WO2020098718A1 - Apparatus and method for discontinuous reception of same - Google Patents

Apparatus and method for discontinuous reception of same Download PDF

Info

Publication number
WO2020098718A1
WO2020098718A1 PCT/CN2019/118168 CN2019118168W WO2020098718A1 WO 2020098718 A1 WO2020098718 A1 WO 2020098718A1 CN 2019118168 W CN2019118168 W CN 2019118168W WO 2020098718 A1 WO2020098718 A1 WO 2020098718A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
signal
user equipment
duration
processor
Prior art date
Application number
PCT/CN2019/118168
Other languages
French (fr)
Inventor
Cong SHI
Wenqiang Tian
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN201980035066.5A priority Critical patent/CN113115593B/en
Publication of WO2020098718A1 publication Critical patent/WO2020098718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to an apparatus and a method for discontinuous reception of the same.
  • DRX discontinuous reception
  • NR-U unlicensed spectrum
  • a network node e.g., a NR base station (gNB)
  • gNB NR base station
  • PDCCH physical downlink control channel
  • UE user equipment
  • the gNB needs to perform random back off, and during this time, the gNB cannot send a PDCCH even though the UE is monitoring the channel.
  • MCOT maximum channel occupancy time
  • a DRX off duration if the channel is available, still the gNB cannot send the PDCCH since the UE is not monitoring the channel.
  • An object of the present disclosure is to propose an apparatus and a method for discontinuous reception of the same capable of solving issues of the prior art, reducing power consumption, and improving reliability.
  • a user equipment for discontinuous reception includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to control the transceiver to receive a signal from a network node, wherein the signal indicates whether the processor follows a channel occupancy time (COT) structure or a DRX configuration, and processor is configured to follow the COT structure or the DRX configuration according to the signal.
  • COT channel occupancy time
  • a method for discontinuous reception (DRX) of a user equipment includes receiving a signal from a network node, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and the method includes following the COT structure or the DRX configuration according to the signal.
  • COT channel occupancy time
  • a network node for discontinuous reception includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to control the transceiver to transmit a signal to a user equipment, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and processor is configured to control the user equipment to follow the COT structure or the DRX configuration according to the signal.
  • COT channel occupancy time
  • a method for discontinuous reception (DRX) of a network node includes transmitting a signal to a user equipment, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and the method includes controlling the user equipment to follow the COT structure or the DRX configuration according to the signal.
  • COT channel occupancy time
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a terminal device includes a processor and a memory configured to store a computer program.
  • the processor is configured to execute the computer program stored in the memory to perform the above method.
  • a base station includes a processor and a memory configured to store a computer program.
  • the processor is configured to execute the computer program stored in the memory to perform the above method.
  • FIG. 1 is a schematic diagram of an exemplary illustration of a connected mode discontinuous reception (C-DRX) operation according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of a user equipment and a network node for discontinuous reception (DRX) according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a method for discontinuous reception (DRX) of a user equipment according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart illustrating a method for discontinuous reception (DRX) of a network node according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an exemplary illustration of a discontinuous reception (DRX) operation according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an exemplary illustration of a discontinuous reception (DRX) operation according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • a discontinuous reception (DRX) operation is configured by a radio resource control (RRC) .
  • RRC radio resource control
  • a medium access control (MAC) entity may be configured by the RRC with a DRX functionality that controls a physical downlink control channel (PDCCH) monitoring activity of a user equipment for the MAC entity's cell radio network temporary identifier (C-RNTI) , configured scheduling RNTI (CS-RNTI) , interruption RNTI (INT-RNTI) , slot format indication RNTI (SFI-RNTI) , semi-persistent channel state information RNTI (SP-CSI-RNTI) , transmit power control-physical uplink control channel-RNTI (TPC-PUCCH-RNTI) , TPC-physical uplink shared channel-RNTI (TPC-PUSCH-RNTI) , and TPC-sounding reference symbols-RNTI (TPC-SRS-RNTI) .
  • PDCCH physical downlink control channel
  • CS-RNTI configured scheduling RNTI
  • C-RNTI is a unique identification used for identifying an RRC connection and scheduling which is dedicated to a particular UE.
  • a network node such as a gNB assigns different C-RNTI values to different UEs.
  • the gNB uses C-RNTI to allocate a UE with uplink grants, downlink assignments, etc.
  • C-RNTI is used by the gNB to differentiate uplink transmissions (e.g. PUSCH and/or PUCCH) of a UE from others.
  • TPC RNTI is used for uplink power control purpose.
  • TPC-RNTI There are three types of TPC-RNTI, namely TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, and TPC-SRS-RNTI.
  • TPC RNTI is assigned to a group of UEs.
  • a gNB may configure the UE with TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, and TPC-SRS-RNTI via higher layer signalling such as an RRC.
  • a MAC entity When in an RRC connected operation, if a DRX operation is configured, a MAC entity may monitor a PDCCH discontinuously using the DRX operation, otherwise the MAC entity monitors the PDCCH continuously.
