WO2020071193A1 - 無アルカリガラス板 - Google Patents

無アルカリガラス板

Info

Publication number
WO2020071193A1
WO2020071193A1 PCT/JP2019/037489 JP2019037489W WO2020071193A1 WO 2020071193 A1 WO2020071193 A1 WO 2020071193A1 JP 2019037489 W JP2019037489 W JP 2019037489W WO 2020071193 A1 WO2020071193 A1 WO 2020071193A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass
content
glass plate
alkali
Prior art date
Application number
PCT/JP2019/037489
Other languages
English (en)
French (fr)
Inventor
篤 虫明
敦己 斉藤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US17/282,480 priority Critical patent/US20210380468A1/en
Priority to CN201980065642.0A priority patent/CN112805255A/zh
Priority to JP2020550322A priority patent/JP7448890B2/ja
Priority to KR1020217010279A priority patent/KR20210070295A/ko
Publication of WO2020071193A1 publication Critical patent/WO2020071193A1/ja
Priority to JP2024020354A priority patent/JP2024040438A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating

Definitions

  • MgO is a component that lowers the viscosity at high temperature to increase the meltability, and is a component that increases the devitrification resistance in balance with other components. Further, from the viewpoint of mechanical properties, it is a component that significantly increases the Young's modulus. Therefore, the content of MgO is preferably at least 0%, at least 0.5%, at least 1%, at least 1.5%, particularly at least 2%. On the other hand, if the content of MgO is too large, the strain point tends to decrease, or the balance with other components is lost, and the tendency to devitrify increases. Therefore, the content of MgO is preferably 30% or less, 15% or less, 10% or less, 9% or less, 8% or less, 7.5% or less, 7% or less, 6.5% or less, particularly 6% or less. It is.
  • BaO is a component that lowers the viscosity at high temperatures to increase the meltability, and is a component that increases the devitrification resistance in balance with other components. Therefore, the content of BaO is preferably 0% or more, 0.5% or more, 1% or more, 1.5% or more, 2% or more, 2.5% or more, particularly 3% or more. On the other hand, if the content of BaO is too large, the strain point tends to decrease. Therefore, the content of SrO is preferably 15% or less, 10% or less, 9% or less, 8% or less, 7.5% or less, 7% or less, 6.5% or less, particularly 6% or less.
  • the total amount of SrO and BaO is preferably 0% or more, 2% or more, 3% or more, 4% or more, particularly 5% or more. If the combined amount of SrO and BaO is too small, the meltability tends to decrease. On the other hand, if the total amount of SrO and BaO is too large, the component balance of the glass composition will be impaired, and the devitrification resistance tends to decrease. Therefore, the total amount of SrO and BaO is preferably 20% or less, 16% or less, 14% or less, 12% or less, 10% or less, 9% or less, particularly 8% or less.
  • [Al 2 O 3 ] + [B 2 3 3 ]-[Ca ⁇ ]-[Sr ⁇ ]-[BaO] is preferably at least 0%, at least 0.1%, particularly at least 1.0%. If [Al 2 O 3 ] + [B 2 3 3 ]-[Ca ⁇ ]-[Sr ⁇ ]-[BaO] is too small, non-crosslinked oxygen and the like in the glass will increase and structural imbalance will easily occur. Therefore, the glass plate is likely to thermally shrink during the high-temperature film forming process.
  • ZnO is a component that enhances the melting property. However, when ZnO is contained in a large amount, the glass is easily devitrified and the strain point is easily lowered.
  • the content of ZnO is preferably 0-5%, 0-3%, 0-0.5%, 0-0.3%, especially 0-0.2%.
  • SnO 2 is a component that has a good fining action in a high temperature range, is a component that increases the strain point, and is a component that lowers the viscosity at high temperature.
  • the content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, 0.05 to 0.5%, particularly 0.08 to 0.2%. If the content of SnO 2 is too large, a devitrified crystal of SnO 2 tends to precipitate. If the content of SnO 2 is less than 0.001%, it is difficult to obtain the above effects.
  • Rh is a component contained in the melting equipment, and is a component that elutes in the glass cloth when the glass is melted at a high temperature.
  • Rh is a component that colors glass when coexisting with SnO 2 .
  • the content of Rh is preferably 0 to 3 ppm by mass, 0.1 to 3 ppm by mass, 0.1 to 3 ppm by mass, 0.2 to 2.5 ppm by mass, 0.3 to 2 ppm by mass, It is 4 to 1.5 ppm by weight, especially 0.5 to 1 ppm by weight. When the melting temperature is lowered, the Rh content tends to decrease.
  • Ir is a component having higher heat resistance than Pt or Pt-Rh alloy and capable of reducing foaming of the molten glass at the interface with the molten glass. Further, Ir is a component contained in the melting equipment, and is a component that elutes into the glass material when the glass is melted at a high temperature. On the other hand, when the elution amount of Ir increases, there is a possibility that it will precipitate as foreign matter in the glass. Therefore, the content of Ir is preferably 0 to 10 ppm by mass, 0.01 to 10 ppm by mass, 0.02 to 5 ppm by mass, 0.03 to 3 ppm by mass, 0.04 to 2 ppm by mass, particularly preferably 0 to 2 ppm by mass. 0.05 to 1 ppm by mass is preferred. Note that “Ir” includes IrO 2 and Ir 2 O 3 as well as Ir, and IrO 2 and Ir 2 O 3 are expressed in terms of Ir.
  • Specific modulus is preferably 30GPa / g ⁇ cm -3 or more, 31GPa / g ⁇ cm -3 or more, 32GPa / g ⁇ cm -3 or more, particularly 33GPa / g ⁇ cm -3 or more. If the specific Young's modulus is too low, the amount of deflection of the glass plate tends to be large, so that a pattern shift due to stress is easily promoted in a display manufacturing process or the like.
  • ⁇ -OH is an index indicating the amount of water in the glass, and lowering ⁇ -OH can increase the strain point. Further, even when the glass composition is the same, the smaller the ⁇ -OH, the smaller the heat shrinkage at a temperature below the strain point.
  • ⁇ -OH is preferably at most 0.30 / mm, at most 0.25 / mm, at most 0.20 / mm, at most 0.15 / mm, especially at most 0.10 / mm. If ⁇ -OH is too small, the meltability tends to decrease. Therefore, ⁇ -OH is preferably at least 0.01 / mm, particularly at least 0.03 / mm.
  • overflow down draw method for example, it is also possible to form by a slot down method, a redraw method, a float method, or a roll out method.
  • the plate thickness is not particularly limited, but is preferably 1.0 mm or less, 0.7 mm or less, 0.5 mm or less, particularly 0.05 to 0.4 mm.
  • the sheet thickness can be adjusted by the flow rate during glass production, the forming speed (sheet drawing speed), and the like.
  • alkali-free glass plate of the present invention has a glass composition, in mol%, SiO 2 55 ⁇ 80% , Al 2 O 3 10 ⁇ 25%, B 2 O 3 0 ⁇ 4%, MgO 0 to 30%, CaO 0 to 25%, SrO 0 to 15%, BaO 0 to 15%, ZnO 0 to 5%, Y 2 O 3 + La 2 O 3 0 to less than 1.0%, substantially
  • a glass batch prepared so as not to contain alkali metal oxides in a melting furnace is charged into a melting furnace and heated by a heating electrode to obtain a molten glass, and the obtained molten glass is overflow-down-drawn.
  • the manufacturing process of a glass plate generally includes a melting process, a fining process, a supply process, a stirring process, and a forming process.
  • the melting step is a step of melting a glass batch prepared by mixing glass raw materials to obtain a molten glass.
  • the fining step is a step of fining the molten glass obtained in the melting step by the action of a fining agent or the like.
  • the supply step is a step of transferring the molten glass between each step.
  • the stirring step is a step of stirring and homogenizing the molten glass.
  • the forming step is a step of forming the molten glass into a glass plate. If necessary, a step other than the above, for example, a state adjusting step of adjusting the molten glass to a state suitable for molding may be incorporated after the stirring step.
  • the smaller the amount of water in the glass batch the easier it is to reduce ⁇ -OH in the glass plate.
  • the introduced material of B 2 O 3 is likely to be the largest source of water contamination. Therefore, from the viewpoint of producing a low ⁇ -OH glass plate, it is preferable to reduce the content of B 2 O 3 as much as possible.
  • the smaller the amount of water in the glass batch the easier it is for the glass batch to spread uniformly in the melting furnace, so that it is easy to produce a homogeneous and high-quality glass plate.
  • Tables 1 to 49 show Examples (Sample Nos. 1 to 679) of the present invention.
  • the sample No. The glass properties of 281 to 679 are not actually measured values, but are calculated values calculated from composition factors.
  • a glass batch prepared by mixing glass raw materials so as to have a glass composition shown in the table was put in a platinum crucible and then melted at 1600 to 1650 ° C. for 24 hours. Upon melting the glass batch, the mixture was stirred using a platinum stirrer and homogenized. Next, the molten glass was poured out onto a carbon plate, formed into a plate, and then gradually cooled at a temperature near the annealing point for 30 minutes.
  • the coefficient of thermal expansion is a value obtained by measuring the average coefficient of thermal expansion in a temperature range of 30 to 380 ° C. with a dilatometer.
  • Density is a value measured by the well-known Archimedes method.
  • strain point, the annealing point, and the softening point are values measured based on the method of ASTM C336 and C338.
  • Temperature at the high temperature viscosity 10 4.5 dPa ⁇ s, 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s is a value measured by a platinum ball pulling method.
  • Young's modulus is a value measured by the bending resonance method.
  • the relative Young's modulus is a value obtained by dividing the Young's modulus by the density.
  • ⁇ -OH is a value measured by the above method.
  • sample no. Nos. 1 to 679 have a high strain point and do not contain Y 2 O 3 and La 2 O 3 in the glass composition, so that it is considered that the production cost can be reduced.
  • Table 50 is data showing the relationship between ⁇ -OH and heat shrinkage.
  • Sample A and Sample B are Sample No. It has the glass composition according to No. 1, but is different in ⁇ -OH. With respect to Samples A and B, the heat shrinkage when held at 500 ° C. for 1 hour and the heat shrinkage when held at 600 ° C. for 1 hour were measured.
  • the heat shrinkage can be measured as follows. First, a linear marking is imprinted in two places on a glass plate in parallel, and then divided in a direction perpendicular to the marking to obtain two glass pieces. Next, for one glass piece, the temperature was raised from room temperature to 500 ° C. or 600 ° C. at a rate of 5 ° C./min, held at 500 ° C. or 600 ° C. for 1 hour, and then decreased at a rate of 5 ° C./min. Cool to room temperature. Subsequently, the heat-treated glass piece and the non-heat-treated glass piece are arranged so that the divided surfaces are aligned, and are fixed with an adhesive tape. Then, the displacement ⁇ L between the markings is measured. Finally, the value of ⁇ L / L 0 is measured, and this is defined as the heat shrinkage. L 0 is the length of the glass piece before the heat treatment.
  • the above sample No. The glass having a glass composition of 1, 15, 115 was melted using existing equipment under conventional temperature conditions, and a glass plate was formed by an overflow downdraw method, and then the content of trace components was determined by fluorescent X-ray analysis. Was measured. The results are shown in Table 51.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本発明の無アルカリガラス板は、ガラス組成として、モル%で、SiO2 55~80%、Al2O3 10~25%、B2O3 0~4%、MgO 0~30%、CaO 0~25%、SrO 0~15%、BaO 0~15%、ZnO 0~5%、Y2O3+La2O3 0~1.0%未満を含有し、実質的にアルカリ金属酸化物を含有せず、歪点が750℃以上であることを特徴とする。

