WO2020006984A1 - Bim technology-based comprehensive aid decision-making method for engineering construction organization scheme - Google Patents

Bim technology-based comprehensive aid decision-making method for engineering construction organization scheme Download PDF

Info

Publication number
WO2020006984A1
WO2020006984A1 PCT/CN2018/120151 CN2018120151W WO2020006984A1 WO 2020006984 A1 WO2020006984 A1 WO 2020006984A1 CN 2018120151 W CN2018120151 W CN 2018120151W WO 2020006984 A1 WO2020006984 A1 WO 2020006984A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction
parameter data
engineering
project
data
Prior art date
Application number
PCT/CN2018/120151
Other languages
French (fr)
Chinese (zh)
Inventor
刘飞虎
赵立
廖勇
Original Assignee
成都希盟泰克科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都希盟泰克科技发展有限公司 filed Critical 成都希盟泰克科技发展有限公司
Publication of WO2020006984A1 publication Critical patent/WO2020006984A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Definitions

  • the invention relates to the field of BIM computer-aided construction design, in particular to a comprehensive auxiliary decision-making method for engineering construction organization schemes based on BIM technology.
  • Construction resources steams, equipment, and materials
  • Construction resources cannot be accurately calculated and evaluated, which leads to a low degree of participation of construction resources in the construction organization plan, which seriously affects later construction of the project. risk.
  • the construction organization plan itself is the accumulation of knowledge and experience of the project construction by the enterprise. Similar to the project or a brand new project, the enterprise can use the construction knowledge and experience to evaluate and judge the existing project. Good tools for accumulating construction organization schemes, so that the accumulation and reuse of knowledge and experience of construction organization is low.
  • the present invention provides a comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, which is characterized by including the following steps:
  • the comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology preferably, the S1 includes:
  • the S2 includes:
  • the S3 includes:
  • the S4 includes:
  • the comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology preferably, the S1 includes:
  • S1-C Establish the comprehensive parameter data of the construction team; establish the comprehensive parameter data of the construction equipment; establish the comprehensive parameter data of the construction materials;
  • S1-D establish collaborative decision-making condition data of construction organization participants, roles, and permissions;
  • the S2 includes:
  • S2-A Divide the engineering structure and form information data according to the sub-item structure of the project, and execute S2-B;
  • the design BIM model is established according to the structure of the sub-item and the construction BIM model is used to split the construction BIM model to form the construction BIM model data.
  • the S3 includes:
  • S3-A sorting the construction process parameter data according to the construction type of the project, wherein the construction process parameter data includes: process type, process name, step name, and parameter logical relationship of the steps;
  • the S4 includes:
  • S4-A according to the type of construction process, set up a construction engineering structure that conforms to it, and form the logical relationship data between the process and the construction object;
  • the corresponding scene parameters are classified and optimized by setting corresponding scene parameters to optimize the construction organization of similar projects or brand new projects. Enterprises can learn from the construction knowledge and experience to carry out existing projects Good evaluation and judgment, ensure that the construction period is completed efficiently and on time, improve production efficiency, and save manpower and material costs.
  • FIG. 1 is a schematic flowchart of the present invention
  • Figure 2 is a schematic diagram of the basic parameters of the project construction period
  • Figure 3 is a schematic diagram of time parameters of high temperature, flood season, freezing period and special holidays in the area where the project is located;
  • Figure 4 is a schematic diagram of the parameters of the engineering construction team, equipment, and materials
  • Figure 5 is a schematic diagram of the parameters, participants, roles and permissions of the construction organization
  • Figure 6 is a schematic diagram of the parameters of the project construction organization early warning
  • Figure 7 is a schematic diagram of the structural parameter data of the sub-items of the construction organization of the project.
  • Figure 8 is a schematic diagram of the engineering construction process parameter data
  • Figure 9 is a schematic diagram of the parameter data of the engineering construction process steps
  • Figure 10 is a schematic diagram of the logical relationship between the engineering construction process and the construction object
  • FIG. 11 is a logical data diagram of the sub-item structure of the project shown and hidden during construction
  • Figure 12 is the milestone parameter data of the sub-item structure of the project
  • Figure 13 is the construction progress calculation parameter data
  • Figure 14 shows the data of compression calculation parameters for construction progress.
  • the present invention provides a comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, including the following steps:
  • the comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology preferably, the S1 includes:
  • the time parameter data of the current construction period of S1-1 includes:
  • the basic parameters of the current construction period of S1-1 include:
  • the time parameter data of the high temperature, flood season, freezing season, and special holidays of the area where the current project S1-2 is located includes:
  • Set the high-temperature startup HIClasON parameter data set the high-temperature shutdown HIClasOFF parameter data; set the flood season startup FLClasON parameter data, set the flood season shutdown FLClasOFF parameter data; set the freezing season start FRClasON parameter data, and set the freezing period.
  • Close the parameter data of FRClasOFF set the parameter data of starting SPON for special holidays, set the parameter data of closing SPOFF for special holidays; import the parameter data into the database.
  • the basic parameters of the high temperature, flood season, freezing period and special holidays of the area where the current project is located in S1-2 include:
  • the parameter data of the group type, the group name, and the number of groups of the construction team are established; and the equipment group, the device category, the device name, the device model, and the number of equipment parameters of the construction equipment are established Data; The data of the material group, material category, material model, and material unit of the construction material are established;
  • the parameter data of the collaborative decision conditions for establishing construction organization participants, roles, and permissions in S1-4 include:
  • the parameter data for establishing a project warning type, a warning notification role, a warning notification content, and a warning notification time include:
  • Establish the parameter data of EAROn for engineering early warning set the parameter data of EAROff for engineering early warning, establish parameter data of EARTyp for engineering early warning, establish parameter data of EARCon for engineering early warning notification, and establish parameter data of EARTS (Time) for engineering early warning notification.
  • Establish parameter data of engineering alarm notification end time EARTE (Time) establish parameter data of engineering alarm time deviation EARTime (day), establish parameter data of engineering alarm object role EARUse, and import the parameter data into the database.
  • the S2 further includes:
  • S2-1 divide the engineering structure and form information data according to the sub-item structure of the project, and execute S2-2;
  • the construction BIM model is split according to the design BIM model established by the project sub-structure to guide the construction drawing of the project to form the construction BIM model data.
  • the structure parameter data of the current engineering sub-item of S2-1 includes:
  • Establish the parameter data of the engineering sub-item structure code PCod establish the parameter data of the engineering sub-item structure type PTyp, and establish the parameter data of the engineering sub-item structure description PDes; based on S1-3, set the construction material of the engineering sub-item structure.
  • Parameter data of the material category MATCat set parameter data of the material model MATTyp of the construction material of the sub-item structure, establish parameter data of the engineering quantity PAmo of the construction material of the sub-item structure; import the parameter data into the database.
  • the engineering construction BIM model of S2-2 includes:
  • the construction BIM model is split according to the design BIM model established by the project sub-structure to guide the construction drawing of the project to form a construction BIM model;
  • the project BIM model is classified into the construction BIM model according to the structural data definition of the sub-items of the project, and the BIM data of the project construction organization planning and design is formed.
  • the S3 further includes:
  • S3-2 based on S1-3, set the process parameter data of each engineering construction process, among which the process parameter data of the engineering construction process includes: construction material, construction team, construction team, construction equipment parameter data, and according to the set construction materials , Construction team, construction work team, and construction equipment parameter data to form the rated construction man-hours and rated construction quantity model data.
  • the construction process parameter data of the S3-1 project includes:
  • the parameter data of the construction process steps of the S3-2 project includes:
  • the first level is based on S1-3, establishing parameter data of the quantitative type PROSTEPTypV of the engineering construction process steps; establishing parameter data of the engineering step equipment PROSTEPEQU, and establishing parameter data of the engineering construction process step equipment normally input into PROSTEPEQUMin, Establish the parameter data for the maximum input of PROSTEPEQUMax for the engineering construction process step equipment; establish the parameter data for the PROSTEPTEA for the engineering construction process step group, establish the parameter data for the minimum input for PROSTEPTEAMin for the engineering construction process step group, and establish the maximum input for the PROSTEPTEAMax for the engineering construction process step group
  • the second level establish the parameter data of the project construction process step timing type PROSTEPTypT, establish the project construction process step timing rated working hours PROSTEPTT parameter data; import this parameter data into the database.
  • the S4 further includes:
  • the logical relationship data between the S4-1 process and the construction object includes:
  • the S5 further includes:
  • S5-1 on the basis of S4-1, according to the construction characteristics of the project and the planned construction sequence, carry out the construction setting structure parameter data, task overlap relationship and time setting parameter data of the construction structure to form a construction organization plan Logic data setting parameter data;
  • the setting parameter data of the immediately preceding relationship and time of the sub-item structure of the S5-1 project includes:
  • the project step-by-step relationship scheme CONStepPro parameter data is established, the project step-by-step CONStepImm parameter data is established, the project step-by-step CONStepFol parameter data is established, and the engineering step is established.
  • Partial item structures are closely connected to each other.
  • the task overlap relationship is completed-complete CONStepFF, complete-start CONStepFS, start-start CONStepSS, start-complete CONStepSF parameter data, and establish the tasks between the structure of the partial item structure immediately before and after the structure.
  • Overlap relationship time CONStepT (h) parameter data import the parameter data into the database.
  • the S5-2 combines the engineering construction BIM model data, and sets the logical data of the project sub-item structure to be displayed and hidden during the construction process including:
  • the initial display state of the construction of the sub-item structure is established by the COMVisSho parameter data
  • the initial hidden state of the construction of the sub-item structure is established by the CONVisHid parameter data.
  • Structural object CONStepImmRel parameter data to establish the display status of the structure object affected by the construction of the sub-item structure before the construction step CONStepImmRelSho parameter data, to establish the hidden status of the structure object of the sub-item structure to be affected by the construction step CONStepImmReHid parameter data; establish the engineering sub-section
  • CONStepFolReHid parameter data import the parameter data into the database.
  • the parameter data for setting the construction milestone of the S5-3 project sub-item structure includes:
  • the parameter data of the milestone CONStepMil of the sub-item structure of the project is established; the parameter data is imported into the database.
  • the S6 further includes:
  • This compilation calculation includes:
  • the "original construction network diagram” includes the logical relationships between the construction units that were defined before construction (including the immediate and post-order logical relationships, which can be specifically divided into completed after completion (FS), (SS), post-start (SF), post-completion (FF) four logical relationships) and the planned construction time T i of each construction unit, indicating the planned construction time of the i-th construction unit;
  • the "completed” set is used to store construction units that have completed construction
  • the "in progress” set is used to store construction units that have started construction but have not yet completed construction
  • the "not yet started” set is used to Store construction units that have not yet started construction, and place each construction unit in the corresponding collection;
  • a new network diagram is constructed based on the set to which the construction unit belongs.
  • the main processes include:
  • the first step is to remove all construction units in the set "Completed"
  • T' i is the updated construction unit planning time, and T i is the base construction
  • the third step is to set the starting node of the new network graph
  • the DefcomPro parameter data of the progress calculation scheme the ProTypStr parameter data of the construction progress calculation start mode, the ProTypEnd parameter data of the construction progress calculation completion mode, the ComProStrTim (date) parameter data of the construction progress calculation start time, and the construction progress are established.
  • the construction organization schedule plan is calculated based on a construction progress estimation algorithm based on engineering construction resource balance.
  • the S7 further includes:
  • S7-1 the unit step size of the computing resource database
  • S7-2 Obtain the consumption U i (t) of each resource in each unit time, where i represents the i-th resource and a total of I resources; t represents the t-th unit time and a total of T unit times;
  • S7-5 Increase the amount of resources by 1 unit step and calculate the duration
  • step S7-6 Determine whether the construction period is shorter than the target construction period given by the construction unit. If it is, go to step S7-7; if not, go to step S7-5;
  • S7-7 Screen construction units that can reduce resource allocation
  • S7-8 Reduce the resource allocation of the construction units that can reduce the resource allocation one by one, and calculate the total construction period
  • S7-9 Determine whether to continue to reduce the resource allocation of any construction unit. The total construction period will be longer than the target construction period. If yes, go to step S7-10; if not, go to S7-7;
  • the parameter data of the S7-1 based on S6-2 to establish a compression plan for the construction progress of the project includes:
  • the DefComProCon parameter data of the construction schedule compression scheme is established, and the DefComProConTim (date) of the construction schedule compression target is established; the parameter data is imported into the database.
  • the target optimization calculation of the construction organization schedule is performed according to the construction progress compression algorithm based on the construction target of the project.
  • the S8 includes: S8, performing an iterative calculation of the progress schedule of the construction organization according to a construction schedule optimization and iterative algorithm based on actual conditions of the project construction;
  • ES represents the earliest allowed start time of the construction unit under the current construction logic
  • LS represents the construction unit's allowed start time under the current construction logic The latest start time
  • TF represents the difference between the construction unit ES and LS.
  • construction units including the following four collections: “Done” collection, that is, the completed collection; storage of construction units that have been planned and completed at the current planning time; "Doing” collection, that is, the collection that is being executed, is stored in Construction units that are in progress at the planning time; “CanDo” collections, which are sets that can be executed, are stored at the ES that reached the construction unit at the planning time, indicating the earliest start time of the construction unit, and construction units that can be started waiting for resource allocation; "ToDo” collection, which is about to be executed, stores construction units that have not yet reached the task ES and do not yet have the starting conditions.
  • the priority of the construction unit is a natural number
  • the construction unit with a smaller ES has priority The higher the level
  • the construction unit with a smaller construction unit number has higher priority when the ES is the same.
  • TF represents the difference between the earliest start time and the latest start time of the construction unit;
  • the resource allocation of each construction unit is adjusted to the highest as the initial solution according to the process, where the process defines the construction time required for each construction unit to complete the unit amount of work under different resource allocation situations.
  • the third step is to remove the completed construction unit from the "Doing" collection and put it into the "Done” collection;
  • the fourth step is to scan whether the ES parameters of the construction units in the "ToDo" collection are equal to the current time t. If so, the construction units that meet the above conditions are placed in the "CanDo” collection, and the rest that do not meet the conditions are left in the "ToDo” collection. ;
  • the fifth step is to sort all construction units in the "CanDo" set at the current moment according to the "priority ordering rule";
  • the sixth step is to allocate resources for each construction unit in the "CanDo" set from the total amount of resources in accordance with the order arranged in step 5. If all the construction units in the "CanDo" set can be allocated sufficient resources, skip Go to step eight; otherwise go to step seven;
  • the seventh step is to determine whether the current time t is greater than or equal to the LS parameters of the construction units that cannot be allocated sufficient resources. If so, output all construction units in the set "Doing" and "CanDo"; Go to the second step
  • the eighth step is to determine whether all construction units have entered the "Done" collection. If so, output a construction plan that meets the resource constraints. If not, skip to the second step.
  • the S9 further includes:
  • S9-2 based on the result data calculated by S6 and S7 intelligent algorithms, perform two simulations of engineering BIM 5D construction process virtual simulation simulation, visually analyze and compare the construction organization scheme of the project, so as to carry out merit selection analysis and set the final project Determined construction organization plan.
  • the S9 includes: performing a virtual simulation of the engineering BIM 5D construction organization process according to the calculated construction organization schedule and combining the engineering construction BIM model data;
  • the S10 further includes:
  • the S11 further includes:
  • S11-1 according to the actual construction progress of the project, feedback on the progress of the construction organization plan, execute S1, combine the types and roles of early warning notifications, and deliver the contents of the early warning notifications via SMS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A BIM technology-based comprehensive aid decision-making method for an engineering construction organization scheme, comprising the following steps: S1, establishing a comprehensive condition of current engineering construction, and obtaining BIM data in the engineering construction; S2, establishing an engineering construction process flow library according to the BIM data, and forming construction organization scheme logical data according to a construction process flow required for engineering; S3, performing optimization operation according to resources, progress, and actual construction period of engineering construction; and S4, performing, according to the engineering construction BIM 5D simulation model formed after the optimization operation, statistical analysis on engineering construction data, to form an early-warning mechanism.