  • active time when a DRX cycle is configured, active time includes time while a DRX on duration timer, a DRX inactivity timer, a DRX retransmission timer for downlink (DL) , a DRX retransmission timer for uplink (UL) or a ra-contention resolution timer is running.
  • a scheduling request is sent on a PUCCH and is pending.
  • a PDCCH indicating a new transmission addressed to the C-RNTI of the MAC entity has not been received after successful reception of a random access response for a random access preamble not selected by the MAC entity among a contention-based random access preamble.
  • the DRX operation can also be configured for controlling behavior of paging monitoring.
  • a UE may use discontinuous reception (DRX) in the RRC idle and inactive mode in order to reduce power consumption.
  • the UE monitors one paging occasion (PO) per DRX cycle.
  • the PO is a set of PDCCH monitoring occasions and can consist of multiple time slots (e.g. subframes or orthogonal frequency-division multiplexing (OFDM) symbols) where paging DCI can be sent.
  • One paging frame (PF) is one radio frame and may contain one or multiple PO (s) or starting point of a PO.
  • C-DRX connected mode discontinuous reception
  • a NR unlicensed operation is as follows.
  • LBT listen before talking
  • MCOT maximum channel occupancy time
  • an eNB does not continuously transmit on a channel on which LAA Scell (s) transmission (s) are performed, for a period exceeding Tmcot as given in a table 1.
  • the LBT type in NR, is not decided yet, but it’s expected to have a similar principle as that in LTE LAA, and it is in addition to functionalities provided by a DCI format 2_0 in a release 15 NR, indication of a COT structure in a time domain is identified as being beneficial. It means, for NR-U, a gNB may indicate to a UE the COT structure.
  • FIG. 2 illustrates that, in some embodiments, a user equipment (UE) 10 and a network node 20 such as a gNB for discontinuous reception (DRX) according to an embodiment of the present disclosure are provided.
  • the UE 10 may include a processor 11, a memory 12, and a transceiver 13.
  • the network node 20 may include a processor 21, a memory 22, and a transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include an application-specific integrated circuit (ASIC) , other chipsets, logic circuit and/or data processing devices.
  • the memory 12 or 22 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21, in which those can be communicatively coupled to the processor 11 or 21 via various means are known in the art.
  • the communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under 3rd generation partnership project (3GPP) release 14, 15, 16, and beyond.
  • UEs communicate with each other directly via a sidelink interface such as a PC5 interface.
  • the processor 11 is configured to control the transceiver 13 to receive a signal from the network node 20, wherein the signal indicates whether the processor 11 follows a channel occupancy time (COT) structure or a DRX configuration, and the processor 11 is configured to follow the COT structure or the DRX configuration according to the signal.
  • COT channel occupancy time
  • the processor 11 is configured to control the transceiver 13 to receive the DRX configuration via a radio resource control (RRC) signalling from the network node 20.
  • RRC radio resource control
  • the signal also indicates the COT structure.
  • the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
  • DCI downlink control information
  • MAC medium access control
  • the processor 11 monitors a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration.
  • MCOT maximum channel occupancy time
  • the processor 11 is configured to monitor the signal which carries information of the COT structure and is also configured to monitor configured search spaces during the full DRX on duration.
  • the configured search spaces the processer 11 monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration.
  • the processor 11 goes to a partial DRX on duration after the MCOT.
  • the processor 11 is configured to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
  • the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
  • the processor 11 monitors a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration. In some embodiments, the processor 11 is indicated to switch to the DRX off duration by the signal.
  • the signal indicates a default behavior
  • the processor 11 follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
  • the processor 21 is configured to control the transceiver 23 to transmit a signal to the user equipment 10, wherein the signal indicates whether the user equipment 10 follows a channel occupancy time (COT) structure or a DRX configuration, and the processor 21 is configured to control the user equipment 10 to follow the COT structure or the DRX configuration according to the signal.
  • COT channel occupancy time
  • the processor 21 is configured to control the transceiver 23 to transmit, to the user equipment 10, the DRX configuration via a radio resource control (RRC) signalling.
  • RRC radio resource control
  • the signal also indicates the COT structure.
  • the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
  • DCI downlink control information
  • MAC medium access control
  • the processor 21 controls the user equipment 10 to monitor a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration.
  • the processor 21 is configured to control the user equipment 10 to monitor the signal which carries information of the COT structure and configured search spaces during the full DRX on duration.
  • the configured search spaces the user equipment 10 monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration.
  • the processor 21 controls the user equipment 10 to go to a partial DRX on duration after the MCOT. In some embodiments, the processor 21 is configured to control the user equipment 10 to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
  • the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
  • the processor 21 controls the user equipment 10 to monitor a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
  • the signal indicates the user equipment 10 to switch to the DRX off duration.
  • the signal indicates a default behavior, if there is no other indication of the signal, the user equipment 10 follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
  • FIG. 3 illustrates a method 200 of discontinuous reception (DRX) of a user equipment according to an embodiment of the present disclosure.
  • the method 200 includes: a block 202, receiving a signal from a network node, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and a block 204, following the COT structure or the DRX configuration according to the signal.
  • COT channel occupancy time
  • the method further includes receiving the DRX configuration via a radio resource control (RRC) signalling from the network node.
  • RRC radio resource control
  • the signal also indicates the COT structure.
  • the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
  • DCI downlink control information
  • MAC medium access control
  • the user equipment monitors a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration.
  • the method further includes monitoring the signal which carries information of the COT structure and configured search spaces during the full DRX on duration.
  • the configured search spaces the user equipment monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration. In some embodiments, the user equipment goes to a partial DRX on duration after the MCOT.
  • the method further includes continuing to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
  • the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
  • the user equipment monitors a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
  • the user equipment is indicated to switch to the DRX off duration by the signal.
  • the signal indicates a default behavior, if there is no other indication of the signal, the user equipment follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
  • FIG. 4 illustrates a method 300 of discontinuous reception (DRX) of a network node according to an embodiment of the present disclosure.
  • the method 300 includes: a block 302, transmitting a signal to a user equipment, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and a block 304, controlling the user equipment to follow the COT structure or the DRX configuration according to the signal.
  • COT channel occupancy time
  • the method further includes transmitting, to the user equipment, the DRX configuration via a radio resource control (RRC) signalling.
  • RRC radio resource control
  • the signal also indicates the COT structure.
  • the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
  • DCI downlink control information
  • MAC medium access control
  • the network node controls the user equipment monitor a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration.
  • the method further includes controlling the user equipment to monitor the signal which carries information of the COT structure and configured search spaces during the full DRX duration.
  • the configured search spaces the user equipment monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration.
  • the method further includes controlling the user equipment to go to a partial DRX on duration after the MCOT.
  • the method further includes controlling the user equipment to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
  • the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
  • the network node controls the user equipment to monitor a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
  • the signal indicates the user equipment to switch to the DRX off duration.
  • the signal indicates a default behavior, if there is no other indication of the signal, the user equipment follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
  • FIG. 5 is an exemplary illustration of a discontinuous reception (DRX) operation according to an embodiment of the present disclosure.
  • FIG. 5 illustrates that, in some embodiments, a UE is in legacy DRX on state, during which the UE only needs to monitor a signal from a network node, wherein the signal indicates whether the UE follows a channel occupancy time (COT) structure or a DRX configuration and the signal also indicates the COT structure.
  • the UE is in full DRX on state, the full DRX on state is indicated by the signal which indicates a MCOT, during which the UE needs to monitor not only the signal but also the configured search spaces.
  • the configured search spaces the UE needs to monitor are configured by an RRC.
  • the configured search spaces the UE needs to monitor are indicated by the signal or a DCI received during the DRX on state.
  • FIG. 6 is an exemplary illustration of a discontinuous reception (DRX) operation according to an embodiment of the present disclosure.
  • FIG. 6 illustrates that, in some embodiments, like a PDCCH, a signal from a network node indicates whether a UE follows a channel occupancy time (COT) structure or a DRX configuration and the signal also indicates the COT structure.
  • the signal can start or restart a DRX inactivity timer, which means a partial DRX on state will be extended.
  • the DRX active Time takes the MCOT into account.
  • the DRX active time can be as large as the MCOT.
  • the DRX inactivity timer can be started or restarted based on the signal indicating the COT structure.
  • the active time can be a full DRX on state during which the UE monitors the PDCCH based on configuration or indication, meanwhile, the UE can also monitor a signal with or without indication of the COT structure.
  • the active time can also be a partial DRX on state during which the UE only monitors the signal with or without indication of COT structure.
  • FIG. 7 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 7 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • flash memory non-volatile memory
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • Some embodiments of the present disclosure provide an apparatus and a method for discontinuous reception of the same capable of solving issues of the prior art, reducing power consumption, and improving reliability.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Abstract

An apparatus and a method for discontinuous reception of the same are provided. The method includes receiving a signal from a network node, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and the method includes following the COT structure or the DRX configuration according to the signal.

Description

APPARATUS AND METHOD FOR DISCONTINUOUS RECEPTION OF SAME
BACKGROUND OF DISCLOSURE
1. Field of Disclosure
The present disclosure relates to the field of communication systems, and more particularly, to an apparatus and a method for discontinuous reception of the same.
2. Description of Related Art
For discontinuous reception (DRX) operations in a new radio in an unlicensed spectrum (NR-U) , some possible issues are as follows.
1. During a DRX on duration, if a channel is not available, a network node (e.g., a NR base station (gNB) ) cannot send a physical downlink control channel (PDCCH) even a user equipment (UE) is monitoring the channel, which causes unnecessarily PDCCH monitoring.
2. During the DRX on duration, after the gNB grabs the channel for a maximum channel occupancy time (MCOT) , the gNB needs to perform random back off, and during this time, the gNB cannot send a PDCCH even though the UE is monitoring the channel.
During a DRX off duration, if the channel is available, still the gNB cannot send the PDCCH since the UE is not monitoring the channel.
Therefore, there is a need to propose an apparatus and a method for discontinuous reception of the same capable of solving issues of the prior art, reducing power consumption, and improving reliability.
SUMMARY
An object of the present disclosure is to propose an apparatus and a method for discontinuous reception of the same capable of solving issues of the prior art, reducing power consumption, and improving reliability.
In a first aspect of the present disclosure, a user equipment for discontinuous reception (DRX) includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to control the transceiver to receive a signal from a network node, wherein the signal indicates whether the processor follows a channel occupancy time (COT) structure or a DRX configuration, and processor is configured to follow the COT structure or the DRX configuration according to the signal.
In a second aspect of the present disclosure, a method for discontinuous reception (DRX) of a user equipment includes receiving a signal from a network node, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a  DRX configuration, and the method includes following the COT structure or the DRX configuration according to the signal.
In a third aspect of the present disclosure, a network node for discontinuous reception (DRX) includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to control the transceiver to transmit a signal to a user equipment, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and processor is configured to control the user equipment to follow the COT structure or the DRX configuration according to the signal.
In a fourth aspect of the present disclosure, a method for discontinuous reception (DRX) of a network node includes transmitting a signal to a user equipment, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and the method includes controlling the user equipment to follow the COT structure or the DRX configuration according to the signal.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a terminal device includes a processor and a memory configured to store a computer program. The processor is configured to execute the computer program stored in the memory to perform the above method.
In a seventh aspect of the present disclosure, a base station includes a processor and a memory configured to store a computer program. The processor is configured to execute the computer program stored in the memory to perform the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a schematic diagram of an exemplary illustration of a connected mode discontinuous reception (C-DRX) operation according to an embodiment of the present disclosure.
FIG. 2 is a block diagram of a user equipment and a network node for discontinuous reception (DRX) according to an embodiment of the present disclosure.
FIG. 3 is a flowchart illustrating a method for discontinuous reception (DRX) of a user equipment according to an embodiment of the present disclosure.
FIG. 4 is a flowchart illustrating a method for discontinuous reception (DRX) of a network node according to an embodiment of the present disclosure.
FIG. 5 is a schematic diagram of an exemplary illustration of a discontinuous reception (DRX) operation according to an embodiment of the present disclosure.
FIG. 6 is a schematic diagram of an exemplary illustration of a discontinuous reception (DRX) operation according to an embodiment of the present disclosure.
FIG. 7 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
In a new radio (NR) licensed operation, a discontinuous reception (DRX) operation is configured by a radio resource control (RRC) . In NR and long term evolution (LTE) operations, a medium access control (MAC) entity may be configured by the RRC with a DRX functionality that controls a physical downlink control channel (PDCCH) monitoring activity of a user equipment for the MAC entity's cell radio network temporary identifier (C-RNTI) , configured scheduling RNTI (CS-RNTI) , interruption RNTI (INT-RNTI) , slot format indication RNTI (SFI-RNTI) , semi-persistent channel state information RNTI (SP-CSI-RNTI) , transmit power control-physical uplink control channel-RNTI (TPC-PUCCH-RNTI) , TPC-physical uplink shared channel-RNTI (TPC-PUSCH-RNTI) , and TPC-sounding reference symbols-RNTI (TPC-SRS-RNTI) .
C-RNTI is a unique identification used for identifying an RRC connection and scheduling which is dedicated to a particular UE. A network node such as a gNB assigns different C-RNTI values to different UEs. The gNB uses C-RNTI to allocate a UE with uplink grants, downlink assignments, etc. C-RNTI is used by the gNB to differentiate uplink transmissions (e.g. PUSCH and/or PUCCH) of a UE from others.
TPC RNTI is used for uplink power control purpose. There are three types of TPC-RNTI, namely TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, and TPC-SRS-RNTI. TPC RNTI is assigned to a group of UEs. A gNB may configure the UE with TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, and TPC-SRS-RNTI via higher layer signalling such as an RRC.
When in an RRC connected operation, if a DRX operation is configured, a MAC entity may monitor a PDCCH discontinuously using the DRX operation, otherwise the MAC entity monitors the PDCCH continuously.
In some embodiments, when a DRX cycle is configured, active time includes time while a DRX on duration timer, a DRX inactivity timer, a DRX retransmission timer for downlink (DL) , a DRX retransmission timer for uplink (UL) or a ra-contention resolution timer is running.
