WO2019114800A1 - Method and apparatus for a beam failure recovery in a wireless communication system - Google Patents

Method and apparatus for a beam failure recovery in a wireless communication system Download PDF

Info

Publication number
WO2019114800A1
WO2019114800A1 PCT/CN2018/120946 CN2018120946W WO2019114800A1 WO 2019114800 A1 WO2019114800 A1 WO 2019114800A1 CN 2018120946 W CN2018120946 W CN 2018120946W WO 2019114800 A1 WO2019114800 A1 WO 2019114800A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam recovery
recovery group
network node
user equipment
processor
Prior art date
Application number
PCT/CN2018/120946
Other languages
French (fr)
Inventor
Jari Jaakko ISOKANGAS
Ning Yang
Cong SHI
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN201880077665.9A priority Critical patent/CN111448837B/en
Publication of WO2019114800A1 publication Critical patent/WO2019114800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present disclosure relates to a field of communication systems, and more particularly, to a method and an apparatus for a beam failure recovery in a wireless communication system.
  • the resources need to be configured beforehand.
  • PUCCH Physical Uplink Control Channel
  • the problem is not significant as beam failure happens when UE is in RRC connected mode and in that case, PUCCH resources are usually configured.
  • UE could use the same PRACH configuration as for any other CBRA based access for initial access i.e. no additional resources need to be allocated for potential beam failure recovery preparation.
  • the PUCCH resources are usually configured only for serving beam (s) , there are limitations to the usage of PUCCH for beam recovery due to the limited amount of reserved PUCCH resources per UE.
  • the dedicated RACH resources preamble sequences/frequency/time per beam identified either by channel state information reference signal (CSI-RS) or SS block (SSB) ) need to be allocated for each candidate beam that UE could potentially use to send BFRR messages.
  • CSI-RS channel state information reference signal
  • SSB SS block
  • one cell could consist of several transmission points (TRPs) and each TRP could be served by several tens of beams i.e. the number of candidate beams per UE could be quite high and leads to very inefficient RACH resource usage in case that all beams belonging to certain cells are identified as candidate beams (i.e. beams that UE can use for transmitting/receiving inside one cell) .
  • An object of the present disclosure is to propose a method and an apparatus for a beam failure recovery in a wireless communication system.
  • a network node for a beam failure recovery in a wireless communication system includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to allocate a same resource to a plurality of user equipment in a same time and determine a set of beams having the same resource in a certain area as a beam recovery group.
  • a method for a beam failure recovery of a network node includes allocating a same resource to a plurality of user equipment in a same time and determining a set of beams having the same resource in a certain area as a beam recovery group.
  • a user equipment of a plurality of user equipment for a beam failure recovery in a wireless communication system includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the transceiver is configured to receive an indication for allocating a same resource to the plurality of user equipment from a network node.
  • the processor is configured to determine a set of beams having the same resource in a certain area as a beam recovery group.
  • a method for a beam failure recovery performed by a user equipment of a plurality of user equipment includes obtaining an indication for allocating a same resource to the plurality of user equipment from a network node and determining a set of beams having the same resource in a certain area as a beam recovery group.
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a network node includes a processor and a memory configured to store a computer program.
  • the processor is configured to execute the computer program stored in the memory to perform the above method.
  • a terminal device includes a processor and a memory configured to store a computer program.
  • the processor is configured to execute the computer program stored in the memory to perform the above method.
  • FIG. 1 is a block diagram of a user equipment and a network node for a beam failure recovery in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating a method for a beam failure recovery of a network node according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a method for a beam failure recovery performed by a user equipment of a plurality of user equipment according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • FIG. 1 illustrates that, in some embodiments, a user equipment (UE) 10 and a network node 20 control a deactivation timer of at least one secondary cell (SCell) in a wireless communication system according to an embodiment of the present disclosure.
  • the UE 10 may include a processor 11, a memory 12, and a transceiver 13.
  • the network node 20 may include a processor 21, a memory 22 and a transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and transmits and/or receives a radio signal.
  • the processor 11 or 21 may include an application-specific integrated circuit (ASIC) , other chipsets, logic circuit and/or data processing devices.
  • the memory 12 or 22 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21, in which those can be communicatively coupled to the processor 11 or 21 via various means are known in the art.
  • the communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under 3rd generation partnership project (3GPP) new radio (NR) Release 16 and beyond.
  • UEs communicate with each other directly via a sidelink interface such as a PC5 interface.
  • the processor 21 is configured to allocate a same resource to a plurality of user equipment in a same time and determine a set of beams having the same resource in a certain area as a beam recovery group.
  • the transceiver 13 is configured to receive an indication for allocating a same resource to the plurality of user equipment from the network node 20.
  • the processor 11 is configured to determine a set of beams having the same resource in a certain area as a beam recovery group.
  • FIG. 2 illustrates a method 200 for a beam failure recovery of the network node 20 according to an embodiment of the present disclosure.
  • the method 200 includes: at block 202, allocating a same resource to a plurality of user equipment in a same time, and at block 204, determining a set of beams having the same resource in a certain area as a beam recovery group.
  • FIG. 3 illustrates a method 300 for a beam failure recovery performed by the user equipment 10 of a plurality of user equipment according to an embodiment of the present disclosure.
  • the method 300 includes: at block 302, obtaining an indication for allocating a same resource to the plurality of user equipment from the network node 20, and at block 304, determining a set of beams having the same resource in a certain area as a beam recovery group.
  • the processor 21 is configured to indicate the plurality user equipment, such as the user equipment 10, to use the same resource.
  • the processor 21 is configured to provide a beam recovery group index for the beam recovery group.
  • the beam recovery group index is used to activate and/or deactivate the beam recovery group.
  • the transceiver 23 receives an indication via a dedicated signaling from one of the plurality of user equipments, such as the user equipment 10, when activation of the beam recovery group is changed by the one of the plurality of user equipments, such as the user equipment 10.
  • the processor 21 When the beam recovery group is activated by more than two of the plurality of user equipments, the processor 21 reconfigures the more than two of the plurality of user equipments to prevent the beam recovery group from being activated by the more than two of the plurality of user equipments.
  • the same resource is a dedicated random access channel (RACH) resource.
  • the transceiver 13 is configured to receive a beam recovery group index from the network node 20.
  • the processor 11 is configured to use the beam recovery group index from the network node 20 to activate and/or deactivate the beam recovery group.
  • the transceiver 13 transmits, to the network node 20, an indication via a dedicated signaling when the processor 11 changes activation of the beam recovery group.
  • the processor 11 is configured to configure a triggering beam according to activation and/or deactivation of the beam recovery group.
  • the processor 11 is configured to use triggering beam information to activate and/or deactivate the beam recovery group autonomously.
  • one way to reduce an overhead related to PRACH resource usage for beam failure recovery it is beneficial to enable the network node 20 to reserve same dedicated RACH (preamble/frequency/time) resources to several UEs in same time. If the dedicated RACH resources are shared with several UEs, it needs to be ensured that two UEs do not try to use same resources simultaneously to send the beam recovery request.
  • dedicated RACH preamble/frequency/time
  • a certain dedicated RACH resource configuration is not active (i.e. configured to UE for use when needed) in several UEs in the same time in a certain area (as these dedicated resources are potentially needed for beams which are potential candidates for beam recovery when beam failure occurs) .
  • one solution to prevent several UEs from accessing with same RACH resources is to keep track of allocated dedicated PRACH resources at a side of the network node 20.
  • the network node 20 could explicitly indicate which UE is allowed to use the resource, if needed.
  • the network node 20 deactivates the resource from that UE and the network node 20 could activate the resource with another UE, which has moved close to that beam.
  • the beam level resource management could be based on individual beams or set of beams with dedicated RACH resources could be coupled together as a recovery beam group, and activation/deactivation is done in a beam group level instead of individual beams.
  • the network node 20 provides an index for each allocated group and that can be used then to activate/deactivate groups.
  • another solution for beam recovery group activation/deactivation could be based on UE mobility i.e. when the UE 10 enters a certain area identified by serving and neighboring beams i.e. when the UE 10 enters to a triggering beam, it should deactivate the old set and activate a new set.
  • the UE 10 indicates to the network node 20 about changes of active beam recovery group.
  • the network node 20 could allocate the UE 10 to a new group for the same area. Usage of beam recovery group reduces a needed signaling during activation/deactivation as the network node 20 does not need to manage/activate RACH resources in beam level.
  • dedicated RACH resource allocation and management for beam failure recovery purposes may have the following characteristics.
  • a set of beams with dedicated RACH resources in certain area are coupled to one beam recovery group (BRG) .
  • BRG beam recovery group
  • the beam recovery group is identified by beam recovery group index (BRGI) which is allocated by the network node 20 when the beam recovery group is created.
  • BRGI beam recovery group index
  • a BGRI is used to activate/deactivate BRG within configured BRGs in UE such as the UE 10.
  • triggering beam (s) can be configured for UE, such as the UE 10 based BRG activation/deactivation.
  • Triggering beam (s) information is used by UE, e.g., the UE 10 to activate/deactivate BRGs autonomously.
  • UE such as the UE 10 could indicate to the network node 20 when an active BRG has been changed using dedicated signaling.
  • the network node 20 reconfigures UE and removes the overlapping situation.
  • the presented solution enables more effective management of dedicated RACH resources allocated for beam failure recovery purposes.
  • the scheme enables the network node 20 to allocate same resources to several UEs in the same time and therefore reduces the number of needed RACH resources to be reserved to support sending of beam failure recovery request (BFRR) using dedicated resources. Grouping the candidate beams for beam recovery to groups, which can be then activated/deactivated by lower layer signaling, would decrease significantly the needed signaling comparing with a situation when activation/deactivation is done in an individual beam level.
  • FIG. 4 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 4 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • multi-mode baseband circuitry Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol.
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • flash memory non-volatile memory
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • a method and an apparatus for a beam failure recovery in a wireless communication system are provided.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and an apparatus for a beam failure recovery in a wireless communication system are provided. The method for the beam failure recovery of a network node includes allocating a same resource to a plurality of user equipment in same time and determining a set of beams with the same resource in a certain area as a beam recovery group.

