(1)により、消費電力量Pの値を更新する。 Next, the power consumption calculation unit 23 calculates the power consumption P based on the dark current I estimated in step ST4 (step ST5). More specifically, the power consumption calculation unit 23 updates the value of the power consumption P by the above formula (1).
 次いで、消費電力量比較部24は、ステップST5にて算出された消費電力量Pを閾値Thと比較する(ステップST6)。これにより、消費電力量比較部24は、消費電力量Pが閾値Th以上であるか否かを判定する。 Next, the power consumption comparison unit 24 compares the power consumption P calculated in step ST5 with the threshold value Th (step ST6). As a result, the power consumption comparison unit 24 determines whether or not the power consumption P is equal to or greater than the threshold value Th.
 消費電力量Pが閾値Th未満であると判定された場合(ステップST6“NO”)、電源制御装置100の処理は、ステップST2に進む。 When it is determined that the power consumption P is less than the threshold value Th (step ST6 “NO”), the process of the power supply control device 100 proceeds to step ST2.
 他方、消費電力量Pが閾値Th以上であると判定された場合(ステップST6“YES”)、次いで、電源制御装置100は、情報処理装置200をシャットダウン状態に設定する制御を実行する。これにより、情報処理装置200は、省電力待機状態からシャットダウン状態に切り替わる。このとき、電源制御部25は、電源回路16をオフ状態に設定する制御を実行する(ステップST7)。より具体的には、電源制御部25は、第2電源回路16_2をオフ状態に設定する制御を実行する。これにより、第2電源回路16_2は、オン状態からオフ状態に切り替わる。 On the other hand, when it is determined that the power consumption P is equal to or higher than the threshold value Th (step ST6 “YES”), the power supply control device 100 then executes a control for setting the information processing device 200 to the shutdown state. As a result, the information processing apparatus 200 switches from the power saving standby state to the shutdown state. At this time, the power supply control unit 25 executes control for setting the power supply circuit 16 to the off state (step ST7). More specifically, the power supply control unit 25 executes control for setting the second power supply circuit 16_2 to the off state. As a result, the second power supply circuit 16_2 is switched from the on state to the off state.
 なお、図7に示す処理の実行中にアクセサリ電源2がオンされた場合、すなわちステップST7の処理の実行前にアクセサリ電源2がオンされた場合、電源制御装置100は、図7に示す処理を中断する。次いで、電源制御装置100は、情報処理装置200を起動状態に設定する制御を実行する。これにより、情報処理装置200は、省電力待機状態から起動状態に切り替わる。 When the accessory power supply 2 is turned on during the execution of the process shown in FIG. 7, that is, when the accessory power supply 2 is turned on before the execution of the process of step ST7, the power supply control device 100 performs the process shown in FIG. Suspend. Next, the power supply control device 100 executes control for setting the information processing device 200 to the activated state. As a result, the information processing device 200 switches from the power saving standby state to the activated state.
 また、図7に示す処理の実行後にアクセサリ電源2がオンされた場合、すなわちステップST7の処理の実行後にアクセサリ電源2がオンされた場合、電源制御部25は、第2電源回路16_2をオン状態に設定する制御を実行する。これにより、第2電源回路16_2は、オフ状態からオン状態に切り替わる。次いで、電源制御装置100は、情報処理装置200を起動状態に設定する制御を実行する。これにより、情報処理装置200は、シャットダウン状態から起動状態に切り替わる。 Further, when the accessory power supply 2 is turned on after the processing shown in FIG. 7, that is, when the accessory power supply 2 is turned on after the processing of step ST7 is executed, the power supply control unit 25 turns on the second power supply circuit 16_2. Executes the control set to. As a result, the second power supply circuit 16_2 is switched from the off state to the on state. Next, the power supply control device 100 executes control for setting the information processing device 200 to the activated state. As a result, the information processing apparatus 200 switches from the shutdown state to the startup state.
 このように、温度情報を用いて暗電流Iを推定することにより、暗電流検出用の専用のセンサを不要とすることができる。これにより、車載用情報機器300における部品点数の増加を回避することができる。この結果、車載用情報機器300の製造コストの低減を図ることができる。 By estimating the dark current I using the temperature information in this way, it is possible to eliminate the need for a dedicated sensor for detecting the dark current. As a result, it is possible to avoid an increase in the number of parts in the in-vehicle information device 300. As a result, the manufacturing cost of the in-vehicle information device 300 can be reduced.
 特に、温度暗電流特性情報を用いることにより、暗電流Iを推定するとき、高温時の暗電流Iの増加を考慮することができる。これにより、温度Tempの高低にかかわらず、暗電流Iを正確に推定することができる。この結果、消費電力量Pを正確に算出することができる。 In particular, by using the temperature dark current characteristic information, when estimating the dark current I, it is possible to consider the increase in the dark current I at high temperature. As a result, the dark current I can be accurately estimated regardless of the temperature Temp. As a result, the power consumption P can be calculated accurately.
 また、消費電力量Pに応じて電源回路16(より具体的には第2電源回路16_2)のオンオフを制御することにより、車載用情報機器300の再起動の高速化とバッテリ上がりの発生の回避との両立を図ることができる。 Further, by controlling the on / off of the power supply circuit 16 (more specifically, the second power supply circuit 16_2) according to the power consumption P, the restart of the in-vehicle information device 300 can be speeded up and the occurrence of battery exhaustion can be avoided. It is possible to achieve both.
 なお、プロセッサ13は、通常の動作モードに加えて、当該通常の動作モードにおける動作速度よりも低い動作速度による動作モード(以下「低速動作モード」という。)を有するものであっても良い。プロセッサ13は、アクセサリ電源2がオフされているとき、低速動作モードにて動作するものであっても良い。これにより、電源制御装置100における暗電流を低減することができる。 Note that the processor 13 may have an operation mode (hereinafter referred to as "low-speed operation mode") having an operation speed lower than the operation speed in the normal operation mode in addition to the normal operation mode. The processor 13 may operate in the low-speed operation mode when the accessory power supply 2 is turned off. As a result, the dark current in the power supply control device 100 can be reduced.
 また、電源制御部25は、消費電力量比較部24により消費電力量Pが閾値Th以上であると判定されたとき、第2電源回路16_2をオフ状態に設定する制御を実行するのに加えて、第1電源回路16_1をオフ状態に設定する制御を実行するものであっても良い。これにより、第1電源回路16_1は、オン状態からオフ状態に切り替わる。その後、アクセサリ電源2がオンされたとき、電源制御部25は、第1電源回路16_1をオン状態に設定する制御を実行する。これにより、第1電源回路16_1は、オフ状態からオン状態に切り替わる。すなわち、電源制御部25により実行される制御は、暗電流推定部22による推定結果に応じて、第1電源回路16_1又は第2電源回路16_2のうちの少なくとも一方をオフ状態に設定する制御であれば良い。 Further, the power supply control unit 25 executes control for setting the second power supply circuit 16_2 to the off state when the power consumption amount comparison unit 24 determines that the power consumption amount P is equal to or higher than the threshold value Th. , The control for setting the first power supply circuit 16_1 to the off state may be executed. As a result, the first power supply circuit 16_1 switches from the on state to the off state. After that, when the accessory power supply 2 is turned on, the power supply control unit 25 executes control for setting the first power supply circuit 16_1 to the on state. As a result, the first power supply circuit 16_1 is switched from the off state to the on state. That is, the control executed by the power supply control unit 25 may be a control in which at least one of the first power supply circuit 16_1 and the second power supply circuit 16_2 is set to the off state according to the estimation result by the dark current estimation unit 22. Just do it.
 また、温度情報取得部21、暗電流推定部22、消費電力量算出部23及び電源制御部25の機能がプロセッサ13により実現されるとともに、消費電力量比較部24の機能が他のプロセッサ(不図示)により実現されるものであっても良い。すなわち、図8に示す如く、温度情報取得部21、暗電流推定部22、消費電力量算出部23及び電源制御部25により、電源制御装置100の要部が構成されているものであっても良い。 Further, the functions of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, and the power supply control unit 25 are realized by the processor 13, and the functions of the power consumption comparison unit 24 are realized by another processor (non-function). It may be realized by (illustration). That is, as shown in FIG. 8, even if the main part of the power supply control device 100 is composed of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, and the power supply control unit 25. good.
 また、温度情報取得部21、暗電流推定部22及び電源制御部25の機能がプロセッサ13により実現されるとともに、消費電力量算出部23及び消費電力量比較部24の機能が他のプロセッサ(不図示)により実現されるものであっても良い。すなわち、図9に示す如く、温度情報取得部21、暗電流推定部22及び電源制御部25により、電源制御装置100の要部が構成されているものであっても良い。 Further, the functions of the temperature information acquisition unit 21, the dark current estimation unit 22, and the power supply control unit 25 are realized by the processor 13, and the functions of the power consumption calculation unit 23 and the power consumption comparison unit 24 are other processors (non-function). It may be realized by (illustration). That is, as shown in FIG. 9, the main part of the power supply control device 100 may be configured by the temperature information acquisition unit 21, the dark current estimation unit 22, and the power supply control unit 25.
 以上のように、実施の形態1に係る電源制御装置100は、車載用情報機器300における温度Tempを示す温度情報を取得する温度情報取得部21と、温度情報を用いて、温度Tempに基づき、車載用情報機器300における暗電流Iを推定する暗電流推定部22と、暗電流推定部22による推定結果に応じて、車載用情報機器300における電源回路16をオフ状態に設定する制御を実行する電源制御部25と、を備える。これにより、暗電流検出量の専用のセンサを不要とすることができる。この結果、車載用情報機器300の製造コストの低減を図ることができる。 As described above, the power supply control device 100 according to the first embodiment is based on the temperature information acquisition unit 21 for acquiring the temperature information indicating the temperature Temp in the in-vehicle information device 300 and the temperature information based on the temperature Temp. The dark current estimation unit 22 that estimates the dark current I in the vehicle-mounted information device 300 and the control that sets the power supply circuit 16 in the vehicle-mounted information device 300 to the off state are executed according to the estimation result by the dark current estimation unit 22. It includes a power supply control unit 25. This makes it possible to eliminate the need for a dedicated sensor for the amount of dark current detected. As a result, the manufacturing cost of the in-vehicle information device 300 can be reduced.
 また、暗電流推定部22は、温度情報及び車載用情報機器300における温度暗電流特性Cを示す温度暗電流特性情報を用いて、温度Temp及び温度暗電流特性Cに基づき、暗電流Iを推定する。これにより、温度Tempの高低にかかわらず、暗電流Iを正確に推定することができる。 Further, the dark current estimation unit 22 estimates the dark current I based on the temperature Temp and the temperature dark current characteristic C by using the temperature information and the temperature dark current characteristic information indicating the temperature dark current characteristic C in the in-vehicle information device 300. To do. As a result, the dark current I can be accurately estimated regardless of the temperature Temp.
 また、電源制御装置100は、暗電流Iの時間積分により、車載用情報機器300における消費電力量Pを算出する消費電力量算出部23を備える。これにより、消費電力量Pに応じた電源回路16の制御を実現することができる。 Further, the power supply control device 100 includes a power consumption calculation unit 23 that calculates the power consumption P of the in-vehicle information device 300 by time integration of the dark current I. Thereby, the control of the power supply circuit 16 according to the power consumption amount P can be realized.
 また、電源制御装置100は、消費電力量Pを閾値Thと比較する消費電力量比較部24を備え、電源制御部25は、消費電力量Pが閾値Th以上であるとき、電源回路16をオフ状態に設定する。これにより、車載用情報機器300の再起動の高速化とバッテリ上がりの発生の回避との両立を図ることができる。 Further, the power supply control device 100 includes a power consumption comparison unit 24 that compares the power consumption P with the threshold Th, and the power control unit 25 turns off the power circuit 16 when the power consumption P is equal to or higher than the threshold Th. Set to state. As a result, it is possible to achieve both high-speed restart of the in-vehicle information device 300 and avoidance of battery exhaustion.
 また、実施の形態1に係る車載用情報機器300は、電源制御装置100を備える車載用情報機器300であって、電源制御装置100は、車載用情報機器300における温度Tempを示す温度情報を取得する温度情報取得部21と、温度情報を用いて、温度Tempに基づき、車載用情報機器300における暗電流Iを推定する暗電流推定部22と、暗電流推定部22による推定結果に応じて、車載用情報機器300における電源回路16をオフ状態に設定する制御を実行する電源制御部25と、を有する。これにより、暗電流検出量の専用のセンサを不要とすることができる。この結果、車載用情報機器300の製造コストの低減を図ることができる。 Further, the in-vehicle information device 300 according to the first embodiment is an in-vehicle information device 300 including a power supply control device 100, and the power supply control device 100 acquires temperature information indicating a temperature Temp in the in-vehicle information device 300. Based on the temperature information acquisition unit 21, the dark current estimation unit 22 that estimates the dark current I in the in-vehicle information device 300 based on the temperature Temp, and the dark current estimation unit 22 that estimates the dark current I. It has a power supply control unit 25 that executes control for setting the power supply circuit 16 in the in-vehicle information device 300 to an off state. This makes it possible to eliminate the need for a dedicated sensor for the amount of dark current detected. As a result, the manufacturing cost of the in-vehicle information device 300 can be reduced.
 また、実施の形態1に係る電源制御方法は、温度情報取得部21が、車載用情報機器300における温度Tempを示す温度情報を取得するステップST3と、暗電流推定部22が、温度情報を用いて、温度Tempに基づき、車載用情報機器300における暗電流Iを推定するステップST4と、電源制御部25が、暗電流推定部22による推定結果に応じて、車載用情報機器300における電源回路16をオフ状態に設定する制御を実行するステップST7と、を備える。これにより、暗電流検出用の専用のセンサを不要とすることができる。この結果、車載用情報機器300の製造コストの低減を図ることができる。 Further, in the power supply control method according to the first embodiment, the temperature information acquisition unit 21 uses the temperature information in step ST3 for acquiring the temperature information indicating the temperature Temp in the in-vehicle information device 300, and the dark current estimation unit 22 uses the temperature information. In step ST4, which estimates the dark current I in the vehicle-mounted information device 300 based on the temperature Temp, the power supply control unit 25 determines the power supply circuit 16 in the vehicle-mounted information device 300 according to the estimation result by the dark current estimation unit 22. Step ST7, which executes control for setting the temperature to the off state, is provided. This makes it possible to eliminate the need for a dedicated sensor for dark current detection. As a result, the manufacturing cost of the in-vehicle information device 300 can be reduced.
実施の形態2.
 図10は、実施の形態2に係る車載用情報機器の要部を示すブロック図である。図10を参照して、実施の形態2に係る車載用情報機器について説明する。なお、図10において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 2.
FIG. 10 is a block diagram showing a main part of the in-vehicle information device according to the second embodiment. The vehicle-mounted information device according to the second embodiment will be described with reference to FIG. In FIG. 10, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 車載用情報機器300aは、プロセッサ13aを有している。プロセッサ13aは、例えば、マイコンにより構成されている。プロセッサ13aにより、電源制御装置100aの要部が構成されている。時計11、温度計12、電源回路16、電源制御装置100a及び情報処理装置200により、車載用情報機器300aの要部が構成されている。 The in-vehicle information device 300a has a processor 13a. The processor 13a is composed of, for example, a microcomputer. The processor 13a constitutes a main part of the power supply control device 100a. The clock 11, the thermometer 12, the power supply circuit 16, the power supply control device 100a, and the information processing device 200 constitute a main part of the in-vehicle information device 300a.
