WO2020010880A1 - 数据传输方法及相关装置 - Google Patents

数据传输方法及相关装置 Download PDF

Info

Publication number
WO2020010880A1
WO2020010880A1 PCT/CN2019/081551 CN2019081551W WO2020010880A1 WO 2020010880 A1 WO2020010880 A1 WO 2020010880A1 CN 2019081551 W CN2019081551 W CN 2019081551W WO 2020010880 A1 WO2020010880 A1 WO 2020010880A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
frequency band
node
shunting
type
Prior art date
Application number
PCT/CN2019/081551
Other languages
English (en)
French (fr)
Inventor
于健
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020217003665A priority Critical patent/KR102483135B1/ko
Priority to BR112021000337-1A priority patent/BR112021000337A2/pt
Priority to EP19833247.0A priority patent/EP3809648A4/en
Priority to JP2021500544A priority patent/JP7193609B2/ja
Priority to KR1020227045786A priority patent/KR102568762B1/ko
Publication of WO2020010880A1 publication Critical patent/WO2020010880A1/zh
Priority to US17/144,844 priority patent/US20210136764A1/en
Priority to JP2022196338A priority patent/JP2023024536A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/20Traffic policing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/29Flow control; Congestion control using a combination of thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method and related devices.
  • nodes In the field of wireless communications, communication devices can be referred to as nodes.
  • the nodes When transmitting data between nodes in a wireless manner, the nodes need to use certain wireless transmission resources. Taking the first node transmitting data to the second node as an example, the first node may use the wireless transmission resources in the frequency band negotiated with the second node to transmit data to the second node.
  • the throughput rate of the frequency band is low, and the overall delay level of the frequency band is high, which results in low satisfaction of upper-layer service requirements.
  • This application provides a data transmission method and a related device, which can improve the satisfaction of business requirements.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the first node acquires a frame to be sent
  • the first frequency band is one of at least two frequency bands between the first node and the second node;
  • the offload attribute value of the frame to be sent includes at least one of the following information: frame type, Transmission rate, quality of service, quality of service access category, spatial stream, sending time, data packet format, data packet bandwidth.
  • the first node sends the to-be-sent frames whose shunting attribute values belong to the shunting range of the first frequency band to the second node through the first frequency band, because according to the frame type, transmission rate, quality of service, spatial stream, transmission time, data At least one offloading attribute value such as a packet format and a data packet bandwidth.
  • the frequency band used to send the frame to be sent can be determined.
  • the lower transmission rate and lower service quality can affect the bandwidth throughput rate.
  • Frames with average delay are transmitted in one frequency band so that the other frequency band can be transmitted in a centralized manner.
  • Frames with higher transmission rates and higher quality of service can increase the throughput of the frequency band or reduce the overall delay level of the frequency band. This can further improve the satisfaction of upper-level business requirements.
  • the first frequency band shunting range includes one of the following conditions or any combination of the following conditions:
  • the frame type is a data frame and the transmission rate is less than or equal to a preset rate shunt threshold.
  • the frame type is a data frame and the service quality is lower than or equal to a preset quality shunt threshold.
  • the first frequency band shunting range includes:
  • Frame type is the first type of frame
  • the first type of frames includes at least one of a search request frame, a search response frame, an association request frame, an association response frame, an authentication frame, and a management frame for establishing or tearing down a first service.
  • the first service includes: At least one of a service flow, a quiet period, a target wake-up time, a tunnel direct link establishment, and a block acknowledgement frame.
  • the first frequency band shunting range includes :
  • the frame type is a third type of frame, and the third type of frame carries instruction information for instructing the second node to use the second frequency band at a preset target time, and a ring instruction;
  • the method further includes:
  • the shunting range of the second frequency band includes: the frame type is a short synchronization frame, and the short synchronization frame carries the ring command corresponding to the third type of frame; wherein the ring command is used to indicate that the second node is at the target time at When a short synchronization frame is received in the second frequency band, the indication information used on the second frequency band carried in the third type frame corresponding to the short synchronization frame is read.
  • the third type of frame includes:
  • a first beacon frame wherein the first beacon frame carries beacon information used on a second frequency band at a target time;
  • a first scheduling frame where the first scheduling frame carries scheduling information used on a second frequency band at a target time.
  • the method further includes:
  • the second frequency band is another frequency band among at least two frequency bands between the first node and the second node.
  • the second frequency band offload range includes: a frame type is a second type frame, and the second type frame includes: Synchronous frame used to implement the synchronization function on the second frequency band.
  • the synchronization frame includes at least one of the following:
  • a scheduling frame carrying scheduling information of the second frequency band is a scheduling frame carrying scheduling information of the second frequency band.
  • the first frequency band shunting range includes any one of the following conditions Or any combination of the following:
  • the transmission rate is less than or equal to a preset transmission rate shunt threshold
  • the service quality is lower than or equal to a preset service quality shunt threshold.
  • the first frequency band shunting range includes Any one of the following conditions or any combination of the following conditions:
  • the sending duration is greater than or equal to a preset duration shunt threshold.
  • the quality of service access category belongs to a preset offload access category
  • the packet format belongs to a preset shunt packet format.
  • the method further includes:
  • the first node sends the to-be-sent frame whose shunting attribute value does not belong to the shunting range of the first frequency band to the second node through any one of at least two frequency bands.
  • any one of the first to the ninth possible implementation manners of the first aspect in a tenth possible implementation manner of the first aspect, the traffic is shunted at the first node Before a frame to be sent whose attribute value belongs to the shunting range of the first frequency band is sent to the second node through the first frequency band, the method further includes:
  • the first node sends a multi-band enable request to the second node in the first frequency band; receives a multi-band enable response sent by the second node in the first frequency band;
  • the first node receives a multi-band activation request sent by a second node in a first frequency band; and sends a multi-band activation response to a second node on a first frequency band.
  • an embodiment of the present application provides a data transmission device.
  • the device includes a processing module and a transceiver module.
  • the processing unit executes instructions to control the device to execute the method in the first aspect or any possible design of the first aspect.
  • the apparatus may further include a storage module.
  • the device may be a first node or a chip in the first node.
  • the processing module may be a processor, and the transceiver module may be a transceiver; if the memory module is further included, the memory module may be a memory.
  • the processing module may be a processor, and the transceiver module may be an input / output interface, a pin, or a circuit; if a memory module is also included, the memory module may be a memory in the chip
  • the module for example, a register, a cache, etc.
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or A plurality of integrated circuits for controlling program execution of the above-mentioned spatial multiplexing method.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on a processing circuit.
  • the computer When running on a computer, the computer is caused to execute the method in the first aspect above or any possible implementation thereof.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the method in the first aspect or any possible implementation thereof.
  • FIG. 1 is a schematic diagram of a network architecture
  • FIG. 2 is a first flowchart of a data transmission method provided by this application.
  • FIG. 3 is a second flowchart of a data transmission method provided by the present application.
  • FIG. 4 is a schematic flowchart 1 of a data transmission method provided by this application.
  • FIG. 5 is a first interactive flowchart of a data transmission method provided by this application.
  • FIG. 6 is a schematic flowchart of an association manner provided by this application.
  • FIG. 7 is a schematic flowchart of triggering an STA to perform uplink data transmission by using a trigger frame
  • FIG. 8 is a second schematic flowchart of a data transmission method provided by this application.
  • FIG. 9 is a schematic flowchart of data transmission using RTS / CTS.
  • FIG. 10 is a schematic flowchart III of a data transmission method provided by this application.
  • FIG. 11 is a schematic flowchart IV of a data transmission method provided by the present application.
  • FIG. 12 is a schematic structural diagram of a node
  • FIG. 13 shows a schematic block diagram of a node device 1300 according to an embodiment of the present application
  • FIG. 14 shows a schematic block diagram of another node-side communication device 1400 according to an embodiment of the present application.
  • a node may be a network device that supports multi-band wireless communication, such as a terminal, a base station, a server, and the like. Increasing the throughput and reducing the delay when transmitting data between air interfaces between nodes to meet the needs of continuously developing services has become a problem to be solved in the field of wireless communication technology.
  • management frames and control frames can be used to carry control information such as management frequency bands, control data transmission and reception, and setting of silence.
  • management frames and control frames usually use relatively reliable transmission. Therefore, transmission The rate may be slower, or the air interface may take longer.
  • management frames and control frames may include:
  • Beacon frame used for access point (AP, Access Point) to broadcast the corresponding information of the cell, including BSS identification information, to the entire BSS (Basic Service Set) , Capability information, operation information, time stamp, etc .;
  • BSS Basic Service Set
  • ACK Acknowledge
  • BA Block Acknowledge
  • Request to Send (RTS) / Clear to Send (CTS) frames are used to reserve a period of transmission opportunity (Transmit Opportunity, TXOP) to ensure that the sender and receiver are transmitting data.
  • TXOP Transmission Opportunity
  • the maximum supported data rate defined by the 802.11ax standard is 9.6Gbps (Giga-bit per second, gigabit per second), that is, when high-speed data transmission is performed at this rate in the same time, Get great throughput and reduce latency.
  • multi-band transmission may be used between the first node and the second node.
  • the first node may generate or obtain the MAC frame of the MAC layer, and then send the data contained in the MAC frame to at least two frequency bands of the physical layer (PHY) Second node.
  • PHY physical layer
  • the first node that needs to send data may send the MAC frame according to the frame type, transmission rate, quality of service, spatial stream, transmission time, and data packet format of the frame to be sent. And at least one offloading attribute value, such as data packet bandwidth, determines a frequency band for sending a frame to be sent from the first node and the second node.
  • MAC frames that affect bandwidth throughput and average delay, such as lower transmission rates and lower quality of service are transmitted in one frequency band, enabling another frequency band to be transmitted centrally.
  • MACs with higher transmission rates and higher service quality Frames which can improve the bandwidth throughput rate of another frequency band and the throughput rate between nodes, and reduce the average delay between nodes, which can further improve the satisfaction of service requirements.
  • FIG. 1 is a schematic diagram of a network architecture.
  • the system structure of the network may include multiple nodes.
  • the nodes may be network-side devices or terminal-side devices.
  • the network-side device may be an access device. Point (Access Point, AP).
  • the terminal-side device may be, for example, a station (STA, STA).
  • STA station
  • each AP and the STA associated with it form a BSS.
  • multiple nodes can communicate with each other.
  • multiple APs can communicate with multiple APs
  • multiple STAs can communicate with multiple STAs
  • multiple APs can also communicate with multiple STAs.
  • the data transmission method provided in this application can be applied to an air interface transmission scenario of multiple nodes to multiple nodes, for example, multiple APs to multiple APs, multiple STAs to multiple STAs, multiple APs to multiple STAs.
  • FIG. 2 is a first flowchart of a data transmission method provided by the present application.
  • the execution subject of this embodiment of the present application may be the first node.
  • the steps of this embodiment of the present application may include:
  • the first node obtains a frame to be sent.
  • the first node sends the to-be-sent frame whose shunt attribute value belongs to the shunt range of the first frequency band to the second node through the first frequency band.
  • the first frequency band is a frequency band in at least two frequency bands between the first node and the second node;
  • the offload attribute value of the frame to be sent includes at least one of the following information: frame type, transmission Rate, quality of service, quality of service access category, spatial flow, sending time, data packet format, data packet bandwidth.
  • the first node sends the to-be-sent frames whose shunting attribute values do not belong to the shunting range of the first frequency band through any of the at least two frequency bands.
  • the first node may be an AP or a STA
  • the second node may be an AP or a STA. That is to say, the data transmission method provided in this application can be applied to data transmission between AP and AP, data transmission between STA and STA, and data transmission between AP and STA.
  • the first node and the second node may also be communication servers, routers, switches, bridges, computers, mobile phones, and the like.
  • the first node may obtain or generate a frame to be sent according to the data to be sent, where the data to be sent may be, for example, service data or signaling data.
  • the frame to be sent may be a MAC frame
  • the data to be sent may be packet data obtained from an upper layer of the MAC layer, or management data and control data generated based on the management or service control requirements of the MAC layer.
  • the frame to be transmitted needs to be transmitted to the second node in a certain frequency band through the PHY layer.
  • the first node may preset a shunting criterion, and the shunting criterion may include a frequency band shunting range corresponding to at least one of the at least two frequency bands.
  • the shunting criterion may be used by the first node to determine a target frequency band for sending each frame to be sent from at least two frequency bands according to a frequency band shunting range corresponding to each frequency band in the shunting criterion.
  • the first node may determine the target frequency band of the frame to be transmitted according to the frame type and transmission rate of the frame to be transmitted, and if the frame to be transmitted is a data frame and the transmission rate is less than or equal to a preset rate shunt threshold, The first frequency band is determined as a target frequency band of the frame to be transmitted.
  • to-be-sent frames whose shunting attribute values do not belong to the shunting range of the first frequency band may be sent through the second frequency band or the first frequency band of at least two frequency bands.
  • the multiple to-be-sent frames that do not meet the shunt range of the first frequency band may be sent through the second frequency band, or both Transmission in one frequency band, or part of transmission in the second frequency band and transmission in the first frequency band.
  • Table 1-1 is a schematic diagram of a shunting criterion.
  • Second frequency band Belongs to the first frequency band shunt range ⁇ X Does not belong to the first frequency band shunt range ⁇ ⁇
  • the first frequency band shunting range is a frequency band shunting range corresponding to the first frequency band.
  • Table 1-2 is another illustration of the diversion criteria:
  • Second frequency band Belongs to the first frequency band shunt range ⁇ X Does not belong to the first frequency band shunt range X ⁇
  • the to-be-sent frames whose shunting attribute values do not belong to the shunting range of the first frequency band are sent to the first node through the second frequency band.
  • This application provides various implementations of the first frequency band shunting range.
  • the first frequency band shunting range may include any one of the following conditions or any combination of the following conditions:
  • the frame type is a data frame and the transmission rate is less than or equal to a preset transmission rate shunt threshold.
  • the frame type is a data frame and the service quality is lower than or equal to a preset quality of service shunt threshold.
  • the quality of service of the frame to be sent may be one of several quality of service levels that are divided in advance, and the quality of service shunting threshold may be one of the foregoing quality of service levels.
  • the quality levels can be sorted from low to high, and the quality of service shunt threshold can be a quality of service level ranked in the middle.
  • the sending, by the first node, a frame to be sent whose shunt attribute value belongs to a shunt range of the first frequency band to the second node through the first frequency band may include:
  • the frame to be sent is a data frame and the transmission rate is less than or equal to a preset transmission rate shunt threshold, sending the frame to be sent on the first frequency band;
  • the frame to be sent is a data frame and the service quality is lower than or equal to a preset quality of service shunt threshold, sending the frame to be sent on the first frequency band.
  • Table 1-3 is a schematic diagram of the shunting range of the first frequency band.
  • non-shunting when the frame type is a management frame and a control frame, when the management frame or control frame corresponds to the first frequency band, the first frequency band is used for transmission, and when the management frame or control frame corresponds to the second frequency band, Use the second frequency band for transmission.
  • the setting of the first frequency band shunting range is similar to that on a highway, only low-speed trucks are allowed to drive in low-speed lanes, and high-speed cars are allowed to drive in high-speed lanes, or both high-speed lanes and low-speed lanes Cars drive, which can improve traffic efficiency.
  • Table 1-4 is a schematic diagram of the shunt range of the first frequency band.
  • the first frequency band shunting range may include:
  • Frame type is the first type of frame
  • the first type of frame may include at least one of a search request frame, a search response frame, an association request frame, an association response frame, an authentication frame, and a management frame used to establish or tear down a first service.
  • the first service may Including: Traffic Stream, Quiet Time Period, Target Wakeup Time, Tunnelled Direct-Link Setup (TDLS), Block Ack Frame (BA, BA) ).
  • Table 1-5 is a schematic diagram of the shunt range of the first frequency band.
  • the first node may send the establishment / removal request frame of the above corresponding service in the first frequency band, and request to establish the corresponding service in the second frequency band.
  • the second node feeds back a corresponding response frame on the first frequency band, and responds to whether or not the corresponding establishment / removal request is agreed.
  • the first node and the second node may perform corresponding service interactions on the second frequency band according to the agreement established in the first frequency band.
  • the foregoing method of sending the first type of frame through the first frequency band can provide a reliable transmission method for important management frames and control frames.
  • the first frequency band shunting range may include any one of the following conditions or any combination of the following conditions:
  • the sending duration is greater than or equal to a preset duration shunt threshold.
  • the quality of service access category belongs to a preset offload access category
  • the packet format belongs to a preset shunt packet format.
  • the sending, by the first node, a frame to be sent whose shunting attribute value belongs to the shunting range of the first frequency band to the second node through the first frequency band may include:
  • sending duration of the frame to be sent is greater than or equal to a preset duration shunt threshold, sending the frame to be sent on the first frequency band;
  • the frame to be sent is sent on the first frequency band.
  • Table 1-6 is a schematic diagram of the shunting range of the first frequency band.
  • Second frequency band The sending duration is greater than or equal to the duration shunt threshold ⁇ X The sending duration is less than the duration shunt threshold ⁇ ⁇ Quality of service access category belongs to offload access category ⁇ X Quality of service access category does not belong to offload access category ⁇ ⁇ Packet format ⁇ X The packet format is not a split packet format ⁇ ⁇
  • the sending, by the first node, the to-be-sent frames whose shunt attribute values belong to the shunting range of the first frequency band to the second node through the first frequency band may include: if the to-be-sent frames are first-type frames, sending the to-be-sent on the first frequency band frame.
  • the first frequency band shunting range may adopt any one or a combination of the embodiments of the first frequency band shunting range provided in the present application.
  • the transmission rate shunt threshold quality of service shunt threshold, duration shunt threshold, shunt access category, and shunt packet format will be described in detail.
  • Table 1-7 is a schematic diagram of the shunting range of the first frequency band.
  • Tables 1-7 are schematic diagrams of combinations of the foregoing first frequency band shunting ranges in the embodiments of the present application.
  • management frames and control frames other than the first type of frames may also be offloaded using the same transmission rate offload threshold, quality of service threshold, etc. as the data frames.
  • step S202 may be performed before step S203, and step S203 may be performed before step S202.
  • the set first frequency band shunting range determines a frequency band for sending a frame to be sent from at least two frequency bands of the first node and the second node.
  • MAC frames that affect bandwidth throughput and average delay, such as lower transmission rates and lower quality of service can be concentrated in one frequency band for transmission in another frequency band. Frames, which can improve the bandwidth throughput rate of another frequency band and the throughput rate between nodes, and reduce the average delay between nodes, which can further improve the satisfaction of service requirements.
  • the first frequency band may be a low-frequency band
  • the second frequency band may be a high-frequency band.
  • the low frequency band and the high frequency band are relatively speaking.
  • the mainstream WLAN standards include 802.11a / b / g / n / ac / ax. These mainstream WLAN standards usually use a 2.4 GHz frequency band or a 5 GHz frequency band, and the 5 GHz frequency band may refer to 4.9 GHz and 5 GHz. Recently, the 802.11ax standard has also adopted the 6GHz spectrum which may be used as unlicensed spectrum as its operating spectrum.
  • the low frequency band usually has the characteristics of relatively slow signal attenuation and better wall penetration.
  • the frequency spectrum of the low frequency band is usually relatively limited, sometimes the rate is limited by the size of the spectrum.
  • the bandwidth of 802.11b / g / n / ax standard data packets is 20MHz, and the maximum support is 40MHz. Among them, there is still some overlap between each channel, which affects the continuous use of multiple channels. Based on the above For reasons, 802.11a / ac decided not to use 2.4GHz as its operating spectrum. Spectrum resources in the high-frequency band are usually richer than those in the low-frequency band.
  • the high-frequency band is generally more suitable for large bandwidth than the low-frequency band.
  • 802.11ac and 802.11ax support data transmission up to 160MHz.
  • the high-frequency band and the low-frequency band are relative concepts.
  • the 2.4GHz band can be used as the high-frequency band.
  • the 2.4 GHz frequency band can be used as a low frequency band.
  • the method of concentrating the MAC frames that affect the throughput and delay in the first frequency band is transmitted.
  • the second frequency band with a larger bandwidth can be dedicated to high-speed data transmission, which can further improve the throughput between nodes during multi-band transmission.
  • the present application also provides a data transmission method.
  • a part of a frame having a low transmission efficiency such as a low-rate frame or a low-quality frame that must be transmitted in the second frequency band
  • the second frequency band is split and sent, that is, the first frequency band and the second frequency band are matched to send the information carried in the low rate frame or low quality of service frame, and the low rate frame or low service can be guaranteed
  • the throughput between nodes is improved as much as possible.
  • FIG. 3 is a second flowchart of a data transmission method provided by the present application. As shown in FIG. 3, the steps in the embodiment of the present application may include:
  • the first node obtains a frame to be sent.
  • the first node sends the to-be-sent frame whose shunting attribute value belongs to the shunting range of the second frequency band to the second node through the second frequency band of at least two frequency bands.
  • the first node sends the to-be-sent frame whose shunt attribute value belongs to the shunt range of the first frequency band to the second node through the first frequency band.
  • the first node sends the to-be-sent frame whose shunt attribute value does not belong to any of the first frequency band shunt range and the second frequency band shunt range to the second node through any one of at least two frequency bands. .
  • step S303 is similar to S202, and reference may be made to the description in S202.
  • step S304 is similar to S203, and reference may be made to the description in S203.
  • the second frequency band is another frequency band among at least two frequency bands between the first node and the second node. If there is an intersection between the second frequency band shunt range and the first frequency band shunt range, step S302 may be performed first, and then step S303 may be performed. For example, first determine whether the offload attribute value of the frame to be sent belongs to the second frequency band offload range. If it belongs to the second frequency band offload range, then send the frame to be transmitted on the second frequency band. The first frequency band offload range, if it belongs to the first frequency band offload range, sends the frame to be transmitted through the first frequency band. If it does not belong to the first frequency band offload range or the second frequency band offload range, it can pass through the two frequency bands.
  • step S302 may be performed first and then step S303 may be performed, or step S303 may be performed before step S302.
  • the first frequency band shunting range may be implemented in any one of the first frequency band shunting ranges in the embodiment shown in FIG. 2.
  • various embodiments of the first frequency band shunting range provided in the present application can also be used in combination.
  • Table 2-1 is a schematic diagram of the diversion criteria.
  • the diversion criteria provided in the embodiments of the present application can be shown in Table 2-1.
  • the second frequency band shunting range may be a frequency band shunting range corresponding to the second frequency band.
  • the second frequency band shunting range may include: a control frame or a management frame carrying some control information, management information, and other indication information that needs to be sent in the second frequency band.
  • the control information and management information that needs to be transmitted in the second frequency band may be synchronization information used for synchronization.
  • the second frequency band offload range may include: a frame type is a second type frame.
  • the second type frame may include: a synchronization type frame for implementing a synchronization function in the second frequency band.
  • the synchronization frame may include at least one of the following:
  • a scheduling frame carrying scheduling information of the second frequency band is a scheduling frame carrying scheduling information of the second frequency band.
  • the scheduling frame may be a trigger frame.
  • Table 2-2 is a schematic diagram of the shunting range of the second frequency band.
  • the method of transmitting the second type frame through the second frequency band is equivalent to determining that the synchronization type frame carrying the synchronization information is transmitted in the second frequency band.
  • the second frequency band offload range may include:
  • the frame type is a short sync frame, which carries a ring command corresponding to the third type of frame.
  • the first frequency band shunting range may include:
  • the frame type is a third type of frame, and the third type of frame carries instruction information for instructing the second node to use the second frequency band at a preset target time, and a ring instruction.
  • the loop instruction is used to instruct the second node to read the indication information used on the second frequency band carried in the third type frame corresponding to the short synchronization frame when the second node receives the short synchronization frame in the second frequency band at the target time.
  • Table 2-3 is a schematic diagram of the shunting criteria.
  • the third type of frame may include at least one of the following:
  • a first beacon frame wherein the first beacon frame carries beacon information used on a second frequency band at a target time;
  • a first scheduling frame where the first scheduling frame carries scheduling information used on a second frequency band at a target time.
  • the short synchronization frame corresponding to the first beacon frame may be referred to as a short message frame; the short synchronization frame corresponding to the first scheduling frame may be referred to as a short scheduling frame.
  • the above steps 302 and S303 may include: sending a third type frame through the first frequency band; and when the target time is about to arrive, sending a short synchronization frame through the second frequency band.
  • the second node may search for the corresponding third-type frame received in the first frequency band according to the command of the ring in the short synchronization frame, extract the instruction information from it, and follow the instruction of the instruction information to the target time at the second time.
  • the MAC frames transmitted on the frequency band are controlled.
  • the first beacon frame, the first scheduling frame, and the corresponding short synchronization frame will be described in detail, and reference may be made to the description in other embodiments of the present application.
  • the third type frame carrying the indication information used in the second frequency band is matched with the short synchronization frame. Since the short synchronization frame can carry a ring instruction for association with the third type frame, it may not be necessary It carries specific instruction information, so the length of the short synchronization frame can be smaller, which can reduce the amount of data that needs to be transmitted on the second frequency band.
  • the following description uses the first node as the AP, the second node as the STA, the first frequency band as Band1, and the second frequency band as Band2.
  • FIG. 4 is a schematic flowchart of a data transmission method provided by the present application.
  • the multi-band cooperative transmission process using the data transmission method provided in this application may include the following steps:
  • the AP sends a first beacon frame on Band1.
  • the first beacon frame may include information such as capability information of the AP, time stamp information, a beacon frame order ring (Token), a label of Band2, and a position of a main channel of Band2. It should be noted that the first beacon frame may simultaneously carry the capability information and operation information of Band1, and the capability information and operation information of Band2.
  • information such as capability information of the AP, time stamp information, a beacon frame order ring (Token), a label of Band2, and a position of a main channel of Band2. It should be noted that the first beacon frame may simultaneously carry the capability information and operation information of Band1, and the capability information and operation information of Band2.
  • the AP sends a short message frame in Band2.
  • the short-beacon (S-Beacon) is used for time synchronization on Band2.
  • the period of the short beacon frame may be an integer multiple of the period of the first beacon frame.
  • the length of the second beacon frame may be smaller than the length of the first beacon frame.
  • the AP transmits data in Band1 and / or Band2.
  • the data transmission rate is less than or equal to the preset transmission rate.
  • the data splitting threshold can only be transmitted in Band1.
  • the data transmission rate is greater than the transmission rate.
  • the data transmission rate can only be transmitted in Band2.
  • the data of the shunt threshold can be transmitted on Band1 and Band2 at the same time.
  • S404 The AP sends a scheduling frame carrying scheduling information in Band1, instructing the STA to perform data transmission in Band2 at the target time.
  • the scheduling information may include scheduling information 1 used at a first target time, which carries a ring 1 (Token1), and scheduling information 2 used at a second target time, which contains a ring 2 (Token2) ).
  • Token1 scheduling information 1 used at a first target time
  • Token2 scheduling information 2 used at a second target time, which contains a ring 2 (Token2)
  • S405 The AP sends a short synchronization frame at the target time, and triggers the STA to send uplink data.
  • the AP may send a short synchronization frame 1 at a first target time, where the short synchronization frame 1 carries Token1.
  • the short synchronization frame can carry ring information, so the overhead of the short synchronization frame can be smaller.
  • the STA sends uplink data according to the scheduling information corresponding to the short synchronization frame.
  • the STA may search for the corresponding scheduling information 1 according to Token1 in the short synchronization frame, and send uplink data (UL Data) according to the scheduling information 1.
  • UL Data uplink data
  • the first node may obtain The indication information used on the first frequency band generates a third type frame and a short synchronization frame according to the indication information.
  • the frames to be transmitted belonging to the second frequency band shunt range may be first transmitted through the second frequency band, and then the Step of sending a frame to be transmitted through a first frequency band.
  • a frequency band includes multiple channels.
  • the channels in the frequency band partially overlap.
  • Multiple STAs can use different channels in the same frequency band when sending uplink data to the same AP.
  • the resource unit, or other frequency division, time division, and space division multiplexing methods can be used in superposition with the above-mentioned multiplexing mode, or can be used alone.
  • the MAC frame to be sent needs to first compete for the channel resources for sending data.
  • a competition mechanism for sending MAC frames can be set on the node. High-quality MAC frames are more likely to compete for channels than low-quality MAC frames. Therefore, by dividing the sent frames based on the quality of service, low-quality MACs can be improved.
  • the frame contention channel success rate further reduces the waiting time for MAC frames with low quality of service and reduces the delay of frames with low quality of service.
  • the present application further provides a data transmission method.
  • a first node Before a first node sends a to-be-sent frame whose shunt attribute value belongs to a shunt range of a first frequency band to the second node through the first frequency band, The first node may enable multi-band through negotiation with the second node.
  • FIG. 5 is a first interactive flowchart of a data transmission method provided by the present application. As shown in FIG. 5, if the first node is an initiator requesting to enable multi-band, the steps in this embodiment of the present application may include:
  • the first node sends a multi-band activation request to the second node in the first frequency band.
  • the second node sends a multi-band enable response to the first node in the first frequency band.
  • the multi-band enabling request may be an Association Request frame
  • the multi-band enabling response may be an Association Response frame
  • the first node may also be a receiver with multi-band enabled. Then, the first node sets the to-be-sent frame whose shunt attribute value belongs to the shunt range of the first frequency band through, Before the first frequency band is sent to the second node, the steps in this embodiment of the present application may include: the first node receives the multi-band activation request sent by the second node in the first frequency band; the first node sends the second frequency band to the second node on the first frequency band Multi-band enable response.
  • the following description uses the first node as the AP, the second node as the STA, the first frequency band as Band1, and the second frequency band as Band2.
  • FIG. 6 is a schematic flowchart of an association manner provided by the present application.
  • the STA may be a multi-band enabled initiator, and the interaction process between the AP and the STA to enable the multi-band in an association manner may include the following steps:
  • the AP sends a first beacon frame in Band1.
  • the beacon frame may include information such as the AP's capability information, operation information, time stamp information, beacon frame order ring (Token), the label of Band2, and the position of the main channel of Band2.
  • the AP may send the beacon frame in a periodic manner.
  • the first beacon frame may simultaneously carry the capability information and operation information of Band1, and the capability information and operation information of Band2.
  • the AP sends a short message frame in Band2.
  • the short message frame is used for time synchronization on Band2.
  • the period of the short beacon frame may be an integer multiple of the period of the first beacon frame.
  • the STA sends a search request frame in Band1.
  • a Probe Request frame indicates that the STA wishes to perform an association operation.
  • the exploration request frame may include capability information of the STA, the capability information indicating that the STA supports multi-band operation, and the capability information simultaneously indicates the capability information of the STA in Band1 and the capability information of Band2.
  • the AP After receiving the discovery request frame sent by the STA, the AP sends a discovery response frame to the STA.
  • the exploration response frame indicates the AP's capability information and operation information.
  • the exploration response frame can also indicate that the AP supports multi-band operation, as well as the AP's capability information in Band1 and Cap2.
  • S605 The STA sends an association request frame in Band1.
  • the association request frame is used to request an AP to enable association.
  • the association request frame may include capability information of the STA, the capability information indicating that the STA supports multi-band operation, and the association request frame may indicate the capability information of the STA in Band1 and the capability information of Band2 at the same time.
  • S606 The AP sends an association response frame in Band1.
  • the association response frame is used to respond to the association request frame.
  • the association request frame includes the capability information of the AP, indicating that it supports multi-band operation, and also indicates the capability information of the AP in Band 1, and the capability information of Band 2.
  • both the AP and the STA can perform data transmission on Band1 and Band2, and do not need to perform association operations on Band2.
  • STA can perform time calibration on the Band2 by using the short beacon frame.
  • the STA can also read the first beacon frame in Band1 to obtain related information of the BSS.
  • steps S603 and S604 are not the steps that must be performed to perform the association operation.
  • the STA may directly perform steps S605 and S606 to perform the association operation.
  • the STA may close some or all of the links of Band2 before performing the association operation.
  • the links in this application may refer to radio frequencies or antennas. In this way, when Band2 needs to be enabled and then Band2 is associated with Band1, energy can be saved.
  • the AP and the STA use multi-band cooperative transmission, the AP may instruct the STA on Band1 to close some or all of the links of Band2. In this way, Band2 can be flexibly controlled to save power.
  • a shunting criterion between nodes that is, a first frequency band shunting range, a second frequency band shunting range, and the like.
  • it may be indicated in the first beacon frame and the exploration response frame.
  • the indication may be performed by the AP in the first beacon frame or the exploration response frame.
  • an Extremely High Throughput (EHT) operation element may be used to indicate a frequency band shunting range corresponding to each frequency band.
  • the EHT operation element may be carried in the first beacon frame or the exploration response frame.
  • different first frequency band shunting ranges may be set for different spatial streams (Spatial Streams, SS).
  • different transmission rate shunting thresholds can be set according to different spatial streams.
  • Table 4-1 is an illustration of setting thresholds for different spatial streams.
  • Threshold for 1SS may represent a threshold value set for a spatial stream whose identity is 1.
  • a unified rate identifier may be used to indicate a transmission rate shunt threshold.
  • 00 may be used to indicate 121.9 Mbps
  • 01 may be used to indicate 248.3 Mbps, and so on.
  • the rate identification may be a coding and modulation strategy.
  • different MCSs can correspond to different rates.
  • the 802.11ax standard currently supports 12 different MCSs such as MCS0-MCS11.
  • 2 bits can be used to set the Threshold 1/2 ... / 16SS indication.
  • 4 bits can also be used to indicate the shunt threshold of up to 16 MCS.
  • Table 4-2 is a schematic diagram of MCS using a 2-bit indication.
  • the transmission rate identifier when indicating the shunt threshold of each frequency band, the transmission rate identifier can be sent. For example, when the shunt range of the first frequency band includes the transmission rate shunt threshold, you can send "00" to indicate that the transmission rate shunt threshold is MCS1. The indicated transmission rate.
  • a frequency band shunting threshold corresponding to each frequency band may be set according to an access category of a quality of service of a frame to be transmitted.
  • the access categories may include four types: Voice (VO), Video (Video, VI), Background (BK), Best Effort (BE).
  • VO and VI have higher priority than BK and BE.
  • the first frequency band offload range may include: the access category is BK and / or BE.
  • Table 4-3 is a schematic diagram of the shunting range of the first frequency band.
  • First frequency band Second frequency band Access category is BK and / or BE ⁇ X Access category is VO and / or VI ⁇ ⁇
  • data frames of the access category BK can be transmitted in the first frequency band; data frames of the access category BE can be transmitted in the first frequency band; data frames of the access category B0 or VI can be transmitted in the second frequency band, Alternatively, transmission is performed on the second frequency band and the first frequency band.
  • a frequency band shunting threshold corresponding to each frequency band may be set according to a transmission duration of a frame to be transmitted.
  • the sending duration of the frame to be sent may be specified in advance or calculated according to parameters such as the amount of data to be transmitted and the transmission rate.
  • the pre-designated transmission duration may be, for example, the expected transmission duration of the frame to be transmitted, for example, the transmission duration occupied by the low-speed frame and the high-speed frame may not be proportional to the length of the frame itself.
  • the calculated transmission duration can be calculated according to, for example, the amount of data and bandwidth to be transmitted, MCS, and the number of spatial streams.
  • the duration shunt threshold can be flexibly set according to the number of frames to be sent that need to be shunted. For example, according to a preset period of time, 40% of the frames to be sent with a longer sending time can be sent to the second node through the first frequency band. Send duration, which is set as the duration shunt threshold.
  • a frequency band shunting threshold corresponding to each frequency band may be set according to a data packet format of a frame to be transmitted.
  • Non-High Throughput (non-HT) data packets defined in 802.11a / b / g,
  • VHT Very High Throughput
  • High Efficiency (HE) data packets defined in 802.11ax,
  • EHT Extremely High Throughput
  • VHT data packets may also include VHT single-user data packets and VHT multi-user data packets;
  • HE data packets may include HE single-user data packets, HE extended distance single-user data packets, HE multi-user data packets, HE trigger-based data Grouping.
  • the packet format corresponding to the shunting range of the first frequency band may be one or more of the lowest transmission rates in the foregoing packet formats.
  • a splitting component stream format corresponding to the first frequency band splitting range may include non-HT.
  • data packets in the non-HT format can be transmitted in the first frequency band
  • data packets in other formats such as data packets in the HT, VHT, HE, and EHT formats, can be transmitted in the second frequency band.
  • Table 4-4 is a schematic diagram of the shunt range of the first frequency band.
  • a splitting stream format corresponding to the first frequency band shunting range may be set: non-HT, HT.
  • data packets in non-HT format and HT format can be transmitted in the first frequency band
  • data packets in other formats, such as VHT, HE, and EHT format data packets can be transmitted in the second frequency band, or they can be transmitted in the second frequency band and First frequency band transmission.
  • the packet format is the format when a frame to be sent is transmitted in the PHY layer.
  • a frequency band shunting threshold corresponding to each frequency band may be set according to a data packet bandwidth of a frame to be transmitted.
  • the data packet bandwidth of the frame to be sent may include: 20MHz, 40MHz, 80MHz, 160MHz, 80 + 80MHz, 320MHz, 160MHz + 160MHz and other different bandwidth modes.
  • higher bandwidth can correspond to higher peak rates.
  • the bandwidth shunting threshold corresponding to the first frequency band shunting range may be one or more of the lowest bandwidths in the foregoing packet format.
  • the bandwidth shunting threshold corresponding to the first frequency band shunting range may include: 20 MHz or 40 MHz.
  • the corresponding frames to be transmitted with a bandwidth of 20 MHz or 40 MHz can be transmitted in the first frequency band, and the corresponding frames to be transmitted with a bandwidth of 80 MHz or more can be transmitted in the second frequency band, or can be transmitted in the second frequency band and the first frequency band.
  • Table 4-5 is a schematic diagram of the shunting range of the first frequency band.
  • First frequency band Second frequency band Bandwidth is less than or equal to 40MHz ⁇ X Bandwidth greater than 40MHz ⁇ ⁇
  • the packet bandwidth is the actual bandwidth of the PHY that sends the frame to be sent.
  • a combination may also be made according to a frequency band shunting range corresponding to the shunting attribute value mentioned in any of the foregoing embodiments.
  • a frequency band shunting threshold corresponding to each frequency band may be set together.
  • the first frequency band shunting range may include:
  • the bandwidth is less than or equal to 40MHz, and the packet format is non-HT or HT.
  • the corresponding frames to be sent with a bandwidth of less than or equal to 40MHz and a format of non-HT or HT can be transmitted in the first frequency band, and the corresponding frames to be sent with a bandwidth of 80MHz or more or a packet format of VHT, HE, and EHT can be transmitted. Transmission in the second frequency band, or alternatively, transmission in the second frequency band and the first frequency band.
  • the first frequency band shunting range may include:
  • the bandwidth is less than or equal to 40 MHz, or the packet format is non-HT or HT.
  • the corresponding bandwidth is greater than or equal to 80 MHz and the format, or the corresponding packet to be transmitted in the format of VHT, HE, and EHT may be transmitted in the second frequency band, or may be transmitted in the second and first frequency bands. Other frames to be transmitted may be transmitted in the first frequency band.
  • all frequency bands may share a set of offloading criteria.
  • each frequency band group may include at least two frequency bands, at least two frequency bands in each frequency band group are divided into a first frequency band and a second frequency band, and a first frequency band shunting range and a second frequency band are respectively set for each frequency band group.
  • Band shunting range may include at least two frequency bands, at least two frequency bands in each frequency band group are divided into a first frequency band and a second frequency band, and a first frequency band shunting range and a second frequency band are respectively set for each frequency band group.
  • a frequency band below 2.4G and 1 GHz is used as a frequency band group, and a first shunting criterion is used, and 5G and 6G are used as a frequency band group, and a second shunting criterion is used.
  • the following describes in detail the shunting manner of a management frame carrying management information and a control frame carrying control information.
  • the management frame and the control frame may not be distributed according to the distribution attribute values such as the transmission rate, service quality, and transmission duration. That is, the data frame may be offloaded only according to the offloading attribute values such as transmission rate, quality of service, and transmission duration. This ensures that all management and control frame functions are not affected.
  • the above-mentioned shunting thresholds for each frequency band set for a data frame may also be used for a management frame, and a control frame may be transmitted in any frequency band.
  • the partial control frames may be shunted according to special regulations.
  • the special regulations refer to sending control frames on the first frequency band for controlling the second frequency band, that is, according to The type of control frame is split.
  • a trigger frame, an RTS frame, a CTS frame, a CTS (CTS-to-Self) frame, an ACK, or a BA control frame sent to itself may be set to be transmitted through the first frequency band.
  • the trigger frame may be used to trigger the STA to perform uplink data transmission.
  • FIG. 7 is a schematic flowchart of triggering an STA to perform uplink data transmission by using a trigger frame.
  • the interaction process between the AP and STA1 and STA2 may include:
  • S701 The AP sends a trigger frame.
  • S702 STA1 sends uplink data.
  • S703 STA2 sends uplink data.
  • the AP sends confirmation information.
  • the AP sends a trigger frame to trigger the transmission of uplink data by one or more STAs, as shown in FIG. 7, where the AP sends a trigger frame that carries scheduling information and is STA provides a way to perform time, frequency, and power calibration and adjustment.
  • the present application provides the following embodiments.
  • FIG. 8 is a second schematic flowchart of a data transmission method provided by the present application.
  • the interaction process between the AP and the STA may include:
  • the AP sends a scheduling frame carrying scheduling information to the STA on Band1.
  • the scheduling frame is used to instruct the STA to perform data transmission on Band2 within the target time.
  • the scheduling frame carries a Token indication.
  • the STA receives a scheduling frame in Band1 and stores the scheduling information.
  • the AP sends a short synchronization frame to the STA in Band2, and triggers the STA to send uplink data.
  • the short synchronization frame carries a Token indication corresponding to the scheduling frame transmitted by Band1.
  • the STA receives the short synchronization frame, and reads the previously stored scheduling information according to the Token instruction in the short synchronization frame.
  • the STA sends an uplink data frame according to the read scheduling information.
  • the scheduling information is transmitted in Band1, and in Band2, uplink transmission is triggered by a short synchronization frame, which plays a role of synchronization.
  • the short synchronization frame can reduce the overhead of Band2, increase the throughput of Band2, and reduce the delay of Band2.
  • the RTS / CTS frame may be used to trigger the STA to perform uplink data transmission.
  • FIG. 9 is a schematic flowchart of data transmission using RTS / CTS.
  • the interaction process between the AP and STA1 and STA2 may include:
  • the AP sends an RTS.
  • the STA sends a CTS.
  • the STA sends a BA.
  • the RTS / CTS interaction is used to reserve a period of time for data transmission.
  • the APs and STAs that have received the RTS and CTS will be silent according to the corresponding time information in the RTS and CTS, so as not to interfere with the data transmission between the RTS / CTS sender and receiver.
  • the RTS / CTS is transmitted in Band1 and the data is transmitted in Band2, the surrounding STAs cannot be informed of the transmission opportunity (Transmit Opportunity, TXOP) that they want to reserve, and thus the data transmission between the AP and the STA cannot be protected.
  • TXOP Transmission Opportunity
  • the present application provides the following implementations for dual-band TXOP protection.
  • FIG. 10 is a schematic flowchart III of a data transmission method provided by the present application.
  • the interaction process between the AP and the STA may include:
  • the AP sends e-RTS in Band1.
  • the STA sends an e-CTS in Band1.
  • the STA sends BA in Band2.
  • e- in e-RTS / e-CTS stands for enhanced and is used to indicate an enhanced version of RTS / CTS.
  • Table 5-1 shows an e-RTS / e-CTS frame format.
  • duration information is the same as in RTS, and is used to reserve the TXOP of Band1, such as TXOP1;
  • Time information is used to reserve the TXOP of Band2, such as TXOP2.
  • the "TXOP start time of Band2" can be used to reserve the TXOP of Band2 in advance on Band1.
  • the corresponding TXOP indicated in e-RTS or e-CTS is silenced.
  • the corresponding TXOP time can be obtained through the "Band2 duration information” field and the "Band2 TXOP start time” field.
  • this application provides a TXOP protection mechanism for dual-band transmission.
  • the TXOP of Band1 and / or Band2 is indicated in e-RTS or e-CTS, so that low-speed e-RTS, e can be transmitted in Band1.
  • -CTS which can protect the data transmission in TXOP of Band1 and / or Band2.
  • the present application provides a shunting method involving an acknowledgement frame.
  • the acknowledgement frame is an important management frame.
  • the acknowledgment frame is used to confirm whether the receiving end receives data successfully.
  • the sender of the data may send an indication to the receiving end, indicating the frequency band in which the acknowledgement frame is desired to be received.
  • FIG. 11 is a schematic flowchart IV of a data transmission method provided by the present application.
  • the sender of the data may be the first node, and the receiver of the data may be the second node.
  • the steps of the interactive process involving the confirmation frame may include:
  • S1101 The first node sends Data in Band2.
  • S1102 The first node sends a BAR in Band1.
  • S1103 The second node sends a BA in Band1.
  • step S1102 is not a required step.
  • the second node that is the receiving end can compete for a channel in Band1 and reply to BA.
  • the second node may wait for the first node to send a block acknowledgement request (BAR) frame, and then reply to BA on Band1.
  • BAR block acknowledgement request
  • the above-mentioned BAR may also adopt a Multiple User Block Acknowledgement Request Frame (Multiple User-BAR, MU-BAR) as an alternative.
  • MU-BAR Multiple User Block Acknowledgement Request Frame
  • the method for the sender to send an instruction to the receiver may include: indicating a desired reply reply in a High Throughput Control (HTC) field of a frame of a data frame to be sent or a management frame.
  • HTC High Throughput Control
  • An embodiment of the present application provides a manner that can be used to send a first frequency band offload range to a second node, where the first frequency band offload range may include a frame type as an acknowledgement frame, where the acknowledgement frame is used for Confirm the transmission data of the two bands.
  • Table 5-2 is a kind of Band ID indicated in the HTC field.
  • the resources of the frequency band 2 can be used for high-speed data transmission, and system resource allocation is optimized to maximize system efficiency.
  • the solution of the present invention occupies longer management frames and acknowledgement frames on the air interface, and the data with lower rate and lower quality of service priority is transmitted in the first frequency band, while the data with higher rate and higher quality of service priority is transmitted in the second Frequency band transmission, making full use of the second frequency band for high-speed data transmission, optimizing system throughput and reducing system delay.
  • the 802.11ad standard defines an interface above the low-frequency MAC layer and the high-frequency MAC layer, which is used to transfer the contents of MAC frames in different layers within the STA.
  • This mechanism is called Fast Session Transfer (Fast Session Transfer).
  • FST Fast Session Transfer
  • two nodes such as STA1 and STA2
  • STA1 and STA2 can use high-frequency MAC (and low-frequency PHY) to send high-frequency MAC frames.
  • This mechanism is also known as On-Channel Tunneling (OCT). ).
  • FIG. 12 is a schematic structural diagram of a node.
  • the high-frequency MAC data of STA1 is transmitted to the low-frequency MAC of STA1 through the internal MAC interface, and then encapsulated into a low-frequency data packet at the physical (PHY) layer and sent to the low-frequency receiver of STA2 to obtain the high-frequency Frequency MAC frames.
  • This data transmission method can implement single-band transmission through multiple frequency bands, that is, this method provides a method for transmitting a MAC frame of one node to another node by using multiple frequency bands.
  • high-speed frames and low-speed frames are mixed for transmission. Therefore, the overall bandwidth of the frequency band is not high, and the overall delay of the frequency band is large, which cannot meet the service transmission rate or transmission quality requirements.
  • the data transmission method provided in the present application by dividing the frames to be sent according to the shunting attribute value, can improve the overall throughput rate between nodes and reduce the average delay between nodes.
  • FIG. 13 shows a schematic block diagram of an apparatus 1300 for a node according to an embodiment of the present application.
  • the device 1300 shown in FIG. 13 may correspond to the device on the first node side in the foregoing method embodiment, and may have any function of the first node in the method.
  • the The device 1300 may be a first node or a chip in the first node.
  • the device 1300 may include a processing module 1310 and a transceiver module 1320.
  • the device 1300 may further include a storage module 1330.
  • the processing module 1310 may be used to execute step S201 in the foregoing method embodiment, or may be used to execute step S301.
  • the processing module 1310 may be further configured to determine a target frequency band for sending the frame to be sent according to a shunting attribute value of the frame to be sent and a first frequency band shunting range.
  • the transceiver module 1320 may be used to perform steps S202 and S203;
  • the device 1300 may also have any function of the second node in the foregoing method.
  • the foregoing transceiver module 1320 may be used to execute step S502.
  • the first node may be an AP or an STA.
  • the first node may perform steps performed by the AP or the STA as the sender of various frames to be sent in the foregoing method.
  • the first node may Perform the steps performed by the AP or STA or the second node that is the receiving end of the frame to be sent in the foregoing method.
  • the transceiver module 1320 may be used to perform step S605, or to perform steps S603, S605, or to perform step S606, or to perform steps S601, S602, and S606, or to perform steps S601, S602, and S604, S606;
  • step S801 it is used to perform step S801, or to perform steps S802, S803, and S804.
  • the second node may be an AP or a STA.
  • the device 1300 in the embodiment of the present application may correspond to the first node in each method of the foregoing embodiments, and the above-mentioned management operations and / or functions of each module in the device 1300, and that each module has Other management operations and / or functions are implemented in order to implement the corresponding steps of the foregoing methods, and for the sake of brevity, they are not repeated here.
  • the device 1300 may also be configured as a general-purpose processing system, such as a chip, and the processing module 1310 may include: one or more processors providing processing functions; the transceiver module 1320 may be, for example, an input / output interface, The input / output interface can be used for the information interaction between the chip system and the outside, such as pins or circuits. For example, the input / output interface can process the dispatch request message output from other modules outside the chip to the chip.
  • the processing module may execute computer execution instructions stored in the storage module to implement the function of the first node in the foregoing method embodiment.
  • the optional storage module 1330 included in the device 1300 may be a storage unit in a chip, such as a register, a cache, etc.
  • the storage module 1330 may also be a storage unit located outside the chip, such as a read-only memory ( read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM).
  • ROM read-only memory
  • RAM random
  • FIG. 14 shows a schematic block diagram of another communication device 1400 on a node side according to an embodiment of the present application.
  • the apparatus 1400 in this embodiment of the present application may be the first node in the foregoing method embodiment, and the apparatus 1400 may be configured to perform part or all of the functions of the first node in the foregoing method embodiment.
  • the device 1400 may include a processor 1410, a baseband circuit 1414, a radio frequency circuit 1440, and an antenna 1450.
  • the device 1400 may further include a memory 1420.
  • the various components of the device 1400 are coupled together through a bus 1460.
  • the bus system 1460 includes a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, various buses are marked as the bus system 1460 in the figure.
  • the processor 1410 may be configured to implement control on the first node, to execute the processing performed by the first node in the foregoing embodiment, and may execute the processing process involving the first node in the foregoing method embodiment and / or used in this application.
  • Other processes of the described technology can also run the operating system, be responsible for managing the bus, and can execute programs or instructions stored in memory.
  • the baseband circuit 1414, the radio frequency circuit 1440, and the antenna 1450 may be used to support the transmission and reception of information between the first node and the second node involved in the foregoing embodiment, so as to support wireless communication between the first node and other nodes.
  • the second node may be an AP or a STA.
  • the frame to be sent from the second node that is encapsulated by the PHY layer is received via the antenna 1450, and filtered, amplified, downconverted, and digitized by the RF circuit 1440, and then decoded by the baseband circuit 1414 and decoded according to the protocol
  • the processor 1410 processes to recover the service data and signaling information carried in the frame to be sent by the second node; in another example, the first node carries the service data and information
  • the frame to be sent can be processed by the processor 1410, and then processed by the baseband circuit 1414 according to the protocol, encoding and other baseband processing, and further processed by the radio frequency circuit 1440 for analog conversion, filtering, amplification and up-conversion, and then processed by the antenna 1450.
  • the memory 1420 may be used to store the program code and data of the first node, and the memory 1420 may be the storage module 1314 in FIG. 13. It can be understood that the baseband circuit 1414, the radio frequency circuit 1440, and the antenna 1450 can also be used to support the second access point to communicate with other network entities, for example, to support the second access point to communicate with network elements on the core network side. .
  • the memory 1420 is shown as being separate from the processor 1410 in FIG. 14, however, it will be readily apparent to those skilled in the art that the memory 1420 or any portion thereof may be located outside the device 1400.
  • the memory 1420 may include transmission lines and / or computer products separated from the wireless nodes, and these media may be accessed by the processor 1410 through the bus interface 1460.
  • the memory 1420 or any portion thereof may be integrated into the processor 1410, for example, it may be a cache and / or a general-purpose register.
  • FIG. 14 shows only a simplified design of the first node.
  • the first node may include any number of transmitters, receivers, processors, memories, etc., and all the first nodes that can implement the present invention are within the protection scope of the present invention.
  • the device 1400 may be further configured to perform part or all of the functions of the second node in the foregoing method embodiment.
  • the device 1400 may be further configured to perform some or all functions of an AP or an STA in the foregoing method embodiments.
  • An embodiment of the present application further provides a computer storage medium.
  • the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on a processing circuit. When run on a computer, the computer is caused to perform the methods described in the above aspects.
  • An embodiment of the present application further provides a chip system, and the chip system includes a processor for supporting a first node or a second node to implement the functions involved in the foregoing embodiments, for example, generating or processing the methods involved in the foregoing methods. Data and / or information.
  • the chip system may further include a memory, where the memory is configured to store program instructions and data necessary for the first node or the second node.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application further provides a processor, which is coupled to a memory, and is configured to execute a method and a function related to a first node in any of the foregoing embodiments.
  • An embodiment of the present application further provides a processor, which is coupled to a memory, and is configured to execute the method and function related to the second node in any one of the foregoing embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, causes the computer to execute and execute the methods and functions related to the first node in any of the foregoing embodiments.
  • the embodiment of the present application further provides a computer program product containing instructions, which when run on a computer, causes the computer to execute and execute the method and function related to the second node in any one of the foregoing embodiments.
  • An embodiment of the present application further provides a wireless communication system, which includes the first node and at least one second node involved in the foregoing embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk)).