Description

METHOD AND APPARATUS FOR A BEAM FAILURE RECOVERY IN A WIRELESS COMMUNICATION SYSTEM
BACKGROUND OF DISCLOSURE
1. Field of Disclosure
The present disclosure relates to a field of communication systems, and more particularly, to a method and an apparatus for a beam failure recovery in a wireless communication system.
2. Description of Related Art
It has been agreed in the 3rd generation partnership project (3GPP) that in a new radio (NR) system, such as 5G, beam management, and mobility between beams, can happen without radio resource control (RRC) involvement. That is, changes of a serving beam or a set of beams can be handle by lower protocol layers to avoid RRC level signaling between a user equipment (UE) and a network (NW) . In case of a beam failure, for example, the UE is not able to receive a downlink (DL) beam anymore, it has been agreed in RAN1#89 and RAN1#90, that contention free random access (CFRA) procedure is used to carry a beam failure recovery request (BFRR) message from the UE to the NW.
There is also discussion about a possibility to use PUCCH scheduling request (SR) and potentially contention based random access (CBRA) in case that dedicated uplink (UL) resources cannot be used for CFRA or PUCCH for sending the BFRR. However, it is required that UE needs to be identified uniquely during a beam recovery process, a usage of CFRA with dedicated PRACH or PUCCH resources are obviously preferred solutions and CBRA could be included as a fallback solution in case that neither of the dedicated resources are not available.
To be able to utilize either CFRA or PUCCH for beam recovery, the resources need to be configured beforehand. In a PUCCH case, the problem is not significant as beam failure happens when UE is in RRC connected mode and in that case, PUCCH resources are usually configured. In a CBRA case, UE could use the same PRACH configuration as for any other CBRA based access for initial access i.e. no additional resources need to be allocated for potential beam failure recovery preparation. However, as the PUCCH resources are usually configured only for serving beam (s) , there are limitations to the usage of PUCCH for beam recovery due to the limited amount of reserved PUCCH resources per UE.
When CFRA is used for this purpose, the dedicated RACH resources (preamble sequences/frequency/time per beam identified either by channel state information reference signal (CSI-RS) or SS block (SSB) ) need to be allocated for each candidate beam that UE could potentially use to send BFRR messages. In NR (5G) , one cell could consist of several transmission points (TRPs) and each TRP could be served by several tens of beams i.e. the number of candidate beams per UE could be quite high and leads to very inefficient RACH resource usage in case that all beams belonging to certain cells are identified as candidate beams (i.e. beams that UE can use for transmitting/receiving inside one cell) . From points of view of a RACH resource allocation and efficiency, more effective solutions are to keep the set of beams where RACH has been allocated as small as possible. However, as the dedicated RACH configuration is passed to UE using RRC signaling, frequent configuration updates will increase the load of the RRC signaling significantly and will generate additional delay compare with lower layer management/signaling mechanisms.
There is a need to provide a new technical solution for a method and an apparatus for a beam failure recovery in a wireless communication system.
SUMMARY
An object of the present disclosure is to propose a method and an apparatus for a beam failure recovery in a wireless communication system.
In a first aspect of the present disclosure, a network node for a beam failure recovery in a wireless communication system includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to allocate a same resource to a plurality of user equipment in a same time and determine a set of beams having the same resource in a certain area as a beam recovery group.
In a second aspect of the present disclosure, a method for a beam failure recovery of a network node includes allocating a same resource to a plurality of user equipment in a same time and determining a set of beams having the same resource in a certain area as a beam recovery group.
In a third aspect of the present disclosure, a user equipment of a plurality of user equipment for a beam failure recovery in a wireless communication system includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The transceiver is configured to receive an indication for allocating a same resource to the plurality of user equipment from a network node. The processor is configured to  determine a set of beams having the same resource in a certain area as a beam recovery group.
In a fourth aspect of the present disclosure, a method for a beam failure recovery performed by a user equipment of a plurality of user equipment includes obtaining an indication for allocating a same resource to the plurality of user equipment from a network node and determining a set of beams having the same resource in a certain area as a beam recovery group.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a network node includes a processor and a memory configured to store a computer program. The processor is configured to execute the computer program stored in the memory to perform the above method.
