WO2020203648A1 - Photosensitive resin composition for planarization film formation, method for producing electronic device, and electronic device - Google Patents

Photosensitive resin composition for planarization film formation, method for producing electronic device, and electronic device Download PDF

Info

Publication number
WO2020203648A1
WO2020203648A1 PCT/JP2020/013667 JP2020013667W WO2020203648A1 WO 2020203648 A1 WO2020203648 A1 WO 2020203648A1 JP 2020013667 W JP2020013667 W JP 2020013667W WO 2020203648 A1 WO2020203648 A1 WO 2020203648A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin composition
resin
film
mass
Prior art date
Application number
PCT/JP2020/013667
Other languages
French (fr)
Japanese (ja)
Inventor
律也 川崎
美樹 高坂
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2020548841A priority Critical patent/JPWO2020203648A1/en
Publication of WO2020203648A1 publication Critical patent/WO2020203648A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a photosensitive resin composition for forming a flattening film, a method for manufacturing an electronic device, and an electronic device.
  • a flat resin film with a photosensitive resin composition In the manufacture of electronic devices, it may be required to form a flat resin film with a photosensitive resin composition. For example, it may be required to form a flat resin film on a substrate having a step such as Cu wiring.
  • Patent Document 1 describes that a photosensitive insulating film is produced by a plurality of layers of an organic-inorganic photosensitive resin layer having a siloxane structure and an organic resin layer. According to Patent Document 1, the heat shrinkage of such a photosensitive insulating film is small, and thus good flatness can be ensured. Further, in Patent Document 1, even if a conventional photosensitive resin composition is used alone to form a flat film on a substrate having a step, the film shrinks due to thermosetting to obtain a flat film. It is stated that it is difficult. (For example, see FIG. 1 of Patent Document 1. It is described that the film "shrinks by about 40%" due to thermosetting, and the flatness of the film is impaired.)
  • Patent Document 2 describes a negative photosensitive resin composition containing a polyfunctional epoxy resin, a photopolymerization initiator, a coupling agent containing an acid anhydride as a functional group, and a thermoplastic resin such as a phenoxy resin.
  • a thermoplastic resin such as a phenoxy resin
  • the amount of a thermoplastic resin such as a phenoxy resin added is 10 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the polyfunctional epoxy resin.
  • Patent Document 2 describes that a flattened photosensitive resin layer can be formed (for example, paragraphs 0072 and 0076).
  • Patent Document 1 a plurality of types of resin compositions are used in order to obtain a flat resin film on a substrate having a step. That is, in Patent Document 1, the surface of the resin film is flattened by forming a plurality of layers of the resin film by using a plurality of resin compositions.
  • a plurality of resin compositions to obtain a flat resin film leads to complication of the process and cost increase. It is desired that a flat resin film can be obtained without using a plurality of resin compositions in combination.
  • a photosensitive resin composition containing 17.7 parts by mass of a phenoxy resin with respect to 100 parts by mass of a polyfunctional epoxy resin is prepared.
  • a step of forming through wiring or the like may be added by forming a through hole in the resin film made of the photosensitive resin composition and then forming a conductive portion in the through hole.
  • a method of depositing a seed layer on the inner surface of the through hole and then depositing a metal on the seed layer by an electrolytic plating method is used. In this method, it is necessary to deposit the seed layer on the inner surface of the through hole as closely as possible. Therefore, when processing the resin film, it is required to process the seed layer into a shape that is easy to deposit.
  • the resin film made of the photosensitive resin compositions of these examples of Patent Document 2 may have a shape in which the side surface of the through hole is inclined inward as it is closer to the opening of the through hole (reverse taper shape). It was. With this reverse taper shape, it becomes difficult for the seed layer to be deposited on the side surface of the through hole, and poor deposition of the seed layer occurs. Such poor vapor deposition also affects the precipitation of metal by the electrolytic plating method, and may cause an increase in the defective rate in the formation of the conductive portion to be filled in the through hole.
  • the present inventor can form a flat resin film by itself without using it in combination with other resin compositions, and can form a through hole having a vertical side surface or a forward taper shape.
  • studies were conducted from various viewpoints.
  • a photosensitive resin composition for forming a flattening film which comprises an epoxy resin, a phenoxy resin, and a photosensitizer, and the amount of the phenoxy resin is 20 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • a film forming step of forming a photosensitive resin film on the surface of a substrate having a step on the surface by using the above-mentioned photosensitive resin composition and The exposure step of exposing the photosensitive resin film and A developing process for developing the exposed photosensitive resin film and Manufacturing method of electronic devices including Is provided.
  • An electronic device including a film formed of the above-mentioned photosensitive resin composition is provided.
  • a photosensitive resin composition for forming a flattening film which can provide a film, is provided.
  • the notation that does not indicate whether it is substituted or unsubstituted includes both those having no substituent and those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the notation "(meth) acrylic” herein represents a concept that includes both acrylic and methacrylic. The same applies to similar notations such as "(meth) acrylate”.
  • electronic device refers to an element to which electronic engineering technology is applied, such as a semiconductor chip, a semiconductor element, a printed wiring board, an electric circuit display device, an information communication terminal, a light emitting diode, a physical battery, and a chemical battery. , Devices, final products, etc.
  • the photosensitive resin composition of the present embodiment is used, for example, in the production of an electronic device, for forming a flattening film or for forming a through hole.
  • "flattening" means applying a photosensitive resin composition on a substrate having irregularities to cover the irregularities, and flattening the outermost surface of the substrate with a photosensitive resin film.
  • the photosensitive resin composition of the present embodiment contains an epoxy resin, a phenoxy resin, and a photosensitive agent.
  • the volume change of the film when the photosensitive resin film is thermally cured is small.
  • a film is formed of the photosensitive resin composition described in Patent Document 1
  • the film is cured by the cationic polymerization reaction of the epoxy group, but this reaction basically does not cause elimination of water molecules and the like. From this, it is estimated that the volume change can be suppressed.
  • the photosensitive resin composition of the present embodiment contains a phenoxy resin, that is, a polyhydroxypolyether synthesized from bisphenols and epichlorohydrin.
  • a phenoxy resin that is, a polyhydroxypolyether synthesized from bisphenols and epichlorohydrin.
  • Epoxy equivalents of phenoxy resins are usually much higher than the epoxy equivalents of epoxy resins (ie, the epoxy group content is much lower or they have no epoxy groups). It is presumed that this suppresses excessive thermosetting and makes the volume change (shrinkage) of the film sufficiently small.
  • the phenoxy resin is generally thermoplastic, it is considered that the phenoxy resin flows appropriately when heated. It is also estimated that this flow makes the film surface flatter.
  • the photosensitive resin composition of the present embodiment contains an epoxy resin.
  • an epoxy resin having two or more epoxy groups in one molecule can be used.
  • monomers, oligomers, and polymers in general can be used.
  • the molecular weight and molecular structure of the epoxy resin are not particularly limited.
  • epoxy resin examples include phenol novolac type epoxy resin, cresol novolac type epoxy resin, cresol naphthol type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, phenoxy resin, naphthalene skeleton type epoxy resin, and bisphenol A type epoxy resin.
  • Bisphenol A diglycidyl ether type epoxy resin Bisphenol F type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, bisphenol S diglycidyl ether type epoxy resin, glycidyl ether type epoxy resin, cresol novolac type epoxy resin, aromatic polyfunctional Examples thereof include epoxy resins, aliphatic epoxy resins, aliphatic polyfunctional epoxy resins, alicyclic epoxy resins, and polyfunctional alicyclic epoxy resins.
  • the epoxy resin may be used alone or in combination of two or more.
  • the epoxy resin can include a solid epoxy resin having two or more epoxy groups in the molecule.
  • a resin having two or more epoxy groups and solid at 25 ° C. (room temperature) can be used. Thereby, the mechanical properties of the photosensitive resin composition in the resin film can be enhanced.
  • the epoxy resin preferably contains a trifunctional or higher functional epoxy resin in the molecule (that is, a polyfunctional epoxy resin having three or more epoxy groups in one molecule).
  • a trifunctional or higher functional epoxy resin that is, a polyfunctional epoxy resin having three or more epoxy groups in one molecule.
  • Examples of the trifunctional or higher functional epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol A type epoxy resin, and tetramethylbisphenol F. It is preferable to contain one or more kinds of epoxy resins selected from the group consisting of type epoxy resins, and it is more preferable to contain a triphenylmethane type epoxy resin or a novolak type epoxy resin. As a result, an appropriate coefficient of thermal expansion can be realized while increasing the heat resistance of the resin film.
  • the epoxy resin may contain a liquid epoxy resin having two or more epoxy groups in the molecule.
  • the liquid epoxy resin functions as a filming agent and can improve the brittleness of the resin film of the photosensitive resin composition.
  • liquid epoxy resin an epoxy compound having two or more epoxy groups and being liquid at room temperature of 25 ° C. can be used.
  • the viscosity of the liquid epoxy resin at 25 ° C. is, for example, 1 to 8000 mPa ⁇ s, preferably 5 to 1500 mPa ⁇ s, and more preferably 10 to 1400 mPa ⁇ s.
  • the liquid epoxy resin can include, for example, one or more selected from the group consisting of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, alkyl diglycidyl ether and alicyclic epoxy. These may be used alone or in combination of two or more. Among these, alkyl diglycidyl ether can be used from the viewpoint of reducing cracks after development.
  • the epoxy equivalent of the liquid epoxy resin is, for example, 100 to 200 g / eq, preferably 105 to 180 g / eq, and more preferably 110 to 170 g / eq. Thereby, the brittleness of the resin film can be improved.
  • the lower limit of the content of the liquid epoxy resin is, for example, 5% by mass or more, preferably 10% by mass or more, and more preferably 15% by mass or more with respect to the entire non-volatile component of the photosensitive resin composition. Thereby, the brittleness of the finally obtained cured film can be improved.
  • the upper limit of the content of the liquid epoxy resin is, for example, 40% by mass or less, preferably 35% by mass or less, and more preferably 30% by mass or less with respect to the entire non-volatile component of the photosensitive resin composition. Thereby, the film characteristics of the cured film can be balanced.
  • the lower limit of the content of the epoxy resin is, for example, 40% by mass or more, preferably 45% by mass or more, and more preferably 50% by mass or more with respect to the entire non-volatile component of the photosensitive resin composition.
  • the upper limit of the content of the epoxy resin is, for example, 90% by mass or less, preferably 85% by mass or less, and more preferably 80% by mass or less, based on the entire non-volatile component of the photosensitive resin composition.
  • the non-volatile component of the photosensitive resin composition means the balance excluding the volatile components such as water and solvent.
  • the content of the photosensitive resin composition with respect to the entire non-volatile component refers to the content of the photosensitive resin composition with respect to the entire non-volatile component excluding the solvent when the solvent is contained.
  • the weight average molecular weight (Mw) of the epoxy resin is not particularly limited. Mw is, for example, 300 to 9000, preferably 500 to 8000. By using an epoxy resin having a relatively low molecular weight, the reactivity at the time of exposure can be enhanced.
  • the photosensitive resin composition of the present embodiment may contain a thermosetting resin other than the epoxy resin.
  • thermosetting resins include resins having a triazine ring such as urea resin and melamine resin; unsaturated polyester resin; maleimide resin such as bismaleimide compound; polyurethane resin; diallyl phthalate resin; silicone resin.
  • examples thereof include benzoxazine resin; polyimide resin; polyamideimide resin; benzocyclobutene resin, novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethylbisphenol F type cyanate resin.
  • thermosetting resins When other thermosetting resins are used, they may be used alone or in combination of two or more.
  • the photosensitive resin composition of the present embodiment contains a phenoxy resin. It is considered that the phenoxy resin also has a function of increasing the flexibility of the film.
  • phenoxy resin examples include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A type and bisphenol F type copolymerized phenoxy resin, biphenyl type phenoxy resin, bisphenol S type phenoxy resin, biphenyl type phenoxy resin and bisphenol.
  • phenoxy resin copolymerized with an S-type phenoxy resin examples include a bisphenol A type phenoxy resin or a copolymerized phenoxy resin of a bisphenol A type and a bisphenol F type.
  • the phenoxy resin may be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the phenoxy resin is preferably 10,000 to 100,000, more preferably 20,000 to 80,000, and even more preferably 35,000 to 80,000. Since the Mw of the phenoxy resin is relatively large, the curing shrinkage can be further suppressed, and the flatness can be further improved. The details of this mechanism are unknown, but it is speculated that when Mw is relatively large, the thermal motion of the molecular chain is suppressed, and as a result, the flatness is further improved. On the other hand, the Mw of the phenoxy resin is preferably 100,000 or less in terms of solvent solubility and the like. The weight average molecular weight is measured, for example, as a polystyrene-equivalent value by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the phenoxy resin may have a reactive group such as an epoxy group at both ends of the molecular chain or inside the molecular chain.
  • the reactive group in the phenoxy resin is one capable of cross-linking with the epoxy group in the epoxy resin.
  • phenoxy resin one that is solid at 25 ° C. is preferably used. Specifically, a phenoxy resin having a non-volatile content of 90% by mass or more is preferably used. By using such a phenoxy resin, the mechanical properties of the cured product can be improved.
  • the lower limit of the content of the phenoxy resin is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and further preferably 28 parts by mass or more with respect to 100 parts by mass of the epoxy resin.
  • the upper limit of the content of the phenoxy resin is preferably 60 parts by mass or less, more preferably 55 parts by mass or less, and further preferably 50 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the crosslink density is optimized, a resin film having excellent film physical properties such as glass transition point and elongation can be provided, and the phenoxy resin is sufficiently dissolved in a solvent described later, resulting in excellent coatability.
  • a photosensitive resin composition can be obtained.
  • the content of the phenoxy resin exceeds the upper limit value, the required exposure amount increases. Therefore, when the required exposure amount exceeds the assumption, the via width in which the reaction of the composition does not proceed sufficiently. May become too wide. Therefore, if it is not more than the upper limit value, a desired through hole can be formed without applying an increase in the amount of exposure that leads to an increase in the exposure process time.
  • the photosensitive resin composition of the present embodiment may contain a thermoplastic resin other than the phenoxy resin.
  • thermoplastic resin include polyvinyl acetal resin, (meth) acrylic resin, polyamide resin (for example, nylon), thermoplastic urethane resin, polyolefin resin (for example, polyethylene, polypropylene, etc.), polycarbonate, and polyester resin (for example, polyethylene).
  • the photosensitive resin composition of the present embodiment contains a photosensitive agent.
  • the photosensitizer typically comprises a photoacid generator, i.e. a compound that generates an acid upon irradiation with light such as g-ray or i-ray.
  • the photosensitive resin composition of the present embodiment is usually a chemically amplified photosensitive resin composition in which an acid generated from a photoacid generator acts catalytically (the acid generated from the photoacid generator is an epoxy group). The polymerization is initiated and the acid is catalytically regenerated).
  • the photosensitive resin composition of the present embodiment is usually a negative type. That is, at the time of development, the exposed portion usually remains and the unexposed portion is removed.
  • Examples of the photosensitizer include onium salt compounds. More specifically, iodonium salts such as diazonium salt and diaryliodonium salt, sulfonium salts such as triarylsulfonium salt, triarylvirylium salt, benzylpyridinium thiocyanate, dialkylphenacil sulfonium salt, dialkylhydroxyphenylphosphonium salt and the like. , Photoacid generator or cationic photopolymerization initiator. Above all, from the viewpoint of patterning property, it is preferable to use a triarylsulfonium salt.
  • Examples of the counter anion of the onium salt compound include borate anion, sulfonate anion, gallate anion, phosphorus anion, antimony anion and the like. More specifically, sulfonic acid anion, disulfonylimide acid anion, hexafluorophosphate anion, fluoroantimonate anion, tetrafluoroborate anion, tetrakis (pentafluorophenyl) borate anion and the like can be mentioned.
  • the photosensitizer may be used alone or in combination of two or more.
  • the content of the photosensitizer is, for example, 0.3 to 5.0% by mass, preferably 0.5 to 4.5% by mass, and more preferably 1.0, based on the total solid content of the photosensitive resin composition. It is about 4.0% by mass.
  • the content is 0.3% by mass or more, the patterning property can be improved.
  • the content is 5.0% by mass or less, the ionic component in the membrane can be reduced, and the insulating property and reliability of the final membrane can be improved.
  • the photosensitive resin composition of the present embodiment preferably contains a surfactant.
  • a surfactant By including the surfactant, the coatability is improved, and a more uniform / flat resin film and a cured film can be obtained.
  • the surfactant include a fluorine-based surfactant, a silicone-based surfactant, an alkyl-based surfactant, an acrylic-based surfactant, and the like.
  • the surfactant preferably contains a surfactant containing at least one of a fluorine atom and a silicon atom. More preferably, the surfactant is, for example, a nonionic surfactant containing at least one of a fluorine atom and a silicon atom.
  • Commercially available products that can be used as surfactants include, for example, F-251, F-253, F-281, F-430, F-477, F-551, of the "Mega Fvck" series manufactured by DIC Co., Ltd.
  • Fluorine-containing oligomeric surfactants Fluorine-containing nonionic surfactants such as Futtergent 250 and Futtergent 251 manufactured by Neos Co., Ltd., SILFOAM® series manufactured by Wacker Chemie (eg SD 100 TS) , SD 670, SD 850, SD 860, SD 882) and other silicone-based surfactants.
  • the surfactant preferably contains a fluorine-based surfactant.
  • a surfactant When a surfactant is used, it may be used alone or in combination of two or more. When a surfactant is used, the amount thereof shall be, for example, 0.001 to 1% by mass, preferably 0.005 to 0.5% by mass, based on the total amount of the non-volatile components of the photosensitive resin composition. Can be done.
  • the photosensitive resin composition of the present embodiment preferably contains an adhesion aid. Thereby, for example, the adhesion to the substrate can be further improved.
  • the adhesion aid is not particularly limited.
  • amino group-containing silane coupling agent amino group-containing silane coupling agent, epoxy group-containing silane coupling agent, (meth) acryloyl group-containing silane coupling agent, mercapto group-containing silane coupling agent, vinyl group-containing silane coupling agent, ureido group-containing silane cup.
  • a silane coupling agent such as a ring agent or a sulfide group-containing silane coupling agent can be used.
  • a silane coupling agent one type may be used alone, or two or more types may be used in combination.
  • amino group-containing silane coupling agent examples include bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and ⁇ -aminopropylmethyldiethoxy.
  • Silane ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -amino Examples thereof include propylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldiethoxysilane, and N-phenyl- ⁇ -amino-propyltrimethoxysilane.
  • Examples of the epoxy group-containing silane coupling agent include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ -glycidyl. Examples thereof include propyltrimethoxysilane. Examples of the (meth) acryloyl group-containing silane coupling agent include ⁇ -((meth) acryloyloxypropyl) trimethoxysilane, ⁇ -((meth) acryloyloxypropyl) methyldimethoxysilane, and ⁇ -((meth)).
  • Examples of the mercapto group-containing silane coupling agent include 3-mercaptopropyltrimethoxysilane.
  • Examples of the vinyl group-containing silane coupling agent include vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane and the like.
  • Examples of the ureido group-containing silane coupling agent include 3-ureidopropyltriethoxysilane and the like.
  • Examples of the sulfide group-containing silane coupling agent include bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide.
  • Examples of the acid anhydride-containing silane coupling agent include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxycyclylpropyl succinic anhydride, 3-dimethylmethoxysilylpropyl succinic anhydride and the like.
  • adhesion aid not only a silane coupling agent but also a titanium coupling agent, a zirconium coupling agent and the like can be mentioned.
  • the adhesion aid When the adhesion aid is used, it may be used alone or in combination of two or more kinds of adhesion aids.
  • the amount used is preferably 0.3 to 5% by mass, more preferably 0.4 to 4% by mass, still more preferably, based on the total amount of the non-volatile components of the photosensitive resin composition. Is 0.5 to 3% by mass.
  • the photosensitive resin composition of the present embodiment may contain other additives in addition to the above components, if necessary.
  • additives include antioxidants, fillers such as silica, sensitizers, filming agents and the like.
  • the photosensitive resin composition of the present embodiment preferably contains a solvent.
  • a solvent usually includes an organic solvent.
  • the organic solvent is not particularly limited as long as each of the above-mentioned components can be dissolved or dispersed and does not substantially chemically react with each of the components.
  • organic solvent examples include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, and benzyl.
  • examples thereof include alcohol, propylene carbonate, ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate, diproprene glycol methyl-n-propyl ether, butyl acetate and ⁇ -butyrolactone. These may be used alone or in combination of two or more.
  • the solvent is used so that the concentration of the total amount of the non-volatile components in the photosensitive resin composition is preferably 30 to 75% by mass, more preferably 35 to 70% by mass. Within this range, each component can be sufficiently dissolved or dispersed. In addition, good coatability can be ensured, which in turn leads to further improvement in flatness. Further, by adjusting the content of the non-volatile component, the viscosity of the photosensitive resin composition can be appropriately controlled.
  • the viscosity of the photosensitive resin composition at 25 ° C. is preferably 1 to 50,000 mPa ⁇ s, more preferably 10 to 10,000 mPa ⁇ s, still more preferably 50 to 5,000 mPa ⁇ s.
  • the viscosity can be measured, for example, using a cone plate type viscometer (TV-25, manufactured by Toki Sangyo).
  • the rotation speed at the time of measurement can be set to 100 rpm as an example, and can be set to 20 rpm when an appropriate viscosity measurement cannot be performed at 100 rpm.
  • the coating thickness is appropriately adjusted in the range of, for example, 1 to 100 ⁇ m, preferably 3 to 80 ⁇ m, and more preferably 5 to 50 ⁇ m.
  • an electronic device (an electronic device including a film formed of the photosensitive resin composition) can be manufactured.
  • electronic devices include display devices such as liquid crystal displays, organic EL displays, touch panels, electronic paper, color filters, mini LED displays, and micro LED displays, solar cells, light receiving devices such as CMOS, and the like. It can be used as an interlayer insulating film, a sealing material (top coat), and the like.
  • a method of manufacturing an electronic device including a rewiring layer made of a photosensitive resin film will be described.
  • a film forming step of forming a photosensitive resin film using the photosensitive resin composition of the present embodiment on the surface of a substrate having a step on the surface and (ii) exposing the photosensitive resin film.
  • An electronic device can be manufactured by a method for manufacturing an electronic device, which includes an exposure step and (iii) a development step of developing an exposed photosensitive resin film.
  • the photosensitive resin film 3 is formed on the surface side of the substrate 1 having the step 10 by using the photosensitive resin composition of the present embodiment.
  • the surface having a step is flattened by the photosensitive resin film 3.
  • the substrate 1 is not particularly limited. Examples of the substrate 1 include a silicon wafer, a ceramic substrate, an aluminum substrate, a SiC wafer, and a GaN wafer.
  • the step 10 is, for example, Cu rewiring. Of course, the step 10 may be a step other than Cu rewiring.
  • the height of the step 10 is, for example, 1 to 10 ⁇ m, preferably 1 to 5 ⁇ m.
  • the thickness of the photosensitive resin film 3 is, for example, 1 to 15 ⁇ m, preferably 1 to 10 ⁇ m. This thickness may be larger than the height of the step 10.
  • a method for forming the photosensitive resin film 3 a method of applying a liquid photosensitive resin composition on a substrate by a spin coating method, a spray coating method, a dipping method, a printing method, a roll coating method, an inkjet method, or the like is used. Can be mentioned.
  • the method of forming the resin film is typically spin coating.
  • the thickness of the photosensitive resin film 3 can be adjusted by changing the film forming conditions or adjusting the viscosity of the photosensitive resin composition.
  • the heat-drying temperature is usually 50 to 180 ° C, preferably 60 to 150 ° C.
  • the heating and drying time is usually about 30 to 600 seconds, preferably about 30 to 300 seconds.
  • the solvent in the photosensitive resin composition can be sufficiently removed by this heat drying. Heating is typically performed on a hot plate, oven, or the like.
  • the photosensitive resin film 3 is exposed through the photomask 20.
  • the active light beam for exposure include X-ray, electron beam, ultraviolet light, visible light and the like. In terms of wavelength, active light rays having a wavelength of 200 to 500 nm are preferable. From the viewpoint of pattern resolution and ease of handling of the device, the light source is preferably g-line, h-line or i-line of a mercury lamp. Further, two or more light rays may be mixed and used.
  • a contact aligner, a mirror projection or a stepper is preferable.
  • Exposure dose in the exposure step is usually 40 ⁇ 1500mJ / cm 2, preferably between 80 ⁇ 1000mJ / cm 2, the sensitivity of the photosensitive resin composition, the film thickness of the resin film, due to the shape of the pattern to be obtained It will be adjusted accordingly.
  • the temperature and time of heating after exposure is, for example, about 50 to 200 ° C. and 10 to 600 seconds.
  • the developing solution is used to develop the photosensitive resin film exposed in the exposure step.
  • a part of the photosensitive resin film 3 can be removed to obtain a resin film 3A having an opening 5.
  • the photosensitive resin composition of the present embodiment is usually a negative type. Therefore, the opening 5 is provided in the portion of the photomask 20 corresponding to the light-shielding portion. Since the resin film made of the photosensitive resin composition of the present embodiment can form a through hole (opening 5) having a vertical shape or a forward taper shape on the side surface, the yield is increased in the formation of the conductive portion filled in the through hole. improves.
  • the developing step can be performed by, for example, a dipping method, a paddle method, a rotary spray method, or the like.
  • the developer preferably contains an organic solvent.
  • the developing solution is preferably a developing solution containing an organic solvent as a main component (a developing solution in which 95% by mass or more of the components are organic solvents).
  • a developing solution containing an organic solvent By developing with a developing solution containing an organic solvent, it is possible to suppress swelling of the pattern due to the developing solution as compared with the case of developing with an alkaline developing solution (aqueous system). That is, it is easy to obtain a finer pattern.
  • ketone solvents such as cyclopentanone
  • ester solvents such as propylene glycol monomethyl ether acetate (PGMEA) and butyl acetate
  • ether solvents such as propylene glycol monomethyl ether.
  • an organic solvent developing solution containing only an organic solvent and containing only impurities inevitably contained may be used as the developing solution.
  • the impurities that are unavoidably contained include metal elements, but from the viewpoint of preventing contamination of electronic devices, the impurities that are unavoidably contained are small.
  • the time of the developing step is usually about 5 to 300 seconds, preferably about 10 to 120 seconds, and is appropriately adjusted based on the film thickness of the resin film and the shape of the formed pattern.
  • a curing step of curing the resin film 3A between the developing step and the subsequent steps.
  • Curing can be performed, for example, by heat treatment at 150 to 250 ° C. for 30 to 240 minutes.
  • the flatness of the surface (upper surface) of the resin film 3A is good even after undergoing such a curing step.
  • a Cu rewiring 11 different from the step 10 (for example, Cu rewiring) can be provided in the portion of the opening 5 provided in the developing step.
  • the side surface of the opening 5 has a vertical shape or a forward taper shape, the seed layer is easily deposited on the side surface in the opening 5, the metal filling by the electroplating method is improved, and the yield of the Cu rewiring 11 is increased. improves. Further, since the upper surface of the resin film 3A is highly flat, the fine Cu rewiring 11 can be provided with high accuracy.
  • Epoxy resin 1 Polyfunctional epoxy resin represented by the following structure ("EPPN201” manufactured by Nippon Kayaku Co., Ltd., phenol novolac type epoxy resin, solid at 25 ° C., n is about 5)
  • Epoxy resin 2 Polyfunctional epoxy resin (Mitsubishi Chemical Corporation "jER1032H60", triphenylmethane type epoxy resin, solid at 25 ° C)
  • Epoxy resin 3 Cresol novolac type epoxy resin (Nippon Kayaku Co., Ltd. "EOCN-1020", solid at 25 ° C)
  • Phenoxy resin 1 Bisphenol A type phenoxy resin ("jER1256" manufactured by Mitsubishi Chemical Corporation, Mw: about 50,000)
  • Phenoxy resin 2 Bisphenol A type phenoxy resin (manufactured by PKHA Gabriel Phoenixies, Mw: about 25,000)
  • Phenoxy resin 3 Bisphenol A type / Bisphenol F type phenoxy resin (Nippon Steel & Sumikin Chemical Co., Ltd. "YP-70”)
  • Photoacid generator 1 Triarylsulfonium borate salt (manufactured by San-Apro, CPI-310B)
  • Surfactant 1 Fluorine-containing group / lipophilic group-containing oligomer (manufactured by DIC Corporation, R-41)
  • Surfactant 2 Polyacrylate-based surface conditioner (manufactured by Big Chemie Japan, BYK-365N)
  • Adhesion aid 1 3-glycidoxypropyltrimethoxysilane (silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403)
  • Adhesion aid 2 3-trimethoxysilylpropyl succinic anhydride (silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., X-12-967C)
  • wafers with a cured film were obtained by the following procedure.
  • a silicon wafer having a height of 3 to 4 ⁇ m and a width of 100 ⁇ m and having steps (convex portions) formed by Cu provided at a pitch of 200 ⁇ m was prepared.
  • the photosensitive resin composition was applied to the stepped surface of the substrate by spin coating, and then dried in the air at 100 ° C. for 6 minutes. As a result, a photosensitive resin film was formed on the substrate.
  • the photosensitive resin film formed in (2) above is 800 mJ / using a manual exposure machine (mixed light of HMW-201GX, g-line, i-line, h-line, etc. manufactured by ORC Manufacturing Co., Ltd.). The entire surface was exposed with an exposure amount of cm 2 .
  • the photosensitive resin film was cured by heat treatment at 170 ° C. for 120 minutes in a nitrogen atmosphere.
  • the condition of (2) above was set to 120 ° C. for 4 minutes, the exposure of (3) above was omitted, and tetramethyl between (3) and (4) above was omitted.
  • Development with a 2.38 mass% aqueous solution of ammonium hydroxide (TMAH) and rinsing with pure water were carried out, except that the condition (4) above was changed to 30 minutes at 150 ° C. and then 30 minutes at 320 ° C. Wafers with a cured film were obtained under the same conditions as in Examples 1 to 5.
  • TMAH ammonium hydroxide
  • the wafer with the cured film obtained above was split, and the cross section thereof was enlarged and photographed. Based on the captured image, HA (the sum of the thickness of the cured film on the convex step and the height of the convex step) and H B (the part without the convex step) shown in FIG. The thickness of the cured film) and HS (height of the convex step) were determined.
  • the photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 2 to 3 were applied onto an 8-inch silicon wafer using a spin coater. After coating, it was prebaked on a hot plate in the air at 100 ° C. for 6 minutes to obtain a coating film having a film thickness of about 9.0 ⁇ m.
  • the coating film was irradiated with i-line at 600 mJ / cm 2 through a mask on which a via pattern having a width of 100 ⁇ m was drawn.
  • An i-line stepper (NSR-4425i manufactured by Nikon Corporation) was used for irradiation. After the exposure, the wafer was placed on a hot plate and baked in the air at 70 ° C. for 5 minutes.
  • the via width is 95 to 105 ⁇ m, and the patterning property is good.
  • the taper angle is 90 degrees or less and is a forward taper shape or a forward taper shape.
  • the via width is 95 to 105 ⁇ m, and the patterning property is good. It has a reverse taper shape with a taper angle of more than 90 degrees.
  • X The via width is less than 95 ⁇ m or more than 105 ⁇ m, and the patterning property is poor.
  • Table 1 summarizes the composition and evaluation results of the photosensitive resin composition.
  • Example 1 in which the phenoxy resin 1 (Mw: 50,000) was used rather than Example 5 (Mw: 25,000) in which the phenoxy resin 2 was used.
  • ⁇ 4 showed better flatness. It can be read that the larger the Mw of the phenoxy resin, the better the flatness. Further, from the comparison between Examples 1 and 2 to 4, it can be read that the flatness is further improved when the amount of the phenoxy resin is relatively large (20% by mass or more).
  • the photosensitive resin composition (Examples 1 to 5) containing the phenoxy resin in the range of 20 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin is a photosensitive resin composition outside this range (Comparative Examples 2 and 2). Compared with 3), the patterning property and the via pattern shape were excellent, and the patterning characteristics were good. In Comparative Example 3 in which the amount of the phenoxy resin exceeded the upper limit value, the required exposure amount increased, and as a result of patterning with the same exposure amount as in Examples and the like, the reaction progress of the composition was insufficient and the via width was wide. It is thought that it became.

