WO2020034089A1 - Mechanism to direct coolant flow between circuit components - Google Patents

Mechanism to direct coolant flow between circuit components Download PDF

Info

Publication number
WO2020034089A1
WO2020034089A1 PCT/CN2018/100431 CN2018100431W WO2020034089A1 WO 2020034089 A1 WO2020034089 A1 WO 2020034089A1 CN 2018100431 W CN2018100431 W CN 2018100431W WO 2020034089 A1 WO2020034089 A1 WO 2020034089A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
dimm
deflector
motherboard
deflectors
Prior art date
Application number
PCT/CN2018/100431
Other languages
French (fr)
Inventor
Shaorong ZHOU
Ming Zhang
Xinfeng WANG
Casey Winkel
Original Assignee
Intel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corporation filed Critical Intel Corporation
Priority to PCT/CN2018/100431 priority Critical patent/WO2020034089A1/en
Publication of WO2020034089A1 publication Critical patent/WO2020034089A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source

Definitions

  • Embodiments of the present disclosure generally relate to the fields of computing and electronic systems, and thermal management. More specifically, embodiments of the present disclosure relate to cooling of dual in line memory (DIMM) components in a computing or electronic system.
  • DIMM dual in line memory
  • CPU central processing unit
  • TDP thermal design power
  • FIG. 1 is an exposed view of a server that includes fans blowing air over DIMMs with coolant deflectors, in accordance with various embodiments.
  • FIG. 2 is a perspective view of two DIMMs being cooled with airflows directed by deflectors, in accordance with various embodiments.
  • FIGs. 3A-3C illustrates coupling mechanisms of a deflector to a DIMM socket, in accordance with various embodiments.
  • FIG. 4 illustrates various shapes of a deflector, in accordance with various embodiments.
  • FIG. 5 illustrates various deflector end shapes from a top-down view and their respective drag coefficients, in accordance with various embodiments.
  • FIG. 6 is a block diagram of a process for cooling a plurality of DIMMs using deflectors to deflect airflows, in accordance with various embodiments.
  • FIG. 7 shows various stages of manufacturing and/or applying deflectors to DIMM connectors, in accordance with various embodiments.
  • FIG. 8 is an example rack systems architecture framework into which a deflector may be installed, in accordance with various embodiments.
  • Embodiments described herein may include apparatuses, systems and/or processes to provide a coolant deflector that may allow the design optimization of airflow to reduce impedance and to direct air to the confined region between rows of components, for example rows of DIMMs, which may significantly increase thermal performance.
  • an edge of the coolant deflector may have a shape that may cause coolant to be directed and streamlined between rows of DIMMs.
  • the coolant deflector may be secured to DIMM connector sockets and be aligned with DIMMs when they are inserted into the sockets.
  • existing DIMM connectors may have a blunt face that may create a higher coolant flow impedance within the alley way between DIMMs inserted into DIMM connectors.
  • this alley way may also be referred to as an airflow space, a volume, or a gap between the DIMMs.
  • the coolant flowing in the alley way may be air, a gas, or a liquid coolant.
  • the coolant may be moved by a fan or a pump, or by air convection.
  • a heat spreader to the DIMM such as a full DIMM heat spreader (FDHS)
  • FDHS full DIMM heat spreader
  • a FDHS may occupy airflow alley way between adjacent DIMMs, which may or may not have a FDHS, and may significantly increase coolant flow impedance in the alley way.
  • the distance for DIMMs placed close together for example a distance between a point on one DIMM and the corresponding point on an adjacent DIMM, may also be referred to as a DIMM pitch.
  • Embodiments may include DIMMs with or without FDHS.
  • thermal performance may be improved by 13% ⁇ 16%by implementing coolant deflectors.
  • thermal performance of memory with coolant deflectors applied at narrower DIMM pitch may perform better than that at wider DIMM pitch (for example, 0.37” ) without coolant deflectors applied.
  • Embodiments may also provide additional system design flexibility. For example, when coolant deflectors are applied to DIMMs which are at a low thermal risk level, part of system airflow can be guided by the deflectors from the DIMM memory region to another heat generating area, for example a CPU heat sink.
  • the deflectors may have a blunt shape or a broader shape that may divert airflow away from the DIMM alley way, thus CPU cooling may be enhanced.
  • a CPU with a higher thermal design power (TDP) with higher performance and higher selling price could be supported without changing system design.
  • TDP thermal design power
  • the airflow between CPU (s) and memory may be balanced as desired.
  • Shape optimization of the coolant deflector may increase or may change system cooling capability. Shapes may be used for the deflector, such as rectangular/square (with higher drag coefficient) components on a mother board, such that the system airflow impedance decreases with more airflow through the system, and system cooling capability increases as a result.
  • coolant deflectors for DIMMs or for other components, for example PCIe cards, that are arranged in rows may allow for a tighter pitch between the components may increase coolant flow into the alley ways and may allow the components to operate within temperature specifications. This may result in the ability to put a higher density of components on a motherboard.
  • the phrase “A and/or B” means (A) , (B) , or (A and B) .
  • phrase “A, B, and/or C” means (A) , (B) , (C) , (A and B) , (A and C) , (B and C) , or (A, B, and C) .
  • Coupled may mean one or more of the following. “Coupled” may mean that two or more elements are in direct physical, thermal or electrical contact. However, “coupled” may also mean that two or more elements indirectly contact each other, but yet still cooperate or interact with each other, and may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other.
  • “coupled” may mean two or more elements or devices are coupled by electrical connections on a printed circuit board such as a motherboard, for example.
  • “coupled” may mean two or more elements or devices are thermally coupled.
  • Coupled may mean two or more elements/devices cooperate and/or interact.
  • a computing apparatus may include two or more computing devices “coupled” on a motherboard or by one or more network linkages.
  • coupled may mean directly physically coupled or physically coupled with one or more intervening elements.
  • FIG. 1 is an exposed view of a server that includes fans blowing air over DIMMs with coolant deflectors, in accordance with various embodiments.
  • Server 100 may include a chassis 102 one or more coolant flow sources 104 that may be used to cause coolant to flow across a motherboard 106 to cool components coupled with the motherboard 106.
  • the coolant may be air and the coolant flow sources 104 may be one or more fans.
  • the coolant may be a liquid or a gas and the coolant flow sources 104 may be pumps to pump the coolant in a particular direction, for example as shown by airflow 111.
  • the coolant flow source 104 may not be present, and the coolant flowing over the motherboard 106 may result from convection due to differences in temperature within the server 100 or an orientation of the server 100.
  • the plurality of components to be cooled may include a plurality of DIMMs 108 that may be attached to the motherboard 106 by a plurality of DIMM sockets 110.
  • the DIMMs 108 may be configured in parallel rows with an alley way 112 between two rows of DIMMs 108 through which coolant may flow to cool the DIMMs 108.
  • other components such as multiple PCIe cards may be configured in rows with alley ways between two rows of the PCIe cards through which air or some other coolant may flow to cool the PCIe cards.
  • coolant deflectors 114 may be placed at an end of one or more rows of DIMMs 108 to direct airflow 111 into the alley way 112 between the DIMMs 108.
  • the coolant deflectors 114 may be physically coupled with DIMM sockets 110.
  • a deflector edge 116 of the coolant deflector 114 may have a shape, a semicircular shape is shown, that may facilitate coolant flow into the alley way 112 as discussed further below.
  • a coolant deflector 114 may be placed on an end of a row of DIMM 108 toward the source of the airflow 111 or on an opposite end (not shown) of the row of DIMM 108 away from the source of the airflow 111. Either placement of the coolant deflectors 114 may facilitate both the entering and the exiting of coolant from the alley way 112.
  • FIG. 2 is a perspective view of two DIMMs with deflectors, in accordance with various embodiments.
  • DIMMs 208a, 208b which may be similar to DIMM 108 of FIG. 1, are shown seated respectively in DIMM sockets 210a, 210b, which may be similar to DIMM sockets 110 of FIG. 1, parallel to each other, defining an alley way between them.