In a seventh aspect of the present disclosure, a terminal device includes a processor and a memory configured to store a computer program. The processor is configured to execute the computer program stored in the memory to perform the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a block diagram of a user equipment and a network node for a beam failure recovery in a wireless communication system according to an embodiment of the present disclosure.
FIG. 2 is a flowchart illustrating a method for a beam failure recovery of a network node according to an embodiment of the present disclosure.
FIG. 3 is a flowchart illustrating a method for a beam failure recovery performed by a user equipment of a plurality of user equipment according to an embodiment of the present disclosure.
FIG. 4 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
FIG. 1 illustrates that, in some embodiments, a user equipment (UE) 10 and a network node 20 control a deactivation timer of at least one secondary cell (SCell) in a wireless communication system according to an embodiment of the present disclosure. The UE 10 may include a processor 11, a memory 12, and a transceiver 13. The network node 20 may include a processor 21, a memory 22 and a transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and transmits and/or receives a radio signal.
The  processor  11 or 21 may include an application-specific integrated circuit (ASIC) , other chipsets, logic circuit and/or data processing devices. The  memory  12 or 22 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21, in which those can be communicatively coupled to the  processor  11 or 21 via various means are known in the art.
The communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under 3rd generation partnership project (3GPP) new radio (NR) Release 16 and beyond. UEs communicate with each other directly via a sidelink interface such as a PC5 interface.
In some embodiments, the processor 21 is configured to allocate a same resource to a plurality of user equipment in a same time and determine a set of beams having the same resource in a certain area as a beam recovery group.
In some embodiments, the transceiver 13 is configured to receive an indication for allocating a same resource to the plurality of user equipment from the network node 20. The processor 11 is configured to determine a set of beams having the same resource in a certain area as a beam recovery group.
FIG. 2 illustrates a method 200 for a beam failure recovery of the network node 20 according to an embodiment of the present disclosure. The method 200 includes: at block 202, allocating a same resource to a plurality of user equipment in a same time, and at block 204, determining a set of beams having the same resource in a certain area as a beam recovery group.
FIG. 3 illustrates a method 300 for a beam failure recovery performed by the user equipment 10 of a plurality of user equipment according to an embodiment of the present disclosure. The method 300 includes: at block 302, obtaining an indication for allocating a same resource to the plurality of user equipment from the network node 20, and at block 304, determining a set of beams having the same resource in a certain area as a beam recovery group.
In some embodiments, the processor 21 is configured to indicate the plurality user equipment, such as the user equipment 10, to use the same resource. The processor 21 is configured to provide a beam recovery group index for the beam recovery group. The beam recovery group index is used to activate and/or deactivate the beam recovery group. The transceiver 23 receives an indication via a dedicated signaling from one of the plurality of user equipments, such as the user equipment 10, when activation of the beam recovery group is changed by the one of the plurality of user equipments, such as the user equipment 10. When the beam recovery group is activated by more than two of the plurality of user equipments, the processor 21 reconfigures the more than two of the plurality of user equipments to prevent the beam recovery group from being activated by the more than two of the plurality of user equipments. The same resource is a dedicated random access channel (RACH) resource.
In some embodiments, the transceiver 13 is configured to receive a beam recovery group index from the network node 20. The processor 11 is configured to use the beam recovery group index from the network node 20 to activate and/or deactivate the beam recovery group. The transceiver 13 transmits, to the network node 20, an  indication via a dedicated signaling when the processor 11 changes activation of the beam recovery group. The processor 11 is configured to configure a triggering beam according to activation and/or deactivation of the beam recovery group. The processor 11 is configured to use triggering beam information to activate and/or deactivate the beam recovery group autonomously.