Description

基于BIM技术的工程施工组织方案综合辅助决策方法Comprehensive auxiliary decision-making method for engineering construction organization scheme based on BIM technology 技术领域Technical field
本发明涉及BIM计算机辅助施工设计领域,尤其涉及一种基于BIM技术的工程施工组织方案综合辅助决策方法。The invention relates to the field of BIM computer-aided construction design, in particular to a comprehensive auxiliary decision-making method for engineering construction organization schemes based on BIM technology.
背景技术Background technique
目前大型土木工程在施工前、施工中还没有一个科学的、合理的决策手段来对工程施工组织方案进行组织管理。随着工程投资商和业主对于工程建设的要求和期望越来越高,以及工程建设的复杂性、多参与性,项目施工组织方案是否科学合理直接影响着工程施工过程的品质、工程施工的工期,也影响着建筑企业的经济效益。当前工程建设施工组织存在诸多问题:At present, there is no scientific and reasonable decision-making method to organize and manage the construction scheme of large-scale civil engineering before and during construction. With the increasing requirements and expectations of project investors and owners for project construction, and the complexity and multi-participation of project construction, whether the project construction organization plan is scientific and reasonable directly affects the quality of the project construction process and the duration of the project construction , Also affects the economic benefits of construction enterprises. There are many problems in the current project construction organization:
现有工程施工组织计划根据施工经验对工程相关施工部位进行工时评估,未全面考虑工程施工工艺、施工环境的影响,以及大型土木工程施工部位众多且施工交错进行,从而导致施工组织计划编制复杂、精度低。Existing engineering construction organization plans to evaluate the working hours of relevant construction sites based on construction experience, without comprehensively considering the impact of engineering construction technology and construction environment, and the large number of large-scale civil engineering construction sites and the staggered construction, resulting in complex construction organization planning, Low accuracy.
当前工程管理者利用文档形式进行施工组织方案的规划设计,施工资源(班组、设备、材料)不能进行精确计算和评估,从而导致施工资源参与施工组织计划程度不高,对工程后期施工带来严重风险。At present, project managers use documents to plan and design construction organization schemes. Construction resources (teams, equipment, and materials) cannot be accurately calculated and evaluated, which leads to a low degree of participation of construction resources in the construction organization plan, which seriously affects later construction of the project. risk.
当前工程管理者利用施工经验、文档形式规划设计出来的施工组织方案,组织施工专家、上级领导审批等方式进行决策,其中人为主观性的判断,导致施工组织方案无法进行全面的评估和验证。Current construction managers use construction experience and document plans to design construction organization plans, organize construction experts, and senior leaders to approve and make decisions. Among them, subjective judgments make it impossible to comprehensively evaluate and verify construction organization plans.
大型土木工程施工过程中,经常发生各种状况,从而导致工程实际施工不能按照拟定的施工组织方案进行,现有施工组织方案所达到的形式不具备灵活性、验证性和迭代优化性,导致施工组织方案不满足实际工程施工变化的要求。During the construction of large-scale civil engineering, various conditions often occur, resulting in the actual construction of the project cannot be carried out in accordance with the proposed construction organization plan, and the form reached by the existing construction organization plan does not have flexibility, verification and iterative optimization, leading to construction The organization plan does not meet the requirements of actual project construction changes.
本身施工组织方案是企业对于工程施工知识和经验的积累,类似工程或者 全新工程,企业可以借鉴该施工知识和经验对现有工程进行很好的评估和判断,当前施工企业暂无这样一个可以很好积累施工组织方案的工具,从而使工程施工组织知识和经验的积累和复用程度低。The construction organization plan itself is the accumulation of knowledge and experience of the project construction by the enterprise. Similar to the project or a brand new project, the enterprise can use the construction knowledge and experience to evaluate and judge the existing project. Good tools for accumulating construction organization schemes, so that the accumulation and reuse of knowledge and experience of construction organization is low.
发明内容Summary of the invention
为了实现本发明的上述目的,本发明提供了一种基于BIM技术的工程施工组织方案综合辅助决策方法,其特征在于,包括如下步骤:In order to achieve the above object of the present invention, the present invention provides a comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, which is characterized by including the following steps:
S1,建立当前工程施工的综合条件,获取工程施工中BIM模型数据;S1. Establish comprehensive conditions for current project construction, and obtain BIM model data during project construction;
S2,根据BIM模型数据建立工程施工工艺流程库,根据工程需要的施工工艺流程形成施工组织方案逻辑数据;S2. Establish the engineering construction process library based on the BIM model data, and form the logical data of the construction organization plan according to the construction technological process required by the project;
S3,根据工程施工的资源、进度以及实际工期进行优化运算;S3. Perform optimization calculations according to the resources, schedule and actual construction period of the project;
S4,根据优化运算之后形成的工程施工BIM 5D仿真模型,对工程施工数据进行统计分析,形成预警机制。S4. Based on the engineering construction BIM 5D simulation model formed after the optimization calculation, statistical analysis is performed on the engineering construction data to form an early warning mechanism.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S1包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, preferably, the S1 includes:
S1-1,建立当前工程施工的工班条件、环境条件、拟定投入施工资源条件、协同决策条件、进度预警条件;S1-1. Establish the current work conditions, environmental conditions, the conditions for the proposed construction resources, collaborative decision-making conditions, and progress warning conditions;
S1-2,建立按照工程分部分项结构的工程划分结构,获取工程施工BIM模型数据。S1-2. Establish the engineering division structure according to the sub-item structure of the project, and obtain the BIM model data of the engineering construction.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S2包括:According to the comprehensive auxiliary decision-making method for a project construction organization scheme based on BIM technology, preferably, the S2 includes:
S2-1,建立工程施工工艺流程库,并结合企业施工经验和现有施工资源形成标准施工工时体系;S2-1. Establish a project construction process library, and combine the construction experience of the enterprise with existing construction resources to form a standard construction man-hour system;
S2-2,根据工程划分结构和施工工艺流程,形成具备施工工艺的施工组织方 案基础逻辑数据;S2-2, divide the structure and construction process according to the project to form the basic logical data of the construction organization plan with the construction process;
S2-3,根据施工划分结构,结合工程施工规范和要求,形成具备施工先后顺序的施工组织方案逻辑数据。S2-3. According to the construction division structure, combined with the construction specifications and requirements, a logical data of the construction organization plan with the construction sequence is formed.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S3包括:According to the comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, preferably, the S3 includes:
S3-1,根据基于工程施工资源平衡的施工进度推算算法进行施工组织进度计划的编制计算;S3-1. Compile and calculate the schedule of the construction organization according to the construction schedule estimation algorithm based on the balance of the construction resources of the project;
S3-2,根据基于工程施工目标的施工进度压缩算法进行施工组织进度计划的目标优化;S3-2. Optimize the target of the construction organization schedule based on the construction progress compression algorithm based on the construction target of the project;
S3-3,根据基于工程施工实际状况的施工进度优化迭代算法进行施工组织进度计划的迭代优算。S3-3. Iterative calculation of the progress schedule of the construction organization according to the iterative algorithm of construction schedule optimization based on the actual conditions of the project construction.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S4包括:Preferably, the method for comprehensively assisting decision-making of an engineering construction organization scheme based on BIM technology, the S4 includes:
S4-1,根据优化运算后编制计算出来的施工组织进度计划,结合工程施工BIM模型数据进行工程BIM 5D施工组织过程虚拟仿真模拟;S4-1, according to the construction organization schedule prepared and calculated after the optimization calculation, combined with the engineering construction BIM model data, the engineering BIM 5D construction organization process virtual simulation is performed;
S4-2,根据确定的施工组织方案,进行施工资源的统计分析;S4-2. Perform statistical analysis of construction resources according to the determined construction organization plan;
S4-3,根据工程施工进度预警条件,结合工程施工实际进度形成工程施工进度预警机制。S4-3. According to the early warning conditions for the construction progress of the project, and in combination with the actual progress of the construction process, an early warning mechanism for the construction progress of the project is formed.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S1包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, preferably, the S1 includes:
S1-A,建立当前工程施工时间段的若干班制的时间参数数据;S1-A, establishing time parameter data of several shifts in the current construction period;
S1-B,建立当前工程所处区域的特定施工状态的时间参数数据;S1-B, establishing time parameter data of a specific construction state of the current project area;
S1-C,建立施工班组的班组综合参数数据;建立施工设备的设备综合参数 数据;建立施工材料的材料综合参数数据;S1-C: Establish the comprehensive parameter data of the construction team; establish the comprehensive parameter data of the construction equipment; establish the comprehensive parameter data of the construction materials;
S1-D,建立施工组织参与人员、角色、权限的协同决策条件数据;S1-D, establish collaborative decision-making condition data of construction organization participants, roles, and permissions;
S1-E,建立工程预警综合参数数据。S1-E, establish comprehensive parameter data of engineering early warning.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S2包括:According to the comprehensive auxiliary decision-making method for a project construction organization scheme based on BIM technology, preferably, the S2 includes:
S2-A,根据工程分部分项结构进行工程结构的划分并形成信息数据,执行S2-B;S2-A: Divide the engineering structure and form information data according to the sub-item structure of the project, and execute S2-B;
S2-B,根据工程分部分项结构指导工程施工图建立的设计BIM模型进行施工BIM模型的拆分,形成施工BIM模型数据。S2-B, the design BIM model is established according to the structure of the sub-item and the construction BIM model is used to split the construction BIM model to form the construction BIM model data.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S3包括:According to the comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, preferably, the S3 includes:
S3-A,根据工程施工类型整理工程施工工艺参数数据,其中施工工艺参数数据包括:工艺类别、工艺名称、工步名称及工步逻辑关系的参数数据;S3-A, sorting the construction process parameter data according to the construction type of the project, wherein the construction process parameter data includes: process type, process name, step name, and parameter logical relationship of the steps;
S3-B,建立施工班组的班组综合参数数据;建立施工设备的设备综合参数数据;建立施工材料的材料综合参数数据,设置各工程施工工艺工步参数数据,其中工程施工工艺工步参数数据包括:施工材料、施工班组、施工工班、施工设备参数数据,并根据设置的施工材料、施工班组、施工工班、施工设备参数数据,形成额定施工工时、额定施工工程量模式下的工时体系参数数据。S3-B, establish the comprehensive parameter data of the construction team; establish the comprehensive parameter data of the construction equipment; establish the comprehensive parameter data of the construction materials and set the parameter data of the construction process steps of the project, among which the parameter data of the engineering construction process steps include : Construction material, construction team, construction work team, construction equipment parameter data, and according to the set construction material, construction team, construction work team, construction equipment parameter data, form the working hours system parameters under the rated construction man-hours and rated construction quantities mode data.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S4包括:Preferably, the method for comprehensively assisting decision-making of an engineering construction organization scheme based on BIM technology, the S4 includes:
S4-A,根据施工工艺类型,设置与之符合的施工工程结构,并形成工艺与施工对象间的逻辑关系数据;S4-A, according to the type of construction process, set up a construction engineering structure that conforms to it, and form the logical relationship data between the process and the construction object;
S4-B,根据施工工程结构与工艺的逻辑关系,设置各工程结构对应工艺关 注施工材料的实际工程量参数数据。S4-B, according to the logical relationship between the construction engineering structure and the process, set the corresponding engineering process corresponding to each engineering structure to pay attention to the actual quantity parameter data of the construction material.
综上所述,由于采用了上述技术方案,本发明的有益效果是:In summary, since the above technical solution is adopted, the beneficial effects of the present invention are:
本发明施工组织方案对于工程施工知识和经验的积累,通过设置相应的场景参数进行归类并且优化,实现类似工程或者全新工程的施工组织优化,企业可以借鉴该施工知识和经验对现有工程进行很好的评估和判断,保证工期按时高效完成,提高生产效率,节约人力物力成本。For the accumulation of construction knowledge and experience of the construction organization scheme of the present invention, the corresponding scene parameters are classified and optimized by setting corresponding scene parameters to optimize the construction organization of similar projects or brand new projects. Enterprises can learn from the construction knowledge and experience to carry out existing projects Good evaluation and judgment, ensure that the construction period is completed efficiently and on time, improve production efficiency, and save manpower and material costs.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be given in part in the following description, part of which will become apparent from the following description, or be learned through the practice of the present invention.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and / or additional aspects and advantages of the present invention will become apparent and easily understood from the description of the embodiments in conjunction with the following drawings, in which:
图1是本发明流程示意图;FIG. 1 is a schematic flowchart of the present invention;
图2是工程施工时间段的基础参数示意图;Figure 2 is a schematic diagram of the basic parameters of the project construction period;
图3是工程所处区域的高温、汛期、冻期、特殊节假日的时间参数示意图;Figure 3 is a schematic diagram of time parameters of high temperature, flood season, freezing period and special holidays in the area where the project is located;
图4是工程施工班组、设备、材料的参数示意图;Figure 4 is a schematic diagram of the parameters of the engineering construction team, equipment, and materials;
图5是工程施工组织参与人员、角色、权限的参数示意图;Figure 5 is a schematic diagram of the parameters, participants, roles and permissions of the construction organization;
图6是工程施工组织预警的参数示意图;Figure 6 is a schematic diagram of the parameters of the project construction organization early warning;
图7是工程施工组织分部分项结构参数数据示意图;Figure 7 is a schematic diagram of the structural parameter data of the sub-items of the construction organization of the project;
图8是工程施工工艺参数数据示意图;Figure 8 is a schematic diagram of the engineering construction process parameter data;
图9是工程施工工艺工步参数数据示意图;Figure 9 is a schematic diagram of the parameter data of the engineering construction process steps;
图10是工程施工工艺与施工对象逻辑关系示意图;Figure 10 is a schematic diagram of the logical relationship between the engineering construction process and the construction object;
图11是工程分部分项结构在施工过程中显示、隐藏的逻辑数据图;FIG. 11 is a logical data diagram of the sub-item structure of the project shown and hidden during construction;
图12是工程分部分项结构里程碑参数数据;Figure 12 is the milestone parameter data of the sub-item structure of the project;
图13是施工进度计算参数数据;Figure 13 is the construction progress calculation parameter data;
图14是施工进度压缩计算参数数据。Figure 14 shows the data of compression calculation parameters for construction progress.
具体实施方式detailed description
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号图示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Hereinafter, embodiments of the present invention will be described in detail. Examples of the embodiments are shown in the accompanying drawings, in which the same or similar reference numerals indicate the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are exemplary, and are only used to explain the present invention, and should not be construed as limiting the present invention.
如图1所示,本发明提供了一种基于BIM技术的工程施工组织方案综合辅助决策方法,包括如下步骤:As shown in FIG. 1, the present invention provides a comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, including the following steps:
S1,建立当前工程施工的工班条件、环境条件、拟定投入施工资源(班组、设备、材料)条件、协同决策条件、进度预警条件;S1. Establish the working conditions, environmental conditions of the current project construction, the conditions of the proposed input construction resources (teams, equipment, materials), collaborative decision-making conditions, and progress warning conditions;
S2,建立按照工程分部分项结构的工程划分结构,获取工程施工BIM模型数据;S2. Establish the engineering division structure according to the sub-item structure of the project, and obtain the BIM model data of the engineering construction;
S3,建立工程施工工艺流程库,并结合企业施工经验和现有施工资源形成标准施工工时体系;S3. Establish the engineering construction process library, and combine the construction experience of the enterprise and the existing construction resources to form a standard construction man-hour system;
S4,根据工程划分结构和施工工艺流程,形成具备施工工艺的施工组织方案基础逻辑数据;S4. Divide the structure and construction process according to the project to form the basic logical data of the construction organization plan with the construction process;
S5,根据施工划分结构,结合工程施工规范和要求,形成具备施工先后顺序的施工组织方案逻辑数据;S5. According to the construction division structure, combined with the construction specifications and requirements, form a logical data of the construction organization plan with the construction sequence;
S6,根据基于工程施工资源平衡的施工进度推算算法进行施工组织进度计划的编制计算;S6. Compile and calculate the schedule of the construction organization according to the construction schedule estimation algorithm based on the balance of construction resources;
S7,根据基于工程施工目标的施工进度压缩算法进行施工组织进度计划的目标优化;S7. Optimize the schedule of the construction organization schedule according to the construction schedule compression algorithm based on the construction goals of the project;
S8,根据基于工程施工实际状况的施工进度优化迭代算法进行施工组织进度计划的迭代优算;S8. Iterative calculation of the progress schedule of the construction organization according to the iterative algorithm of construction schedule optimization based on the actual conditions of the project construction;
S9,根据智能算法编制计算出来的施工组织进度计划,结合工程施工BIM模型数据进行工程BIM 5D施工组织过程虚拟仿真模拟;S9. Compile the construction organization schedule according to the intelligent algorithm, and combine the engineering construction BIM model data to perform a virtual simulation of the engineering BIM 5D construction organization process;
S10,根据确定的施工组织方案,进行施工资源的统计分析;S10. Perform statistical analysis of construction resources according to the determined construction organization plan;
S11,根据工程施工进度预警条件,结合工程施工实际进度形成工程施工进度预警机制。S11. According to the conditions for early warning of the construction progress of the project, combined with the actual progress of the construction of the project, an early warning mechanism for the construction progress of the project is formed.
所述的基于BIM技术的工程施工组织方案综合辅助决策方法,优选的,所述S1包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, preferably, the S1 includes:
S1-1,建立当前工程施工时间段的若干班制的时间参数数据;S1-1. Establish time parameter data of several shifts in the current construction period;
S1-2,建立当前工程所处区域的特定施工状态的时间参数数据;S1-2, establishing time parameter data of a specific construction state of the current project area;
S1-3,建立施工班组的班组综合参数数据;建立施工设备的设备综合参数数据;建立施工材料的材料综合参数数据;S1-3. Establish the comprehensive parameter data of the construction team; establish the comprehensive parameter data of the construction equipment; establish the comprehensive parameter data of the construction materials;
S1-4,建立施工组织参与人员、角色、权限的协同决策条件数据;S1-4. Establish collaborative decision-making condition data of construction organization participants, roles, and permissions;
S1-5,建立工程预警综合参数数据。S1-5. Establish comprehensive parameter data for engineering early warning.
优选地,如图1所示,所述S1-1当前工程施工时间段的时间参数数据包括:Preferably, as shown in FIG. 1, the time parameter data of the current construction period of S1-1 includes:
设置班制的名称ClasNam的参数数据,设置一班制的启动ONEClasON的参数数据,设置一班制的关闭ONEClasOFF的参数数据;设置两班制的启动TWOClasON的参数数据,设置两班制的关闭TWOClasOFF的参数数据;设置三班制的启动THRClasON的参数数据,设置三班制的关闭THRClasOFF的参数数据;从而形成工程施工正常施工时间段的时间参数模型;将该参数数据导入数据库。Set the parameter data of the name of the shift ClasNam, set the parameter data of the one-shift start ONEClasON, set the parameter data of the one-shift close ONEClasOFF, set the parameter data of the two-shift start TWOClasON, and set the two-shift close TWOClasOFF The parameter data of THRClasON which is started in three shifts and the parameter data of THRClasOFF which is turned off in three shifts are set; the time parameter model of the normal construction period of the project construction is formed; the parameter data is imported into the database.
优选地,所述S1-1当前工程施工时间段的基础参数包括:Preferably, the basic parameters of the current construction period of S1-1 include:
设置一班制的开始时间段ONEClasTS(time)的参数数据,设置一班制的结束段ONEClasTE(time)的参数数据,设置一班制的休息开始时间段ONEClasTRS(time)的参数数据,设置一班制的休息结束时间段ONEClasTRE(time)的参数数据;将该参数数据导入数据库;Set parameter data for ONEClasTS (time) at the start time of one shift, set parameter data at ONEClasTE (time) at the end of one shift, set parameter data for ONEClasTRS (time) at the start of one shift Parameter data of ONEClasTRE (time) during the rest period of the shift; import the parameter data into the database;
设置两班制的开始时间段TWOClasTS(time)的参数数据,设置两班制的结束段TWOClasTE(time)的参数数据,设置两班制的休息开始时间段TWOClasTRS(time)的参数数据,设置两班制的休息结束时间段TWOClasTRE(time)的参数数据;将该参数数据导入数据库;Set the parameter data of the start time period TWOClasTS (time) of the two shifts, set the parameter data of the end time period TWOClasTE (time) of the two shifts, set the parameter data of the start period TWOClasTRS (time) of the two shifts, and set two Parameter data of TWOClasTRE (time) during the rest period of the shift; import the parameter data into the database;
设置三班制的开始时间段THRClasTS(time)的参数数据,设置三班制的结束段THRClasTE(time)的参数数据,设置三班制的休息开始时间段THRClasTRS(time)的参数数据,设置三班制的休息结束时间段THEClasTRE(time)的参数数据;将该参数数据导入数据库;Set the parameter data of THRClasTS (time) for the three-shift start period, set the parameter data of THRClasTE (time) for the three-shift end period, set the parameter data of THRClasTRS (time) for the three-shift rest start period, set three Parameter data of THEClasTRE (time) during the rest period of the shift; import the parameter data into the database;
优选地,如图2所示,所述S1-2当前工程所处区域的高温、汛期、冻期、特殊节假日的时间参数数据包括:Preferably, as shown in FIG. 2, the time parameter data of the high temperature, flood season, freezing season, and special holidays of the area where the current project S1-2 is located includes:
设置高温的启动HIClasON的参数数据,设置高温的关闭HIClasOFF的参数数据;设置汛期的启动FLClasON的参数数据,设置汛期的关闭FLClasOFF的参数数据;设置冻期的启动FRClasON的参数数据,设置冻期的关闭FRClasOFF的参数数据;设置特殊节假日的启动SPON的参数数据,设置特殊节假日的关闭SPOFF的参数数据;将该参数数据导入数据库。Set the high-temperature startup HIClasON parameter data, set the high-temperature shutdown HIClasOFF parameter data; set the flood season startup FLClasON parameter data, set the flood season shutdown FLClasOFF parameter data; set the freezing season start FRClasON parameter data, and set the freezing period. Close the parameter data of FRClasOFF; set the parameter data of starting SPON for special holidays, set the parameter data of closing SPOFF for special holidays; import the parameter data into the database.
优选地,所述S1-2当前工程所处区域的高温、汛期、冻期、特殊节假日的基础参数包括:Preferably, the basic parameters of the high temperature, flood season, freezing period and special holidays of the area where the current project is located in S1-2 include:
设置高温的开始日期段HIClasTS(date)的参数数据,设置高温的结束日期段HIClasTE(date)的参数数据;设置汛期的开始日期段FLClasTS(date)的 参数数据,设置汛期的结束日期段FLClasTE(date)的参数数据,设置汛期的有效时间FLVAT(h)的参数数据;设置冻期的开始日期段FRClasTS(date)的参数数据,设置冻期的结束日期段FRClasTE(date)的参数数据;设置特殊节假日的开始时间段SPTS(date)的参数数据,设置特殊节假日的结束时间段SPTE(date)的参数数据;将该参数数据导入数据库。Set the parameter data of the high temperature start date segment HIClasTS (date), set the parameter data of the high temperature end date segment HIClasTE (date); set the parameter data of the start date segment FLClasTS (date) of the flood season, and set the end date segment FLClasTE ( date), set the parameter data of the flood season effective time FLVAT (h); set the parameter data of the start date period FRClasTS (date) of the freezing period, set the parameter data of the end date period FRClasTE (date) of the freezing period; set Set the parameter data of SPTS (date) for the start time period of special holidays, and set the parameter data of SPTE (date) for the end time period of special holidays; import the parameter data into the database.
优选地,如图3所示,所述S1-3,建立施工班组的班组类别、班组名称、班组数量参数数据;建立施工设备的设备组别、设备类别、设备名称、设备型号、设备数量参数数据;建立施工材料的材料组别、材料类别、材料型号、材料单位参数数据包括;Preferably, as shown in FIG. 3, in S1-3, the parameter data of the group type, the group name, and the number of groups of the construction team are established; and the equipment group, the device category, the device name, the device model, and the number of equipment parameters of the construction equipment are established Data; The data of the material group, material category, material model, and material unit of the construction material are established;
建立施工班组的班组类别TEACat的参数数据,建立施工班组的班组名称TEANam的参数数据,建立施工班组的班组数量TEANum的参数数据;建立施工设备的设备组别EQUClas的参数数据,建立施工设备的设备类别EQUCat的参数数据,建立施工设备的设备名称EQUNam的参数数据,建立施工设备的设备型号EQUTyp的参数数据,建立施工设备的设备数量EQUNum的参数数据;建立施工材料的材料组别MATClas的参数数据,建立施工材料的材料类别MATCat的参数数据,建立施工材料的材料型号MATTyp的参数数据,建立施工材料的材料单位MATUni的参数数据;将该参数数据导入数据库。Establish the parameter data of the TEACat class of the construction team, the parameter data of the team name TEANam of the construction team, the parameter data of the number of teams TEANum of the construction team, the parameter data of the equipment group EQUClas of the construction equipment, and the equipment of the construction equipment Parameter data of category EQUCat, parameter data of construction equipment equipment name EQUNam, parameter data of construction equipment equipment model EQUTyp, parameter data of construction equipment equipment number EQUNum; parameter data of construction material material group MATClas , Establish the parameter data of the material category MATCat of the construction material, establish the parameter data of the material type MATTyp of the construction material, establish the parameter data of the material unit MATUni of the construction material; import the parameter data into the database.
优选地,如图4所示,所述S1-4建立施工组织参与人员、角色、权限的协同决策条件参数数据包括:Preferably, as shown in FIG. 4, the parameter data of the collaborative decision conditions for establishing construction organization participants, roles, and permissions in S1-4 include:
建立工程施工组织参与人员登陆名称USESysNam的参数数据,建立工程施工组织参与人员名字USENam的参数数据,建立工程施工组织参与人员姓氏USEFam的参数数据,建立工程施工组织参与人员工号USEPart的参数数据,建立工程施工组织参与人员直属上级USEHigh的参数数据,建立工程施工组织参 与人员电子邮箱USEEma的参数数据,建立工程施工组织参与人员电话USEPho的参数数据,建立工程施工组织参与人员手机USETel的参数数据,建立工程施工组织参与人员传真USEFax的参数数据,建立工程施工组织参与人员系统页面USEPag的参数数据;将该数据导入数据库。Establish parameter data of the login name USESysNam of the participants of the construction organization, establish parameter data of the name USENam of the participants of the construction organization, establish parameter data of the last name USEFam of the participants of the construction organization, and establish parameter data of the employee number USEPart of the participants of the construction organization, Establishing parameter data of the engineering construction organization participants directly under the superior USEHigh, establishing parameter data of the email address USEEma of the engineering construction organization participants, establishing parameter data of the phone number USEPho of the engineering construction organization participants, and establishing parameter data of the mobile phone USETel of the participants of the construction organization, Establish the parameter data of USEFax faxed by the participants of the engineering construction organization, and establish the parameter data of the USEPAg system page of the participants of the engineering construction organization; import this data into the database.
建立工程施工组织管理角色名称ROLNam的参数数据,建立工程施工组织管理成员名称ROLUse的参数数据,建立工程施工组织管理角色描述ROLDes的参数数据,建立工程施工组织管理角色开始时间段ROLTS(date)的参数数据,建立工程施工组织管理角色结束时间段ROLTE(date)的参数数据;将该数据导入数据库。Establish parameter data for the name ROLNam of the construction organization management role, establish parameter data ROLUse for the name of the construction organization management member, establish parameter data for the description of the ROLEs of the construction organization management role, and establish the ROLTS (date) for the start period of the role of the construction organization management role Parameter data, establish the parameter data of the end time period ROLTE (date) of the construction organization management role; import this data into the database.
建立工程施工组织管理权限名称LIMNam的参数数据,建立工程施工组织管理权限读取权限LIMEdi的参数数据,建立工程施工组织管理权限读取权限LIMRea的参数数据,建立工程施工组织管理权限删除权限LIMDel的参数数据;将该参数数据导入数据库。Establish the parameter data of the construction organization management authority name LIMNam, establish the parameter data of the construction organization management authority read authority LIMEdi, establish the parameter data of the construction organization management authority read authority LIMRea, establish the construction organization management authority delete authority LIMDel Parameter data; import the parameter data into the database.
优选地,如图5所示,所述S1-5,建立工程预警类型、预警通知角色、预警通知内容、预警通知时间的参数数据包括:Preferably, as shown in FIG. 5, in S1-5, the parameter data for establishing a project warning type, a warning notification role, a warning notification content, and a warning notification time include:
建立工程预警开启EAROn的参数数据,建立工程预警关闭EAROff的参数数据,建立工程预警类型EARTyp的参数数据,建立工程预警通知内容EARCon的参数数据,建立工程预警通知开始时间EARTS(Time)的参数数据,建立工程预警通知结束时间EARTE(Time)的参数数据,建立工程预警时间偏差EARTime(day)的参数数据,建立工程预警对象角色EARUse的参数数据,将该参数数据导入数据库。Establish the parameter data of EAROn for engineering early warning, set the parameter data of EAROff for engineering early warning, establish parameter data of EARTyp for engineering early warning, establish parameter data of EARCon for engineering early warning notification, and establish parameter data of EARTS (Time) for engineering early warning notification. , Establish parameter data of engineering alarm notification end time EARTE (Time), establish parameter data of engineering alarm time deviation EARTime (day), establish parameter data of engineering alarm object role EARUse, and import the parameter data into the database.
优选的,所述S2还包括:Preferably, the S2 further includes:
S2-1,根据工程分部分项结构进行工程结构的划分并形成信息数据,执行 S2-2;S2-1, divide the engineering structure and form information data according to the sub-item structure of the project, and execute S2-2;
S2-2根据工程分部分项结构指导工程施工图建立的设计BIM模型进行施工BIM模型的拆分,形成施工BIM模型数据。S2-2 The construction BIM model is split according to the design BIM model established by the project sub-structure to guide the construction drawing of the project to form the construction BIM model data.
优选地,如图6所示,所述S2-1当前工程分部分项结构参数数据包括:Preferably, as shown in FIG. 6, the structure parameter data of the current engineering sub-item of S2-1 includes:
建立工程分部分项结构编码PCod的参数数据,建立工程分部分项结构类型PTyp的参数数据,建立工程分部分项结构描述PDes的参数数据;基于S1-3,设置工程分部分项结构施工材料的材料类别MATCat的参数数据,设置工程分部分项结构施工材料的材料型号MATTyp的参数数据,建立工程分部分项结构施工材料的工程量PAmo的参数数据;将该参数数据导入数据库。Establish the parameter data of the engineering sub-item structure code PCod, establish the parameter data of the engineering sub-item structure type PTyp, and establish the parameter data of the engineering sub-item structure description PDes; based on S1-3, set the construction material of the engineering sub-item structure. Parameter data of the material category MATCat, set parameter data of the material model MATTyp of the construction material of the sub-item structure, establish parameter data of the engineering quantity PAmo of the construction material of the sub-item structure; import the parameter data into the database.
优选地,所述S2-2的工程施工BIM模型包括:Preferably, the engineering construction BIM model of S2-2 includes:
根据工程分部分项结构指导工程施工图建立的设计BIM模型进行施工BIM模型的拆分,形成施工BIM模型;The construction BIM model is split according to the design BIM model established by the project sub-structure to guide the construction drawing of the project to form a construction BIM model;
如图2所示,依据S2-1,按照工程分部分项结构数据定义整理到工程BIM模型为施工BIM模型中,形成工程施工组织规划设计BIM数据。As shown in Figure 2, according to S2-1, the project BIM model is classified into the construction BIM model according to the structural data definition of the sub-items of the project, and the BIM data of the project construction organization planning and design is formed.
优选的,所述S3还包括:Preferably, the S3 further includes:
S3-1,根据工程施工类型整理工程施工工艺参数数据,其中施工工艺参数数据包括:工艺类别、工艺名称、工步名称及工步逻辑关系的参数数据;S3-1. Arrange the construction process parameter data according to the construction type of the project, where the construction process parameter data includes: process type, process name, step name, and parameter logical relationship of the steps;
S3-2,基于S1-3,设置各工程施工工艺工步参数数据,其中工程施工工艺工步参数数据包括:施工材料、施工班组、施工工班、施工设备参数数据,并根据设置的施工材料、施工班组、施工工班、施工设备参数数据,形成额定施工工时、额定施工工程量模式下的工时体系参数数据。S3-2, based on S1-3, set the process parameter data of each engineering construction process, among which the process parameter data of the engineering construction process includes: construction material, construction team, construction team, construction equipment parameter data, and according to the set construction materials , Construction team, construction work team, and construction equipment parameter data to form the rated construction man-hours and rated construction quantity model data.
优选地,如图7所示,所述S3-1工程施工工艺参数数据包括:Preferably, as shown in FIG. 7, the construction process parameter data of the S3-1 project includes:
建立工程施工工艺类别PROTyp的参数数据,建立工程施工工艺名称 PRONam的参数数据,建立工程施工工艺编码PROCod的参数数据,建立工程施工工艺工步名称PROSTEPNam的参数数据;建立工程施工工艺工步逻辑紧前关系PROSTEPPre的参数数据,建立工程施工工艺工步逻辑紧后关系PROSTEPTig的参数数据;将该参数数据导入数据库。Establish the parameter data of the engineering construction process category PROTyp, establish the parameter data of the engineering construction process name PRONam, establish the parameter data of the engineering construction process code PROCod, establish the parameter data of the engineering construction process step name PROSTEPNam; establish the engineering construction process logical step tightly Before the parameter data of PROSTEPPre, establish the parameter data of PROSTEPTig closely related to the logic of the engineering process steps; import the parameter data into the database.
优选地,如图8所示,所述S3-2工程施工工艺工步参数数据包括:Preferably, as shown in FIG. 8, the parameter data of the construction process steps of the S3-2 project includes:
基于S1-1、S3-1,建立工程施工工艺工步工班PROSTEPClasT的参数数据;建立工程施工工艺开始工步PROSTEPSta的参数数据,建立工程施工工艺结束工步PROSTEPEnd的参数数据;将该参数数据导入数据库。Based on S1-1 and S3-1, establish the parameter data of the engineering construction process step PROSTEPClasT; establish the parameter data of the engineering construction process start step PROSTEPSta, establish the parameter data of the engineering construction process end step PROSTEPEnd; set the parameter data Import the database.