  • Coolant deflectors 214a, 214b which may be similar to coolant deflector 114 of FIG. 1, maybe coupled with the DIMM sockets 210a, 210b.
  • the DIMM sockets 210b may include an ejector 210b1 used to remove the DIMM 208b from the DIMM socket 210b.
  • the DIMM sockets 210a, 210b may be connected to a motherboard (not shown, but may be similar to motherboard 106 of FIG. 1) .
  • DIMM 208b may include a FDHS 218 that may be secured onto DIMM 208b using a clip 220.
  • the width W2 of coolant deflector 214b may be wider to facilitate airflow around the FDHS 218 as compared to the width W1 of coolant deflector 214a that has no FDHS attached.
  • the height 222 of the coolant deflectors 214a, 214b may be equal to the height of the top of the DIMM 208b from the bottom of the socket 210b.
  • an end 216a, 216b of the coolant deflectors 214a, 214b may have a wedge shape to facilitate airflow in alley way 212, which may be similar to alley way 112 of FIG. 1.
  • the coolant deflector 214b may attach to the DIMM socket 210b using ejector 210b1.
  • a portion of the coolant deflectors 214a, 214b may have notches, such as notch 223, removed or the coolant deflector otherwise altered to accommodate features and/or components that may be part of the motherboard, such as motherboard 106 of FIG. 1.
  • the features may include wires, metallic traces, components such as voltage regulators and the like, or connectors to components that may be proximate to a DIMM socket 210b that would otherwise interfere with placing a coolant deflector 214b onto the DIMM socket 210b.
  • all or part of the coolant deflectors 214a, 214b may attach or be directly directly to the DIMM 208a.
  • FIGs. 3A-3C illustrates coupling mechanisms of a deflector to a DIMM socket, in accordance with various embodiments.
  • FIG. 3A shows one embodiment of how a coolant deflector 314, which may be similar to coolant deflector 114 of FIG. 1, may connect with a DIMM socket 310, which may be similar to DIMM socket 210 of FIG. 2.
  • the coolant deflector 314 may include three sections: an upper deflector section 314a, a middle deflector cavity 314c, and the lower deflector section 314d.
  • a tongue 314b may be attached to the upper deflector section 314a and may extend down into the middle deflector cavity 314c.
  • the lower deflector section 314d may include a biscuit 314e.
  • An end of the DIMM socket 310 may include an ejector 310b, which may be similar to ejector 210b1 of FIG. 2.
  • an interlock 310c that includes a slot 310d.
  • FIG. 3B shows a coolant deflector 314 being inserted onto an edge of the DIMM socket 310.
  • the ejector 310b may be inserted into the middle deflector cavity 314c and below the tongue 314b.
  • the DIMM connector 310 may be attached to the motherboard 306, which may be similar to motherboard 106 of FIG. 1.
  • FIG. 3C shows the coolant deflector 314 fully inserted into the end of the DIMM socket 310.
  • the ejector 310b may be fully inserted into the middle deflector cavity 314c and has snapped in under the tongue 314b.
  • the biscuit 314e has been inserted into the slot 310d in the interlock 310c, which may prevent the ejector 310b from popping out.
  • FIG. 4 illustrates various shapes of a deflector, in accordance with various embodiments. These embodiments may show a portion of the end of the DIMM socket 410, which may be similar to the end of DIMM socket 310 of FIG. 3C, that includes a partial lower deflector 422.
  • the partial lower deflector 422 may be manufactured as part of the DIMM socket 410.
  • the partial lower deflector 422 may come into contact with, or otherwise coupled with the ejector 410b, which may be similar to ejector 310b of FIG. 3C.
  • a partial upper deflector 424 may attach to the DIMM 408 and/or to a FDHS 418. In embodiments, the partial upper deflector 424 may be placed onto the DIMM 408 after the DIMM 408 has been seated into the DIMM socket 410. In embodiments, the partial upper deflector 424 may be coupled to the DIMM 408 using friction with a partial clamping motion, may be secured to the FDHS 408, or may be secured in some other mechanical fashion.
  • Both the partial upper deflector 424 and the partial lower deflector 422 may be placed on either end of the DIMM socket 410.
  • the partial upper deflector 424 and the partial lower deflector 422 may be of the same shape or of different shapes, as may be required for increasing coolant flow through the DIMM region alley way 412, thus increasing the airflow 411, which may be similar to airflow 111 of FIG. 1, to the DIMM 408 and/or the FDHS 418. Therefore, this may cool or assist in cooling the DIMM 408.
  • FIG. 5 illustrates various deflector end shapes from a top-down view and their respective drag coefficients, in accordance with various embodiments.
  • the various shapes 526a-526h may be used as the shape, as viewed from the top down, of a deflector end 116, 216a, 216b of a coolant deflector 114, 214a, 214b of FIGs. 1 or 2, or of a partial lower deflector 422 and/or partial upper deflector 424 of FIG. 4.
  • the various drag coefficients determined under experimental conditions based upon the approach of the air flow as shown, include the following.
  • a drag coefficient may be a unit less value that may denote how much an object resists movement through a fluid such as water or air.
  • a drag coefficient may be different for different shapes of bodies.
  • a circle shape 526a may show the drag coefficient of . 47.
  • a semi-circle shape 526b may show a drag coefficient of . 42.
  • a wedge shape 526c may show a drag coefficient of . 5.
  • a square shape 526d may show a drag coefficient of 1.05.
  • a diamond shape 526e may show a drag coefficient of . 8.
  • a rectangular shape 526f may show a drag coefficient of . 82.
  • a teardrop shape 526g may show a drag coefficient of . 04.
  • An air foil shape 526h may show a drag coefficient of . 09.
  • a wedge shape 526c body drag coefficient of . 5 is less than that for a square 526d or a rectangular 526f shaped body.
  • Streamlined bodies such as teardrop 526g or air foil 526h shape have the lowest drag coefficients.
  • coolant deflectors 114 when coolant deflectors 114 are applied at both the front and the rear end of DIMMs, the coolant impedance through the alley way between the DIMMs will decrease more and thermal resistance will decrease more as compared to that with coolant deflectors that may be only applied at the front end.
  • FIG. 6 is a block diagram of a process for cooling a plurality of DIMMs using deflectors, in accordance with various embodiments.
  • Process 600 may be implemented using airflow generator 104, coolant deflectors 114 having an edge 116, DIMM sockets 110, and DIMMs 108 of FIG. 1; coolant deflectors 214a, 214b , DIMM sockets 210a, 210b, DIMMs 208a, 208b of FIG. 2; coolant deflector 314 and DIMM socket 310 of FIG. 3A; and airflow 411, DIMM 408, partial lower deflector 422 and partial upper deflector 424 of FIG. 4.
  • the process may include providing a generator to generate an airflow.
  • the generator may be similar to airflow generator 104 of FIG 1.
  • the generator may be a convection current of air, or of some other coolant, created by various temperature differentials within a server such as server 100.
  • the resulting airflow 111 may have an ambient air temperature from outside the server 100, or the resulting airflow 111 may be cooled using a cooling mechanism such as passing air over a cold plate (not shown) that may be cooled by a liquid cooling system (not shown) .
  • the process may include providing a plurality of deflectors to a plurality of rows of DIMM sockets to deflect the airflow into a plurality of gaps between the plurality of rows of DIMM sockets, defined by the plurality of rows of DIMM sockets, the plurality of rows of DIMM sockets to receive a plurality of DIMM modules.
  • the deflectors such as coolant deflectors 114, partial lower deflector 422 or partial upper deflector 424 may have a shape such as a shape 526a-526h of FIG. 5, or of some other coolant deflecting shape.
  • the deflectors may cause the airflow 111 to be directed into the alley ways 112, 212, 412 to increase cooling of the DIMMs in the DIMM sockets.
  • FIG. 7 shows various stages of manufacturing and/or applying coolant deflectors to DIMM connectors, in accordance with various embodiments.
  • Diagram 700 may show various manufacturing and application stages for coolant deflectors 714 from a top-down view.
  • Coolant deflectors 714 may be similar to coolant deflectors 214a, 214b of FIG. 2, and may have a deflector end 716 that may be similar to deflector ends 216a, 216b of FIG. 2.
  • Coolant deflector 714 may have a shape that includes one of shapes 526a-526h of FIG. 5 to deflect coolant flow.
  • Embodiments shown herein may be used to manufacture coolant deflectors 714 in an economical way that may also facilitate installation of the coolant deflectors 714 onto DIMM sockets such as DIMM sockets 210a, 210b of FIG. 2.
  • Stage 752 shows an example of a top-down view of a row of coolant deflectors 714 having deflector edges 716 that have been manufactured in one contiguous piece.