Abstract

本申请实施例提供了一种数据传输方法及相关装置。该方法包括第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点;其中,第一频带为第一节点与第二节点之间的至少两个频带中的一个频带;待发送帧的分流属性值包括以下至少一种信息:帧类型、传输速率、服务质量、服务质量的接入类别、空间流、发送时长、数据分组格式、数据分组带宽。本申请实施例中第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点,可以提升频带的吞吐率或者降低频带的整体时延水平,从而可以提升上层业务需求的满足度。

Description

数据传输方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关装置。
背景技术
随着无线通信技术的飞速发展以及移动终端的普及,基于无线通信的各种信息搜索、信息交流方式在日常生活中的使用也越来越广泛。
在无线通信领域,通信设备可以称为节点。在利用无线方式传输节点间数据时,节点需要使用一定的无线传输资源。以第一节点向第二节点传输数据为例,第一节点可以利用与第二节点协商的频带中的无线传输资源向第二节点传输数据。
目前,在节点间数据传输的过程中,频带的吞吐率较低,且频带的整体时延水平较高,导致上层业务需求的满足度低。
发明内容
本申请提供了一种数据传输方法及相关装置,能够提升业务需求的满足度。
第一方面,本申请实施例提供一种数据传输方法,所述方法包括:
第一节点获取待发送帧;
第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点;
其中,所述第一频带为所述第一节点与所述第二节点之间的至少两个频带中的一个频带;所述待发送帧的分流属性值包括以下至少一种信息:帧类型、传输速率、服务质量、服务质量的接入类别、空间流、发送时长、数据分组格式、数据分组带宽。
第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点,由于按照待发送帧的帧类型、传输速率、服务质量、空间流、发送时长、数据分组格式、数据分组带宽等至少一种分流属性值,从第一节点与第二节点中,确定用于发送待发送帧的频带,可以将传输速率较低、服务质量较低等影响频带吞吐率、平均时延的帧,集中在一个频带中传输,使得另一个频带能够集中传输,传输速率较高、服务质量较高的帧,从而可以提升频带的吞吐率或者降低频带的整体时延水平,进而可以提升上层业务需求的满足度。
结合第一方面,在第一方面的第一种可能的实现方式中,第一频带分流范围包括以下一种条件或者以下条件的任意组合:
帧类型为数据帧且传输速率小于或等于预设的速率分流门限,
帧类型为数据帧且服务质量低于或等于预设的质量分流门限。
结合第一方面、第一方面的第一种可能的实现方式,在第一方面的第二种实现方式中,第一频带分流范围包括:
帧类型为第一类帧;
其中,第一类帧包括:探索请求帧、探索响应帧、关联请求帧、关联响应帧、鉴 定帧、用于建立或拆除第一业务的管理帧中至少一种,其中,第一业务包括:业务流、安静周期、目标唤醒时间、隧道直连链路建立、块确认帧中至少一种。
结合第一方面、第一方面的第一种至第二种可能的实现方式中的任一种可能的实现方式,在第一方面的第三种可能的实现方式中,第一频带分流范围包括:帧类型为第三类帧,所述第三类帧携带用于指示所述第二节点在预设的目标时间在所述第二频带上使用的指示信息,以及,令环指示;
所述方法还包括:
第一节点将分流属性值属于第二频带分流范围的待发送帧,通过至少两个频带中的第二频带上发送;
其中,第二频带分流范围包括:帧类型为短同步帧,短同步帧携带与第三类帧对应的所述令环指示;其中,令环指示用于指示第二节点在所述目标时间在第二频带接收到短同步帧时,读取短同步帧对应的第三类帧中携带的在第二频带上使用的指示信息。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,第三类帧包括:
第一信标帧,其中,第一信标帧携带有在目标时间在第二频带上使用的信标信息;
第一调度帧,其中,第一调度帧携带有在目标时间在第二频带上使用的调度信息。
结合第一方面、第一方面的第一种至第二种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述方法还包括:
第一节点将分流属性值属于第二频带分流范围的待发送帧,通过至少两个频带中的第二频带发送;
其中,所述第二频带为所述第一节点与所述第二节点之间的至少两个频带中的另一个频带。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,第二频带分流范围包括:帧类型为第二类帧,所述第二类帧包括:用于在第二频带上实现同步功能的同步类帧。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,同步类帧包括以下至少一种:
用于在第二频带上发送的信标帧,
携带有所述第二频带的调度信息的调度帧。
结合第一方面第三种至第七种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,第一频带分流范围包括以下任意一种条件或以下条件的任意组合:
传输速率小于或等于预设的传输速率分流门限,
服务质量低于或等于预设的服务质量分流门限。
结合第一方面,第一方面的第一种至第七种可能的实现方式中的任一种可能的实现方式,在第一方面的第八种可能的实现方式中,第一频带分流范围包括以下任意一种条件或以下条件的任意组合:
发送时长大于或等于预设的时长分流门限,
服务质量接入类别属于预设的分流接入类别,
分组格式属于预设的分流分组格式。
结合第一方面、第一方面的第一种至第二种可能的实现方式中的任一种可能的实现方式,在第一方面的第九种可能的实现方式中,所述方法还包括:
第一节点将分流属性值不属于所述第一频带分流范围的待发送帧,通过至少两个频带中的任一频带发送至第二节点。
结合第一方面、第一方面的第一种至第九种可能的实现方式中的任一种可能的实现方式,在第一方面的第十种可能的实现方式中,在第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点之前,所述方法还包括:
第一节点在第一频带向第二节点发送多频带启用请求;接收第二节点在第一频带发送的多频带启用响应;
或者,
第一节点在第一频带接收第二节点发送的多频带启用请求;在第一频带上向第二节点发送多频带启用响应。
第二方面,本申请实施例提供一种数据传输装置,该装置包括处理模块和收发模块,处理单元执行指令以控制该装置执行第一方面或第一方面任意一种可能的设计中的方法。
在一种可能的实现方式中,该装置还可以包括存储模块。
在一种可能的实现方式中,该装置可以是第一节点,也可以是第一节点内的芯片。
当该装置是第一节点时,处理模块可以是处理器,收发模块可以是收发器;若还包括存储模块,存储模块可以是存储器。
当该装置是第一节点内的芯片时,处理模块可以是处理器,收发模块可以是输入/输出接口、管脚或电路等;若还包括存储模块,该存储模块可以是该芯片内的存储模块(例如,寄存器、缓存等),也可以是该芯片外部的存储模块(例如,只读存储器、随机存取存储器等)。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面空间复用方法的程序执行的集成电路。
第三方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第一方面或其任意可能的实现方式中的方法。
第四方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或其任意可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种网络架构的示意图;
图2为本申请提供的数据传输方法的流程图一;
图3为本申请提供的数据传输方法的流程图二;
图4为本申请提供的数据传输方法的示意性流程图一;
图5为本申请提供的数据传输方法的交互流程图一;
图6为本申请提供的关联方式的示意性流程图;
图7为利用触发帧触发STA进行上行数据传输的示意性流程图;
图8为本申请提供的数据传输方法的示意性流程图二;
图9为利用RTS/CTS进行数据传输的示意性流程图;
图10为本申请提供的数据传输方法的示意性流程图三;
图11为本申请提供的数据传输方法的示意性流程图四;
图12为节点的一种结构示意图;
图13示出了本申请实施例的节点的装置1300的示意性框图;
图14示出了本申请实施例的另一种节点侧的通信装置1400的示意性框图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
本申请提供的数据传输方法可以应用到多种无线通信技术领域,例如,无线局域网(WLAN)领域。在本申请中,节点可以是支持多频带无线通信的网络设备,例如,终端、基站、服务器等。提升节点间空口传输数据时的吞吐率、降低时延,以满足持续发展的业务的需求成为无线通信技术领域需要解决的问题。
下面对本申请提供的数据传输方法的应用场景进行简要说明。
在实际的空口传输场景中,例如,街道等,传输速率为1Mbps(Mega-bit per second,兆比特每秒)和2Mbps的数据包占所有数据包的75%。这些低速数据包通常是管理帧和控制帧,管理帧和控制帧可以用于携带管理频带、控制数据收发、设置静默等控制信息,这些管理帧和控制帧通常采用相对可靠的传输,因此,传输速率可能较慢,或者,占据空口时间较长。举例来说,管理帧、控制帧可以包括:
信标(Beacon)帧,用于接入点(AP,Access Point)向整个BSS(Basic Service Set,基本服务集合,相当于小区)的站点(Station,STA)广播小区相应信息,包括BSS标识信息,能力信息,操作信息,时间戳等;
确认(Acknowledge,ACK)帧/块确认(Block Acknowledge,BA)帧,用于对数据帧的确认;
请求发送(Request to Send,RTS)/允许发送(Clear to Send,CTS)帧,用于预留一段传输机会(Transmit Opportunity,TXOP),保证发送端和接收端进行数据的传输。
这些低速数据包占据很大比例的空口发送时间,极大的降低了整个BSS的吞吐率,增加了数据传输的时延。举例来说,802.11ax标准定义的最大支持的数据速率是9.6Gbps(Giga-bit per second,千兆比特每秒),也就是说,在同样时间中,按此速率进行高速数据传输时,可以得到极大的吞吐率,并降低时延。
目前,迫切需要提升吞吐率、降低时延,来支持这些需要非常高的吞吐率和非常低的时延的业务,例如,8K视频、VR(Virtual Reality,虚拟现实)、AR(Augmented Reality,增强现实)等。
在本申请提供的数据传输方法中,第一节点与第二节点之间可以采用多频带传输。以待传输的数据为MAC层的MAC帧为例,第一节点可以生成或者获取MAC层的MAC帧,之后,通过物理层(PHY)的至少两个频带,将MAC帧所包含的数据发送至第二节点。
在本申请中,在多频带传输的基础上,需要发送数据的第一节点可以在发送MAC帧时,按照待发送帧的帧类型、传输速率、服务质量、空间流、发送时长、数据分组格式、数据分组带宽等至少一种分流属性值,从第一节点与第二节点中,确定用于发送待发送帧的频带。通过将传输速率较低、服务质量较低等影响频带吞吐率、平均时延的MAC帧,集中在一个频带中传输,使得另一个频带能够集中传输,传输速率较高、服务质量较高的MAC帧,从而可以提升另一个频带的频带吞吐率以及节点间的吞吐率,并降低节点间的平均时延,进而可以提升业务需求的满足度。
下面对本申请提供的数据传输方法的网络结构进行简要说明。
图1为一种网络架构的示意图。举例来说,在由多个基本服务集合(BSS)组成的WLAN场景中,该网络的系统结构可以包括多个节点,节点可以是网络侧设备或者终端侧设备,网络侧设备例如可以为接入点(Access Point,AP),终端侧设备例如可以为站点(Station,STA)。其中,每个AP和与其存在关联的STA组成一个BSS。在该网络中,多个节点之间可以相互通信,例如,多个AP可以与多个AP进行通信,多个STA可以与多个STA进行通信,多个AP也可以与多个STA进行通信。
本申请提供的数据传输方法可以应用于多个节点对多个节点的空口传输场景,例如,多个AP对多个AP,多个STA对多个STA,多个AP对多个STA。
下面对本申请提供的数据传输方法进行详细说明。
实施例一
图2为本申请提供的数据传输方法的流程图一。本申请实施例的执行主体可以为第一节点,如图2所示,本申请实施例的步骤可以包括:
S201,第一节点获取待发送帧。
S202,第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点。
其中,所述第一频带为所述第一节点与所述第二节点之间的至少两个频带中的频带;所述待发送帧的分流属性值包括以下至少一种信息:帧类型、传输速率、服务质量、服务质量的接入类别、空间流、发送时长、数据分组格式、数据分组带宽。
S203,第一节点将分流属性值不属于第一频带分流范围的待发送帧,通过所述至少两个频带中的任一频带发送。
在本申请中,第一节点可以是AP也可以是STA,第二节点可以是AP也可以是STA。也就是说,本申请提供的数据传输方法可以应用于AP与AP间数据传输,也可以应用于STA与STA之间的数据传输,还可以应用于AP与STA之间的数据传输。在本申请其他实施例中,第一节点和第二节点还可以是通信服务器、路由器、交换机、 网桥、计算机、手机等。
在本申请中,第一节点可以根据待发送的数据获取或者生成待发送帧,其中,待发送的数据例如可以是业务数据或者信令数据。举例来说,待发送帧可以为MAC帧,待发送数据可以是从MAC层的上层获取的分组数据,或者,基于MAC层的管理或业务控制的需求生成的管理数据、控制数据。在获取待发送帧后,需要将待发送帧通过PHY层在某一频带发送至第二节点。
在本申请中,第一节点可以预先设置分流准则,分流准则可以包括至少两个频带中的至少一个频带对应的频带分流范围。分流准则可以用于第一节点根据分流准则中各个频带对应的频带分流范围,从至少两个频带中确定发送各个待发送帧的目标频带。示例性地,第一节点可以根据待发送帧的帧类型、传输速率,确定待发送帧的目标频带,其中,若待发送帧为数据帧且传输速率小于或等于预设的速率分流门限,将所述第一频带确定为所述待发送帧的目标频带。
在本申请中,分流属性值不属于第一频带分流范围的待发送帧,可以通过至少两个频带中的第二频带或者第一频带发送。示例性地,若不符合第一频带分流范围的待发送帧的数量为多个,可以将这多个不符合第一频带分流范围的待发送帧均通过第二频带发送,或者,均通过第一频带发送,或者,也可以一部分通过第二频带发送,一部分通过第一频带发送。
以至少两个频带包括第一频带和第二频带为例,表1-1为分流准则的一种示意。