In some embodiments, one way to reduce an overhead related to PRACH resource usage for beam failure recovery, it is beneficial to enable the network node 20 to reserve same dedicated RACH (preamble/frequency/time) resources to several UEs in same time. If the dedicated RACH resources are shared with several UEs, it needs to be ensured that two UEs do not try to use same resources simultaneously to send the beam recovery request.
In some embodiments, to prevent UEs from using a particular dedicated RACH resource for a certain beam in the same time, it need to be ensured that a certain dedicated RACH resource configuration is not active (i.e. configured to UE for use when needed) in several UEs in the same time in a certain area (as these dedicated resources are potentially needed for beams which are potential candidates for beam recovery when beam failure occurs) .
In some embodiments, one solution to prevent several UEs from accessing with same RACH resources, is to keep track of allocated dedicated PRACH resources at a side of the network node 20. When a same resource has been configured to several UEs, the network node 20 could explicitly indicate which UE is allowed to use the resource, if needed. When UE moves to another area (away for a particular beam) , the network node 20 deactivates the resource from that UE and the network node 20 could activate the resource with another UE, which has moved close to that beam. The beam level resource management could be based on individual beams or set of beams with dedicated RACH resources could be coupled together as a recovery beam group, and activation/deactivation is done in a beam group level instead of individual beams. To enable efficient activation/deactivation of beam recovery group, the network node 20 provides an index for each allocated group and that can be used then to activate/deactivate groups.
In some embodiments, another solution for beam recovery group activation/deactivation could be based on UE mobility i.e. when the UE 10 enters a certain area identified by serving and neighboring beams i.e. when the UE 10 enters to a triggering beam, it should deactivate the old set and activate a new set. To ensure that  there is no more than one UE in the area using a particular beam recovery group, the UE 10 indicates to the network node 20 about changes of active beam recovery group. In case that some other UE already uses the particular beam recovery group, the network node 20 could allocate the UE 10 to a new group for the same area. Usage of beam recovery group reduces a needed signaling during activation/deactivation as the network node 20 does not need to manage/activate RACH resources in beam level.
In some embodiments, dedicated RACH resource allocation and management for beam failure recovery purposes may have the following characteristics.
1. A set of beams with dedicated RACH resources in certain area are coupled to one beam recovery group (BRG) .
2. The beam recovery group is identified by beam recovery group index (BRGI) which is allocated by the network node 20 when the beam recovery group is created.
3. A BGRI is used to activate/deactivate BRG within configured BRGs in UE such as the UE 10.
4. For each BRG, triggering beam (s) can be configured for UE, such as the UE 10 based BRG activation/deactivation.
5. Triggering beam (s) information is used by UE, e.g., the UE 10 to activate/deactivate BRGs autonomously.
6. UE such as the UE 10 could indicate to the network node 20 when an active BRG has been changed using dedicated signaling.
7. In a case of active BRG overlapping (the same BRG has been activated more than to UEs) , the network node 20 reconfigures UE and removes the overlapping situation.
In some embodiments, the presented solution enables more effective management of dedicated RACH resources allocated for beam failure recovery purposes. The scheme enables the network node 20 to allocate same resources to several UEs in the same time and therefore reduces the number of needed RACH resources to be reserved to support sending of beam failure recovery request (BFRR) using dedicated resources. Grouping the candidate beams for beam recovery to groups, which can be then activated/deactivated by lower layer signaling, would decrease significantly the needed signaling comparing with a situation when activation/deactivation is done in an individual beam level.
FIG. 4 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein  may be implemented into the system using any suitably configured hardware and/or software. FIG. 4 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
The application circuitry 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry  and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
In the embodiment of the present disclosure, a method and an apparatus for a beam failure recovery in a wireless communication system are provided. The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan.
A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling  operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (31)

  1. A network node for a beam failure recovery in a wireless communication system, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver,
    wherein the processor is configured to:
    allocate a same resource to a plurality of user equipment in a same time; and
    determine a set of beams having the same resource in a certain area as a beam recovery group.
  2. The network node of claim 1, wherein the processor is configured to indicate the plurality user equipment to use the same resource.
  3. The network node of claim 1 or 2, wherein the processor is configured to provide a beam recovery group index for the beam recovery group.
  4. The network node of any one of claims 1 to 3, wherein the beam recovery group index is used to activate and/or deactivate the beam recovery group.
  5. The network node of any one of claims 1 to 4, wherein the transceiver receives an indication via a dedicated signaling from one of the plurality of user equipments when activation of the beam recovery group is changed by the one of the plurality of user equipments.
  6. The network node of any one of claims 1 to 5, wherein when the beam recovery group is activated by more than two of the plurality of user equipments, the processor reconfigures the more than two of the plurality of user equipments to prevent the beam recovery group from being activated by the more than two of the plurality of user equipments.
  7. The network node of any one of claims 1 to 6, wherein the same resource is a dedicated random access channel (RACH) resource.
  8. A method for a beam failure recovery of a network node, comprising:
    allocating a same resource to a plurality of user equipment in same time; and
    determining a set of beams with the same resource in a certain area as a beam recovery group.
  9. The method of claim 8, further comprising indicating the plurality user equipment to use the same resource.
  10. The method of claim 8 or 9, further comprising providing a beam recovery group  index for the beam recovery group.
  11. The method of any one of claims 8 to 10, wherein the beam recovery group index is used to activate and/or deactivate the beam recovery group.
  12. The method of any one of claims 8 to 11, further comprising receiving an indication via a dedicated signaling from one of the plurality of user equipments when activation of the beam recovery group is changed by the one of the plurality of user equipments.
  13. The method of any one of claims 8 to 12, wherein when the beam recovery group is activated by more than two of the plurality of user equipments, the method comprises reconfiguring the more than two of the plurality of user equipments to prevent the beam recovery group from being activated by the more than two of the plurality of user equipments.
  14. The method of any one of claims 8 to 13, wherein the same resource is a dedicated random access channel (RACH) resource.
  15. A user equipment of a plurality of user equipment for a beam failure recovery in a wireless communication system, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver,
    wherein the transceiver is configured to receive an indication for allocating a same resource to the plurality of user equipment from a network node;
    wherein the processor is configured to determine a set of beams with the same resource in a certain area as a beam recovery group.
  16. The user equipment of claim 15, wherein the transceiver is configured to receive a beam recovery group index from the network node.
  17. The user equipment of claim 16, wherein the processor is configured to use the beam recovery group index from the network node to activate and/or deactivate the beam recovery group.
  18. The user equipment of any one of claims 15 to 17, wherein the transceiver transmits, to the network node, an indication via a dedicated signaling when the processor changes activation of the beam recovery group.
  19. The user equipment of any one of claims 15 to 18, wherein the same resource is a dedicated random access channel (RACH) resource.
  20. The user equipment of any one of claims 15 to 19, wherein the processor is configured to configure a triggering beam according to activation and/or deactivation of  the beam recovery group.
  21. The user equipment of any one of claims 15 to 20, wherein the processor is configured to use triggering beam information to activate and/or deactivate the beam recovery group autonomously.
  22. A method for a beam failure recovery performed by a user equipment of a plurality of user equipment, comprising:
    obtaining an indication for allocating a same resource to the plurality of user equipment from a network node; and
    determining a set of beams with the same resource in a certain area as a beam recovery group.
  23. The method of claim 22, further comprising:
    obtaining a beam recovery group index which is received from the network node.
  24. The method of claim 23, further comprising using the beam recovery group index from the network node to activate and/or deactivate the beam recovery group.
  25. The method of any one of claims 22 to 24, further comprising transmitting, to the network node, an indication via a dedicated signaling when changing activation of the beam recovery group.
  26. The method of any one of claims 22 to 25, wherein the same resource is a dedicated random access channel (RACH) resource.
  27. The method of any one of claims 22 to 26, further comprising configuring a triggering beam according to activation and/or deactivation of the beam recovery group.
  28. The method of any one of claims 22 to 27, further comprising using triggering beam information to activate and/or deactivate the beam recovery group autonomously.
  29. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 8 to 14 and 22 to 28.
  30. A network node, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 8 to 10, 13, and 14.
  31. A terminal device, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 22 and 24 to 28.
PCT/CN2018/120946 2017-12-13 2018-12-13 Method and apparatus for a beam failure recovery in a wireless communication system WO2019114800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880077665.9A CN111448837B (en) 2017-12-13 2018-12-13 Method and apparatus for beam fault recovery in a wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762598063P 2017-12-13 2017-12-13
US62/598,063 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019114800A1 true WO2019114800A1 (en) 2019-06-20