 次に、図11を参照して、電源制御装置100aについて説明する。なお、図11において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。 Next, the power supply control device 100a will be described with reference to FIG. In FIG. 11, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
 消費電力量比較部24aは、消費電力量算出部23により算出された消費電力量Pを所定の閾値(以下「第1閾値」ということがある。)Th_1と比較するものである。これにより、消費電力量比較部24aは、消費電力量Pが第1閾値Th_1以上であるか否かを判定するものである。 The power consumption comparison unit 24a compares the power consumption P calculated by the power consumption calculation unit 23 with a predetermined threshold value (hereinafter, may be referred to as “first threshold value”) Th_1. As a result, the power consumption comparison unit 24a determines whether or not the power consumption P is equal to or greater than the first threshold value Th_1.
 また、消費電力量比較部24aは、消費電力量算出部23により算出された消費電力量Pを他の所定の閾値(以下「第2閾値」ということがある。)Th_2と比較するものである。これにより、消費電力量比較部24aは、消費電力量Pが第2閾値Th_2以上であるか否かを判定するものである。 Further, the power consumption comparison unit 24a compares the power consumption P calculated by the power consumption calculation unit 23 with another predetermined threshold value (hereinafter, may be referred to as “second threshold value”) Th_2. .. As a result, the power consumption comparison unit 24a determines whether or not the power consumption P is equal to or higher than the second threshold value Th_2.
 第1閾値Th_1は、例えば、図2に示す消費電力量比較部24における閾値Thと同等の値に設定されている。これに対して、第2閾値Th_2は、第1閾値Th_1よりも大きい値に設定されている。このように、第1閾値Th_1及び第2閾値Th_2は、互いに異なる値に設定されている。 The first threshold value Th_1 is set to a value equivalent to the threshold value Th in the power consumption comparison unit 24 shown in FIG. 2, for example. On the other hand, the second threshold value Th_2 is set to a value larger than the first threshold value Th_1. As described above, the first threshold value Th_1 and the second threshold value Th_2 are set to different values.
 電源制御部25aは、消費電力量比較部24aにより消費電力量Pが第1閾値Th_1以上であると判定されたとき、第2電源回路16_2をオフ状態に設定する制御を実行するものである。また、電源制御部25aは、消費電力量比較部24aにより消費電力量Pが第2閾値Th_2以上であると判定されたとき、第1電源回路16_1をオフ状態に設定する制御を実行するものである。 The power supply control unit 25a executes a control for setting the second power supply circuit 16_2 to the off state when the power consumption amount comparison unit 24a determines that the power consumption amount P is equal to or higher than the first threshold value Th_1. Further, the power supply control unit 25a executes a control for setting the first power supply circuit 16_1 to the off state when the power consumption amount comparison unit 24a determines that the power consumption amount P is equal to or higher than the second threshold value Th_2. is there.
 すなわち、消費電力量比較部24aは、消費電力量Pを複数個の閾値Th_1,Th_2と比較するものである。電源制御部25aは、当該比較の結果に基づき、消費電力量Pの増加に応じて、複数個の電源回路16_1,16_2を順次オフ状態に設定するものである。 That is, the power consumption comparison unit 24a compares the power consumption P with a plurality of threshold values Th_1 and Th_2. Based on the result of the comparison, the power supply control unit 25a sequentially sets the plurality of power supply circuits 16_1 and 16_2 to the off state according to the increase in the power consumption amount P.
 実施の形態1にて説明したとおり、通常、時計11による機能(例えば計時機能)の重要度は、OSによる機能(例えば表示機能)の重要度に比して高い。そこで、第2電源回路16_2がオフ状態に設定されるタイミングに対して、第1電源回路16_1がオフ状態に設定されるタイミングを遅らせるものである。これにより、情報処理装置200に対する電力供給の停止タイミングに対して、時計11に対する電力供給の停止タイミングを遅らせることができる。 As described in the first embodiment, the importance of the function by the clock 11 (for example, the timekeeping function) is usually higher than the importance of the function by the OS (for example, the display function). Therefore, the timing at which the first power supply circuit 16_1 is set to the off state is delayed with respect to the timing at which the second power supply circuit 16_1 is set to the off state. Thereby, the stop timing of the power supply to the clock 11 can be delayed with respect to the stop timing of the power supply to the information processing apparatus 200.
 温度情報取得部21、暗電流推定部22、消費電力量算出部23、消費電力量比較部24a及び電源制御部25aにより、電源制御装置100aの要部が構成されている。 The main part of the power supply control device 100a is composed of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24a, and the power supply control unit 25a.
 次に、図12のフローチャートを参照して、電源制御装置100aの動作について、アクセサリ電源2がオフされている状態における動作を中心に説明する。すなわち、温度情報取得部21、暗電流推定部22、消費電力量算出部23、消費電力量比較部24a及び電源制御部25aの動作を中心に説明する。 Next, the operation of the power supply control device 100a will be described with reference to the flowchart of FIG. 12, focusing on the operation in the state where the accessory power supply 2 is turned off. That is, the operations of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24a, and the power supply control unit 25a will be mainly described.
 アクセサリ電源2がオフされたとき、電源制御装置100aは、情報処理装置200を省電力待機状態に設定する制御を実行する。これにより、情報処理装置200は、起動状態から省電力待機状態に切り替わる。このとき、ステップST11の処理が実行される。 When the accessory power supply 2 is turned off, the power supply control device 100a executes a control for setting the information processing device 200 to the power saving standby state. As a result, the information processing apparatus 200 switches from the activated state to the power saving standby state. At this time, the process of step ST11 is executed.
 まず、ステップST11にて、消費電力量算出部23は、消費電力量Pの値を所定の初期値(すなわち0)に設定する。次いで、ステップST12にて、電源制御装置100aは、所定時間(例えば10秒)T待機する。次いで、ステップST13にて、温度情報取得部21は、温度情報を取得する。 First, in step ST11, the power consumption calculation unit 23 sets the value of the power consumption P to a predetermined initial value (that is, 0). Next, in step ST12, the power supply control device 100a waits for a predetermined time (for example, 10 seconds). Next, in step ST13, the temperature information acquisition unit 21 acquires the temperature information.
 次いで、暗電流推定部22は、ステップST13にて取得された温度情報を用いて、測定温度Tempに基づき、暗電流Iを推定する(ステップST14)。より具体的には、暗電流推定部22は、当該取得された温度情報及び予め記憶されている温度暗電流特性情報を用いて、測定温度Temp及び温度暗電流特性Cに基づき、暗電流Iを推定する。 Next, the dark current estimation unit 22 estimates the dark current I based on the measured temperature Temp using the temperature information acquired in step ST13 (step ST14). More specifically, the dark current estimation unit 22 uses the acquired temperature information and the temperature dark current characteristic information stored in advance to generate the dark current I based on the measured temperature Temp and the temperature dark current characteristic C. presume.
 次いで、消費電力量算出部23は、ステップST14にて推定された暗電流Iに基づき、消費電力量Pを算出する(ステップST15)。より具体的には、消費電力量算出部23は、上記式(1)により、消費電力量Pの値を更新する。 Next, the power consumption calculation unit 23 calculates the power consumption P based on the dark current I estimated in step ST14 (step ST15). More specifically, the power consumption calculation unit 23 updates the value of the power consumption P by the above formula (1).
 次いで、消費電力量比較部24aは、ステップST15にて算出された消費電力量Pを第1閾値Th_1と比較する(ステップST16)。これにより、消費電力量比較部24aは、消費電力量Pが第1閾値Th_1以上であるか否かを判定する。 Next, the power consumption comparison unit 24a compares the power consumption P calculated in step ST15 with the first threshold value Th_1 (step ST16). As a result, the power consumption comparison unit 24a determines whether or not the power consumption P is equal to or greater than the first threshold value Th_1.
 消費電力量Pが第1閾値Th_1未満であると判定された場合(ステップST16“NO”)、電源制御装置100aの処理は、ステップST12に進む。 When it is determined that the power consumption P is less than the first threshold value Th_1 (step ST16 “NO”), the process of the power supply control device 100a proceeds to step ST12.