表1-1
分流准则 第一频带 第二频带
属于第一频带分流范围 ×
不属于第一频带分流范围
其中,第一频带分流范围为第一频带对应的频带分流范围。
表1-2为分流准则的另一种示意:
表1-2
分流准则 第一频带 第二频带
属于第一频带分流范围 ×
不属于第一频带分流范围 ×
根据如表1-2所示的分流准则,也可以确定将分流属性值不属于第一频带分流范围的待发送帧通过第二频带发送至第一节点。
本申请提供多种第一频带分流范围的实施方式。
在一示例中,第一频带分流范围可以包括以下任意一种条件或者以下条件的任意组合:
帧类型为数据帧且传输速率小于或等于预设的传输速率分流门限,
帧类型为数据帧且服务质量低于或等于预设的服务质量分流门限。
需要说明的是,上述多种条件的组合可以是指多种条件的交集或者并集。
在本申请实施例中,待发送帧的服务质量可以为预先划分的若干个服务质量等级中的一个,服务质量分流门限可以为上述若干个服务质量等级中的一个,示例性地, 若干个服务质量等级可以按照由低到高排序,服务质量分流门限可以为位于中间排序的一个服务质量等级。
在本申请提供的实施方式中,上述第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点,可以包括:
若所述待发送帧为数据帧且传输速率小于或等于预设的传输速率分流门限,在所述第一频带上发送所述待发送帧;
若所述待发送帧为数据帧且服务质量低于或等于预设的服务质量分流门限,在所述第一频带上发送所述待发送帧。
表1-3为第一频带分流范围的一种示意。
表1-3
Figure PCTCN2019081551-appb-000001
需要说明的是,不分流的含义是,对于帧类型为管理帧和控制帧时,管理帧或控制帧对应第一频带时,采用第一频带发送,管理帧或控制帧对应第二频带时,采用第二频带发送。
采用这种第一频带分流范围的设置方式,类似于在高速公路上,仅允许低速的卡车在低速车道行驶,而高速的小汽车允许在高速车道行驶,或者,在高速车道和低速车道均允许小汽车行驶,从而可以提升通行效率。
表1-4为第一频带分流范围的一种示意。
表1-4
Figure PCTCN2019081551-appb-000002
在另一示例中,第一频带分流范围可以包括:
帧类型为第一类帧;
其中,第一类帧可以包括:探索请求帧、探索响应帧、关联请求帧、关联响应帧、鉴定帧、用于建立或拆除第一业务的管理帧中至少一种,其中,第一业务可以包括:业务流(Traffic Stream)、安静周期(Quiet Time Period)、目标唤醒时间(Target Wakeup Time)、隧道直连链路建立(Tunnelled Direct-Link Setup,TDLS)、块确认帧(Block ACK,BA)中至少一种。
表1-5为第一频带分流范围的一种示意。
表1-5
Figure PCTCN2019081551-appb-000003
举例来说,第一节点可以在第一频带发送以上相应业务的建立/拆除请求帧,请求在第二频带上建立相应的业务。第二节点在第一频带上反馈相应的响应帧,回复是否同意相应的建立/拆除请求。在成功建立好相应的业务后,第一节点和第二节点可以按照第一频带建立的约定,在第二频带上进行相应的业务交互。
对于第一频带为站点数量较多,干扰较多的2.4GHz,第二频带是干扰较少的5GHz或6GHz时,2.4GHz的抗干扰性较好,更适合发管理帧,因此若当前网络中可以有多个站点时,上述将第一类帧通过第一频带发送的方式,能够为重要的管理帧和控制帧提供可靠的传输方式。
在再一示例中,第一频带分流范围可以包括以下任意一种条件或以下条件的任意组合:
发送时长大于或等于预设的时长分流门限,
服务质量接入类别属于预设的分流接入类别,
分组格式属于预设的分流分组格式。
上述第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点,可以包括:
若待发送帧的发送时长大于或等于预设的时长分流门限,在第一频带上发送待发送帧;
若待发送帧的服务质量接入类别属于预设的分流接入类别,在第一频带上发送待发送帧;
若待发送帧的分组格式属于预设的分流分组格式,在第一频带上发送待发送帧。
表1-6为第一频带分流范围的一种示意。
表1-6
分流准则 第一频带 第二频带
发送时长大于或等于时长分流门限 ×
发送时长小于时长分流门限
服务质量接入类别属于分流接入类别 ×
服务质量接入类别不属于分流接入类别
分组格式属于分流分组格式 ×
分组格式不属于分流分组格式
上述第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点,可以包括:若待发送帧为第一类帧,在第一频带上发送待发送帧。
需要说明的是,第一频带分流范围可以采用本申请提供的第一频带分流范围的实施方式中任一种或者组合。
在本申请其他实施例中,还将对传输速率分流门限、服务质量分流门限、时长分流门限、分流接入类别、分流分组格式进行详细说明。
表1-7为第一频带分流范围的一种示意。
表1-7
Figure PCTCN2019081551-appb-000004
表1-7所示为本申请实施例前述几种第一频带分流范围的组合实施方式的示意。
在本申请中,除第一类帧之外的管理帧和控制帧也可以采用与数据帧相同的传输速率分流门限、服务质量门限等进行分流。
在本申请中,需要说明的是,步骤S202可以先于步骤S203执行,步骤S203可以先于步骤S202执行。
在本申请提供的技术方案中,通过按照待发送帧的帧类型、传输速率、服务质量、空间流、发送时长、数据分组格式、数据分组带宽等至少一种分流属性值,以及根据分流属性值设置的第一频带分流范围,从第一节点与第二节点的至少两个频带中,确定用于发送待发送帧的频带。由于可以将传输速率较低、服务质量较低等影响频带吞吐率、平均时延的MAC帧,集中在一个频带中传输,使得另一个频带能够集中传输,传输速率较高、服务质量较高的帧,从而可以提升另一个频带的频带吞吐率以及节点间的吞吐率,并降低节点间的平均时延,进而可以提升业务需求的满足度。
此外,在本申请中,第一频带可以为低频频带,第二频带可以为高频频带。低频频带与高频频带为相对而言。
需要说明的是,在WLAN领域,通常使用一些非授权频谱作为其工作频带,其工作频带主要分布在1GHz以下,2.4GHz,5GHz,以及60GHz等。主流WLAN标准包括802.11a/b/g/n/ac/ax,这些主流WLAN标准通常使用2.4GHz频段或5GHz频段,其中,5GHz频段可以是指4.9GHz和5GHz。最近,802.11ax标准将后续可能作为非授权频谱的6GHz频谱也作为其工作频谱。
在空口传输中,采用不同频段传输数据具有不同的特点。低频频段通常具有信号衰减相对较慢、穿墙效果较好的特点,但是,由于低频频段的频谱通常相对有限,有时会导致速率受频谱大小的限制。例如,在2.4GHz频段,802.11b/g/n/ax标准的数据分组的带宽为20MHz,最高支持40MHz,其中,每个信道之间还存在一些重叠,影响多个信道连续使用,基于上面的原因,802.11a/ac决定不使用2.4GHz作为其工作频谱。高频频段的频谱资源通常比低频频段的频谱资源丰富,例如,相对于比较拥挤的2.4GHz,5GHz和6GHz频段的频谱资源更丰富,因此,高频频段通常相比于低频频段更适合大带宽、高速率的数据传输。例如,802.11ac和802.11ax最高支持160MHz的数据传输。需要说明的是,高频频段和低频频段是相对概念,例如,对于1GHz以下和2.4GHz频段,2.4GHz频段可以作为高频频段。又如,对于2.4GHz和5GHz频段,2.4GHz频段可以作为低频频段。
因此,若第一频带的频段低于第二频带的频段,第一频带的频段带宽小于第二频带的频段带宽,采用将影响吞吐率和时延的MAC帧集中在第一频带中传输的方式,使得带宽较大的第二频带可以专注用于高速传输数据,可以进一步提升多频带传输时节点之间的吞吐率。
实施例二
本申请还提供一种数据传输方法,在本申请实施例中,若对部分必须在第二频带传输的低速率帧或低服务质量帧等传输效率较低的帧,设计一种利用第一频带和第二频带拆分发送的方式,即第一频带和第二频带相配合的方式,来发送该低速率帧或低 服务质量帧中携带的信息,则可以在保证该低速率帧或低服务质量帧的基本功能的情况下,尽可能地提升节点间的吞吐率。
图3为本申请提供的数据传输方法的流程图二。如图3所示,本申请实施例的步骤可以包括:
S301,第一节点获取待发送帧。
S302,第一节点将分流属性值属于第二频带分流范围的待发送帧,通过至少两个频带中的第二频带发送至第二节点。
S303,第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点。
S304,第一节点将分流属性值不属于所述第一频带分流范围和所述第二频带分流范围中任一范围的待发送帧,通过至少两个频带中的任一频带发送至第二节点。
其中,步骤S303与S202类似,可参考S202中的说明,步骤S304与S203相似,可参看S203中的描述。
需要说明的是,第二频带为第一节点与第二节点之间的至少两个频带中的另一个频带。若第二频带分流范围与第一频带分流范围存在交集,则可以先执行步骤S302,再执行步骤S303。例如,先判断待发送帧的分流属性值是否属于第二频带分流范围,若属于第二频带分流范围,就通过第二频带发送待发送帧,若不属于第二频带分流范围,进一步判断是否属于第一频带分流范围,若属于第一频带分流范围,就通过第一频带发送待发送帧,若既不属于第一频带分流范围,也不属于第二频带分流范围,就可以通过两个频带中的任一频带发送待发送帧。若第二频带分流范围与第一频带分流范围不存在交集,则可以先执行步骤S302再执行步骤S303,也可以先执行步骤S303再执行步骤S302。
需要说明的是,第一频带分流范围可以采用图2所示实施例中任一第一频带分流范围的实施方式。此外,本申请提供的各种第一频带分流范围的实施方式也可以组合使用。
表2-1为分流准则的一种示意,本申请实施例提供的分流准则可以如表2-1所示。
表2-1
Figure PCTCN2019081551-appb-000005
在本申请中,第二频带分流范围可以为第二频带对应的频带分流范围。
在本申请提供的一种第二频带分流范围的实施方式中,第二频带分流范围可以包括:携带一些需要在第二频带发送的控制信息、管理信息、其他指示信息的控制帧或者管理帧。示例性地,需要在第二频带发送的控制信息、管理信息可以为用于同步的同步信息。
在本申请实施例提供的一种实施方式中,第二频带分流范围可以包括:帧类型为第二类帧。
示例性地,第二类帧可以包括:用于在第二频带实现同步功能的同步类帧。其中,同步类帧例如可以包括以下至少一种:
用于在第二频带上发送的信标帧,
携带有第二频带的调度信息的调度帧。
示例性地,调度帧可以为触发帧。
表2-2为第二频带分流范围的一种示意。
表2-2
Figure PCTCN2019081551-appb-000006
采用这种将第二类帧通过第二频带发送的的方式,相当于将携带同步信息这一类同步类帧确定在第二频带发送。
在本申请实施例提供的另一种第二频带分流范围的实施方式中,第二频带分流范围可以包括:
帧类型为短同步帧,该短同步帧携带与第三类帧对应的令环指示。
第一频带分流范围可以包括:
帧类型为第三类帧,第三类帧携带用于指示第二节点在预设的目标时间在第二频带上使用的指示信息,以及,令环指示。
其中,令环指示用于指示第二节点在目标时间在第二频带接收到短同步帧时,读取短同步帧对应的第三类帧中携带的在第二频带上使用的指示信息。
表2-3为分流准则的一种示意。
表2-3
Figure PCTCN2019081551-appb-000007
举例来说,第三类帧可以包括以下至少一种:
第一信标帧,其中,第一信标帧携带有在目标时间在第二频带上使用的信标信息;
第一调度帧,其中,第一调度帧携带有在目标时间在第二频带上使用的调度信息。
在一种实施方式中,对应于第一信标帧的短同步帧可以称为短信标帧;对应于第 一调度帧的短同步帧可以为称为短调度帧。
示例性地,上述步骤302和S303可以包括:通过第一频带发送第三类帧;在目标时间即将到达时,通过第二频带发送短同步帧。之后,第二节点可以根据短同步帧中的令环指示,查找在第一频带接收到的对应的第三类帧,并从中提取指示信息,并按照指示信息的指示对在目标时间在第二频带上发送的MAC帧进行控制。
在本申请其它实施例中,将对第一信标帧、第一调度帧和对应的短同步帧进行详细说明,可参看本申请其它实施例中的描述。
采用将携带有在第二频带上使用的指示信息的第三类帧与短同步帧相配合的方式,由于短同步帧可以携带用于与第三类帧进行关联的令环指示,可以不需要携带具体的指示信息,因而短同步帧的长度可以较小,从而可以减少需要在第二频带上传输的数据量。
下面以第一节点为AP,第二节点为STA,第一频带为Band1,第二频带为Band2进行说明。
图4为本申请提供的数据传输方法的示意性流程图一。
如图4所示,采用本申请提供的数据传输方法的多频带协作传输流程可以包括以下步骤:
S401,AP在Band1上发送第一信标帧。
其中,第一信标帧可以包含AP的能力信息、时间戳信息、信标帧令环(Token)、Band2的标号、Band2的主信道的位置等信息。需要说明的是,第一信标帧可以同时携Band1的能力信息、操作信息,以及Band2的能力信息、操作信息。
S402,AP在Band2发送短信标帧。
其中,该短信标帧(Short-Beacon,S-Beacon)用于Band2上的时间同步等。示例性地,该短信标帧的周期可以为第一信标帧的周期的整数倍。在一种实施方式中,第二信标帧的长度可以小于第一信标帧的长度。
S403,AP在Band1和/或Band2传输数据。
其中,数据的传输速率小于或等于预设的传输速率分流门限的数据只可以在Band1传输,数据的传输速率大于传输速率分流门限的数据只可以在Band2传输,或者,数据的传输速率大于传输速率分流门限的数据可以同时在Band1和Band2传输。
S404,AP在Band1发送携带调度信息的调度帧,指示STA在目标时间在Band2进行数据传输。
其中,示例性地,调度信息可以包括在第一目标时间使用的调度信息1,其中携带令环1(Token1),以及,在第二目标时间使用的调度信息2,其中携带令环2(Token2)。
S405,AP在目标时间发送短同步帧,触发STA发送上行数据。
其中,示例性地,AP可以在第一目标时间发送短同步帧1,其中携带令环1(Token1)。需要说明的是,短同步帧可以携带令环信息,因此短同步帧的开销可以较小。
S406,STA根据短同步帧对应的调度信息,发送上行数据。
其中,STA可以根据短同步帧中的Token1查找对应的调度信息1,根据调度信 息1,发送上行数据(UL Data)。
需要说明的是,本申请中的示意性流程图的横轴为时间轴。
在本申请中,在第一节点根据待发送帧的分流属性值和预设的分流准则,从至少两个频带中确定用于发送所述待发送帧的目标频带之前,第一节点可以获取在第一频带上使用的指示信息,根据指示信息生成第三类帧和短同步帧。