其中第一重级别:基于S1-3,建立工程施工工艺工步定量类型PROSTEPTypV的参数数据;建立工程施工工艺工步设备PROSTEPEQU的参数数据,建立工程施工工艺工步设备正常投入PROSTEPEQUMin的参数数据,建立工程施工工艺工步设备最大投入PROSTEPEQUMax的参数数据;建立工程施工工艺工步班组PROSTEPTEA的参数数据,建立工程施工工艺工步班组最小投入PROSTEPTEAMin的参数数据,建立工程施工工艺工步班组最大投入PROSTEPTEAMax的参数数据;建立工程施工工艺工步材料PROSTEPMAV的参数数据,建立工程施工工艺工步材料额定施工量PROSTEPMATValV的参数数据,建立工程施工工艺工步材料施工先后顺序PROSTEPOrd的参数数据,建立工程施工工艺工步材料额定施工量的乐观额定工时PROSTEPTgV(h)的参数数据,建立工程施工工艺工步材料额定施工量的悲观额定工时PROSTEPTbV(h)的参数数据,建立工程施工工艺工步材料额定施工量的最可能额定工时PROSTEPTpV(h)的参数数据;将该参数数据导入数据库。The first level is based on S1-3, establishing parameter data of the quantitative type PROSTEPTypV of the engineering construction process steps; establishing parameter data of the engineering step equipment PROSTEPEQU, and establishing parameter data of the engineering construction process step equipment normally input into PROSTEPEQUMin, Establish the parameter data for the maximum input of PROSTEPEQUMax for the engineering construction process step equipment; establish the parameter data for the PROSTEPTEA for the engineering construction process step group, establish the parameter data for the minimum input for PROSTEPTEAMin for the engineering construction process step group, and establish the maximum input for the PROSTEPTEAMax for the engineering construction process step group Parameter data of the engineering construction process step material PROSTEPMAV, parameter data of the engineering construction process step material rated construction amount PROSTEPMATValV, establishment of the engineering construction process step material construction sequence PROSTEPOrd parameter data, establishment of the engineering construction process The parameter data of the optimistic rated man-hour PROSTEPTgV (h) of the material construction amount of the working steps, the establishment of the parameter data of the PROSTEPTbV (h) pessimistic man-hours of the material construction of the engineering construction process step parameters Nominal amount of construction work process step process material most likely rated work PROSTEPTpV (h) of the parameter data; the parameter data into the database.
第二重级别:建立工程施工工艺工步定时类型PROSTEPTypT的参数数据,建立工程施工工艺工步定时额定工时PROSTEPTT的参数数据;将该参数数据 导入数据库。The second level: establish the parameter data of the project construction process step timing type PROSTEPTypT, establish the project construction process step timing rated working hours PROSTEPTT parameter data; import this parameter data into the database.
优选的,所述S4还包括:Preferably, the S4 further includes:
S4-1,根据施工工艺类型,设置与之符合的施工工程结构,并形成工艺与施工对象间的逻辑关系数据;S4-1. According to the type of construction process, set up a construction engineering structure that conforms to it, and form the logical relationship data between the process and the construction object;
S4-2,根据施工工程结构与工艺的逻辑关系,设置各工程结构对应工艺关注施工材料的实际工程量参数数据。S4-2. According to the logical relationship between the construction engineering structure and the process, set the actual engineering parameter data of the construction materials corresponding to the process concerned with the construction process.
优选地,所述S4-1工艺与施工对象间的逻辑关系数据包括:Preferably, the logical relationship data between the S4-1 process and the construction object includes:
如图9所示,基于S2-1、S2-2、S3-1,建立施工工艺与施工对象的逻辑关系数据;将该参数数据导入数据库。As shown in FIG. 9, based on S2-1, S2-2, and S3-1, the logical relationship data between the construction process and the construction object is established; the parameter data is imported into the database.
优选的,所述S5还包括:Preferably, the S5 further includes:
S5-1,在S4-1的基础上,根据工程施工特点和拟定施工顺序进行施工工程结构的紧前紧后关系设定参数数据、任务搭接关系及时间设定参数数据,形成施工组织方案的逻辑数据设定参数数据;S5-1, on the basis of S4-1, according to the construction characteristics of the project and the planned construction sequence, carry out the construction setting structure parameter data, task overlap relationship and time setting parameter data of the construction structure to form a construction organization plan Logic data setting parameter data;
S5-2,在S5-1的基础上,根据施工特点,结合工程施工BIM模型数据,设定施工工程结构显示、隐藏的逻辑数据;S5-2, on the basis of S5-1, according to the construction characteristics, combined with the engineering construction BIM model data, set the construction engineering structure display and hidden logical data;
S5-3,根据工程特点,在S5-1的基础上,设定工程施工里程碑的参数数据。S5-3, according to the characteristics of the project, based on S5-1, set the parameter data of the project construction milestones.
优选地,所述S5-1工程分部分项结构的紧前紧后关系和时间的设定参数数据包括:Preferably, the setting parameter data of the immediately preceding relationship and time of the sub-item structure of the S5-1 project includes:
如图10所示,建立工程分部分项紧前紧后关系方案CONStepPro参数数据,建立工程分部分项结构的紧前CONStepImm参数数据,建立工程分部分项结构的紧后CONStepFol参数数据,建立工程分部分项结构紧前紧后结构间的任务搭接关系完成-完成CONStepFF、完成-开始CONStepFS、开始-开始CONStepSS、开始-完成CONStepSF参数数据,建立工程分部分项结构紧前紧后结构间的任务 搭接关系时间CONStepT(h)参数数据;将该参数数据导入数据库。As shown in FIG. 10, the project step-by-step relationship scheme CONStepPro parameter data is established, the project step-by-step CONStepImm parameter data is established, the project step-by-step CONStepFol parameter data is established, and the engineering step is established. Partial item structures are closely connected to each other. The task overlap relationship is completed-complete CONStepFF, complete-start CONStepFS, start-start CONStepSS, start-complete CONStepSF parameter data, and establish the tasks between the structure of the partial item structure immediately before and after the structure. Overlap relationship time CONStepT (h) parameter data; import the parameter data into the database.
优选地,在S5-1的基础上,所述S5-2结合工程施工BIM模型数据,设定工程分部分项结构在施工过程中显示、隐藏的逻辑数据包括:Preferably, on the basis of S5-1, the S5-2 combines the engineering construction BIM model data, and sets the logical data of the project sub-item structure to be displayed and hidden during the construction process including:
如图11所示,建立工程分部分项结构的工程施工初始显示状态COMVisSho参数数据,建立工程分部分项结构的工程施工初始隐藏状态CONVisHid参数数据,建立工程分部分项结构的工程施工前所影响结构对象CONStepImmRel参数数据,建立工程分部分项结构的工程施工前所影响结构对象显示状态CONStepImmRelSho参数数据,建立工程分部分项结构的工程施工前所影响结构对象隐藏状态CONStepImmReHid参数数据;建立工程分部分项结构的工程施工后所影响结构对象CONStepFolRel参数数据,建立工程分部分项结构的工程施工后所影响结构对象显示状态CONStepFolRelSho参数数据,建立工程分部分项结构的工程施工后所影响结构对象隐藏状态CONStepFolReHid参数数据;将该参数数据导入数据库。As shown in FIG. 11, the initial display state of the construction of the sub-item structure is established by the COMVisSho parameter data, and the initial hidden state of the construction of the sub-item structure is established by the CONVisHid parameter data. Structural object CONStepImmRel parameter data, to establish the display status of the structure object affected by the construction of the sub-item structure before the construction step CONStepImmRelSho parameter data, to establish the hidden status of the structure object of the sub-item structure to be affected by the construction step CONStepImmReHid parameter data; establish the engineering sub-section The project structure's CONStepFolRel parameter data affected by the construction of the project structure, to establish the display status of the structure object affected by the engineering construction of the sub-item structure, and the CONStepFolRelSho parameter data, to establish the hidden status of the structure object's affected construction engineering, the sub-item structure. CONStepFolReHid parameter data; import the parameter data into the database.
优选地,所述S5-3工程分部分项结构设定工程施工里程碑的参数数据包括:Preferably, the parameter data for setting the construction milestone of the S5-3 project sub-item structure includes:
如图12所示,在S2-1、S5-1、S5-2的基础上,建立工程分部分项结构里程碑CONStepMil参数数据;将该参数数据导入数据库。As shown in FIG. 12, on the basis of S2-1, S5-1, and S5-2, the parameter data of the milestone CONStepMil of the sub-item structure of the project is established; the parameter data is imported into the database.
优选的,所述S6还包括:Preferably, the S6 further includes:
S6-1,建立工程施工目标的施工进度计算方案参数数据;S6-1, establishing the parameter data of the construction schedule calculation plan for the construction target of the project;
S6-2,在S6-1的基础上,根据基于工程施工资源平衡的施工进度推算算法进行施工组织进度计划的编制计算;S6-2. On the basis of S6-1, compile and calculate the schedule of the construction organization according to the construction progress estimation algorithm based on the balance of engineering construction resources;
该编制计算包括:This compilation calculation includes:
首先,获取实际的施工进度信息和原始的施工网络图,主要包括,已完成的施工单元,正在施工的施工单元的进度百分比,以w i表示,i表示第i个正在 施工的施工单元,以及尚未开始施工的施工单元;“原始的施工网络图”包括,施工前定义好的施工单元间的逻辑关系(包括,紧前、后序逻辑关系,具体又可分为完成后开始(FS),开始后开始(SS),开始后完成(SF),完成后完成(FF)四种逻辑关系)以及各个施工单元的计划施工时间T i,表示第i个施工单元的计划施工时间; First, obtain the actual construction progress information and the original construction network diagram, which mainly include the completed construction unit, the progress percentage of the construction unit under construction, represented by w i , i represents the i-th construction unit under construction, and Construction units that have not yet started construction; the "original construction network diagram" includes the logical relationships between the construction units that were defined before construction (including the immediate and post-order logical relationships, which can be specifically divided into completed after completion (FS), (SS), post-start (SF), post-completion (FF) four logical relationships) and the planned construction time T i of each construction unit, indicating the planned construction time of the i-th construction unit;
其次,定义待管控施工单元集合:“已完成”集合用于存放已经结束施工的施工单元,“正在进行”集合用于存放已经开始施工但尚未结束施工的施工单元,“尚未开工”集合用于存放尚未开始施工的施工单元,并将各个施工单元放入对应的集合;Second, define the set of construction units to be controlled: the "completed" set is used to store construction units that have completed construction, the "in progress" set is used to store construction units that have started construction but have not yet completed construction, and the "not yet started" set is used to Store construction units that have not yet started construction, and place each construction unit in the corresponding collection;
下一步,根据施工单元所属的集合,构建新的网络图,主要流程包括:In the next step, a new network diagram is constructed based on the set to which the construction unit belongs. The main processes include:
第一步,剔除集合“已完成”中的所有施工单元;The first step is to remove all construction units in the set "Completed";
第二步,将集合“正在进行”中所有的施工单元的计划时间更新为T' i=(1-w i)T i;T' i为更新后的施工单元计划时间,T i为基础施工单元的计划时间,w i为时间参数,下标i为正整数; The second step is to update the planned time of all construction units in the set "in progress" to T ' i = (1-w i ) T i ; T' i is the updated construction unit planning time, and T i is the base construction The planned time of the unit, w i is the time parameter, and the subscript i is a positive integer;
第三步,设定新网络图的开始节点;The third step is to set the starting node of the new network graph;
第四步,将所有集合“正在进行”中的施工单元与开始节点建立FS=0的逻辑关系;The fourth step is to establish a logical relationship of FS = 0 between all the construction units in the set "in progress" and the starting node;
第五步,对于集合“尚未开工”中的施工单元,若其紧前施工单元在集合“已完成”中,则根据原始的网络图,令该施工单元与开始节点建立相同的逻辑关系,若其紧前施工单元在集合“正在进行”或“尚未开工”中,则保留其原始网络图中的逻辑关系;至此完成了新的网络图的建立;In the fifth step, for the construction units in the collection "not yet started", if the construction unit immediately before it is in the collection "completed", according to the original network diagram, make the construction unit establish the same logical relationship with the starting node. The construction unit immediately before it is in the collection "in progress" or "not yet started", and retains the logical relationship in its original network diagram; so far, the establishment of a new network diagram has been completed;
最后,根据新的网络图、当前的时间以及工程的计划完成时间,通过其他施工计划编制方法获得新的针对尚未施工完成的施工单元的施工计划。Finally, according to the new network diagram, the current time, and the planned completion time of the project, other construction planning methods are used to obtain new construction plans for construction units that have not yet been completed.