Abstract

A photosensitive resin composition for planarization film formation, which contains an epoxy resin, a phenoxy resin and a sensitizing agent, wherein the amount of phenoxy resin relative to 100 parts by mass of the epoxy resin is 20-60 parts by mass. This photosensitive resin composition preferably contains a surfactant, an adhesion assistant and the like. It is preferable that this photosensitive resin composition has a viscosity of 1-50,000 mPa∙s at 25°C. It is preferable that the phenoxy resin has a weight average molecular weight of from 10,000 to 100,000. It is preferable that the epoxy resin contains a polyfunctional epoxy resin that contains three of more epoxy groups in each molecule.

Description

平坦化膜形成用の感光性樹脂組成物、電子デバイスの製造方法および電子デバイスPhotosensitive resin composition for forming a flattening film, manufacturing method of electronic device and electronic device
 本発明は、平坦化膜形成用の感光性樹脂組成物、電子デバイスの製造方法および電子デバイスに関する。 The present invention relates to a photosensitive resin composition for forming a flattening film, a method for manufacturing an electronic device, and an electronic device.
 電子デバイスの製造においては、感光性樹脂組成物により、平坦な樹脂膜を形成することが求められる場合がある。例えば、Cu配線などの段差を有する基板上に、平坦な樹脂膜を形成することが求められる場合がある。 In the manufacture of electronic devices, it may be required to form a flat resin film with a photosensitive resin composition. For example, it may be required to form a flat resin film on a substrate having a step such as Cu wiring.
 特許文献1には、シロキサン構造を有する有機無機感光性樹脂層と、有機樹脂層との複数層により、感光性絶縁膜を製造することが記載されている。特許文献1によれば、このような感光性絶縁膜の熱収縮は小さく、よって良好な平坦性確保が可能となるとされている。
 また、特許文献1には、従来の感光性樹脂組成物を単独で使用して段差を有する基板上に平坦な膜を形成しようとしても、熱硬化により膜が収縮して平坦な膜を得ることが難しい旨が記載されている。(例えば、特許文献1の図1参照。熱硬化で膜が「約4割収縮」して、膜の平坦性が損なわれる旨が記載されている。)
Patent Document 1 describes that a photosensitive insulating film is produced by a plurality of layers of an organic-inorganic photosensitive resin layer having a siloxane structure and an organic resin layer. According to Patent Document 1, the heat shrinkage of such a photosensitive insulating film is small, and thus good flatness can be ensured.
Further, in Patent Document 1, even if a conventional photosensitive resin composition is used alone to form a flat film on a substrate having a step, the film shrinks due to thermosetting to obtain a flat film. It is stated that it is difficult. (For example, see FIG. 1 of Patent Document 1. It is described that the film "shrinks by about 40%" due to thermosetting, and the flatness of the film is impaired.)
 特許文献2には、多官能エポキシ樹脂と、光重合開始剤と、官能基として酸無水物を含有するカップリング剤と、フェノキシ樹脂等の熱可塑性樹脂とを含むネガ型感光性樹脂組成物が記載されている。さらに、特許文献2には、フェノキシ樹脂等の熱可塑性樹脂の添加量は、多官能エポキシ樹脂100質量部に対して10質量部以上90質量部以下であると記載されている。
 特許文献2には、平坦化された感光性樹脂層を形成することができる旨記載されている(例えば、0072段落、0076段落)。
Patent Document 2 describes a negative photosensitive resin composition containing a polyfunctional epoxy resin, a photopolymerization initiator, a coupling agent containing an acid anhydride as a functional group, and a thermoplastic resin such as a phenoxy resin. Are listed. Further, Patent Document 2 describes that the amount of a thermoplastic resin such as a phenoxy resin added is 10 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the polyfunctional epoxy resin.
Patent Document 2 describes that a flattened photosensitive resin layer can be formed (for example, paragraphs 0072 and 0076).
特開2007-086476号公報Japanese Patent Application Laid-Open No. 2007-086476 国際公開第2019/044817号International Publication No. 2019/044817
 特許文献1においては、段差を有する基板上に平坦な樹脂膜を得るために、複数種の樹脂組成物を用いている。つまり、特許文献1においては、複数の樹脂組成物を用いて複数層の樹脂膜とすることで、樹脂膜の表面を平坦にしている。
 しかし、平坦な樹脂膜を得るために複数の樹脂組成物を用いることは、プロセスの複雑化やコストアップにつながってしまう。
 複数の樹脂組成物を併用せずに、平坦な樹脂膜を得ることができることが望まれる。
In Patent Document 1, a plurality of types of resin compositions are used in order to obtain a flat resin film on a substrate having a step. That is, in Patent Document 1, the surface of the resin film is flattened by forming a plurality of layers of the resin film by using a plurality of resin compositions.
However, using a plurality of resin compositions to obtain a flat resin film leads to complication of the process and cost increase.
It is desired that a flat resin film can be obtained without using a plurality of resin compositions in combination.
 特許文献2の実施例9~11においては、具体的に、多官能エポキシ樹脂100質量部に対してフェノキシ樹脂を17.7質量部の量で含む、感光性樹脂組成物が調製されている。
 なお、感光性樹脂組成物からなる樹脂膜に貫通孔を加工した後、貫通孔内に導電部を形成することで、貫通配線等を形成する工程が付加されることがある。導電部の形成にあたっては、貫通孔の内面にシード層を蒸着した後、電解めっき法によりシード層上に金属を析出させる方法が用いられる。この方法では、貫通孔の内面にできるだけ隙間なくシード層を蒸着する必要がある。このため、樹脂膜を加工する際には、シード層を蒸着しやすい形状に加工することが求められている。
In Examples 9 to 11 of Patent Document 2, specifically, a photosensitive resin composition containing 17.7 parts by mass of a phenoxy resin with respect to 100 parts by mass of a polyfunctional epoxy resin is prepared.
A step of forming through wiring or the like may be added by forming a through hole in the resin film made of the photosensitive resin composition and then forming a conductive portion in the through hole. In forming the conductive portion, a method of depositing a seed layer on the inner surface of the through hole and then depositing a metal on the seed layer by an electrolytic plating method is used. In this method, it is necessary to deposit the seed layer on the inner surface of the through hole as closely as possible. Therefore, when processing the resin film, it is required to process the seed layer into a shape that is easy to deposit.
 しかしながら、特許文献2のこれらの実施例の感光性樹脂組成物からなる樹脂膜は、貫通孔の側面が、貫通孔の開口に近いほど内側に倒れた形状(逆テーパー形状)となる場合があった。この逆テーパー形状になると、貫通孔の側面にシード層が蒸着されにくくなり、シード層の蒸着不良が発生する。かかる蒸着不良は、電解めっき法による金属の析出にも影響を及ぼし、貫通孔に充填される導電部の形成において不良率の上昇を招くおそれがあった。 However, the resin film made of the photosensitive resin compositions of these examples of Patent Document 2 may have a shape in which the side surface of the through hole is inclined inward as it is closer to the opening of the through hole (reverse taper shape). It was. With this reverse taper shape, it becomes difficult for the seed layer to be deposited on the side surface of the through hole, and poor deposition of the seed layer occurs. Such poor vapor deposition also affects the precipitation of metal by the electrolytic plating method, and may cause an increase in the defective rate in the formation of the conductive portion to be filled in the through hole.
 そこで、本発明者は、他の樹脂組成物と組み合わせて用いなくても、単独で平坦な樹脂膜を形成可能であり、側面が垂直形状または順テーパー形状である貫通孔を形成できる樹脂膜を提供可能な、当該樹脂膜平坦化膜形成用の感光性樹脂組成物を提供することを目的として、様々な観点から検討を行った。 Therefore, the present inventor can form a flat resin film by itself without using it in combination with other resin compositions, and can form a through hole having a vertical side surface or a forward taper shape. For the purpose of providing a photosensitive resin composition for forming the resin film flattening film that can be provided, studies were conducted from various viewpoints.
 本発明者は、鋭意検討の結果、以下に提供される発明を完成させた。 As a result of diligent studies, the present inventor has completed the invention provided below.
 本発明によれば、
 エポキシ樹脂と、フェノキシ樹脂と、感光剤とを含み、前記エポキシ樹脂100質量部に対する前記フェノキシ樹脂の量は20~60質量部である、平坦化膜形成用の感光性樹脂組成物、
が提供される。
According to the present invention
A photosensitive resin composition for forming a flattening film, which comprises an epoxy resin, a phenoxy resin, and a photosensitizer, and the amount of the phenoxy resin is 20 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin.
Is provided.
 また、本発明によれば、
 表面に段差を有する基板の当該表面に、上記の感光性樹脂組成物を用いて感光性樹脂膜を形成する製膜工程と、
 前記感光性樹脂膜を露光する露光工程と、
 露光された前記感光性樹脂膜を現像する現像工程と、
を含む電子デバイスの製造方法、
が提供される。
Further, according to the present invention,
A film forming step of forming a photosensitive resin film on the surface of a substrate having a step on the surface by using the above-mentioned photosensitive resin composition, and
The exposure step of exposing the photosensitive resin film and
A developing process for developing the exposed photosensitive resin film and
Manufacturing method of electronic devices including
Is provided.
 また、本発明によれば、
 上記の感光性樹脂組成物により形成された膜を備える電子デバイス
が提供される。
Further, according to the present invention,
An electronic device including a film formed of the above-mentioned photosensitive resin composition is provided.
 本発明によれば、他の樹脂組成物と組み合わせて用いなくても、単独で平坦な樹脂膜を形成することが可能であり、側面が垂直形状または順テーパー形状である貫通孔を形成できる樹脂膜を提供することが可能な、平坦化膜形成用の感光性樹脂組成物が提供される。 According to the present invention, it is possible to form a flat resin film by itself without using it in combination with other resin compositions, and a resin capable of forming through holes having vertical or forward tapered side surfaces. A photosensitive resin composition for forming a flattening film, which can provide a film, is provided.
電子デバイスの製造方法の一例を模式的に示す図である。It is a figure which shows an example of the manufacturing method of an electronic device schematically. 実施例の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of an Example.
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 煩雑さを避けるため、同一図面内に同一の構成要素が複数ある場合には、その1つのみに符号を付し、全てには符号を付さない場合がある。
 すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In all drawings, similar components are designated by the same reference numerals, and description thereof will be omitted as appropriate.
In order to avoid complication, when there are a plurality of the same components in the same drawing, only one of them may be coded and all of them may not be coded.
All drawings are for illustration purposes only. The shape and dimensional ratio of each member in the drawing do not necessarily correspond to the actual article.
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。 In the present specification, the notation of "a to b" in the description of the numerical range indicates a or more and b or less unless otherwise specified. For example, "1 to 5% by mass" means "1% by mass or more and 5% by mass or less".
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
 本明細書における「電子デバイス」の語は、半導体チップ、半導体素子、プリント配線基板、電気回路ディスプレイ装置、情報通信端末、発光ダイオード、物理電池、化学電池など、電子工学の技術が適用された素子、デバイス、最終製品等を包含する意味で用いられる。
In the notation of a group (atomic group) in the present specification, the notation that does not indicate whether it is substituted or unsubstituted includes both those having no substituent and those having a substituent. For example, the "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
The notation "(meth) acrylic" herein represents a concept that includes both acrylic and methacrylic. The same applies to similar notations such as "(meth) acrylate".
The term "electronic device" as used herein refers to an element to which electronic engineering technology is applied, such as a semiconductor chip, a semiconductor element, a printed wiring board, an electric circuit display device, an information communication terminal, a light emitting diode, a physical battery, and a chemical battery. , Devices, final products, etc.
<感光性樹脂組成物>
 本実施形態の感光性樹脂組成物は、例えば電子デバイスの製造において、平坦化膜を形成するためや、貫通孔を形成するために用いられる。
 「平坦化」とは、具体的には、凹凸を有する基板上に感光性樹脂組成物を塗布してその凹凸を覆い、そして基板の最表面を感光性樹脂膜で平坦にすることをいう。
 本実施形態の感光性樹脂組成物は、エポキシ樹脂と、フェノキシ樹脂と、感光剤とを含む、
<Photosensitive resin composition>
The photosensitive resin composition of the present embodiment is used, for example, in the production of an electronic device, for forming a flattening film or for forming a through hole.
Specifically, "flattening" means applying a photosensitive resin composition on a substrate having irregularities to cover the irregularities, and flattening the outermost surface of the substrate with a photosensitive resin film.
The photosensitive resin composition of the present embodiment contains an epoxy resin, a phenoxy resin, and a photosensitive agent.
 他の樹脂組成物と組み合わせずとも本実施形態の感光性樹脂組成物単独で平坦な樹脂膜を形成することが可能なメカニズムについては、感光性樹脂膜を熱硬化する際の膜の体積変化(収縮)が小さいためと推定される。
 特許文献1に記載の感光性樹脂組成物で膜を形成した場合、硬化時に水分子の脱離を伴う閉環反応が起きるため、膜が大きく収縮しがちであると考えられる。一方、本実施形態の感光性樹脂組成物では、エポキシ基のカチオン重合反応により膜が硬化するところ、この反応では基本的に水分子などの脱離が生じない。このことより体積変化が抑えられると推定される。
 また、本実施形態の感光性樹脂組成物は、フェノキシ樹脂、すなわち、ビスフェノール類とエピクロルヒドリンより合成されるポリヒドロキシポリエーテルを含む。通常、フェノキシ樹脂のエポキシ当量は、エポキシ樹脂のエポキシ当量よりもかなり大きい(つまり、エポキシ基の含有量はかなり少ない、または、エポキシ基を有しない)。これにより、過度な熱硬化が抑えられ、そして膜の体積変化(収縮)が十二分に小さくなるものと推定される。また、フェノキシ樹脂は一般に熱可塑性であるため、加熱時に適度に流動すると考えられる。この流動により膜表面がより平坦になるとも推定される。
Regarding the mechanism capable of forming a flat resin film by itself of the photosensitive resin composition of the present embodiment without combining with other resin compositions, the volume change of the film when the photosensitive resin film is thermally cured ( It is presumed that the contraction) is small.
When a film is formed of the photosensitive resin composition described in Patent Document 1, it is considered that the film tends to shrink significantly because a ring closure reaction accompanied by elimination of water molecules occurs during curing. On the other hand, in the photosensitive resin composition of the present embodiment, the film is cured by the cationic polymerization reaction of the epoxy group, but this reaction basically does not cause elimination of water molecules and the like. From this, it is estimated that the volume change can be suppressed.
In addition, the photosensitive resin composition of the present embodiment contains a phenoxy resin, that is, a polyhydroxypolyether synthesized from bisphenols and epichlorohydrin. Epoxy equivalents of phenoxy resins are usually much higher than the epoxy equivalents of epoxy resins (ie, the epoxy group content is much lower or they have no epoxy groups). It is presumed that this suppresses excessive thermosetting and makes the volume change (shrinkage) of the film sufficiently small. Further, since the phenoxy resin is generally thermoplastic, it is considered that the phenoxy resin flows appropriately when heated. It is also estimated that this flow makes the film surface flatter.
 本実施形態の感光性樹脂組成物の含有成分や性状などについて説明する。 The components and properties of the photosensitive resin composition of this embodiment will be described.
(エポキシ樹脂)
 本実施形態の感光性樹脂組成物は、エポキシ樹脂を含む。
 エポキシ樹脂としては、例えば、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を用いることができる。エポキシ樹脂は、モノマー、オリゴマー、ポリマー全般を用いることができる。エポキシ樹脂の分子量や分子構造は特に限定されない。
(Epoxy resin)
The photosensitive resin composition of the present embodiment contains an epoxy resin.
As the epoxy resin, for example, an epoxy resin having two or more epoxy groups in one molecule can be used. As the epoxy resin, monomers, oligomers, and polymers in general can be used. The molecular weight and molecular structure of the epoxy resin are not particularly limited.
 エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、クレゾールナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノキシ樹脂、ナフタレン骨格型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、芳香族多官能エポキシ樹脂、脂肪族エポキシ樹脂、脂肪族多官能エポキシ樹脂、脂環式エポキシ樹脂、多官能脂環式エポキシ樹脂などが挙げられる。
 エポキシ樹脂は、単独で用いても複数組み合わせて用いてもよい。
Examples of the epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, cresol naphthol type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, phenoxy resin, naphthalene skeleton type epoxy resin, and bisphenol A type epoxy resin. , Bisphenol A diglycidyl ether type epoxy resin, bisphenol F type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, bisphenol S diglycidyl ether type epoxy resin, glycidyl ether type epoxy resin, cresol novolac type epoxy resin, aromatic polyfunctional Examples thereof include epoxy resins, aliphatic epoxy resins, aliphatic polyfunctional epoxy resins, alicyclic epoxy resins, and polyfunctional alicyclic epoxy resins.
The epoxy resin may be used alone or in combination of two or more.
 エポキシ樹脂は、分子内に2個以上のエポキシ基を有する固形エポキシ樹脂を含むことができる。固形エポキシ樹脂としては、2個以上のエポキシ基を有しており、25℃(室温)において固形であるものを使用することができる。これにより、感光性樹脂組成物の樹脂膜における機械的特性を高めることができる。 The epoxy resin can include a solid epoxy resin having two or more epoxy groups in the molecule. As the solid epoxy resin, a resin having two or more epoxy groups and solid at 25 ° C. (room temperature) can be used. Thereby, the mechanical properties of the photosensitive resin composition in the resin film can be enhanced.
 エポキシ樹脂は、好ましくは、分子内に3官能以上の多官能エポキシ樹脂(つまり、1分子中にエポキシ基を3個以上有する多官能エポキシ樹脂)を含む。このことにより、膜が十二分に硬化することとなり、例えば永久膜としての耐熱性や耐久性を高めることができる。また、耐熱性が高いということは、加熱によっても永久膜の性状が変化しにくいということであり、平坦性の一層の向上につながる。 The epoxy resin preferably contains a trifunctional or higher functional epoxy resin in the molecule (that is, a polyfunctional epoxy resin having three or more epoxy groups in one molecule). As a result, the film is sufficiently cured, and for example, the heat resistance and durability of the permanent film can be improved. Further, the high heat resistance means that the properties of the permanent film are unlikely to change even by heating, which leads to further improvement of flatness.
 3官能以上の多官能エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、およびテトラメチルビスフェノールF型エポキシ樹脂からなる群より選択される1種以上のエポキシ樹脂を含むことが好ましく、トリフェニルメタン型エポキシ樹脂またはノボラック型エポキシ樹脂を含むことがより好ましい。これにより、樹脂膜の耐熱性を高めつつ、適切な熱膨張係数を実現できる。 Examples of the trifunctional or higher functional epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol A type epoxy resin, and tetramethylbisphenol F. It is preferable to contain one or more kinds of epoxy resins selected from the group consisting of type epoxy resins, and it is more preferable to contain a triphenylmethane type epoxy resin or a novolak type epoxy resin. As a result, an appropriate coefficient of thermal expansion can be realized while increasing the heat resistance of the resin film.
 エポキシ樹脂は、分子中に2個以上のエポキシ基を有する液状エポキシ樹脂を含んでもよい。液状エポキシ樹脂は、フィルム化剤として機能し、感光性樹脂組成物の樹脂膜の脆性を改善することができる。 The epoxy resin may contain a liquid epoxy resin having two or more epoxy groups in the molecule. The liquid epoxy resin functions as a filming agent and can improve the brittleness of the resin film of the photosensitive resin composition.
 液状エポキシ樹脂としては、2個以上のエポキシ基を有しており、室温25℃において液状であるエポキシ化合物を用いることができる。液状エポキシ樹脂の25℃における粘度は、例えば、1~8000mPa・sであり、好ましくは5~1500mPa・sであり、より好ましくは10~1400mPa・sである As the liquid epoxy resin, an epoxy compound having two or more epoxy groups and being liquid at room temperature of 25 ° C. can be used. The viscosity of the liquid epoxy resin at 25 ° C. is, for example, 1 to 8000 mPa · s, preferably 5 to 1500 mPa · s, and more preferably 10 to 1400 mPa · s.
 液状エポキシ樹脂としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、アルキルジグリシジルエーテルおよび脂環式エポキシからなる群から選択される一種以上を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。この中でも、現像後のクラック低減の観点から、アルキルジグリシジルエーテルを用いることができる。 The liquid epoxy resin can include, for example, one or more selected from the group consisting of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, alkyl diglycidyl ether and alicyclic epoxy. These may be used alone or in combination of two or more. Among these, alkyl diglycidyl ether can be used from the viewpoint of reducing cracks after development.
 液状エポキシ樹脂のエポキシ当量は、例えば100~200g/eq、好ましくは105~180g/eq、さらに好ましくは110~170g/eqである。これにより、樹脂膜の脆性を改善することができる。 The epoxy equivalent of the liquid epoxy resin is, for example, 100 to 200 g / eq, preferably 105 to 180 g / eq, and more preferably 110 to 170 g / eq. Thereby, the brittleness of the resin film can be improved.
 液状エポキシ樹脂の含有量の下限値は、感光性樹脂組成物の不揮発成分全体に対して、例えば5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上である。これにより、最終的に得られる硬化膜の脆性を改善することができる。
 液状エポキシ樹脂の含有量の上限値は、感光性樹脂組成物の不揮発成分全体に対して、例えば40質量%以下、好ましくは35質量%以下、より好ましくは30質量%以下である。これにより、硬化膜の膜特性のバランスを図ることができる。
The lower limit of the content of the liquid epoxy resin is, for example, 5% by mass or more, preferably 10% by mass or more, and more preferably 15% by mass or more with respect to the entire non-volatile component of the photosensitive resin composition. Thereby, the brittleness of the finally obtained cured film can be improved.
The upper limit of the content of the liquid epoxy resin is, for example, 40% by mass or less, preferably 35% by mass or less, and more preferably 30% by mass or less with respect to the entire non-volatile component of the photosensitive resin composition. Thereby, the film characteristics of the cured film can be balanced.
 エポキシ樹脂の含有量の下限値は、感光性樹脂組成物の不揮発成分全体に対して、例えば40質量%以上、好ましくは45質量%以上、より好ましくは50質量%以上である。これにより、最終的に得られる硬化膜の耐熱性や機械的強度を向上させることができる。
 エポキシ樹脂の含有量の上限値は、感光性樹脂組成物の不揮発成分全体に対して、例えば90質量%以下、好ましくは85質量%以下、より好ましくは80質量%以下。これにより、パターニング性を向上させることができる。
 ここで、感光性樹脂組成物の不揮発成分とは、水や溶剤等の揮発成分を除いた残部を意味する。感光性樹脂組成物の不揮発成分全体に対する含有量とは、溶剤を含む場合には、感光性樹脂組成物のうちの溶媒を除く不揮発成分全体に対する含有量を指す。
The lower limit of the content of the epoxy resin is, for example, 40% by mass or more, preferably 45% by mass or more, and more preferably 50% by mass or more with respect to the entire non-volatile component of the photosensitive resin composition. As a result, the heat resistance and mechanical strength of the finally obtained cured film can be improved.
The upper limit of the content of the epoxy resin is, for example, 90% by mass or less, preferably 85% by mass or less, and more preferably 80% by mass or less, based on the entire non-volatile component of the photosensitive resin composition. Thereby, the patterning property can be improved.
Here, the non-volatile component of the photosensitive resin composition means the balance excluding the volatile components such as water and solvent. The content of the photosensitive resin composition with respect to the entire non-volatile component refers to the content of the photosensitive resin composition with respect to the entire non-volatile component excluding the solvent when the solvent is contained.
 エポキシ樹脂の重量平均分子量(Mw)は、特に限定されない。Mwは、例えば300~9000、好ましくは500~8000である。比較的低分子量のエポキシ樹脂を使用することで、露光時における反応性を高めることができる。 The weight average molecular weight (Mw) of the epoxy resin is not particularly limited. Mw is, for example, 300 to 9000, preferably 500 to 8000. By using an epoxy resin having a relatively low molecular weight, the reactivity at the time of exposure can be enhanced.
 本実施形態の感光性樹脂組成物は、エポキシ樹脂以外の他の熱硬化性樹脂を含有してもよい。他の熱硬化性樹脂としては、例えば、ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂;不飽和ポリエステル樹脂;ビスマレイミド化合物等のマレイミド樹脂;ポリウレタン樹脂;ジアリルフタレート樹脂;シリコーン系樹脂;ベンゾオキサジン樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;ベンゾシクロブテン樹脂、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のシアネート樹脂等が挙げられる。
 他の熱硬化性樹脂が用いられる場合は、単独で用いられてもよいし、2種以上が併用されてもよい。
The photosensitive resin composition of the present embodiment may contain a thermosetting resin other than the epoxy resin. Examples of other thermosetting resins include resins having a triazine ring such as urea resin and melamine resin; unsaturated polyester resin; maleimide resin such as bismaleimide compound; polyurethane resin; diallyl phthalate resin; silicone resin. Examples thereof include benzoxazine resin; polyimide resin; polyamideimide resin; benzocyclobutene resin, novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethylbisphenol F type cyanate resin.
When other thermosetting resins are used, they may be used alone or in combination of two or more.
(フェノキシ樹脂)
 本実施形態の感光性樹脂組成物は、フェノキシ樹脂を含む。フェノキシ樹脂には、膜の可撓性を高める機能もあると考えられる。
(Phenoxy resin)
The photosensitive resin composition of the present embodiment contains a phenoxy resin. It is considered that the phenoxy resin also has a function of increasing the flexibility of the film.
 フェノキシ樹脂としては、例えば、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA型とビスフェノールF型との共重合フェノキシ樹脂、ビフェニル型フェノキシ樹脂、ビスフェノールS型フェノキシ樹脂、ビフェニル型フェノキシ樹脂とビスフェノールS型フェノキシ樹脂との共重合フェノキシ樹脂等が挙げられる。中でも、ビスフェノールA型フェノキシ樹脂またはビスフェノールA型とビスフェノールF型との共重合フェノキシ樹脂が好ましい。
 フェノキシ樹脂は単独で用いられてもよいし、2種以上が併用されてもよい。
Examples of the phenoxy resin include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A type and bisphenol F type copolymerized phenoxy resin, biphenyl type phenoxy resin, bisphenol S type phenoxy resin, biphenyl type phenoxy resin and bisphenol. Examples thereof include a phenoxy resin copolymerized with an S-type phenoxy resin. Of these, a bisphenol A type phenoxy resin or a copolymerized phenoxy resin of a bisphenol A type and a bisphenol F type is preferable.
The phenoxy resin may be used alone or in combination of two or more.
 フェノキシ樹脂の重量平均分子量(Mw)は、好ましくは10,000~100,000、より好ましくは20,000~80,000、さらに好ましくは35,000~80,000である。
 フェノキシ樹脂のMwが比較的大きいことにより、硬化収縮を一層抑えることができ、平坦性を一層向上させることができる。このメカニズム詳細は不明であるが、Mwが比較的大きいと、分子鎖の熱運動が抑制され、その結果として平坦性が一層向上すると推測される。
 一方、溶剤溶解性などの点で、フェノキシ樹脂のMwは100,000以下であることが好ましい。
 重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)法のポリスチレン換算値として測定される。
The weight average molecular weight (Mw) of the phenoxy resin is preferably 10,000 to 100,000, more preferably 20,000 to 80,000, and even more preferably 35,000 to 80,000.
Since the Mw of the phenoxy resin is relatively large, the curing shrinkage can be further suppressed, and the flatness can be further improved. The details of this mechanism are unknown, but it is speculated that when Mw is relatively large, the thermal motion of the molecular chain is suppressed, and as a result, the flatness is further improved.
On the other hand, the Mw of the phenoxy resin is preferably 100,000 or less in terms of solvent solubility and the like.
The weight average molecular weight is measured, for example, as a polystyrene-equivalent value by gel permeation chromatography (GPC).
 フェノキシ樹脂としては、分子鎖両末端または分子鎖内部にエポキシ基等の反応性基を有してもよい。フェノキシ樹脂中の反応性基は、エポキシ樹脂中のエポキシ基と架橋反応可能なものである。このようなフェノキシ樹脂を使用することにより、樹脂膜中の耐溶剤性や耐熱性を高めることができる。 The phenoxy resin may have a reactive group such as an epoxy group at both ends of the molecular chain or inside the molecular chain. The reactive group in the phenoxy resin is one capable of cross-linking with the epoxy group in the epoxy resin. By using such a phenoxy resin, the solvent resistance and heat resistance in the resin film can be enhanced.
 フェノキシ樹脂としては、25℃で固形であるものが好ましく用いられる。具体的には、不揮発分が90質量%以上であるフェノキシ樹脂が好ましく用いられる。このようなフェノキシ樹脂を用いることにより、硬化物の機械的特性を良好にすることができる。 As the phenoxy resin, one that is solid at 25 ° C. is preferably used. Specifically, a phenoxy resin having a non-volatile content of 90% by mass or more is preferably used. By using such a phenoxy resin, the mechanical properties of the cured product can be improved.
 フェノキシ樹脂の含有量の下限値は、エポキシ樹脂100質量部に対して、好ましくは20質量部以上、より好ましくは25質量部以上、さらに好ましくは28質量部以上である。これにより、側面が垂直形状または順テーパー形状である貫通孔を形成でき、さらに十分な可撓性を得ることができる。また、推定メカニズムとして前述した、過度な熱硬化の抑制や流動などによる膜表面の平坦化の効果が十二分に得られることになると考えられる。 The lower limit of the content of the phenoxy resin is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and further preferably 28 parts by mass or more with respect to 100 parts by mass of the epoxy resin. Thereby, a through hole having a vertical shape or a forward taper shape on the side surface can be formed, and further sufficient flexibility can be obtained. In addition, it is considered that the effect of flattening the film surface by suppressing excessive thermosetting and flowing as described above as an estimation mechanism can be sufficiently obtained.
 フェノキシ樹脂の含有量の上限値は、エポキシ樹脂100質量部に対して、好ましくは60質量部以下、より好ましくは55質量部以下、さらに好ましくは50質量部以下である。これにより、架橋密度が最適化され、ガラス転移点や伸び等の膜物性に優れた樹脂膜を提供することができ、さらにフェノキシ樹脂は後述の溶剤に十分溶解することとなり、塗布性に優れた感光性樹脂組成物を得ることができる。
 また、フェノキシ樹脂の含有量が上限値を超えた場合、必要となる露光量が増大することから、必要な露光量が想定を超えた場合、組成物の反応の進行が不十分となるビア幅が広くなりすぎる場合がある。したがって、上限値以下であれば、露光プロセス時間増加につながる露光量の増大を適用することなく、所望の貫通孔を形成することができる。
The upper limit of the content of the phenoxy resin is preferably 60 parts by mass or less, more preferably 55 parts by mass or less, and further preferably 50 parts by mass or less with respect to 100 parts by mass of the epoxy resin. As a result, the crosslink density is optimized, a resin film having excellent film physical properties such as glass transition point and elongation can be provided, and the phenoxy resin is sufficiently dissolved in a solvent described later, resulting in excellent coatability. A photosensitive resin composition can be obtained.
Further, when the content of the phenoxy resin exceeds the upper limit value, the required exposure amount increases. Therefore, when the required exposure amount exceeds the assumption, the via width in which the reaction of the composition does not proceed sufficiently. May become too wide. Therefore, if it is not more than the upper limit value, a desired through hole can be formed without applying an increase in the amount of exposure that leads to an increase in the exposure process time.
 本実施形態の感光性樹脂組成物は、フェノキシ樹脂以外の他の熱可塑性樹脂を含有してもよい。この熱可塑性樹脂としては、ポリビニルアセタール樹脂、(メタ)アクリル系樹脂、ポリアミド系樹脂(例えばナイロン等)、熱可塑性ウレタン系樹脂、ポリオレフィン系樹脂(例えばポリエチレン、ポリプロピレン等)、ポリカーボネート、ポリエステル系樹脂(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂(例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、変性ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等が挙げられる。
 他の熱可塑性樹脂が用いられる場合は、単独で用いられてもよいし、2種以上が併用されてもよい。
The photosensitive resin composition of the present embodiment may contain a thermoplastic resin other than the phenoxy resin. Examples of the thermoplastic resin include polyvinyl acetal resin, (meth) acrylic resin, polyamide resin (for example, nylon), thermoplastic urethane resin, polyolefin resin (for example, polyethylene, polypropylene, etc.), polycarbonate, and polyester resin (for example, polyethylene). For example, polyethylene terephthalate, polybutylene terephthalate, etc.), polyacetal, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, fluororesin (for example, polytetrafluoroethylene, polyvinylidene fluoride, etc.), modified polyphenylene ether, polysulfone, polyether sulfone, poly Examples thereof include allylate, polyamideimide, polyetherimide, and thermoplastic polyimide.
When other thermoplastic resins are used, they may be used alone or in combination of two or more.
(感光剤)
 本実施形態の感光性樹脂組成物は、感光剤を含む。これにより感度や解像度など、感光性樹脂組成物としてのパターニング性能を高めることができる。
 感光剤は、典型的には、光酸発生剤、すなわちg線やi線などの光を照射されることで酸を発生する化合物を含む。
 本実施形態の感光性樹脂組成物は、通常、光酸発生剤から発生した酸が触媒的に作用する化学増幅型感光性樹脂組成物である(光酸発生剤から発生した酸がエポキシ基の重合を開始させ、酸は触媒的に再生される)。
 本実施形態の感光性樹脂組成物は、通常、ネガ型である。つまり、現像の際には、通常、露光部が残存し、未露光部が除去される。
(Photosensitive agent)
The photosensitive resin composition of the present embodiment contains a photosensitive agent. As a result, the patterning performance of the photosensitive resin composition such as sensitivity and resolution can be improved.
The photosensitizer typically comprises a photoacid generator, i.e. a compound that generates an acid upon irradiation with light such as g-ray or i-ray.
The photosensitive resin composition of the present embodiment is usually a chemically amplified photosensitive resin composition in which an acid generated from a photoacid generator acts catalytically (the acid generated from the photoacid generator is an epoxy group). The polymerization is initiated and the acid is catalytically regenerated).
The photosensitive resin composition of the present embodiment is usually a negative type. That is, at the time of development, the exposed portion usually remains and the unexposed portion is removed.
 感光剤としては、例えば、オニウム塩化合物が挙げられる。より具体的には、ジアゾニウム塩、ジアリールヨードニウム塩等のヨードニウム塩、トリアリールスルホニウム塩のようなスルホニウム塩、トリアリールビリリウム塩、ベンジルピリジニウムチオシアネート、ジアルキルフェナシルスルホニウム塩、ジアルキルヒドロキシフェニルホスホニウム塩などの、光酸発生剤ないしカチオン型光重合開始剤が挙げられる。
 中でも、パターニング性の観点から、トリアリールスルホニウム塩を用いることが好ましい。
Examples of the photosensitizer include onium salt compounds. More specifically, iodonium salts such as diazonium salt and diaryliodonium salt, sulfonium salts such as triarylsulfonium salt, triarylvirylium salt, benzylpyridinium thiocyanate, dialkylphenacil sulfonium salt, dialkylhydroxyphenylphosphonium salt and the like. , Photoacid generator or cationic photopolymerization initiator.
Above all, from the viewpoint of patterning property, it is preferable to use a triarylsulfonium salt.
 オニウム塩化合物の対アニオンとしては、ボレートアニオン、スルホネートアニオン、ガレートアニオン、リン系アニオン、アンチモン系アニオン等が挙げられる。より具体的には、スルホン酸アニオン、ジスルホニルイミド酸アニオン、ヘキサフルオロリン酸アニオン、フルオロアンチモン酸アニオン、テトラフルオロホウ酸アニオン、テトラキス(ペンタフルオロフェニル)ホウ酸アニオンなどが挙げられる。 Examples of the counter anion of the onium salt compound include borate anion, sulfonate anion, gallate anion, phosphorus anion, antimony anion and the like. More specifically, sulfonic acid anion, disulfonylimide acid anion, hexafluorophosphate anion, fluoroantimonate anion, tetrafluoroborate anion, tetrakis (pentafluorophenyl) borate anion and the like can be mentioned.
 感光剤は、単独で用いられてもよいし、2種以上が併用されてもよい。
 感光剤の含有量は、感光性樹脂組成物の固形分全体に対して、例えば、0.3~5.0質量%、好ましくは0.5~4.5質量%、より好ましくは1.0~4.0質量%である。0.3質量%以上とすることにより、パターニング性を高めることができる。また、5.0質量%以下とすることにより、膜中のイオン成分を少なくすることができ、最終的な膜の絶縁性や信頼性を高めることができる。
The photosensitizer may be used alone or in combination of two or more.
The content of the photosensitizer is, for example, 0.3 to 5.0% by mass, preferably 0.5 to 4.5% by mass, and more preferably 1.0, based on the total solid content of the photosensitive resin composition. It is about 4.0% by mass. By setting the content to 0.3% by mass or more, the patterning property can be improved. Further, by setting the content to 5.0% by mass or less, the ionic component in the membrane can be reduced, and the insulating property and reliability of the final membrane can be improved.
(界面活性剤)
 本実施形態の感光性樹脂組成物は、界面活性剤を含むことが好ましい。界面活性剤を含むことにより、塗布性が向上し、より均一/平坦な樹脂膜そして硬化膜を得ることができる。
 界面活性剤としては、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、アルキル系界面活性剤、およびアクリル系界面活性剤等が挙げられる。
(Surfactant)
The photosensitive resin composition of the present embodiment preferably contains a surfactant. By including the surfactant, the coatability is improved, and a more uniform / flat resin film and a cured film can be obtained.
Examples of the surfactant include a fluorine-based surfactant, a silicone-based surfactant, an alkyl-based surfactant, an acrylic-based surfactant, and the like.
 界面活性剤は、フッ素原子およびケイ素原子の少なくともいずれかを含む界面活性剤を含むことが好ましい。より好ましくは、界面活性剤は、例えば、フッ素原子およびケイ素原子の少なくともいずれかを含むノニオン系界面活性剤である。
 界面活性剤として使用可能な市販品としては、例えば、DIC株式会社製の「メガファック」シリーズの、F-251、F-253、F-281、F-430、F-477、F-551、F-552、F-553、F-554、F-555、F-556、F-557、F-558、F-559、F-560、F-561、F-562、F-563、F-565、F-568、F-569、F-570、F-572、F-574、F-575、F-576、R-40、R-40-LM、R-41、R-94等の、フッ素を含有するオリゴマー構造の界面活性剤、株式会社ネオス製のフタージェント250、フタージェント251等のフッ素含有ノニオン系界面活性剤、ワッカー・ケミー社製のSILFOAM(登録商標)シリーズ(例えばSD 100 TS、SD 670、SD 850、SD 860、SD 882)等のシリコーン系界面活性剤が挙げられる。
 本実施形態においては、本発明の効果の観点から、界面活性剤はフッ素系界面活性剤を含むことが好ましい。
The surfactant preferably contains a surfactant containing at least one of a fluorine atom and a silicon atom. More preferably, the surfactant is, for example, a nonionic surfactant containing at least one of a fluorine atom and a silicon atom.
Commercially available products that can be used as surfactants include, for example, F-251, F-253, F-281, F-430, F-477, F-551, of the "Mega Fvck" series manufactured by DIC Co., Ltd. F-552, F-553, F-554, F-555, F-556, F-557, F-558, F-559, F-560, F-561, F-562, F-563, F- 565, F-568, F-569, F-570, F-572, F-574, F-575, F-576, R-40, R-40-LM, R-41, R-94, etc. Fluorine-containing oligomeric surfactants, Fluorine-containing nonionic surfactants such as Futtergent 250 and Futtergent 251 manufactured by Neos Co., Ltd., SILFOAM® series manufactured by Wacker Chemie (eg SD 100 TS) , SD 670, SD 850, SD 860, SD 882) and other silicone-based surfactants.
In the present embodiment, from the viewpoint of the effect of the present invention, the surfactant preferably contains a fluorine-based surfactant.
 界面活性剤が用いられる場合、単独で用いられてもよいし、2種以上が併用されてもよい。
 界面活性剤が用いられる場合、その量は、感光性樹脂組成物の不揮発性成分の全量を基準として、例えば0.001~1質量%、好ましくは0.005~0.5質量%とすることができる。
When a surfactant is used, it may be used alone or in combination of two or more.
When a surfactant is used, the amount thereof shall be, for example, 0.001 to 1% by mass, preferably 0.005 to 0.5% by mass, based on the total amount of the non-volatile components of the photosensitive resin composition. Can be done.
(密着助剤)
 本実施形態の感光性樹脂組成物は、密着助剤を含むことが好ましい。これにより、例えば基板との密着性をより高めることができる。
(Adhesion aid)
The photosensitive resin composition of the present embodiment preferably contains an adhesion aid. Thereby, for example, the adhesion to the substrate can be further improved.
 密着助剤は、特に限定されない。例えば、アミノ基含有シランカップリング剤、エポキシ基含有シランカップリング剤、(メタ)アクリロイル基含有シランカップリング剤、メルカプト基含有シランカップリング剤、ビニル基含有シランカップリング剤、ウレイド基含有シランカップリング剤、スルフィド基含有シランカップリング剤等のシランカップリング剤を用いることができる。
 シランカップリング剤を用いる場合、1種類を単独で用いてもよいし、2種以上を併用してもよい。
The adhesion aid is not particularly limited. For example, amino group-containing silane coupling agent, epoxy group-containing silane coupling agent, (meth) acryloyl group-containing silane coupling agent, mercapto group-containing silane coupling agent, vinyl group-containing silane coupling agent, ureido group-containing silane cup. A silane coupling agent such as a ring agent or a sulfide group-containing silane coupling agent can be used.
When a silane coupling agent is used, one type may be used alone, or two or more types may be used in combination.
 アミノ基含有シランカップリング剤としては、例えばビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノ-プロピルトリメトキシシラン等が挙げられる。
 エポキシ基含有シランカップリング剤としては、例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシジルプロピルトリメトキシシラン等が挙げられる。
 (メタ)アクリロイル基含有シランカップリング剤としては、例えばγ-((メタ)アクリロイルオキシプロピル)トリメトキシシラン、γ-((メタ)アククリロイルオキシプロピル)メチルジメトキシシラン、γ-((メタ)アクリロイルオキシプロピル)メチルジエトキシシラン等が挙げられる。
 メルカプト基含有シランカップリング剤としては、例えば3-メルカプトプロピルトリメトキシシラン等が挙げられる。
 ビニル基含有シランカップリング剤としては、例えばビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等が挙げられる。
 ウレイド基含有シランカップリング剤としては、例えば3-ウレイドプロピルトリエトキシシラン等が挙げられる。
 スルフィド基含有シランカップリング剤としては、例えばビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等が挙げられる。
 酸無水物含有シランカップリング剤としては、例えば3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-ジメチルメトキシシリルプロピルコハク酸無水物等が挙げられる。
Examples of the amino group-containing silane coupling agent include bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and γ-aminopropylmethyldiethoxy. Silane, γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-amino Examples thereof include propylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldiethoxysilane, and N-phenyl-γ-amino-propyltrimethoxysilane.
Examples of the epoxy group-containing silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-glycidyl. Examples thereof include propyltrimethoxysilane.
Examples of the (meth) acryloyl group-containing silane coupling agent include γ-((meth) acryloyloxypropyl) trimethoxysilane, γ-((meth) acryloyloxypropyl) methyldimethoxysilane, and γ-((meth)). Acryloyloxypropyl) methyldiethoxysilane and the like.
Examples of the mercapto group-containing silane coupling agent include 3-mercaptopropyltrimethoxysilane.
Examples of the vinyl group-containing silane coupling agent include vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane and the like.
Examples of the ureido group-containing silane coupling agent include 3-ureidopropyltriethoxysilane and the like.
Examples of the sulfide group-containing silane coupling agent include bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide.
Examples of the acid anhydride-containing silane coupling agent include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxycyclylpropyl succinic anhydride, 3-dimethylmethoxysilylpropyl succinic anhydride and the like.
 また、密着助剤としては、シランカップリング剤だけでなく、チタンカップリング剤やジルコニウムカップリング剤等も挙げることができる。 Further, as the adhesion aid, not only a silane coupling agent but also a titanium coupling agent, a zirconium coupling agent and the like can be mentioned.
 密着助剤が用いられる場合、単独で用いられてもよいし、2種以上の密着助剤が併用されてもよい。
 密着助剤が用いられる場合、その使用量は、感光性樹脂組成物の不揮発性成分の全量を基準として、好ましくは0.3~5質量%、より好ましく0.4~4質量%、さらに好ましくは0.5~3質量%である。
When the adhesion aid is used, it may be used alone or in combination of two or more kinds of adhesion aids.
When the adhesion aid is used, the amount used is preferably 0.3 to 5% by mass, more preferably 0.4 to 4% by mass, still more preferably, based on the total amount of the non-volatile components of the photosensitive resin composition. Is 0.5 to 3% by mass.
(添加剤)
 本実施形態の感光性樹脂組成物は、上記の成分以外に、必要に応じて、その他の添加剤を含んでもよい。その他の添加剤としては、例えば、酸化防止剤、シリカ等の充填材、増感剤、フィルム化剤等が挙げられる。
(Additive)
The photosensitive resin composition of the present embodiment may contain other additives in addition to the above components, if necessary. Examples of other additives include antioxidants, fillers such as silica, sensitizers, filming agents and the like.
(溶剤)
 本実施形態の感光性樹脂組成物は、好ましくは溶剤を含む。これにより、段差基板に対して塗布法により感光性樹脂膜を容易に形成することができる。
 溶剤は、通常、有機溶剤を含む。上述の各成分を溶解または分散可能で、かつ、各構成成分と実質的に化学反応しないものである限り、有機溶剤は特に限定されない。
(solvent)
The photosensitive resin composition of the present embodiment preferably contains a solvent. As a result, a photosensitive resin film can be easily formed on the stepped substrate by the coating method.
The solvent usually includes an organic solvent. The organic solvent is not particularly limited as long as each of the above-mentioned components can be dissolved or dispersed and does not substantially chemically react with each of the components.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、トルエン、プロピレングリコールメチルエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ベンジルアルコール、プロピレンカーボネート、エチレングリコールジアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロプレングリコールメチルーn-プロピルエーテル、酢酸ブチル、γ-ブチロラクトン等が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。 Examples of the organic solvent include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, and benzyl. Examples thereof include alcohol, propylene carbonate, ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate, diproprene glycol methyl-n-propyl ether, butyl acetate and γ-butyrolactone. These may be used alone or in combination of two or more.
 溶剤は、感光性樹脂組成物中の不揮発成分全量の濃度が、好ましくは30~75質量%、より好ましくは35~70質量%となるように用いられる。この範囲とすることで、各成分を十分に溶解または分散させることができる。また、良好な塗布性を担保することができ、ひいては平坦性の更なる良化にもつながる。さらに、不揮発成分の含有量を調整することにより、感光性樹脂組成物の粘度を適切に制御できる。 The solvent is used so that the concentration of the total amount of the non-volatile components in the photosensitive resin composition is preferably 30 to 75% by mass, more preferably 35 to 70% by mass. Within this range, each component can be sufficiently dissolved or dispersed. In addition, good coatability can be ensured, which in turn leads to further improvement in flatness. Further, by adjusting the content of the non-volatile component, the viscosity of the photosensitive resin composition can be appropriately controlled.
(粘度)
 感光性樹脂組成物の25℃における粘度は、好ましくは1~50,000mPa・s、より好ましくは10~10,000mPa・s、さらに好ましくは50~5,000mPa・sである。粘度を上記数値範囲内とすることにより、塗布膜の厚みを適切に制御できる。また、膜の平坦性をより高めやすい。
 粘度は、例えば、コーンプレート型粘度計(TV-25、東機産業製)を用いて測定することができる。測定の際の回転速度の設定は一例として100rpmとすることができ、100rpmで適切な粘度測定ができない場合には20rpmとすることができる。
 塗布厚みは、例えば1~100μm、好ましくは3~80μm、より好ましくは5~50μmの範囲で適宜調整される。
(viscosity)
The viscosity of the photosensitive resin composition at 25 ° C. is preferably 1 to 50,000 mPa · s, more preferably 10 to 10,000 mPa · s, still more preferably 50 to 5,000 mPa · s. By setting the viscosity within the above numerical range, the thickness of the coating film can be appropriately controlled. In addition, it is easy to improve the flatness of the film.
The viscosity can be measured, for example, using a cone plate type viscometer (TV-25, manufactured by Toki Sangyo). The rotation speed at the time of measurement can be set to 100 rpm as an example, and can be set to 20 rpm when an appropriate viscosity measurement cannot be performed at 100 rpm.
The coating thickness is appropriately adjusted in the range of, for example, 1 to 100 μm, preferably 3 to 80 μm, and more preferably 5 to 50 μm.
<電子デバイスの製造方法、電子デバイス>
 本実施形態の感光性樹脂組成物を用いて、電子デバイス(感光性樹脂組成物により形成された膜を備える電子デバイス)を製造することができる。電子デバイスとしては、液晶ディスプレイ、有機ELディスプレイ、タッチパネル、電子ペーパー、カラーフィルター、ミニLEDディスプレイ、マイクロLEDディスプレイといった表示デバイス、太陽電池、CMOSなどの受光デバイス等を挙げることができ、再配線層、層間絶縁膜、封止材(トップコート)等に使用することができる。
 本実施形態においては、感光性樹脂膜からなる再配線層を備える電子デバイスの製造方法を説明する。
 例えば、(i)表面に段差を有する基板のその表面に、本実施形態の感光性樹脂組成物を用いて感光性樹脂膜を形成する製膜工程と、(ii)感光性樹脂膜を露光する露光工程と、(iii)露光された感光性樹脂膜を現像する現像工程と、を含む電子デバイスの製造方法により、電子デバイスを製造することができる。
<Manufacturing method of electronic devices, electronic devices>
Using the photosensitive resin composition of the present embodiment, an electronic device (an electronic device including a film formed of the photosensitive resin composition) can be manufactured. Examples of electronic devices include display devices such as liquid crystal displays, organic EL displays, touch panels, electronic paper, color filters, mini LED displays, and micro LED displays, solar cells, light receiving devices such as CMOS, and the like. It can be used as an interlayer insulating film, a sealing material (top coat), and the like.
In the present embodiment, a method of manufacturing an electronic device including a rewiring layer made of a photosensitive resin film will be described.
For example, (i) a film forming step of forming a photosensitive resin film using the photosensitive resin composition of the present embodiment on the surface of a substrate having a step on the surface, and (ii) exposing the photosensitive resin film. An electronic device can be manufactured by a method for manufacturing an electronic device, which includes an exposure step and (iii) a development step of developing an exposed photosensitive resin film.
 電子デバイスの製造方法について、図1A~図1Dを参照しつつ、より具体的に説明する。 The manufacturing method of the electronic device will be described more specifically with reference to FIGS. 1A to 1D.
(製膜工程:図1A)
 製膜工程では、段差10を有する基板1の、段差を有する面側に、本実施形態の感光性樹脂組成物を用いて感光性樹脂膜3を形成する。感光性樹脂膜3により段差を有する面が平坦化される。
 基板1は特に限定されない。基板1としては、例えば、シリコンウェハ、セラミック基板、アルミ基板、SiCウェハ、GaNウェハなどを挙げることができる。
 段差10は、例えばCu再配線である。もちろん、段差10は、Cu再配線以外の段差であってもよい。段差10の高さは、例えば1~10μm、好ましくは1~5μmである。
 感光性樹脂膜3の厚み(段差10が無い部分の厚み)は、例えば1~15μm、好ましくは1~10μmである。この厚みは、段差10の高さより大きければよい。
(Film formation process: Fig. 1A)
In the film forming step, the photosensitive resin film 3 is formed on the surface side of the substrate 1 having the step 10 by using the photosensitive resin composition of the present embodiment. The surface having a step is flattened by the photosensitive resin film 3.
The substrate 1 is not particularly limited. Examples of the substrate 1 include a silicon wafer, a ceramic substrate, an aluminum substrate, a SiC wafer, and a GaN wafer.
The step 10 is, for example, Cu rewiring. Of course, the step 10 may be a step other than Cu rewiring. The height of the step 10 is, for example, 1 to 10 μm, preferably 1 to 5 μm.
The thickness of the photosensitive resin film 3 (thickness of the portion without the step 10) is, for example, 1 to 15 μm, preferably 1 to 10 μm. This thickness may be larger than the height of the step 10.
 感光性樹脂膜3を形成する方法としては、スピンコート法、噴霧塗布法、浸漬法、印刷法、ロールコーティング法、インクジェット法などにより、液体状の感光性樹脂組成物を基板上に供する方法を挙げることができる。樹脂膜を形成する方法は、典型的にはスピンコートである。
 膜形成の条件を変更したり、感光性樹脂組成物の粘度を調整したりすることで、感光性樹脂膜3の厚みを調整することができる。
As a method for forming the photosensitive resin film 3, a method of applying a liquid photosensitive resin composition on a substrate by a spin coating method, a spray coating method, a dipping method, a printing method, a roll coating method, an inkjet method, or the like is used. Can be mentioned. The method of forming the resin film is typically spin coating.
The thickness of the photosensitive resin film 3 can be adjusted by changing the film forming conditions or adjusting the viscosity of the photosensitive resin composition.
 製膜工程の後、露光工程の前に、感光性樹脂膜3を加熱乾燥することが好ましい。この加熱乾燥のことは「プリベーク」と呼ばれることがある。
 加熱乾燥の温度は、通常50~180℃、好ましくは60~150℃である。また、加熱乾燥の時間は、通常30~600秒、好ましくは30~300秒程度である。この加熱乾燥で感光性樹脂組成物中の溶剤を十分に除去することができる。加熱は、典型的にはホットプレートやオーブン等で行う。
It is preferable to heat-dry the photosensitive resin film 3 after the film-forming step and before the exposure step. This heat drying is sometimes called "pre-baking".
The heat-drying temperature is usually 50 to 180 ° C, preferably 60 to 150 ° C. The heating and drying time is usually about 30 to 600 seconds, preferably about 30 to 300 seconds. The solvent in the photosensitive resin composition can be sufficiently removed by this heat drying. Heating is typically performed on a hot plate, oven, or the like.
(露光工程:図1B)
 露光工程では、フォトマスク20を介して、感光性樹脂膜3を露光する。露光用の活性光線としては、例えばX線、電子線、紫外線、可視光線などである。波長でいうと200~500nmの活性光線が好ましい。パターンの解像度や装置の取り扱いやすさの点で、光源は水銀ランプのg線、h線又はi線であることが好ましい。また、2つ以上の光線を混合して用いてもよい。
 露光装置としては、コンタクトアライナー、ミラープロジェクション又はステッパーが好ましい。
 露光工程における露光量は、通常40~1500mJ/cm、好ましくは80~1000mJ/cmの間で、感光性樹脂組成物の感度、樹脂膜の膜厚、得ようとするパターンの形状などにより適宜調整される。
(Exposure process: FIG. 1B)
In the exposure step, the photosensitive resin film 3 is exposed through the photomask 20. Examples of the active light beam for exposure include X-ray, electron beam, ultraviolet light, visible light and the like. In terms of wavelength, active light rays having a wavelength of 200 to 500 nm are preferable. From the viewpoint of pattern resolution and ease of handling of the device, the light source is preferably g-line, h-line or i-line of a mercury lamp. Further, two or more light rays may be mixed and used.
As the exposure apparatus, a contact aligner, a mirror projection or a stepper is preferable.
Exposure dose in the exposure step is usually 40 ~ 1500mJ / cm 2, preferably between 80 ~ 1000mJ / cm 2, the sensitivity of the photosensitive resin composition, the film thickness of the resin film, due to the shape of the pattern to be obtained It will be adjusted accordingly.
 露光工程と現像工程の間には、樹脂膜を加熱(露光後加熱)することが好ましい。これにより、露光で開裂・分解等した物質(感光剤など)の反応が進行し、パターン形状の良化等を期待することができる。露光後加熱の温度・時間は、例えば50~200℃、10~600秒程度である。 It is preferable to heat the resin film (heat after exposure) between the exposure step and the developing step. As a result, the reaction of substances (photosensitive agents, etc.) that have been cleaved or decomposed by exposure proceeds, and improvement in pattern shape can be expected. The temperature and time of heating after exposure is, for example, about 50 to 200 ° C. and 10 to 600 seconds.
(現像工程:図1C)
 現像工程では、現像液を用いて、露光工程で露光された感光性樹脂膜を現像する。これにより、感光性樹脂膜3の一部を除去して、開口5が設けられた樹脂膜3Aを得ることができる。本実施形態の感光性樹脂組成物は、通常ネガ型である。よって、フォトマスク20の遮光部に対応する部分に開口5が設けられる。
 本実施形態の感光性樹脂組成物からなる樹脂膜は、側面が垂直形状または順テーパー形状である貫通孔(開口5)を形成できることから、当該貫通孔に充填される導電部の形成において歩留まりが向上する。
 現像工程は、例えば浸漬法、パドル法、回転スプレー法などの方法により行うことができる。
(Development process: Fig. 1C)
In the developing step, the developing solution is used to develop the photosensitive resin film exposed in the exposure step. As a result, a part of the photosensitive resin film 3 can be removed to obtain a resin film 3A having an opening 5. The photosensitive resin composition of the present embodiment is usually a negative type. Therefore, the opening 5 is provided in the portion of the photomask 20 corresponding to the light-shielding portion.
Since the resin film made of the photosensitive resin composition of the present embodiment can form a through hole (opening 5) having a vertical shape or a forward taper shape on the side surface, the yield is increased in the formation of the conductive portion filled in the through hole. improves.
The developing step can be performed by, for example, a dipping method, a paddle method, a rotary spray method, or the like.
 本実施形態において、現像液は、有機溶剤を含有することが好ましい。より具体的には、現像液は、有機溶剤を主成分とする現像液(成分の95質量%以上が有機溶剤である現像液)であることが好ましい。有機溶剤を含有する現像液で現像することにより、アルカリ現像液(水系)で現像する場合よりも、現像液によるパターンの膨潤を抑えること等が可能になる。つまり、よりファインなパターンを得やすい。 In the present embodiment, the developer preferably contains an organic solvent. More specifically, the developing solution is preferably a developing solution containing an organic solvent as a main component (a developing solution in which 95% by mass or more of the components are organic solvents). By developing with a developing solution containing an organic solvent, it is possible to suppress swelling of the pattern due to the developing solution as compared with the case of developing with an alkaline developing solution (aqueous system). That is, it is easy to obtain a finer pattern.
 現像液に使用可能な有機溶剤として具体的には、シクロペンタノンなどのケトン系溶剤、プロピレングリコールモノメチルエーテルアセテート(PGMEA)や酢酸ブチルなどのエステル系溶剤、プロピレングリコールモノメチルエーテルなどのエーテル系溶剤、等が挙げられる。
 現像液としては、有機溶剤のみからなり、不可避的に含まれる不純物以外は含まない有機溶剤現像液を使用してもよい。なお、不可避的に含まれる不純物としては、金属元素があるが、電子装置の汚染防止などの観点からは不可避的に含まれる不純物は少ないに越したことは無い。
Specific examples of the organic solvent that can be used in the developing solution include ketone solvents such as cyclopentanone, ester solvents such as propylene glycol monomethyl ether acetate (PGMEA) and butyl acetate, and ether solvents such as propylene glycol monomethyl ether. And so on.
As the developing solution, an organic solvent developing solution containing only an organic solvent and containing only impurities inevitably contained may be used. The impurities that are unavoidably contained include metal elements, but from the viewpoint of preventing contamination of electronic devices, the impurities that are unavoidably contained are small.
 現像工程の時間は、通常5~300秒程度、好ましくは10~120秒程度の範囲で、樹脂膜の膜厚や形成されるパターンの形状などに基づき適宜調整される。 The time of the developing step is usually about 5 to 300 seconds, preferably about 10 to 120 seconds, and is appropriately adjusted based on the film thickness of the resin film and the shape of the formed pattern.
 現像工程とその後の工程の間には、例えば、樹脂膜3Aを硬化させる硬化工程があってもよい。硬化は、例えば、150~250℃で30~240分間の加熱処理により行うことができる。本実施形態の感光性樹脂組成物を用いて樹脂膜3Aを形成することで、このような硬化工程を経ても、樹脂膜3Aの表面(上面)の平坦性は良好である。 For example, there may be a curing step of curing the resin film 3A between the developing step and the subsequent steps. Curing can be performed, for example, by heat treatment at 150 to 250 ° C. for 30 to 240 minutes. By forming the resin film 3A using the photosensitive resin composition of the present embodiment, the flatness of the surface (upper surface) of the resin film 3A is good even after undergoing such a curing step.
(追加再配線工程:図1D)
 現像工程で設けられた開口5の部分に、段差10(例えばCu再配線)とは異なるCu再配線11を設けることができる。このとき、開口5の側面が垂直形状または順テーパー形状であることから、開口5内の側面にシード層が蒸着されやすく、電解めっき法による金属の充填が改善され、Cu再配線11の歩留まりが向上する。また、樹脂膜3Aの上面の平坦性が高いため、微細なCu再配線11を精度よく設けることができる。
(Additional rewiring process: Fig. 1D)
A Cu rewiring 11 different from the step 10 (for example, Cu rewiring) can be provided in the portion of the opening 5 provided in the developing step. At this time, since the side surface of the opening 5 has a vertical shape or a forward taper shape, the seed layer is easily deposited on the side surface in the opening 5, the metal filling by the electroplating method is improved, and the yield of the Cu rewiring 11 is increased. improves. Further, since the upper surface of the resin film 3A is highly flat, the fine Cu rewiring 11 can be provided with high accuracy.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted. Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。なお、本発明は実施例に限定されるものではない。 An embodiment of the present invention will be described in detail based on Examples and Comparative Examples. The present invention is not limited to the examples.
<感光性樹脂組成物の調製>
・実施例1~5、比較例2~3
 表1に記載された各成分を、プロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解させて溶液とした。その後、溶液を0.2μmのポリプロピレンフィルターで濾過した。これにより、25℃で、粘度が約100mPa・sの感光性樹脂組成物を得た(粘度が約100mPa・sとなるように、PGMEA量を適宜調整した)。
 感光性樹脂組成物の粘度は、コーンプレート型粘度計(TV-25、東機産業製)を用いて、回転速度を100rpmに設定して測定した。
 なお、比較例2は、国際公開第2019/044817号の実施例10に記載の感光性樹脂組成物である。
<Preparation of photosensitive resin composition>
-Examples 1 to 5, Comparative Examples 2 to 3
Each component listed in Table 1 was dissolved in propylene glycol monomethyl ether acetate (PGMEA) to prepare a solution. The solution was then filtered through a 0.2 μm polypropylene filter. As a result, a photosensitive resin composition having a viscosity of about 100 mPa · s was obtained at 25 ° C. (the amount of PGMEA was appropriately adjusted so that the viscosity was about 100 mPa · s).
The viscosity of the photosensitive resin composition was measured using a cone plate type viscometer (TV-25, manufactured by Toki Sangyo) with the rotation speed set to 100 rpm.
Comparative Example 2 is the photosensitive resin composition described in Example 10 of International Publication No. 2019/044817.
・比較例1
 特開平11-237736号公報の実施例1に記載の感光性樹脂組成物(ポリベンゾオキサゾール前駆体含有)を準備した。
・ Comparative example 1
The photosensitive resin composition (containing a polybenzoxazole precursor) described in Example 1 of JP-A-11-237736 was prepared.
 表1における各成分の原料の詳細は下記のとおりである。
(エポキシ樹脂)
 エポキシ樹脂1:以下構造で表される多官能エポキシ樹脂(日本化薬社製「EPPN201」、フェノールノボラック型エポキシ樹脂、25℃で固形、nはおよそ5)
The details of the raw materials of each component in Table 1 are as follows.
(Epoxy resin)
Epoxy resin 1: Polyfunctional epoxy resin represented by the following structure ("EPPN201" manufactured by Nippon Kayaku Co., Ltd., phenol novolac type epoxy resin, solid at 25 ° C., n is about 5)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 エポキシ樹脂2:多官能エポキシ樹脂(三菱ケミカル社製「jER1032H60」、トリフェニルメタン型エポキシ樹脂、25℃で固形)
 エポキシ樹脂3:クレゾールノボラック型エポキシ樹脂(日本化薬社製「EOCN-1020」、25℃で固形)
Epoxy resin 2: Polyfunctional epoxy resin (Mitsubishi Chemical Corporation "jER1032H60", triphenylmethane type epoxy resin, solid at 25 ° C)
Epoxy resin 3: Cresol novolac type epoxy resin (Nippon Kayaku Co., Ltd. "EOCN-1020", solid at 25 ° C)
(フェノキシ樹脂)
 フェノキシ樹脂1:ビスフェノールA型フェノキシ樹脂(三菱ケミカル社製「jER1256」、Mw:約50,000))
 フェノキシ樹脂2:ビスフェノールA型フェノキシ樹脂(PKHA Gabriel Phenoxies社製、Mw:約25,000))
 フェノキシ樹脂3:ビスフェノールA型/ビスフェノールF型フェノキシ樹脂(新日鉄住金化学社製「YP-70」)
(Phenoxy resin)
Phenoxy resin 1: Bisphenol A type phenoxy resin ("jER1256" manufactured by Mitsubishi Chemical Corporation, Mw: about 50,000))
Phenoxy resin 2: Bisphenol A type phenoxy resin (manufactured by PKHA Gabriel Phoenixies, Mw: about 25,000))
Phenoxy resin 3: Bisphenol A type / Bisphenol F type phenoxy resin (Nippon Steel & Sumikin Chemical Co., Ltd. "YP-70")
(感光剤(光酸発生剤))
 光酸発生剤1:トリアリールスルホニウムボレート塩(サンアプロ社製、CPI-310B)
(Photosensitizer (photoacid generator))
Photoacid generator 1: Triarylsulfonium borate salt (manufactured by San-Apro, CPI-310B)
(界面活性剤)
 界面活性剤1:含フッ素基・親油性基含有オリゴマー(DIC社製、R-41)
 界面活性剤2:ポリアクリレート系表面調整剤(ビックケミージャパン社製、BYK-365N)
(Surfactant)
Surfactant 1: Fluorine-containing group / lipophilic group-containing oligomer (manufactured by DIC Corporation, R-41)
Surfactant 2: Polyacrylate-based surface conditioner (manufactured by Big Chemie Japan, BYK-365N)
(密着助剤)
 密着助剤1:3-グリシドキシプロピルトリメトキシシラン(信越化学社製のシランカップリング剤、KBM-403)
 密着助剤2:3-トリメトキシシリルプロピルコハク酸無水物(信越化学社製のシランカップリング剤、X-12-967C)
(Adhesion aid)
Adhesion aid 1: 3-glycidoxypropyltrimethoxysilane (silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403)
Adhesion aid 2: 3-trimethoxysilylpropyl succinic anhydride (silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., X-12-967C)
<平坦性の評価>
 実施例1~5、比較例2、3の感光性樹脂組成物を用いて、以下の手順で硬化膜付きウェハを得た。
(1)基板として、高さ3~4μm、幅100μmの、Cuにより形成された段差(凸状の部分)が、200μmピッチで設けられた、直径8インチのシリコンウェハを準備した。
(2)上記基板の段差がある面に、スピンコートにより感光性樹脂組成物を塗布し、その後、大気中で100℃、6分乾燥させた。これにより基板上に感光性樹脂膜を形成した。
(3)上記(2)で形成された感光性樹脂膜に対して、手動露光機(オーク製作所製・HMW-201GX、g線、i線、h線などの混合光)を用いて、800mJ/cmの露光量で全面露光した。
(4)上記(3)の露光の後、窒素雰囲気下、170℃で120分の加熱処理により感光性樹脂膜を硬化させた。
<Evaluation of flatness>
Using the photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 2 and 3, wafers with a cured film were obtained by the following procedure.
(1) As a substrate, a silicon wafer having a height of 3 to 4 μm and a width of 100 μm and having steps (convex portions) formed by Cu provided at a pitch of 200 μm was prepared.
(2) The photosensitive resin composition was applied to the stepped surface of the substrate by spin coating, and then dried in the air at 100 ° C. for 6 minutes. As a result, a photosensitive resin film was formed on the substrate.
(3) The photosensitive resin film formed in (2) above is 800 mJ / using a manual exposure machine (mixed light of HMW-201GX, g-line, i-line, h-line, etc. manufactured by ORC Manufacturing Co., Ltd.). The entire surface was exposed with an exposure amount of cm 2 .
(4) After the exposure of (3) above, the photosensitive resin film was cured by heat treatment at 170 ° C. for 120 minutes in a nitrogen atmosphere.
 また、比較例1の感光性樹脂組成物を用いて、上記(2)の条件を120℃、4分、上記(3)の露光を省略、上記(3)と(4)の間にテトラメチルアンモニウムハイドロオキサイド(TMAH)2.38質量%水溶液を用いた現像、純水を用いたリンスを実施、上記(4)の条件を、150℃で30分の後320℃で30分にした以外は実施例1~5と同様の条件で、硬化膜付ウェハを得た。 Further, using the photosensitive resin composition of Comparative Example 1, the condition of (2) above was set to 120 ° C. for 4 minutes, the exposure of (3) above was omitted, and tetramethyl between (3) and (4) above was omitted. Development with a 2.38 mass% aqueous solution of ammonium hydroxide (TMAH) and rinsing with pure water were carried out, except that the condition (4) above was changed to 30 minutes at 150 ° C. and then 30 minutes at 320 ° C. Wafers with a cured film were obtained under the same conditions as in Examples 1 to 5.
 上記で得られた硬化膜付きウェハを割り、その断面を拡大して撮影した。
 撮影された画像に基づき、図2に示されるH(凸状の段差の上にある硬化膜の厚みと、凸状の段差の高さとの合計)、H(凸状の段差が無い部分の硬化膜の厚み)、および、H(凸状の段差の高さ)を求めた。
 H-Hの絶対値|H-H|(単位:μm)、および、{|H-H|/H}×100(単位:%)の評価式により、平坦性を評価した。これらの評価式の値が小さいほど、平坦性が良好であることを表す。
(実施例ごとに基板が異なり、Hが完全には同じでないため、前者の評価式に加え、「段差の高さあたりの硬化膜表面平坦性」を表す後者の評価式も用いて評価した。)
The wafer with the cured film obtained above was split, and the cross section thereof was enlarged and photographed.
Based on the captured image, HA (the sum of the thickness of the cured film on the convex step and the height of the convex step) and H B (the part without the convex step) shown in FIG. The thickness of the cured film) and HS (height of the convex step) were determined.
The absolute value of H A -H B | H A -H B | ( unit: [mu] m), and, {| H A -H B | / H S} × 100 ( unit:%) by the evaluation formula, the flatness evaluated. The smaller the value of these evaluation formulas, the better the flatness.
(Different substrate for each example, since H S are not completely the same, in addition to the former evaluation formula was evaluated using also the latter evaluation formula representing a "cured film surface flatness per a step height" .)
<パターニング特性に関する評価>
 実施例1~5、比較例2~3の感光性樹脂組成物が、露光・現像により所望の形状にパターニング可能であるか否か(パターニング性)、さらに形成されるビアパターン形状を以下のようにして確認し、以下の基準でパターニング特性を評価した。
<Evaluation of patterning characteristics>
Whether or not the photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 2 to 3 can be patterned into a desired shape by exposure and development (patternability), and the via pattern shape to be formed are as follows. The patterning characteristics were evaluated according to the following criteria.
 実施例1~5、比較例2~3の感光性樹脂組成物を、8インチシリコンウエハー上にスピンコーターを用いて塗布した。塗布後、大気下でホットプレートにて100℃で6分間プリベークし、膜厚約9.0μmの塗膜を得た。この塗膜に、幅100μmのビアパターンが描かれているマスクを通して、i線を600mJ/cm照射した。照射には、i線ステッパー(ニコン社製・NSR-4425i)を用いた。露光後、ウェハをホットプレートに置き、大気下で70℃、5分間のベーク処理を行った。その後、現像液としてPGMEAを用い、30秒間スプレー現像を行うことによって、未露光部を溶解除去して、ビアパターンを得た。
 得られたビアパターンの断面を、卓上SEMを用いて観察した。ビアパターンの底面と開口部の中間の高さにおける幅をビア幅とした。
 パターニング性およびビアパターン形状に基づき、以下の基準でパターニング特性を評価した
(基準)
 〇:ビア幅が95~105μmでありパターニング性が良好である。テーパー角が90度以下であり順テーパー形状あるいは順テーパー形状である。
 △:ビア幅が95~105μmでありパターニング性が良好である。テーパー角が90度より大きく逆テーパー形状である。
 ×:ビア幅が95μm未満、または、105μm超となり、パターニング性が不良である。
The photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 2 to 3 were applied onto an 8-inch silicon wafer using a spin coater. After coating, it was prebaked on a hot plate in the air at 100 ° C. for 6 minutes to obtain a coating film having a film thickness of about 9.0 μm. The coating film was irradiated with i-line at 600 mJ / cm 2 through a mask on which a via pattern having a width of 100 μm was drawn. An i-line stepper (NSR-4425i manufactured by Nikon Corporation) was used for irradiation. After the exposure, the wafer was placed on a hot plate and baked in the air at 70 ° C. for 5 minutes. Then, PGMEA was used as a developing solution, and spray development was carried out for 30 seconds to dissolve and remove the unexposed portion to obtain a via pattern.
The cross section of the obtained via pattern was observed using a tabletop SEM. The width at the height between the bottom surface of the via pattern and the opening was defined as the via width.
Based on the patternability and via pattern shape, the patterning characteristics were evaluated according to the following criteria (criteria).
◯: The via width is 95 to 105 μm, and the patterning property is good. The taper angle is 90 degrees or less and is a forward taper shape or a forward taper shape.
Δ: The via width is 95 to 105 μm, and the patterning property is good. It has a reverse taper shape with a taper angle of more than 90 degrees.
X: The via width is less than 95 μm or more than 105 μm, and the patterning property is poor.
 感光性樹脂組成物の組成および評価結果をまとめて表1に示す。 Table 1 summarizes the composition and evaluation results of the photosensitive resin composition.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示される通り、エポキシ樹脂と、フェノキシ樹脂と、感光剤とを含む、平坦化膜形成用の感光性樹脂組成物(実施例1~5)を用いることで、他の樹脂組成物を用いずとも、段差を有する基板上に平坦な樹脂膜を形成することができた。
 また、実施例1~5の感光性樹脂組成物のパターニング特性に特段の問題は無かった。
As shown in Table 1, other resin compositions can be obtained by using the photosensitive resin compositions for forming a flattening film (Examples 1 to 5) containing an epoxy resin, a phenoxy resin, and a photosensitive agent. A flat resin film could be formed on the substrate having a step without using it.
Further, there was no particular problem in the patterning characteristics of the photosensitive resin compositions of Examples 1 to 5.
 実施例1~5の結果をより細かく見ると、フェノキシ樹脂2が用いられた実施例5(Mw:25,000)よりも、フェノキシ樹脂1(Mw:50,000)が用いられた実施例1~4の方が、より良好な平坦性を示した。フェノキシ樹脂のMwが大きいほうが、一層平坦性を良好にできることが読み取れる。
 また、実施例1と実施例2~4の対比より、フェノキシ樹脂の量が比較的多い(20質量%以上である)ことで、平坦性がさらに良好となることが読み取れる。
Looking at the results of Examples 1 to 5 in more detail, Example 1 in which the phenoxy resin 1 (Mw: 50,000) was used rather than Example 5 (Mw: 25,000) in which the phenoxy resin 2 was used. ~ 4 showed better flatness. It can be read that the larger the Mw of the phenoxy resin, the better the flatness.
Further, from the comparison between Examples 1 and 2 to 4, it can be read that the flatness is further improved when the amount of the phenoxy resin is relatively large (20% by mass or more).
 さらに、エポキシ樹脂100質量部に対してフェノキシ樹脂を20~60質量部の範囲で含む感光性樹脂組成物(実施例1~5)は、この範囲を外れる感光性樹脂組成物(比較例2,3)と比較して、パターニング性およびビアパターン形状に優れパターニング特性は良好であった。なお、フェノキシ樹脂の量が上限値を超える比較例3は、必要露光量が増大したことから、実施例等と同じ露光量でパターニングした結果、組成物の反応進行が不十分となりビア幅が広くなったと考えられる。 Further, the photosensitive resin composition (Examples 1 to 5) containing the phenoxy resin in the range of 20 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin is a photosensitive resin composition outside this range (Comparative Examples 2 and 2). Compared with 3), the patterning property and the via pattern shape were excellent, and the patterning characteristics were good. In Comparative Example 3 in which the amount of the phenoxy resin exceeded the upper limit value, the required exposure amount increased, and as a result of patterning with the same exposure amount as in Examples and the like, the reaction progress of the composition was insufficient and the via width was wide. It is thought that it became.
 この出願は、2019年4月1日に出願された日本出願特願2019-069700号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2019-069700 filed on April 1, 2019, and incorporates all of its disclosures herein.

Claims (10)

  1.  エポキシ樹脂と、フェノキシ樹脂と、感光剤とを含み、
     前記エポキシ樹脂100質量部に対する前記フェノキシ樹脂の量は20~60質量部である、平坦化膜形成用の感光性樹脂組成物。
    Contains an epoxy resin, a phenoxy resin, and a photosensitizer.
    A photosensitive resin composition for forming a flattening film, wherein the amount of the phenoxy resin is 20 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin.
  2.  請求項1に記載の感光性樹脂組成物であって、
     界面活性剤を含む感光性樹脂組成物。
    The photosensitive resin composition according to claim 1.
    A photosensitive resin composition containing a surfactant.
  3.  請求項2に記載の感光性樹脂組成物であって、
     前記界面活性剤がフッ素系界面活性剤を含む、感光性樹脂組成物。
    The photosensitive resin composition according to claim 2.
    A photosensitive resin composition in which the surfactant contains a fluorine-based surfactant.
  4.  請求項1~3のいずれか1項に記載の感光性樹脂組成物であって、
     密着助剤を含む感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 3.
    A photosensitive resin composition containing an adhesion aid.
  5.  請求項1~4のいずれか1項に記載の感光性樹脂組成物であって、
     25℃での粘度が1~50,000mPa・sである感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 4.
    A photosensitive resin composition having a viscosity at 25 ° C. of 1 to 50,000 mPa · s.
  6.  請求項1~5のいずれか1項に記載の感光性樹脂組成物であって、
     前記フェノキシ樹脂の重量平均分子量は、10,000~100,000である感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 5.
    A photosensitive resin composition having a weight average molecular weight of the phenoxy resin of 10,000 to 100,000.
  7.  請求項1~6のいずれか一項に記載の感光性樹脂組成物であって、
     前記エポキシ樹脂は、分子内に3個以上のエポキシ基を有する多官能エポキシ樹脂を含む感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 6.
    The epoxy resin is a photosensitive resin composition containing a polyfunctional epoxy resin having three or more epoxy groups in the molecule.
  8.  請求項1~7のいずれか1項に記載の感光性樹脂組成物であって、
     溶剤を含む感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 7.
    A photosensitive resin composition containing a solvent.
  9.  表面に段差を有する基板の当該表面に、請求項1~8のいずれか1項に記載の感光性樹脂組成物を用いて感光性樹脂膜を形成する製膜工程と、
     前記感光性樹脂膜を露光する露光工程と、
     露光された前記感光性樹脂膜を現像する現像工程と
    を含む電子デバイスの製造方法。
    A film forming step of forming a photosensitive resin film on the surface of a substrate having a step on the surface using the photosensitive resin composition according to any one of claims 1 to 8.
    The exposure step of exposing the photosensitive resin film and
    A method for manufacturing an electronic device, which comprises a developing step of developing the exposed photosensitive resin film.
  10.  請求項1~8のいずれか1項に記載の感光性樹脂組成物により形成された膜を備える電子デバイス。 An electronic device comprising a film formed of the photosensitive resin composition according to any one of claims 1 to 8.
PCT/JP2020/013667 2019-04-01 2020-03-26 Photosensitive resin composition for planarization film formation, method for producing electronic device, and electronic device WO2020203648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548841A JPWO2020203648A1 (en) 2019-04-01 2020-03-26 Photosensitive resin composition for flattening film formation, manufacturing method of electronic device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069700 2019-04-01
JP2019069700 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020203648A1 true WO2020203648A1 (en) 2020-10-08

Family

ID=72668467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013667 WO2020203648A1 (en) 2019-04-01 2020-03-26 Photosensitive resin composition for planarization film formation, method for producing electronic device, and electronic device

Country Status (3)

Country Link
JP (2) JPWO2020203648A1 (en)
TW (1) TW202112956A (en)
WO (1) WO2020203648A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062650A (en) * 2000-08-21 2002-02-28 Ngk Spark Plug Co Ltd Photosensitive resin varnish, photosensitive adhesive film and printed wiring board
JP2007309995A (en) * 2006-05-16 2007-11-29 Canon Inc Dry film comprising photosensitive composition and ink jet head comprising the dry film
JP2008225244A (en) * 2007-03-14 2008-09-25 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive element using the same, resist pattern forming method, and method for manufacturing printed wiring board
JP2010230944A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Optical waveguide-forming epoxy resin composition, optical waveguide-forming curable film, optical-transmitting flexible printed wiring board, and electronic information device
JP2010243920A (en) * 2009-04-08 2010-10-28 Panasonic Electric Works Co Ltd Production method for resin microstructure and optoelectronic circuit board, and resin microstructure and optoelectronic circuit board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790380B2 (en) * 2005-11-11 2011-10-12 富士フイルム株式会社 LAMINATE FOR PRINTED WIRING BOARD AND METHOD FOR PRODUCING PRINTED WIRING BOARD USING SAME
KR102073440B1 (en) * 2012-05-17 2020-02-04 다이요 잉키 세이조 가부시키가이샤 Alkaline-developable thermosetting resin composition and printed circuit board
JP6230562B2 (en) * 2015-04-13 2017-11-15 太陽インキ製造株式会社 Positive photosensitive resin composition, dry film, cured product, and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062650A (en) * 2000-08-21 2002-02-28 Ngk Spark Plug Co Ltd Photosensitive resin varnish, photosensitive adhesive film and printed wiring board
JP2007309995A (en) * 2006-05-16 2007-11-29 Canon Inc Dry film comprising photosensitive composition and ink jet head comprising the dry film
JP2008225244A (en) * 2007-03-14 2008-09-25 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive element using the same, resist pattern forming method, and method for manufacturing printed wiring board
JP2010230944A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Optical waveguide-forming epoxy resin composition, optical waveguide-forming curable film, optical-transmitting flexible printed wiring board, and electronic information device
JP2010243920A (en) * 2009-04-08 2010-10-28 Panasonic Electric Works Co Ltd Production method for resin microstructure and optoelectronic circuit board, and resin microstructure and optoelectronic circuit board

Also Published As

Publication number Publication date
JPWO2020203648A1 (en) 2021-04-30
JP2021152679A (en) 2021-09-30
TW202112956A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US9857685B2 (en) Photosensitive resin composition, resist laminate, cured product of photosensitive resin composition, and cured product of resist laminate (11)
TWI546627B (en) Positive photosensitive resin composition, photo-curable dry film and method for producing same, layered product, patterning process, and substrate
US20040142275A1 (en) Photosensitive resin composition, process for forming relief pattern, and electronic component
US20140048318A1 (en) Composition, anti-oxide film including the same, electronic component including the anti-oxide film, and methods for forming the anti-oxide film and electronic component
CN109725490B (en) Photosensitive resin composition, dry film, cured product, semiconductor element, printed circuit board and electronic component
WO2013122208A1 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
JP6528421B2 (en) Photosensitive resin composition
JP6929198B2 (en) Photosensitive resin compositions, dry films, cured products, semiconductor devices, printed wiring boards and electronic components
JP7093406B2 (en) Semiconductor equipment
WO2020203648A1 (en) Photosensitive resin composition for planarization film formation, method for producing electronic device, and electronic device
JP5686217B1 (en) Photosensitive resin material and resin film
CN111198480A (en) Photosensitive resin composition, pattern forming method and antireflection film
JP7338142B2 (en) Photosensitive resin composition and method for producing electronic device
JP7191622B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP2017111382A (en) Positive photosensitive resin composition, cured film, protective film, insulating film, and electronic device
JP2020154246A (en) Photosensitive resin composition, dry film, cured product, and electronic component
JP2019161091A (en) Photosensitive resin composition and manufacturing method of organic electroluminescent element
JP7322424B2 (en) NEGATIVE PHOTOSENSITIVE RESIN COMPOSITION, RESIN FILM, AND ELECTRONIC DEVICE
JP2021024870A (en) Method for producing curable resin composition and electronic device
JP7195102B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP7360380B2 (en) Photosensitive resin compositions, dry films, cured products, printed wiring boards and semiconductor devices
JP7000696B2 (en) A photosensitive resin composition, a cured film of the photosensitive resin composition, an electric / electronic device provided with the cured film, and a method for manufacturing the electric / electronic device.
KR20210102782A (en) Alkali soluble resin, photosensitive resin composition including the same, photosensitive resin layer and display device
JP2023073661A (en) Photosensitive resin composition, cured film and semiconductor device
JP2020056845A (en) Photosensitive resin composition, dry film, cured product, and electronic component

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020548841

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783274

Country of ref document: EP

Kind code of ref document: A1