In some embodiments, when a DRX cycle is configured, a scheduling request is sent on a PUCCH and is pending.
In some embodiments, when a DRX cycle is configured, a PDCCH indicating a new transmission addressed to the C-RNTI of the MAC entity has not been received after successful reception of a random access response for a random access preamble not selected by the MAC entity among a contention-based random access preamble.
In some embodiments, for an RRC idle and inactive mode, the DRX operation can also be configured for controlling behavior of paging monitoring. A UE may use discontinuous reception (DRX) in the RRC idle and inactive mode in order to reduce power consumption. The UE monitors one paging occasion (PO) per DRX cycle. The PO is a set of PDCCH monitoring occasions and can consist of multiple time slots (e.g. subframes or orthogonal frequency-division multiplexing (OFDM) symbols) where paging DCI can be sent. One paging frame (PF) is one radio frame and may contain one or multiple PO (s) or starting point of a PO.
One example regarding a connected mode discontinuous reception (C-DRX) operation is illustrated in FIG. 1. A DRX short cycle is 5 ms, a DRX on duration timer is 1 ms, and a DRX inactivity timer is 3 ms.
A NR unlicensed operation is as follows. For the NR unlicensed operation, when a transmission is imitated, a transmitter needs to perform listen before talking (LBT) . Depends on a type of the LBT, a maximum channel occupancy time (MCOT) is different. In LTE licensed assisted access (LAA) , an eNB does not continuously transmit on a channel on which LAA Scell (s) transmission (s) are performed, for a period exceeding Tmcot as given in a table 1.
Table 1
Figure PCTCN2019118168-appb-000001
Figure PCTCN2019118168-appb-000002
In some embodiments, in NR, the LBT type is not decided yet, but it’s expected to have a similar principle as that in LTE LAA, and it is in addition to functionalities provided by a DCI format 2_0 in a release 15 NR, indication of a COT structure in a time domain is identified as being beneficial. It means, for NR-U, a gNB may indicate to a UE the COT structure.
FIG. 2 illustrates that, in some embodiments, a user equipment (UE) 10 and a network node 20 such as a gNB for discontinuous reception (DRX) according to an embodiment of the present disclosure are provided. The UE 10 may include a processor 11, a memory 12, and a transceiver 13. The network node 20 may include a processor 21, a memory 22, and a transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include an application-specific integrated circuit (ASIC) , other chipsets, logic circuit and/or data processing devices. The  memory  12 or 22 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21, in which those can be communicatively coupled to the  processor  11 or 21 via various means are known in the art.
The communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under 3rd generation partnership project (3GPP) release 14, 15, 16, and beyond. UEs communicate with each other directly via a sidelink interface such as a PC5 interface.
In some embodiments, the processor 11 is configured to control the transceiver 13 to receive a signal from the network node 20, wherein the signal indicates whether the processor 11 follows a channel occupancy time (COT) structure or a DRX configuration, and the processor 11 is configured to follow the COT structure or the DRX configuration according to the signal.
In some embodiments, the processor 11 is configured to control the transceiver 13 to receive the DRX configuration via a radio resource control (RRC) signalling from the network node 20. In some embodiments, the signal also indicates the COT structure. In some embodiments, the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
In some embodiments, if the signal indicates that the processor 11 follows a maximum channel occupancy time (MCOT) of the COT structure, the processor 11 monitors a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration. In details, the processor 11 is configured to monitor the signal which carries information of the COT structure and is also configured to monitor configured search spaces during the full DRX on duration.
In some embodiments, the configured search spaces the processer 11 monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration. In some embodiments, the processor 11 goes to a partial DRX on duration after the MCOT. In some embodiments, the processor 11 is configured to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
In some embodiments, the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
In some embodiments, if the signal indicates that the processor 11 follows the DRX configuration, the processor 11 monitors a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration. In some embodiments, the processor 11 is indicated to switch to the DRX off duration by the signal.
In some embodiments, the signal indicates a default behavior, if there is no other indication of the signal, the processor 11 follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
In some embodiments, the processor 21 is configured to control the transceiver 23 to transmit a signal to the user equipment 10, wherein the signal indicates whether the user equipment 10 follows a channel occupancy time (COT) structure or a DRX configuration, and  the processor 21 is configured to control the user equipment 10 to follow the COT structure or the DRX configuration according to the signal.
In some embodiments, the processor 21 is configured to control the transceiver 23 to transmit, to the user equipment 10, the DRX configuration via a radio resource control (RRC) signalling. In some embodiments, the signal also indicates the COT structure. In some embodiments, the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
In some embodiments, if the signal indicates that the user equipment 10 follows a maximum channel occupancy time (MCOT) of the COT structure, the processor 21 controls the user equipment 10 to monitor a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration. In some embodiments, the processor 21 is configured to control the user equipment 10 to monitor the signal which carries information of the COT structure and configured search spaces during the full DRX on duration.
In some embodiments, the configured search spaces the user equipment 10 monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration.
In some embodiments, the processor 21 controls the user equipment 10 to go to a partial DRX on duration after the MCOT. In some embodiments, the processor 21 is configured to control the user equipment 10 to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
In some embodiments, the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
In some embodiments, if the signal indicates that the user equipment 10 follows the DRX configuration, the processor 21 controls the user equipment 10 to monitor a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