Family

ID=66819984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120946 WO2019114800A1 (en) 2017-12-13 2018-12-13 Method and apparatus for a beam failure recovery in a wireless communication system

Country Status (2)

Country Link
CN (1) CN111448837B (en)
WO (1) WO2019114800A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure
CN109121223A (en) * 2017-06-26 2019-01-01 北京三星通信技术研究有限公司 Method and user equipment, the base station equipment of random access

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165128A1 (en) * 2015-04-17 2016-10-20 华为技术有限公司 Method for transmitting information, base station, and user equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure
CN109121223A (en) * 2017-06-26 2019-01-01 北京三星通信技术研究有限公司 Method and user equipment, the base station equipment of random access

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Beam failure recovery", 3GPP TSG RAN WGI MEETING #89 RI-1708135, 19 May 2017 (2017-05-19), pages 1 - 10, XP051273331 *

Also Published As

Publication number Publication date
CN111448837A (en) 2020-07-24
CN111448837B (en) 2023-05-09

Similar Documents

Publication Publication Date Title
US11147084B2 (en) Apparatus and method of wireless communication of same
US11956767B2 (en) Apparatus and method for scheduling resource allocation of same
WO2020233189A1 (en) User equipment and method for resource selection of same
US11343821B2 (en) Method and apparatus for performing resource scheduling and delivering control information in vehicle-to-everything communication system
CN112740787B (en) User equipment and wireless communication method thereof
US11310867B2 (en) Method and apparatus of controlling secondary cell
WO2019128975A1 (en) Method and apparatus for a beam failure recovery in a wireless communication system
WO2019114800A1 (en) Method and apparatus for a beam failure recovery in a wireless communication system
CN113115593B (en) Apparatus and method for discontinuous reception of apparatus
WO2020087438A1 (en) User equipment and method of wireless communication of same
WO2019105430A1 (en) Method and apparatus for identifying interference in a wireless communication system
US20210006384A1 (en) Method and apparatus for controlling a deactivation timer of at least one secondary cell in a wireless communication system
CN113692780A (en) Apparatus and method for managing user equipment capability information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887566

Country of ref document: EP

Kind code of ref document: A1