 他方、消費電力量Pが第1閾値Th_1以上であると判定された場合(ステップST16“YES”)、次いで、電源制御装置100aは、情報処理装置200をシャットダウン状態に設定する制御を実行する。これにより、情報処理装置200は、省電力待機状態からシャットダウン状態に切り替わる。このとき、電源制御部25aは、第2電源回路16_2をオフ状態に設定する制御を実行する(ステップST17)。これにより、第2電源回路16_2は、オン状態からオフ状態に切り替わる。 On the other hand, when it is determined that the power consumption P is equal to or higher than the first threshold value Th_1 (step ST16 “YES”), the power supply control device 100a then executes a control for setting the information processing device 200 to the shutdown state. As a result, the information processing apparatus 200 switches from the power saving standby state to the shutdown state. At this time, the power supply control unit 25a executes a control for setting the second power supply circuit 16_2 to the off state (step ST17). As a result, the second power supply circuit 16_2 is switched from the on state to the off state.
 次いで、ステップST18にて、電源制御装置100aは、所定時間(例えば10秒)T待機する。次いで、ステップST19にて、温度情報取得部21は、温度情報を取得する。 Next, in step ST18, the power supply control device 100a waits for a predetermined time (for example, 10 seconds). Next, in step ST19, the temperature information acquisition unit 21 acquires the temperature information.
 次いで、暗電流推定部22は、ステップST19にて取得された温度情報を用いて、測定温度Tempに基づき、暗電流Iを推定する(ステップST20)。より具体的には、暗電流推定部22は、当該取得された温度情報及び予め記憶されている温度暗電流特性情報を用いて、測定温度Temp及び温度暗電流特性Cに基づき、暗電流Iを推定する。 Next, the dark current estimation unit 22 estimates the dark current I based on the measured temperature Temp using the temperature information acquired in step ST19 (step ST20). More specifically, the dark current estimation unit 22 uses the acquired temperature information and the temperature dark current characteristic information stored in advance to generate the dark current I based on the measured temperature Temp and the temperature dark current characteristic C. presume.
 次いで、消費電力量算出部23は、ステップST20にて推定された暗電流Iに基づき、消費電力量Pを算出する(ステップST21)。より具体的には、消費電力量算出部23は、上記式(1)により、消費電力量Pの値を更新する。 Next, the power consumption calculation unit 23 calculates the power consumption P based on the dark current I estimated in step ST20 (step ST21). More specifically, the power consumption calculation unit 23 updates the value of the power consumption P by the above formula (1).
 次いで、消費電力量比較部24aは、ステップST21にて算出された消費電力量Pを第2閾値Th_2と比較する(ステップST22)。これにより、消費電力量比較部24aは、消費電力量Pが第2閾値Th_2以上であるか否かを判定する。 Next, the power consumption comparison unit 24a compares the power consumption P calculated in step ST21 with the second threshold value Th_2 (step ST22). As a result, the power consumption comparison unit 24a determines whether or not the power consumption P is equal to or greater than the second threshold value Th_2.
 消費電力量Pが第2閾値Th_2未満であると判定された場合(ステップST22“NO”)、電源制御装置100aの処理は、ステップST18に進む。 When it is determined that the power consumption P is less than the second threshold value Th_2 (step ST22 “NO”), the process of the power supply control device 100a proceeds to step ST18.
 他方、消費電力量Pが第2閾値Th_2以上であると判定された場合(ステップST22“YES”)、次いで、電源制御部25aは、第1電源回路16_1をオフ状態に設定する制御を実行する(ステップST23)。これにより、第1電源回路16_1は、オン状態からオフ状態に切り替わる。 On the other hand, when it is determined that the power consumption P is equal to or higher than the second threshold value Th_2 (step ST22 “YES”), the power supply control unit 25a then executes a control for setting the first power supply circuit 16_1 to the off state. (Step ST23). As a result, the first power supply circuit 16_1 switches from the on state to the off state.
 なお、図12Aに示す処理の実行中にアクセサリ電源2がオンされた場合、すなわちステップST17の処理の実行前にアクセサリ電源2がオンされた場合、電源制御装置100aは、図12に示す処理を中断する。次いで、電源制御装置100aは、情報処理装置200を起動状態に設定する制御を実行する。これにより、情報処理装置200は、省電力待機状態から起動状態に切り替わる。 When the accessory power supply 2 is turned on during the execution of the process shown in FIG. 12A, that is, when the accessory power supply 2 is turned on before the execution of the process of step ST17, the power supply control device 100a performs the process shown in FIG. Suspend. Next, the power supply control device 100a executes control for setting the information processing device 200 to the activated state. As a result, the information processing device 200 switches from the power saving standby state to the activated state.
 また、図12Bに示す処理の実行中にアクセサリ電源2がオンされた場合、すなわちステップST17の処理の実行後かつステップST23の処理の実行前にアクセサリ電源2がオンされた場合、電源制御部25aは、第2電源回路16_2をオン状態に設定する制御を実行する。これにより、第2電源回路16_2は、オフ状態からオン状態に切り替わる。次いで、電源制御装置100aは、情報処理装置200を起動状態に設定する制御を実行する。これにより、情報処理装置200は、シャットダウン状態から起動状態に切り替わる。 Further, when the accessory power supply 2 is turned on during the execution of the process shown in FIG. 12B, that is, when the accessory power supply 2 is turned on after the execution of the process of step ST17 and before the execution of the process of step ST23, the power supply control unit 25a Executes the control to set the second power supply circuit 16_2 to the ON state. As a result, the second power supply circuit 16_2 is switched from the off state to the on state. Next, the power supply control device 100a executes control for setting the information processing device 200 to the activated state. As a result, the information processing apparatus 200 switches from the shutdown state to the startup state.
 また、図12Bに示す処理の実行後にアクセサリ電源2がオンされた場合、すなわちステップST23の処理の実行後にアクセサリ電源2がオンされた場合、電源制御部25aは、第1電源回路16_1をオン状態に設定する制御を実行する。これにより、第1電源回路16_1は、オフ状態からオン状態に切り替わる。次いで、電源制御部25aは、第2電源回路16_2をオン状態に設定する制御を実行する。これにより、第2電源回路16_2は、オフ状態からオン状態に切り替わる。次いで、電源制御装置100aは、情報処理装置200を起動状態に設定する制御を実行する。これにより、情報処理装置200は、シャットダウン状態から起動状態に切り替わる。 Further, when the accessory power supply 2 is turned on after the processing shown in FIG. 12B is executed, that is, when the accessory power supply 2 is turned on after the processing in step ST23 is executed, the power supply control unit 25a turns on the first power supply circuit 16_1. Executes the control set to. As a result, the first power supply circuit 16_1 is switched from the off state to the on state. Next, the power supply control unit 25a executes a control for setting the second power supply circuit 16_2 to the ON state. As a result, the second power supply circuit 16_2 is switched from the off state to the on state. Next, the power supply control device 100a executes control for setting the information processing device 200 to the activated state. As a result, the information processing apparatus 200 switches from the shutdown state to the startup state.
 なお、暗電流推定部22には、第2電源回路16_2がオン状態に設定されているときの温度暗電流特性(以下「第1温度暗電流特性」という。)C_1を示す温度暗電流特性情報(以下「第1温度暗電流特性情報」という。)が記憶されており、かつ、第2電源回路16_2がオフ状態に設定されているときの温度暗電流特性(以下「第2温度暗電流特性」という。)C_2を示す温度暗電流特性情報(以下「第2温度暗電流特性情報」という。)が記憶されているものであっても良い。 The dark current estimation unit 22 is provided with temperature dark current characteristic information indicating the temperature dark current characteristic (hereinafter referred to as “first temperature dark current characteristic”) C_1 when the second power supply circuit 16_2 is set to the ON state. (Hereinafter referred to as "first temperature dark current characteristic information"), and the temperature dark current characteristic when the second power supply circuit 16_2 is set to the off state (hereinafter referred to as "second temperature dark current characteristic"). ”) The temperature dark current characteristic information indicating C_2 (hereinafter referred to as“ second temperature dark current characteristic information ”) may be stored.
 この場合、ステップST14にて、暗電流推定部22は、第1温度暗電流特性情報を用いて、第1温度暗電流特性C_1に基づき、暗電流Iを推定する。また、ステップST20にて、暗電流推定部22は、第2温度暗電流特性情報を用いて、第2温度暗電流特性C_2に基づき、暗電流Iを推定する。これにより、ステップST14,ST20の各々における暗電流Iの推定精度を更に向上することができる。 In this case, in step ST14, the dark current estimation unit 22 estimates the dark current I based on the first temperature dark current characteristic C_1 using the first temperature dark current characteristic information. Further, in step ST20, the dark current estimation unit 22 estimates the dark current I based on the second temperature dark current characteristic C_2 by using the second temperature dark current characteristic information. As a result, the estimation accuracy of the dark current I in each of steps ST14 and ST20 can be further improved.
 そのほか、電源制御装置100aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。また、車載用情報機器300aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。 In addition, the power supply control device 100a can employ various modifications similar to those described in the first embodiment. Further, as the in-vehicle information device 300a, various modifications similar to those described in the first embodiment can be adopted.
 以上のように、実施の形態2に係る電源制御装置100aにおいて、閾値Thは、互いに異なる第1閾値Th_1及び第2閾値Th_2を含み、電源回路16は、車載用情報機器300における互いに異なる部位に対応する第1電源回路16_1及び第2電源回路16_2を含み、電源制御部25aは、消費電力量Pが第1閾値Th_1以上であるとき、第2電源回路16_2をオフ状態に設定するとともに、消費電力量Pが第2閾値Th_2以上であるとき、第1電源回路16_1をオフ状態に設定する。これにより、消費電力量Pの増加に応じて、複数個の電源回路16_1,16_2を順次オフ状態に設定することができる。 As described above, in the power supply control device 100a according to the second embodiment, the threshold value Th includes the first threshold value Th_1 and the second threshold value Th_2 which are different from each other, and the power supply circuit 16 is located at different parts of the in-vehicle information device 300. The power supply control unit 25a includes the corresponding first power supply circuit 16_1 and the second power supply circuit 16_2, and when the power consumption P is equal to or higher than the first threshold value Th_1, the second power supply circuit 16_2 is set to the off state and consumed. When the electric energy P is equal to or greater than the second threshold value Th_2, the first power supply circuit 16_1 is set to the off state. As a result, the plurality of power supply circuits 16_1 and 16_2 can be sequentially set to the off state according to the increase in the power consumption P.
 また、第2閾値Th_2は、第1閾値Th_1よりも大きい値に設定されており、第1電源回路16_1に対応する部位は、時計11を含み、第2電源回路16_2に対応する部位は、情報処理装置200を含む。これにより、情報処理装置200に対する電力供給の停止タイミングに対して、時計11に対する電力供給の停止タイミングを遅らせることができる。 Further, the second threshold value Th_2 is set to a value larger than the first threshold value Th_1, the portion corresponding to the first power supply circuit 16_1 includes the clock 11, and the portion corresponding to the second power supply circuit 16_2 is information. The processing device 200 is included. Thereby, the stop timing of the power supply to the clock 11 can be delayed with respect to the stop timing of the power supply to the information processing apparatus 200.
実施の形態3.
 図13は、実施の形態3に係る車載用情報機器の要部を示すブロック図である。図13を参照して、実施の形態3に係る車載用情報機器について説明する。なお、図13において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 3.
FIG. 13 is a block diagram showing a main part of the in-vehicle information device according to the third embodiment. The vehicle-mounted information device according to the third embodiment will be described with reference to FIG. In FIG. 13, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 車載用情報機器300bは、プロセッサ13bを有している。プロセッサ13bは、例えば、マイコンにより構成されている。プロセッサ13bにより、電源制御装置100bの要部が構成されている。時計11、温度計12、電源回路16、電源制御装置100b及び情報処理装置200により、車載用情報機器300bの要部が構成されている。 The in-vehicle information device 300b has a processor 13b. The processor 13b is composed of, for example, a microcomputer. The processor 13b constitutes the main part of the power supply control device 100b. The clock 11, the thermometer 12, the power supply circuit 16, the power supply control device 100b, and the information processing device 200 constitute a main part of the in-vehicle information device 300b.
 次に、図14を参照して、電源制御装置100bについて説明する。なお、図14において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。 Next, the power supply control device 100b will be described with reference to FIG. In FIG. 14, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
 劣化度判定部31は、車載用バッテリ5の劣化度Dを判定するものである。具体的には、例えば、劣化度判定部31は、以下の第1判定方法、第2判定方法、第3判定方法又は第4判定方法により劣化度Dを判定する。 The deterioration degree determination unit 31 determines the deterioration degree D of the vehicle-mounted battery 5. Specifically, for example, the deterioration degree determination unit 31 determines the deterioration degree D by the following first determination method, second determination method, third determination method, or fourth determination method.
〈第1判定方法〉
 劣化度判定部31は、車載用バッテリ5の状態を示す情報(以下「バッテリ状態情報」という。)を取得する。バッテリ状態情報は、例えば、車載用ネットワーク3を用いて、車両1内のECU(Electronic Control Unit)から取得される。劣化度判定部31は、当該取得されたバッテリ状態情報を用いて、車載用バッテリ5の状態に基づき、劣化度Dを判定する。
<First judgment method>
The deterioration degree determination unit 31 acquires information indicating the state of the vehicle-mounted battery 5 (hereinafter referred to as “battery state information”). The battery status information is acquired from the ECU (Electronic Control Unit) in the vehicle 1 by using, for example, the in-vehicle network 3. The deterioration degree determination unit 31 determines the deterioration degree D based on the state of the vehicle-mounted battery 5 by using the acquired battery state information.
〈第2判定方法〉
 劣化度判定部31は、車両1のイグニッション電源(以下「IG電源」と記載する。)がオンされたときの電圧波形を示す情報(以下「IG電圧情報」という。)を取得する。IG電圧情報は、例えば、IG電源から取得される。
<Second judgment method>
The deterioration degree determination unit 31 acquires information (hereinafter referred to as “IG voltage information”) indicating a voltage waveform when the ignition power supply (hereinafter referred to as “IG power supply”) of the vehicle 1 is turned on. The IG voltage information is obtained from, for example, the IG power supply.
 通常、車載用バッテリ5の劣化が進行するにつれて、すなわち劣化度Dが高くなるにつれて、IG電源がオンされたときの電圧低下量が次第に大きくなる。そこで、劣化度判定部31は、上記取得されたIG電圧情報を用いて、IG電源がオンされたときの電圧低下量に基づき、劣化度Dを判定する。 Normally, as the deterioration of the vehicle-mounted battery 5 progresses, that is, as the degree of deterioration D increases, the amount of voltage decrease when the IG power supply is turned on gradually increases. Therefore, the deterioration degree determination unit 31 determines the deterioration degree D based on the amount of voltage decrease when the IG power supply is turned on, using the acquired IG voltage information.
〈第3判定方法〉
 劣化度判定部31は、車両1の走行距離を示す情報(以下「走行距離情報」という。)を示す情報を取得する。走行距離情報は、例えば、車載用ネットワーク3を用いて、車両1内のECUから取得される。
<Third judgment method>
The deterioration degree determination unit 31 acquires information indicating information indicating the mileage of the vehicle 1 (hereinafter referred to as “mileage information”). The mileage information is acquired from the ECU in the vehicle 1 by using, for example, the in-vehicle network 3.
 通常、車両1の走行距離が長くなるにつれて、車載用バッテリ5の劣化が進行する。すなわち、劣化度Dが高くなる。そこで、劣化度判定部31は、車両1の走行距離に基づき、劣化度Dを判定する。 Normally, as the mileage of the vehicle 1 increases, the deterioration of the vehicle-mounted battery 5 progresses. That is, the degree of deterioration D becomes high. Therefore, the deterioration degree determination unit 31 determines the deterioration degree D based on the mileage of the vehicle 1.