  • plastic injection molding may be used to manufacture one or more contiguous pieces of the coolant deflectors 714.
  • Each coolant deflector 714 may be linked by a connector 715, which may be kept in place or maybe cut to separate groups of coolant deflectors 714 from each other.
  • each of the coolant deflectors 714 may be a fixed distance or a varied distance, and the coolant deflector end 716 may be a different shape from the coolant deflector that may be next to it.
  • Stage 754 shows an example of a top-down view of the coolant deflectors 714 in section 752 cut into several groups.
  • these groups may be cut based on a quantity of DIMM sockets, such as DIMM sockets 110 of FIG. 1, to which the coolant deflectors 714 are to be attached.
  • the DIMM sockets 110 may be in parallel rows, wherein ends of the DIMM sockets 110 are to be fitted with the plurality of coolant deflectors 714.
  • groups of connected coolant deflectors 714 may facilitate installation of coolant deflectors 714 onto DIMM sockets 110 attached to a motherboard 106. For example, this approach may decrease the complexity and decrease the time to install the coolant deflectors 714 on each of the DIMM sockets 110.
  • Stage 756 shows an example of a top-down view of grouped coolant deflectors 714 from stage 754 that are attached to DIMM sockets.
  • group 756a shows a group of four coolant deflectors 714 that are connected together that have been attached to a group of four DIMM sockets 710.
  • coolant deflector pitch or spacing
  • DIMM sockets spacing groups of coolant deflectors may be shared with different types of motherboards provided the DIMM pitch on the motherboards are the same.
  • FIG. 8 is an example rack systems architecture framework into which a deflector may be installed, in accordance with various embodiments.
  • Diagram 800 includes a high-level schematic of Rack Scale Design TM .
  • one or more racks 850 may be joined into a Pod 852, which may be efficiently managed using additional hardware and software (not shown) , which may use open standards such as the RESTful API standard or open-sourced RSD reference software.
  • a drawer 850a which may be a rack 850 location, may include one of a plurality of computing apparatuses, e.g., a computer resource, a network resource, or a storage resource.
  • One or more of the computing apparatuses/resources may include electronic components, circuit board which may include a motherboard, and DIMM sockets 110 with coolant deflectors 114 used to direct coolant flow, such as airflow, into the alley way 112 between DIMMs 108 seated in the DIMM sockets 110 as described above, enabling the DIMMs 108, or other components, to be more efficiently cooled.
  • circuit board which may include a motherboard
  • coolant deflectors 114 used to direct coolant flow, such as airflow, into the alley way 112 between DIMMs 108 seated in the DIMM sockets 110 as described above, enabling the DIMMs 108, or other components, to be more efficiently cooled.
  • Example 1 may be an apparatus for cooling a circuit component, comprising: a body; a first portion of the body having a shape to direct a flow of coolant across a circuit component seated in a circuit component socket; a second portion of the body opposite the first portion that includes a coupling feature to couple the body to an edge of the circuit component socket.
  • Example 2 may include the apparatus of example 1, wherein the coupling feature is to couple with an ejector on the end of the circuit component socket.
  • Example 3 eight include the apparatus of example 2, wherein to couple with the ejector on the end of the circuit component socket further includes to snap onto ejector.
  • Example 4 may include the apparatus of example 1, wherein the shape is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
  • Example 5 may include the apparatus of example 1, wherein the circuit component socket is a dual in line memory (DIMM) socket.
  • DIMM dual in line memory
  • Example 6 may include the apparatus of any one of examples 1-4, wherein the coolant is a selected one of a liquid or air.
  • Example 7 may be a motherboard, comprising: a printed circuit board; a first and a second connector disposed on the printed circuit board to respectively receive a first and a second circuit module, the first and second circuit connector defining an alley between the two circuit modules; and a coolant deflector coupled to an end of a selected one of the first or the second connectors to deflect a flow of coolant into the alley to cool or assist in cooling the first and the second circuit module.
  • Example 8 may include the motherboard of claim 7, wherein coupled to an end of a connector further includes coupled to an ejector mechanism on the end of connectors.
  • Example 9 may include the motherboard of claim 7, wherein the coolant deflector is a leading edge for coolant flowing into the alley.
  • Example 10 may include the motherboard of claim 7, wherein the coolant deflector is a trailing edge for coolant flowing out of the alley.
  • Example 11 may include the motherboard of claim 7, wherein a first end of the coolant deflector is coupled to an end of a connector; wherein a second end of the coolant deflector opposite the first end of the coolant deflector is to be exposed to the coolant; and wherein a shape of the second end of the coolant deflector is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
  • Example 12 may include the motherboard of claim 7, wherein the coolant deflector extends substantially along an edge of the circuit module.
  • Example 13 may include the motherboard of claim 7, wherein the coolant is a selected one of liquid or gas.
  • Example 14 may include the motherboard of any one of examples 7-13, wherein the first and the second connectors are DIMM connectors; and wherein the circuit modules are DIMM modules.
  • Example 15 may be a system, comprising: a motherboard having a processor socket to receive a multi-core processor, an input/output (I/O) port to couple the motherboard to an I/O device, and a first and a second dual-inline memory module (DIMM) sockets to receive a first and a second DIMM modules; wherein the first and second DIMM sockets are disposed on the motherboard defining a channel between the first and second DIMM sockets; and wherein at least the first or the second DIMM socket includes a deflector to deflect coolant into the channel to cool or assist in cooling the first and second DIMM modules.
  • DIMM dual-inline memory module
  • Example 16 may be the system of claim 15, wherein the deflector is coupled to an ejector mechanism on and end of the DIMM socket.
  • Example 17 may be the system of claim 16, wherein coupled to the ejector mechanism further includes snapped on to the ejector mechanism.
  • Example 18 may be the system of claim 15, wherein the coolant deflector is a leading edge for coolant flowing into the channel or a trailing edge for coolant flowing out of the channel.
  • Example 19 may be the system of claim 15, wherein a first end of the deflector is coupled to an end of a connector; wherein a second end of the deflector opposite the first end is to be exposed to the coolant; and wherein a shape of the second end of the coolant deflector is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
  • Example 20 may be the system of claim 15, wherein the coolant deflector extends substantially along an edge of the DIMM.
  • Example 21 may be the system of any one of claims 15-20, wherein the coolant is a selected one of liquid or gas.
  • Example 22 may be the system of any one of claims 15-21, wherein the system is a server.
  • Example 23 may be a method for cooling a plurality of dual in line memory modules (DIMM) , comprising: providing a generator to generate an air flow; and providing a plurality of deflectors to a plurality of rows of DIMM sockets to deflect the airflow into a plurality of gaps between the plurality of rows of DIMM sockets, defined by the plurality of rows of DIMM sockets, the plurality of rows of DIMM sockets to receive a plurality of DIMM modules.
  • DIMM dual in line memory modules
  • Example 24 may be the method of claim 23, wherein providing a plurality of deflectors to a plurality of rows of DIMM sockets further comprises attaching, respectively, the plurality of deflectors to a plurality of ends of the DIMM sockets.
  • Example 25 may be the method of claim 24, wherein attaching the plurality of deflectors further comprises attaching the plurality of deflectors, respectively, onto a plurality of ejectors on the DIMM sockets.
  • Example 26 maybe the method of claim 24, wherein the attached deflector is to extend substantially along an edge of the DIMM module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Embodiments described herein may include apparatuses, systems and/or processes to cool or to assist in cooling DIMMs disposed on a circuit board. In embodiments, coolant deflectors may be coupled respectively to ends of DIMM connectors where the DIMMs define one or more alley ways between DIMMs, where the coolant deflectors are to deflect a flow of coolant into the alley ways to cool or assist in cooling the DIMMs. Other embodiments may be described and/or claimed.