Description

無アルカリガラス板
 本発明は、無アルカリガラス板に関し、特に液晶ディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイにおいて、TFT回路を形成するための基板又はTFT回路を形成するための樹脂基板を保持するキャリアガラスに好適な無アルカリガラス板に関する。
 液晶パネルや有機ELパネルは、周知の通り、駆動制御のために薄膜トランジスタ(TFT)を備えている。
 ディスプレイを駆動する薄膜トランジスタには、アモルファスシリコン、低温ポリシリコン、高温ポリシリコン等が知られている。近年、大型液晶ディスプレイ、スマートフォン、タブレットPC等の普及に伴い、ディスプレイの高解像度化のニーズが高まっている。低温ポリシリコンTFTは、このニーズを満たし得るが、500~600℃の高温成膜プロセスを経ることになる。しかし、従来のガラス板は、高温成膜プロセスの前後で熱収縮量が大きくなるため、薄膜トランジスタのパターンずれを惹起してしまう。よって、ディスプレイの高解像度化には、低熱収縮のガラス板が求められる。近年では、ディスプレイの更なる高精細化が検討されており、その場合、ガラス板を更に低熱収縮化する必要がある。
特許第5769617号公報
 ガラス板の熱収縮を低下させる方法として、主に二つの方法が挙げられる。一つ目の方法は、予め成膜プロセスの熱処理温度付近において、ガラス板を保持して、徐冷する方法である。この方法では、徐冷時にガラスが構造緩和して収縮するため、後の高温成膜プロセスでの熱収縮量を抑制することができる。しかし、この方法は、製造工程数や製造時間の増加を招くため、ガラス板の製造コストが高騰してしまう。
 二つ目の方法は、ガラス板の歪点を高める方法である。オーバーフローダウンドロー法は、一般的に、比較的短時間で溶融温度から成形温度へ冷却される。この影響で、ガラス板の仮想温度が高くなり、ガラス板の熱収縮が大きくなる。そこで、ガラス板の歪点を高めると、成膜プロセスの熱処理温度におけるガラス板の粘度が大きくなり、構造緩和が進み難くなる。結果として、ガラス板の熱収縮を抑制することができる。そして、成膜プロセスの熱処理温度が高い程、熱収縮の低減に対して、高歪点化の効果が大きくなる。よって、低温ポリシリコンTFTの場合、ガラス板をできるだけ高歪点化することが望ましい。
 特許文献1には、Y及び/又はLaを含む高歪点ガラスが開示されている。しかし、Y及びLaは、希土類元素であるため、原料コストが高く、ガラス板の製造コストを高騰させるという問題がある。
 本発明は、上記事情に鑑みなされたものであり、その技術的課題は、歪点が高く、製造コストを低廉化し得る無アルカリガラス板を創案することである。
 本発明者等は、鋭意検討の結果、各成分の含有量を厳密に規制すると共に、歪点を所定値以上に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の無アルカリガラス板は、ガラス組成として、モル%で、SiO 55~80%、Al 10~25%、B 0~4%、MgO 0~30%、CaO 0~25%、SrO 0~15%、BaO 0~15%、ZnO 0~5%、Y+La 0~1.0%未満を含有し、実質的にアルカリ金属酸化物を含有せず、歪点が750℃以上であることを特徴とする。ここで、「Y+La」は、YとLaの合量を指す。「実質的にアルカリ金属酸化物を含有せず」とは、ガラス組成中のアルカリ金属酸化物(LiO、NaO、KO)の含有量が0.5モル%未満の場合を指す。「歪点」は、ASTM C336の方法に基づいて測定した値を指す。
 また、本発明の無アルカリガラス板は、[SiO]+14×[Al]-15×[B]+6×[MgO]+[CaO]+14×[SrO]+16×[BaO]≧360モル%の関係を満たすことが好ましい。ここで、[SiO]は、SiOのモル%含有量を指しており、[SiO]は、SiOのモル%含有量を指しており、[Al]は、Alのモル%含有量を指しており、[B]は、Bのモル%含有量を指しており、[MgO]は、MgOのモル%含有量を指しており、[CaO]は、CaOのモル%含有量を指しており、[SrO]は、SrOのモル%含有量を指しており、[BaO]は、BaOのモル%含有量を指している。
 また、本発明の無アルカリガラス板は、17.8×[SiO]+23.1×[Al]+3.7×[B]+12.9×[MgO]+14.1×[CaO]+15.5×[SrO]+15.0×[BaO]+7.2×[ZnO]≧1786モル%の関係を満たすことが好ましい。
 また、本発明の無アルカリガラス板は、Rhの含有量が0.1~3質量ppmであることが好ましい。ここで、「Rh」は、Rhだけでなく、RhO、Rhも包含し、RhO、Rhは、Rhに換算して表記するものとする。
 また、本発明の無アルカリガラス板は、ヤング率が82GPa以上であることが好ましい。ここで、「ヤング率」は、曲げ共振法により測定可能である。
 本発明の無アルカリガラス板は、ガラス組成として、モル%で、SiO 55~80%、Al 10~25%、B 0~4%、MgO 0~30%、CaO 0~25%、SrO 0~15%、BaO 0~15%、ZnO 0~5%、Y+La 0~1.0%未満を含有し、実質的にアルカリ金属酸化物を含有しないことを特徴とする。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、特段の断りがある場合を除き、%表示はモル%を表す。
 SiOは、ガラス骨格を形成する成分であり、歪点を高める成分である。よって、SiOの含有量は、好ましくは55%以上、60%以上、63%以上、65%以上、67%以上、特に68%以上である。一方、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなる。よって、SiOの含有量は、好ましくは80%以下、78%以下、75%以下、74%以下、73%以下、特に72%以下である。
 Alは、ガラス骨格を形成する成分であり、また歪点を高める成分であり、更に分相を抑制する成分である。よって、Alの含有量は、好ましくは10%以上、10.5%以上、11%以上、11.5%以上、特に12%以上である。一方、Alの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなる。よって、Alの含有量は、好ましくは25%以下、22%以下、20%以下、18%以下、16%以下、15%以下、特に14%以下である。