In some embodiments, the signal indicates the user equipment 10 to switch to the DRX off duration.
In some embodiments, the signal indicates a default behavior, if there is no other indication of the signal, the user equipment 10 follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
FIG. 3 illustrates a method 200 of discontinuous reception (DRX) of a user equipment according to an embodiment of the present disclosure. In some embodiments, the method 200 includes: a block 202, receiving a signal from a network node, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX  configuration, and a block 204, following the COT structure or the DRX configuration according to the signal.
In some embodiments, the method further includes receiving the DRX configuration via a radio resource control (RRC) signalling from the network node. In some embodiments, the signal also indicates the COT structure. In some embodiments, the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
In some embodiments, if the signal indicates that the user equipment follows a maximum channel occupancy time (MCOT) of the COT structure, the user equipment monitors a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration. In some embodiments, the method further includes monitoring the signal which carries information of the COT structure and configured search spaces during the full DRX on duration.
In some embodiments, the configured search spaces the user equipment monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration. In some embodiments, the user equipment goes to a partial DRX on duration after the MCOT.
In some embodiments, the method further includes continuing to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
In some embodiments, the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
In some embodiments, if the signal indicates that the user equipment follows the DRX configuration, the user equipment monitors a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
In some embodiments, the user equipment is indicated to switch to the DRX off duration by the signal.
In some embodiments, the signal indicates a default behavior, if there is no other indication of the signal, the user equipment follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
FIG. 4 illustrates a method 300 of discontinuous reception (DRX) of a network node according to an embodiment of the present disclosure. In some embodiments, the method 300 includes: a block 302, transmitting a signal to a user equipment, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration, and a block 304, controlling the user equipment to follow the COT structure or the DRX configuration according to the signal.
In some embodiments, the method further includes transmitting, to the user equipment, the DRX configuration via a radio resource control (RRC) signalling.
In some embodiments, the signal also indicates the COT structure. In some embodiments, the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
In some embodiments, if the signal indicates that the user equipment follows a maximum channel occupancy time (MCOT) of the COT structure, the network node controls the user equipment monitor a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration. In some embodiments, the method further includes controlling the user equipment to monitor the signal which carries information of the COT structure and configured search spaces during the full DRX duration.
In some embodiments, the configured search spaces the user equipment monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration. In some embodiments, the method further includes controlling the user equipment to go to a partial DRX on duration after the MCOT. In some embodiments, the method further includes controlling the user equipment to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
In some embodiments, the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
In some embodiments, if the signal indicates that the user equipment follows the DRX configuration, the network node controls the user equipment to monitor a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
In some embodiments, the signal indicates the user equipment to switch to the DRX off duration.
In some embodiments, the signal indicates a default behavior, if there is no other indication of the signal, the user equipment follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
FIG. 5 is an exemplary illustration of a discontinuous reception (DRX) operation according to an embodiment of the present disclosure. FIG. 5 illustrates that, in some embodiments, a UE is in legacy DRX on state, during which the UE only needs to monitor a signal from a network node, wherein the signal indicates whether the UE follows a channel occupancy time (COT) structure or a DRX configuration and the signal also indicates the COT structure. In some embodiments, the UE is in full DRX on state, the full DRX on state is  indicated by the signal which indicates a MCOT, during which the UE needs to monitor not only the signal but also the configured search spaces. In some embodiments, the configured search spaces the UE needs to monitor are configured by an RRC. In some embodiments, the configured search spaces the UE needs to monitor are indicated by the signal or a DCI received during the DRX on state.
FIG. 6 is an exemplary illustration of a discontinuous reception (DRX) operation according to an embodiment of the present disclosure. FIG. 6 illustrates that, in some embodiments, like a PDCCH, a signal from a network node indicates whether a UE follows a channel occupancy time (COT) structure or a DRX configuration and the signal also indicates the COT structure. The signal can start or restart a DRX inactivity timer, which means a partial DRX on state will be extended.
In summary, some embodiments provide three aspects as follows.
1. The DRX active Time takes the MCOT into account.
2. The DRX active time can be as large as the MCOT.
3. The DRX inactivity timer can be started or restarted based on the signal indicating the COT structure.
Some embodiments provide detailed information as follows.
1. The active time can be a full DRX on state during which the UE monitors the PDCCH based on configuration or indication, meanwhile, the UE can also monitor a signal with or without indication of the COT structure.
3. The active time can also be a partial DRX on state during which the UE only monitors the signal with or without indication of COT structure.
FIG. 7 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 7 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
Some embodiments of the present disclosure provide an apparatus and a method for discontinuous reception of the same capable of solving issues of the prior art, reducing power consumption, and improving reliability. The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using  electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (55)