Description

MECHANISM TO DIRECT COOLANT FLOW BETWEEN CIRCUIT COMPONENTS Field
Embodiments of the present disclosure generally relate to the fields of computing and electronic systems, and thermal management. More specifically, embodiments of the present disclosure relate to cooling of dual in line memory (DIMM) components in a computing or electronic system.
Background
As components of computing or electronic systems decrease in size and increase in power requirements as well as thermal dissipation, cooling individual components as well as collections of components will become increasingly important to ensure proper system function moving forward. For example, the size of central processing unit (CPU) dies are miniaturizing at the same time the number of cores, heat dissipation, and thermal design power (TDP) of these dies are increasing. In addition, for example with motherboards within a server, the distance between components will continue to decrease. This can result in a higher heat flux from the CPU dies and other components, and increase the challenge for thermally managing the CPU.
Brief Description of the Drawings
Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
FIG. 1 is an exposed view of a server that includes fans blowing air over DIMMs with coolant deflectors, in accordance with various embodiments.
FIG. 2 is a perspective view of two DIMMs being cooled with airflows directed by deflectors, in accordance with various embodiments.
FIGs. 3A-3C illustrates coupling mechanisms of a deflector to a DIMM socket, in accordance with various embodiments.
FIG. 4 illustrates various shapes of a deflector, in accordance with various embodiments.
FIG. 5 illustrates various deflector end shapes from a top-down view and their respective drag coefficients, in accordance with various embodiments.
FIG. 6 is a block diagram of a process for cooling a plurality of DIMMs using deflectors to deflect airflows, in accordance with various embodiments.
FIG. 7 shows various stages of manufacturing and/or applying deflectors to DIMM connectors, in accordance with various embodiments.
FIG. 8 is an example rack systems architecture framework into which a deflector may be installed, in accordance with various embodiments.
Detailed Description
Embodiments described herein may include apparatuses, systems and/or processes to provide a coolant deflector that may allow the design optimization of airflow to reduce impedance and to direct air to the confined region between rows of components, for example rows of DIMMs, which may significantly increase thermal performance. In embodiments, an edge of the coolant deflector may have a shape that may cause coolant to be directed and streamlined between rows of DIMMs. In embodiments, the coolant deflector may be secured to DIMM connector sockets and be aligned with DIMMs when they are inserted into the sockets.
In legacy implementations, existing DIMM connectors may have a blunt face that may create a higher coolant flow impedance within the alley way between DIMMs inserted into DIMM connectors. In embodiments, this alley way may also be referred to as an airflow space, a volume, or a gap between the DIMMs. The coolant flowing in the alley way may be air, a gas, or a liquid coolant. The coolant may be moved by a fan or a pump, or by air convection.
In addition, a heat spreader to the DIMM, such as a full DIMM heat spreader (FDHS) , may be applied to the DIMM to enhance heat dissipation. A FDHS may occupy airflow alley way between adjacent DIMMs, which may or may not have a FDHS, and may significantly increase coolant flow impedance in the alley way. Note, the distance for DIMMs placed close together, for example a distance between a point on one DIMM and the corresponding point on an adjacent DIMM, may also be referred to as a DIMM pitch. Embodiments may include DIMMs with or without FDHS.
In embodiments, in some studies memory thermal performance may be improved by 13%~16%by implementing coolant deflectors. In addition, in embodiments the thermal performance of memory with coolant deflectors applied at narrower DIMM pitch (for example, 0.31” ) may perform better than that at wider DIMM pitch (for example, 0.37” ) without coolant deflectors applied.
Embodiments may also provide additional system design flexibility. For example, when coolant deflectors are applied to DIMMs which are at a low thermal risk level, part of system airflow can be guided by the deflectors from the DIMM memory region to another heat generating area, for example a CPU heat sink. In these embodiments, the deflectors may have a blunt shape or a broader shape that may divert airflow away from the DIMM alley way, thus CPU cooling may be enhanced. In this case, a CPU with a higher thermal design power (TDP) with higher performance and higher selling price could be supported without changing system design. Thus, the airflow between CPU (s) and memory may be balanced as desired.
Shape optimization of the coolant deflector may increase or may change system cooling capability. Shapes may be used for the deflector, such as rectangular/square (with higher drag coefficient) components on a mother board, such that the system airflow impedance decreases with more airflow through the system, and system cooling capability increases as a result.
In embodiments, implementing coolant deflectors for DIMMs or for other components, for example PCIe cards, that are arranged in rows may allow for a tighter pitch between the components may increase coolant flow into the alley ways and may allow the components to operate within temperature specifications. This may result in the ability to put a higher density of components on a motherboard.
In the following description, various aspects of the illustrative implementations are described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that embodiments of the present disclosure may be practiced with only some of the described aspects. For purposes of explanation, specific numbers, materials, and configurations are set forth in order to provide a thorough understanding of the illustrative implementations. However, it will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative implementations.
In the following description, reference is made to the accompanying drawings that form a part hereof, wherein like numerals designate like parts throughout, and in which is shown by way of illustration embodiments in which the subject matter of the present disclosure may be practiced. It is to be understood that other embodiments may be utilized  and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
For the purposes of the present disclosure, the phrase “A and/or B” means (A) , (B) , or (A and B) . For the purposes of the present disclosure, the phrase “A, B, and/or C” means (A) , (B) , (C) , (A and B) , (A and C) , (B and C) , or (A, B, and C) .
The description may use perspective-based descriptions such as top/bottom, in/out, over/under, and the like. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of embodiments described herein to any particular orientation.
The description may use the phrases “in an embodiment, ” or “in embodiments, ” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “including, ” “having, ” and the like, as used with respect to embodiments of the present disclosure, are synonymous.
The terms “coupled with” and “coupled to” and the like may be used herein. “Coupled” may mean one or more of the following. “Coupled” may mean that two or more elements are in direct physical, thermal or electrical contact. However, “coupled” may also mean that two or more elements indirectly contact each other, but yet still cooperate or interact with each other, and may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other. By way of example and not limitation, “coupled” may mean two or more elements or devices are coupled by electrical connections on a printed circuit board such as a motherboard, for example. By way of example and not limitation, “coupled” may mean two or more elements or devices are thermally coupled. By way of example and not limitation, “coupled” may mean two or more elements/devices cooperate and/or interact. By way of example and not limitation, a computing apparatus may include two or more computing devices “coupled” on a motherboard or by one or more network linkages. In other embodiments, coupled may mean directly physically coupled or physically coupled with one or more intervening elements.
FIG. 1 is an exposed view of a server that includes fans blowing air over DIMMs with coolant deflectors, in accordance with various embodiments. Server 100 may include a chassis 102 one or more coolant flow sources 104 that may be used to cause coolant to  flow across a motherboard 106 to cool components coupled with the motherboard 106. In embodiments, the coolant may be air and the coolant flow sources 104 may be one or more fans. In other embodiments, the coolant may be a liquid or a gas and the coolant flow sources 104 may be pumps to pump the coolant in a particular direction, for example as shown by airflow 111. In other embodiments, the coolant flow source 104 may not be present, and the coolant flowing over the motherboard 106 may result from convection due to differences in temperature within the server 100 or an orientation of the server 100.
In embodiments, the plurality of components to be cooled may include a plurality of DIMMs 108 that may be attached to the motherboard 106 by a plurality of DIMM sockets 110. The DIMMs 108 may be configured in parallel rows with an alley way 112 between two rows of DIMMs 108 through which coolant may flow to cool the DIMMs 108. In other embodiments, other components such as multiple PCIe cards may be configured in rows with alley ways between two rows of the PCIe cards through which air or some other coolant may flow to cool the PCIe cards.
In embodiments, coolant deflectors 114 may be placed at an end of one or more rows of DIMMs 108 to direct airflow 111 into the alley way 112 between the DIMMs 108. In embodiments, the coolant deflectors 114 may be physically coupled with DIMM sockets 110. A deflector edge 116 of the coolant deflector 114 may have a shape, a semicircular shape is shown, that may facilitate coolant flow into the alley way 112 as discussed further below. In embodiments, a coolant deflector 114 may be placed on an end of a row of DIMM 108 toward the source of the airflow 111 or on an opposite end (not shown) of the row of DIMM 108 away from the source of the airflow 111. Either placement of the coolant deflectors 114 may facilitate both the entering and the exiting of coolant from the alley way 112.
FIG. 2 is a perspective view of two DIMMs with deflectors, in accordance with various embodiments.  DIMMs  208a, 208b, which may be similar to DIMM 108 of FIG. 1, are shown seated respectively in  DIMM sockets  210a, 210b, which may be similar to DIMM sockets 110 of FIG. 1, parallel to each other, defining an alley way between them.  Coolant deflectors  214a, 214b, which may be similar to coolant deflector 114 of FIG. 1, maybe coupled with the  DIMM sockets  210a, 210b. The DIMM sockets 210b may include an ejector 210b1 used to remove the DIMM 208b from the DIMM socket 210b. The  DIMM sockets  210a, 210b may be connected to a motherboard (not shown, but may be similar to motherboard 106 of FIG. 1) .
DIMM 208b may include a FDHS 218 that may be secured onto DIMM 208b using a clip 220. As a result, the width W2 of coolant deflector 214b may be wider to facilitate airflow around the FDHS 218 as compared to the width W1 of coolant deflector 214a that has no FDHS attached. In embodiments, the height 222 of the  coolant deflectors  214a, 214b may be equal to the height of the top of the DIMM 208b from the bottom of the socket 210b.
As shown, an  end  216a, 216b of the  coolant deflectors  214a, 214b may have a wedge shape to facilitate airflow in alley way 212, which may be similar to alley way 112 of FIG. 1. In embodiments, the coolant deflector 214b may attach to the DIMM socket 210b using ejector 210b1.
In addition, in embodiments, a portion of the  coolant deflectors  214a, 214b may have notches, such as notch 223, removed or the coolant deflector otherwise altered to accommodate features and/or components that may be part of the motherboard, such as motherboard 106 of FIG. 1. The features may include wires, metallic traces, components such as voltage regulators and the like, or connectors to components that may be proximate to a DIMM socket 210b that would otherwise interfere with placing a coolant deflector 214b onto the DIMM socket 210b.
In other embodiments, all or part of the  coolant deflectors  214a, 214b may attach or be directly directly to the DIMM 208a.
FIGs. 3A-3C illustrates coupling mechanisms of a deflector to a DIMM socket, in accordance with various embodiments. FIG. 3A shows one embodiment of how a coolant deflector 314, which may be similar to coolant deflector 114 of FIG. 1, may connect with a DIMM socket 310, which may be similar to DIMM socket 210 of FIG. 2.
One non-limiting example as shown, the coolant deflector 314 may include three sections: an upper deflector section 314a, a middle deflector cavity 314c, and the lower deflector section 314d. A tongue 314b may be attached to the upper deflector section 314a and may extend down into the middle deflector cavity 314c. The lower deflector section 314d may include a biscuit 314e.
An end of the DIMM socket 310 may include an ejector 310b, which may be similar to ejector 210b1 of FIG. 2. At the end of the DIMM socket 310 may be an interlock 310c that includes a slot 310d.
FIG. 3B shows a coolant deflector 314 being inserted onto an edge of the DIMM socket 310. The ejector 310b may be inserted into the middle deflector cavity 314c and  below the tongue 314b. The DIMM connector 310 may be attached to the motherboard 306, which may be similar to motherboard 106 of FIG. 1.
FIG. 3C shows the coolant deflector 314 fully inserted into the end of the DIMM socket 310. At this point, the ejector 310b may be fully inserted into the middle deflector cavity 314c and has snapped in under the tongue 314b. The biscuit 314e has been inserted into the slot 310d in the interlock 310c, which may prevent the ejector 310b from popping out.
FIG. 4 illustrates various shapes of a deflector, in accordance with various embodiments. These embodiments may show a portion of the end of the DIMM socket 410, which may be similar to the end of DIMM socket 310 of FIG. 3C, that includes a partial lower deflector 422. In embodiments, the partial lower deflector 422 may be manufactured as part of the DIMM socket 410. In embodiments, the partial lower deflector 422 may come into contact with, or otherwise coupled with the ejector 410b, which may be similar to ejector 310b of FIG. 3C.
In embodiments, a partial upper deflector 424 may attach to the DIMM 408 and/or to a FDHS 418. In embodiments, the partial upper deflector 424 may be placed onto the DIMM 408 after the DIMM 408 has been seated into the DIMM socket 410. In embodiments, the partial upper deflector 424 may be coupled to the DIMM 408 using friction with a partial clamping motion, may be secured to the FDHS 408, or may be secured in some other mechanical fashion.
Both the partial upper deflector 424 and the partial lower deflector 422 may be placed on either end of the DIMM socket 410. In embodiments, the partial upper deflector 424 and the partial lower deflector 422 may be of the same shape or of different shapes, as may be required for increasing coolant flow through the DIMM region alley way 412, thus increasing the airflow 411, which may be similar to airflow 111 of FIG. 1, to the DIMM 408 and/or the FDHS 418. Therefore, this may cool or assist in cooling the DIMM 408.
FIG. 5 illustrates various deflector end shapes from a top-down view and their respective drag coefficients, in accordance with various embodiments. In embodiments, the various shapes 526a-526h may be used as the shape, as viewed from the top down, of a  deflector end  116, 216a, 216b of a  coolant deflector  114, 214a, 214b of FIGs. 1 or 2, or of a partial lower deflector 422 and/or partial upper deflector 424 of FIG. 4. The various drag coefficients determined under experimental conditions based upon the approach of the air flow as shown, include the following.
In embodiments, a drag coefficient may be a unit less value that may denote how much an object resists movement through a fluid such as water or air. A drag coefficient may be different for different shapes of bodies.
circle shape 526a may show the drag coefficient of . 47. A semi-circle shape 526b may show a drag coefficient of . 42. A wedge shape 526c may show a drag coefficient of . 5. A square shape 526d may show a drag coefficient of 1.05. A diamond shape 526e may show a drag coefficient of . 8. A rectangular shape 526f may show a drag coefficient of . 82. A teardrop shape 526g may show a drag coefficient of . 04. An air foil shape 526h may show a drag coefficient of . 09. Thus, a wedge shape 526c body drag coefficient of . 5 is less than that for a square 526d or a rectangular 526f shaped body. Streamlined bodies such as teardrop 526g or air foil 526h shape have the lowest drag coefficients.
In embodiments, when coolant deflectors 114 are applied at both the front and the rear end of DIMMs, the coolant impedance through the alley way between the DIMMs will decrease more and thermal resistance will decrease more as compared to that with coolant deflectors that may be only applied at the front end.
FIG. 6 is a block diagram of a process for cooling a plurality of DIMMs using deflectors, in accordance with various embodiments. Process 600 may be implemented using airflow generator 104, coolant deflectors 114 having an edge 116, DIMM sockets 110, and DIMMs 108 of FIG. 1;  coolant deflectors  214a, 214b ,  DIMM sockets  210a, 210b,  DIMMs  208a, 208b of FIG. 2; coolant deflector 314 and DIMM socket 310 of FIG. 3A; and airflow 411, DIMM 408, partial lower deflector 422 and partial upper deflector 424 of FIG. 4.
At block 602, the process may include providing a generator to generate an airflow. In embodiments, the generator may be similar to airflow generator 104 of FIG 1. In other embodiments, the generator may be a convection current of air, or of some other coolant, created by various temperature differentials within a server such as server 100. The resulting airflow 111 may have an ambient air temperature from outside the server 100, or the resulting airflow 111 may be cooled using a cooling mechanism such as passing air over a cold plate (not shown) that may be cooled by a liquid cooling system (not shown) .
At block 604, the process may include providing a plurality of deflectors to a plurality of rows of DIMM sockets to deflect the airflow into a plurality of gaps between  the plurality of rows of DIMM sockets, defined by the plurality of rows of DIMM sockets, the plurality of rows of DIMM sockets to receive a plurality of DIMM modules. The deflectors, such as coolant deflectors 114, partial lower deflector 422 or partial upper deflector 424 may have a shape such as a shape 526a-526h of FIG. 5, or of some other coolant deflecting shape. The deflectors may cause the airflow 111 to be directed into the  alley ways  112, 212, 412 to increase cooling of the DIMMs in the DIMM sockets.
FIG. 7 shows various stages of manufacturing and/or applying coolant deflectors to DIMM connectors, in accordance with various embodiments. Diagram 700 may show various manufacturing and application stages for coolant deflectors 714 from a top-down view. Coolant deflectors 714 may be similar to  coolant deflectors  214a, 214b of FIG. 2, and may have a deflector end 716 that may be similar to deflector ends 216a, 216b of FIG. 2. Coolant deflector 714 may have a shape that includes one of shapes 526a-526h of FIG. 5 to deflect coolant flow. Embodiments shown herein may be used to manufacture coolant deflectors 714 in an economical way that may also facilitate installation of the coolant deflectors 714 onto DIMM sockets such as  DIMM sockets  210a, 210b of FIG. 2.
Stage 752 shows an example of a top-down view of a row of coolant deflectors 714 having deflector edges 716 that have been manufactured in one contiguous piece. In embodiments, plastic injection molding may be used to manufacture one or more contiguous pieces of the coolant deflectors 714. Each coolant deflector 714 may be linked by a connector 715, which may be kept in place or maybe cut to separate groups of coolant deflectors 714 from each other.
Note, the distance between each of the coolant deflectors 714 may be a fixed distance or a varied distance, and the coolant deflector end 716 may be a different shape from the coolant deflector that may be next to it.
Stage 754 shows an example of a top-down view of the coolant deflectors 714 in section 752 cut into several groups. In embodiments, these groups may be cut based on a quantity of DIMM sockets, such as DIMM sockets 110 of FIG. 1, to which the coolant deflectors 714 are to be attached. In embodiments the DIMM sockets 110 may be in parallel rows, wherein ends of the DIMM sockets 110 are to be fitted with the plurality of coolant deflectors 714. In embodiments, groups of connected coolant deflectors 714 may facilitate installation of coolant deflectors 714 onto DIMM sockets 110 attached to a motherboard 106. For example, this approach may decrease the complexity and decrease the time to install the coolant deflectors 714 on each of the DIMM sockets 110.
Stage 756 shows an example of a top-down view of grouped coolant deflectors 714 from stage 754 that are attached to DIMM sockets. For example, group 756a shows a group of four coolant deflectors 714 that are connected together that have been attached to a group of four DIMM sockets 710.
In embodiments, because coolant deflector pitch, or spacing, follows DIMM sockets spacing, groups of coolant deflectors may be shared with different types of motherboards provided the DIMM pitch on the motherboards are the same.
FIG. 8 is an example rack systems architecture framework into which a deflector may be installed, in accordance with various embodiments. Diagram 800 includes a high-level schematic of
Figure PCTCN2018100431-appb-000001
Rack Scale Design TM. In embodiments, one or more racks 850 may be joined into a Pod 852, which may be efficiently managed using additional hardware and software (not shown) , which may use open standards such as the RESTful API standard or open-sourced RSD reference software. In embodiments, a drawer 850a, which may be a rack 850 location, may include one of a plurality of computing apparatuses, e.g., a computer resource, a network resource, or a storage resource.
One or more of the computing apparatuses/resources may include electronic components, circuit board which may include a motherboard, and DIMM sockets 110 with coolant deflectors 114 used to direct coolant flow, such as airflow, into the alley way 112 between DIMMs 108 seated in the DIMM sockets 110 as described above, enabling the DIMMs 108, or other components, to be more efficiently cooled.
Various operations are described as multiple discrete operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent.
EXAMPLES
Example 1 may be an apparatus for cooling a circuit component, comprising: a body; a first portion of the body having a shape to direct a flow of coolant across a circuit component seated in a circuit component socket; a second portion of the body opposite the first portion that includes a coupling feature to couple the body to an edge of the circuit component socket.
Example 2 may include the apparatus of example 1, wherein the coupling feature is to couple with an ejector on the end of the circuit component socket.
Example 3 eight include the apparatus of example 2, wherein to couple with the ejector on the end of the circuit component socket further includes to snap onto ejector.
Example 4 may include the apparatus of example 1, wherein the shape is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
Example 5 may include the apparatus of example 1, wherein the circuit component socket is a dual in line memory (DIMM) socket.
Example 6 may include the apparatus of any one of examples 1-4, wherein the coolant is a selected one of a liquid or air.
Example 7 may be a motherboard, comprising: a printed circuit board; a first and a second connector disposed on the printed circuit board to respectively receive a first and a second circuit module, the first and second circuit connector defining an alley between the two circuit modules; and a coolant deflector coupled to an end of a selected one of the first or the second connectors to deflect a flow of coolant into the alley to cool or assist in cooling the first and the second circuit module.
Example 8 may include the motherboard of claim 7, wherein coupled to an end of a connector further includes coupled to an ejector mechanism on the end of connectors.
Example 9 may include the motherboard of claim 7, wherein the coolant deflector is a leading edge for coolant flowing into the alley.
Example 10 may include the motherboard of claim 7, wherein the coolant deflector is a trailing edge for coolant flowing out of the alley.
Example 11 may include the motherboard of claim 7, wherein a first end of the coolant deflector is coupled to an end of a connector; wherein a second end of the coolant deflector opposite the first end of the coolant deflector is to be exposed to the coolant; and wherein a shape of the second end of the coolant deflector is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
Example 12 may include the motherboard of claim 7, wherein the coolant deflector extends substantially along an edge of the circuit module.
Example 13 may include the motherboard of claim 7, wherein the coolant is a selected one of liquid or gas.
Example 14 may include the motherboard of any one of examples 7-13, wherein the first and the second connectors are DIMM connectors; and wherein the circuit modules are DIMM modules.
Example 15 may be a system, comprising: a motherboard having a processor socket to receive a multi-core processor, an input/output (I/O) port to couple the motherboard to an I/O device, and a first and a second dual-inline memory module (DIMM) sockets to receive a first and a second DIMM modules; wherein the first and second DIMM sockets are disposed on the motherboard defining a channel between the first and second DIMM sockets; and wherein at least the first or the second DIMM socket includes a deflector to deflect coolant into the channel to cool or assist in cooling the first and second DIMM modules.
Example 16 may be the system of claim 15, wherein the deflector is coupled to an ejector mechanism on and end of the DIMM socket.
Example 17 may be the system of claim 16, wherein coupled to the ejector mechanism further includes snapped on to the ejector mechanism.
Example 18 may be the system of claim 15, wherein the coolant deflector is a leading edge for coolant flowing into the channel or a trailing edge for coolant flowing out of the channel.
Example 19 may be the system of claim 15, wherein a first end of the deflector is coupled to an end of a connector; wherein a second end of the deflector opposite the first end is to be exposed to the coolant; and wherein a shape of the second end of the coolant deflector is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
Example 20 may be the system of claim 15, wherein the coolant deflector extends substantially along an edge of the DIMM.
Example 21 may be the system of any one of claims 15-20, wherein the coolant is a selected one of liquid or gas.
Example 22 may be the system of any one of claims 15-21, wherein the system is a server.
Example 23 may be a method for cooling a plurality of dual in line memory modules (DIMM) , comprising: providing a generator to generate an air flow; and providing a plurality of deflectors to a plurality of rows of DIMM sockets to deflect the airflow into a plurality of gaps between the plurality of rows of DIMM sockets, defined by the plurality of rows of DIMM sockets, the plurality of rows of DIMM sockets to receive a plurality of DIMM modules.
Example 24 may be the method of claim 23, wherein providing a plurality of deflectors to a plurality of rows of DIMM sockets further comprises attaching, respectively, the plurality of deflectors to a plurality of ends of the DIMM sockets.
Example 25 may be the method of claim 24, wherein attaching the plurality of deflectors further comprises attaching the plurality of deflectors, respectively, onto a plurality of ejectors on the DIMM sockets.
Example 26 maybe the method of claim 24, wherein the attached deflector is to extend substantially along an edge of the DIMM module.
The foregoing description of one or more implementations provides illustration and description, but is not intended to be exhaustive or to limit the scope of the embodiments to the precise form disclosed or claimed herein. Modifications and variations are possible in light of the above teachings or may be acquired from practice of various implementations of the various embodiments. Future improvements, enhancements, or changes to particular components, methods, or means described in the various embodiments are contemplated to be within the scope of the claims and embodiments described herein, as would readily be understood by a person having ordinary skill in the art.

Claims (25)

  1. An apparatus for cooling a circuit component, comprising:
    a body;
    a first portion of the body having a shape to direct a flow of coolant across a circuit component seated in a circuit component socket;
    a second portion of the body opposite the first portion that includes a coupling feature to couple the body to an edge of the circuit component socket.
  2. The apparatus of claim 1, wherein the coupling feature is to couple with an ejector on the end of the circuit component socket.
  3. The apparatus of claim 2, wherein to couple with the ejector on the end of the circuit component socket further includes to snap onto ejector.
  4. The apparatus of claim 1, wherein the shape is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
  5. The apparatus of claim 1, wherein the circuit component socket is a dual in line memory (DIMM) socket.
  6. The apparatus of claim 1, wherein the coolant is a selected one of a liquid or air.
  7. A motherboard, comprising:
    a printed circuit board;
    a first and a second connector disposed on the printed circuit board to respectively receive a first and a second circuit module, the first and second circuit connector defining an alley between the two circuit modules; and
    a coolant deflector coupled to an end of a selected one of the first or the second connectors to deflect a flow of coolant into the alley to cool or assist in cooling the first and the second circuit module.
  8. The motherboard of claim 7, wherein coupled to an end of a connector further includes coupled to an ejector mechanism on the end of connectors.
  9. The motherboard of claim 7, wherein the coolant deflector is a leading edge for coolant flowing into the alley.
  10. The motherboard of claim 7, wherein the coolant deflector is a trailing edge for coolant flowing out of the alley.
  11. The motherboard of claim 7, wherein a first end of the coolant deflector is coupled to an end of a connector;
    wherein a second end of the coolant deflector opposite the first end of the coolant deflector is to be exposed to the coolant; and
    wherein a shape of the second end of the coolant deflector is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
  12. The motherboard of claim 7, wherein the coolant deflector extends substantially along an edge of the circuit module.
  13. The motherboard of claim 7, wherein the coolant is a selected one of liquid or gas.
  14. The motherboard of claim 7, wherein the first and the second connectors are DIMM connectors; and
    wherein the circuit modules are DIMM modules.
  15. A system, comprising:
    a motherboard having a processor socket to receive a multi-core processor, an input/output (I/O) port to couple the motherboard to an I/O device, and a first and a second dual-inline memory module (DIMM) sockets to receive a first and a second DIMM modules;
    wherein the first and second DIMM sockets are disposed on the motherboard defining a channel between the first and second DIMM sockets; and
    wherein at least the first or the second DIMM socket includes a deflector to deflect coolant into the channel to cool or assist in cooling the first and second DIMM modules.
  16. The system of claim 15, wherein the deflector is coupled to an ejector mechanism on and end of the DIMM socket.
  17. The system of claim 16, wherein coupled to the ejector mechanism further includes snapped on to the ejector mechanism.
  18. The system of claim 15, wherein the coolant deflector is a leading edge for coolant flowing into the channel or a trailing edge for coolant flowing out of the channel.
  19. The system of claim 15, wherein a first end of the deflector is coupled to an end of a connector;
    wherein a second end of the deflector opposite the first end is to be exposed to the coolant; and
    wherein a shape of the second end of the coolant deflector is a selected one of a: circle, semi-circle, wedge, square, ellipse, teardrop, or airfoil.
  20. The system of claim 15, wherein the coolant deflector extends substantially along an edge of the DIMM.
  21. The system of claim 15, wherein the coolant is a selected one of liquid or gas.
  22. A method for cooling a plurality of dual in line memory modules (DIMM) , comprising:
    providing a generator to generate an air flow; and
    providing a plurality of deflectors to a plurality of rows of DIMM sockets to deflect the airflow into a plurality of gaps between the plurality of rows of DIMM sockets, defined by the plurality of rows of DIMM sockets, the plurality of rows of DIMM sockets to receive a plurality of DIMM modules.
  23. The method of claim 22, wherein providing a plurality of deflectors to a plurality of rows of DIMM sockets further comprises attaching, respectively, the plurality of deflectors to a plurality of ends of the DIMM sockets.
  24. The method of claim 23, wherein attaching the plurality of deflectors further comprises attaching the plurality of deflectors, respectively, onto a plurality of ejectors on the DIMM sockets.
  25. The method of claim 23, wherein the attached deflector is to extend substantially along an edge of the DIMM module.
PCT/CN2018/100431 2018-08-14 2018-08-14 Mechanism to direct coolant flow between circuit components WO2020034089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100431 WO2020034089A1 (en) 2018-08-14 2018-08-14 Mechanism to direct coolant flow between circuit components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100431 WO2020034089A1 (en) 2018-08-14 2018-08-14 Mechanism to direct coolant flow between circuit components

Publications (1)

Publication Number Publication Date
WO2020034089A1 true WO2020034089A1 (en) 2020-02-20

Family

ID=69524931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100431 WO2020034089A1 (en) 2018-08-14 2018-08-14 Mechanism to direct coolant flow between circuit components

Country Status (1)

Country Link
WO (1) WO2020034089A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060012956A1 (en) * 2004-07-19 2006-01-19 Hornung Craig W Memory cooler
CN101868137A (en) * 2009-04-17 2010-10-20 索尼公司 Electronic equipment
CN103547119A (en) * 2012-07-12 2014-01-29 富士通株式会社 Electronic device and airflow adjustment member
CN106961820A (en) * 2016-01-11 2017-07-18 广达电脑股份有限公司 Server system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060012956A1 (en) * 2004-07-19 2006-01-19 Hornung Craig W Memory cooler
CN101868137A (en) * 2009-04-17 2010-10-20 索尼公司 Electronic equipment
CN103547119A (en) * 2012-07-12 2014-01-29 富士通株式会社 Electronic device and airflow adjustment member
CN106961820A (en) * 2016-01-11 2017-07-18 广达电脑股份有限公司 Server system

Similar Documents

Publication Publication Date Title
US10271460B2 (en) Server system
US7965509B2 (en) High performance dual-in-line memory (DIMM) array liquid cooling assembly and method
US8625280B2 (en) Cooling memory modules using cold plate blades coupled to the memory modules via clips
US8059403B2 (en) Heat dissipation device
US6437980B1 (en) Low profile high density rack mountable enclosure with superior cooling and highly accessible re-configurable components
US9301402B2 (en) High density server storage unit
CN109727937B (en) Assemblies including heat dissipating elements and related systems and methods
US20140016268A1 (en) Electronic device and airflow adjustment member
US8848364B2 (en) Daughterboard having airflow path
US8144458B2 (en) Component layout in an enclosure
US10219365B1 (en) Bidirectional and uniform cooling for multiple components in a computing device
US10559515B2 (en) Electronic device
US9807901B2 (en) Multiple graphics processing unit platform
US20180249589A1 (en) Symmetrical sled blind mating in unsymmetrical chassis placement
US8684757B2 (en) Memory module connector with air deflection system
US10729037B1 (en) Hybrid control and cooling module with independently removable cooling section for a network device
US9690338B2 (en) Electronic device with cooling facility
EP3344026B1 (en) Computing system
US7595986B2 (en) Controlling airflow in a computer chassis
US10381761B2 (en) Add-on processing unit with I/O connectors
WO2020034089A1 (en) Mechanism to direct coolant flow between circuit components
US20080123294A1 (en) Cooling apparatus for memory modules
US8824138B2 (en) Heat dissipation system with DIMM baffle
CN106125870A (en) Server
US11419239B2 (en) Thermal management of circuit boards

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929894

Country of ref document: EP

Kind code of ref document: A1