〈第4判定方法〉
 劣化度判定部31は、車載用バッテリ5が交換された日時を示す情報(以下「バッテリ交換情報」という。)を取得する。バッテリ交換情報は、例えば、車載用ネットワーク3を用いて、車両1内のECUから取得される。
<Fourth judgment method>
The deterioration degree determination unit 31 acquires information indicating the date and time when the vehicle-mounted battery 5 was replaced (hereinafter referred to as “battery replacement information”). The battery replacement information is acquired from the ECU in the vehicle 1 by using, for example, the in-vehicle network 3.
 通常、車載用バッテリ5の交換後の時間経過により、車載用バッテリ5の劣化が進行する。すなわち、劣化度Dが高くなる。そこで、劣化度判定部31は、上記取得されたバッテリ交換情報を用いて、車載用バッテリ5の交換後の経過時間をカウントする。当該経過時間のカウントには、時計11が用いられる。劣化度判定部31は、当該経過時間に基づき、劣化度Dを判定する。 Normally, the deterioration of the vehicle-mounted battery 5 progresses with the passage of time after the replacement of the vehicle-mounted battery 5. That is, the degree of deterioration D becomes high. Therefore, the deterioration degree determination unit 31 counts the elapsed time after the replacement of the vehicle-mounted battery 5 by using the acquired battery replacement information. A clock 11 is used to count the elapsed time. The deterioration degree determination unit 31 determines the deterioration degree D based on the elapsed time.
 閾値設定部32は、劣化度判定部31による判定結果に基づき、閾値Thを劣化度Dに応じた値に設定するものである。これにより、劣化度Dが高いときは、劣化度Dが低いときに比して、閾値Thが小さい値に設定される。すなわち、劣化度Dが低いときは、劣化度Dが高いときに比して、閾値Thが大きい値に設定される。 The threshold value setting unit 32 sets the threshold value Th to a value corresponding to the deterioration degree D based on the determination result by the deterioration degree determination unit 31. As a result, when the degree of deterioration D is high, the threshold value Th is set to a smaller value than when the degree of deterioration D is low. That is, when the degree of deterioration D is low, the threshold value Th is set to a value larger than when the degree of deterioration D is high.
 換言すれば、劣化度Dが高いほど、閾値Thが小さい値に設定される。すなわち、劣化度Dが低いほど、閾値Thが大きい値に設定される。 In other words, the higher the degree of deterioration D, the smaller the threshold Th is set. That is, the lower the degree of deterioration D, the larger the threshold Th is set.
 通常、車載用バッテリ5の劣化が進行するにつれて、すなわち劣化度Dが高くなるにつれて、車載用バッテリ5の電池容量が減少する。これに対して、閾値Thを小さくすることにより、アクセサリ電源2がオフされてから電源回路16(より具体的には第2電源回路16_2)がオフ状態に設定されるまでの時間を短くすることができる。これにより、劣化度Dが低いときはもちろんのこと、劣化度Dが高いときもバッテリ上がりの発生を回避することができる。 Normally, as the deterioration of the vehicle-mounted battery 5 progresses, that is, as the degree of deterioration D increases, the battery capacity of the vehicle-mounted battery 5 decreases. On the other hand, by reducing the threshold value Th, the time from when the accessory power supply 2 is turned off until the power supply circuit 16 (more specifically, the second power supply circuit 16_2) is set to the off state is shortened. Can be done. As a result, it is possible to avoid the occurrence of battery exhaustion not only when the deterioration degree D is low but also when the deterioration degree D is high.
 温度情報取得部21、暗電流推定部22、消費電力量算出部23、消費電力量比較部24、電源制御部25、劣化度判定部31及び閾値設定部32により、電源制御装置100bの要部が構成されている。 The main part of the power supply control device 100b is composed of the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24, the power supply control unit 25, the deterioration degree determination unit 31 and the threshold value setting unit 32. Is configured.
 次に、図15のフローチャートを参照して、電源制御装置100bの動作について、温度情報取得部21、暗電流推定部22、消費電力量算出部23、消費電力量比較部24、電源制御部25、劣化度判定部31及び閾値設定部32の動作を中心に説明する。なお、図15において、図7に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, with reference to the flowchart of FIG. 15, regarding the operation of the power supply control device 100b, the temperature information acquisition unit 21, the dark current estimation unit 22, the power consumption calculation unit 23, the power consumption comparison unit 24, and the power supply control unit 25 The operation of the deterioration degree determination unit 31 and the threshold setting unit 32 will be mainly described. In FIG. 15, the same steps as those shown in FIG. 7 are designated by the same reference numerals and the description thereof will be omitted.
 まず、ステップST1~ST5の処理が実行される。 First, the processes of steps ST1 to ST5 are executed.
 次いで、劣化度判定部31は、劣化度Dを判定する(ステップST31)。このとき、劣化度判定部31は、上記第1判定方法、上記第2判定方法、上記第3判定方法又は上記第4判定方法により劣化度Dを判定する。次いで、閾値設定部32は、ステップST31における判定結果に基づき、閾値Thを劣化度Dに応じた値に設定する(ステップST32)。これにより、劣化度Dが高いほど、閾値Thが小さい値に設定される。 Next, the deterioration degree determination unit 31 determines the deterioration degree D (step ST31). At this time, the deterioration degree determination unit 31 determines the deterioration degree D by the first determination method, the second determination method, the third determination method, or the fourth determination method. Next, the threshold value setting unit 32 sets the threshold value Th to a value corresponding to the degree of deterioration D based on the determination result in step ST31 (step ST32). As a result, the higher the degree of deterioration D, the smaller the threshold Th is set.
 次いで、ステップST6の処理が実行される。ステップST6においては、ステップST32にて設定された閾値Thが用いられる。ステップST6“NO”である場合、電源制御装置100bの処理は、ステップST2に進む。他方、ステップST6“YES”である場合、次いで、ステップST7の処理が実行される。 Next, the process of step ST6 is executed. In step ST6, the threshold value Th set in step ST32 is used. If step ST6 is “NO”, the process of the power supply control device 100b proceeds to step ST2. On the other hand, if step ST6 "YES", then the process of step ST7 is executed.
 なお、図16に示す如く、電源制御装置100bは、消費電力量比較部24及び電源制御部25に代えて、消費電力量比較部24a及び電源制御部25aを有するものであっても良い。この場合、閾値設定部32は、第1閾値Th_1及び第2閾値Th_2の各々を劣化度Dに応じた値に設定する。これにより、劣化度Dが高いほど、第1閾値Th_1が小さい値に設定されるとともに、第2閾値Th_2が小さい値に設定される。すなわち、劣化度Dが低いほど、第1閾値Th_1が大きい値に設定されるとともに、第2閾値Th_2が大きい値に設定される。 As shown in FIG. 16, the power supply control device 100b may have a power consumption comparison unit 24a and a power supply control unit 25a instead of the power consumption comparison unit 24 and the power control unit 25. In this case, the threshold value setting unit 32 sets each of the first threshold value Th_1 and the second threshold value Th_2 to a value corresponding to the degree of deterioration D. As a result, as the degree of deterioration D is higher, the first threshold value Th_1 is set to a smaller value and the second threshold value Th_1 is set to a smaller value. That is, as the degree of deterioration D is lower, the first threshold value Th_1 is set to a larger value and the second threshold value Th_1 is set to a larger value.
 図17は、この場合のフローチャートを示している。図17において、図12に示すステップと同様のステップには同一符号を付している。図17に示す如く、まず、ステップST11~ST15の処理が実行される。 FIG. 17 shows a flowchart in this case. In FIG. 17, the same reference numerals are given to the same steps as those shown in FIG. As shown in FIG. 17, first, the processes of steps ST11 to ST15 are executed.