  1. A user equipment for discontinuous reception (DRX) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to:
    control the transceiver to receive a signal from a network node, wherein the signal indicates whether the processor follows a channel occupancy time (COT) structure or a DRX configuration; and
    follow the COT structure or the DRX configuration according to the signal.
  2. The user equipment of claim 1, wherein the processor is configured to control the transceiver to receive the DRX configuration via a radio resource control (RRC) signalling from the network node.
  3. The user equipment of claim 1, wherein the signal also indicates the COT structure.
  4. The user equipment of claim 1 or 3, wherein the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
  5. The user equipment of any one of claims 1 to 4, wherein if the signal indicates that the processor follows a maximum channel occupancy time (MCOT) of the COT structure, the processor monitors a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration.
  6. The user equipment of claim 5, wherein the processor is configured to monitor the signal which carries information of the COT structure and configured search spaces during the full DRX on duration.
  7. The user equipment of claim 6, wherein the configured search spaces the processer monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration.
  8. The user equipment of any one of claims 5 to 7, wherein the processor goes to a partial DRX on duration after the MCOT.
  9. The user equipment of claim 8, wherein the processor is configured to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
  10. The user equipment of claim 8 or 9, wherein the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
  11. The user equipment of any one of claims 1 to 9, wherein if the signal indicates that the  processor follows the DRX configuration, the processor monitors a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
  12. The user equipment of claim 11, wherein the processor is indicated to switch to the DRX off duration by the signal.
  13. The user equipment of any one of claims 1 to 12, wherein the signal indicates a default behavior, if there is no other indication of the signal, the processor follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
  14. A method for discontinuous reception (DRX) of a user equipment, comprising: receiving a signal from a network node, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration; and following the COT structure or the DRX configuration according to the signal.
  15. The method of claim 14, further comprising receiving the DRX configuration via a radio resource control (RRC) signalling from the network node.
  16. The method of claim 14, wherein the signal also indicates the COT structure.
  17. The method of claim 14 or 16, wherein the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
  18. The method of any one of claims 14 to 17, wherein if the signal indicates that the user equipment follows a maximum channel occupancy time (MCOT) of the COT structure, the user equipment monitors a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration.
  19. The method of claim 18, further comprising monitoring the signal which carries information of the COT structure and configured search spaces during the full DRX on duration.
  20. The method of claim 19, wherein the configured search spaces the user equipment monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration.
  21. The method of any one of claims 18 to 20, wherein the user equipment goes to a partial DRX on duration after the MCOT.
  22. The method of claim 21, further comprising continuing to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
  23. The method of claim 21 or 22, wherein the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
  24. The method of any one of claims 14 to 22, wherein if the signal indicates that the user  equipment follows the DRX configuration, the user equipment monitors a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
  25. The method of claim 24, wherein the user equipment is indicated to switch to the DRX off duration by the signal.
  26. The method of any one of claims 14 to 25, wherein the signal indicates a default behavior, if there is no other indication of the signal, the user equipment follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
  27. A network node for discontinuous reception (DRX) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to:
    control the transceiver to transmit a signal to a user equipment, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration; and
    control the user equipment to follow the COT structure or the DRX configuration according to the signal.
  28. The network node of claim 27, wherein the processor is configured to control the transceiver to transmit, to the user equipment, the DRX configuration via a radio resource control (RRC) signalling.
  29. The network node of claim 28, wherein the signal also indicates the COT structure.
  30. The network node of claim 27 or 29, wherein the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
  31. The network node of any one of claims 27 to 30, wherein if the signal indicates that the user equipment follows a maximum channel occupancy time (MCOT) of the COT structure, the processor controls the user equipment to monitor a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration.
  32. The network node of claim 31, wherein the processor is configured to control the user equipment to monitor the signal which carries information of the COT structure and configured search spaces during the full DRX on duration.
  33. The network node of claim 32, wherein the configured search spaces the user equipment monitors are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration.
  34. The network node of any one of claims 31 to 33, wherein the processor controls the user  equipment to go to a partial DRX on duration after the MCOT.
  35. The network node of claim 34, wherein the processor is configured to control the user equipment to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
  36. The network node of claim 34 or 35, wherein the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
  37. The network node of any one of claims 27 to 36, wherein if the signal indicates that the user equipment follows the DRX configuration, the processor controls the user equipment to monitor a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
  38. The network node of claim 37, wherein the signal indicates the user equipment to switch to the DRX off duration.
  39. The network node of any one of claims 27 to 38, wherein the signal indicates a default behavior, if there is no other indication of the signal, the user equipment follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
  40. A method for discontinuous reception (DRX) of a network node, comprising: transmitting a signal to a user equipment, wherein the signal indicates whether the user equipment follows a channel occupancy time (COT) structure or a DRX configuration; and controlling the user equipment to follow the COT structure or the DRX configuration according to the signal.
  41. The method of claim 40, further comprising transmitting, to the user equipment, the DRX configuration via a radio resource control (RRC) signalling.
  42. The method of claim 41, wherein the signal also indicates the COT structure.
  43. The method of claim 40 or 42, wherein the signal is transmitted in a downlink control information (DCI) , a medium access control (MAC) signal, or a sequence.
  44. The method of any one of claims 40 to 43, wherein if the signal indicates that the user equipment follows a maximum channel occupancy time (MCOT) of the COT structure, the network node controls the user equipment monitor a physical downlink control channel (PDCCH) during the MCOT, which is a full DRX on duration.
  45. The method of claim 44, further comprising controlling the user equipment to monitor the signal which carries information of the COT structure and configured search spaces during the full DRX on duration.
  46. The method of claim 45, wherein the configured search spaces the user equipment monitors  are configured by an RRC signalling, indicated by the signal, or indicated by a DCI received during a DRX on duration.
  47. The method of any one of claims 44 to 46, further comprising controlling the user equipment to go to a partial DRX on duration after the MCOT.
  48. The method of claim 47, further comprising controlling the user equipment to continue to monitor the signal which carries information of the COT structure but not configured search spaces during the partial DRX on duration.
  49. The method of claim 47 or 48, wherein the signal is configured to start or restart a DRX inactivity timer to extend the partial DRX on duration.
  50. The method of any one of claims 40 to 49, wherein if the signal indicates that the user equipment follows the DRX configuration, the network node controls the user equipment to monitor a PDCCH during a DRX on duration, even if a MCOT of the COT structure is shorter than a DRX off duration.
  51. The method of claim 50, wherein the signal indicates the user equipment to switch to the DRX off duration.
  52. The method of any one of claims 40 to 51, wherein the signal indicates a default behavior, if there is no other indication of the signal, the user equipment follows the default behavior, and the default behavior is following a MCOT of the COT structure or following the DRX configuration.
  53. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 14 to 26 and 40 to 52.
  54. A terminal device, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 14 to 26.
  55. A base station, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 11 to 20 and 40 to 52.
PCT/CN2019/118168 2018-11-12 2019-11-13 Apparatus and method for discontinuous reception of same WO2020098718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980035066.5A CN113115593B (en) 2018-11-12 2019-11-13 Apparatus and method for discontinuous reception of apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862758901P 2018-11-12 2018-11-12
US62/758,901 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020098718A1 true WO2020098718A1 (en) 2020-05-22