 SiOとAlの合量は、好ましくは70%以上、75%以上、80%以上、81%以上、82%以上、83%以上、84%以上、特に85%以上である。SiOとAlの合量が少な過ぎると、歪点が低下し易くなる。一方、SiOとAlの合量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなる。よって、SiOとAlの合量は、好ましくは90%以下、89%以下、88%以下、87%以下、特に86%以下である。
 Bは、任意成分であるが、少量導入すれば、溶融性が向上する。よって、Bの含有量は、好ましくは0.01%以上、0.1%以上、0.2%以上、0.3%以上、0.4%以上、特に0.5%以上である。一方、Bの含有量が多過ぎると、歪点が大幅に低下したり、β-OHが大幅に増加する。詳細は後述するが、β-OHが多くなると、熱収縮率が大きくなる。よって、Bの含有量は、好ましくは4%以下、3.5%以下、3%以下、2.5%以下、2%以下、1.5%以下、特に1%以下である。
 MgOは、高温粘性を下げて、溶融性を高める成分であり、また他の成分とのバランスにより耐失透性を高める成分である。更に機械的特性の観点ではヤング率を顕著に高める成分である。よって、MgOの含有量は、好ましくは0%以上、0.5%以上、1%以上、1.5%以上、特に2%以上である。一方、MgOの含有量が多過ぎると、歪点が低下し易くなったり、他の成分とのバランスが崩れて失透傾向が強くなったりする。よって、MgOの含有量は、好ましくは30%以下、15%以下、10%以下、9%以下、8%以下、7.5%以下、7%以下、6.5%以下、特に6%以下である。
 CaOは、高温粘性を下げて、溶融性を高める成分であり、また他の成分とのバランスにより耐失透性を高める成分である。よって、CaOの含有量は、好ましくは0%以上、0.5%以上、1%以上、1.5%以上、特に2%以上である。一方、CaOの含有量が多過ぎると、歪点が低下し易くなる。よってよって、CaOの含有量は、好ましくは25%以下、15%以下、10%以下、9%以下、8%以下、7.5%以下、7%以下、6.5%以下、特に6%以下である。
 SrOは、高温粘性を下げて、溶融性を高める成分であり、また他の成分とのバランスにより耐失透性を高める成分である。よって、SrOの含有量は、好ましくは0%以上、0.5%以上、1%以上、1.5%以上、特に2%以上である。一方、SrOの含有量が多過ぎると、歪点が低下し易くなる。よって、SrOの含有量は、好ましくは15%以下、10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、特に4%以下である。
 BaOは、高温粘性を下げて、溶融性を高める成分であり、また他の成分とのバランスにより耐失透性を高める成分である。よって、BaOの含有量は、好ましくは0%以上、0.5%以上、1%以上、1.5%以上、2%以上、2.5%以上、特に3%以上である。一方、BaOの含有量が多過ぎると、歪点が低下し易くなる。よって、SrOの含有量は、好ましくは15%以下、10%以下、9%以下、8%以下、7.5%以下、7%以下、6.5%以下、特に6%以下である。
 SrOとBaOの合量は、好ましくは0%以上、2%以上、3%以上、4%以上、特に5%以上である。SrOとBaOの合量が少な過ぎると、溶融性が低下し易くなる。一方、SrOとBaOの合量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、SrOとBaOの合量は、好ましくは20%以下、16%以下、14%以下、12%以下、10%以下、9%以下、特に8%以下である。
 MgO、CaO、SrO及びBaOの合量は、好ましくは9.9%以上、12%以上、12.5%以上、13%以上、13.5%以上、特に14%以上である。MgO、CaO、SrO及びBaOの合量が少な過ぎると、溶融性が低下し易くなる。一方、MgO、CaO、SrO及びBaOの合量が多過ぎると、歪点が低下したり、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、MgO、CaO、SrO及びBaOの合量は、好ましくは25%以下、20%以下、16%以下、15.5%以下、15%以下、14.5%以下、特に14%以下である。
 モル%比[B]/([SrO]+[BaO])は、好ましくは0~0.5、0~0.45、0~0.4、0~0.35、0.01~0.3、0.05~0.25、特に0.1~0.2である。モル%比[B]/([SrO]+[BaO])が上記範囲外になると、本発明に係るガラス系では、各成分のバランスが崩れて、耐失透性が低下し易くなる。なお、「[B]/([SrO]+[BaO])」は、Bの含有量をSrOとBaOの合量で除した値を指す。
 [SiO]+14×[Al]-15×[B]+6×[MgO]+[CaO]+14×[SrO]+16×[BaO]は、好ましくは300%以上、330%以上、350%以上、360%以上、370%以上、380%以上、390%以上、400%以上、410%以上、420%以上、430%以上である。[SiO]+14×[Al]-15×[B]+6×[MgO]+[CaO]+14×[SrO]+16×[BaO]が小さ過ぎると、高歪点、高ヤング率及び高耐失透性を兼備し難くなる。
 17.8×[SiO]+23.1×[Al]+3.7×[B]+12.9×[MgO]+14.1×[CaO]+15.5×[SrO]+15.0×[BaO]+7.2×[ZnO]は、好ましくは1740%以上、1750%以上、1760%以上、1770%以上、1780%以上、特に1786%以上である。17.8×[SiO]+23.1×[Al]+3.7×[B]+12.9×[MgO]+14.1×[CaO]+15.5×[SrO]+15.0×[BaO]+7.2×[ZnO]が大き過ぎると、ガラス板の熱収縮が大きくなり易い。
 [Al]+[BО]-[CaО]-[SrО]-[BaO]は、好ましくは0%以上、0.1%以上、特に1.0%以上である。[Al]+[BО]-[CaО]-[SrО]-[BaO]が小さ過ぎると、ガラス中の非架橋酸素等が多くなり、構造的な不均衡が生じ易くなるため、高温成膜プロセスでガラス板が熱収縮し易くなる。一方、[Al]+[BО]-[CaО]-[SrО]-[BaO]が大き過ぎると、溶融負荷が高くなったり、耐失透性が低くなったして、ガラス板の製造コストが高騰し易くなる。よって、[Al]+[BО]-[CaО]-[SrО]-[BaO]は、好ましくは10.0%以下、6.0%以下、5.0%以下、4.5%以下、4.0%以下、3.0%以下、特に2.0%以下である。