 次いで、劣化度判定部31は、劣化度Dを判定する(ステップST41)。このとき、劣化度判定部31は、上記第1判定方法、上記第2判定方法、上記第3判定方法又は上記第4判定方法により劣化度Dを判定する。次いで、閾値設定部32は、ステップST41における判定結果に基づき、第1閾値Th_1を劣化度Dに応じた値に設定する(ステップST42)。これにより、劣化度Dが高いほど、第1閾値Th_1が小さい値に設定される。 Next, the deterioration degree determination unit 31 determines the deterioration degree D (step ST41). At this time, the deterioration degree determination unit 31 determines the deterioration degree D by the first determination method, the second determination method, the third determination method, or the fourth determination method. Next, the threshold value setting unit 32 sets the first threshold value Th_1 to a value corresponding to the degree of deterioration D based on the determination result in step ST41 (step ST42). As a result, the higher the degree of deterioration D, the smaller the first threshold value Th_1 is set.
 次いで、ステップST16の処理が実行される。ステップST16においては、ステップST42にて設定された第1閾値Th_1が用いられる。ステップST16“NO”である場合、電源制御装置100bの処理は、ステップST12に進む。他方、ステップST16“YES”である場合、次いで、ステップST17の処理が実行される。 Next, the process of step ST16 is executed. In step ST16, the first threshold value Th_1 set in step ST42 is used. If step ST16 “NO”, the process of the power supply control device 100b proceeds to step ST12. On the other hand, if step ST16 "YES", then the process of step ST17 is executed.
 次いで、ステップST18~ST21の処理が実行される。 Next, the processes of steps ST18 to ST21 are executed.
 次いで、劣化度判定部31は、劣化度Dを判定する(ステップST51)。このとき、劣化度判定部31は、上記第1判定方法、上記第2判定方法、上記第3判定方法又は上記第4判定方法により劣化度Dを判定する。次いで、閾値設定部32は、ステップST51における判定結果に基づき、第2閾値Th_2を劣化度Dに応じた値に設定する(ステップST52)。これにより、劣化度Dが高いほど、第2閾値Th_2が小さい値に設定される。 Next, the deterioration degree determination unit 31 determines the deterioration degree D (step ST51). At this time, the deterioration degree determination unit 31 determines the deterioration degree D by the first determination method, the second determination method, the third determination method, or the fourth determination method. Next, the threshold value setting unit 32 sets the second threshold value Th_2 to a value corresponding to the degree of deterioration D based on the determination result in step ST51 (step ST52). As a result, the higher the degree of deterioration D, the smaller the second threshold value Th_2 is set.
 次いで、ステップST22の処理が実行される。ステップST22においては、ステップST52にて設定された第2閾値Th_2が用いられる。ステップST22“NO”である場合、電源制御装置100bの処理は、ステップST18に進む。他方、ステップST22“YES”である場合、次いで、ステップST23の処理が実行される。 Next, the process of step ST22 is executed. In step ST22, the second threshold value Th_2 set in step ST52 is used. If step ST22 “NO”, the process of the power supply control device 100b proceeds to step ST18. On the other hand, if step ST22 "YES", then the process of step ST23 is executed.
 なお、劣化度Dの判定方法は、上記第1判定方法、上記第2判定方法、上記第3判定方法及び上記第4判定方法に限定されるものではない。劣化度Dの判定には、公知の種々の技術を用いることができる。 The method for determining the degree of deterioration D is not limited to the first determination method, the second determination method, the third determination method, and the fourth determination method. Various known techniques can be used to determine the degree of deterioration D.
 そのほか、電源制御装置100bは、実施の形態1,2にて説明したものと同様の種々の変形例を採用することができる。また、車載用情報機器300bは、実施の形態1,2にて説明したものと同様の種々の変形例を採用することができる。 In addition, the power supply control device 100b can employ various modifications similar to those described in the first and second embodiments. Further, as the in-vehicle information device 300b, various modifications similar to those described in the first and second embodiments can be adopted.
 以上のように、実施の形態3に係る電源制御装置100bは、車載用バッテリ5の劣化度Dを判定する劣化度判定部31と、閾値Thを劣化度Dに応じた値に設定する閾値設定部32と、を備える。これにより、劣化度Dに応じて、電源回路16がオフ状態に設定されるタイミングを調節することができる。 As described above, the power supply control device 100b according to the third embodiment has the deterioration degree determination unit 31 for determining the deterioration degree D of the vehicle-mounted battery 5 and the threshold value setting for setting the threshold value Th to a value corresponding to the deterioration degree D. A unit 32 is provided. As a result, the timing at which the power supply circuit 16 is set to the off state can be adjusted according to the degree of deterioration D.
 また、劣化度Dが高いほど閾値Thが小さい値に設定されるものである。これにより、劣化度Dが低いときはもちろんのこと、劣化度Dが高いときもバッテリ上がりの発生を回避することができる。 Further, the higher the degree of deterioration D, the smaller the threshold Th is set. As a result, it is possible to avoid the occurrence of battery exhaustion not only when the deterioration degree D is low but also when the deterioration degree D is high.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that, within the scope of the invention, the present invention can be freely combined with each embodiment, modified from any component of each embodiment, or omitted from any component in each embodiment. ..
 本発明の電源制御装置及び電源制御方法は、車載用情報機器に用いることができる。本発明の車載用情報機器は、例えば、ナビゲーションシステム又はオーディオシステムに用いることができる。 The power supply control device and power supply control method of the present invention can be used for in-vehicle information devices. The in-vehicle information device of the present invention can be used, for example, in a navigation system or an audio system.
 1 車両、2 アクセサリ電源(ACC電源)、3 車載用ネットワーク、4 常時電源(+B電源)、5 車載用バッテリ、11 時計、12 温度計、13,13a,13b プロセッサ、14 処理回路、15 メモリ、16 電源回路、16_1 第1電源回路、16_2 第2電源回路、21 温度情報取得部、22 暗電流推定部、23 消費電力量算出部、24,24a 消費電力量比較部、25,25a 電源制御部、31 劣化度判定部、32 閾値設定部、100,100a,100b 電源制御装置、200 情報処理装置、300,300a,300b 車載用情報機器。 1 vehicle, 2 accessory power supply (ACC power supply), 3 in-vehicle network, 4 constant power supply (+ B power supply), 5 in-vehicle battery, 11 clock, 12 thermometer, 13, 13a, 13b processor, 14 processing circuit, 15 memory, 16 power supply circuit, 16_1 1st power supply circuit, 16_1 2nd power supply circuit, 21 temperature information acquisition unit, 22 dark current estimation unit, 23 power consumption calculation unit, 24, 24a power consumption comparison unit, 25, 25a power supply control unit , 31 Deterioration degree determination unit, 32 Threshold setting unit, 100, 100a, 100b power supply control device, 200 information processing device, 300, 300a, 300b in-vehicle information device.

Claims (10)

  1.  車載用情報機器における温度を示す温度情報を取得する温度情報取得部と、
     前記温度情報を用いて、前記温度に基づき、前記車載用情報機器における暗電流を推定する暗電流推定部と、
     前記暗電流推定部による推定結果に応じて、前記車載用情報機器における電源回路をオフ状態に設定する制御を実行する電源制御部と、
     を備える電源制御装置。
    A temperature information acquisition unit that acquires temperature information indicating the temperature of in-vehicle information equipment,
    A dark current estimation unit that estimates the dark current in the in-vehicle information device based on the temperature using the temperature information, and a dark current estimation unit.
    A power supply control unit that executes control to set the power supply circuit in the in-vehicle information device to an off state according to the estimation result by the dark current estimation unit.
    Power control unit equipped with.
  2.  前記暗電流推定部は、前記温度情報及び前記車載用情報機器における温度暗電流特性を示す温度暗電流特性情報を用いて、前記温度及び前記温度暗電流特性に基づき、前記暗電流を推定することを特徴とする請求項1記載の電源制御装置。 The dark current estimation unit estimates the dark current based on the temperature and the temperature dark current characteristics by using the temperature information and the temperature dark current characteristic information indicating the temperature dark current characteristics in the in-vehicle information device. The power supply control device according to claim 1.
  3.  前記暗電流の時間積分により、前記車載用情報機器における消費電力量を算出する消費電力量算出部を備えることを特徴とする請求項1又は請求項2記載の電源制御装置。 The power supply control device according to claim 1 or 2, further comprising a power consumption calculation unit that calculates the power consumption of the in-vehicle information device by time integration of the dark current.