如图13所示,建立进度计算方案DefComPro参数数据,建立施工进度计算开工模式ProTypStr参数数据,建立施工进度计算完工模式ProTypEnd参数数据,建立施工进度计算开始时间ComProStrTim(date)参数数据,建立施工进度计算结束时间ComProEndTim(date)参数数据;将该参数数据导入数据库。As shown in FIG. 13, the DefcomPro parameter data of the progress calculation scheme, the ProTypStr parameter data of the construction progress calculation start mode, the ProTypEnd parameter data of the construction progress calculation completion mode, the ComProStrTim (date) parameter data of the construction progress calculation start time, and the construction progress are established. Calculate the end time ComProEndTim (date) parameter data; import the parameter data into the database.
优选地,所述S6-2,根据基于工程施工资源平衡的施工进度推算算法进行施工组织进度计划的编制计算。Preferably, in S6-2, the construction organization schedule plan is calculated based on a construction progress estimation algorithm based on engineering construction resource balance.
优选的,所述S7还包括:Preferably, the S7 further includes:
S7-1:计算资源数据库增加的单位步长;S7-1: the unit step size of the computing resource database;
S7-2:获取各项资源在各个单位时间内的消耗量U i(t),i表示第i项资源,共有I项资源;t表示第t个单位时间,共有T个单位时间; S7-2: Obtain the consumption U i (t) of each resource in each unit time, where i represents the i-th resource and a total of I resources; t represents the t-th unit time and a total of T unit times;
S7-3:求取各项资源的平均消耗量
Figure PCTCN2018120151-appb-000001
S7-3: Find the average consumption of each resource
Figure PCTCN2018120151-appb-000001
S7-4:对各项资源的平均消耗量进行归一化得到单位步长,
Figure PCTCN2018120151-appb-000002
其中U i表示各项资源的单位步长,
Figure PCTCN2018120151-appb-000003
表示求取各项资源的平均消耗量
Figure PCTCN2018120151-appb-000004
中最大的元素。
S7-4: Normalize the average consumption of each resource to get the unit step size.
Figure PCTCN2018120151-appb-000002
Where U i represents the unit step size of each resource,
Figure PCTCN2018120151-appb-000003
Represents the average consumption of each resource
Figure PCTCN2018120151-appb-000004
The largest element.
S7-5:增加1个单位步长的资源量,计算工期;S7-5: Increase the amount of resources by 1 unit step and calculate the duration;
S7-6:判断工期是否小于施工单位给定的目标工期,若是跳转步骤S7-7,若否跳转步骤S7-5;S7-6: Determine whether the construction period is shorter than the target construction period given by the construction unit. If it is, go to step S7-7; if not, go to step S7-5;
S7-7:筛选能够降低资源配置的施工单元;S7-7: Screen construction units that can reduce resource allocation;
S7-8:逐个减少可降低资源配置的施工单元的资源配置,并计算总工期;S7-8: Reduce the resource allocation of the construction units that can reduce the resource allocation one by one, and calculate the total construction period;
S7-9:判断是否继续降低任意施工单元的资源配置量,总工期将都会长于目标工期,若是,则跳转步骤S7-10,若否,则跳转S7-7;S7-9: Determine whether to continue to reduce the resource allocation of any construction unit. The total construction period will be longer than the target construction period. If yes, go to step S7-10; if not, go to S7-7;
S7-10:输出施工计划和当前的资源配置;执行完毕。S7-10: Output the construction plan and current resource allocation; execution is complete.
优选地,所述S7-1,在S6-2的基础上,建立工程施工进度压缩方案参数数 据包括:Preferably, the parameter data of the S7-1 based on S6-2 to establish a compression plan for the construction progress of the project includes:
如图14所示,建立工程施工进度计划压缩方案DefComProCon参数数据,建立工程施工进度计划压缩目标DefComProConTim(date);将该参数数据导入数据库。As shown in FIG. 14, the DefComProCon parameter data of the construction schedule compression scheme is established, and the DefComProConTim (date) of the construction schedule compression target is established; the parameter data is imported into the database.
优选地,所述S7-2,根据基于工程施工目标的施工进度压缩算法进行施工组织进度计划的目标优化计算。Preferably, in S7-2, the target optimization calculation of the construction organization schedule is performed according to the construction progress compression algorithm based on the construction target of the project.
优选的,所述S8包括:S8,根据基于工程施工实际状况的施工进度优化迭代算法进行施工组织进度计划的迭代优算;Preferably, the S8 includes: S8, performing an iterative calculation of the progress schedule of the construction organization according to a construction schedule optimization and iterative algorithm based on actual conditions of the project construction;
首先获取施工计划,得到各个施工单元的ES,LS和TF参数;其中,ES表示该施工单元在当前的施工逻辑下的允许的最早开始时间;LS表示该施工单元在当前的施工逻辑下允许的最晚开始时间;TF表示施工单元ES与LS的差值。First obtain the construction plan to obtain the ES, LS and TF parameters of each construction unit; where ES represents the earliest allowed start time of the construction unit under the current construction logic; LS represents the construction unit's allowed start time under the current construction logic The latest start time; TF represents the difference between the construction unit ES and LS.
其次定义施工单元的集合,包括以下四个集合:“Done”集合,即已完成集合;存放已经规划且在当前规划时间点已完成的施工单元;“Doing”集合,即正在执行集合,存放在规划时间点正在进行的施工单元;“CanDo”集合,即能够执行集合,存放在规划时间点到达了施工单元的ES,表示施工单元的最早开始时间,等待分配资源即可开始的施工单元;“ToDo”集合,即将执行集合,存放尚未到达任务ES,还不具备开始条件的施工单元。Secondly define the collection of construction units, including the following four collections: "Done" collection, that is, the completed collection; storage of construction units that have been planned and completed at the current planning time; "Doing" collection, that is, the collection that is being executed, is stored in Construction units that are in progress at the planning time; "CanDo" collections, which are sets that can be executed, are stored at the ES that reached the construction unit at the planning time, indicating the earliest start time of the construction unit, and construction units that can be started waiting for resource allocation; "ToDo" collection, which is about to be executed, stores construction units that have not yet reached the task ES and do not yet have the starting conditions.
进一步定义施工单元的优先级,具体如下:1.按照各个施工单元的TF的大小,TF越小的优先级越高,优先级为一自然数;2.TF相同时,ES越小的施工单元优先级越高;3.ES相同时施工单元编号小的施工单元优先级越高。TF表示施工单元的最早开始时间与最晚开始时间之差;Further define the priority of the construction unit, as follows: 1. According to the size of the TF of each construction unit, the smaller the TF, the higher the priority, the priority is a natural number; 2. When the TF is the same, the construction unit with a smaller ES has priority The higher the level; 3. The construction unit with a smaller construction unit number has higher priority when the ES is the same. TF represents the difference between the earliest start time and the latest start time of the construction unit;
接下来,根据工艺将各个施工单元的资源配置调至最高作为初始解,其中,工艺定义了在不同的资源配置情况下各个施工单元完成单位工程量所需的施工 时间。Next, the resource allocation of each construction unit is adjusted to the highest as the initial solution according to the process, where the process defines the construction time required for each construction unit to complete the unit amount of work under different resource allocation situations.
之后根据以下步骤判断是否有任务不满足资源限制,并对施工计划进行反复调整:Then, determine if there are tasks that do not meet the resource limits and make repeated adjustments to the construction plan according to the following steps:
第一步,将所有的施工单元放入“ToDo”集合,设定时间起点t=0;The first step is to put all construction units into the "ToDo" collection, and set the starting point of time t = 0;
第二步,时间t增加一个单位时间Δt,即t=t+Δt;In the second step, the time t is increased by a unit time Δt, that is, t = t + Δt;
第三步,将已完成的施工单元从“Doing”集合中剔除,放入“Done”集合;The third step is to remove the completed construction unit from the "Doing" collection and put it into the "Done" collection;
第四步,扫描“ToDo”集合中是否有施工单元的ES参数等于当前时间t,如有则将满足上述条件的施工单元放入“CanDo”集合,其余不满足条件的留在“ToDo”集合;The fourth step is to scan whether the ES parameters of the construction units in the "ToDo" collection are equal to the current time t. If so, the construction units that meet the above conditions are placed in the "CanDo" collection, and the rest that do not meet the conditions are left in the "ToDo" collection. ;
第五步,对当前时刻中“CanDo”集合中的所有施工单元按照“优先级排列规则”进行排序;The fifth step is to sort all construction units in the "CanDo" set at the current moment according to the "priority ordering rule";
第六步,依照第五步排好的顺序,从资源总量中为“CanDo”集合中的各个施工单元分配资源,若所有“CanDo”集合中的施工单元都能分配到足够的资源则跳转第八步;否则进入第七步;The sixth step is to allocate resources for each construction unit in the "CanDo" set from the total amount of resources in accordance with the order arranged in step 5. If all the construction units in the "CanDo" set can be allocated sufficient resources, skip Go to step eight; otherwise go to step seven;
第七步,判断当前时刻t是否大于或等于无法分配到足够资源的施工单元的LS参数,若是,则输出集合“Doing”和集合“CanDo”中的所有施工单元;若否,则跳转回到第二步;The seventh step is to determine whether the current time t is greater than or equal to the LS parameters of the construction units that cannot be allocated sufficient resources. If so, output all construction units in the set "Doing" and "CanDo"; Go to the second step
第八步,判断是否所有施工单元都进入了“Done”集合,若是,则输出满足资源限制的施工计划,若否则跳转第二步。The eighth step is to determine whether all construction units have entered the "Done" collection. If so, output a construction plan that meets the resource constraints. If not, skip to the second step.
在输出施工计划后,则完成了计算。After the construction plan is output, the calculation is completed.
优选的,所述S9还包括:Preferably, the S9 further includes:
S9-1,根据S6、S7智能算法计算的结果数据,进行工程BIM 5D(BIM模型即3D+施工资源1D+施工进度计划1D)施工过程虚拟仿真模拟,直观的对工 程施工组织方案进行可行性分析;S9-1, based on the data calculated by the intelligent algorithms of S6 and S7, perform engineering BIM 5D (BIM model is 3D + construction resources 1D + construction schedule 1D) virtual simulation of the construction process, intuitively analyze the feasibility of the project construction organization plan;
S9-2,根据S6、S7智能算法计算的结果数据,进行两种结果数据的工程BIM 5D施工过程虚拟仿真模拟,直观的分析对比工程施工组织方案,从而进行择优选择分析,并设定工程最终确定的施工组织方案。S9-2, based on the result data calculated by S6 and S7 intelligent algorithms, perform two simulations of engineering BIM 5D construction process virtual simulation simulation, visually analyze and compare the construction organization scheme of the project, so as to carry out merit selection analysis and set the final project Determined construction organization plan.
所述S9包括:根据计算出来的施工组织进度计划,结合工程施工BIM模型数据进行工程BIM 5D施工组织过程虚拟仿真模拟;The S9 includes: performing a virtual simulation of the engineering BIM 5D construction organization process according to the calculated construction organization schedule and combining the engineering construction BIM model data;
优选的,所述S10还包括:Preferably, the S10 further includes:
S10-1,根据最终的施工组织方案,选择统计分析的工期、施工时间段进行施工资源统计分析,形成施工物资计划图标或图单;S10-1. According to the final construction organization plan, select the statistical analysis period and construction time period for statistical analysis of construction resources, and form a construction material plan icon or chart;
S10-2,根据最终的施工组织方案,选择统计施工结构对象进行施工资源统计分析,形成施工物资计划图标或图单。S10-2. According to the final construction organization plan, select statistical construction structure objects for statistical analysis of construction resources, and form a construction material plan icon or chart.
优选的,所述S11还包括:Preferably, the S11 further includes:
S11-1,根据工程实际施工进度情况,反馈在施工组织计划进度上,执行S1,结合预警通知类型和角色,通过短信方式传递预警通知内容。S11-1, according to the actual construction progress of the project, feedback on the progress of the construction organization plan, execute S1, combine the types and roles of early warning notifications, and deliver the contents of the early warning notifications via SMS.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those of ordinary skill in the art can understand that various changes, modifications, replacements and variations can be made to these embodiments without departing from the principles and spirit of the present invention, The scope of the invention is defined by the claims and their equivalents.

Claims (9)

  1. 一种基于BIM技术的工程施工组织方案综合辅助决策方法,其特征在于,包括如下步骤:A comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology, which is characterized in that it includes the following steps:
    S1,建立当前工程施工的综合条件,获取工程施工中BIM模型数据;S1. Establish comprehensive conditions for current project construction, and obtain BIM model data during project construction;
    S2,根据BIM模型数据建立工程施工工艺流程库,根据工程需要的施工工艺流程形成施工组织方案逻辑数据;S2. Establish the engineering construction process library based on the BIM model data, and form the logical data of the construction organization plan according to the construction technological process required by the project;
    S3,根据工程施工的资源、进度以及实际工期进行优化运算;S3. Perform optimization calculations according to the resources, schedule and actual construction period of the project;
    S4,根据优化运算之后形成的工程施工BIM 5D仿真模型,对工程施工数据进行统计分析,形成预警机制。S4. Based on the engineering construction BIM 5D simulation model formed after the optimization calculation, statistical analysis is performed on the engineering construction data to form an early warning mechanism.
  2. 根据权利要求1所述的基于BIM技术的工程施工组织方案综合辅助决策方法,其特征在于,所述S1包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology according to claim 1, wherein the S1 comprises:
    S1-1,建立当前工程施工的工班条件、环境条件、拟定投入施工资源条件、协同决策条件、进度预警条件;S1-1. Establish the current work conditions, environmental conditions, the conditions for the proposed construction resources, collaborative decision-making conditions, and progress warning conditions;
    S1-2,建立按照工程分部分项结构的工程划分结构,获取工程施工BIM模型数据。S1-2. Establish the engineering division structure according to the sub-item structure of the project, and obtain the BIM model data of the engineering construction.
  3. 根据权利要求1所述的基于BIM技术的工程施工组织方案综合辅助决策方法,其特征在于,所述S2包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology according to claim 1, wherein the S2 comprises:
    S2-1,建立工程施工工艺流程库,并结合企业施工经验和现有施工资源形成标准施工工时体系;S2-1. Establish a project construction process library, and combine the construction experience of the enterprise with existing construction resources to form a standard construction man-hour system;
    S2-2,根据工程划分结构和施工工艺流程,形成具备施工工艺的施工组织方案基础逻辑数据;S2-2, divide the structure and construction process according to the project to form the basic logical data of the construction organization plan with the construction process;
    S2-3,根据施工划分结构,结合工程施工规范和要求,形成具备施工先后顺序的施工组织方案逻辑数据。S2-3. According to the construction division structure, combined with the construction specifications and requirements, a logical data of the construction organization plan with the construction sequence is formed.
  4. 根据权利要求1所述的基于BIM技术的工程施工组织方案综合辅助决策 方法,其特征在于,所述S3包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology according to claim 1, wherein the S3 comprises:
    S3-1,根据基于工程施工资源平衡的施工进度推算算法进行施工组织进度计划的编制计算;S3-1. Compile and calculate the schedule of the construction organization according to the construction schedule estimation algorithm based on the balance of the construction resources of the project;
    S3-2,根据基于工程施工目标的施工进度压缩算法进行施工组织进度计划的目标优化;S3-2. Optimize the target of the construction organization schedule based on the construction progress compression algorithm based on the construction target of the project;
    S3-3,根据基于工程施工实际状况的施工进度优化迭代算法进行施工组织进度计划的迭代优算。S3-3. Iterative calculation of the progress schedule of the construction organization according to the iterative algorithm of construction schedule optimization based on the actual conditions of the project construction.
  5. 根据权利要求1所述的基于BIM技术的工程施工组织方案综合辅助决策方法,其特征在于,所述S4包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology according to claim 1, wherein the S4 comprises:
    S4-1,根据优化运算后编制计算出来的施工组织进度计划,结合工程施工BIM模型数据进行工程BIM 5D施工组织过程虚拟仿真模拟;S4-1, according to the construction organization schedule prepared and calculated after the optimization calculation, combined with the engineering construction BIM model data, the engineering BIM 5D construction organization process virtual simulation is performed;
    S4-2,根据确定的施工组织方案,进行施工资源的统计分析;S4-2. Perform statistical analysis of construction resources according to the determined construction organization plan;
    S4-3,根据工程施工进度预警条件,结合工程施工实际进度形成工程施工进度预警机制。S4-3. According to the early warning conditions for the construction progress of the project, and in combination with the actual progress of the construction process, an early warning mechanism for the construction progress of the project is formed.
  6. 根据权利要求1或2所述的基于BIM技术的工程施工组织方案综合辅助决策方法,其特征在于,所述S1包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology according to claim 1 or 2, wherein S1 comprises:
    S1-A,建立当前工程施工时间段的若干班制的时间参数数据;S1-A, establishing time parameter data of several shifts in the current construction period;
    S1-B,建立当前工程所处区域的特定施工状态的时间参数数据;S1-B, establishing time parameter data of a specific construction state of the current project area;
    S1-C,建立施工班组的班组综合参数数据;建立施工设备的设备综合参数数据;建立施工材料的材料综合参数数据;S1-C, establish the comprehensive parameter data of the construction team; establish the comprehensive parameter data of the construction equipment; establish the comprehensive parameter data of the construction materials;
    S1-D,建立施工组织参与人员、角色、权限的协同决策条件数据;S1-D, establish collaborative decision-making condition data of construction organization participants, roles, and permissions;
    S1-E,建立工程预警综合参数数据。S1-E, establish comprehensive parameter data of engineering early warning.
  7. 根据权利要求1或3所述的基于BIM技术的工程施工组织方案综合辅助 决策方法,其特征在于,所述S2包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology according to claim 1 or 3, wherein the S2 comprises:
    S2-A,根据工程分部分项结构进行工程结构的划分并形成信息数据,执行S2-B;S2-A: Divide the engineering structure and form information data according to the sub-item structure of the project, and execute S2-B;
    S2-B,根据工程分部分项结构指导工程施工图建立的设计BIM模型进行施工BIM模型的拆分,形成施工BIM模型数据。S2-B, the design BIM model is established according to the structure of the sub-item and the construction BIM model is used to split the construction BIM model to form the construction BIM model data.
  8. 根据权利要求1或4所述的基于BIM技术的工程施工组织方案综合辅助决策方法,其特征在于,所述S3包括:The comprehensive auxiliary decision-making method for an engineering construction organization plan based on BIM technology according to claim 1 or 4, wherein the S3 comprises:
    S3-A,根据工程施工类型整理工程施工工艺参数数据,其中施工工艺参数数据包括:工艺类别、工艺名称、工步名称及工步逻辑关系的参数数据;S3-A, sorting the construction process parameter data according to the construction type of the project, wherein the construction process parameter data includes: process type, process name, step name, and parameter logical relationship of the steps;
    S3-B,建立施工班组的班组综合参数数据;建立施工设备的设备综合参数数据;建立施工材料的材料综合参数数据,设置各工程施工工艺工步参数数据,其中工程施工工艺工步参数数据包括:施工材料、施工班组、施工工班、施工设备参数数据,并根据设置的施工材料、施工班组、施工工班、施工设备参数数据,形成额定施工工时、额定施工工程量模式下的工时体系参数数据。S3-B, establish the comprehensive parameter data of the construction team; establish the comprehensive parameter data of the construction equipment; establish the comprehensive parameter data of the construction materials and set the parameter data of the construction process steps of the project, among which the parameter data of the engineering construction process steps include : Construction material, construction team, construction work team, construction equipment parameter data, and according to the set construction material, construction team, construction work team, construction equipment parameter data, form the working hours system parameters under the rated construction man-hours and rated construction quantities mode data.
  9. 根据权利要求1或5所述的基于BIM技术的工程施工组织方案综合辅助决策方法,其特征在于,所述S4包括:The comprehensive auxiliary decision-making method for an engineering construction organization scheme based on BIM technology according to claim 1 or 5, wherein the S4 comprises:
    S4-A,根据施工工艺类型,设置与之符合的施工工程结构,并形成工艺与施工对象间的逻辑关系数据;S4-A, according to the type of construction process, set up a construction engineering structure that conforms to it, and form the logical relationship data between the process and the construction object;
    S4-B,根据施工工程结构与工艺的逻辑关系,设置各工程结构对应工艺关注施工材料的实际工程量参数数据。S4-B, according to the logical relationship between the construction engineering structure and the process, the actual engineering quantity parameter data of the construction process corresponding to each engineering structure is concerned.
PCT/CN2018/120151 2018-07-04 2018-12-10 Bim technology-based comprehensive aid decision-making method for engineering construction organization scheme WO2020006984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810724162.8 2018-07-04
CN201810724162.8A CN108932383B (en) 2018-07-04 2018-07-04 Engineering construction organization scheme comprehensive aid decision-making method based on BIM technology

Publications (1)

Publication Number Publication Date
WO2020006984A1 true WO2020006984A1 (en) 2020-01-09

Family

ID=64446912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120151 WO2020006984A1 (en) 2018-07-04 2018-12-10 Bim technology-based comprehensive aid decision-making method for engineering construction organization scheme

Country Status (2)

Country Link
CN (1) CN108932383B (en)
WO (1) WO2020006984A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115358034A (en) * 2022-08-31 2022-11-18 扬州工业职业技术学院 Intelligent arrangement method and system based on BIM (building information modeling) comprehensive optimization design
CN116308188A (en) * 2023-03-23 2023-06-23 中宬建设管理有限公司 Digital engineering management method and system based on BIM technology

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108932383B (en) * 2018-07-04 2020-07-24 成都希盟泰克科技发展有限公司 Engineering construction organization scheme comprehensive aid decision-making method based on BIM technology
CN109544051A (en) * 2019-01-25 2019-03-29 中铁三局集团广东建设工程有限公司 A kind of construction management application platform based on BIM technology application
CN109784758B (en) * 2019-01-30 2021-04-02 北京筑业志远软件开发有限公司 Engineering quality supervision early warning system and method based on BIM model
CN110110376A (en) * 2019-04-09 2019-08-09 天津大学 A kind of hinge dam type scheme analysis method for quantitatively evaluating and device based on BIM
CN111340458A (en) * 2020-03-17 2020-06-26 中铁城建集团有限公司 Construction progress informatization management method
CN114219164A (en) * 2021-12-21 2022-03-22 中国电建集团成都勘测设计研究院有限公司 Automatic prediction method for construction resource input amount

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010662A (en) * 2012-06-29 2014-01-20 Toshiba Elevator Co Ltd Bim system, server device, terminal device, method, and program
CN106055839A (en) * 2016-06-30 2016-10-26 上海宝冶集团有限公司 Application method of three-dimensional scanning technology in building engineering based on BIM
CN106295022A (en) * 2016-08-15 2017-01-04 中国十七冶集团有限公司 The simulation of a kind of arrangement and method for construction based on BIM and optimization method
CN107993000A (en) * 2017-11-27 2018-05-04 中国十九冶集团有限公司 The method of construction main flat face dynamic coordinate management based on BIM
CN108197802A (en) * 2017-12-29 2018-06-22 湖南大学 It is a kind of based on BIM technology to the method and system of concrete structure construction quality management and control
CN108932383A (en) * 2018-07-04 2018-12-04 成都希盟科技有限公司 The comprehensive aid decision-making method of engineering construction organization scheme based on BIM technology

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500371A (en) * 2013-08-08 2014-01-08 机械工业第六设计研究院有限公司 Change control method based on BIM
CN103440600A (en) * 2013-09-13 2013-12-11 成都中铁隆工程集团有限公司 BIM (Building Information Modeling) risk monitoring system and method of multilayer 4D (4-Dimensional) model
JP6199365B2 (en) * 2015-12-08 2017-09-20 東芝エレベータ株式会社 BIM system, method and program
US10190791B2 (en) * 2016-04-27 2019-01-29 Crestron Electronics, Inc. Three-dimensional building management system visualization
LU93399B1 (en) * 2016-12-23 2018-07-24 Luxembourg Inst Science & Tech List Bim modelling with flexibility attributes
CN108108510A (en) * 2017-10-27 2018-06-01 广东星层建筑科技股份有限公司 A kind of assembled architecture design method and equipment based on BIM
CN107885935B (en) * 2017-11-09 2021-04-13 成都希盟泰克科技发展有限公司 Dam engineering construction scheme comprehensive optimization method based on BIM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010662A (en) * 2012-06-29 2014-01-20 Toshiba Elevator Co Ltd Bim system, server device, terminal device, method, and program
CN106055839A (en) * 2016-06-30 2016-10-26 上海宝冶集团有限公司 Application method of three-dimensional scanning technology in building engineering based on BIM
CN106295022A (en) * 2016-08-15 2017-01-04 中国十七冶集团有限公司 The simulation of a kind of arrangement and method for construction based on BIM and optimization method
CN107993000A (en) * 2017-11-27 2018-05-04 中国十九冶集团有限公司 The method of construction main flat face dynamic coordinate management based on BIM
CN108197802A (en) * 2017-12-29 2018-06-22 湖南大学 It is a kind of based on BIM technology to the method and system of concrete structure construction quality management and control
CN108932383A (en) * 2018-07-04 2018-12-04 成都希盟科技有限公司 The comprehensive aid decision-making method of engineering construction organization scheme based on BIM technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115358034A (en) * 2022-08-31 2022-11-18 扬州工业职业技术学院 Intelligent arrangement method and system based on BIM (building information modeling) comprehensive optimization design
CN116308188A (en) * 2023-03-23 2023-06-23 中宬建设管理有限公司 Digital engineering management method and system based on BIM technology
CN116308188B (en) * 2023-03-23 2023-09-26 中宬建设管理有限公司 Digital engineering management method and system based on BIM technology

Also Published As

Publication number Publication date
CN108932383B (en) 2020-07-24
CN108932383A (en) 2018-12-04

Similar Documents

Publication Publication Date Title
WO2020006984A1 (en) Bim technology-based comprehensive aid decision-making method for engineering construction organization scheme
US20050240381A1 (en) Systems and methods for analysis of a commodity transmission network
EP1359529A1 (en) Computer-implemented product development planning method
US20040162753A1 (en) Resource allocation management and planning
Pereira Jr et al. On multicriteria decision making under conditions of uncertainty
CN110751358A (en) Scheduling method for airport ground service personnel, electronic equipment and storage medium
JP2011170496A (en) Device and method for supporting plant construction plan
KR101018489B1 (en) User-specified configuration of prediction services
Ibadov et al. Construction projects planning using network model with the fuzzy decision node
CN112633769A (en) Advanced plan scheduling system
Liu et al. Construction rescheduling based on a manufacturing rescheduling framework
CN109034403A (en) A kind of urban rail transit equipment skeleton
CN113722564A (en) Visualization method and device for energy and material supply chain based on space map convolution
Sheth et al. Building information modelling, a tool for green built environment
Duan Analysis of ERP Enterprise Management Information System based on Cloud Computing Mode
CN109657958B (en) Modeling method of digital information system and digital information system
Purba et al. A Systematic Literature Review of Smart Governance
CN111369116A (en) Project early-stage and project early-stage management system based on visualization technology
Ding et al. Research and implementation of order-oriented textile production scheduling system
Pan et al. RETRACTED ARTICLE: Research on process customization technology for intelligent transportation cloud service platform
CN113268503B (en) Information aggregation method, storage medium, and computer device
Tian et al. RETRACTED: Research on Big Data Analysis Platform of Power Grid Enterprise Accounting Based on Cloud Computing
Salamova et al. Organization Management in the Digital Economy
TWI816110B (en) Multi-objective schedule management method for product development projects
Sagayam et al. Project Delivery of Goods With Limited Resources and Minimum Time Using Fuzzy Logic Method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925680

Country of ref document: EP

Kind code of ref document: A1