Family

ID=70730665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118168 WO2020098718A1 (en) 2018-11-12 2019-11-13 Apparatus and method for discontinuous reception of same

Country Status (2)

Country Link
CN (1) CN113115593B (en)
WO (1) WO2020098718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180170338A1 (en) * 2015-05-28 2018-06-21 Continental Teves Ag & Co.Ohg Pneumatic brake booster

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581908A (en) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 Method and device for configuring parameters in noncontinuous receiving mode
US20170093620A1 (en) * 2015-09-24 2017-03-30 Electronics And Telecommunications Research Institute Method and apparatus for configuring frame of unlicensed band
CN106851662A (en) * 2017-01-18 2017-06-13 京信通信技术(广州)有限公司 A kind of unlicensed spectrum resource allocation methods and device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135860A1 (en) * 2009-05-25 2010-12-02 华为技术有限公司 Method and apparatus for allocating the multi-carrier ack channel
CN102026393A (en) * 2009-09-10 2011-04-20 华为技术有限公司 Resource allocation indicating method of relay link, allocation information obtaining method and device thereof
EP4221044A3 (en) * 2009-09-28 2023-08-16 Samsung Electronics Co., Ltd. Extending physical downlink control channels
US20110286597A1 (en) * 2009-11-17 2011-11-24 Qualcomm Incorporated HOME AGENT PROXIED MIPv6 ROUTE OPTIMIZATION MODE
KR101489873B1 (en) * 2010-06-30 2015-02-05 노키아 솔루션스 앤드 네트웍스 오와이 Scheduling of user terminals in communication network
CN102437895B (en) * 2011-11-07 2014-03-19 电信科学技术研究院 Method for transmitting uplink control information and apparatus thereof
WO2014161176A1 (en) * 2013-04-03 2014-10-09 Broadcom Corporation Handling downlink semi-persistent scheduling retransmission in wireless networks
US10687345B2 (en) * 2015-12-31 2020-06-16 Lg Electronics Inc. Method for transmitting and receiving uplink signal in wireless communication system supporting unlicensed band and apparatus for supporting same
CN109565387B (en) * 2016-03-29 2020-07-10 欧芬诺有限责任公司 Sounding reference signal transmission in wireless networks
US10542543B2 (en) * 2016-11-02 2020-01-21 Qualcomm Incorporated Wireless communication between wideband ENB and narrowband UE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581908A (en) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 Method and device for configuring parameters in noncontinuous receiving mode
US20170093620A1 (en) * 2015-09-24 2017-03-30 Electronics And Telecommunications Research Institute Method and apparatus for configuring frame of unlicensed band
CN106851662A (en) * 2017-01-18 2017-06-13 京信通信技术(广州)有限公司 A kind of unlicensed spectrum resource allocation methods and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"DL Signals and Channels for NR-U Operation", 3GPP TSG RAN WGI MEETING #95, R1-1812354, 3 November 2018 (2018-11-03), XP051478547 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180170338A1 (en) * 2015-05-28 2018-06-21 Continental Teves Ag & Co.Ohg Pneumatic brake booster

Also Published As

Publication number Publication date
CN113115593B (en) 2023-05-09
CN113115593A (en) 2021-07-13

Similar Documents

Publication Publication Date Title
US11251925B2 (en) Apparatus and method of wireless communication of same
US11343821B2 (en) Method and apparatus for performing resource scheduling and delivering control information in vehicle-to-everything communication system
EP3928576B1 (en) Apparatus and method of wireless communication
US20210084615A1 (en) Method and apparatus for mapping beam pattern to paging resources
CN112771951A (en) User equipment and method for resource selection of user equipment
US11310867B2 (en) Method and apparatus of controlling secondary cell
WO2020098718A1 (en) Apparatus and method for discontinuous reception of same
EP4190104A1 (en) User equipment and method for sharing a periodic channel occupancy
CN112205026B (en) Apparatus and method for bandwidth portion adaptation of apparatus
WO2022017351A1 (en) Sleep indication method and apparatus, terminal, and network side device
CN113950132B (en) Wireless communication method and device
CN111386739B (en) Method and user equipment operable for bandwidth part timer configuration
US20210006384A1 (en) Method and apparatus for controlling a deactivation timer of at least one secondary cell in a wireless communication system
WO2024017322A1 (en) Transmission processing method and apparatus, and terminal and network-side device
WO2022152073A1 (en) Power saving processing method, apparatus and device
WO2024069205A1 (en) Apparatus and method for transmission and reception of wake up signals
WO2022048683A1 (en) Resource determination method and apparatus, and terminal and network side device
WO2023242608A1 (en) Apparatus and method of wireless communication for drx operation
WO2019114800A1 (en) Method and apparatus for a beam failure recovery in a wireless communication system
WO2023203361A1 (en) Apparatus and method of wireless communication
WO2022148984A1 (en) Apparatus and method of wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884605

Country of ref document: EP

Kind code of ref document: A1