在本申请中,若第二频带分流范围与第一频带范围存在交集,则可以先执行将属于第二频带分流范围的待发送帧通过第二频带发送,再执行将属于第一频带分流范围的待发送帧通过第一频带发送的步骤。
在本申请中,一个频带包括多个信道,在工作频带为低频频段的标准中,频带中的信道有部分重叠,多个STA向同一个AP发送上行数据时可以使用同一频带中的不同信道、资源单元,或者,采用其他的频分、时分、空分复用方式。本申请提供的各项技术方案可以与上述复用方式叠加使用,也可以单独使用。
在一些场景中,在发送节点,待发送的MAC帧需要先竞争发送数据的信道资源。节点上可以设置发送MAC帧的竞争机制,高服务质量的MAC帧比低服务质量的MAC帧更容易竞争到信道,因此,按照服务质量对待发送帧进行分流的方式,可以提高低服务质量的MAC帧竞争信道成功率,进而使得低服务质量的MAC帧等待发出的时间缩短,降低低服务质量的帧的时延。
本申请实施例的其它技术方案细节和技术效果可参看本申请其它实施例中的描述。
实施例三
在上述任一实施例的基础上,本申请还提供一种数据传输方法,在第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点之前,第一节点可以与第二节点通过协商启用多频带。
图5为本申请提供的数据传输方法的交互流程图一。如图5所示,若第一节点为请求启用多频带的发起方,本申请实施例的步骤可以包括:
S501,第一节点在第一频带向第二节点发送多频带启用请求。
S502,第二节点在第一频带向第一节点发送多频带启用响应。
在本申请中,示例性地,多频带启用请求可以为关联请求(Association Request)帧,多频带启用响应可以为关联响应(Association Response)帧。
需要说明的是,在本申请的另一种实施方式中,第一节点也可以为启用多频带的接收方,则在第一节点将分流属性值属于第一频带分流范围的待发送帧,通过第一频带发送至第二节点之前,本申请实施例的步骤可以包括:第一节点在第一频带接收第二节点发送的多频带启用请求;第一节点在第一频带上向第二节点发送多频带启用响应。
在本申请中,启用多频带可以有主动关联和被动关联两种方式。
下面以第一节点为AP,第二节点为STA,第一频带为Band1,第二频带为Band2进行说明。
图6为本申请提供的关联方式的示意性流程图。如图6所示,STA可以为启用多频带的发起方,AP与STA之间以关联方式启用多频带的交互过程,可以包括以下步 骤:
S601,AP在Band1发送第一信标帧。
其中,该信标帧可以包含AP的能力信息、操作信息、时间戳信息、信标帧令环(Token),Band2的标号、Band2的主信道的位置等信息。示例性地,AP可以是以周期性的方式发送该信标帧。需要说明的是,第一信标帧可以同时携Band1的能力信息、操作信息,以及Band2的能力信息、操作信息。
S602,AP在Band2发送短信标帧。
其中,该短信标帧用于Band2上的时间同步等。示例性地,该短信标帧的周期可以为第一信标帧的周期的整数倍。
S603,STA在Band1发送探索请求帧。
其中,探索请求(Probe Request)帧表明STA希望进行关联操作。该探索请求帧可以包括STA的能力信息,该能力信息指示其自身支持多频带操作,该能力信息同时指示了STA在Band1的能力信息,以及在Band2的能力信息。
S604,AP在Band1接收到STA发送的探索请求帧后,向STA发送探索响应帧。
其中,探索响应帧指示AP的能力信息、操作信息等,该探索响应帧还可以同时指示了AP支持多频带操作,以及AP在Band1的能力信息和在Band2的能力信息。
S605,STA在Band1发送关联请求帧。
其中,该关联请求帧用于向AP请求启用关联。该关联请求帧可以包括STA的能力信息,该能力信息指示STA支持多频带操作,并且该关联请求帧可以同时指示STA在Band1的能力信息以及Band2的能力信息。
S606,AP在Band1发送关联响应帧。
其中,该关联响应帧用于响应关联请求帧。该关联请求帧包括AP的能力信息,指示其支持多频带操作,并且同时指示其在频带1的能力信息,以及频带2的能力信息。
需要说明的是,在关联成功后,AP和STA均可以在Band1和Band2上进行数据传输,而不需要再在Band2上进行关联操作。STA可以在Band2上通过短信标帧进行时间校准。此外,STA还可以通过在Band1读取第一信标帧,以获取BSS的相关信息。
还需要说明的是,上述步骤S603和S604不是进行关联操作必须执行的步骤。对于被动关联模式,在步骤S601STA在Band1接收到第一信标帧后,STA可以直接执行步骤S605和S606,进行关联操作。
在本申请中,STA在进行关联操作之前,可以关闭Band2的部分或者全部链路,本申请中的链路可以是指射频或天线。这样,在需要启用Band2时再启用Band2与Band1进行关联,可以节约能源。在本申请的一种实施方式中,在AP与STA使用多频带协作传输时,AP可以在Band1指示STA关闭Band2的部分或者全部链路。采用这种方式,可以对Band2进行灵活的控制,节约电能。
本申请实施例的其它技术方案细节和技术效果可参看本申请其它实施例中的描述。
实施例四
下面对上述实施例中提及的按照各种分流属性值设置的分流门限的设置方式进行详细说明。
在本申请供的一种实施方式中,可以在启用多频带协作时指示节点间的分流准则,即第一频带分流范围、第二频带分流范围等。示例性地,可以在第一信标帧、探索响应帧中指示。举例来说,可以由AP在第一信标帧或者探索响应帧中进行指示。
在本申请提供的一种实施方式中,可以采用极高吞吐率(Extremely High Throughput,EHT)操作元素(Operation Element)来指示各个频带对应的频带分流范围。示例性地,可以在第一信标帧或者探索响应帧中携带该EHT操作元素。
在本申请提供的另一种实施方式中,还可以针对不同的空间流(Spatial Streams,SS)分别设置不同的第一频带分流范围。示例性地,可以根据不同的空间流分别设置不同的传输速率分流门限。
针对下一代EHT标准,可能一共存在16个空间流,可以针对每一个空间流,分别设计一个门限值。表4-1为针对不同空间流分别设置门限值的一种示意。
表4-1
Figure PCTCN2019081551-appb-000008
其中,示例性地,Threshold for 1SS可以表示针对标识为1的空间流设置的门限值。
在本申请提供的又一种实施方式中,可以采用统一的速率标识指示传输速率分流门限。
在一示例中,00可以用来指示121.9Mbps,01可以用来指示248.3Mbps等。
在另一示例中,速率标识可以为编码与调制策略(Modulation and Coding Scheme)。需要说明的是,不同的MCS可以对应不同的速率。例如,802.11ax标准目前支持MCS0-MCS11等12种不同的MCS。示例性地,可以采用2比特来设置Threshold for 1/2…/16SS指示,为了提高指示的精度,也可以采用4比特来指示至多16个MCS的分流门限值。
表4-2为采用2比特指示的MCS的一种示意。
表4-2
速率标识采用2比特表示时的枚举值 对应的MCS
00 MCS 1
01 MCS 3
10 MCS 5
11 MCS 7
如表4-2所示,可以在指示各个频带的分流门限时,发送速率标识,例如,在第一频带分流范围包括传输速率分流门限时,可以发送“00”表示,传输速率分流门限为MCS1所表示的传输速率。
在本申请提供的又一种实施方式中,可以按照待发送帧的服务质量的接入类别设置各个频带对应的频带分流门限。
举例来说,接入类别可以包括四种:语音(Voice,VO)、视频(Video,VI)、背景(Background,BK)、尽最大努力(Best Effort,BE)。其中,VO和VI的优先级高于BK和BE。
在一示例中,第一频带分流范围可以包括:接入类别为BK和/或BE。
表4-3为第一频带分流范围的一种示意。
表4-3
分流准则 第一频带 第二频带
接入类别为BK和/或BE ×
接入类别为VO和/或VI
示例性地,接入类别BK的数据帧可以在第一频带传输;接入类别为BE的数据帧可以第一频带传输;接入类别为VO或VI的数据帧,可以在第二频带传输,或者,在第二频带和第一频带上传输。
在本申请提供的又一种实施方式中,可以按照待发送帧的发送时长设置各个频带对应的频带分流门限。
待发送帧的发送时长可以是预先指定的或者是根据需要传输的数据量、传输速率等参数计算的。示例性地,预先指定的发送时长例如可以为该待发送帧期望传输的时长,例如,低速帧和高速帧占用的发送时长与帧本身的长度可以不成正比。通过计算得到的发送时长例如可以根据需要发送的数据量和带宽、MCS、空间流数计算得到。
时长分流门限可以根据需要分流的待发送帧的数量灵活设置,例如,可以根据预设的一段时间内,能够使得40%的发送时间较长的待发送帧通过第一频带发送至第二节点的发送时长,设置为时长分流门限。
还需要说明的是,对于发送时长较长的帧来说,其传输时占用的空口时间较多,而发送时间较短的帧,需要等待发送时长较长的帧传输完成之后才能竞争到发送数据的信道,导致发送时间较短的帧需要等待较长的时间,采用按照发送时长对待发送帧进行分流的方式,可以缩短发送时间较短的帧需要等待的时长,进而缩短发送时间较短的帧的时延。
在本申请提供的又一种实施方式中,可以按照待发送帧的数据分组格式设置各个频带对应的频带分流门限。
举例来说,各代WLAN标准定义了多种不同类型的分组格式,例如:
802.11a/b/g中定义的非高吞吐率数据分组(non High Throughput,non-HT)、
802.11n中定义高吞吐率(High Throughput,HT)数据分组、
802.11ac定义的非常高吞吐率(Very High Throughput,VHT)数据分组、
802.11ax中定义的高效(High Efficient,HE)数据分组、
下一代WLAN标准定义的极高吞吐率(Extremely High Throughput,EHT)数据分组。
其中,VHT数据分组还可以包括VHT单用户数据分组和VHT多用户数据分组;HE数据分组可以包括HE单用户数据分组、HE扩展距离单用户数据分组、HE多用户数据分组、HE基于触发的数据分组。
举例来说,第一频带分流范围对应的分组格式可以为上述分组格式中传输速率最 低的一种或几种。
在一示例中,可以设置第一频带分流范围对应的分组分流格式包括:non-HT。这样,non-HT格式的数据分组可以在第一频带传输,其它格式的数据分组,如HT、VHT、HE、EHT格式的数据分组可以在第二频带传输,或者,可以在第二频带和第一频带传输。
表4-4为第一频带分流范围的一种示意。
表4-4
Figure PCTCN2019081551-appb-000009
在另一示例中,可以设置第一频带分流范围对应的分组分流格式包括:non-HT、HT。样,non-HT格式和HT格式的数据分组可以在第一频带传输,其它格式的数据分组,如VHT、HE、EHT格式的数据分组可以在第二频带传输,或者,可以在第二频带和第一频带传输。
需要说明的是,分组格式为待发送帧在PHY层中传输时的格式。
在本申请提供的又一种实施方式中,可以按照待发送帧的数据分组带宽设置各个频带对应的频带分流门限。
举例来说,待发送帧的数据分组带宽可以包括:20MHz,40MHz、80MHz、160MHz、80+80MHz、320MHz、160MHz+160MHz等不同带宽模式。通常,更高带宽可以对应更高峰值速率。
第一频带分流范围对应的带宽分流门限可以为上述分组格式中带宽最低的一种或几种。
在一示例中,第一频带分流范围对应的带宽分流门限可以包括:20MHz或40MHz。这样,对应的带宽为20MHz或40MHz的待发送帧可以在第一频带传输,对应的带宽为80MHz及以上的待发送帧可以在第二频带传输,或者,可以在第二频带和第一频带传输。
表4-5为第一频带分流范围的一种示意。
表4-5
分流准则 第一频带 第二频带
带宽小于或等于40MHz ×
带宽大于40MHz
需要说明的是,分组带宽为发送待发送帧的PHY的实际带宽。
在本申请提供的又一种实施方式中,还可以按照上述任一实施例提到的分流属性值对应的频带分流范围的进行组合。
举例来说,可以按照待发送帧的分组带宽和分组格式共同设置各个频带对应的频带分流门限。
在一示例中,第一频带分流范围可以包括:
带宽小于或等于40MHz,且分组格式为non-HT或HT。这样,对应的带宽为小于或等于40MHz且格式为non-HT或HT的待发送帧可以在第一频带传输,对应的带宽为80MHz及以上或者分组格式为VHT、HE、EHT的待发送帧可以在第二频带传输,或者,可以在第二频带和第一频带传输。
在另一示例中,第一频带分流范围可以包括:
带宽小于或等于40MHz,或者,分组格式为non-HT或HT。这样,对应的带宽为大于或等于80MHz且格式,或者,对应的分组格式为VHT、HE、EHT的待发送帧可以在第二频带传输,或者,可以在第二频带和第一频带传输。其它待发送帧可以在第一频带传输。
在本申请提供的又一种实施方式中,若第一节点与第二节点之间存在两个或两个以上频带,所有频带可以共用一套分流准则。
在本申请提供的又一种实施方式中,若第一节点与第二节点之间存在四个或四个以上频带,可以将至少四个频带分成两组,每个组使用一套分流准则。例如,每个频带组可以包括至少两个频带,将每个频带组中的至少两个频带划分为第一频带和第二频带,并对每个频带组分别设置第一频带分流范围、第二频带分流范围。示例性地,2.4G和1GHz以下频带作为一个频带组,使用第一分流准则,5G和6G作为一个频带组,使用第二分流准则。
采用上述方式,针对影响吞吐率和时延的一些准则,相当于将信道或者频带分成了快车道和慢车道,保证第二频带的频谱能够充分被用来传输高吞吐率,低时延的数据。
实施例五
下面对携带有管理信息的管理帧、携带有控制信息的控制帧的分流方式进行详细说明。
在本申请提供的一种实施方式中,管理帧和控制帧可以不按照传输速率、服务质量、发送时长等分流属性值进行分流。即,可以仅针对数据帧按照传输速率、服务质量、发送时长等分流属性值进行分流。从而可以确保所有管理帧和控制帧的功能不受影响。
在本申请提供的另一种实施方式中,上述针对数据帧设置的各个频带的分流门限也可以针对管理帧使用,而控制帧可以在任一频带传输。
在本申请提供的又一种实施方式中,还可以仅针对部分控制帧按照特别规定进行分流,特别规定是指,在第一频带上发送用于对第二频带进行控制的控制帧,即按照控制帧的类型进行分流。在一示例中,可以设定触发帧、RTS帧、CTS帧、发送给自己的CTS(CTS-to-Self)帧、ACK、BA帧中的部分或者全部控制帧通过第一频带发送。
下面对重要的控制帧的发送过程进行示例性说明。
在一示例中,触发帧可以用于触发STA进行上行数据传输。
图7为利用触发帧触发STA进行上行数据传输的示意性流程图。
如图7所示,AP与STA1和STA2之间的交互过程可以包括:
S701,AP发送触发帧。
S702,STA1发送上行数据。
S703,STA2发送上行数据。
S704,AP发送确认信息。
需要说明的是,在802.11ax标准,AP发送触发帧,触发1个或多个STA进行上行数据的传输,如图7所示,其中,AP发送触发帧,该触发帧携带调度信息,同时为STA提供一个进行时间,频率,功率校准以及调整的方式。
若希望在Band1传输这种触发帧中的调度信息或其它相似的信息,在Band2调度STA进行上行数据传输,会存在无法通过触发帧实现同步功能的问题。
为解决该问题,本申请提供以下实施方式。
图8为本申请提供的数据传输方法的示意性流程图二。
如图8所示,AP与STA的交互过程可以包括:
S801,AP在Band1上向STA发送携带调度信息的调度帧。
其中,所述调度帧用于指示STA在目标时间内在Band2上进行数据传输。调度帧携带Token指示。
S802,STA在Band1接收到调度帧,存储调度信息。
S803,在目标时间,AP在Band2向STA发送短同步帧,触发STA发送上行数据,短同步帧携带与Band1传输的调度帧对应的Token指示。
S804,STA收到短同步帧,按照短同步帧中的Token指示读取之前存储的调度信息。
S805,STA按照读取的调度信息发送上行数据帧。
采用这种方式,将调度信息在Band1进行传输,而在Band2,通过短同步帧触发上行传输,起到同步的作用。短同步帧可以减少Band2的开销,增加Band2的吞吐率,降低Band2的时延。
在另一示例中,RTS/CTS帧可以用于触发STA进行上行数据传输。
图9为利用RTS/CTS进行数据传输的示意性流程图。
如图9所示,AP与STA1和STA2之间的交互过程可以包括:
S901,AP发送RTS。
S902,STA发送CTS。
S903,AP发送Data。
S904,STA发送BA。
需要说明的是,RTS/CTS的交互用于预留一段时间,进行数据传输。接收到RTS和CTS的AP和STA会根据RTS和CTS中相应的时长信息进行静默,从而不会对RTS/CTS的收发两方进行的数据传输进行干扰。但是若RTS/CTS在Band1传输,而数据在Band2传输,则无法告知周边STA其希望预留的传输机会(Transmit Opportunity,TXOP),从而无法保护AP和STA之间的数据传输。
为解决该问题,本申请提供以下实施方式,用于双频带的TXOP保护。
图10为本申请提供的数据传输方法的示意性流程图三。
如图10所示,AP与STA的交互过程可以包括:
S1001,AP在Band1发送e-RTS。
S1002,STA在Band1发送e-CTS。
S1003,AP在Band1发送Data。
S1004,STA在Band1发送BA。
S1005,AP在Band2发送Data。
S1006,STA在Band2发送BA。
在本申请中,e-RTS/e-CTS中的“e-”代表增强(enhanced),用来表示增强版本的RTS/CTS。
表5-1为e-RTS/e-CTS帧格式的一种示意。
表5-1
Figure PCTCN2019081551-appb-000010
其中,对于e-RTS和e-CTS的交互,“(Band 1的)时长信息”与RTS中相同,用于预留Band1的TXOP,如TXOP1;而e-RTS/e-CTS中的“Band2的时长信息”,用于预约Band2的TXOP,如TXOP2。其中,“Band2的TXOP开始时间”可以用于在Band1上提前预约Band2的TXOP。而对于在Band1接收到e-RTS、e-CTS的AP和STA,若其为“站点标识/站点组标识”所标识的AP或STA,则在e-RTS或e-CTS中指示的相应TXOP进行数据传输,若其并非为“站点标识/站点组标识”所标识的AP或STA,则在e-RTS或e-CTS中指示的相应TXOP时间进行静默。其中,相应的TXOP时间可以通过“Band2的时长信息”字段以及“Band2的TXOP开始时间”字段获得。
采用这种方式,本申请提供了一种进行双频带传输的TXOP保护机制,在e-RTS或e-CTS中指示Band1和/或Band2的TXOP,使得可以在Band1传输低速的e-RTS、e-CTS,同时可以保护Band1和/或Band2的TXOP内的数据传输。
在又一示例中,本申请提供一种涉及确认帧的分流方式。确认帧是一种重要的管理帧。确认帧用于确认接收端接收数据是否成功。在本申请中,当在Band2进行数据传输时,数据的发送方可以向接收端发送指示,指示希望接收确认帧的频带。
图11为本申请提供的数据传输方法的示意性流程图四。
如图11所示,数据的发送方可以为第一节点,数据的接收端可以为第二节点,涉及确认帧的交互过程的步骤可以包括:
S1101,第一节点在Band2发送Data。
S1102,第一节点在Band1发送BAR。
S1103,第二节点在Band1发送BA。
当第一节点发送的数据在Band2传输时,可以指示第二节点其希望通过Band1接收确认帧。示例性地,可以在步骤S1101发送的Data中指示希望接收BA的频带。
需要说明的是,步骤S1102不是必须执行的步骤。
例如,作为接收端的第二节点可以在Band1进行竞争信道,回复BA。
又如,第二节点可以等待第一节点发送块确认请求(BA Request,BAR)帧之后,再在Band1上回复BA。在本申请提供的其它实施方式中,上述BAR也可以采用多用 户块确认请求帧(Multiple User-BAR,MU-BAR)作为一种替代方式。BAR和MU-BAR均可以用于向数据的接收端索取确认帧。
在本申请实施例中,发送端向接收端发送指示的方法可以包括:在发送的数据帧,或者,管理帧的帧头的高吞吐率控制(High Throughput Control,HTC)字段里指示希望回复确认帧所在Band的Band ID。本申请实施例提供了一种可以用于向第二节点发送第一频带分流范围的方式,其中,该第一频带分流范围可以包括帧类型为确认帧,其中,该确认帧用于对在第二频带的传输数据进行确认。
表5-2为HTC字段中指示的Band ID的一种示意。
表5-2
Band ID 含义
0 2.4GHz
1 4.9and 5GHz
2 6GHz
3 60GHz
采用这种发送方在发送数据时,指示利用频带1进行确认的方式,可以将频带2的资源用于高速数据传输,优化系统资源分配,使得系统效率最大化。
本发明方案将占据空口较长的管理帧、确认帧,速率较低,服务质量优先级较低的数据在第一频带传输,而将速率较高,服务质量优先级较高的数据在第二频带传输,充分利用第二频带进行高速率的数据传输,优化系统吞吐率,降低系统延迟。
此外,802.11ad标准定义了一种低频MAC层与高频MAC层之上的接口,用于STA内部针对不同层的MAC帧的内容进行转移,该机制被称作快速会话转移(Fast Session Transfer,FST)。通过各自的MAC接口,两个节点(如STA1和STA2)可以利用低频MAC(以及低频PHY)发送高频MAC帧,这种机制又被称为信道上隧道透传机制(On-Channel Tunneling,OCT)。
图12为节点的一种结构示意图。如图12所示,STA1的高频MAC数据通过内部MAC接口传递给STA1的低频MAC,然后在物理(Physical,PHY)层封装成低频的数据分组发送给STA2的低频接收机,从而获取该高频MAC帧。该数据传输方式可以实现通过多频带代替单频带传输,即,这种方式提供了一种利用多个频带将一个节点的MAC帧发送到另一节点的方法,但是,对于每个频带来说,每个频带都存在高速帧和低速帧混合发送的情况,因此,存在频带整体吞吐率不高,频带的整体时延较大,不能满足业务对传输速率或者传输质量的需求。
本申请提供的数据传输方式,通过按照分流属性值对待发送帧进行分流,可以使得节点间的整体吞吐率得到提升,并使得节点间的平均时延得以下降。
实施例六
图13示出了本申请实施例的节点的装置1300的示意性框图。
在一个实施例中,图13所示的装置1300可以对应于上述方法实施例中的第一节点侧的装置,可以具有方法中的第一节点的任意功能,可选地,本申请实施例的装置1300可以是第一节点,也可以是第一节点内的芯片。该装置1300可以包括处理模块1310和收发模块1320,可选的,该装置1300还可以包括存储模块1330。
该处理模块1310,可以用于执行前述方法实施例中步骤S201,或者用于执行步骤S301。在本申请提供的实施方式中,处理模块1310还可以用于根据待发送帧的分流属性值以及第一频带分流范围确定用于发送待发送帧的目标频带。
该收发模块1320,可以用于执行步骤S202、S203;
或者,用于执行步骤S302、S303、S304;
或者,用于执行步骤S501或S502。
在本申请实施例中,装置1300也可以具有上述方法中的第二节点的任意功能,示例性地,上述收发模块1320,可以用于执行步骤S502。
在本申请实施例中,第一节点可以是AP、也是可以STA,第一节点可以执行上述方法中作为各种待发送帧的发送方的AP或者STA所执行的步骤,此外,第一节点可以执行上述方法中作为待发送帧的接收端的AP或者STA或者第二节点所执行的步骤。
在本申请实施例中,收发模块1320,可以用于执行步骤S605,或,执行步骤S603、S605,或,执行步骤S606,或,执行步骤S601、S602、S606,或,执行步骤S601、S602、S604、S606;
或者,用于执行步骤S801,或者,执行步骤S802、S803、S804。
或者,用于执行步骤S1001、S1003、S1005,或者,执行步骤S1002、S1004、S1006;
或者,用于执行步骤S1101、S1102,或者,执行S1003。
在本申请实施例中,第二节点可以是AP也可以是STA。
应理解,本申请实施例的装置1300可对应于前述的实施例的各方法中的第一节点,并且装置1300中的各个模块所具有的上述管理操作和/或功能,以及,各个模块所具有的其它管理操作和/或功能,分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
可以替换的,装置1300也可配置成通用处理系统,例如通称为芯片,该处理模块1310可以包括:提供处理功能的一个或多个处理器;所述收发模块1320例如可以是输入/输出接口、管脚或电路等,输入/输出接口可用于负责此芯片系统与外界的信息交互,例如,此输入/输出接口可对由芯片外的其他模块输入给此芯片的调度请求消息输出进行处理。该处理模块可执行存储模块中存储的计算机执行指令以实现上述方法实施例中第一节点的功能。在一个示例中,装置1300中可选的包括的存储模块1330可以为芯片内的存储单元,如寄存器、缓存等,所述存储模块1330还可以是位于芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在另一个示例中,图14示出了本申请实施例的另一种节点侧的通信装置1400的示意性框图。本申请实施例的装置1400可以是上述方法实施例中的第一节点,装置1400可以用于执行上述方法实施例中的第一节点的部分或全部功能。该装置1400可以包括:处理器1410,基带电路1414,射频电路1440以及天线1450,可选的,该装置1400还可以包括存储器1420。装置1400的各个组件通过总线1460耦合在一起,其中总线系统1460除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1460。
处理器1410可用于实现对第一节点的控制,用于执行上述实施例中由第一节点进行的处理,可以执行上述方法实施例中涉及第一节点的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路1414、射频电路1440以及天线1450可以用于支持第一节点和上述实施例中涉及的第二节点之间收发信息,以支持第一节点与其他节点之间进行无线通信。其中,第二节点可以是AP,也可以是STA。
一个示例中,来自第二节点发送的经过PHY层封装的待发送帧经由天线1450接收,由射频电路1440进行滤波、放大、下变频以及数字化等处理后,再经由基带电路1414解码、按协议解封装数据等基带处理后,由处理器1410进行处理来恢复第二节点所发送的待发送帧中携带的业务数据和信令信息;又一个示例中,第一节点发送的携带有业务数据和信令信息的待发送帧可由处理器1410进行处理,经由基带电路1414进行按协议封装,编码等基带处理,进一步由射频电路1440进行模拟转换、滤波、放大和上变频等射频处理后,经由天线1450发送给第二节点。
存储器1420可以用于存储第一节点的程序代码和数据,存储器1420可以是图13中的存储模块1314。可以理解的,基带电路1414、射频电路1440以及天线1450还可以用于支持第二接入点与其他网络实体进行通信,例如,用于支持第二接入点与核心网侧的网元进行通信。图14中存储器1420被示为与处理器1410分离,然而,本领域技术人员很容易明白,存储器1420或其任意部分可位于装置1400之外。举例来说,存储器1420可以包括传输线、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1410通过总线接口1460来访问。可替换地,存储器1420或其任意部分可以集成到处理器1410中,例如,可以是高速缓存和/或通用寄存器。
可以理解的是,图14仅仅示出了第一节点的简化设计。例如,在实际应用中,第一节点可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的第一节点都在本发明的保护范围之内。
需要说明的是,在作为接收端时,装置1400可以还可以用于执行上述方法实施例中的第二节点的部分或全部功能。此外,装置1400可以还可以用于执行上述方法实施例中的AP或者STA的部分或全部功能。
本申请实施例还提供一种计算机存储介质,该计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持第一节 点或第二节点以实现上述实施例中所涉及的功能,例如生成或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于保存第一节点或第二节点必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及第一节点的方法和功能。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及第二节点的方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行执行上述各实施例中任一实施例中涉及第一节点的方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行执行上述各实施例中任一实施例中涉及第二节点的方法和功能。
本申请实施例还提供一种无线通信系统,该系统包括上述实施例中涉及的第一节点和至少一个第二节点。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。

Claims (22)

  1. 一种数据传输方法,其特征在于,包括:
    第一节点获取待发送帧;
    所述第一节点将分流属性值属于第一频带分流范围的所述待发送帧,通过第一频带发送至第二节点;
    其中,所述第一频带为所述第一节点与所述第二节点之间的至少两个频带中的一个频带;所述待发送帧的分流属性值包括以下至少一种信息:帧类型、传输速率、服务质量、服务质量的接入类别、空间流、发送时长、数据分组格式、数据分组带宽。
  2. 如权利要求1所述的方法,其特征在于,所述第一频带分流范围包括以下任意一种条件或以下条件的任意组合:
    帧类型为数据帧且传输速率小于或等于预设的速率分流门限,
    帧类型为数据帧且服务质量低于或等于预设的质量分流门限。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一频带分流范围包括:
    帧类型为第一类帧;
    其中,所述第一类帧包括:探索请求帧、探索响应帧、关联请求帧、关联响应帧、鉴定帧、用于建立或拆除第一业务的管理帧中至少一种,其中,所述第一业务包括:业务流、安静周期、目标唤醒时间、隧道直连链路建立、块确认帧中至少一种。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述第一频带分流范围包括:
    帧类型为第三类帧,所述第三类帧携带用于指示所述第二节点在预设的目标时间在所述第二频带上使用的指示信息,以及,令环指示;
    所述方法还包括:
    所述第一节点将分流属性值属于第二频带分流范围的待发送帧,通过所述至少两个频带中的第二频带上发送;
    其中,所述第二频带分流范围包括:
    帧类型为短同步帧,所述短同步帧携带与所述第三类帧对应的所述令环指示;
    其中,所述令环指示用于指示所述第二节点在所述目标时间在所述第二频带接收到所述短同步帧时,读取所述短同步帧对应的所述第三类帧中携带的在所述第二频带上使用的指示信息。
  5. 如权利要求4所述的方法,其特征在于,所述第三类帧包括:
    第一信标帧,其中,所述第一信标帧携带有在所述目标时间在所述第二频带上使用的信标信息;
    第一调度帧,其中,所述第一调度帧携带有在所述目标时间在所述第二频带上使用的调度信息。
  6. 如权利要求1-3任一所述的方法,其特征在于,所述方法还包括:
    所述第一节点将分流属性值属于第二频带分流范围的待发送帧,通过所述至少两个频带中的第二频带发送;
    其中,所述第二频带为所述第一节点与所述第二节点之间的至少两个频带中的另一个频带。
  7. 如权利要求6所述的方法,其特征在于,所述第二频带分流范围包括:帧类型为第二类帧,所述第二类帧包括:用于在所述第二频带上实现同步功能的同步类帧。
  8. 如权利要求7所述的方法,其特征在于,所述同步类帧包括以下至少一种:
    用于在所述第二频带上发送的信标帧,
    携带有所述第二频带的调度信息的调度帧。
  9. 如权利要求4-8任一所述的方法,其特征在于,所述第一频带分流范围包括以下任意一种条件或以下条件的组合:
    传输速率小于或等于预设的传输速率分流门限,
    服务质量低于或等于预设的服务质量分流门限。
  10. 如权利要求1-9任一所述的方法,其特征在于,所述第一频带分流范围为以下任意一种条件或以下条件的组合:
    发送时长大于或等于预设的时长分流门限,
    服务质量接入类别属于预设的分流接入类别,
    分组格式属于预设的分流分组格式。
  11. 如权利要求1-3任一所述的方法,其特征在于,所述方法还包括:
    所述第一节点将分流属性值不属于所述第一频带分流范围的待发送帧,通过所述至少两个频带中的任一频带发送至所述第二节点。
  12. 一种数据传输装置,其特征在于,所述装置包括:
    处理模块,用于第一节点获取待发送帧;
    收发模块,用于第一节点将分流属性值属于第一频带分流范围的所述待发送帧,通过第一频带发送至第二节点;其中,所述第一频带为所述第一节点与所述第二节点之间的至少两个频带中的频带;所述待发送帧的分流属性值包括以下至少一种信息:帧类型、传输速率、服务质量、服务质量的接入类别、空间流、发送时长、数据分组格式、数据分组带宽。
  13. 如权利要求12所述的装置,其特征在于,所述第一频带分流范围包括以下任意一种条件或以下条件的任意组合:
    帧类型为数据帧且传输速率小于或等于预设的速率分流门限,
    帧类型为数据帧且服务质量低于或等于预设的质量分流门限。
  14. 如权利要求12或13所述的装置,其特征在于,所述第一频带分流范围包括:
    帧类型为第一类帧;
    其中,所述第一类帧包括:探索请求帧、探索响应帧、关联请求帧、关联响应帧、鉴定帧、用于建立或拆除第一业务的管理帧中至少一种,其中,所述第一业务包括:业务流、安静周期、目标唤醒时间、隧道直连链路建立、块确认帧中至少一种。
  15. 如权利要求12-14任一所述的装置,其特征在于,所述第一频带分流范围包括:
    帧类型为第三类帧,所述第三类帧携带用于指示所述第二节点在预设的目标时间在所述第二频带上使用的指示信息,以及,令环指示;
    所述收发模块,还用于将分流属性值属于第二频带分流范围的待发送帧,通过所述至少两个频带中的第二频带上发送;
    其中,所述第二频带分流范围包括:
    帧类型为短同步帧,所述短同步帧携带与所述第三类帧对应的所述令环指示;
    其中,所述令环指示用于指示所述第二节点在所述目标时间在所述第二频带接收到所述短同步帧时,读取所述短同步帧对应的所述第三类帧中携带的在所述第二频带上使用的指示信息。
  16. 如权利要求15所述的装置,其特征在于,所述第三类帧包括:
    第一信标帧,其中,所述第一信标帧携带有在所述目标时间在所述第二频带上使用的信标信息;
    第一调度帧,其中,所述第一调度帧携带有在所述目标时间在所述第二频带上使用的调度信息。
  17. 如权利要求12-14任一所述的装置,其特征在于,所述收发单元还用于:
    将分流属性值属于第二频带分流范围的待发送帧,通过所述至少两个频带中的第二频带发送;
    其中,所述第二频带为所述第一节点与所述第二节点之间的至少两个频带中的另一个频带。
  18. 如权利要求17所述的装置,其特征在于,所述第二频带分流范围包括:帧类型为第二类帧,所述第二类帧包括:用于在所述第二频带上实现同步功能的同步类帧。
  19. 如权利要求18所述的装置,其特征在于,所述同步类帧包括以下至少一种:
    用于在所述第二频带上发送的信标帧,
    携带有所述第二频带的调度信息的调度帧。
  20. 如权利要求15-19任一所述的装置,其特征在于,所述第一频带分流范围包括以下任意一种条件或以下条件的任意组合:
    传输速率小于或等于预设的传输速率分流门限,
    服务质量低于或等于预设的服务质量分流门限。
  21. 如权利要求12-20任一所述的装置,其特征在于,所述第一频带分流范围包括以下任意一种条件或以下条件的任意组合:
    发送时长大于或等于预设的时长分流门限,
    服务质量接入类别属于预设的分流接入类别,
    分组格式属于预设的分流分组格式。
  22. 如权利要求12-14任一所述的装置,其特征在于,所述收发单元还用于:
    所述第一节点将分流属性值不属于所述第一频带分流范围的待发送帧,通过所述至少两个频带中的任一频带发送至所述第二节点。
PCT/CN2019/081551 2018-07-11 2019-04-04 数据传输方法及相关装置 WO2020010880A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217003665A KR102483135B1 (ko) 2018-07-11 2019-04-04 데이터 전송 방법 및 관련 장치
BR112021000337-1A BR112021000337A2 (pt) 2018-07-11 2019-04-04 Método de transmissão de dados e aparelho relacionado
EP19833247.0A EP3809648A4 (en) 2018-07-11 2019-04-04 DATA TRANSMISSION PROCESS AND RELEVANT DEVICE
JP2021500544A JP7193609B2 (ja) 2018-07-11 2019-04-04 データ送信方法及び関連する装置
KR1020227045786A KR102568762B1 (ko) 2018-07-11 2019-04-04 데이터 전송 방법 및 관련 장치
US17/144,844 US20210136764A1 (en) 2018-07-11 2021-01-08 Data transmission method and related apparatus
JP2022196338A JP2023024536A (ja) 2018-07-11 2022-12-08 データ送信方法及び関連する装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810758519.4A CN110719227A (zh) 2018-07-11 2018-07-11 数据传输方法及相关装置
CN201810758519.4 2018-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/144,844 Continuation US20210136764A1 (en) 2018-07-11 2021-01-08 Data transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2020010880A1 true WO2020010880A1 (zh) 2020-01-16

Family

ID=69142027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081551 WO2020010880A1 (zh) 2018-07-11 2019-04-04 数据传输方法及相关装置

Country Status (7)

Country Link
US (1) US20210136764A1 (zh)
EP (1) EP3809648A4 (zh)
JP (2) JP7193609B2 (zh)
KR (2) KR102483135B1 (zh)
CN (3) CN110719227A (zh)
BR (1) BR112021000337A2 (zh)
WO (1) WO2020010880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225334A1 (ko) * 2020-05-08 2021-11-11 엘지전자 주식회사 Rts 및 cts 전송 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137683A1 (en) * 2019-10-28 2020-04-30 Laurent Cariou Traffic indication map piggybacking
WO2022021358A1 (zh) * 2020-07-31 2022-02-03 北京小米移动软件有限公司 多连接的通信方法、装置以及计算机可读存储介质
US20220361099A1 (en) * 2021-05-04 2022-11-10 Mediatek Inc. Enhancements On Thermal Throttling Design For A Multi-Radio Transmitter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981485A (zh) * 2004-07-08 2007-06-13 松下电器产业株式会社 通信系统、无线局域网基站控制装置以及无线局域网基站装置
CN101720113A (zh) * 2009-06-05 2010-06-02 中兴通讯股份有限公司 一种资源控制的方法及系统
CN102548003A (zh) * 2012-03-14 2012-07-04 北京邮电大学 智能光载无线系统中的多通道微波资源调度方法
CN104601481A (zh) * 2013-10-30 2015-05-06 中国科学院声学研究所 一种多通道接入网络中的流量分配方法
US20170311325A1 (en) * 2016-04-22 2017-10-26 Laurent Cariou Station (sta), access point (ap) and method for multi-band channel bonding

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150386A (ja) * 1996-11-15 1998-06-02 Canon Inc 無線通信システム
US6968568B1 (en) * 1999-12-20 2005-11-22 International Business Machines Corporation Methods and apparatus of disseminating broadcast information to a handheld device
JP3827518B2 (ja) * 2000-10-23 2006-09-27 シャープ株式会社 ホームネットワークシステム
JP4171261B2 (ja) * 2001-08-27 2008-10-22 松下電器産業株式会社 無線通信装置及び無線通信方法
JP3888447B2 (ja) * 2002-04-23 2007-03-07 ソニー株式会社 無線通信方法および無線通信装置
JP2006019949A (ja) * 2004-06-30 2006-01-19 Toshiba Corp 通信装置及び通信制御方法
US8503283B2 (en) * 2008-06-12 2013-08-06 Nokia Corporation Channel access protocol for wireless communication
US8706124B2 (en) * 2009-09-17 2014-04-22 Nokia Corporation Data path transfer for multiband communication
US9455927B1 (en) * 2012-10-25 2016-09-27 Sonus Networks, Inc. Methods and apparatus for bandwidth management in a telecommunications system
EP2785136B1 (en) * 2013-03-27 2016-06-15 Fujitsu Limited Relieving Congestion in Wireless Local Area Networks
US9923581B2 (en) * 2013-10-14 2018-03-20 Netgear, Inc. Front-end module and antenna design for a wireless device simultaneously using WLAN modules operating in different wireless bands
US9763117B2 (en) * 2014-03-24 2017-09-12 Netgear, Inc. Multi-band wireless station having multiple radios in one band
US10306603B1 (en) * 2015-02-09 2019-05-28 Marvell International Ltd. Resource request for uplink multi-user transmission
GB2559884B (en) * 2015-07-10 2020-01-29 Canon Kk Trigger frames adapted to packet-based policies in an 802.11 network
CN106922029B (zh) * 2015-12-24 2020-11-06 华为技术有限公司 一种信道资源的调度方法及装置
EP3398179B1 (en) * 2015-12-28 2020-11-04 Newracom, Inc. Multiple network allocation vector operation
CN106937395A (zh) * 2015-12-30 2017-07-07 上海贝尔股份有限公司 发送用于未授权频带的上行调度信息的方法和调度装置
CN105682163A (zh) * 2016-01-12 2016-06-15 宇龙计算机通信科技(深圳)有限公司 基站切换控制方法、基站切换控制装置和终端
US20180054724A1 (en) * 2016-08-19 2018-02-22 Intel IP Corporation Device discovery during link aggregation in wireless communications
KR102383906B1 (ko) * 2017-02-28 2022-04-08 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 제어 및 데이터 신호의 사용자 구분 방법 및 장치
US20190261243A1 (en) * 2018-02-20 2019-08-22 Netgear, Inc. Video-based channel selection in a wireless network-connected camera system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981485A (zh) * 2004-07-08 2007-06-13 松下电器产业株式会社 通信系统、无线局域网基站控制装置以及无线局域网基站装置
CN101720113A (zh) * 2009-06-05 2010-06-02 中兴通讯股份有限公司 一种资源控制的方法及系统
CN102548003A (zh) * 2012-03-14 2012-07-04 北京邮电大学 智能光载无线系统中的多通道微波资源调度方法
CN104601481A (zh) * 2013-10-30 2015-05-06 中国科学院声学研究所 一种多通道接入网络中的流量分配方法
US20170311325A1 (en) * 2016-04-22 2017-10-26 Laurent Cariou Station (sta), access point (ap) and method for multi-band channel bonding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225334A1 (ko) * 2020-05-08 2021-11-11 엘지전자 주식회사 Rts 및 cts 전송 방법

Also Published As

Publication number Publication date
CN117395203A (zh) 2024-01-12
KR20230008245A (ko) 2023-01-13
CN114531400B (zh) 2023-07-11
EP3809648A4 (en) 2021-08-04
KR102483135B1 (ko) 2022-12-29
KR102568762B1 (ko) 2023-08-18
JP2021524702A (ja) 2021-09-13
KR20210024175A (ko) 2021-03-04
JP7193609B2 (ja) 2022-12-20
US20210136764A1 (en) 2021-05-06
JP2023024536A (ja) 2023-02-16
CN110719227A (zh) 2020-01-21
BR112021000337A2 (pt) 2021-04-06
EP3809648A1 (en) 2021-04-21
CN114531400A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2020010880A1 (zh) 数据传输方法及相关装置
US11528638B2 (en) Wireless communication method and wireless communication terminal for transmitting information on buffer status
US11844072B2 (en) Simultaneous data transmission between an access point and a plurality of stations
WO2016187836A1 (zh) 信道接入方法、接入点及站点
WO2022067748A1 (en) Sidelink communications in wireless network
TWI829422B (zh) 多鏈路通信方法、裝置及可讀儲存介質
WO2020211737A1 (zh) 无线通信方法和装置
WO2010110619A2 (en) Method and apparatus for scheduling wireless medium resource
WO2023066181A1 (zh) 业务优先级确定方法以及相关装置
WO2024027836A1 (zh) 数据传输方法及装置
US20240154636A1 (en) Methods for improving wireless performance using auxiliary radios
WO2023279293A1 (zh) 信号处理方法及装置、电子设备及存储介质
WO2023134607A1 (zh) 边链路传输方法及装置、存储介质、终端设备
TW202325086A (zh) 對用於增強的服務品質(qos)和可靠性的參數的動態選擇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021000337

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019833247

Country of ref document: EP

Effective date: 20210115

ENP Entry into the national phase

Ref document number: 20217003665

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021000337

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210108