 Yは、歪点、ヤング率等を高める成分であるが、その含有量が多過ぎると、密度、原料コストが増加し易くなる。よって、Yの含有量は、好ましくは0~0.8%、0~0.7%、0~0.5%、0~0.2%、特に0~0.1%である。
 Laは、歪点、ヤング率等を高める成分であるが、その含有量が多過ぎると、密度、原料コストが増加し易くなる。よって、Laの含有量は、好ましくは0~0.8%、0~0.7%、0~0.5%、0~0.2%、特に0~0.1%である。
 YとLaの合量は、好ましくは0~1.0%未満、0~0.8%、0~0.7%、0~0.5%、0~0.2%、特に0~0.1%である。しかし、YとLaの合量が多過ぎると、密度、原料コストが増加し易くなる。
 本発明の無アルカリガラス板は、上記成分以外にも、ガラス組成中に以下の成分を含んでいてもよい。
 ZnOは、溶融性を高める成分であるが、ZnOを多量に含有させると、ガラスが失透し易くなり、また歪点が低下し易くなる。ZnOの含有量は、好ましくは0~5%、0~3%、0~0.5%、0~0.3%、特に0~0.2%である。
 Pは、歪点を維持しつつ、Al系失透結晶の液相温度を著しく低下させる成分であるが、Pを多量に含有させると、ヤング率が低下したり、ガラスが分相したりする。また、Pは、ガラスから拡散してTFTの性能に影響を及ぼす虞がある。よって、Pの含有量は、好ましくは0~1.5%、0~1.2%、0~1%、特に0~0.5%である。
 TiOは、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分であるが、TiOを多量に含有させると、ガラスが着色して、透過率が低下し易くなる。よって、TiOの含有量は、好ましくは0~500質量ppm、0.1~100質量ppm、0.1~50質量ppm、0.5~30質量ppm、1~20質量ppm、3~15質量ppm、特に5~10質量ppmである。
 SnOは、高温域で良好な清澄作用を有する成分であると共に、歪点を高める成分であり、また高温粘性を低下させる成分である。SnOの含有量は、好ましくは0~1%、0.001~1%、0.05~0.5%、特に0.08~0.2%である。SnOの含有量が多過ぎると、SnOの失透結晶が析出し易くなる。なお、SnOの含有量が0.001%より少ないと、上記効果を享受し難くなる。
 SnOは、清澄剤として好適であるが、ガラス特性を大きく損なわない限り、SnO以外の清澄剤を使用してもよい。具体的には、As、Sb、CeO、F、Cl、SO、Cを合量で例えば0.5%まで添加してもよく、Al、Si等の金属粉末を合量で例えば0.5%まで添加してもよい。
 AsとSbは、清澄性に優れるが、環境的観点から、極力導入しないことが好ましい。更に、Asは、ガラス中に多量に含有させると、耐ソラリゼーション性が低下する傾向にあるため、その含有量は1000質量ppm以下、100質量ppm以下、特に30質量ppm未満が好ましい。また、Sbの含有量は1000質量ppm以下、100質量ppm以下、特に30質量ppm未満が好ましい。
 Clは、無アルカリガラスの溶融を促進する効果があり、Clを添加すれば、溶融温度を低温化し得ると共に、清澄剤の作用を促進し、結果として、溶融コストを低廉化しつつ、ガラス製造窯の長寿命化を図ることができる。しかし、Clの含有量が多過ぎると、歪点が低下する。よって、Clの含有量は、好ましくは0.5%以下、特に0.1%以下である。なお、Clの導入原料として、塩化ストロンチウム等のアルカリ土類金属酸化物の塩化物、或いは塩化アルミニウム等を使用することができる。
 Rhは、溶融設備に含まれる成分であり、ガラスを高温で溶融すると、ガラス生地中に溶出する成分である。一方、Rhは、SnOと共存させると、ガラスを着色させる成分である。Rhの含有量は、好ましくは0~3質量ppm、0.1~3質量ppm、0.1~3質量ppm、0.2~2.5質量ppm、0.3~2質量ppm、0.4~1.5質量ppm、特に0.5~1質量ppmである。なお、溶融温度を低下させると、Rhの含有量が低下し易くなる。
 Irは、PtやPt-Rh合金に比べて耐熱性が高く、また溶融ガラスとの界面における溶融ガラスの発泡を低減し得る成分である。また、Irは、溶融設備に含まれる成分であり、ガラスを高温で溶融すると、ガラス生地中に溶出する成分である。一方、Irの溶出量が多くなると、ガラス中に異物として析出する虞がある。よって、Irの含有量は、好ましくは0~10質量ppm、0.01~10質量ppm、0.02~5質量ppm、0.03~3質量ppm、0.04~2質量ppm、特に0.05~1質量ppmが好ましい。なお、「Ir」は、Irだけでなく、IrO、Irを包含し、IrO、Irは、Irに換算して表記するものとする。
 モリブデンは、溶融工程における電極に使用される成分であり、ガラスを高温で溶融すると、ガラス生地中にMoOとして溶出する成分である。MoOの含有量は、好ましくは0~50質量ppm、1~50質量ppm、3~40質量ppm、5~30質量ppm、5~25質量ppm、特に5~20質量ppmである。なお、MoOの含有量が少な過ぎると、溶融ガラスに対して、加熱電極による通電加熱を行い難くなるため、β-OHを低減し難くなる。
 ZrOは、溶融工程における耐火物に含まれる成分であり、ガラスを高温で溶融すると、ガラス生地中に溶出する成分である。また、ZrOは、液相温度や耐候性を高める成分である。一方、ZrOの含有量を過度に減少させる場合、溶融工程で高価な耐火物を使用する必要があり、ガラス板の製造コストを高騰させる虞がある。よって、ZrOの含有量は、好ましくは0~2000質量ppm、500~2000質量ppm、550~1500質量ppm、特に600~1200質量ppmが好ましい。
 Feは、原料不純物として混入する成分であり、電気抵抗率を低下させる成分である。Feの含有量は、好ましくは50~300質量ppm、80~250質量ppm、特に100~200質量ppmである。Feの含有量が少な過ぎると、原料コストが高騰し易くなる。一方、Feの含有量が多過ぎると、溶融ガラスの電気抵抗率が上昇して、電気溶融を行い難くなる。
 本発明の無アルカリガラス板は、アルカリ金属酸化物を実質的に含有していないが、不可避不純物として混入する場合を排除するものではない。アルカリ金属酸化物が不可避不純物として混入する場合、アルカリ金属酸化物の含有量(LiO、NaO及びKOの合量)は、好ましくは10~1000質量ppm、30~600質量ppm、50~300質量ppm、70~200質量ppm、特に80~150質量ppmである。特に、NaOの含有量は、好ましくは30~600質量ppm、50~300質量ppm、70~200質量ppm、特に80~150質量ppmである。アルカリ金属酸化物の含有量が少な過ぎると、高純度原料の使用が不可欠になり、バッチコストが高騰する。また電気伝導度が低くなり過ぎて、電気溶融が困難になる。一方、アルカリ金属酸化物の含有量が多過ぎると、熱処理工程において、半導体膜中にアルカリイオンが拡散する虞がある。
 本発明の無アルカリガラス板は、以下の特性を有することが好ましい。
 熱膨張係数は、好ましくは46×10‐7/℃以下、42×10‐7/℃以下、40×10‐7/℃以下、38×10‐7/℃以下、特に26×10‐7/℃以上、且つ36×10‐7/℃以下である。熱膨張係数が高過ぎると、高温成膜プロセスでの温度ムラによってガラス板に局所的な寸法変化が生じ易くなる。
 密度は、好ましくは2.80g/cm以下、2.75g/cm以下、2.70g/cm以下、2.65g/cm以下、2.60g/cm以下、2.55g/cm以下、特に2.45~2.50g/cmである。密度が高過ぎると、ガラス板の撓み量が大きくなり易いため、ディスプレイの製造工程等において、応力起因のパターンずれを助長し易くなる。
 歪点は750℃以上であり、好ましくは760℃以上、765℃以上、770℃以上、775℃以上、780℃以上、785℃以上、790℃以上、795℃以上、800℃以上である。歪点が低過ぎると、高温成膜プロセスにおいて、ガラス板が熱収縮し易くなる。
 徐冷点は、好ましくは800℃以上、805℃以上、810℃以上、820℃以上、830℃以上、840℃以上、特に850℃以上である。徐冷点が低過ぎると、高温成膜プロセスにおいて、ガラス板が熱収縮し易くなる。
 軟化点は、好ましくは1040℃以上、1060℃以上、1080℃以上、特に1100℃以上である。軟化点が低過ぎると、高温成膜プロセスにおいて、ガラス板が熱収縮し易くなる。
 高温粘度102.5dPa・sにおける温度は、好ましくは1750℃以下、1720℃以下、1700℃以下、1690℃ 以下、1680℃以下、特に1670℃以下である。102.5dPa・sにおける温度が高くなると、溶融性、清澄性が低下し易くなり、ガラス板の製造コストが高騰する。
 ヤング率は、好ましくは80GPa以上、81GPa以上、82GPa以上、特に83GPa以上である。ヤング率が低過ぎると、ガラス板の撓み量が大きくなり易いため、ディスプレイの製造工程等において、応力起因のパターンずれを助長し易くなる。
 比ヤング率は、好ましくは30GPa/g・cm-3以上、31GPa/g・cm-3以上、32GPa/g・cm-3以上、特に33GPa/g・cm-3以上である。比ヤング率が低過ぎると、ガラス板の撓み量が大きくなり易いため、ディスプレイの製造工程等において、応力起因のパターンずれを助長し易くなる。
 β-OHは、ガラス中の水分量を示す指標であり、β-OHを低下させると、歪点を高めることができる。また、ガラス組成が同じ場合でも、β―OHが小さい方が、歪点以下温度での熱収縮率が小さくなる。β-OHは、好ましくは0.30/mm以下、0.25/mm以下、0.20/mm以下、0.15/mm以下、特に0.10/mm以下である。なお、β-OHが小さ過ぎると、溶融性が低下し易くなる。よって、β-OHは、好ましくは0.01/mm以上、特に0.03/mm以上である。
 β-OHを低下させる方法として、以下の方法が挙げられる。(1)含水量の低い原料を選択する。(2)ガラス中にβ-OHを低下させる成分(Cl、SO等)を添加する。(3)炉内雰囲気中の水分量を低下させる。(4)溶融ガラス中でNバブリングを行う。(5)小型溶融炉を採用する。(6)溶融ガラスの流量を多くする。(7)電気溶融法を採用する。
 ここで、「β-OH」は、FT-IRを用いてガラスの透過率を測定し、下記の数式1を用いて求めた値を指す。
[数1]
β-OH=(1/X)log(T/T
X:板厚(mm)
:参照波長3846cm-1における透過率(%)
:水酸基吸収波長3600cm-1付近における最小透過率(%)
 本発明の無アルカリガラス板は、板厚方向の中央部にオーバーフロー合流面を有することが好ましい。つまりオーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法とは、楔形の耐火物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを楔形の下端で合流させながら、下方に延伸成形して平板形状に成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は耐火物に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好なガラス板を安価に製造することができる。更に大面積化や薄肉化も容易である。
 オーバーフローダウンドロー法以外にも、例えば、スロットダウン法、リドロー法、フロート法、ロールアウト法で成形することも可能である。
 本発明の無アルカリガラス板において、板厚は、特に限定されないが、好ましくは1.0mm以下、0.7mm以下、0.5mm以下、特に0.05~0.4mmである。板厚が小さい程、液晶パネルや有機ELパネルを軽量化し易くなる。なお、板厚は、ガラス製造時の流量や成形速度(板引き速度)等で調整可能である。
 本発明の無アルカリガラス板を工業的に製造する方法としては、ガラス組成として、モル%で、SiO 55~80%、Al 10~25%、B 0~4%、MgO 0~30%、CaO 0~25%、SrO 0~15%、BaO 0~15%、ZnO 0~5%、Y+La 0~1.0%未満を含有し、実質的にアルカリ金属酸化物を含有しないように調合されたガラスバッチを溶融炉に投入し、加熱電極による通電加熱を行うことにより、溶融ガラスを得る溶融工程と、得られた溶融ガラスをオーバーフローダウンドロー法により板厚0.1~0.7mmの無アルカリガラス板に成形する成形工程と、を有することが好ましい。
 ガラス板の製造工程は、一般的に、溶融工程、清澄工程、供給工程、攪拌工程、成形工程を含む。溶融工程は、ガラス原料を調合したガラスバッチを溶融し、溶融ガラスを得る工程である。清澄工程は、溶融工程で得られた溶融ガラスを清澄剤等の働きによって清澄する工程である。供給工程は、各工程間に溶融ガラスを移送する工程である。攪拌工程は、溶融ガラスを攪拌し、均質化する工程である。成形工程は、溶融ガラスをガラス板に成形する工程である。なお、必要に応じて、上記以外の工程、例えば溶融ガラスを成形に適した状態に調節する状態調節工程を攪拌工程後に取り入れてもよい。
 無アルカリガラス板を工業的に製造する場合、一般的に、バーナーの燃焼炎による加熱により溶融されている。バーナーは、通常、溶融窯の上方に配置されており、燃料として化石燃料、具体的には重油等の液体燃料やLPG等の気体燃料等が使用されている。燃焼炎は、化石燃料と酸素ガスと混合することにより得ることができる。しかし、この方法では、溶融時に溶融ガラス中に多くの水分が混入するため、β-OHが上昇し易くなる。よって、本発明の無アルカリガラス板を製造するに当たり、加熱電極による通電加熱を行うことが好ましく、バーナーの燃焼炎による加熱を行わずに、加熱電極による通電加熱で溶融すること、つまり完全電気溶融であることが好ましい。これにより、溶融時に溶融ガラス中に水分が混入し難くなるため、β-OHを0.30/mm以下、0.25/mm以下、0.20/mm以下、0.15/mm以下、特に0.10/mm以下に規制し易くなる。更に、加熱電極による通電加熱を行うと、溶融ガラスを得るための質量当たりのエネルギー量が低下すると共に、溶融揮発物が少なくなるため、環境負荷を低減することができる。
 更にこの通電加熱に関し、ガラスバッチ中の水分量が少ない程、ガラス板中のβ-OHを低減し易くなる。そして、Bの導入原料は、最大の水分の混入源になり易い。よって、低β-OHのガラス板を製造する観点から、Bの含有量をなるべく少なくする方が好ましい。またガラスバッチ中の水分量が少ない程、ガラスバッチが溶融窯内に一様に広がり易くなるため、均質で高品位のガラス板を製造し易くなる。
 加熱電極による通電加熱は、溶融窯内の溶融ガラスに接触するように、溶融窯の底部又は側部に設けられた加熱電極に交流電圧を印加することにより行うことが好ましい。加熱電極に使用する材料は、耐熱性と溶融ガラスに対する耐食性を備えるものが好ましく、例えば、酸化錫、モリブデン、白金、ロジウム等が使用可能であり、特に炉内設置の自由度の観点から、モリブデンが好ましい。
 本発明の無アルカリガラス板は、アルカリ金属酸化物を実質的に含まないため、電気抵抗率が高い。よって、加熱電極による通電加熱を行う場合、溶融ガラスだけでなく、溶融窯を構成する耐火物にも電流が流れて、溶融窯を構成する耐火物が早期に損傷する虞がある。これを防ぐため、炉内耐火物として、電気抵抗率が高いジルコニア系耐火物、特にジルコニア電鋳レンガを使用することが好ましく、また溶融ガラス(ガラス組成)中に電気抵抗率を低下させる成分(Fe等)を少量導入することが好ましく、Feの含有量は50~300質量ppm、80~250質量ppm、特に100~200質量ppmが好ましい。更に、ジルコニア系耐火物中のZrOの含有量は、好ましくは85質量%以上、特に90質量%以上である。
 以下、実施例に基づいて、本発明を説明する。但し、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1~49は、本発明の実施例(試料No.1~679)を示している。なお、試料No.281~679のガラス特性は、実測値ではなく、組成ファクターから計算した計算値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
 まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れた後、1600~1650℃で24時間溶融した。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、徐冷点付近の温度で30分間徐冷した。得られた各試料について、熱膨張係数、密度、歪点、徐冷点、軟化点、高温粘度104.5dPa・sにおける温度、高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、高温粘度102.5dPa・sにおける温度、ヤング率、比ヤング率、β-OHを評価した。
 熱膨張係数は、30~380℃の温度範囲における平均熱膨張係数をディラトメーターで測定した値である。
 密度は、周知のアルキメデス法で測定した値である。
 歪点、徐冷点、軟化点は、ASTM C336、C338の方法に基づいて測定した値である。
 高温粘度104.5dPa・s、104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。
 ヤング率は、曲げ共振法により測定した値である。
 比ヤング率は、ヤング率を密度で除した値である。
 β-OHは、上記の方法で測定した値である。
 表1~49から分かるように、試料No.1~679は、歪点が高く、ガラス組成中にYとLaを含んでいないため、製造コストを低廉化し得るものと考えられる。
 表50は、β-OHと熱収縮率の関係を示すデータである。試料Aと試料Bは、試料No.1に係るガラス組成を有しているが、β-OHが異なっている。この試料A、Bについて、500℃で1時間保持した時の熱収縮率と600℃で1時間保持した時の熱収縮率を測定した。
Figure JPOXMLDOC01-appb-T000050
 熱収縮率は、以下のようにして測定することができる。まずガラス板に対して、直線状のマーキングを平行に2カ所刻印した後、このマーキングに対して、垂直な方向に分割し、2つのガラス片を得る。次に、一方のガラス片について、常温から5℃/分の昇温速度で500℃又は600℃まで昇温し、500℃又は600℃で1時間保持した後、5℃/分の降温速度で常温まで冷却する。続いて、熱処理済みのガラス片と未熱処理のガラス片を分割面が整合するように並べて、接着テープで固定した後、両者のマーキングのずれ量△Lを測定する。最後に△L/Lの値を測定し、これを熱収縮率とする。なお、Lは、熱処理前のガラス片の長さである。
 表50から、ガラス組成が同じ場合でも、β-OHが低い方が、熱収縮率を低減し得ることが分かる。
 上記の試料No.1、15、115のガラス組成を有するガラスについて、既存の設備を用いて、従来の温度条件で溶融し、オーバーフローダウンドロー法によりガラス板を成形した後、蛍光X線分析により微量成分の含有量を測定した。その結果を表51に示す。
Figure JPOXMLDOC01-appb-T000051
 上記の試料No.1、15、115のガラス組成を有するガラスについて、[実施例3]で用いた設備とは別の既存設備を用いて従来よりも高温で溶融し、オーバーフローダウンドロー法によりガラス板を成形した後、蛍光X線分析により微量成分の含有量を測定した。その結果を表52に示す。
Figure JPOXMLDOC01-appb-T000052

Claims (5)

  1.  ガラス組成として、モル%で、SiO 55~80%、Al 10~25%、B 0~4%、MgO 0~30%、CaO 0~25%、SrO 0~15%、BaO 0~15%、ZnO 0~5%、Y+La 0~1.0%未満を含有し、実質的にアルカリ金属酸化物を含有せず、歪点が750℃以上であることを特徴とする無アルカリガラス板。
  2.  [SiO]+14×[Al]-15×[B]+6×[MgO]+[CaO]+14×[SrO]+16×[BaO]≧360モル%の関係を満たすことを特徴とする請求項1に記載の無アルカリガラス板。
  3.  17.8×[SiO]+23.1×[Al]+3.7×[B]+12.9×[MgO]+14.1×[CaO]+15.5×[SrO]+15.0×[BaO]+7.2×[ZnO]≧1786モル%の関係を満たすことを特徴とする請求項1又は2に記載の無アルカリガラス板。
  4.  Rhの含有量が0.1~3質量ppmであることを特徴とする請求項1~3の何れかに記載の無アルカリガラス板。
  5.  ヤング率が82GPa以上であることを特徴とする請求項1~4の何れかに記載の無アルカリガラス板。
PCT/JP2019/037489 2018-10-05 2019-09-25 無アルカリガラス板 WO2020071193A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/282,480 US20210380468A1 (en) 2018-10-05 2019-09-25 Alkali-free glass plate
CN201980065642.0A CN112805255A (zh) 2018-10-05 2019-09-25 无碱玻璃板
JP2020550322A JP7448890B2 (ja) 2018-10-05 2019-09-25 無アルカリガラス板
KR1020217010279A KR20210070295A (ko) 2018-10-05 2019-09-25 무알칼리 유리판
JP2024020354A JP2024040438A (ja) 2018-10-05 2024-02-14 無アルカリガラス板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-189873 2018-10-05
JP2018189873 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071193A1 true WO2020071193A1 (ja) 2020-04-09

Family

ID=70055029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037489 WO2020071193A1 (ja) 2018-10-05 2019-09-25 無アルカリガラス板

Country Status (6)

Country Link
US (1) US20210380468A1 (ja)
JP (2) JP7448890B2 (ja)
KR (1) KR20210070295A (ja)
CN (1) CN112805255A (ja)
TW (1) TWI752356B (ja)
WO (1) WO2020071193A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804620A (zh) * 2021-01-22 2022-07-29 Agc株式会社 浮法玻璃基板
WO2024057890A1 (ja) * 2022-09-12 2024-03-21 日本電気硝子株式会社 無アルカリガラス板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116390896A (zh) * 2022-05-31 2023-07-04 日本板硝子株式会社 玻璃纤维及玻璃纤维用组合物
CN116282902A (zh) * 2023-01-21 2023-06-23 武汉理工大学 一种无碱基板玻璃

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180618A (en) * 1977-07-27 1979-12-25 Corning Glass Works Thin silicon film electronic device
JPS61261232A (ja) * 1985-05-13 1986-11-19 Ohara Inc 耐火・耐熱性ガラス
JPS62100450A (ja) * 1985-10-23 1987-05-09 コ−ニング グラス ワ−クス 相分離ガラスおよびその製造方法
JPS62113735A (ja) * 1985-10-23 1987-05-25 コ−ニング グラス ワ−クス 平板デイスプレイ装置用ストロンチウムアルミノシリケ−トガラス基板
JPS63291834A (ja) * 1987-04-27 1988-11-29 コーニング グラス ワークス 電子パッキング用のガラス−セラミックス、それに用いる熱的に結晶可能なガラス、および同ガラス−セラミックスを用いた基板
JP2006225215A (ja) * 2005-02-21 2006-08-31 Nippon Electric Glass Co Ltd ガラス及びその製造方法
JP2016183091A (ja) * 2015-03-10 2016-10-20 日本電気硝子株式会社 ガラス基板
WO2016185863A1 (ja) * 2015-05-15 2016-11-24 日本電気硝子株式会社 強化ガラス板の製造方法、強化用ガラス板及び強化ガラス板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187715B2 (en) 2008-05-13 2012-05-29 Corning Incorporated Rare-earth-containing glass material and substrate and device comprising such substrate
JP6256744B2 (ja) * 2013-10-17 2018-01-10 日本電気硝子株式会社 無アルカリガラス板
JP6575223B2 (ja) * 2014-08-27 2019-09-18 Agc株式会社 無アルカリガラス
JP7219538B2 (ja) 2015-04-03 2023-02-08 日本電気硝子株式会社 ガラス
WO2016159344A1 (ja) * 2015-04-03 2016-10-06 日本電気硝子株式会社 ガラス
KR102403524B1 (ko) * 2016-08-23 2022-05-31 에이지씨 가부시키가이샤 무알칼리 유리
JP6983377B2 (ja) 2016-12-19 2021-12-17 日本電気硝子株式会社 ガラス
WO2018116731A1 (ja) * 2016-12-19 2018-06-28 日本電気硝子株式会社 ガラス
JP7121345B2 (ja) * 2016-12-28 2022-08-18 日本電気硝子株式会社 ガラス
JP6972598B2 (ja) 2017-03-22 2021-11-24 日本電気硝子株式会社 ガラス板及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180618A (en) * 1977-07-27 1979-12-25 Corning Glass Works Thin silicon film electronic device
JPS61261232A (ja) * 1985-05-13 1986-11-19 Ohara Inc 耐火・耐熱性ガラス
JPS62100450A (ja) * 1985-10-23 1987-05-09 コ−ニング グラス ワ−クス 相分離ガラスおよびその製造方法
JPS62113735A (ja) * 1985-10-23 1987-05-25 コ−ニング グラス ワ−クス 平板デイスプレイ装置用ストロンチウムアルミノシリケ−トガラス基板
JPS63291834A (ja) * 1987-04-27 1988-11-29 コーニング グラス ワークス 電子パッキング用のガラス−セラミックス、それに用いる熱的に結晶可能なガラス、および同ガラス−セラミックスを用いた基板
JP2006225215A (ja) * 2005-02-21 2006-08-31 Nippon Electric Glass Co Ltd ガラス及びその製造方法
JP2016183091A (ja) * 2015-03-10 2016-10-20 日本電気硝子株式会社 ガラス基板
WO2016185863A1 (ja) * 2015-05-15 2016-11-24 日本電気硝子株式会社 強化ガラス板の製造方法、強化用ガラス板及び強化ガラス板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804620A (zh) * 2021-01-22 2022-07-29 Agc株式会社 浮法玻璃基板
WO2024057890A1 (ja) * 2022-09-12 2024-03-21 日本電気硝子株式会社 無アルカリガラス板

Also Published As

Publication number Publication date
KR20210070295A (ko) 2021-06-14
JP2024040438A (ja) 2024-03-25
TW202031610A (zh) 2020-09-01
TW202210431A (zh) 2022-03-16
TWI752356B (zh) 2022-01-11
US20210380468A1 (en) 2021-12-09
JPWO2020071193A1 (ja) 2021-09-02
CN112805255A (zh) 2021-05-14
JP7448890B2 (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
JP7177412B2 (ja) 無アルカリガラス基板
JP7004488B2 (ja) ガラス基板
JP7448890B2 (ja) 無アルカリガラス板
JP7197978B2 (ja) ガラス
JP7382014B2 (ja) ガラス板及びその製造方法
JP6983377B2 (ja) ガラス
TW202342390A (zh) 玻璃
US20220363585A1 (en) Glass substrate
JP7478340B2 (ja) 無アルカリガラス板
WO2021029217A1 (ja) ガラス基板
WO2021002189A1 (ja) ガラス基板
US11427496B2 (en) Glass substrate
CN118084324A (zh) 无碱玻璃板
JP2024074996A (ja) 無アルカリガラス板
WO2020121966A1 (ja) 無アルカリガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868441

Country of ref document: EP

Kind code of ref document: A1