  4.  前記消費電力量を閾値と比較する消費電力量比較部を備え、
     前記電源制御部は、前記消費電力量が前記閾値以上であるとき、前記電源回路をオフ状態に設定する
     ことを特徴とする請求項3記載の電源制御装置。
    It is provided with a power consumption comparison unit that compares the power consumption with a threshold value.
    The power supply control device according to claim 3, wherein the power supply control unit sets the power supply circuit to an off state when the power consumption is equal to or higher than the threshold value.
  5.  車載用バッテリの劣化度を判定する劣化度判定部と、
     前記閾値を前記劣化度に応じた値に設定する閾値設定部と、
     を備えることを特徴とする請求項4記載の電源制御装置。
    Deterioration degree determination unit that determines the deterioration degree of the in-vehicle battery,
    A threshold value setting unit that sets the threshold value to a value corresponding to the degree of deterioration, and
    4. The power supply control device according to claim 4.
  6.  前記劣化度が高いほど前記閾値が小さい値に設定されるものであることを特徴とする請求項5記載の電源制御装置。 The power supply control device according to claim 5, wherein the higher the degree of deterioration, the smaller the threshold value is set.
  7.  前記閾値は、互いに異なる第1閾値及び第2閾値を含み、
     前記電源回路は、前記車載用情報機器における互いに異なる部位に対応する第1電源回路及び第2電源回路を含み、
     前記電源制御部は、前記消費電力量が前記第1閾値以上であるとき、前記第2電源回路をオフ状態に設定するとともに、前記消費電力量が前記第2閾値以上であるとき、前記第1電源回路をオフ状態に設定する
     ことを特徴とする請求項4記載の電源制御装置。
    The threshold includes a first threshold and a second threshold that are different from each other.
    The power supply circuit includes a first power supply circuit and a second power supply circuit corresponding to different parts of the in-vehicle information device.
    The power supply control unit sets the second power supply circuit to an off state when the power consumption is equal to or higher than the first threshold value, and when the power consumption is equal to or higher than the second threshold value, the first power supply control unit sets the second power supply circuit to an off state. The power supply control device according to claim 4, wherein the power supply circuit is set to an off state.
  8.  前記第2閾値は、前記第1閾値よりも大きい値に設定されており、
     前記第1電源回路に対応する部位は、時計を含み、
     前記第2電源回路に対応する部位は、情報処理装置を含む
     ことを特徴とする請求項7記載の電源制御装置。
    The second threshold value is set to a value larger than the first threshold value.
    The part corresponding to the first power supply circuit includes a clock.
    The power supply control device according to claim 7, wherein the portion corresponding to the second power supply circuit includes an information processing device.
  9.  電源制御装置を備える車載用情報機器であって、
     前記電源制御装置は、
     当該車載用情報機器における温度を示す温度情報を取得する温度情報取得部と、
     前記温度情報を用いて、前記温度に基づき、当該車載用情報機器における暗電流を推定する暗電流推定部と、
     前記暗電流推定部による推定結果に応じて、前記車載用情報機器における電源回路をオフ状態に設定する制御を実行する電源制御部と、を有する
     ことを特徴とする車載用情報機器。
    An in-vehicle information device equipped with a power control device.
    The power supply control device is
    A temperature information acquisition unit that acquires temperature information indicating the temperature of the in-vehicle information device, and
    A dark current estimation unit that estimates the dark current in the in-vehicle information device based on the temperature using the temperature information,
    An in-vehicle information device including a power supply control unit that executes control for setting a power supply circuit in the in-vehicle information device to an off state according to an estimation result by the dark current estimation unit.
  10.  温度情報取得部が、車載用情報機器における温度を示す温度情報を取得するステップと、
     暗電流推定部が、前記温度情報を用いて、前記温度に基づき、前記車載用情報機器における暗電流を推定するステップと、
     電源制御部が、前記暗電流推定部による推定結果に応じて、前記車載用情報機器における電源回路をオフ状態に設定する制御を実行するステップと、
     を備える電源制御方法。
    The step in which the temperature information acquisition unit acquires temperature information indicating the temperature of the in-vehicle information device,
    A step in which the dark current estimation unit estimates the dark current in the in-vehicle information device based on the temperature using the temperature information.
    A step in which the power supply control unit executes control for setting the power supply circuit in the in-vehicle information device to an off state according to the estimation result by the dark current estimation unit.
    Power control method including.
PCT/JP2019/029766 2019-07-30 2019-07-30 Power supply control apparatus, vehicle-mounted information device, and power supply control method WO2021019666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029766 WO2021019666A1 (en) 2019-07-30 2019-07-30 Power supply control apparatus, vehicle-mounted information device, and power supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029766 WO2021019666A1 (en) 2019-07-30 2019-07-30 Power supply control apparatus, vehicle-mounted information device, and power supply control method

Publications (1)

Publication Number Publication Date
WO2021019666A1 true WO2021019666A1 (en) 2021-02-04

Family

ID=74229303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029766 WO2021019666A1 (en) 2019-07-30 2019-07-30 Power supply control apparatus, vehicle-mounted information device, and power supply control method

Country Status (1)

Country Link
WO (1) WO2021019666A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004094732A (en) * 2002-09-02 2004-03-25 Matsushita Electric Ind Co Ltd Power supply control apparatus
JP2006142900A (en) * 2004-11-17 2006-06-08 Auto Network Gijutsu Kenkyusho:Kk Load controlling device
JP2009241633A (en) * 2008-03-28 2009-10-22 Shin Kobe Electric Mach Co Ltd Battery state detection system, and automobile having the same
JP2018111350A (en) * 2017-01-10 2018-07-19 三菱自動車工業株式会社 Power supply control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004094732A (en) * 2002-09-02 2004-03-25 Matsushita Electric Ind Co Ltd Power supply control apparatus
JP2006142900A (en) * 2004-11-17 2006-06-08 Auto Network Gijutsu Kenkyusho:Kk Load controlling device
JP2009241633A (en) * 2008-03-28 2009-10-22 Shin Kobe Electric Mach Co Ltd Battery state detection system, and automobile having the same
JP2018111350A (en) * 2017-01-10 2018-07-19 三菱自動車工業株式会社 Power supply control device

Similar Documents

Publication Publication Date Title
CN108507699B (en) Method for estimating surface temperature of portable device and portable device
JP4404125B2 (en) Electronic control device and signal monitoring circuit
US9176563B2 (en) Leakage variation aware power management for multicore processors
US8185083B2 (en) Systems and methods for managing power consumption
KR20100000389A (en) Battery management method
CN109435761B (en) Storage battery voltage monitoring method and vehicle control unit
JP2002013438A (en) On-vehicle electronic controller
US8595530B2 (en) Information processing apparatus and control method of information processing apparatus
JP2023101509A (en) Semiconductor device and method for detecting remaining amount of battery
WO2021019666A1 (en) Power supply control apparatus, vehicle-mounted information device, and power supply control method
JP5254732B2 (en) Electronics
JP5367320B2 (en) Secondary battery state detection method, state detection device, and secondary battery power supply system
KR102336723B1 (en) Apparatus and method for managing battery
US9006924B2 (en) Electronic control device
JP2012218467A (en) Electronic control device
KR20210149760A (en) How to reset the battery&#39;s state of charge
JP2006002715A (en) Engine control circuit
JP2007253716A (en) Battery monitor
KR102663815B1 (en) A computing device and operation method thereof
KR100980943B1 (en) Generation Control Apparatus in Electric Vehicle and Method Thereof
US20230030558A1 (en) Electronic control unit, information processing method, and non-transitory storage medium
JP2005114555A (en) Control unit with time measurement function
JP5660010B2 (en) Information processing apparatus and data restoration method
JP2010067030A (en) Navigation apparatus
JP2012078360A (en) Method and device for detecting battery state, and battery power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP