WO2020201795A1 - Vehicle control method and vehicle control device - Google Patents

Vehicle control method and vehicle control device Download PDF

Info

Publication number
WO2020201795A1
WO2020201795A1 PCT/IB2019/000394 IB2019000394W WO2020201795A1 WO 2020201795 A1 WO2020201795 A1 WO 2020201795A1 IB 2019000394 W IB2019000394 W IB 2019000394W WO 2020201795 A1 WO2020201795 A1 WO 2020201795A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
state
control
lane
Prior art date
Application number
PCT/IB2019/000394
Other languages
French (fr)
Japanese (ja)
Inventor
青木元伸
平松真知子
近藤崇之
佐久間壮
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2019/000394 priority Critical patent/WO2020201795A1/en
Publication of WO2020201795A1 publication Critical patent/WO2020201795A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle control method and a vehicle control device.
  • a vehicle control system that executes lane change control for changing a lane from a traveling lane to an adjacent lane is known (Patent Document 1).
  • This vehicle control system has a vehicle speed acquisition unit that acquires the vehicle speed of the own vehicle, a lane change time setting unit that sets the lane change time, which is the time required for lane change by lane change control, according to the vehicle speed, and a lane change time.
  • a lane change control unit that executes lane change control based on the vehicle is provided, the second predetermined value is set to a value larger than the first predetermined value, and the lane change time setting unit sets the lane change time setting unit when the vehicle speed is smaller than the first predetermined value. The smaller the vehicle speed, the longer the lane change time is set, and when the vehicle speed is greater than the second predetermined value, the higher the vehicle speed, the longer the lane change time is set.
  • the lane change time is changed according to the vehicle speed of the own vehicle while the other vehicle is approaching the lane change destination of the own vehicle while maintaining a high speed, and steering control for changing the lane is performed.
  • the intention to change lanes is displayed to other vehicles. That is, in the prior art, there is a problem that vehicle control for displaying the intention to change lanes to another vehicle, such as steering of the own vehicle, is executed regardless of the running state of the other vehicle.
  • the problem to be solved by the present invention is a lane control method and a lane control device for preventing vehicle control for displaying an intention to change lanes to another vehicle from being executed regardless of the traveling state of the other vehicle. I will provide a.
  • the present invention acquires peripheral information of the own vehicle, and is located on the second lane adjacent to the first lane in which the own vehicle travels based on the peripheral information of the own vehicle, and is located on the second lane adjacent to the first lane in which the own vehicle travels.
  • the approach position is specified, the vehicle speeds of the rear vehicle and the rear vehicle located behind the approach position on the second lane are detected, and the vehicle speed of the rear vehicle is higher than the vehicle speed of the own vehicle from the first state.
  • the vehicle speed is equal to or less than the vehicle speed of the own vehicle, or whether the vehicle speed of the rear vehicle changes to the second state in which the vehicle speed becomes lower than the vehicle speed of the own vehicle after a predetermined time, and the state of the rear vehicle changes from the first state to the second state.
  • the own vehicle executing vehicle control for indicating the intention to change lanes to the rear vehicle.
  • FIG. 1 is a configuration diagram showing an example of a vehicle system including a vehicle control device according to the present embodiment.
  • FIG. 2 is a flowchart of a lane change process executed by the vehicle control device according to the present embodiment.
  • FIG. 3 is an example of traveling of the own vehicle when the process shown in FIG. 3 is executed.
  • FIG. 4 is a flowchart of the lane change process executed by the vehicle control device according to the second embodiment.
  • FIG. 5 is an example of traveling of the own vehicle when the process shown in FIG. 4 is executed.
  • FIG. 6 is a flowchart of a lane change process executed by the vehicle control device according to the third embodiment.
  • FIG. 7 is an example of traveling of the own vehicle when the process shown in FIG. 6 is executed.
  • FIG. 1 is a configuration diagram showing an example of a vehicle system including a vehicle control device according to the present embodiment.
  • FIG. 2 is a flowchart of a lane change process executed by the vehicle control device according to the present embodiment.
  • FIG. 8 is a flowchart of a lane change process executed by the vehicle control device according to the fourth embodiment.
  • FIG. 9 is an example of traveling of the own vehicle when the process shown in FIG. 8 is executed.
  • FIG. 10 is a flowchart of a lane change process executed by the vehicle control device according to the fifth embodiment.
  • FIG. 11 is an example of traveling of the own vehicle when the process shown in FIG. 10 is executed.
  • FIG. 1 is a configuration diagram showing an example of a vehicle system 200 including a vehicle control device 100 according to an embodiment of the present invention.
  • the vehicle system 200 of this embodiment is mounted on a vehicle.
  • the vehicle system 200 is a system for a vehicle to automatically change lanes.
  • the vehicle system 200 includes a surrounding environment sensor group 10, a vehicle sensor group 20, a navigation system 30, a map database 40, an HMI 50, an actuator control device 60, and a vehicle. It includes a control actuator group 70, a winker 80, and a vehicle control device 100. These devices or systems are connected by a CAN (Control Area Network) or other in-vehicle LAN in order to exchange information with each other.
  • CAN Control Area Network
  • the surrounding environment sensor group 10 is a sensor group that detects the state (external state) around the own vehicle, and is provided in the own vehicle. As shown in FIG. 1, examples of the ambient environment sensor group 10 include, but are not limited to, a radar 11 and an imaging device 12.
  • the radar 11 detects an object existing around the own vehicle.
  • Examples of the radar 11 include, but are not limited to, a millimeter wave radar, a laser radar, an ultrasonic radar, a laser range finder, and the like.
  • the radar 11 detects an object by transmitting radio waves to the periphery of the own vehicle and receiving radio waves reflected by the object, for example. Specifically, the radar 11 detects the direction in which the object exists and the distance to the object. Further, the radar 11 detects the relative speed (including the moving direction) of the object with respect to the own vehicle based on the time change of the direction in which the object exists and the distance to the object.
  • the detection result detected by the radar 11 is output to the vehicle control device 100.
  • the radar 11 targets all directions when the own vehicle is centered.
  • the radar 11 is provided in front, side, and rear of the own vehicle, and is a front radar that detects an object existing in front of the own vehicle and a side radar that detects an object existing in the side of the own vehicle. , And a rear radar that detects an object behind the vehicle.
  • the number and type of radars 11 included in the own vehicle are not particularly limited.
  • the imaging device 12 images an object existing around the own vehicle.
  • Examples of the image pickup device 12 include, but are not limited to, a camera including a CCD or CMOS image pickup device.
  • the captured image captured by the imaging device 12 is output to the vehicle control device 100.
  • the imaging device 12 targets all directions when the vehicle is centered.
  • the image pickup device 12 is provided on each of the front, side, and rear of the own vehicle, and is a front camera that captures an object existing in front of the own vehicle and a side that captures an object existing on the side of the own vehicle. It consists of a camera and a rear camera that detects an object behind the vehicle.
  • the number and type of image pickup devices 12 included in the own vehicle are not particularly limited.
  • Examples of objects detected by the surrounding environment sensor group 10 include bicycles, motorcycles, automobiles (hereinafter, also referred to as other vehicles), road obstacles, traffic signals, road markings (including lane boundaries), and pedestrian crossings. ..
  • the radar 11 determines the direction in which the other vehicle exists and the distance to the other vehicle based on the position of the own vehicle. Detects the relative speed of another vehicle with respect to the vehicle.
  • the image pickup device 12 captures an image in which the vehicle type of the other vehicle, the size of the other vehicle, and the shape of the other vehicle can be specified.
  • the radar 11 separates the lane in which the own vehicle is traveling from the lane located on the side of this lane.
  • the lane boundary line is detected, and the distance from the own vehicle to the lane boundary line is detected.
  • the image pickup device 12 captures an image in which the type of the lane boundary line can be specified.
  • the radar 11 detects the distance from the own vehicle to the lane boundary for each lane boundary.
  • the lane in which the own vehicle is traveling is also referred to as the own lane
  • the lane located on the side of the own lane is also referred to as an adjacent lane.
  • the vehicle sensor group 20 is a sensor group that detects the state (internal state) of the own vehicle. As shown in FIG. 1, examples of the vehicle sensor group 20 include, but are not limited to, a vehicle speed sensor 21, an acceleration sensor 22, a gyro sensor 23, a steering angle sensor 24, an accelerator sensor 25, and a brake sensor 26.
  • the vehicle speed sensor 21 measures the rotational speed of a drive system such as a drive shaft, and detects the traveling speed of the own vehicle based on the measurement result.
  • the vehicle speed sensor 21 is provided on, for example, a wheel of the own vehicle or a drive shaft that rotates integrally with the wheel.
  • the acceleration sensor 22 detects the acceleration of the own vehicle.
  • the acceleration sensor 22 includes a front-rear acceleration sensor that detects the acceleration in the front-rear direction of the own vehicle and a lateral acceleration sensor that detects the lateral acceleration of the own vehicle.
  • the gyro sensor 23 detects the speed at which the own vehicle rotates, that is, the amount of movement (angular velocity) of the angle of the own vehicle per unit time.
  • the steering angle sensor 24 detects the steering angle of the steering wheel.
  • the steering angle sensor 24 is provided, for example, on the steering shaft of the own vehicle.
  • the accelerator sensor 25 detects the amount of depression of the accelerator pedal (position of the accelerator pedal).
  • the accelerator sensor 25 is provided, for example, on the shaft portion of the accelerator pedal.
  • the brake sensor 26 detects the amount of depression of the brake pedal (position of the brake pedal).
  • the brake sensor 26 is provided, for example, on the shaft portion of the brake pedal.
  • the detection result detected by the vehicle sensor group 20 is output to the vehicle control device 100.
  • the detection results include, for example, the vehicle speed of the own vehicle, acceleration (including front-rear acceleration and lateral acceleration), angular velocity, accelerator pedal depression amount, and brake pedal depression amount.
  • the navigation system 30 is a system that guides the occupants (including the driver) of the own vehicle by indicating the route from the current position of the own vehicle to the destination based on the information of the current position of the own vehicle.
  • Map information is input to the navigation system 30 from the map database 40, and destination information is input from the occupants of the own vehicle via the HMI 50.
  • the navigation system 30 generates a travel route of the own vehicle based on these input information.
  • the navigation system 30 outputs the information on the traveling route of the own vehicle to the vehicle control device 100, and presents the information on the traveling route of the own vehicle to the occupants of the own vehicle via the HMI 50. As a result, the occupant is presented with a travel route from the current position to the destination.
  • the navigation system 30 includes a GPS 31, a communication device 32, and a navigation controller 33.
  • GPS31 acquires position information indicating the current position of its own vehicle (Global Positioning System, GPS).
  • GPS Global Positioning System
  • the GPS 31 acquires the position information of its own vehicle by receiving radio waves transmitted from a plurality of satellite communications by a receiver. Further, the GPS 31 can detect a change in the position information of the own vehicle by periodically receiving radio waves transmitted from a plurality of satellite communications.
  • the communication device 32 acquires the surrounding conditions of the own vehicle from the outside.
  • the communication device 32 is, for example, a device capable of communicating with a server or system provided outside the own vehicle.
  • the communication device 32 may communicate with a communication device mounted on another vehicle.
  • the communication device 32 uses an information transmission device (beacon) provided on the road, FM multiplex broadcasting, or the like to provide road traffic information from a vehicle information and communication system (Vehicle Information and Communication System, VICS (registered trademark), the same applies hereinafter).
  • vehicle information and communication system Vehicle Information and Communication System, VICS (registered trademark), the same applies hereinafter.
  • the road traffic information includes, for example, traffic congestion information for each lane, accident information, broken vehicle information, construction information, speed regulation information, lane regulation information, and the like. It should be noted that the road traffic information does not necessarily include each of the above information, and it is sufficient that at least one of the above information is included.
  • the communication device 32 when the communication device 32 has a function capable of communicating with a communication device mounted on another vehicle, the vehicle speed information of the other vehicle and the position information of the other vehicle are acquired. Such communication between the own vehicle and another vehicle is called vehicle-to-vehicle communication.
  • the communication device 32 may acquire information such as the vehicle speed of another vehicle as peripheral information of the own vehicle by inter-vehicle communication.
  • the communication device 32 may acquire information including the position, vehicle speed, and traveling direction of another vehicle from VICS as peripheral information of the own vehicle.
  • the navigation controller 33 is a computer that generates a traveling route from the current position of the own vehicle to the destination.
  • the navigation controller 33 has a ROM (Read Only Memory) that stores a program for generating a travel route, a CPU (Central Processing Unit) that executes a program stored in the ROM, and an accessible storage device. It is composed of a functioning RAM (Random Access Memory).
  • Information on the current position of the own vehicle is input to the navigation controller 33 from GPS 31, road traffic information is input from the communication device 32, map information is input from the map database 40, and information on the destination of the own vehicle is input from the HMI 50. Entered. For example, it is assumed that the occupant of the own vehicle sets the destination of the own vehicle via the HMI 50. Based on the position information of the own vehicle, the destination information of the own vehicle, the map information, and the road traffic information, the navigation controller 33 sets the route from the current position to the destination in lane units. Generated as a traveling route. The navigation controller 33 outputs the generated travel route information to the vehicle control device 100 and presents it to the occupants of the own vehicle via the HMI 50.
  • the traveling route of the own vehicle may be any route as long as the own vehicle can reach the destination from the current position, and other conditions are not limited.
  • the navigation controller 33 may generate a travel route of the own vehicle according to the conditions set by the occupant. For example, when the occupant is set to preferentially use the toll road to arrive at the destination, the navigation controller 33 may generate a travel route using the toll road based on the map information. .. Further, for example, the navigation controller 33 may generate a traveling route of the own vehicle based on the road traffic information. For example, when a traffic jam occurs in the middle of the shortest route to the destination, the navigation controller 33 searches for a detour route, and the travel route is the route having the shortest required time among the plurality of searched detour routes. May be generated as.
  • Map information includes road information and traffic rule information.
  • Road information and traffic rule information are defined by nodes and links (also called road links) connecting the nodes. Links are identified at the lane level.
  • Road information is information about roads on which vehicles can travel.
  • Each road link includes, for example, road type, road width, road shape, road curvature, whether or not to go straight, priority of progress, whether or not to pass (whether or not to enter an adjacent lane), whether or not to change lanes, etc.
  • Information about roads is linked, but the information linked to road links is not limited to these.
  • each road link is associated with, for example, information on the installation position of a traffic light, the position of an intersection, the approach direction of an intersection, the type of an intersection, and other information about the intersection.
  • Traffic rule information is a rule regarding traffic that a vehicle should comply with when driving.
  • Traffic rules include, but are not limited to, for example, pausing on the route, parking / stopping prohibition, slowing down, speed limit, legal speed, and lane change prohibition.
  • Information on traffic rules in the section defined by the road link is associated with each road link. For example, information on lane change prohibition is associated with a road link in a lane change prohibited section.
  • the traffic rule information may be linked not only to a road link but also to, for example, a node or a specific point (latitude, route) on a map.
  • the traffic rule information may include not only information on traffic rules but also information on traffic lights.
  • the road link at the intersection where the traffic light is installed may be associated with the color information currently displayed by the traffic light and / or the information of the cycle in which the display of the traffic light is switched.
  • Information about a traffic light is, for example, acquired from VICS by a communication device 32, or from an information transmitting device (for example, an optical beacon) provided on a road. The information displayed on the traffic light changes over time. Therefore, the traffic rule information is updated at predetermined intervals.
  • the map information stored in the map database 40 may be high-precision map information suitable for automatic driving.
  • the high-precision map information is acquired, for example, by communicating with a server or system provided outside the own vehicle. Further, the high-precision map information is based on the information acquired in real time by using the surrounding environment sensor group 10 (for example, the information of the object detected by the radar 11 and the image of the surroundings of the own vehicle captured by the imaging device 12). It may be generated at any time.
  • the automatic driving means a driving mode other than the driving mode in which the driving subject is composed only of the driver.
  • the driving subject includes a controller (not shown) that supports the driving operation together with the driver, or a controller (not shown) that executes the driving operation on behalf of the driver, the automatic driving is performed.
  • the driving subject includes a controller (not shown) that supports the driving operation together with the driver, or a controller (not shown) that executes the driving operation on behalf of the driver, the automatic driving is performed.
  • the driving subject includes a controller (not shown) that supports the driving operation together with the driver, or a controller (not shown) that executes the driving operation on behalf of the driver
  • the configuration in which the vehicle system 200 includes the map database 40 will be described as an example, but it may be provided outside the vehicle system 200.
  • the map information may be stored in advance in a portable storage device (for example, an external HDD or a flash memory).
  • the storage device functions as the map database 40 by electrically connecting the vehicle control device 100 and the storage device that stores the map information.
  • the HMI 50 is an interface for outputting and inputting information between the occupant of the own vehicle and the vehicle system 200 (Human Machine Interface, HMI).
  • HMI Human Machine Interface
  • Examples of the HMI 50 include, but are not limited to, a display for displaying character or image information and a speaker for outputting sound such as music or voice.
  • the destination information is output from the HMI 50 to the navigation system 30.
  • the navigation system 30 can acquire information on the destination of the own vehicle.
  • the travel route information is output from the navigation system 30 to the HMI 50.
  • the HMI 50 outputs the travel route information from the display and / or the speaker.
  • Information on the travel route to the destination includes, for example, route guidance and the time required to reach the destination, but is not limited thereto.
  • the lane change execution command is output from the HMI 50 to the vehicle control device 100.
  • the vehicle control device 100 can start the control process for changing lanes.
  • the vehicle control device 100 sets a target trajectory for changing lanes
  • the information of the target trajectory is output from the vehicle control device 100 to the HMI 50.
  • the HMI 50 outputs the information of the target locus from the display and / or the speaker.
  • the occupants of the own vehicle are presented with information on the target trajectory for changing lanes.
  • Information on the target trajectory for changing lanes includes, for example, an approach position specified on an adjacent lane and a target trajectory for changing lanes, but is not limited thereto. The target trajectory and approach position will be described later.
  • the actuator control device 60 controls the running of the own vehicle.
  • the actuator control device 60 includes a steering control mechanism, an accelerator control mechanism, a brake control mechanism, an engine control mechanism, and the like.
  • a control signal is input to the actuator control device 60 from the vehicle control device 100, which will be described later.
  • the actuator control device 60 realizes automatic driving of the own vehicle by controlling the vehicle control actuator group 70 in response to a control signal from the vehicle control device 100. For example, when a control signal for moving the own vehicle from the own lane to an adjacent lane is input to the actuator control device 60, the actuator control device 60 responds to the control signal with a steering angle required for the movement of the own vehicle. Calculate the accelerator depression amount or brake depression amount according to the moving speed.
  • the actuator control device 60 outputs various calculated parameters to the vehicle control actuator group 70.
  • control of each mechanism may be performed completely automatically, or may be performed in a manner of supporting the driving operation of the driver.
  • the control of each mechanism can be interrupted or stopped by the intervention operation of the driver.
  • the traveling control method by the actuator control device 60 is not limited to the above control method, and other well-known methods can also be used.
  • the vehicle control actuator group 70 is various actuators for driving the own vehicle. As shown in FIG. 1, examples of the vehicle control actuator group 70 include, but are not limited to, a steering actuator 71, an accelerator opening actuator 72, and a brake control actuator 73.
  • the steering actuator 71 controls the steering direction and steering amount of the steering of the own vehicle according to the signal input from the actuator control device 60.
  • the accelerator opening actuator 72 controls the accelerator opening of the own vehicle in response to a signal input from the actuator control device 60.
  • the brake control actuator 73 controls the braking operation of the brake device of the own vehicle in response to the signal input from the actuator control device 60.
  • the winker 80 has a blinking lamp inside, and when the driver of the own vehicle operates a direction indicator switch (not shown), it blinks in orange.
  • the blinker 80 is a device for indicating the direction to the surroundings when the own vehicle turns left or right or changes lanes.
  • the blinkers 80 are integrally provided on the left and right sides of the front end and the rear end of the own vehicle, for example.
  • a control signal is input to the blinker 80 from the vehicle control device 100.
  • the control signal is a signal for operating the blinker, and includes a signal for blinking the blinking blinker 80 (also referred to as a blinking signal) and a signal for extinguishing the blinking blinker 80 (also referred to as an extinguishing signal). ..
  • a blinking signal for blinking the left blinker is input to the blinker 80
  • the blinker 80 turns on the left blinker.
  • a turn-off signal for turning off the left turn signal is input to the winker 80
  • the winker 80 turns off the left turn signal.
  • the blinker 80 is controlled by the vehicle control device 100 in addition to the driver of the own vehicle.
  • the vehicle control device 100 of the present embodiment is composed of a computer provided with hardware and software, and has a ROM (Read Only Memory) for storing a program and a CPU (Central Processing Unit) for executing the program stored in the ROM. It is composed of a RAM (Random Access Memory) that functions as an accessible storage device.
  • MPU Micro Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Program
  • the control device 101 shown in FIG. 1 corresponds to a CPU (processor).
  • the storage device 110 shown in FIG. 1 corresponds to a ROM and a RAM.
  • the configuration in which the program executed by the control device 101 is stored in the storage device 110 in advance will be described as an example, but the place where the program is stored is not limited to the storage device 110.
  • the program may be stored on a computer-readable and portable computer-readable recording medium (eg, disk media, flash memory, etc.).
  • the control device 101 executes the program downloaded from the computer-readable recording medium.
  • the vehicle control device 100 may be configured to include only an operating circuit and download a program from the outside.
  • the control device 101 includes an information acquisition unit 102, a lane change location identification unit 103, a lane change preparation unit 104, and a lane change control unit 105 as functional blocks. These blocks realize each function described later by the software established in the ROM.
  • the functions of the control device 101 are divided into four functional blocks, and then the functions of the respective functional blocks are described.
  • the functions of the control device 10 need to be divided into four blocks. Instead, it may be divided into three or less functional blocks or five or more functional blocks.
  • the function of the control device 10 is not limited to the function of the functional block described below, and also has, for example, a control function of the navigation system.
  • the function of the information acquisition unit 102 will be described.
  • the information acquisition unit 102 acquires various information from each of the surrounding environment sensor group 10, the vehicle sensor group 20, the navigation system 30, the map database 40, and the HMI 50.
  • the information acquisition unit 102 acquires peripheral information of the own vehicle (also referred to as external information of the own vehicle) detected by the surrounding environment sensor group 10.
  • the peripheral information of the own vehicle includes the detection result detected by the radar 11 and the captured image captured by the imaging device 12.
  • the information acquisition unit 102 acquires information indicating the state of the own vehicle (also referred to as internal information of the own vehicle) detected by the vehicle sensor group 20.
  • the internal information of the own vehicle includes the vehicle speed, acceleration, angular velocity, the amount of depression of the accelerator pedal, and the amount of depression of the brake pedal of the own vehicle.
  • the information acquisition unit 102 acquires the current position of the own vehicle, the traveling route of the own vehicle, and the road traffic information from the navigation system 30.
  • the information acquisition unit 102 acquires map information (including road information and traffic rule information) from the map database 40.
  • the lane change location identification unit 103 acquires the current position of the own vehicle and the travel route of the own vehicle from the navigation system 30, and identifies the lane change location based on the current position and the travel route of the own vehicle.
  • the lane change location indicates a location where it is necessary to move the vehicle from the own lane to the adjacent lane when traveling on the traveling route.
  • the lane change location specifying unit 103 refers to the travel route of the own vehicle and identifies a location where the lane is changed in the travel route.
  • the lane change location identification unit 103 specifies a point at which the traveling direction is switched, such as an intersection, or a point at which the course is changed in a direction different from the traveling direction of the vehicle, such as an interchange, as a target point from the traveling route of the own vehicle.
  • the lane change location specifying unit 103 identifies a location where the vehicle needs to move from the own lane to an adjacent lane in order to change the traveling direction of the own vehicle at the target point as a lane change location.
  • the lane change location specifying unit 103 specifies an intersection that requires a right turn as a target point.
  • the lane change location specifying unit 103 specifies a predetermined distance from an intersection (target point) to be turned right and a position in front of the intersection (target point) on the traveling route as a lane change location.
  • the lane change location is set, for example, on the traveling route at a location several hundred meters before the target point.
  • the lane change location does not necessarily have to be set by a point, and may be set in a predetermined section.
  • the lane change location includes a predetermined section in front of the branch point provided on the expressway and a predetermined section in front of the destination of the own vehicle.
  • the branch points provided on the expressway include branch points to various directions and branch points between the main line and the exit.
  • the length of the section is not particularly limited.
  • the own vehicle when the lane change location is specified by the lane change location identification unit 103 and the own vehicle reaches the lane change location, or when the lane change execution command is input by the occupant, the own vehicle automatically operates.
  • the lane change process for changing lanes is executed by the function described below.
  • the lane change preparation unit 104 executes preparation control for changing the lane of the own vehicle when the current position of the own vehicle reaches the lane change location.
  • Preparation control includes vehicle control for specifying the approach position and expressing intention.
  • the manifestation of intention is to indicate the intention to change lanes to other vehicles traveling behind the own vehicle.
  • the lane change preparation unit 104 is located on an adjacent lane adjacent to the own lane in which the own vehicle is traveling, and specifies an approach position indicating the position of the approach destination of the own vehicle, based on the peripheral information of the own vehicle.
  • the lane change preparation unit 104 has a predetermined distance or more in the adjacent lane along the traveling direction of the vehicle based on the result detected by the radar 11 and the captured image captured by the imaging device 12. Specify the location as the approach position.
  • the approach position is represented by a position relative to the current position of the own vehicle, and may be appropriately changed according to the surrounding state of the own vehicle.
  • the lane change preparation unit 104 specifies the approach position, among the other vehicles located before and after the approach position, the other vehicle in front is specified as the front vehicle, and the other vehicle in the rear is specified as the rear vehicle. In other words, the lane change preparation unit 104 selects the front vehicle located in front of the approach position and the rear vehicle located behind the approach position among the plurality of other vehicles located in the adjacent lanes. Identify. In addition, the lane change preparation unit 104 identifies other vehicles located in front of and behind the own vehicle. For example, the lane change preparation unit 104 is based on the detection result detected by the radar 11 and the image captured by the imaging device 12, among a plurality of other vehicles located in front of the lane adjacent to the approach position.
  • the other vehicle located closest to the vehicle is identified as the vehicle in front. Further, the lane change preparation unit 104 identifies the other vehicle located closest to the approach position as the rear vehicle among the plurality of other vehicles located behind the adjacent lane with respect to the approach position. If no other vehicle is traveling in front of the approach position, the lane change preparation unit 104 may specify only the rear vehicle.
  • the lane change preparation unit 104 controls the vehicle to indicate the intention to change lanes according to the traveling state of the vehicle behind in order to convey the intention of changing lanes to the rear vehicle traveling on the adjacent lane (hereinafter referred to as , Also called manifestation control). Further, the lane change preparation unit 104 determines the timing of executing the manifestation of intention control according to the state change of the vehicle speed of the other vehicle.
  • the vehicle change preparation unit 104 detects the vehicle speed of the vehicle behind on the adjacent lane based on the peripheral information of the own vehicle.
  • the vehicle change preparation unit 104 determines whether the vehicle speed of the specified rear vehicle is higher than the vehicle speed of the own vehicle (hereinafter, also referred to as the first state).
  • the vehicle speed of the specified rear vehicle is higher than the vehicle speed of the own vehicle (hereinafter, also referred to as the first state).
  • the driver of the rear vehicle reacts to the movement of the target vehicle located in front. Therefore, it may be misleading if the target vehicle changes lanes immediately.
  • it is specified from the vehicle speed of the vehicle behind that the situation is likely to cause a misunderstanding.
  • the vehicle change preparation unit 104 determines whether the vehicle speed of the rear vehicle is equal to or lower than the vehicle speed of the own vehicle (hereinafter, also referred to as the second state). judge. That is, the vehicle change preparation unit 104 determines whether or not the first state has changed to the second state.
  • the vehicle speed of the rear vehicle becomes lower than the vehicle speed of the own vehicle from a state higher than the vehicle speed of the own vehicle, the driver of the rear vehicle even if the own vehicle steers to move from the own lane to the adjacent lane. Is unlikely to be misleading that the target vehicle will change lanes immediately. Therefore, in the present embodiment, in order to perform steering control for changing lanes, the running state of another vehicle is detected by determining whether or not the state of the rear vehicle has changed from the first state to the second state. are doing.
  • the vehicle change preparation unit 104 When it is determined that the state of the rear vehicle has changed from the first state to the second state, the vehicle change preparation unit 104 performs steering control for changing lanes and / or starts operation of the blinker 80.
  • Steering control for changing lanes is to control the steering actuator to bring the position of the own vehicle in the vehicle width direction closer to the adjacent lane side than the current position.
  • the manifestation of intention control is executed after the vehicle speed of the rear vehicle becomes equal to or lower than the vehicle speed of the own vehicle.
  • the lane change control unit 105 executes lane change control when there is sufficient space before and after the approach position to properly change lanes.
  • the lane change control unit 105 executes the following control as lane change control.
  • the lane change control unit 105 operates the blinker 80 and starts blinking of the blinker 80.
  • the lane change control unit 105 generates a target trajectory for the own vehicle to change lanes, starting from the current position of the own vehicle and ending at the approach position within the range behind the lane change.
  • the lane change control unit 105 sets the vehicle speed and steering angle when the own vehicle travels along the target trajectory.
  • the travel control unit 108 outputs a control signal according to the set vehicle speed and steering angle to the actuator control device 60.
  • the lane change control unit 105 ends the blinking of the blinker 80 and ends the lane change control.
  • the manifestation of intention control includes the operation control of the blinker 80, the control for blinking the blinker 80 is omitted from the lane change control.
  • FIG. 2 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment.
  • FIG. 3 shows an example of a traveling scene of the own vehicle, which changes in the order of (a) to (b). Note that FIG. 3 shows the relative positional relationship of each running vehicle.
  • the other vehicle Y is located in front of the own vehicle X on the own lane, and the own vehicle X and the other vehicle Y are traveling at the same speed (steady state). Then, the rear vehicle A is located behind the own vehicle X on the adjacent lane, and is approaching the own vehicle A from the rear.
  • the following control flow is executed in the driving scene shown in FIG. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver.
  • step S1 the control device 101 acquires external information (peripheral information) of the own vehicle from the surrounding environment sensor group 10.
  • the control device 101 acquires internal information of the own vehicle.
  • the control device 101 acquires the external information and the internal information of the own vehicle at a predetermined cycle while executing the control process after step S2.
  • the traveling state is represented by the position of the vehicle, the vehicle speed of the vehicle, and the like.
  • step S2 the control device 101 identifies the lane change location based on the traveling route of the own vehicle.
  • the control device 101 identifies the lane change location (point S) based on the traveling route of the own vehicle.
  • step S3 the control device 101 compares the current position of the own vehicle with the lane change location, and determines whether or not the own vehicle has reached the lane change location. If the current position of the own vehicle has not reached the lane change location, the control device 101 repeatedly executes the control process of step S3. When the current position of the own vehicle reaches the lane change location, the control device 101 executes the control process after step S4.
  • step S4 the control device 101 identifies the approach position of the own vehicle on the adjacent lane from the peripheral information of the own vehicle. Further, the control device 101 identifies another vehicle located behind the approach position as a rear vehicle. The control device 101 detects the vehicle speed of the specified rear vehicle based on the peripheral information acquired periodically. In the example of FIG. 3, the control device 101 identifies the approach position (point P) and the rear vehicle A, and calculates the vehicle speed ( VA ) of the rear vehicle A.
  • step S5 the control device 101 determines whether or not the vehicle speed ( VA ) of the rear vehicle A is higher than the vehicle speed (V x ) of the own vehicle. That is, the control device 101 determines whether or not the state of the rear vehicle A is the first state.
  • the control device 101 executes the control process of step S12.
  • step S6 the control device 101 determines whether or not the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle. That is, the control device 101 determines whether or not the state of the rear vehicle A is the second state.
  • the control device 101 determines whether or not the first predetermined time has elapsed.
  • the first predetermined time is a preset time
  • the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle from a speed higher than the vehicle speed (V x ) of the own vehicle. It shows the maximum time that can be waited until the speed changes.
  • the control device 101 may lengthen the first predetermined time as the distance between the own vehicle X and the rear vehicle A becomes longer.
  • control device 101 executes the control in step S5.
  • the control device 101 ends the control flow shown in FIG.
  • step S8 When the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle, the control device 101 executes the control flow of step S8. That is, the control device 101 determines whether or not the traveling state of the own vehicle X and the rear vehicle A changes from the first state to the second state by executing the control flow of step S5 and step S6. In other words, the control device 101 determines whether or not the rear vehicle A is approaching the own vehicle X based on the relative positional relationship between the rear vehicle A and the own vehicle X. Then, when it is determined that the state has changed from the first state to the second state, the control device 101 executes the control flow from step S8 onward.
  • step S8 the control device 101 executes manifestation of intention control in order to indicate to the rear vehicle A the intention to change the lane of the own vehicle A.
  • the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle, so that the position of the own vehicle X is moved closer to the adjacent lane side.
  • the manifestation of intention control is being executed.
  • step S9 the control device 101 determines whether or not the rear vehicle A has accelerated. If it is determined that the rear vehicle A has accelerated, the control device 101 stops the manifestation of intention control in step S10. That is, when the vehicle A accelerates after executing the manifestation of intention control, the driver of the rear vehicle may react to the movement of the vehicle by the manifestation of intention control and / or the blinking of the blinker by the manifestation of intention control. .. Therefore, in the present embodiment, when the vehicle A accelerates after executing the manifestation of intention control, the manifestation of intention control is stopped. Then, the control device 101 ends the control flow shown in FIG.
  • step S11 the control device 101 determines whether or not the second predetermined time has elapsed.
  • the second predetermined time is a preset time and indicates a time for continuing the manifestation of intention control. If the second predetermined time has not elapsed, the control device 101 executes the control in step S8. When the second predetermined time has elapsed, in step S12, the control device 101 executes lane change control by the lane change control unit 105.
  • the own vehicle executes manifestation of intention control, which is vehicle control for indicating the intention of changing lanes to the rear vehicle. ..
  • intention control is vehicle control for indicating the intention of changing lanes to the rear vehicle.
  • the manifestation of intention control is a control for bringing the position of the own vehicle in the vehicle width direction closer to the adjacent lane side than the current position, and / or a control for operating the blinker of the own vehicle.
  • the manifestation of intention control is stopped.
  • the target vehicle immediately changes lanes in response to the movement of the vehicle by the manifestation of intention control and / or the blinking of the blinker by the manifestation of intention control.
  • the control device 101 determines whether or not the state of the rear vehicle A is the second state, but the vehicle speed of the rear vehicle is equal to or less than the vehicle speed of the own vehicle after a predetermined time.
  • the control device 101 may determine whether or not it is the second state after setting the state to be the second state. Specifically, the control device 101 detects the vehicle speed of the rear vehicle A in time series from the peripheral information of the own vehicle, and calculates the deceleration of the rear vehicle A from the specified time series vehicle speed change amount. Then, it is determined whether or not the calculated deceleration is higher than the predetermined deceleration threshold.
  • the vehicle speed of the rear vehicle A When the vehicle speed of the rear vehicle A is higher than the vehicle speed of the own vehicle X and the deceleration of the rear vehicle A is higher than the deceleration threshold value, the vehicle speed of the rear vehicle becomes lower than the vehicle speed of the own vehicle after a predetermined time. Since it can be predicted, the control device 101 determines that the condition of the second state is satisfied.
  • the own vehicle executes manifestation of intention control on the rear vehicle.
  • vehicle control that indicates the intention to change lanes to other vehicles from being executed regardless of the traveling state of the other vehicle.
  • the state of the rear vehicle being in the second state is not limited to the case where the brake is operated in the rear vehicle, but also includes the case where the vehicle speed is adjusted by the accelerator off in the rear vehicle. That is, when the rear vehicle shifts to the deceleration operation when the accelerator is off, the vehicle speed of the rear vehicle decreases, so that the rear vehicle can be in the second state after the first state. Then, in the present embodiment, when it is determined that the state of the rear vehicle has changed from the first state to the second state, the control device 101 executes intention display control for the rear vehicle and lanes. Execute change control. As a result, even if the lane change of the own vehicle is started, the driver of the rear vehicle does not have to change the pedal from the accelerator pedal to the brake pedal, so that unnecessary pedal operation can be avoided.
  • the accelerator when the rear vehicle A is sufficiently separated from the own vehicle X (for example, even if the driver of the rear vehicle A reacts to the lane change of the own vehicle, the accelerator is used. If the vehicle can be sufficiently decelerated only by turning it off), the lane change control may be performed without executing the manifestation of intention control.
  • Second Embodiment The vehicle system 200 according to another embodiment of the present invention will be described.
  • the control of a part of the control device 101 is different from that of the first embodiment.
  • the configuration of the vehicle system 200 is the same as that of the first embodiment, and the description thereof is incorporated.
  • different parts of the function and control process of the control device 101 will be mainly described, but the function and control process of the control device 101 described in the first embodiment may be appropriately incorporated.
  • FIG. 4 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment.
  • FIG. 5 shows an example of a traveling scene of the own vehicle, which changes in the order of (a) to (b). Note that FIG. 5 shows the relative positional relationship of each running vehicle.
  • the other vehicle Y is located in front of the own vehicle X on the own lane
  • the other vehicle B front vehicle B
  • the other vehicle Y and the vehicle B in front are traveling at the same speed (steady traveling state).
  • the rear vehicle A is located behind the own vehicle X on the adjacent lane and is approaching the own vehicle X from the rear.
  • the following control flow is executed in the driving scene shown in FIG. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver.
  • step S24 the control device 101 identifies the vehicle in front B in addition to the other vehicles A and Y traveling around the own vehicle X. Further, the control device 101 detects the vehicle speed of the vehicle B in front based on the peripheral information of the own vehicle.
  • step S25 the control device 101 sets the vehicle speed of the own vehicle so as to correspond to the vehicle speed of the other vehicle Y located in front of the own vehicle X on the same lane as the own vehicle X and the vehicle speed of the own vehicle X.
  • Control Specifically, the control device 101 adjusts the vehicle speed of the own vehicle X so that the vehicle speed X of the own vehicle becomes the same as the vehicle speed of the other vehicle Y.
  • the control device 101 In order to make the vehicle speed of the own vehicle X correspond to the vehicle speed of the other vehicle Y, it is not always necessary to match the vehicle speeds, and the control device 101 so that the vehicle speed difference between the own vehicle X and the other vehicle Y is equal to or less than a predetermined value.
  • the vehicle speed of the own vehicle X may correspond to the vehicle speed of the other vehicle Y.
  • the control flow of steps S26 to S33 is the same as the control flow of steps S5 to S12. That is, when the front vehicle B and the other vehicle Y are performing steady running at a position in front of the own vehicle X, the own vehicle X is kept running at a predetermined distance from the other vehicle Y. The vehicle speed of the own vehicle X is controlled to a corresponding vehicle speed corresponding to the vehicle speed of another vehicle. Then, after the front vehicle B, the own vehicle X, and the other vehicle Y are in the steady running state, the control process after step S26 is executed. Then, as shown in FIG.
  • the control device 101 changes the position of the own vehicle X to the adjacent lane.
  • the manifestation of intention control is executed by bringing it closer to the side.
  • the front vehicle located in front of the approach position is specified on the adjacent lane, and the vehicle speed of the own vehicle is determined in a state where the own vehicle is located behind the front vehicle on the own lane.
  • the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle.
  • step S30 it is determined whether or not the rear vehicle A has accelerated, but it may be determined whether or not the front vehicle B has accelerated instead of the rear vehicle A. Then, when the vehicle B ahead accelerates, the control device 101 stops the manifestation of intention control in step S21. That is, when the front vehicle B accelerates after executing the manifestation of intention control, the rear vehicle A may accelerate so as to follow the acceleration of the front vehicle B. Then, the driver of the rear vehicle A may react to the movement of the vehicle by the manifestation of intention control and / or the blinking of the blinker by the manifestation of intention control. Therefore, in the present embodiment, when the vehicle B ahead accelerates after executing the manifestation of intention control, the manifestation of intention control is stopped. Then, the control device 101 ends the control flow shown in FIG.
  • the manifestation of intention control is stopped.
  • the target vehicle immediately changes lanes in response to the movement of the vehicle by the manifestation of intention control and / or the blinking of the blinker by the manifestation of intention control.
  • a step may be added in which the control device 101 determines whether or not the inter-vehicle distance between the rear vehicle A and the front vehicle B is widened. .. Then, when the inter-vehicle distance between the rear vehicle A and the front vehicle B is widened, the control device 101 executes lane change control. When the inter-vehicle distance between the rear vehicle A and the front vehicle B is not widened, the control device 101 executes the control flow in step S29. As a result, it is possible to prevent vehicle control that indicates the intention to change lanes to other vehicles from being executed regardless of the traveling state of the other vehicle.
  • the vehicle system 200 according to another embodiment of the present invention will be described.
  • the control of a part of the control device 101 is different from that of the second embodiment.
  • the configuration of the vehicle system 200 is the same as that of the first and second embodiments, and the description thereof is incorporated. Further, in the following description, different parts of the functions and control processes of the control device 101 will be mainly described, but the functions and control processes of the control device 101 described in the first or second embodiment will be appropriately incorporated. May be good.
  • FIG. 6 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment.
  • FIG. 7 shows an example of the traveling scene of the own vehicle, which changes in the order of (a) to (b). Note that FIG. 7 shows the relative positional relationship of each running vehicle.
  • the other vehicle Y is stopped in front of the own vehicle X on the own lane, and the other vehicle B (front vehicle B) is stopped in front of the own vehicle X on the adjacent lane. ing. Then, the rear vehicle A is located behind the own vehicle X on the adjacent lane, and is approaching the own vehicle A from the rear.
  • the following control flow is executed in the driving scene shown in FIG. 7. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver. In the following description of the control flow, the control flow will be described in comparison with the control flow according to the second embodiment.
  • control flow of steps S41 to S44 is the same as the control flow of steps S21 to S24 according to the second embodiment.
  • step S45 the control device 101 leaves a predetermined distance from the other vehicle Y on the same lane as the own vehicle X, and stops in the vicinity of the approach position P.
  • step S46 the control device 101 determines whether or not the vehicle speed ( VA ) of the rear vehicle A is higher than the vehicle speed (V x ) of the own vehicle. That is, the control device 101 determines whether or not the state of the rear vehicle A is the first state.
  • the control device 101 executes the control process of step S53.
  • step S47 the control device 101 determines whether or not the vehicle speed ( VA ) of the rear vehicle A is zero (whether or not the rear vehicle A is stopped). That is, in the present embodiment, the state in which the rear vehicle A is stopped behind the own vehicle X is determined as the second state.
  • the control flow of steps S48 to S53 is the same as the control flow of steps S28 to S33 according to the second embodiment.
  • the control device 101 sets the own vehicle X when the rear vehicle A is stopped behind the own vehicle on the adjacent lane.
  • the manifestation of intention control is executed by moving the position of the vehicle closer to the adjacent lane.
  • the state in which the rear vehicle is stopped behind the own vehicle is determined as the second state. Therefore, in the present embodiment, it is possible to prevent the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle.
  • the control device 101 determines whether or not the rear vehicle A is stopped, but may determine whether or not the rear vehicle A is in a slow-moving state. ..
  • the vehicle behind is slowing down, the original vehicle speed is low even if the vehicle steers to move from the vehicle lane to the adjacent lane. Therefore, in the present embodiment, when the own vehicle is stopped, the state in which the rear vehicle is slowing behind the own vehicle is determined as the second state. Thereby, in the present embodiment, it is possible to prevent the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle.
  • the slow-moving state is a state in which the rear vehicle A can be stopped immediately, for example, a state in which the vehicle is traveling at a speed of several km / h or less. If the definition of slow-moving is defined by the laws or regulations of each country, the state defined by the law or regulations may be defined as the slow-moving state.
  • the vehicle system 200 according to another embodiment of the present invention will be described.
  • the control of a part of the control device 101 is different from that of the first embodiment.
  • the configuration of the vehicle system 200 is the same as that of the first embodiment, and the description thereof is incorporated.
  • different parts of the functions and control processes of the control device 101 will be mainly described, but the functions and control processes of the control device 101 described in the first to third embodiments will be appropriately incorporated. May be good.
  • FIG. 8 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment.
  • FIG. 9 shows an example of the traveling scene of the own vehicle, which changes in the order of (a) to (b).
  • V H and VL each indicate legal speeds determined for each road, and the legal speed ( VL ) is lower than the legal speed (V H ).
  • FIG. 9 shows the relative positional relationship of each running vehicle.
  • the own vehicle X is traveling on the road at the legal speed ( VL ), and the rear vehicle A is traveling on the road at the legal speed (V H ).
  • the vehicle speed of the own vehicle changes from speed (V H ) to speed ( VL ) according to the legal speed.
  • the inter-vehicle distance between the own vehicle X and the rear vehicle A becomes narrower due to the change in the speed of the own vehicle.
  • the following control flow is executed in the driving scene shown in FIG.
  • Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver. In the following description of the control flow, the control flow will be described in comparison with the control flow according to the second embodiment.
  • step S65 the control device 101 controls the vehicle speed (V X ) of the own vehicle so as to match the legal speed ( VL ) in accordance with the decrease in the legal speed.
  • the vehicle speed (V X ) of the own vehicle X does not necessarily have to match the legal speed ( VL ), and the control device 101 sets the vehicle speed (V X ) of the own vehicle X to the legal speed ( VL ) or less.
  • the vehicle speed of the own vehicle X may be adjusted so as to be.
  • step S66 The control flow in step S66 is the same as the control flow in step S26.
  • step S67 the control device 101 determines whether or not the vehicle speed ( VA ) of the vehicle behind is equal to or less than the legal speed ( VL ). That is, the control device 101 determines that the state in which the rear vehicle A becomes the legal speed ( VL ) or less behind the own vehicle X as the second state.
  • the rear vehicle A of the control device 101 is the own vehicle X.
  • a state in which the speed becomes lower than the adjusted speed of the own vehicle in the rear may be determined as the second state.
  • the control flow of steps S68 to S73 is the same as the control flow of steps S28 to S33 according to the second embodiment.
  • the vehicle speed of the own vehicle X decreases from the legal speed (V H ) to a speed equal to or lower than the legal speed ( VL ), and the rear vehicle A is behind the own vehicle X on the adjacent lane.
  • the control device 101 controls the intention display by moving the position of the own vehicle X closer to the adjacent lane side. Is running.
  • the vehicle speed of the own vehicle is set.
  • the second state is a state in which the vehicle is controlled below the second legal speed ( VL ), the rear vehicle is located behind the own vehicle in the adjacent lane, and the vehicle speed of the rear vehicle is below the second legal speed ( VL ). judge.
  • the vehicle system 200 according to another embodiment of the present invention will be described.
  • the control of a part of the control device 101 is different from that of the first embodiment.
  • the configuration of the vehicle system 200 is the same as that of the first embodiment, and the description thereof is incorporated.
  • different parts of the functions and control processes of the control device 101 will be mainly described, but the functions and control processes of the control device 101 described in the first to fourth embodiments will be appropriately incorporated. May be good.
  • FIG. 10 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment.
  • FIG. 11 shows an example of a traveling scene of the own vehicle, which changes in the order of (a) to (b).
  • V H denotes the legal speed that is determined for the road
  • V S represents the upper limit speed determined in accordance with the curvature of the curve.
  • Upper limit speed (V S) the vehicle is an upper bound of the vehicle speed suitable for the running of the curve, the upper limit speed the greater the curvature is low.
  • FIG. 11 shows the relative positional relationship of each running vehicle.
  • the vehicle X is enters the straight road to the curvature of the road, running at the vehicle speed (V S).
  • the rear vehicle A is in a state before entering the curved road and is traveling on the road at the legal speed ( VH ).
  • Speed of the vehicle X is in accordance with the change in the road shape of the traveling changes from the speed (V H) to the speed (V S). Then, the inter-vehicle distance between the own vehicle X and the rear vehicle A becomes narrower due to the change in the speed of the own vehicle.
  • the following control flow is executed in the driving scene shown in FIG. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver. In the following description of the control flow, the control flow will be described in comparison with the control flow according to the second embodiment.
  • step S85 the control device 101, in order to travel the curve, controls the vehicle speed (V X) of the vehicle to match the upper limit speed (V S).
  • V S the vehicle speed of the X speed
  • the control unit 101 a vehicle speed (V X) of the vehicle X below the upper limit speed (V S)
  • the vehicle speed of the own vehicle X may be adjusted so as to be.
  • step S86 The control flow in step S86 is the same as the control flow in step S26.
  • step S87 the control unit 101, the rear vehicle speed (V A) is equal to or upper limit speed (V S) or less. That is, the control unit 101, a state in which the rear vehicle A is equal to or less than the upper limit speed (V S) at the rear of the vehicle X, it is determined as a second state.
  • the control flow of the step S85 the when the vehicle X of the vehicle speed (V X) to adjust the upper limit speed (V S) or less, at step S87, the control unit 101 behind the vehicle A is the vehicle X A state in which the speed is lower than the adjusted speed of the own vehicle in the rear may be determined as the second state.
  • the control flow of steps S88 to S93 is the same as the control flow of steps S28 to S33 according to the second embodiment.
  • the vehicle speed is legal speed of the vehicle X (V H), and lowered to the upper limit speed (V S) following speed
  • rear vehicle A is behind the vehicle X in an adjacent lane when located in the vehicle speed of the following vehicle a is when it is the upper limit speed (V S) the following speed control device 101, gesture control in bringing the position of the vehicle X in the adjacent lane side Is running.
  • the speed of the vehicle is controlled to or below a predetermined speed determined in accordance with the curvature of the host vehicle lane (corresponding to the upper limit speed V s), the rear vehicle is positioned behind the vehicle, the rear vehicle The state in which the vehicle speed is equal to or lower than the predetermined speed is determined as the second state.
  • the vehicle control device according to the present invention will be described by taking the vehicle control device 100 as an example, but the present invention is not limited thereto.
  • the first lane according to the present invention will be described by taking the own lane as an example, but the present invention is not limited thereto.
  • the second lane according to the present invention will be described by taking an adjacent lane as an example, but the present invention is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

This vehicle control method is to be executed by a processor (101), which enables a vehicle to make a lane change. This vehicle control method includes: acquiring surrounding information of a host vehicle; specifying, on the basis of the surrounding information of the host vehicle, an intrusion position that is located on a second lane adjacent to a first lane on which the host vehicle is traveling and that indicates the position of an intrusion destination of the host vehicle; specifying, on the second lane, a rearward vehicle located rearward of the intrusion position; detecting the vehicle speed of the rearward vehicle; determining whether or not the state of the rearward vehicle changes from a first state in which the vehicle speed of the rearward vehicle is greater than the vehicle speed of the host vehicle to a second state in which the vehicle speed of the rearward vehicle is not greater than the vehicle speed of the host vehicle or in which the vehicle speed of the rearward vehicle becomes not greater than the vehicle speed of the host vehicle after a predetermined time period; and, in a case where it is determined that the state of the rearward vehicle has changed from the first state to the second state, executing vehicle control for the host vehicle to indicate intention to make a lane change, to the rearward vehicle.

Description

車両制御方法及び車両制御装置Vehicle control method and vehicle control device
 本発明は、車両制御方法及び車両制御装置に関するものである。 The present invention relates to a vehicle control method and a vehicle control device.
 自車両を走行車線から隣接車線へ車線変更させる車線変更制御を実行する車両制御システムが知られている(特許文献1)。この車両制御システムは、自車両の車速を取得する車速取得部と、車線変更制御による車線変更に要する時間である車線変更時間を車速に応じて設定する車線変更時間設定部と、車線変更時間に基づいて車線変更制御を実行する車線変更制御部とを備え、第2の所定値を第1の所定値より大きい値とし、車線変更時間設定部は、車速が第1の所定値より小さい場合に、車速が小さいほど車線変更時間を長く設定し、車速が第2の所定値より大きい場合に、車速が大きいほど車線変更時間を長く設定する。 A vehicle control system that executes lane change control for changing a lane from a traveling lane to an adjacent lane is known (Patent Document 1). This vehicle control system has a vehicle speed acquisition unit that acquires the vehicle speed of the own vehicle, a lane change time setting unit that sets the lane change time, which is the time required for lane change by lane change control, according to the vehicle speed, and a lane change time. A lane change control unit that executes lane change control based on the vehicle is provided, the second predetermined value is set to a value larger than the first predetermined value, and the lane change time setting unit sets the lane change time setting unit when the vehicle speed is smaller than the first predetermined value. The smaller the vehicle speed, the longer the lane change time is set, and when the vehicle speed is greater than the second predetermined value, the higher the vehicle speed, the longer the lane change time is set.
特開2017−140857号公報JP-A-2017-140857
 しかしながら、従来技術では、他車両が高い速度を維持して自車両の車線変更先に近づいている状態で、自車両の車速に応じて車線変更時間を変更し、車線変更のための操舵制御を実行した場合に、他車両に対して車線変更の意思が表示されてしまう。すなわち、従来技術では、自車両の操舵等による、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されてしまうという問題がある。 However, in the prior art, the lane change time is changed according to the vehicle speed of the own vehicle while the other vehicle is approaching the lane change destination of the own vehicle while maintaining a high speed, and steering control for changing the lane is performed. When executed, the intention to change lanes is displayed to other vehicles. That is, in the prior art, there is a problem that vehicle control for displaying the intention to change lanes to another vehicle, such as steering of the own vehicle, is executed regardless of the running state of the other vehicle.
 本発明が解決しようとする課題は、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されてしまうこと防止する車線制御方法及び車線制御装置を提供する。 The problem to be solved by the present invention is a lane control method and a lane control device for preventing vehicle control for displaying an intention to change lanes to another vehicle from being executed regardless of the traveling state of the other vehicle. I will provide a.
 本発明は、自車両の周辺情報を取得し、自車両の周辺情報に基づいて、自車両が走行する第1車線に対して隣接する第2車線上に位置し、自車両の進入先の位置を示す進入位置を特定し、第2車線上で進入位置の後方に位置する後方車両と後方車両の車速を検出し、後方車両の車速が自車両の車速より高い第1状態から、後方車両の車速が自車両の車速以下である、又は、後方車両の車速が所定時間後に自車両の車速以下になる第2状態に変わるか否かを判定し、後方車両の状態が第1状態から第2状態に変わったと判定された場合には、自車両が後方車両に対して、車線変更の意思表示を示すための車両制御を実行することにより、上記課題を解決する。 The present invention acquires peripheral information of the own vehicle, and is located on the second lane adjacent to the first lane in which the own vehicle travels based on the peripheral information of the own vehicle, and is located on the second lane adjacent to the first lane in which the own vehicle travels. The approach position is specified, the vehicle speeds of the rear vehicle and the rear vehicle located behind the approach position on the second lane are detected, and the vehicle speed of the rear vehicle is higher than the vehicle speed of the own vehicle from the first state. It is determined whether the vehicle speed is equal to or less than the vehicle speed of the own vehicle, or whether the vehicle speed of the rear vehicle changes to the second state in which the vehicle speed becomes lower than the vehicle speed of the own vehicle after a predetermined time, and the state of the rear vehicle changes from the first state to the second state. When it is determined that the state has changed, the above-mentioned problem is solved by the own vehicle executing vehicle control for indicating the intention to change lanes to the rear vehicle.
 本発明によれば、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されてしまうこと防止する。 According to the present invention, it is possible to prevent vehicle control that indicates the intention to change lanes to another vehicle from being executed regardless of the running state of the other vehicle.
図1は、本実施形態に係る車両制御装置を含む車両システムの一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a vehicle system including a vehicle control device according to the present embodiment. 図2は、本実施形態に係る車両制御装置が実行する車線変更処理のフローチャートである。FIG. 2 is a flowchart of a lane change process executed by the vehicle control device according to the present embodiment. 図3は、図3に示す処理が実行された際の自車両の走行の一例である。FIG. 3 is an example of traveling of the own vehicle when the process shown in FIG. 3 is executed. 図4は、第2実施形態に係る車両制御装置が実行する車線変更処理のフローチャートである。FIG. 4 is a flowchart of the lane change process executed by the vehicle control device according to the second embodiment. 図5は、図4に示す処理が実行された際の自車両の走行の一例である。FIG. 5 is an example of traveling of the own vehicle when the process shown in FIG. 4 is executed. 図6は、第3実施形態に係る車両制御装置が実行する車線変更処理のフローチャートである。FIG. 6 is a flowchart of a lane change process executed by the vehicle control device according to the third embodiment. 図7は、図6に示す処理が実行された際の自車両の走行の一例である。FIG. 7 is an example of traveling of the own vehicle when the process shown in FIG. 6 is executed. 図8は、第4実施形態に係る車両制御装置が実行する車線変更処理のフローチャートである。FIG. 8 is a flowchart of a lane change process executed by the vehicle control device according to the fourth embodiment. 図9は、図8に示す処理が実行された際の自車両の走行の一例である。FIG. 9 is an example of traveling of the own vehicle when the process shown in FIG. 8 is executed. 図10は、第5実施形態に係る車両制御装置が実行する車線変更処理のフローチャートである。FIG. 10 is a flowchart of a lane change process executed by the vehicle control device according to the fifth embodiment. 図11は、図10に示す処理が実行された際の自車両の走行の一例である。FIG. 11 is an example of traveling of the own vehicle when the process shown in FIG. 10 is executed.
 ≪第1実施形態≫
 以下、本発明の実施形態を図面に基づいて説明する。なお、本実施形態は車両に搭載された車両制御装置を例示して説明する。
<< First Embodiment >>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, a vehicle control device mounted on the vehicle will be described as an example.
 図1は、本発明の実施形態に係る車両制御装置100を含む車両システム200の一例を示す構成図である。本実施形態の車両システム200は、車両に搭載されている。車両システム200は、車両が自動的に車線変更を行うためのシステムである。 FIG. 1 is a configuration diagram showing an example of a vehicle system 200 including a vehicle control device 100 according to an embodiment of the present invention. The vehicle system 200 of this embodiment is mounted on a vehicle. The vehicle system 200 is a system for a vehicle to automatically change lanes.
 図1に示すように、本実施形態に係る車両システム200は、周辺環境センサ群10と、車両センサ群20と、ナビゲーションシステム30と、地図データベース40と、HMI50と、アクチュエータ制御装置60と、車両制御アクチュエータ群70と、ウィンカー80と、車両制御装置100とを含む。これらの装置又はシステムは、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LANによって接続されている。 As shown in FIG. 1, the vehicle system 200 according to the present embodiment includes a surrounding environment sensor group 10, a vehicle sensor group 20, a navigation system 30, a map database 40, an HMI 50, an actuator control device 60, and a vehicle. It includes a control actuator group 70, a winker 80, and a vehicle control device 100. These devices or systems are connected by a CAN (Control Area Network) or other in-vehicle LAN in order to exchange information with each other.
 周辺環境センサ群10は、自車両の周辺の状態(外部状態)を検出するセンサ群であって、自車両に設けられている。図1に示すように、周辺環境センサ群10としては、例えば、レーダー11、撮像装置12が挙げられるが、これらに限定されない。 The surrounding environment sensor group 10 is a sensor group that detects the state (external state) around the own vehicle, and is provided in the own vehicle. As shown in FIG. 1, examples of the ambient environment sensor group 10 include, but are not limited to, a radar 11 and an imaging device 12.
 レーダー11は、自車両の周辺に存在する物体を検出する。レーダー11としては、例えば、ミリ波レーダー、レーザーレーダー、超音波レーダー、レーザレンジファインダーなどが挙げられるが、これらに限定されない。レーダー11は、例えば、電波を自車両の周辺に送信し、物体で反射された電波を受信することで、物体を検出する。具体的には、レーダー11は、物体が存在する方向及び物体までの距離を検出する。また、レーダー11は、物体が存在する方向及び物体までの距離の時間変化に基づいて、自車両に対する物体の相対速度(移動方向を含む)を検出する。レーダー11により検出された検出結果は、車両制御装置100に出力される。 The radar 11 detects an object existing around the own vehicle. Examples of the radar 11 include, but are not limited to, a millimeter wave radar, a laser radar, an ultrasonic radar, a laser range finder, and the like. The radar 11 detects an object by transmitting radio waves to the periphery of the own vehicle and receiving radio waves reflected by the object, for example. Specifically, the radar 11 detects the direction in which the object exists and the distance to the object. Further, the radar 11 detects the relative speed (including the moving direction) of the object with respect to the own vehicle based on the time change of the direction in which the object exists and the distance to the object. The detection result detected by the radar 11 is output to the vehicle control device 100.
 本実施形態では、レーダー11は自車両を中心としたときの全方位を検出対象としている。例えば、レーダー11は、自車両の前方、側方、及び後方それぞれに備えられ、自車両の前方に存在する物体を検出する前方レーダー、自車両の側方に存在する物体を検出する側方レーダー、及び自車両の後方に存在する物体を検出する後方レーダーで構成される。なお、自車両が備えるレーダー11の数及び種別は特に限定されない。 In the present embodiment, the radar 11 targets all directions when the own vehicle is centered. For example, the radar 11 is provided in front, side, and rear of the own vehicle, and is a front radar that detects an object existing in front of the own vehicle and a side radar that detects an object existing in the side of the own vehicle. , And a rear radar that detects an object behind the vehicle. The number and type of radars 11 included in the own vehicle are not particularly limited.
 撮像装置12は、自車両の周辺に存在する物体を撮像する。撮像装置12としては、例えば、CCD又はCMOSの撮像素子を備えるカメラが挙げられるが、これに限定されない。撮像装置12により撮像された撮像画像は、車両制御装置100に出力される。 The imaging device 12 images an object existing around the own vehicle. Examples of the image pickup device 12 include, but are not limited to, a camera including a CCD or CMOS image pickup device. The captured image captured by the imaging device 12 is output to the vehicle control device 100.
 本実施形態では、撮像装置12は自車両を中心としたときの全方位を撮像対象としている。例えば、撮像装置12は、自車両の前方、側方、及び後方それぞれに備えられ、自車両の前方に存在する物体を撮像する前方カメラ、自車両の側方に存在する物体を撮像する側方カメラ、自車両の後方に存在する物体を検出する後方カメラで構成される。なお、自車両が備える撮像装置12の数及び種別は特に限定されない。 In the present embodiment, the imaging device 12 targets all directions when the vehicle is centered. For example, the image pickup device 12 is provided on each of the front, side, and rear of the own vehicle, and is a front camera that captures an object existing in front of the own vehicle and a side that captures an object existing on the side of the own vehicle. It consists of a camera and a rear camera that detects an object behind the vehicle. The number and type of image pickup devices 12 included in the own vehicle are not particularly limited.
 周辺環境センサ群10が検出する物体としては、例えば、自転車、バイク、自動車(以降、他車両ともいう)、路上障害物、交通信号機、路面標示(車線境界線を含む)、横断歩道が挙げられる。例えば、自車両の進行方向に沿って走行する他車両が自車両の周辺に存在する場合、レーダー11は、自車両の位置を基準として他車両が存在する方向及び他車両までの距離と、自車両に対する他車両の相対速度を検出する。また、撮像装置12は、他車両の車種、他車両の大きさ、及び他車両の形状が特定可能な画像を撮像する。 Examples of objects detected by the surrounding environment sensor group 10 include bicycles, motorcycles, automobiles (hereinafter, also referred to as other vehicles), road obstacles, traffic signals, road markings (including lane boundaries), and pedestrian crossings. .. For example, when another vehicle traveling along the traveling direction of the own vehicle exists in the vicinity of the own vehicle, the radar 11 determines the direction in which the other vehicle exists and the distance to the other vehicle based on the position of the own vehicle. Detects the relative speed of another vehicle with respect to the vehicle. Further, the image pickup device 12 captures an image in which the vehicle type of the other vehicle, the size of the other vehicle, and the shape of the other vehicle can be specified.
 また、例えば、自車両が複数の車線のうち特定の車線を走行している場合、レーダー11は、自車両が走行している車線と、この車線の側方に位置する車線とを区切っている車線境界線を検出するとともに、自車両から車線境界線までの距離を検出する。また、撮像装置12は、車線境界線の種別が特定可能な画像を撮像する。なお、自車線の両側に車線境界線が存在する場合、レーダー11は、それぞれの車線境界線について、自車両から車線境界線までの距離を検出する。また、以降の説明においては、自車両が走行している車線を自車線、自車線の側方に位置する車線を隣接車線ともいう。 Further, for example, when the own vehicle is traveling in a specific lane among a plurality of lanes, the radar 11 separates the lane in which the own vehicle is traveling from the lane located on the side of this lane. The lane boundary line is detected, and the distance from the own vehicle to the lane boundary line is detected. Further, the image pickup device 12 captures an image in which the type of the lane boundary line can be specified. When there are lane boundaries on both sides of the own lane, the radar 11 detects the distance from the own vehicle to the lane boundary for each lane boundary. Further, in the following description, the lane in which the own vehicle is traveling is also referred to as the own lane, and the lane located on the side of the own lane is also referred to as an adjacent lane.
 車両センサ群20は、自車両の状態(内部状態)を検出するセンサ群である。図1に示すように、車両センサ群20としては、例えば、車速センサ21、加速度センサ22、ジャイロセンサ23、操舵角センサ24、アクセルセンサ25、ブレーキセンサ26が挙げられるが、これらに限定されない。 The vehicle sensor group 20 is a sensor group that detects the state (internal state) of the own vehicle. As shown in FIG. 1, examples of the vehicle sensor group 20 include, but are not limited to, a vehicle speed sensor 21, an acceleration sensor 22, a gyro sensor 23, a steering angle sensor 24, an accelerator sensor 25, and a brake sensor 26.
 車速センサ21は、ドライブシャフトなどの駆動系の回転速度を計測し、計測結果に基づいて自車両の走行速度を検出する。車速センサ21は、例えば、自車両の車輪又は車輪と一体に回転するドライブシャフトに設けられている。加速度センサ22は、自車両の加速度を検出する。加速度センサ22には、自車両の前後方向の加速度を検出する前後加速度センサと、自車両の横加速度を検出する横加速度センサが含まれる。ジャイロセンサ23は、自車両が回転する速度、すなわち、単位時間あたりの自車両の角度の移動量(角速度)を検出する。操舵角センサ24は、ステアリングホイールの操舵角を検出する。操舵角センサ24は、例えば、自車両のステアリングシャフトに設けられている。アクセルセンサ25は、アクセルペダルの踏み込み量(アクセルペダルの位置)を検出する。アクセルセンサ25は、例えば、アクセルペダルのシャフト部分に設けられている。ブレーキセンサ26は、ブレーキペダルの踏み込み量(ブレーキペダルの位置)を検出する。ブレーキセンサ26は、例えば、ブレーキペダルのシャフト部分に設けられている。 The vehicle speed sensor 21 measures the rotational speed of a drive system such as a drive shaft, and detects the traveling speed of the own vehicle based on the measurement result. The vehicle speed sensor 21 is provided on, for example, a wheel of the own vehicle or a drive shaft that rotates integrally with the wheel. The acceleration sensor 22 detects the acceleration of the own vehicle. The acceleration sensor 22 includes a front-rear acceleration sensor that detects the acceleration in the front-rear direction of the own vehicle and a lateral acceleration sensor that detects the lateral acceleration of the own vehicle. The gyro sensor 23 detects the speed at which the own vehicle rotates, that is, the amount of movement (angular velocity) of the angle of the own vehicle per unit time. The steering angle sensor 24 detects the steering angle of the steering wheel. The steering angle sensor 24 is provided, for example, on the steering shaft of the own vehicle. The accelerator sensor 25 detects the amount of depression of the accelerator pedal (position of the accelerator pedal). The accelerator sensor 25 is provided, for example, on the shaft portion of the accelerator pedal. The brake sensor 26 detects the amount of depression of the brake pedal (position of the brake pedal). The brake sensor 26 is provided, for example, on the shaft portion of the brake pedal.
 車両センサ群20により検出された検出結果は、車両制御装置100に出力される。検出結果には、例えば、自車両の車速、加速度(前後加速度及び横加速度を含む)、角速度、アクセルペダルの踏み込み量、ブレーキペダルの踏み込み量が含まれる。 The detection result detected by the vehicle sensor group 20 is output to the vehicle control device 100. The detection results include, for example, the vehicle speed of the own vehicle, acceleration (including front-rear acceleration and lateral acceleration), angular velocity, accelerator pedal depression amount, and brake pedal depression amount.
 ナビゲーションシステム30は、自車両の現在位置の情報に基づいて、自車両の現在位置から目的地までの経路を示して自車両の乗員(運転者を含む)を誘導するシステムである。ナビゲーションシステム30には、地図データベース40から地図情報が入力されるとともに、自車両の乗員からHMI50を介して目的地の情報が入力される。ナビゲーションシステム30は、これらの入力情報に基づいて自車両の走行経路を生成する。そして、ナビゲーションシステム30は、自車両の走行経路の情報を車両制御装置100に出力するとともに、HMI50を介して自車両の乗員に自車両の走行経路の情報を提示する。これにより、乗員には現在位置から目的地までの走行経路が提示される。 The navigation system 30 is a system that guides the occupants (including the driver) of the own vehicle by indicating the route from the current position of the own vehicle to the destination based on the information of the current position of the own vehicle. Map information is input to the navigation system 30 from the map database 40, and destination information is input from the occupants of the own vehicle via the HMI 50. The navigation system 30 generates a travel route of the own vehicle based on these input information. Then, the navigation system 30 outputs the information on the traveling route of the own vehicle to the vehicle control device 100, and presents the information on the traveling route of the own vehicle to the occupants of the own vehicle via the HMI 50. As a result, the occupant is presented with a travel route from the current position to the destination.
 図1に示すように、ナビゲーションシステム30は、GPS31と、通信装置32と、ナビコントローラ33とを備える。 As shown in FIG. 1, the navigation system 30 includes a GPS 31, a communication device 32, and a navigation controller 33.
 GPS31は、現在の自車両の位置を示す位置情報を取得する(Global Positioning System,GPS)。GPS31は、複数の衛星通信から送信される電波を受信機で受信することで、自車両の位置情報を取得する。また、GPS31は、周期的に複数の衛星通信から送信される電波を受信することで、自車両の位置情報の変化を検出することができる。 GPS31 acquires position information indicating the current position of its own vehicle (Global Positioning System, GPS). The GPS 31 acquires the position information of its own vehicle by receiving radio waves transmitted from a plurality of satellite communications by a receiver. Further, the GPS 31 can detect a change in the position information of the own vehicle by periodically receiving radio waves transmitted from a plurality of satellite communications.
 通信装置32は、外部から自車両の周辺状況を取得する。通信装置32は、例えば、自車両の外部に設けられたサーバ又はシステムと通信可能な装置である。通信装置32は、他車両に搭載された通信装置と通信してもよい。 The communication device 32 acquires the surrounding conditions of the own vehicle from the outside. The communication device 32 is, for example, a device capable of communicating with a server or system provided outside the own vehicle. The communication device 32 may communicate with a communication device mounted on another vehicle.
 例えば、通信装置32は、道路に設けられた情報発信装置(ビーコン)又はFM多重放送等により、道路交通情報通信システム(Vehicle Information and Communication System,VICS(登録商標)、以下同じ)から道路交通情報を取得する。道路交通情報には、例えば、車線単位の渋滞情報、事故情報、故障車情報、工事情報、速度規制情報、車線規制情報などが含まれる。なお、道路交通情報には、上記の各情報が必ず含まれているわけではなく、少なくとも何れか一つの情報が含まれていればよい。 For example, the communication device 32 uses an information transmission device (beacon) provided on the road, FM multiplex broadcasting, or the like to provide road traffic information from a vehicle information and communication system (Vehicle Information and Communication System, VICS (registered trademark), the same applies hereinafter). To get. The road traffic information includes, for example, traffic congestion information for each lane, accident information, broken vehicle information, construction information, speed regulation information, lane regulation information, and the like. It should be noted that the road traffic information does not necessarily include each of the above information, and it is sufficient that at least one of the above information is included.
 また、例えば、通信装置32は、他車両に搭載された通信装置と通信可能な機能を有している場合には、他車両の車速情報及び他車両の位置情報を取得する。このような自車両と他車両で行われる通信は、車車間通信と称されている。通信装置32は、車車間通信により、他車両の車速等の情報を自車両の周辺情報として取得してもよい。 Further, for example, when the communication device 32 has a function capable of communicating with a communication device mounted on another vehicle, the vehicle speed information of the other vehicle and the position information of the other vehicle are acquired. Such communication between the own vehicle and another vehicle is called vehicle-to-vehicle communication. The communication device 32 may acquire information such as the vehicle speed of another vehicle as peripheral information of the own vehicle by inter-vehicle communication.
 なお、通信装置32は、VICSから、他車両の位置、車速、進行方向を含む情報を自車両の周辺情報として取得してもよい。 Note that the communication device 32 may acquire information including the position, vehicle speed, and traveling direction of another vehicle from VICS as peripheral information of the own vehicle.
 ナビコントローラ33は、自車両の現在位置から目的地までの走行経路を生成するコンピュータである。例えば、ナビコントローラ33は、走行経路を生成するためのプログラムを格納したROM(Read Only Memory)と、このROMに格納されたプログラムを実行するCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とから構成される。 The navigation controller 33 is a computer that generates a traveling route from the current position of the own vehicle to the destination. For example, the navigation controller 33 has a ROM (Read Only Memory) that stores a program for generating a travel route, a CPU (Central Processing Unit) that executes a program stored in the ROM, and an accessible storage device. It is composed of a functioning RAM (Random Access Memory).
 ナビコントローラ33には、GPS31から自車両の現在位置の情報が入力され、通信装置32から道路交通情報が入力され、地図データベース40から地図情報が入力され、HMI50から自車両の目的地の情報が入力される。例えば、自車両の乗員がHMI50を介して自車両の目的地を設定したとする。ナビコントローラ33は、自車両の位置情報、自車両の目的地の情報、地図情報、及び道路交通情報に基づいて、現在位置から目的地までの経路であって車線単位の経路を、自車両の走行経路として生成する。ナビコントローラ33は、生成した走行経路の情報を、車両制御装置100に出力するとともに、HMI50を介して自車両の乗員に提示する。 Information on the current position of the own vehicle is input to the navigation controller 33 from GPS 31, road traffic information is input from the communication device 32, map information is input from the map database 40, and information on the destination of the own vehicle is input from the HMI 50. Entered. For example, it is assumed that the occupant of the own vehicle sets the destination of the own vehicle via the HMI 50. Based on the position information of the own vehicle, the destination information of the own vehicle, the map information, and the road traffic information, the navigation controller 33 sets the route from the current position to the destination in lane units. Generated as a traveling route. The navigation controller 33 outputs the generated travel route information to the vehicle control device 100 and presents it to the occupants of the own vehicle via the HMI 50.
 なお、本実施形態では、自車両の走行経路は、自車両が現在位置から目的地に到着可能な経路であればよく、その他の条件については限定されない。例えば、ナビコントローラ33は、乗員により設定された条件に従って、自車両の走行経路を生成してもよい。例えば、乗員が有料道路を優先的に使用して目的地まで到着するような設定を行った場合、ナビコントローラ33は、地図情報に基づいて、有料道路を使用した走行経路を生成してもよい。また、例えば、ナビコントローラ33は、道路交通情報に基づいて、自車両の走行経路を生成してもよい。例えば、目的地までの最短経路の途中で渋滞が発生している場合、ナビコントローラ33は、迂回経路を探索し、探索された複数の迂回経路のうち所要時間が最短となる経路を、走行経路として生成してもよい。 In the present embodiment, the traveling route of the own vehicle may be any route as long as the own vehicle can reach the destination from the current position, and other conditions are not limited. For example, the navigation controller 33 may generate a travel route of the own vehicle according to the conditions set by the occupant. For example, when the occupant is set to preferentially use the toll road to arrive at the destination, the navigation controller 33 may generate a travel route using the toll road based on the map information. .. Further, for example, the navigation controller 33 may generate a traveling route of the own vehicle based on the road traffic information. For example, when a traffic jam occurs in the middle of the shortest route to the destination, the navigation controller 33 searches for a detour route, and the travel route is the route having the shortest required time among the plurality of searched detour routes. May be generated as.
 地図データベース40は、地図情報を格納している。地図情報には、道路情報と交通規則情報が含まれている。道路情報及び交通規則情報は、ノードと、ノード間を接続するリンク(道路リンクともいう)により定義される。リンクは車線レベルで識別される。 The map database 40 stores map information. Map information includes road information and traffic rule information. Road information and traffic rule information are defined by nodes and links (also called road links) connecting the nodes. Links are identified at the lane level.
 道路情報は、車両が走行可能な道路に関する情報である。各道路リンクには、例えば、道路の種別、道路幅、道路形状、道路の曲率、直進の可否、進行の優先関係、追い越しの可否(隣接車線への進入の可否)、車線変更の可否その他の道路に関する情報が紐づけられているが、道路リンクに紐づけられる情報はこれらに限定されない。その他にも、各道路リンクには、例えば、信号機の設置位置、交差点の位置、交差点の進入方向、交差点の種別その他の交差点に関する情報が紐づけられている。 Road information is information about roads on which vehicles can travel. Each road link includes, for example, road type, road width, road shape, road curvature, whether or not to go straight, priority of progress, whether or not to pass (whether or not to enter an adjacent lane), whether or not to change lanes, etc. Information about roads is linked, but the information linked to road links is not limited to these. In addition, each road link is associated with, for example, information on the installation position of a traffic light, the position of an intersection, the approach direction of an intersection, the type of an intersection, and other information about the intersection.
 交通規則情報は、車両が走行時に遵守すべき交通に関する規則である。交通規則としては、例えば、経路上における一時停止、駐車/停車禁止、徐行、制限速度、法定速度、車線変更禁止が挙げられるが、これらに限定されるものではない。各道路リンクには、道路リンクで定義される区間における交通規則の情報が紐づけられている。例えば、車線変更禁止区間における道路リンクには、車線変更禁止の情報が紐づけられている。なお、交通規則の情報は、道路リンクだけでなく、例えば、ノード又は地図上の特定の地点(緯度、経路)に紐づけられていてもよい。 Traffic rule information is a rule regarding traffic that a vehicle should comply with when driving. Traffic rules include, but are not limited to, for example, pausing on the route, parking / stopping prohibition, slowing down, speed limit, legal speed, and lane change prohibition. Information on traffic rules in the section defined by the road link is associated with each road link. For example, information on lane change prohibition is associated with a road link in a lane change prohibited section. The traffic rule information may be linked not only to a road link but also to, for example, a node or a specific point (latitude, route) on a map.
 また、交通規則情報には、交通規則に関する情報だけでなく、信号機に関する情報が含まれていてもよい。例えば、信号機が設置されている交差点の道路リンクには、信号機が現在表示している色の情報、及び/又は信号機の表示が切り替わる周期の情報が紐づけられていてもよい。信号機に関する情報は、例えば、通信装置32によって、VICSから取得されたり、あるいは、道路上に設けられた情報発信装置(例えば、光ビーコン)から取得されたりする。信号機の表示情報は、時間の経過とともに変化する。そのため、交通規則情報は所定の周期毎に更新される。 Further, the traffic rule information may include not only information on traffic rules but also information on traffic lights. For example, the road link at the intersection where the traffic light is installed may be associated with the color information currently displayed by the traffic light and / or the information of the cycle in which the display of the traffic light is switched. Information about a traffic light is, for example, acquired from VICS by a communication device 32, or from an information transmitting device (for example, an optical beacon) provided on a road. The information displayed on the traffic light changes over time. Therefore, the traffic rule information is updated at predetermined intervals.
 なお、地図データベース40に格納される地図情報は、自動運転に適した高精度地図情報でもよい。高精度地図情報は、例えば、自車両の外部に設けられたサーバ又はシステムとの通信により取得される。また、高精度地図情報は、周辺環境センサ群10を用いてリアルタイムに取得した情報(例えば、レーダー11により検出された物体の情報、撮像装置12により撮像された自車両の周辺の画像)に基づいて、随時生成されてもよい。 The map information stored in the map database 40 may be high-precision map information suitable for automatic driving. The high-precision map information is acquired, for example, by communicating with a server or system provided outside the own vehicle. Further, the high-precision map information is based on the information acquired in real time by using the surrounding environment sensor group 10 (for example, the information of the object detected by the radar 11 and the image of the surroundings of the own vehicle captured by the imaging device 12). It may be generated at any time.
 ここで、本実施形態における自動運転について説明する。本実施形態では、自動運転とは、運転主体が運転者のみで構成された運転形態以外を示す。例えば、運転主体に運転者とともに、運転操作を支援するコントローラ(図示しない)が含まれている場合、又は運転者に代わり運転操作を実行するコントローラ(図示しない)が含まれている場合が自動運転に該当する。 Here, the automatic operation in this embodiment will be described. In the present embodiment, the automatic driving means a driving mode other than the driving mode in which the driving subject is composed only of the driver. For example, when the driving subject includes a controller (not shown) that supports the driving operation together with the driver, or a controller (not shown) that executes the driving operation on behalf of the driver, the automatic driving is performed. Corresponds to.
 また、本実施形態では、車両システム200が地図データベース40を備える構成を例に挙げて説明するが、車両システム200の外部に設けられていてもよい。例えば、地図情報は、可搬型の記憶装置(例えば、外付けHDD、フラッシュメモリ)に予め記憶されていてもよい。この場合、車両制御装置100と地図情報を記憶する記憶装置とを電気的に接続することで、記憶装置が地図データベース40として機能する。 Further, in the present embodiment, the configuration in which the vehicle system 200 includes the map database 40 will be described as an example, but it may be provided outside the vehicle system 200. For example, the map information may be stored in advance in a portable storage device (for example, an external HDD or a flash memory). In this case, the storage device functions as the map database 40 by electrically connecting the vehicle control device 100 and the storage device that stores the map information.
 HMI50は、自車両の乗員と車両システム200との間で情報の出力及び入力を行うためのインターフェースである(Human Machine Interface,HMI)。HMI50としては、例えば、文字又は画像情報を表示するディスプレイと、音楽又は音声など音を出力するスピーカが挙げられるが、これらに限定されるものではない。 The HMI 50 is an interface for outputting and inputting information between the occupant of the own vehicle and the vehicle system 200 (Human Machine Interface, HMI). Examples of the HMI 50 include, but are not limited to, a display for displaying character or image information and a speaker for outputting sound such as music or voice.
 HMI50を介した情報の授受について説明する。例えば、目的地を設定するために、乗員がHMI50に対して目的地を入力すると、目的地の情報は、HMI50からナビゲーションシステム30に出力される。これにより、ナビゲーションシステム30は、自車両の目的地の情報を取得することができる。また、例えば、ナビゲーションシステム30が目的地までの走行経路を生成すると、走行経路の情報は、ナビゲーションシステム30からHMI50へ出力される。そして、HMI50は、走行経路の情報をディスプレイ及び/又はスピーカから出力する。これにより、自車両の乗員には、目的地までの走行経路の情報が提示される。目的地までの走行経路の情報としては、例えば、ルートの案内、目的地までの所要時間が挙げられるが、これらに限定されない。 Explain the exchange of information via HMI50. For example, when the occupant inputs a destination to the HMI 50 in order to set the destination, the destination information is output from the HMI 50 to the navigation system 30. As a result, the navigation system 30 can acquire information on the destination of the own vehicle. Further, for example, when the navigation system 30 generates a travel route to the destination, the travel route information is output from the navigation system 30 to the HMI 50. Then, the HMI 50 outputs the travel route information from the display and / or the speaker. As a result, the occupants of the own vehicle are presented with information on the traveling route to the destination. Information on the travel route to the destination includes, for example, route guidance and the time required to reach the destination, but is not limited thereto.
 また、例えば、自車両を車線変更させるために、乗員がHMI50に対して車線変更の実行指令を入力すると、車線変更の実行指令は、HMI50から車両制御装置100に出力される。これにより、車両制御装置100は、車線変更の制御処理を開始することができる。また、例えば、車両制御装置100が車線変更のための目標軌跡を設定すると、目標軌跡の情報は、車両制御装置100からHMI50へ出力される。そして、HMI50は、目標軌跡の情報をディスプレイ及び/又はスピーカから出力する。これにより、自車両の乗員には、車線変更のための目標軌跡の情報が提示される。車線変更のための目標軌跡の情報としては、例えば、隣接車線上で特定された進入位置、車線変更する際の目標軌跡が挙げられるが、これらに限定されない。なお、目標軌跡及び進入位置については後述する。 Further, for example, when the occupant inputs a lane change execution command to the HMI 50 in order to change the lane of the own vehicle, the lane change execution command is output from the HMI 50 to the vehicle control device 100. As a result, the vehicle control device 100 can start the control process for changing lanes. Further, for example, when the vehicle control device 100 sets a target trajectory for changing lanes, the information of the target trajectory is output from the vehicle control device 100 to the HMI 50. Then, the HMI 50 outputs the information of the target locus from the display and / or the speaker. As a result, the occupants of the own vehicle are presented with information on the target trajectory for changing lanes. Information on the target trajectory for changing lanes includes, for example, an approach position specified on an adjacent lane and a target trajectory for changing lanes, but is not limited thereto. The target trajectory and approach position will be described later.
 アクチュエータ制御装置60は、自車両の走行を制御する。アクチュエータ制御装置60は、ステアリング制御機構、アクセル制御機構、ブレーキ制御機構、エンジン制御機構等を備えている。アクチュエータ制御装置60には、後述する車両制御装置100から制御信号が入力される。アクチュエータ制御装置60は、車両制御装置100からの制御信号に応じて、車両制御アクチュエータ群70を制御することで、自車両の自動運転を実現する。例えば、アクチュエータ制御装置60に自車両を自車線から隣接車線へ移動させるための制御信号が入力されると、アクチュエータ制御装置60は、制御信号に応じて、自車両の移動に必要な操舵角、移動速度に応じたアクセル踏み込み量又はブレーキ踏み込み量を算出する。アクチュエータ制御装置60は、算出した各種パラメータを車両制御アクチュエータ群70に出力する。 The actuator control device 60 controls the running of the own vehicle. The actuator control device 60 includes a steering control mechanism, an accelerator control mechanism, a brake control mechanism, an engine control mechanism, and the like. A control signal is input to the actuator control device 60 from the vehicle control device 100, which will be described later. The actuator control device 60 realizes automatic driving of the own vehicle by controlling the vehicle control actuator group 70 in response to a control signal from the vehicle control device 100. For example, when a control signal for moving the own vehicle from the own lane to an adjacent lane is input to the actuator control device 60, the actuator control device 60 responds to the control signal with a steering angle required for the movement of the own vehicle. Calculate the accelerator depression amount or brake depression amount according to the moving speed. The actuator control device 60 outputs various calculated parameters to the vehicle control actuator group 70.
 なお、各機構の制御は、完全に自動で行われてもよいし、運転者の運転操作を支援する態様で行われてもよい。各機構の制御は、運転者の介入操作により中断又は中止させることができる。アクチュエータ制御装置60による走行制御方法は、上記の制御方法に限られず、その他の周知の方法を用いることもできる。 Note that the control of each mechanism may be performed completely automatically, or may be performed in a manner of supporting the driving operation of the driver. The control of each mechanism can be interrupted or stopped by the intervention operation of the driver. The traveling control method by the actuator control device 60 is not limited to the above control method, and other well-known methods can also be used.
 車両制御アクチュエータ群70は、自車両を駆動するための各種アクチュエータである。図1に示すように、車両制御アクチュエータ群70としては、例えば、ステアリングアクチュエータ71、アクセル開度アクチュエータ72、ブレーキ制御アクチュエータ73が挙げられるが、これらに限定されない。 The vehicle control actuator group 70 is various actuators for driving the own vehicle. As shown in FIG. 1, examples of the vehicle control actuator group 70 include, but are not limited to, a steering actuator 71, an accelerator opening actuator 72, and a brake control actuator 73.
 ステアリングアクチュエータ71は、アクチュエータ制御装置60から入力される信号に応じて、自車両のステアリングの操舵方向及び操舵量を制御する。アクセル開度アクチュエータ72は、アクチュエータ制御装置60から入力される信号に応じて、自車両のアクセル開度を制御する。ブレーキ制御アクチュエータ73は、アクチュエータ制御装置60から入力される信号に応じて、自車両のブレーキ装置の制動動作を制御する。 The steering actuator 71 controls the steering direction and steering amount of the steering of the own vehicle according to the signal input from the actuator control device 60. The accelerator opening actuator 72 controls the accelerator opening of the own vehicle in response to a signal input from the actuator control device 60. The brake control actuator 73 controls the braking operation of the brake device of the own vehicle in response to the signal input from the actuator control device 60.
 ウィンカー80は、点滅を行うランプを内部に有しており、自車両の運転者が方向指示スイッチ(図示しない)を操作すると、橙色で点滅する。ウィンカー80は、自車両が右左折する際又は車線変更する際に、その方向を周囲に示すための装置である。ウィンカー80は、例えば、自車両の前端及び後端の左右に一体的に設けられる。 The winker 80 has a blinking lamp inside, and when the driver of the own vehicle operates a direction indicator switch (not shown), it blinks in orange. The blinker 80 is a device for indicating the direction to the surroundings when the own vehicle turns left or right or changes lanes. The blinkers 80 are integrally provided on the left and right sides of the front end and the rear end of the own vehicle, for example.
 また、本実施形態では、ウィンカー80には車両制御装置100から制御信号が入力される。制御信号は、ウィンカーを作動するための信号であり、消灯しているウィンカー80を点滅させる信号(点滅信号ともいう)、点滅しているウィンカー80を消灯させる信号(消灯信号ともいう)が挙げられる。例えば、ウィンカー80に左側ウィンカーを点滅させる点滅信号が入力されると、ウィンカー80は、左側ウィンカーを点灯させる。その後、ウィンカー80に左側ウィンカーを消灯させる消灯信号が入力されると、ウィンカー80は、左側ウィンカーを消灯させる。このように、ウィンカー80は、自車両の運転者に加えて、車両制御装置100により制御される。 Further, in the present embodiment, a control signal is input to the blinker 80 from the vehicle control device 100. The control signal is a signal for operating the blinker, and includes a signal for blinking the blinking blinker 80 (also referred to as a blinking signal) and a signal for extinguishing the blinking blinker 80 (also referred to as an extinguishing signal). .. For example, when a blinking signal for blinking the left blinker is input to the blinker 80, the blinker 80 turns on the left blinker. After that, when a turn-off signal for turning off the left turn signal is input to the winker 80, the winker 80 turns off the left turn signal. In this way, the blinker 80 is controlled by the vehicle control device 100 in addition to the driver of the own vehicle.
 次に、車両制御装置100について説明する。本実施形態の車両制御装置100は、ハードウェア及びソフトウェアを備えたコンピュータにより構成され、プログラムを格納したROM(Read Only Memory)と、このROMに格納されたプログラムを実行するCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とから構成されている。なお、動作回路としては、CPUに代えて又はこれとともに、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などを用いることができる。図1に示す制御装置101はCPU(プロセッサ)に相当する。図1に示す記憶装置110はROM及びRAMに相当する。 Next, the vehicle control device 100 will be described. The vehicle control device 100 of the present embodiment is composed of a computer provided with hardware and software, and has a ROM (Read Only Memory) for storing a program and a CPU (Central Processing Unit) for executing the program stored in the ROM. It is composed of a RAM (Random Access Memory) that functions as an accessible storage device. As the operation circuit, MPU (Micro Processing Unit), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), FPGA (Field Program), etc. can be used instead of or in combination with the CPU. .. The control device 101 shown in FIG. 1 corresponds to a CPU (processor). The storage device 110 shown in FIG. 1 corresponds to a ROM and a RAM.
 なお、本実施形態では、制御装置101により実行されるプログラムが記憶装置110に予め記憶されている構成を例に挙げて説明するが、プログラムが記憶される場所は記憶装置110に限定されない。例えば、プログラムは、コンピュータが読み取ることができ、かつ、可搬型のコンピュータ読み取り可能な記録媒体(例えば、ディスクメディア、フラッシュメモリなど)に記憶されていてもよい。この場合、制御装置101は、コンピュータ読み取り可能な記録媒体からダウンロードしたプログラムを実行する。言い換えると、車両制御装置100が動作回路のみを備え、プログラムを外部からダウンロードする構成であってもよい。 In the present embodiment, the configuration in which the program executed by the control device 101 is stored in the storage device 110 in advance will be described as an example, but the place where the program is stored is not limited to the storage device 110. For example, the program may be stored on a computer-readable and portable computer-readable recording medium (eg, disk media, flash memory, etc.). In this case, the control device 101 executes the program downloaded from the computer-readable recording medium. In other words, the vehicle control device 100 may be configured to include only an operating circuit and download a program from the outside.
 図1に示すように制御装置101は、機能ブロックとして、情報取得部102と、車線変更箇所特定部103と、車線変更準備部104と、車線変更制御部105を含んでいる。これらのブロックは、ROMに確立されたソフトウェアによって、後述する各機能を実現する。なお、本実施形態では、制御装置101が有する機能を、4つの機能ブロックとして分けた上で、各機能ブロックの機能を説明しているが、制御装置10の機能は必ずしも4つのブロックで分ける必要なく、3つ以下の機能ブロック、あるいは、5つ以上の機能ブロックで分けてもよい。また、制御装置10が有する機能は、以下で説明する機能ブロックの機能に限らず、例えばナビゲーションシステムの制御機能等も有している。 As shown in FIG. 1, the control device 101 includes an information acquisition unit 102, a lane change location identification unit 103, a lane change preparation unit 104, and a lane change control unit 105 as functional blocks. These blocks realize each function described later by the software established in the ROM. In the present embodiment, the functions of the control device 101 are divided into four functional blocks, and then the functions of the respective functional blocks are described. However, the functions of the control device 10 need to be divided into four blocks. Instead, it may be divided into three or less functional blocks or five or more functional blocks. Further, the function of the control device 10 is not limited to the function of the functional block described below, and also has, for example, a control function of the navigation system.
 情報取得部102の機能について説明する。情報取得部102は、周辺環境センサ群10、車両センサ群20、ナビゲーションシステム30、地図データベース40、HMI50のそれぞれから、各種情報を取得する。 The function of the information acquisition unit 102 will be described. The information acquisition unit 102 acquires various information from each of the surrounding environment sensor group 10, the vehicle sensor group 20, the navigation system 30, the map database 40, and the HMI 50.
 情報取得部102は、周辺環境センサ群10により検出された、自車両の周辺情報(自車両の外部情報ともいう)を取得する。自車両の周辺情報には、レーダー11により検出された検出結果、及び撮像装置12により撮像された撮像画像が含まれる。また、情報取得部102は、車両センサ群20により検出された、自車両の状態を示す情報(自車両の内部情報ともいう)を取得する。自車両の内部情報には、自車両の車速、加速度、角速度、アクセルペダルの踏み込み量、及びブレーキペダルの踏み込み量が含まれる。また、情報取得部102は、ナビゲーションシステム30から、自車両の現在位置、自車両の走行経路、及び道路交通情報を取得する。また、情報取得部102は、地図データベース40から、地図情報(道路情報及び交通規則情報を含む)を取得する。 The information acquisition unit 102 acquires peripheral information of the own vehicle (also referred to as external information of the own vehicle) detected by the surrounding environment sensor group 10. The peripheral information of the own vehicle includes the detection result detected by the radar 11 and the captured image captured by the imaging device 12. Further, the information acquisition unit 102 acquires information indicating the state of the own vehicle (also referred to as internal information of the own vehicle) detected by the vehicle sensor group 20. The internal information of the own vehicle includes the vehicle speed, acceleration, angular velocity, the amount of depression of the accelerator pedal, and the amount of depression of the brake pedal of the own vehicle. In addition, the information acquisition unit 102 acquires the current position of the own vehicle, the traveling route of the own vehicle, and the road traffic information from the navigation system 30. In addition, the information acquisition unit 102 acquires map information (including road information and traffic rule information) from the map database 40.
 車線変更箇所特定部103は、ナビゲーションシステム30から、自車両の現在位置及び自車両の走行経路を取得し、自車両の現在位置及び走行経路に基づき、車線変更箇所を特定する。車線変更箇所は、走行経路に走行する際に、自車線から隣接車線に車両を移動させる必要がある箇所を示している。車線変更箇所特定部103は、自車両の走行経路を参照し、走行経路において車線が変更されている箇所を特定する。 The lane change location identification unit 103 acquires the current position of the own vehicle and the travel route of the own vehicle from the navigation system 30, and identifies the lane change location based on the current position and the travel route of the own vehicle. The lane change location indicates a location where it is necessary to move the vehicle from the own lane to the adjacent lane when traveling on the traveling route. The lane change location specifying unit 103 refers to the travel route of the own vehicle and identifies a location where the lane is changed in the travel route.
 車線変更箇所特定部103は、自車両の走行経路から、交差点等、進行方向を切り替える地点や、インターチェンジなど、車両の進行方向とは異なる方向に進路を変える地点を目標地点として特定する。次に、車線変更箇所特定部103は、目標地点で自車両の進行方向を変えるために、自車線から隣接車線に車両を移動する必要がある箇所を、車線変更箇所として特定する。 The lane change location identification unit 103 specifies a point at which the traveling direction is switched, such as an intersection, or a point at which the course is changed in a direction different from the traveling direction of the vehicle, such as an interchange, as a target point from the traveling route of the own vehicle. Next, the lane change location specifying unit 103 identifies a location where the vehicle needs to move from the own lane to an adjacent lane in order to change the traveling direction of the own vehicle at the target point as a lane change location.
 例えば、現在位置の先にある交差点で右折するような走行経路が設定されており、自車両が複数車線のうち最も左側の車線を走行している場合には、自車両は右折に備えて、左側の車線から右側の車線に移動する必要がある。このようなシーンにおいて、車線変更箇所特定部103は、右折を必要とする交差点を目標地点として特定する。車線変更箇所特定部103は、走行経路上で、右折すべき交差点(目標地点)から所定距離、前の位置を車線変更箇所として特定する。車線変更箇所は、例えば、走行経路上で、目標地点から数100m手前の箇所に設定される。車線変更箇所は、必ずしも点で設定される必要はなく、所定の区間でされてもよい。他の例として、車線変更箇所は、高速道路上に設けられた分岐点手前の所定区間、自車両の目的地の手前にある所定区間が挙げられる。高速道路上に設けられた分岐点には、各方面への分岐点と、本線と出口との分岐点が含まれる。なお、本実施形態では、車線変更箇所が区間で特定する場合に、区間の長さは特に限定されない。 For example, if a travel route is set to turn right at an intersection ahead of your current position and your vehicle is in the leftmost lane of multiple lanes, your vehicle will prepare for a right turn. You need to move from the left lane to the right lane. In such a scene, the lane change location specifying unit 103 specifies an intersection that requires a right turn as a target point. The lane change location specifying unit 103 specifies a predetermined distance from an intersection (target point) to be turned right and a position in front of the intersection (target point) on the traveling route as a lane change location. The lane change location is set, for example, on the traveling route at a location several hundred meters before the target point. The lane change location does not necessarily have to be set by a point, and may be set in a predetermined section. As another example, the lane change location includes a predetermined section in front of the branch point provided on the expressway and a predetermined section in front of the destination of the own vehicle. The branch points provided on the expressway include branch points to various directions and branch points between the main line and the exit. In the present embodiment, when the lane change location is specified by the section, the length of the section is not particularly limited.
 本実施形態では、車線変更箇所特定部103により車線変更箇所が特定され、自車両が当該車線変更箇所に到達した時、又は、乗員により車線変更の実行指令が入力された時に、自車両が自動的に車線変更する車線変更処理を、以下で説明する機能で実行する。 In the present embodiment, when the lane change location is specified by the lane change location identification unit 103 and the own vehicle reaches the lane change location, or when the lane change execution command is input by the occupant, the own vehicle automatically operates. The lane change process for changing lanes is executed by the function described below.
 車線変更準備部104は、自車両の現在位置が車線変更箇所に到達した場合に、自車両の車線変更を行うための準備制御を実行する。準備制御は、進入位置の特定、意思表示のための車両制御を含む。意思表示は、自車両の後方を走行する他車両に対して、車線変更の意思を表示することである。 The lane change preparation unit 104 executes preparation control for changing the lane of the own vehicle when the current position of the own vehicle reaches the lane change location. Preparation control includes vehicle control for specifying the approach position and expressing intention. The manifestation of intention is to indicate the intention to change lanes to other vehicles traveling behind the own vehicle.
 車線変更準備部104は、自車両の周辺情報に基づいて、自車両が走行する自車線に対して隣接する隣接車線上に位置し、自車両の進入先の位置を示す進入位置を特定する。例えば、車線変更準備部104は、レーダー11により検出された結果及び撮像装置12により撮像された撮像画像に基づいて、隣接車線上において車両の進行方向に沿った距離が所定距離以上、空いている場所を進入位置として特定する。なお、進入位置は、自車両の現在の位置に対する相対的な位置で表され、自車両の周囲の状態に応じて適宜、変更されてもよい。 The lane change preparation unit 104 is located on an adjacent lane adjacent to the own lane in which the own vehicle is traveling, and specifies an approach position indicating the position of the approach destination of the own vehicle, based on the peripheral information of the own vehicle. For example, the lane change preparation unit 104 has a predetermined distance or more in the adjacent lane along the traveling direction of the vehicle based on the result detected by the radar 11 and the captured image captured by the imaging device 12. Specify the location as the approach position. The approach position is represented by a position relative to the current position of the own vehicle, and may be appropriately changed according to the surrounding state of the own vehicle.
 また、車線変更準備部104は、進入位置を特定すると、進入位置の前後に位置する他車両のうち、前方の他車両を前方車両として特定し、後方の他車両を後方車両として特定する。言い換えると、車線変更準備部104は、隣接車線に位置する複数の他車両のうち、進入位置に対して前方に位置する前方車両と、この進入位置に対して後方に位置する後方車両とをそれぞれ特定する。また、車線変更準備部104は、自車両の前後に位置する他車両を特定する。例えば、車線変更準備部104は、レーダー11により検出された検出結果及び撮像装置12により撮像された撮像画像から、進入位置に対して隣接車線の前方に位置する複数の他車両のうち、進入位置に対して最も近くに位置する他車両を、前方車両として特定する。また、車線変更準備部104は、進入位置に対して隣接車線の後方に位置する複数の他車両のうち、進入位置に対して最も近くに位置する他車両を、後方車両として特定する。なお、進入位置の前方に他車両が走行していない場合には、車線変更準備部104は後方車両のみ特定すればよい。 Further, when the lane change preparation unit 104 specifies the approach position, among the other vehicles located before and after the approach position, the other vehicle in front is specified as the front vehicle, and the other vehicle in the rear is specified as the rear vehicle. In other words, the lane change preparation unit 104 selects the front vehicle located in front of the approach position and the rear vehicle located behind the approach position among the plurality of other vehicles located in the adjacent lanes. Identify. In addition, the lane change preparation unit 104 identifies other vehicles located in front of and behind the own vehicle. For example, the lane change preparation unit 104 is based on the detection result detected by the radar 11 and the image captured by the imaging device 12, among a plurality of other vehicles located in front of the lane adjacent to the approach position. The other vehicle located closest to the vehicle is identified as the vehicle in front. Further, the lane change preparation unit 104 identifies the other vehicle located closest to the approach position as the rear vehicle among the plurality of other vehicles located behind the adjacent lane with respect to the approach position. If no other vehicle is traveling in front of the approach position, the lane change preparation unit 104 may specify only the rear vehicle.
 車線変更準備部104は、隣接車線上を走行する後方車両に対して、車線変更の意図を伝えるために、後方車両の走行状態に応じて、車線変更の意思を表示するための車両制御(以下、意思表示制御とも称す)を実行する。また車線変更準備部104は、意思表示制御を実行するタイミングを、他車両の車速の状態変化に応じて決定する。 The lane change preparation unit 104 controls the vehicle to indicate the intention to change lanes according to the traveling state of the vehicle behind in order to convey the intention of changing lanes to the rear vehicle traveling on the adjacent lane (hereinafter referred to as , Also called manifestation control). Further, the lane change preparation unit 104 determines the timing of executing the manifestation of intention control according to the state change of the vehicle speed of the other vehicle.
 具体的には、車両変更準備部104は、自車両の周辺情報に基づき、隣接車線上で後方車両の車速を検出する。車両変更準備部104は、特定された後方車両の車速が自車両の車速より高い状態(以下、第1状態とも称す)であるか判定する。後方車両が自車両の車速より高い状態で、自車両が自車線から隣接車線に移動するために操舵を行った場合には、後方車両のドライバーは、前方に位置する対象車両の動きに反応して、対象車両がすぐに車線を変更すると誤解させてしまう可能性がある。本実施形態では、このような誤解を防ぐために、誤解が生じる可能性の高い状況であることを、後方車両の車速から特定している。 Specifically, the vehicle change preparation unit 104 detects the vehicle speed of the vehicle behind on the adjacent lane based on the peripheral information of the own vehicle. The vehicle change preparation unit 104 determines whether the vehicle speed of the specified rear vehicle is higher than the vehicle speed of the own vehicle (hereinafter, also referred to as the first state). When the rear vehicle is steered to move from the own lane to the adjacent lane while the speed of the rear vehicle is higher than the speed of the own vehicle, the driver of the rear vehicle reacts to the movement of the target vehicle located in front. Therefore, it may be misleading if the target vehicle changes lanes immediately. In the present embodiment, in order to prevent such a misunderstanding, it is specified from the vehicle speed of the vehicle behind that the situation is likely to cause a misunderstanding.
 次に、後方車両の状態が第1状態であると判定した後に、車両変更準備部104は、後方車両の車速が自車両の車速以下の状態(以下、第2状態とも称す)であるかを判定する。すなわち、車両変更準備部104は、第1状態から第2状態に変わったか否かを判定している。後方車両の車速が、自車両の車速より高い状態から自車両の車速以下になった場合には、自車両が自車線から隣接車線に移動するために操舵を行ったとしても、後方車両のドライバーは、対象車両がすぐに車線を変更するという誤解を招く可能性が低い。そのため、本実施形態では、車線変更のための操舵制御等を行うために、後方車両の状態が第1状態から第2状態に変わったか否かを判定することで、他車両の走行状態を検出している。 Next, after determining that the state of the rear vehicle is the first state, the vehicle change preparation unit 104 determines whether the vehicle speed of the rear vehicle is equal to or lower than the vehicle speed of the own vehicle (hereinafter, also referred to as the second state). judge. That is, the vehicle change preparation unit 104 determines whether or not the first state has changed to the second state. When the vehicle speed of the rear vehicle becomes lower than the vehicle speed of the own vehicle from a state higher than the vehicle speed of the own vehicle, the driver of the rear vehicle even if the own vehicle steers to move from the own lane to the adjacent lane. Is unlikely to be misleading that the target vehicle will change lanes immediately. Therefore, in the present embodiment, in order to perform steering control for changing lanes, the running state of another vehicle is detected by determining whether or not the state of the rear vehicle has changed from the first state to the second state. are doing.
 後方車両の状態が第1状態から第2状態に変わったと判定された場合には、車両変更準備部104は、車線変更ための操舵制御、及び/又は、ウィンカー80の作動の開始を行う。車線変更ための操舵制御は、ステアリングアクチュエータを制御することで、自車両の車幅方向の位置を現在位置よりも隣接車線側に近づけることである。これにより、特定された後方車両の車速が自車両の車速より高い場合には、後方車両の車速が自車両の車速以下になった後に、意思表示制御が実行される。 When it is determined that the state of the rear vehicle has changed from the first state to the second state, the vehicle change preparation unit 104 performs steering control for changing lanes and / or starts operation of the blinker 80. Steering control for changing lanes is to control the steering actuator to bring the position of the own vehicle in the vehicle width direction closer to the adjacent lane side than the current position. As a result, when the vehicle speed of the specified rear vehicle is higher than the vehicle speed of the own vehicle, the manifestation of intention control is executed after the vehicle speed of the rear vehicle becomes equal to or lower than the vehicle speed of the own vehicle.
 車線変更制御部105は、車線変更を適切に行うための十分なスペースが、進入位置の前後にある場合には車線変更制御を実行する。車線変更制御部105は、車線変更制御として以下の制御を実行する。車線変更制御部105は、ウィンカー80を作動させて、ウィンカー80の点滅を開始する。車線変更制御部105は、自車両の現在位置を始点とし、車線変更後方範囲内の進入位置を終点として、自車両が車線変更するための目標軌跡を生成する。車線変更制御部105は、目標軌跡に沿って自車両が走行する際の車速及び操舵角を設定する。走行制御部108は、設定された車速及び操舵角に応じた制御信号を、アクチュエータ制御装置60に出力する。そして、自車両の位置が進入位置に到達した場合には、車線変更制御部105は、ウィンカー80の点滅を終了して、車線変更制御を終える。なお、意思表示制御がウィンカー80の作動制御を含む場合には、ウィンカー80を点滅するための制御は、車線変更制御から省略される。 The lane change control unit 105 executes lane change control when there is sufficient space before and after the approach position to properly change lanes. The lane change control unit 105 executes the following control as lane change control. The lane change control unit 105 operates the blinker 80 and starts blinking of the blinker 80. The lane change control unit 105 generates a target trajectory for the own vehicle to change lanes, starting from the current position of the own vehicle and ending at the approach position within the range behind the lane change. The lane change control unit 105 sets the vehicle speed and steering angle when the own vehicle travels along the target trajectory. The travel control unit 108 outputs a control signal according to the set vehicle speed and steering angle to the actuator control device 60. Then, when the position of the own vehicle reaches the approach position, the lane change control unit 105 ends the blinking of the blinker 80 and ends the lane change control. When the manifestation of intention control includes the operation control of the blinker 80, the control for blinking the blinker 80 is omitted from the lane change control.
 次に、図2及び図3を参照して、制御装置101の制御フローを説明する。図2は、本実施形態に係る車両制御装置により実行される制御処理のフローチャートを示す。図3は、自車両の走行シーンの一例を示しており、(a)から(b)の順で変化する。なお、図3は走行中の各車両の相対的な位置関係を表している。 Next, the control flow of the control device 101 will be described with reference to FIGS. 2 and 3. FIG. 2 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment. FIG. 3 shows an example of a traveling scene of the own vehicle, which changes in the order of (a) to (b). Note that FIG. 3 shows the relative positional relationship of each running vehicle.
 図3(a)に示すように、他車両Yが、自車線上で自車両Xの前方に位置しており、自車両X及び他車両Yは同じ速度で走行している(定常状態)。そして、後方車両Aが、隣接車線上で自車両Xの後方に位置しており、後方から自車両Aに近づいている。以下の制御フローは、図3に示す走行シーンにおいて実行される。以下の各制御フローは、完全に自動で行われてもよいし、運転者の運転操作を支援する態様で行われてもよい。 As shown in FIG. 3A, the other vehicle Y is located in front of the own vehicle X on the own lane, and the own vehicle X and the other vehicle Y are traveling at the same speed (steady state). Then, the rear vehicle A is located behind the own vehicle X on the adjacent lane, and is approaching the own vehicle A from the rear. The following control flow is executed in the driving scene shown in FIG. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver.
 ステップS1にて、制御装置101は、周辺環境センサ群10から、自車両の外部情報(周辺情報)を取得する。また、制御装置101は、自車両の内部情報を取得する。なお、制御装置101は、ステップS2以降の制御処理を実行している間、自車両の外部情報及び内部情報を所定の周期で取得する。走行状態は、車両の位置、車両の車速等で表される。 In step S1, the control device 101 acquires external information (peripheral information) of the own vehicle from the surrounding environment sensor group 10. In addition, the control device 101 acquires internal information of the own vehicle. The control device 101 acquires the external information and the internal information of the own vehicle at a predetermined cycle while executing the control process after step S2. The traveling state is represented by the position of the vehicle, the vehicle speed of the vehicle, and the like.
 ステップS2にて、制御装置101は、自車両の走行経路に基づき、車線変更箇所を特定する。図3の例では、制御装置101は、自車両の走行経路に基づき車線変更箇所(点S)を特定する。ステップS3にて、制御装置101は、自車両の現在位置と車線変更箇所とを比較し、自車両が車線変更箇所に到達したか否かを判定する。自車両の現在位置が車線変更箇所に到達していない場合には、制御装置101はステップS3の制御処理を繰り返し実行する。自車両の現在位置が車線変更箇所に到達した場合には、制御装置101は、ステップS4以降の制御処理を実行する。 In step S2, the control device 101 identifies the lane change location based on the traveling route of the own vehicle. In the example of FIG. 3, the control device 101 identifies the lane change location (point S) based on the traveling route of the own vehicle. In step S3, the control device 101 compares the current position of the own vehicle with the lane change location, and determines whether or not the own vehicle has reached the lane change location. If the current position of the own vehicle has not reached the lane change location, the control device 101 repeatedly executes the control process of step S3. When the current position of the own vehicle reaches the lane change location, the control device 101 executes the control process after step S4.
 ステップS4にて、制御装置101は、自車両の周辺情報から、隣接車線上に、自車両の進入位置を特定する。また制御装置101は、進入位置の後方に位置する他車両を後方車両として特定する。制御装置101は、周期的に取得される周辺情報に基づき、特定された後方車両の車速を検出する。図3の例では、制御装置101は、進入位置(点P)と後方車両Aを特定し、後方車両Aの車速(V)を算出する。 In step S4, the control device 101 identifies the approach position of the own vehicle on the adjacent lane from the peripheral information of the own vehicle. Further, the control device 101 identifies another vehicle located behind the approach position as a rear vehicle. The control device 101 detects the vehicle speed of the specified rear vehicle based on the peripheral information acquired periodically. In the example of FIG. 3, the control device 101 identifies the approach position (point P) and the rear vehicle A, and calculates the vehicle speed ( VA ) of the rear vehicle A.
 ステップS5にて、制御装置101は、後方車両Aの車速(V)が自車両の車速(V)より高いか否かを判定する。つまり、制御装置101は、後方車両Aの状態が第1状態であるか否かを判定する。後方車両Aの車速(V)が自車両の車速(V)より低い場合には、制御装置101は、ステップS12の制御処理を実行する。 In step S5, the control device 101 determines whether or not the vehicle speed ( VA ) of the rear vehicle A is higher than the vehicle speed (V x ) of the own vehicle. That is, the control device 101 determines whether or not the state of the rear vehicle A is the first state. When the vehicle speed ( VA ) of the rear vehicle A is lower than the vehicle speed (V x ) of the own vehicle, the control device 101 executes the control process of step S12.
 ステップS6にて、制御装置101は、後方車両Aの車速(V)が自車両の車速(V)以下であるか否かを判定する。つまり、制御装置101は、後方車両Aの状態が第2状態であるか否かを判定する。後方車両Aの車速(V)が自車両の車速(V)以下である場合には、ステップS7にて、制御装置101は、第1所定時間を経過したか否かを判定する。第1所定時間は、予め設定されている時間であって、後方車両Aの車速(V)が、自車両の車速(V)より高い速度から、自車両の車速(V)以下の速度に変化するまで、待つことが可能な上限時間を示している。なお、制御装置101は、自車両Xと後方車両Aとの間の距離が長いほど、第1所定時間を長くしてもよい。 In step S6, the control device 101 determines whether or not the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle. That is, the control device 101 determines whether or not the state of the rear vehicle A is the second state. When the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle, in step S7, the control device 101 determines whether or not the first predetermined time has elapsed. The first predetermined time is a preset time, and the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle from a speed higher than the vehicle speed (V x ) of the own vehicle. It shows the maximum time that can be waited until the speed changes. The control device 101 may lengthen the first predetermined time as the distance between the own vehicle X and the rear vehicle A becomes longer.
 第1所定時間が経過していない場合には、制御装置101はステップS5の制御を実行する。第1所定時間が経過した場合には、制御装置101は図3に示す制御フローを終了する。 If the first predetermined time has not elapsed, the control device 101 executes the control in step S5. When the first predetermined time has elapsed, the control device 101 ends the control flow shown in FIG.
 後方車両Aの車速(V)が自車両の車速(V)以下である場合には、制御装置101はステップS8の制御フローを実行する。すなわち、制御装置101は、ステップS5及びステップS6の制御フローを実行することで、自車両X及び後方車両Aの走行状態が第1状態から第2状態に変わるか否かを判定している。言い換えると、制御装置101は、後方車両Aが自車両Xとの間の相対的な位置関係で、後方車両Aが自車両Xに接近しているか否かを判定している。そして、第1状態から第2状態に変わったと判定した場合には、制御装置101はステップS8以降の制御フローを実行する。 When the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle, the control device 101 executes the control flow of step S8. That is, the control device 101 determines whether or not the traveling state of the own vehicle X and the rear vehicle A changes from the first state to the second state by executing the control flow of step S5 and step S6. In other words, the control device 101 determines whether or not the rear vehicle A is approaching the own vehicle X based on the relative positional relationship between the rear vehicle A and the own vehicle X. Then, when it is determined that the state has changed from the first state to the second state, the control device 101 executes the control flow from step S8 onward.
 ステップS8にて、制御装置101は、後方車両Aに対して自車両Aの車線変更の意思を示すために、意思表示制御を実行する。図3の例では、(b)に示すように、後方車両Aの車速(V)が自車両の車速(V)以下になったため、自車両Xの位置を隣接車線側に近づけることで意思表示制御を実行している。 In step S8, the control device 101 executes manifestation of intention control in order to indicate to the rear vehicle A the intention to change the lane of the own vehicle A. In the example of FIG. 3, as shown in (b), the vehicle speed ( VA ) of the rear vehicle A is equal to or less than the vehicle speed (V x ) of the own vehicle, so that the position of the own vehicle X is moved closer to the adjacent lane side. The manifestation of intention control is being executed.
 ステップS9にて、制御装置101は、後方車両Aが加速したか否かを判定する。後方車両Aが加速したと判定された場合には、ステップS10にて、制御装置101は意思表示制御を停止する。すなわち、意思表示制御を実行した後に、車両Aが加速した場合には、後方車両のドライバーは、意思表示制御による車両の動き、及び/又は、意思表示制御によるウィンカーの点滅に反応するおそれがある。そのため、本実施形態では、意思表示制御を実行した後に、車両Aが加速した場合には、意思表示制御を停止する。そして、制御装置101は、図2に示す制御フローを終了させる。 In step S9, the control device 101 determines whether or not the rear vehicle A has accelerated. If it is determined that the rear vehicle A has accelerated, the control device 101 stops the manifestation of intention control in step S10. That is, when the vehicle A accelerates after executing the manifestation of intention control, the driver of the rear vehicle may react to the movement of the vehicle by the manifestation of intention control and / or the blinking of the blinker by the manifestation of intention control. .. Therefore, in the present embodiment, when the vehicle A accelerates after executing the manifestation of intention control, the manifestation of intention control is stopped. Then, the control device 101 ends the control flow shown in FIG.
 後方車両Aが加速していると判定された場合には、ステップS11にて、制御装置101は、第2所定時間を経過したか否かを判定する。第2所定時間は、予め設定されている時間であって、意思表示制御を継続させる時間を示している。第2所定時間が経過していない場合には、制御装置101はステップS8の制御を実行する。第2所定時間が経過した場合には、ステップS12にて、制御装置101は、車線変更制御部105による車線変更制御を実行する。 If it is determined that the rear vehicle A is accelerating, in step S11, the control device 101 determines whether or not the second predetermined time has elapsed. The second predetermined time is a preset time and indicates a time for continuing the manifestation of intention control. If the second predetermined time has not elapsed, the control device 101 executes the control in step S8. When the second predetermined time has elapsed, in step S12, the control device 101 executes lane change control by the lane change control unit 105.
 上記のように、本実施形態では、後方車両の車速が自車両の車速より高い第1状態から、後方車両の車速が自車両の車速以下である第2状態に変わるか否かを判定し、後方車両の状態が第1状態から第2状態に変わったと判定された場合には、自車両が後方車両に対して、車線変更の意思表示を示すための車両制御である意思表示制御を実行する。これにより、本実施形態では、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されることを防止できる。 As described above, in the present embodiment, it is determined whether or not the vehicle speed of the rear vehicle changes from the first state in which the vehicle speed of the rear vehicle is higher than the vehicle speed of the own vehicle to the second state in which the vehicle speed of the rear vehicle is lower than the vehicle speed of the own vehicle. When it is determined that the state of the rear vehicle has changed from the first state to the second state, the own vehicle executes manifestation of intention control, which is vehicle control for indicating the intention of changing lanes to the rear vehicle. .. Thereby, in the present embodiment, it is possible to prevent the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle.
 また本実施形態では、意思表示制御は、自車両の車幅方向の位置を現在位置よりも隣接車線側に近づける制御、及び/又は、自車両のウィンカー作動させる制御である。これにより、後方車両の車速が自車両の車速以下になった、後方車両に対して、車線変更の意思を伝えることができる。 Further, in the present embodiment, the manifestation of intention control is a control for bringing the position of the own vehicle in the vehicle width direction closer to the adjacent lane side than the current position, and / or a control for operating the blinker of the own vehicle. As a result, it is possible to convey the intention to change lanes to the rear vehicle in which the vehicle speed of the rear vehicle is lower than the vehicle speed of the own vehicle.
 また本実施形態では、後方車両の状態が第1状態から第2状態に変わった後に、後方車速が加速した場合には、意思表示制御を停止する。これにより、後方車両に対して、意思表示制御による車両の動き、及び/又は、意思表示制御によるウィンカーの点滅に反応して、対象車両がすぐに車線を変更すると誤解させるという事態を防止できる。 Further, in the present embodiment, when the rear vehicle speed accelerates after the state of the rear vehicle changes from the first state to the second state, the manifestation of intention control is stopped. As a result, it is possible to prevent the rear vehicle from misunderstanding that the target vehicle immediately changes lanes in response to the movement of the vehicle by the manifestation of intention control and / or the blinking of the blinker by the manifestation of intention control.
 なお本実施形態では、ステップS6の制御フローにおいて、制御装置101は、後方車両Aの状態が第2状態であるか否かを判定したが、後方車両の車速が所定時間後に自車両の車速以下になる状態を、第2状態とした上で、制御装置101は第2状態であるか否かを判定してもよい。具体的には、制御装置101は、自車両の周辺情報から、後方車両Aの車速を時系列で検出し、特定された時系列の車速変化量から、後方車両Aの減速度を算出する。そして、算出された減速度が所定の減速度閾値より高いか否かを判定する。そして、後方車両Aの車速が自車両Xの車速より高い状態であり、後方車両Aの減速度が減速度閾値より高い場合には、後方車両の車速が所定時間後に自車両の車速以下になると予測できるため、制御装置101は第2状態の条件を満たすと判定する。 In the present embodiment, in the control flow of step S6, the control device 101 determines whether or not the state of the rear vehicle A is the second state, but the vehicle speed of the rear vehicle is equal to or less than the vehicle speed of the own vehicle after a predetermined time. The control device 101 may determine whether or not it is the second state after setting the state to be the second state. Specifically, the control device 101 detects the vehicle speed of the rear vehicle A in time series from the peripheral information of the own vehicle, and calculates the deceleration of the rear vehicle A from the specified time series vehicle speed change amount. Then, it is determined whether or not the calculated deceleration is higher than the predetermined deceleration threshold. When the vehicle speed of the rear vehicle A is higher than the vehicle speed of the own vehicle X and the deceleration of the rear vehicle A is higher than the deceleration threshold value, the vehicle speed of the rear vehicle becomes lower than the vehicle speed of the own vehicle after a predetermined time. Since it can be predicted, the control device 101 determines that the condition of the second state is satisfied.
 このように本実施形態では、後方車両の車速が自車両の車速より高い第1状態から、後方車両の車速が所定時間後に自車両の車速以下になる第2状態に変わるか否かを判定し、後方車両の状態が第1状態から第2状態に変わったと判定された場合には、自車両が後方車両に対して、意思表示制御を実行する。これにより、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されることを防止できる。 As described above, in the present embodiment, it is determined whether or not the vehicle speed of the rear vehicle changes from the first state where the vehicle speed is higher than the vehicle speed of the own vehicle to the second state where the vehicle speed of the rear vehicle becomes lower than the vehicle speed of the own vehicle after a predetermined time. When it is determined that the state of the rear vehicle has changed from the first state to the second state, the own vehicle executes manifestation of intention control on the rear vehicle. As a result, it is possible to prevent vehicle control that indicates the intention to change lanes to other vehicles from being executed regardless of the traveling state of the other vehicle.
 なお、本実施形態において、後方車両の状態が第2状態になることは、後方車両においてブレーキ操作がされた場合に限らず、後方車両においてアクセルオフにより車速が調整された場合も含まれる。つまり、後方車両がアクセルオフで減速操作に移行した場合には、後方車両の車速は減少するために、後方車両は第1状態の後に第2状態になり得る。そして、本実施形態において、制御装置101は、後方車両の状態が第1状態から第2状態に変わったと判定された場合に、自車両が後方車両に対して、意思表示制御を実行し、車線変更制御を実行する。これにより、自車両の車線変更が開始されても、後方車両のドライバーはペダルをアクセルペダルからブレーキペダルに踏み変えなくてもよいため、不要なペダル操作を回避できる。 In the present embodiment, the state of the rear vehicle being in the second state is not limited to the case where the brake is operated in the rear vehicle, but also includes the case where the vehicle speed is adjusted by the accelerator off in the rear vehicle. That is, when the rear vehicle shifts to the deceleration operation when the accelerator is off, the vehicle speed of the rear vehicle decreases, so that the rear vehicle can be in the second state after the first state. Then, in the present embodiment, when it is determined that the state of the rear vehicle has changed from the first state to the second state, the control device 101 executes intention display control for the rear vehicle and lanes. Execute change control. As a result, even if the lane change of the own vehicle is started, the driver of the rear vehicle does not have to change the pedal from the accelerator pedal to the brake pedal, so that unnecessary pedal operation can be avoided.
 なお、本実施形態において、図3の例で、後方車両Aが自車両Xに対して十分に離れている場合(例えば、後方車両Aのドライバーが自車両の車線変更に反応しても、アクセルオフのみで十分に減速できる場合)には、意思表示制御を実行せずに、車線変更制御を行ってもよい。 In this embodiment, in the example of FIG. 3, when the rear vehicle A is sufficiently separated from the own vehicle X (for example, even if the driver of the rear vehicle A reacts to the lane change of the own vehicle, the accelerator is used. If the vehicle can be sufficiently decelerated only by turning it off), the lane change control may be performed without executing the manifestation of intention control.
《第2実施形態》
 本発明の他の実施形態に係る車両システム200を説明する。本実施形態では第1実施形態に対して、制御装置101の一部の制御が異なる。車両システム200の構成は、第1実施形態と同じであり、その記載を援用する。また以下の説明では、制御装置101の機能及び制御処理のうち、異なる部分を主に説明するが、第1実施形態に記載された制御装置101の機能及び制御処理を適宜援用してもよい。
<< Second Embodiment >>
The vehicle system 200 according to another embodiment of the present invention will be described. In the present embodiment, the control of a part of the control device 101 is different from that of the first embodiment. The configuration of the vehicle system 200 is the same as that of the first embodiment, and the description thereof is incorporated. Further, in the following description, different parts of the function and control process of the control device 101 will be mainly described, but the function and control process of the control device 101 described in the first embodiment may be appropriately incorporated.
 図4及び図5を参照して、制御装置101の制御フローを説明する。図4は、本実施形態に係る車両制御装置により実行される制御処理のフローチャートを示す。図5は、自車両の走行シーンの一例を示しており、(a)から(b)の順で変化する。なお、図5は走行中の各車両の相対的な位置関係を表している。 The control flow of the control device 101 will be described with reference to FIGS. 4 and 5. FIG. 4 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment. FIG. 5 shows an example of a traveling scene of the own vehicle, which changes in the order of (a) to (b). Note that FIG. 5 shows the relative positional relationship of each running vehicle.
 図5(a)に示すように、他車両Yが自車線上で自車両Xの前方に位置しており、他車両B(前方車両B)が隣接車線上で自車両Xの前方に位置しており、他車両Y及び前方車両Bは同じ速度で走行している(定常走行状態)。そして、後方車両Aが、隣接車線上で自車両Xの後方に位置しており、後方から自車両Xに近づいている。以下の制御フローは、図5に示す走行シーンにおいて実行される。以下の各制御フローは、完全に自動で行われてもよいし、運転者の運転操作を支援する態様で行われてもよい。 As shown in FIG. 5A, the other vehicle Y is located in front of the own vehicle X on the own lane, and the other vehicle B (front vehicle B) is located in front of the own vehicle X on the adjacent lane. The other vehicle Y and the vehicle B in front are traveling at the same speed (steady traveling state). Then, the rear vehicle A is located behind the own vehicle X on the adjacent lane and is approaching the own vehicle X from the rear. The following control flow is executed in the driving scene shown in FIG. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver.
 ステップS21~ステップS24の制御フローは、ステップS1~ステップS4の制御フローと同様である。ステップS24では、制御装置101は、自車両Xの周囲を走行する他車両A、Yに加えて、前方車両Bを特定する。また制御装置101は、自車両の周辺情報に基づき、前方車両Bの車速を検出する。 The control flow of steps S21 to S24 is the same as the control flow of steps S1 to S4. In step S24, the control device 101 identifies the vehicle in front B in addition to the other vehicles A and Y traveling around the own vehicle X. Further, the control device 101 detects the vehicle speed of the vehicle B in front based on the peripheral information of the own vehicle.
 ステップS25にて、制御装置101は、自車両Xと同一車線上で、自車両Xの前方に位置する他車両Yの車速と、自車両Xの車速と対応させるように、自車両の車速を制御する。具体的には、制御装置101は、自車両の車速Xが他車両Yの車速と同じ車速になるように、自車両Xの車速を調整する。なお、自車両Xの車速を他車両Yの車速と対応させるには、必ずしも車速を一致させる必要はなく、制御装置101は、自車両Xと他車両Yの車速差が所定値以下になるように自車両Xの車速を調整することで、自車両Xの車速を他車両Yの車速と対応させてもよい。 In step S25, the control device 101 sets the vehicle speed of the own vehicle so as to correspond to the vehicle speed of the other vehicle Y located in front of the own vehicle X on the same lane as the own vehicle X and the vehicle speed of the own vehicle X. Control. Specifically, the control device 101 adjusts the vehicle speed of the own vehicle X so that the vehicle speed X of the own vehicle becomes the same as the vehicle speed of the other vehicle Y. In order to make the vehicle speed of the own vehicle X correspond to the vehicle speed of the other vehicle Y, it is not always necessary to match the vehicle speeds, and the control device 101 so that the vehicle speed difference between the own vehicle X and the other vehicle Y is equal to or less than a predetermined value. By adjusting the vehicle speed of the own vehicle X, the vehicle speed of the own vehicle X may correspond to the vehicle speed of the other vehicle Y.
 ステップS26~ステップS33の制御フローは、ステップS5~ステップS12の制御フローと同様である。すなわち、前方車両B及び他車両Yが、自車両Xの前方の位置で定常走行を行っている場合には、自車両Xは、他車両Yと所定距離を空けて定常走行になるように、自車両Xの車速を、他車両の車速と対応する対応車速に制御する。そして、前方車両B、自車両X、及び他車両Yが定常走行の状態になった後に、ステップS26以降の制御処理を実行する。そして、図5(b)に示すように、後方車両Aの車速(V)が自車両の車速(V)以下になった場合に、制御装置101は、自車両Xの位置を隣接車線側に近づけることで意思表示制御を実行している。 The control flow of steps S26 to S33 is the same as the control flow of steps S5 to S12. That is, when the front vehicle B and the other vehicle Y are performing steady running at a position in front of the own vehicle X, the own vehicle X is kept running at a predetermined distance from the other vehicle Y. The vehicle speed of the own vehicle X is controlled to a corresponding vehicle speed corresponding to the vehicle speed of another vehicle. Then, after the front vehicle B, the own vehicle X, and the other vehicle Y are in the steady running state, the control process after step S26 is executed. Then, as shown in FIG. 5B, when the vehicle speed ( VA ) of the rear vehicle A becomes equal to or less than the vehicle speed (V x ) of the own vehicle, the control device 101 changes the position of the own vehicle X to the adjacent lane. The manifestation of intention control is executed by bringing it closer to the side.
 上記のように、本実施形態では、隣接車線上で、進入位置の前方に位置する前方車両を特定し、自車両が自車線上で前方車両の後方に位置する状態で、自車両の車速を、前方車両の車速と対応する対応車速に制御し、自車両の車速が対応車速になった後に、後方車両の車速が第1状態から第2状態に変わったと判定された場合に、意思表示制御を実行する。これにより、本実施形態では、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されることを防止できる。 As described above, in the present embodiment, the front vehicle located in front of the approach position is specified on the adjacent lane, and the vehicle speed of the own vehicle is determined in a state where the own vehicle is located behind the front vehicle on the own lane. , Controls to the corresponding vehicle speed corresponding to the vehicle speed of the vehicle in front, and when it is determined that the vehicle speed of the rear vehicle has changed from the first state to the second state after the vehicle speed of the own vehicle has reached the corresponding vehicle speed, manifestation of intention control To execute. Thereby, in the present embodiment, it is possible to prevent the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle.
 なお、本実施形態では、ステップS30の制御フローにおいて、後方車両Aが加速したか否かを判定したが、後方車両Aの代わりに前方車両Bが加速したか否かを判定してもよい。そして、前方車両Bが加速した場合には、ステップS21にて、制御装置101は意思表示制御を停止する。すなわち、意思表示制御を実行した後に、前方車両Bが加速した場合には、前方車両Bの加速に追従するように、後方車両Aが加速する可能性がある。そして、後方車両Aのドライバーが意思表示制御による車両の動き、及び/又は、意思表示制御によるウィンカーの点滅に反応するおそれがある。そのため、本実施形態では、意思表示制御を実行した後に、前方車両Bが加速した場合には、意思表示制御を停止する。そして、制御装置101は、図4に示す制御フローを終了させる。 In the present embodiment, in the control flow of step S30, it is determined whether or not the rear vehicle A has accelerated, but it may be determined whether or not the front vehicle B has accelerated instead of the rear vehicle A. Then, when the vehicle B ahead accelerates, the control device 101 stops the manifestation of intention control in step S21. That is, when the front vehicle B accelerates after executing the manifestation of intention control, the rear vehicle A may accelerate so as to follow the acceleration of the front vehicle B. Then, the driver of the rear vehicle A may react to the movement of the vehicle by the manifestation of intention control and / or the blinking of the blinker by the manifestation of intention control. Therefore, in the present embodiment, when the vehicle B ahead accelerates after executing the manifestation of intention control, the manifestation of intention control is stopped. Then, the control device 101 ends the control flow shown in FIG.
 このように、本実施形態では、後方車両の状態が第1状態から第2状態に変わった後に、前方車速が加速した場合には、意思表示制御を停止する。これにより、後方車両に対して、意思表示制御による車両の動き、及び/又は、意思表示制御によるウィンカーの点滅に反応して、対象車両がすぐに車線を変更すると誤解させるという事態を防止できる。 As described above, in the present embodiment, when the front vehicle speed accelerates after the state of the rear vehicle changes from the first state to the second state, the manifestation of intention control is stopped. As a result, it is possible to prevent the rear vehicle from misunderstanding that the target vehicle immediately changes lanes in response to the movement of the vehicle by the manifestation of intention control and / or the blinking of the blinker by the manifestation of intention control.
 なお、本実施形態において、ステップS32の制御フローの代わりに、制御装置101が、後方車両Aと前方車両Bとの間の車間距離が広がっているか否かを判定する、ステップを加えてもよい。そして、後方車両Aと前方車両Bとの間の車間距離が広がっている場合に、制御装置101は車線変更制御を実行する。後方車両Aと前方車両Bとの間の車間距離が広がっていない場合には、制御装置101はステップS29の制御フローを実行する。これにより、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されることを防止できる。 In the present embodiment, instead of the control flow in step S32, a step may be added in which the control device 101 determines whether or not the inter-vehicle distance between the rear vehicle A and the front vehicle B is widened. .. Then, when the inter-vehicle distance between the rear vehicle A and the front vehicle B is widened, the control device 101 executes lane change control. When the inter-vehicle distance between the rear vehicle A and the front vehicle B is not widened, the control device 101 executes the control flow in step S29. As a result, it is possible to prevent vehicle control that indicates the intention to change lanes to other vehicles from being executed regardless of the traveling state of the other vehicle.
《第3実施形態》
 本発明の他の実施形態に係る車両システム200を説明する。本実施形態では第2実施形態に対して、制御装置101の一部の制御が異なる。車両システム200の構成は、第1,2実施形態と同じであり、その記載を援用する。また以下の説明では、制御装置101の機能及び制御処理のうち、異なる部分を主に説明するが、第1又は第2実施形態に記載された制御装置101の機能及び制御処理を適宜援用してもよい。
<< Third Embodiment >>
The vehicle system 200 according to another embodiment of the present invention will be described. In the present embodiment, the control of a part of the control device 101 is different from that of the second embodiment. The configuration of the vehicle system 200 is the same as that of the first and second embodiments, and the description thereof is incorporated. Further, in the following description, different parts of the functions and control processes of the control device 101 will be mainly described, but the functions and control processes of the control device 101 described in the first or second embodiment will be appropriately incorporated. May be good.
 図6及び図7を参照して、制御装置101の制御フローを説明する。図6は、本実施形態に係る車両制御装置により実行される制御処理のフローチャートを示す。図7は、自車両の走行シーンの一例を示しており、(a)から(b)の順で変化する。なお、図7は走行中の各車両の相対的な位置関係を表している。 The control flow of the control device 101 will be described with reference to FIGS. 6 and 7. FIG. 6 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment. FIG. 7 shows an example of the traveling scene of the own vehicle, which changes in the order of (a) to (b). Note that FIG. 7 shows the relative positional relationship of each running vehicle.
 図7(a)に示すように、他車両Yが自車線上で自車両Xの前方で停車しており、他車両B(前方車両B)が隣接車線上で自車両Xの前方で停車している。そして、後方車両Aが、隣接車線上で自車両Xの後方に位置しており、後方から自車両Aに近づいている。以下の制御フローは、図7に示す走行シーンにおいて実行される。以下の各制御フローは、完全に自動で行われてもよいし、運転者の運転操作を支援する態様で行われてもよい。なお、以下の制御フローの説明では、第2実施形態に係る制御フローと対比しつつ、制御フローを説明する。 As shown in FIG. 7A, the other vehicle Y is stopped in front of the own vehicle X on the own lane, and the other vehicle B (front vehicle B) is stopped in front of the own vehicle X on the adjacent lane. ing. Then, the rear vehicle A is located behind the own vehicle X on the adjacent lane, and is approaching the own vehicle A from the rear. The following control flow is executed in the driving scene shown in FIG. 7. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver. In the following description of the control flow, the control flow will be described in comparison with the control flow according to the second embodiment.
 ステップS41~ステップS44の制御フローは、第2実施形態に係るステップS21~ステップS24の制御フローと同様である。 The control flow of steps S41 to S44 is the same as the control flow of steps S21 to S24 according to the second embodiment.
 ステップS45にて、制御装置101は、自車両Xと同一車線上で他車両Yと所定距離を空け、進入位置Pの付近に停車する。ステップS46にて、制御装置101は、後方車両Aの車速(V)が自車両の車速(V)より高いか否かを判定する。つまり、制御装置101は、後方車両Aの状態が第1状態であるか否かを判定する。後方車両Aの車速(V)が自車両の車速(V)より低い場合には、制御装置101は、ステップS53の制御処理を実行する。 In step S45, the control device 101 leaves a predetermined distance from the other vehicle Y on the same lane as the own vehicle X, and stops in the vicinity of the approach position P. In step S46, the control device 101 determines whether or not the vehicle speed ( VA ) of the rear vehicle A is higher than the vehicle speed (V x ) of the own vehicle. That is, the control device 101 determines whether or not the state of the rear vehicle A is the first state. When the vehicle speed ( VA ) of the rear vehicle A is lower than the vehicle speed (V x ) of the own vehicle, the control device 101 executes the control process of step S53.
 ステップS47にて、制御装置101は、後方車両Aの車速(V)がゼロであるか否か(後方車両Aが停車しているか否か)を判定する。つまり、本実施形態では、後方車両Aが自車両Xの後方で停車している状態を、第2状態として判定している。ステップS48~ステップS53の制御フローは、第2実施形態に係るステップS28~ステップS33の制御フローと同様である。 In step S47, the control device 101 determines whether or not the vehicle speed ( VA ) of the rear vehicle A is zero (whether or not the rear vehicle A is stopped). That is, in the present embodiment, the state in which the rear vehicle A is stopped behind the own vehicle X is determined as the second state. The control flow of steps S48 to S53 is the same as the control flow of steps S28 to S33 according to the second embodiment.
 図7(b)に示すように、自車両Xが停車している場合には、後方車両Aが隣接車線上で自車両の後方で停車しているときに、制御装置101は、自車両Xの位置を隣接車線側に近づけることで意思表示制御を実行している。 As shown in FIG. 7B, when the own vehicle X is stopped, the control device 101 sets the own vehicle X when the rear vehicle A is stopped behind the own vehicle on the adjacent lane. The manifestation of intention control is executed by moving the position of the vehicle closer to the adjacent lane.
 上記のように本実施形態では、自車両が停車している場合には、後方車両が自車両の後方で停車している状態を第2状態として判定する。これにより、本実施形態では、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されることを防止できる。 As described above, in the present embodiment, when the own vehicle is stopped, the state in which the rear vehicle is stopped behind the own vehicle is determined as the second state. Thereby, in the present embodiment, it is possible to prevent the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle.
 なお本実施形態では、ステップS47の制御フローにおいて、制御装置101は、後方車両Aが停車しているか否かを判定したが、後方車両Aが徐行状態であるか否かを判定してもよい。後方車両が徐行状態の時には、自車両が自車線から隣接車線に移動するために操舵を行ったとしても、もともとの車速が低い。そのため、本実施形態では、自車両が停車している場合には、後方車両が自車両の後方で徐行状態している状態を第2状態として判定する。これにより、本実施形態では、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されることを防止できる。なお徐行状態とは、後方車両Aが直ちに停止することができる状態であって、例えば時速数km以下で走行している状態である。なお、徐行の定義が、各国の法律又は法規等で定められている場合には、当該法律又は法規等で定義された状態を、徐行状態としてもよい。 In the present embodiment, in the control flow of step S47, the control device 101 determines whether or not the rear vehicle A is stopped, but may determine whether or not the rear vehicle A is in a slow-moving state. .. When the vehicle behind is slowing down, the original vehicle speed is low even if the vehicle steers to move from the vehicle lane to the adjacent lane. Therefore, in the present embodiment, when the own vehicle is stopped, the state in which the rear vehicle is slowing behind the own vehicle is determined as the second state. Thereby, in the present embodiment, it is possible to prevent the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle. The slow-moving state is a state in which the rear vehicle A can be stopped immediately, for example, a state in which the vehicle is traveling at a speed of several km / h or less. If the definition of slow-moving is defined by the laws or regulations of each country, the state defined by the law or regulations may be defined as the slow-moving state.
《第4実施形態》
 本発明の他の実施形態に係る車両システム200を説明する。本実施形態では第1実施形態に対して、制御装置101の一部の制御が異なる。車両システム200の構成は、第1実施形態と同じであり、その記載を援用する。また以下の説明では、制御装置101の機能及び制御処理のうち、異なる部分を主に説明するが、第1~第3実施形態に記載された制御装置101の機能及び制御処理を適宜援用してもよい。
<< Fourth Embodiment >>
The vehicle system 200 according to another embodiment of the present invention will be described. In the present embodiment, the control of a part of the control device 101 is different from that of the first embodiment. The configuration of the vehicle system 200 is the same as that of the first embodiment, and the description thereof is incorporated. Further, in the following description, different parts of the functions and control processes of the control device 101 will be mainly described, but the functions and control processes of the control device 101 described in the first to third embodiments will be appropriately incorporated. May be good.
 図8及び図9を参照して、制御装置101の制御フローを説明する。図8は、本実施形態に係る車両制御装置により実行される制御処理のフローチャートを示す。図9は、自車両の走行シーンの一例を示しており、(a)から(b)の順で変化する。図9において、V及びVはそれぞれ道路毎に決められた法定速度を示しており、法定速度(V)は法定速度(V)より低い。なお、図9は走行中の各車両の相対的な位置関係を表している。 The control flow of the control device 101 will be described with reference to FIGS. 8 and 9. FIG. 8 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment. FIG. 9 shows an example of the traveling scene of the own vehicle, which changes in the order of (a) to (b). In FIG. 9, V H and VL each indicate legal speeds determined for each road, and the legal speed ( VL ) is lower than the legal speed (V H ). Note that FIG. 9 shows the relative positional relationship of each running vehicle.
 図9(a)に示すように、自車両Xは法定速度(V)の道路を走行しており、後方車両Aは法定速度(V)の道路を走行している。自車両の車速は、法定速度に合わせて、速度(V)から速度(V)に変化する。そして、自車両の速度変化によって、自車両Xと後方車両Aとの間の車間距離は狭くなる。以下の制御フローは、図9に示す走行シーンにおいて実行される。以下の各制御フローは、完全に自動で行われてもよいし、運転者の運転操作を支援する態様で行われてもよい。なお、以下の制御フローの説明では、第2実施形態に係る制御フローと対比しつつ、制御フローを説明する。 As shown in FIG. 9A, the own vehicle X is traveling on the road at the legal speed ( VL ), and the rear vehicle A is traveling on the road at the legal speed (V H ). The vehicle speed of the own vehicle changes from speed (V H ) to speed ( VL ) according to the legal speed. Then, the inter-vehicle distance between the own vehicle X and the rear vehicle A becomes narrower due to the change in the speed of the own vehicle. The following control flow is executed in the driving scene shown in FIG. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver. In the following description of the control flow, the control flow will be described in comparison with the control flow according to the second embodiment.
 ステップS61~ステップS64の制御フローは、第2実施形態に係るステップS21~ステップS24の制御フローと同様である。ステップS65にて、制御装置101は、法定速度の低下に合わせて、法定速度(V)と一致するように自車両の車速(V)を制御する。なお、自車両Xの車速(V)を、必ずしも法定速度(V)を一致させる必要はなく、制御装置101は、自車両Xの車速(V)を法定速度(V)以下になるように自車両Xの車速を調整してもよい。 The control flow of steps S61 to S64 is the same as the control flow of steps S21 to S24 according to the second embodiment. In step S65, the control device 101 controls the vehicle speed (V X ) of the own vehicle so as to match the legal speed ( VL ) in accordance with the decrease in the legal speed. The vehicle speed (V X ) of the own vehicle X does not necessarily have to match the legal speed ( VL ), and the control device 101 sets the vehicle speed (V X ) of the own vehicle X to the legal speed ( VL ) or less. The vehicle speed of the own vehicle X may be adjusted so as to be.
 ステップS66の制御フローは、ステップS26の制御フローと同様である。ステップS67にて、制御装置101は、後方車両の車速(V)が法定速度(V)以下であるか否かを判定する。つまり、制御装置101は、後方車両Aが自車両Xの後方で法定速度(V)以下になる状態を、第2状態として判定している。なお、ステップS65の制御フローにおいて、自車両Xの車速(V)を法定速度(V)以下に調整した場合には、ステップS67にて、制御装置101は後方車両Aが自車両Xの後方で、自車両の調整後の速度以下になる状態を、第2状態として判定してもよい。ステップS68~ステップS73の制御フローは、第2実施形態に係るステップS28~ステップS33の制御フローと同様である。 The control flow in step S66 is the same as the control flow in step S26. In step S67, the control device 101 determines whether or not the vehicle speed ( VA ) of the vehicle behind is equal to or less than the legal speed ( VL ). That is, the control device 101 determines that the state in which the rear vehicle A becomes the legal speed ( VL ) or less behind the own vehicle X as the second state. In the control flow of step S65, when the vehicle speed (V X ) of the own vehicle X is adjusted to be equal to or lower than the legal speed ( VL ), in step S67, the rear vehicle A of the control device 101 is the own vehicle X. A state in which the speed becomes lower than the adjusted speed of the own vehicle in the rear may be determined as the second state. The control flow of steps S68 to S73 is the same as the control flow of steps S28 to S33 according to the second embodiment.
 図9(b)に示すように、自車両Xの車速が法定速度(V)から、法定速度(V)以下の速度に低下し、後方車両Aが隣接車線上で自車両Xの後方に位置する場合には、後方車両Aの車速が、法定速度(V)以下の速度になったときに、制御装置101は、自車両Xの位置を隣接車線側に近づけることで意思表示制御を実行している。 As shown in FIG. 9B, the vehicle speed of the own vehicle X decreases from the legal speed (V H ) to a speed equal to or lower than the legal speed ( VL ), and the rear vehicle A is behind the own vehicle X on the adjacent lane. When the vehicle speed of the rear vehicle A becomes equal to or lower than the legal speed ( VL ), the control device 101 controls the intention display by moving the position of the own vehicle X closer to the adjacent lane side. Is running.
 上記のように本実施形態では、自車線に対して決まっている法定速度が第1法定速度(V)から第2法定速度(V)に低くなった場合には、自車両の車速を第2法定速度(V)以下に制御し、後方車両が隣接車線で自車両の後方に位置し、後方車両の車速が第2法定速度(V)以下になる状態を、第2状態として判定する。これにより、本実施形態では、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されることを防止できる。 As described above, in the present embodiment, when the legal speed determined for the own lane becomes lower from the first legal speed (V H ) to the second legal speed ( VL ), the vehicle speed of the own vehicle is set. The second state is a state in which the vehicle is controlled below the second legal speed ( VL ), the rear vehicle is located behind the own vehicle in the adjacent lane, and the vehicle speed of the rear vehicle is below the second legal speed ( VL ). judge. Thereby, in the present embodiment, it is possible to prevent the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle.
《第5実施形態》
 本発明の他の実施形態に係る車両システム200を説明する。本実施形態では第1実施形態に対して、制御装置101の一部の制御が異なる。車両システム200の構成は、第1実施形態と同じであり、その記載を援用する。また以下の説明では、制御装置101の機能及び制御処理のうち、異なる部分を主に説明するが、第1~第4実施形態に記載された制御装置101の機能及び制御処理を適宜援用してもよい。
<< Fifth Embodiment >>
The vehicle system 200 according to another embodiment of the present invention will be described. In the present embodiment, the control of a part of the control device 101 is different from that of the first embodiment. The configuration of the vehicle system 200 is the same as that of the first embodiment, and the description thereof is incorporated. Further, in the following description, different parts of the functions and control processes of the control device 101 will be mainly described, but the functions and control processes of the control device 101 described in the first to fourth embodiments will be appropriately incorporated. May be good.
 図10及び図11を参照して、制御装置101の制御フローを説明する。図10は、本実施形態に係る車両制御装置により実行される制御処理のフローチャートを示す。図11は、自車両の走行シーンの一例を示しており、(a)から(b)の順で変化する。図11において、Vは道路に対して決められた法定速度を示しており、Vはカーブの曲率に応じて決まる上限速度を示している。上限速度(V)は、車両がカーブの走行に適した車速の上限を示しており、曲率が大きいほど上限速度は低くなる。なお、図11は走行中の各車両の相対的な位置関係を表している。 The control flow of the control device 101 will be described with reference to FIGS. 10 and 11. FIG. 10 shows a flowchart of a control process executed by the vehicle control device according to the present embodiment. FIG. 11 shows an example of a traveling scene of the own vehicle, which changes in the order of (a) to (b). In Figure 11, V H denotes the legal speed that is determined for the road, V S represents the upper limit speed determined in accordance with the curvature of the curve. Upper limit speed (V S), the vehicle is an upper bound of the vehicle speed suitable for the running of the curve, the upper limit speed the greater the curvature is low. Note that FIG. 11 shows the relative positional relationship of each running vehicle.
 図11(a)に示すように、自車両Xは、直線道路からカーブの道路に進入し、車速(V)で走行している。後方車両Aは、カーブの道路に進入する前の状態であり、法定速度(V)の道路を走行している。自車両Xの車速は、走行中の道路形状の変化に合わせて、速度(V)から速度(V)に変化する。そして、自車両の速度変化によって、自車両Xと後方車両Aとの間の車間距離は狭くなる。以下の制御フローは、図11に示す走行シーンにおいて実行される。以下の各制御フローは、完全に自動で行われてもよいし、運転者の運転操作を支援する態様で行われてもよい。なお、以下の制御フローの説明では、第2実施形態に係る制御フローと対比しつつ、制御フローを説明する。 As shown in FIG. 11 (a), the vehicle X is enters the straight road to the curvature of the road, running at the vehicle speed (V S). The rear vehicle A is in a state before entering the curved road and is traveling on the road at the legal speed ( VH ). Speed of the vehicle X is in accordance with the change in the road shape of the traveling changes from the speed (V H) to the speed (V S). Then, the inter-vehicle distance between the own vehicle X and the rear vehicle A becomes narrower due to the change in the speed of the own vehicle. The following control flow is executed in the driving scene shown in FIG. Each of the following control flows may be performed completely automatically, or may be performed in a manner of assisting the driving operation of the driver. In the following description of the control flow, the control flow will be described in comparison with the control flow according to the second embodiment.
 ステップS81~ステップS84の制御フローは、第2実施形態に係るステップS21~ステップS24の制御フローと同様である。ステップS85にて、制御装置101は、カーブを走行するために、上限速度(V)と一致するように自車両の車速(V)を制御する。なお、自車両Xの車速(V)を、必ずしも上限速度(V)を一致させる必要はなく、制御装置101は、自車両Xの車速(V)を上限速度(V)以下になるように自車両Xの車速を調整してもよい。 The control flow of steps S81 to S84 is the same as the control flow of steps S21 to S24 according to the second embodiment. At step S85, the control device 101, in order to travel the curve, controls the vehicle speed (V X) of the vehicle to match the upper limit speed (V S). Incidentally, the vehicle of the X speed (V X), it is not always necessary to match the upper limit speed (V S), the control unit 101, a vehicle speed (V X) of the vehicle X below the upper limit speed (V S) The vehicle speed of the own vehicle X may be adjusted so as to be.
 ステップS86の制御フローは、ステップS26の制御フローと同様である。ステップS87にて、制御装置101は、後方車両の車速(V)が上限速度(V)以下であるか否かを判定する。つまり、制御装置101は、後方車両Aが自車両Xの後方で上限速度(V)以下になる状態を、第2状態として判定している。
 なお、ステップS85の制御フローにおいて、自車両Xの車速(V)を上限速度(V)以下に調整した場合には、ステップS87にて、制御装置101は後方車両Aが自車両Xの後方で、自車両の調整後の速度以下になる状態を、第2状態として判定してもよい。ステップS88~ステップS93の制御フローは、第2実施形態に係るステップS28~ステップS33の制御フローと同様である。
The control flow in step S86 is the same as the control flow in step S26. In step S87, the control unit 101, the rear vehicle speed (V A) is equal to or upper limit speed (V S) or less. That is, the control unit 101, a state in which the rear vehicle A is equal to or less than the upper limit speed (V S) at the rear of the vehicle X, it is determined as a second state.
Incidentally, in the control flow of the step S85, the when the vehicle X of the vehicle speed (V X) to adjust the upper limit speed (V S) or less, at step S87, the control unit 101 behind the vehicle A is the vehicle X A state in which the speed is lower than the adjusted speed of the own vehicle in the rear may be determined as the second state. The control flow of steps S88 to S93 is the same as the control flow of steps S28 to S33 according to the second embodiment.
 図11(b)に示すように、自車両Xの車速が法定速度(V)から、上限速度(V)以下の速度に低下し、後方車両Aが隣接車線上で自車両Xの後方に位置する場合には、後方車両Aの車速が、上限速度(V)以下の速度になったときに、制御装置101は、自車両Xの位置を隣接車線側に近づけることで意思表示制御を実行している。 As shown in FIG. 11 (b), the vehicle speed is legal speed of the vehicle X (V H), and lowered to the upper limit speed (V S) following speed, rear vehicle A is behind the vehicle X in an adjacent lane when located in the vehicle speed of the following vehicle a is when it is the upper limit speed (V S) the following speed control device 101, gesture control in bringing the position of the vehicle X in the adjacent lane side Is running.
 上記のように本実施形態では、自車両の車速を自車線の曲率に応じて決まる所定速度(上限速度Vに対応)以下に制御し、後方車両が自車両の後方に位置し、後方車両の車速が所定速度以下になる状態を、第2状態として判定する。これにより、本実施形態では、他車両に対して車線変更の意思を表示するような車両制御が、他車両の走行状態と関係なく実行されることを防止できる。 In the present embodiment as described above, the speed of the vehicle is controlled to or below a predetermined speed determined in accordance with the curvature of the host vehicle lane (corresponding to the upper limit speed V s), the rear vehicle is positioned behind the vehicle, the rear vehicle The state in which the vehicle speed is equal to or lower than the predetermined speed is determined as the second state. Thereby, in the present embodiment, it is possible to prevent the vehicle control for displaying the intention to change lanes to the other vehicle from being executed regardless of the traveling state of the other vehicle.
 例えば、本明細書では、本発明に係る車両制御装置を、車両制御装置100を例に説明するが、本発明はこれに限定されるものではない。また、本明細書では、本発明に係る第1車線を、自車線を例に説明するが、本発明はこれに限定されるものではない。また、本明細書では、本発明に係る第2車線を、隣接車線を例に説明するが、本発明はこれに限定されるものではない。 For example, in the present specification, the vehicle control device according to the present invention will be described by taking the vehicle control device 100 as an example, but the present invention is not limited thereto. Further, in the present specification, the first lane according to the present invention will be described by taking the own lane as an example, but the present invention is not limited thereto. Further, in the present specification, the second lane according to the present invention will be described by taking an adjacent lane as an example, but the present invention is not limited thereto.
10…周辺環境センサ群
 11…レーダー
 12…撮像装置
20…車両センサ群
30…ナビゲーションシステム
40…地図データベース
50…HMI
60…アクチュエータ制御装置
70…車両制御アクチュエータ群
80…ウィンカー
100…車両制御装置
 101…制御装置
 102…情報取得部
 103…車線変更箇所特定部
 104…車線変更準備部
 105…車線変更制御部
200…車両システム
10 ... Surrounding environment sensor group 11 ... Radar 12 ... Imaging device 20 ... Vehicle sensor group 30 ... Navigation system 40 ... Map database 50 ... HMI
60 ... Actuator control device 70 ... Vehicle control actuator group 80 ... Winker 100 ... Vehicle control device 101 ... Control device 102 ... Information acquisition unit 103 ... Lane change location identification unit 104 ... Lane change preparation unit 105 ... Lane change control unit 200 ... Vehicle system

Claims (9)

  1.  自車両を車線変更させることが可能なプロセッサに実行させる車両制御方法であって、
     前記自車両に設けられたセンサから、前記自車両の周辺情報を取得し、
     前記自車両の周辺情報に基づいて、前記自車両が走行する第1車線に対して隣接する第2車線上に位置し、前記自車両の進入先の位置を示す進入位置を特定し、
     前記周辺情報に基づいて、前記第2車線上で、前記進入位置の後方に位置する後方車両を特定し、
     前記後方車両の車速を検出し、
     前記後方車両の車速が前記自車両の車速より高い第1状態から、前記後方車両の車速が前記自車両の車速以下である、又は、前記後方車両の車速が所定時間後に前記自車両の車速以下になる第2状態に変わるか否かを判定し、
     前記後方車両の状態が前記第1状態から前記第2状態に変わったと判定された場合には、前記自車両が前記後方車両に対して、車線変更の意思表示を示すための車両制御である意思表示制御を実行する車両制御方法。
    It is a vehicle control method that causes a processor that can change lanes to execute the own vehicle.
    Obtaining peripheral information of the own vehicle from the sensor provided in the own vehicle,
    Based on the peripheral information of the own vehicle, the approach position which is located on the second lane adjacent to the first lane in which the own vehicle travels and indicates the position of the approach destination of the own vehicle is specified.
    Based on the peripheral information, the rear vehicle located behind the approach position on the second lane is identified.
    Detecting the vehicle speed of the rear vehicle,
    From the first state in which the vehicle speed of the rear vehicle is higher than the vehicle speed of the own vehicle, the vehicle speed of the rear vehicle is equal to or less than the vehicle speed of the own vehicle, or the vehicle speed of the rear vehicle is equal to or less than the vehicle speed of the own vehicle after a predetermined time. Judge whether or not to change to the second state
    When it is determined that the state of the rear vehicle has changed from the first state to the second state, the own vehicle intends to indicate the intention to change lanes to the rear vehicle. A vehicle control method that executes display control.
  2.  前記第2車線上で、前記進入位置の前方に位置する前方車両を特定し、
     前記自車両が前記第1車線上で前記前方車両の後方に位置する状態で、前記自車両の車速を、前記前方車両の車速と対応する対応車速に制御し、
     前記自車両の車速が前記対応車速になった後に、前記後方車両の車速が前記第1状態から前記第2状態に変わったと判定された場合に、前記意思表示制御を実行する請求項1記載の車両制御方法。
    On the second lane, the vehicle in front located in front of the approach position is identified.
    In a state where the own vehicle is located behind the front vehicle on the first lane, the vehicle speed of the own vehicle is controlled to a corresponding vehicle speed corresponding to the vehicle speed of the front vehicle.
    The first aspect of the present invention, wherein the manifestation of intention control is executed when it is determined that the vehicle speed of the rear vehicle has changed from the first state to the second state after the vehicle speed of the own vehicle has reached the corresponding vehicle speed. Vehicle control method.
  3.  前記自車両が停車している場合には、前記後方車両が前記自車両の後方で停車している状態、又は、前記後方車両が前記自車両の後方で徐行している状態を、前記第2状態として判定する請求項1又は2記載の車両制御方法。 When the own vehicle is stopped, the state in which the rear vehicle is stopped behind the own vehicle or the state in which the rear vehicle is slowing behind the own vehicle is described as the second. The vehicle control method according to claim 1 or 2, which is determined as a state.
  4.  前記第1車線に対して決まっている法定速度が、第1法定速度から、前記第1法定速度より低い第2法定速度に低くなった場合には、前記自車両の車速を前記第2法定速度以下に制御し、
     前記後方車両が前記第2車線上で前記自車両の後方に位置し、前記後方車両の車速が前記第2法定速度以下になる状態を、前記第2状態として判定する請求項1~3のいずれか一項に記載の車両制御方法。
    When the legal speed determined for the first lane is lowered from the first legal speed to the second legal speed lower than the first legal speed, the vehicle speed of the own vehicle is changed to the second legal speed. Control below
    Any of claims 1 to 3 for determining a state in which the rear vehicle is located behind the own vehicle on the second lane and the vehicle speed of the rear vehicle is equal to or lower than the second legal speed as the second state. The vehicle control method according to the first paragraph.
  5.  前記自車両の車速を、前記第1車線の曲率に応じて決まる所定速度以下に制御し、
     前記後方車両が前記自車両の後方に位置し、前記後方車両の車速が前記所定速度以下になる状態を、前記第2状態として判定する請求項1~3のいずれか一項に記載の車両制御方法。
    The vehicle speed of the own vehicle is controlled to be equal to or lower than a predetermined speed determined according to the curvature of the first lane.
    The vehicle control according to any one of claims 1 to 3, wherein a state in which the rear vehicle is located behind the own vehicle and the vehicle speed of the rear vehicle is equal to or lower than the predetermined speed is determined as the second state. Method.
  6.  前記意思表示制御は、前記自車両の車幅方向の位置を現在位置よりも前記第2車線側に近づける制御、及び/又は、前記自車両のウィンカーを作動させる制御である請求項1~5のいずれか一項に記載の車両制御方法。 The manifestation of intention control is a control for bringing the position of the own vehicle in the vehicle width direction closer to the second lane side than the current position, and / or a control for operating the blinker of the own vehicle, according to claims 1 to 5. The vehicle control method according to any one item.
  7.  前記後方車両の状態が前記第1状態から前記第2状態に変わった後に、前記後方車両が加速した場合には、前記意思表示制御を停止する請求項1~6のいずれか一項に記載の車両制御方法。 The invention according to any one of claims 1 to 6, wherein when the rear vehicle accelerates after the state of the rear vehicle changes from the first state to the second state, the manifestation of intention control is stopped. Vehicle control method.
  8.  前記後方車両の車速が前記第1状態から前記第2状態に変わった後に、前記前方車両が加速した場合には、前記意思表示制御を停止する請求項2に記載の車両制御方法。 The vehicle control method according to claim 2, wherein when the vehicle in front accelerates after the vehicle speed of the rear vehicle changes from the first state to the second state, the manifestation of intention control is stopped.
  9.  自車両が車線変更する際の走行を制御する制御装置を備え、
    前記制御装置は、
     前記自車両に設けられたセンサから、前記自車両の周辺情報を取得し、
     前記自車両の周辺情報に基づいて、前記自車両が走行する第1車線に対して隣接する第2車線上に位置し、前記自車両の進入先の位置を示す進入位置を特定し、
     前記周辺情報に基づいて、前記第2車線上で、前記進入位置の後方に位置する後方車両を特定し、
     前記後方車両の車速を検出し、
     前記後方車両の車速が前記自車両の車速より高い第1状態から、前記後方車両の車速が前記自車両の車速以下である、又は、前記後方車両の車速が所定時間後に前記自車両の車速以下になる第2状態に変わるか否かを判定し、
     前記後方車両の状態が前記第1状態から前記第2状態に変わったと判定された場合には、前記自車両が前記後方車両に対して、車線変更の意思表示を示すための車両制御である意思表示制御を実行する車両制御装置。
    Equipped with a control device that controls driving when the own vehicle changes lanes
    The control device
    Obtaining peripheral information of the own vehicle from the sensor provided in the own vehicle,
    Based on the peripheral information of the own vehicle, the approach position which is located on the second lane adjacent to the first lane in which the own vehicle travels and indicates the position of the approach destination of the own vehicle is specified.
    Based on the peripheral information, the rear vehicle located behind the approach position on the second lane is identified.
    Detecting the vehicle speed of the rear vehicle,
    From the first state in which the vehicle speed of the rear vehicle is higher than the vehicle speed of the own vehicle, the vehicle speed of the rear vehicle is equal to or less than the vehicle speed of the own vehicle, or the vehicle speed of the rear vehicle is equal to or less than the vehicle speed of the own vehicle after a predetermined time. Judge whether or not to change to the second state
    When it is determined that the state of the rear vehicle has changed from the first state to the second state, the own vehicle intends to control the vehicle to indicate the intention to change lanes to the rear vehicle. A vehicle control device that executes display control.
PCT/IB2019/000394 2019-03-29 2019-03-29 Vehicle control method and vehicle control device WO2020201795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000394 WO2020201795A1 (en) 2019-03-29 2019-03-29 Vehicle control method and vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000394 WO2020201795A1 (en) 2019-03-29 2019-03-29 Vehicle control method and vehicle control device

Publications (1)

Publication Number Publication Date
WO2020201795A1 true WO2020201795A1 (en) 2020-10-08

Family

ID=72667084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000394 WO2020201795A1 (en) 2019-03-29 2019-03-29 Vehicle control method and vehicle control device

Country Status (1)

Country Link
WO (1) WO2020201795A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018480A1 (en) * 2015-07-30 2017-02-02 クラリオン株式会社 Lighting control device for direction indicator
WO2017159509A1 (en) * 2016-03-15 2017-09-21 本田技研工業株式会社 Vehicle control system, vehicle control method, and vehicle control program
JP2018203120A (en) * 2017-06-06 2018-12-27 トヨタ自動車株式会社 Steering assistance device
JP2019018788A (en) * 2017-07-20 2019-02-07 株式会社Soken Vehicle control device and vehicle control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018480A1 (en) * 2015-07-30 2017-02-02 クラリオン株式会社 Lighting control device for direction indicator
WO2017159509A1 (en) * 2016-03-15 2017-09-21 本田技研工業株式会社 Vehicle control system, vehicle control method, and vehicle control program
JP2018203120A (en) * 2017-06-06 2018-12-27 トヨタ自動車株式会社 Steering assistance device
JP2019018788A (en) * 2017-07-20 2019-02-07 株式会社Soken Vehicle control device and vehicle control method

Similar Documents

Publication Publication Date Title
US10943133B2 (en) Vehicle control device, vehicle control method, and storage medium
JP7189329B2 (en) Vehicle control method and vehicle control device
CN107532916B (en) Route search device and route search method
US11584375B2 (en) Vehicle control device, vehicle control method, and storage medium
EP3950446B1 (en) Vehicle control method and vehicle control device
JP6954469B2 (en) Driving support method and driving support device
JP7152339B2 (en) Travel control device, travel control method, and program
WO2020058739A1 (en) Vehicle control method and vehicle control device
JP7184165B2 (en) Vehicle control method and vehicle control device
JP2020045039A (en) Vehicle control method and vehicle control apparatus
WO2022044112A1 (en) Vehicle control method and vehicle control device
JP2019090834A (en) Route search device and route search method of route search device
JP2020045038A (en) Vehicle control method and vehicle control apparatus
JP2022113644A (en) travel control device
JP7334107B2 (en) Vehicle control method and vehicle control device
WO2020201795A1 (en) Vehicle control method and vehicle control device
JP7204565B2 (en) Vehicle control method and vehicle control device
JP7330733B2 (en) Vehicle control method and vehicle control device
JP2020199810A (en) Vehicle control apparatus, vehicle, method for operating vehicle control apparatus, and program
WO2023170820A1 (en) Vehicle control method and vehicle control device
RU2773067C1 (en) Vehicle control method and vehicle control device
RU2779920C1 (en) Method for controlling a vehicle and apparatus for controlling a vehicle
JP2021189874A (en) Automatic driving system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP