WO2019221040A1 - Specimen detecting chip, and specimen detecting device employing same - Google Patents

Specimen detecting chip, and specimen detecting device employing same Download PDF

Info

Publication number
WO2019221040A1
WO2019221040A1 PCT/JP2019/018863 JP2019018863W WO2019221040A1 WO 2019221040 A1 WO2019221040 A1 WO 2019221040A1 JP 2019018863 W JP2019018863 W JP 2019018863W WO 2019221040 A1 WO2019221040 A1 WO 2019221040A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipette tip
excitation light
light
pipette
side wall
Prior art date
Application number
PCT/JP2019/018863
Other languages
French (fr)
Japanese (ja)
Inventor
高敏 彼谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020519613A priority Critical patent/JPWO2019221040A1/en
Publication of WO2019221040A1 publication Critical patent/WO2019221040A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to a sample detection device for detecting a substance to be measured contained in a sample detection chip (sensor chip) and a sample detection chip used therefor.
  • specimen detection methods when detecting a very small substance, various specimen detection methods have been proposed that can detect such a substance by applying a physical phenomenon of the substance.
  • a specimen detection method for example, by using an antigen-antibody reaction between an antigen, which is a measurement target substance contained in a sample solution, and an antibody or antigen labeled with a labeling substance, the presence or absence of the measurement target substance or its Immunoassay methods (immunoassays) for measuring amounts are known.
  • a fluorescent immunoassay using a fluorescent substance as a labeling substance is known.
  • a specimen detection device using a fluorescence immunoassay method a phenomenon in which high light output is obtained by resonating electrons and light in a fine region such as a nanometer level (SPR: Surface Plasmon Resonance)
  • SPR device a surface plasmon resonance device that detects minute analytes in a living body is used.
  • SPFS Surface Plasmon-field enhanced Fluorescence Spectroscopy
  • SPR surface plasmon resonance
  • SPFS device A surface plasmon excitation enhanced fluorescence spectrometer that can perform analyte detection with higher accuracy is one of such specimen detection devices.
  • a sensor chip including a dielectric member, a metal film adjacent to the upper surface of the dielectric member, and a liquid holding member disposed on the upper surface of the metal film is used.
  • a reaction field having a ligand for capturing an analyte is provided on a metal film.
  • the analyte is captured by the ligand (primary reaction) by supplying the sample liquid containing the analyte to the liquid holding member.
  • a liquid (labeling liquid) containing a secondary antibody labeled with a fluorescent substance is introduced into the liquid holding member.
  • the analyte captured by the ligand is labeled with a fluorescent substance by an antigen-antibody reaction (secondary reaction).
  • the fluorescent material is excited by the surface plasmon light generated on the surface of the metal film, and fluorescence is generated from the fluorescent material. By detecting this fluorescence, the presence or absence of the analyte and the amount thereof can be measured.
  • a well member for temporarily storing a sample liquid or the like, a sample liquid or the like with respect to a reaction field on a metal film A flow path member that can be circulated is used.
  • the detection unit is disposed above the well and detects fluorescence that has passed through the liquid surface of the liquid in the well. For this reason, when the inner diameter of the well is small, the fluorescence detection result is affected by the meniscus. Even if the inner diameter of the well is large, the fluorescence detection result may be affected by bubbles present on the liquid surface.
  • the well type sensor chip the amount of the necessary sample solution becomes relatively large, and accordingly, the specimen detection apparatus using the well type sensor chip tends to be enlarged.
  • the present invention can suppress a decrease in detection accuracy due to the remaining liquid in the well during the reaction process, and can suppress the influence on the detection result due to the liquid level of the liquid in the well during the detection process.
  • An object of the present invention is to provide a specimen detection chip that can be used and a specimen detection apparatus using the same.
  • the present invention also provides a sample detection chip capable of reducing the size of the sample detection device and a sample detection device using the same, while the amount of the necessary sample solution is equivalent to that of the well-type sensor chip. Objective.
  • the present invention was invented in order to solve the above-described problems in the prior art, and in order to achieve at least one of the above-described objects, a sample detection chip reflecting one aspect of the present invention.
  • An analyte detection chip used for analyte detection A sidewall member having a reaction field for capturing the analyte; A pipette tip disposed adjacent to the side wall member, The pipette tip is provided with an opening, and the pipette tip and the dielectric member are disposed so that the reaction field contacts the liquid introduced into the pipette tip.
  • a specimen detection apparatus reflecting one aspect of the present invention is A sample detection apparatus that detects a sample using the sensor chip described above, An excitation light irradiation unit that irradiates the metal film with excitation light via a dielectric member; A fluorescence detection unit that detects fluorescence generated from the fluorescence-labeled analyte captured in the reaction field based on the excitation light irradiated to the metal film;
  • the pipette tip of the sensor tip is mounted, and includes a transport unit that moves the pipette tip and sucks and discharges the liquid in the pipette tip.
  • a specimen detection apparatus reflecting one aspect of the present invention is A sample detection apparatus that detects a sample using the sensor chip described above, An excitation light irradiation unit for irradiating the diffraction grating with excitation light; A measurement light detection unit that detects fluorescence generated from fluorescently labeled analyte captured in the reaction field based on excitation light irradiated to the diffraction grating, and reflected light of the excitation light reflected by the diffraction grating; A pipette tip of a sensor tip is attached, and a transport unit that moves the pipette tip and sucks and discharges the liquid in the pipette tip is provided.
  • the present invention it is possible to suppress a decrease in detection accuracy due to remaining liquid in the well during the reaction process, and to suppress an influence on the detection result due to the liquid level of the liquid in the well during the detection process. be able to.
  • FIG. 1 is a schematic diagram for explaining the configuration of a prism-coupled surface plasmon excitation enhanced fluorescence spectrometer (PC-SPFS apparatus) according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a configuration of a sensor chip according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a modified example of the sensor chip.
  • FIG. 4 is a flowchart illustrating an example of an operation procedure of the PC-SPFS apparatus.
  • FIG. 5 is a schematic diagram for explaining the configuration of a diffraction grating coupled surface plasmon excitation enhanced fluorescence spectrometer (GC-SPFS apparatus) according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining a configuration of a sensor chip according to an embodiment of the present invention.
  • FIG. 7 is a perspective view for explaining an example of the diffraction grating.
  • FIG. 1 is a schematic diagram for explaining the configuration of a prism-coupled surface plasmon excitation enhanced fluorescence spectrometer (PC-SPFS apparatus) according to an embodiment of the present invention
  • FIG. 2 shows an embodiment of the present invention. It is a schematic diagram for demonstrating the structure of the sensor chip which concerns, FIG. 2 (A) is sectional drawing in alignment with the height direction of a sensor chip, FIG.2 (B) is sectional drawing in alignment with the horizontal direction of a sensor chip. is there.
  • PC-SPFS apparatus prism-coupled surface plasmon excitation enhanced fluorescence spectrometer
  • the PC-SPFS apparatus 10 in this embodiment includes an excitation light irradiation unit 20, a fluorescence detection unit 30, a transport unit 40, and a control unit 50. Note that the PC-SPFS apparatus 10 in the present embodiment is used in a state where the sensor chip 100 is mounted on the transport unit 40.
  • the sensor chip 100 includes a dielectric member 102 having an incident surface 102a, a film formation surface 102b, and an emission surface 102c, a metal film 104 formed on the film formation surface 102b, and a film formation surface 102b or It has a metal film 104 and a pipette tip 106 fixed thereto.
  • the dielectric member 102 that is an optical element, the metal film 104, and a reaction field described later form a side wall member.
  • the sensor chip 100 is replaced for each specimen test.
  • the dielectric member 102 can be a prism made of a dielectric that is transparent to the excitation light ⁇ .
  • the incident surface 102 a of the dielectric member 102 is a surface on which the excitation light ⁇ irradiated from the excitation light irradiation unit 20 is incident on the inside of the dielectric member 102.
  • a metal film 104 is formed on the film formation surface 102b.
  • the excitation light ⁇ incident on the inside of the dielectric member 102 is reflected at the interface between the metal film 104 and the film formation surface 102b of the dielectric member 102 (hereinafter referred to as “the back surface of the metal film 104” for convenience), and the emission surface.
  • the excitation light ⁇ is emitted to the outside of the dielectric member 102 through 102c.
  • the shape of the dielectric member 102 is not particularly limited, and the dielectric member 102 shown in FIGS. 1 and 2 is a prism formed of a hexahedron having a substantially trapezoidal vertical cross-sectional shape (a truncated quadrangular pyramid shape). Also, a prism having a vertical cross-sectional shape of a triangle (a so-called triangular prism), a semicircular shape, and a semielliptical shape can be used.
  • the incident surface 102 a is formed so that the excitation light ⁇ does not return to the excitation light irradiation unit 20.
  • the light source of the excitation light ⁇ is, for example, a laser diode (hereinafter also referred to as “LD”)
  • LD laser diode
  • the angle of the incident surface 102a is set so that the excitation light ⁇ does not enter the incident surface 102a perpendicularly in the scanning range centered on the ideal enhancement angle.
  • the resonance angle (and the enhancement angle in the vicinity thereof) is generally determined by the design of the sensor chip 100.
  • the design elements are the refractive index of the dielectric member 102, the refractive index of the metal film 104, the film thickness of the metal film 104, the extinction coefficient of the metal film 104, the wavelength of the excitation light ⁇ , and the like.
  • the resonance angle and the enhancement angle are shifted by the analyte immobilized on the metal film 104, but the amount is less than a few degrees.
  • the dielectric member 102 has a considerable amount of birefringence.
  • the material of the dielectric member 102 includes, for example, various inorganic materials such as glass and ceramics, natural polymers, synthetic polymers, and the like, and is excellent in chemical stability, manufacturing stability, optical transparency, and low birefringence. Is preferred.
  • the material is not particularly limited as described above. In providing, for example, it is preferably formed from a resin material.
  • the method for manufacturing the dielectric member 102 is not particularly limited, but injection molding using a mold is preferable from the viewpoint of manufacturing cost.
  • the dielectric member 102 is formed from a resin material, for example, polyolefins such as polyethylene (PE) and polypropylene (PP), polycyclic olefins such as cyclic olefin copolymer (COC) and cyclic olefin polymer (COP), polystyrene, Polycarbonate (PC), acrylic resin, triacetyl cellulose (TAC), or the like can be used.
  • PE polyethylene
  • PP polypropylene
  • polycyclic olefins such as cyclic olefin copolymer (COC) and cyclic olefin polymer (COP), polystyrene, Polycarbonate (PC), acrylic resin, triacetyl cellulose (TAC), or the like
  • PC polycarbonate
  • TAC triacetyl cellulose
  • the metal film 104 is formed on the film formation surface 102 b of the dielectric member 102.
  • an interaction surface plasmon resonance
  • An electric field can be generated.
  • the material of the metal film 104 is not particularly limited as long as it is a metal capable of causing surface plasmon resonance.
  • a metal capable of causing surface plasmon resonance.
  • at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum is used.
  • Such a metal is suitable as the metal film 104 because it is stable against oxidation and has a large electric field enhancement by surface plasmon light.
  • the method for forming the metal film 104 is not particularly limited, and examples thereof include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. It is done.
  • the sputtering method or the vapor deposition method is used because the adjustment of the metal film forming conditions is easy.
  • the thickness of the metal film 104 is not particularly limited, but is preferably in the range of 5 to 500 nm, and more preferably gold, silver, copper, In the case of platinum, it is preferably in the range of 20 to 70 nm, in the case of aluminum, 10 to 50 nm, and in the case of these alloys, it is preferably in the range of 10 to 70 nm.
  • the thickness of the metal film 104 is within the above range, it is preferable that surface plasmon light is easily generated.
  • the size (length ⁇ width) dimensions and shape are not particularly limited.
  • a ligand for capturing the analyte is immobilized on the surface of the metal film 104 that does not face the dielectric member 102 (hereinafter referred to as “the surface of the metal film 104” for convenience). Has been. By immobilizing the ligand, the analyte can be selectively detected.
  • the ligand is uniformly immobilized in a predetermined region (reaction field) on the metal film 104.
  • the type of the ligand is not particularly limited as long as the analyte can be captured.
  • the ligand is an analyte specific antibody or fragment thereof.
  • the pipette tip 106 has a substantially rectangular tube-shaped body portion 108 and a tip portion 110 having a liquid suction / discharge hole 110a.
  • an opening 106 b is provided in the pipette tip 106 so that the reaction field on the metal film 104 and the liquid in the pipette tip 106 are in contact with each other, and the pipette tip 106 and the dielectric member 102 are disposed.
  • the pipette tip 106 has a mounting hole 106c that can be mounted on a pipette nozzle 46 of the transport unit 40, which will be described later.
  • the body portion 108 of the pipette tip 106 has a substantially rectangular tube shape.
  • at least the side wall 108a having the fixing surface 106a with the dielectric member 102 is flat, and the generated fluorescent ⁇ If it is the shape which does not interfere with the fluorescence detection unit 30 detecting, it will not specifically limit.
  • the side wall is a flat surface means that both the inner surface and the outer surface of the side wall of the pipette tip 106 are flat surfaces.
  • FIG. 3 is a schematic diagram for explaining a modified example of the sensor chip 100.
  • the side wall disposed between the reaction field and the fluorescence detection unit 30, that is, the side walls 108a and 108b disposed on the optical path of the fluorescence ⁇ is a flat surface, and the other side walls. Can also be curved.
  • the side wall 108a having the fixing surface 106a may be a flat surface, and the other side wall may be a curved surface.
  • at least one of the inner surface and the outer surface of the side wall 108b facing the side wall 108a having the fixing surface 106a in the body portion 108 can be a convex curved surface.
  • the side wall 108b functions as a cylindrical lens and can collect the fluorescent ⁇ generated in the reaction field.
  • the pipette tip 106 is formed of a material that is transparent to at least light having the wavelength of fluorescence ⁇ , and preferably formed of a material that is transparent to light having the wavelength of excitation light ⁇ and light having the wavelength of fluorescence ⁇ . ing. However, a part of the pipette tip 106 may be made of a material that is opaque to light as long as it does not interfere with light extraction in the detection method described later.
  • the material of the pipette tip 106 includes, for example, various inorganic materials such as glass and ceramics, natural polymers, synthetic polymers, and the like, and materials excellent in chemical stability, manufacturing stability, optical transparency, and low birefringence are used. preferable.
  • the pipette tip 106 can be joined to the dielectric member 102 or the metal film 104 by, for example, adhesion using an adhesive or a transparent adhesive sheet, laser welding, ultrasonic welding, or the like.
  • the dielectric member 102 is preferably fixed to the body portion 108 of the pipette tip 106. By configuring in this way, the dielectric member 102 can be prevented from coming into contact with the liquid when the liquid is introduced from the liquid reservoir 60 into the pipette tip 106, as will be described later.
  • the pipette tip 106 may be provided with a filter inside.
  • a filter inside the pipette tip 106, contamination caused by contact of liquid and gas (aerosol by evaporation from the liquid) that is sucked and discharged through the pipette tip 106 to the connection between the pipette nozzle 46 and the pipette tip 106 Can be prevented.
  • a filter for example, a hydrophobic porous filter such as a fluororesin (PTFE) can be used.
  • PTFE fluororesin
  • the sensor chip 100 configured as described above may be provided with a positioning portion in order to accurately stop at a later-described supply / drainage position or measurement position.
  • the positioning part is, for example, a hole or notch that fits with a positioning pin arranged at the supply / drain liquid position or measurement position, or conversely, a protrusion that fits with a positioning hole arranged at the supply / drain liquid position or measurement position. Or part.
  • the positioning portion may be provided on the pipette tip 106 or the pipette nozzle 46.
  • a shape having a characteristic such as a convex portion as a positioning portion in the pipette nozzle 46, it is possible to suppress complication of the shape of the pipette tip 106 and displacement of the positioning portion of the pipette tip 106.
  • the PC-SPFS apparatus 10 in the present embodiment is provided with the excitation light irradiation unit 20, the fluorescence detection unit 30, the transport unit 40, and the control unit 50.
  • the excitation light irradiation unit 20 irradiates the sensor chip 100 at the measurement position with the excitation light ⁇ . As will be described later, when measuring the fluorescence ⁇ , the excitation light irradiation unit 20 directs only the P wave with respect to the metal film 104 toward the incident surface 102a so that the incident angle with respect to the metal film 104 is an angle that causes surface plasmon resonance. And exit.
  • the “excitation light” is light that directly or indirectly excites the fluorescent substance.
  • the excitation light ⁇ is irradiated through the dielectric member 102 at an angle at which surface plasmon resonance occurs on the metal film 104, local field light that excites the fluorescent material is generated on the surface of the metal film 104. Light.
  • the excitation light irradiation unit 20 includes a configuration for emitting the excitation light ⁇ toward the dielectric member 102 and a configuration for scanning the incident angle of the excitation light ⁇ with respect to the back surface of the metal film 104.
  • the excitation light irradiation unit 20 includes a light source unit 21, an angle adjustment mechanism 22, and a light source control unit 23.
  • the light source unit 21 irradiates collimated excitation light ⁇ having a constant wavelength and light amount so that the irradiation spot has a substantially circular shape on the back surface of the metal film 104.
  • the light source unit 21 includes, for example, a light source of excitation light ⁇ , a beam shaping optical system, an APC (Automatic Power-Control) mechanism, and a temperature adjustment mechanism (all not shown).
  • the type of light source is not particularly limited, and includes, for example, a laser diode (LD), a light emitting diode, a mercury lamp, and other laser light sources.
  • LD laser diode
  • the light emitted from the light source is converted into a beam by a lens, a mirror, a slit, or the like.
  • the light emitted from the light source is not monochromatic light, the light emitted from the light source is converted into monochromatic light by a diffraction grating or the like.
  • the light emitted from the light source is not linearly polarized light, the light emitted from the light source is converted into linearly polarized light by a polarizer or the like.
  • the beam shaping optical system includes, for example, a collimator, a band pass filter, a linear polarization filter, a half-wave plate, a slit, and a zoom means.
  • the beam shaping optical system may include all of these or only a part thereof.
  • the collimator collimates the excitation light ⁇ irradiated from the light source.
  • the band-pass filter turns the excitation light ⁇ irradiated from the light source into narrowband light having only the center wavelength. This is because the excitation light ⁇ from the light source has a slight wavelength distribution width.
  • the linear polarization filter turns the excitation light ⁇ irradiated from the light source into completely linearly polarized light.
  • the half-wave plate adjusts the polarization direction of the excitation light ⁇ so that the P-wave component is incident on the metal film 104.
  • the slit and zoom means adjust the beam diameter, contour shape, and the like of the excitation light ⁇ so that the shape of the irradiation spot on the back surface of the metal film 104 is a circle having a predetermined size.
  • the APC mechanism controls the light source so that the output of the light source is constant. More specifically, the APC mechanism detects the amount of light branched from the excitation light ⁇ with a photodiode (not shown) or the like. The APC mechanism controls the input energy by a regression circuit, thereby controlling the output of the light source to be constant.
  • the temperature adjustment mechanism is, for example, a heater or a Peltier element.
  • the wavelength and energy of the light emitted from the light source may vary depending on the temperature. For this reason, the wavelength and energy of the light emitted from the light source are controlled to be constant by keeping the temperature of the light source constant by the temperature adjusting mechanism.
  • the angle adjustment mechanism 22 adjusts the incident angle of the excitation light ⁇ to the metal film 104.
  • the angle adjustment mechanism 22 makes the optical axis of the excitation light ⁇ and the sensor chip 100 relative to each other. Rotate.
  • the angle adjusting mechanism 22 rotates the light source unit 21 around an axis (axis perpendicular to the paper surface of FIG. 1) orthogonal to the optical axis of the excitation light ⁇ .
  • the position of the rotation axis is set so that the position of the irradiation spot on the metal film 104 hardly changes even when the incident angle is scanned.
  • the angle at which the maximum amount of plasmon scattered light can be obtained is the enhancement angle.
  • the basic incident condition of the excitation light ⁇ depends on the material and shape of the dielectric member 102 of the sensor chip 100, the thickness of the metal film 104, the type of metal to be configured, the refractive index of the sample liquid in the pipette chip 106, and the like.
  • the optimum incident condition varies slightly depending on the type and amount of the analyte in the pipette tip 106, the shape error of the dielectric member 102, and the like. For this reason, it is preferable to obtain an optimal enhancement angle for each specimen test.
  • the light source control unit 23 controls various devices included in the light source unit 21 to control the irradiation of the excitation light ⁇ of the light source unit 21.
  • the light source control unit 23 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the fluorescence detection unit 30 detects the fluorescence ⁇ generated from the fluorescent material excited by the irradiation of the excitation light ⁇ to the metal film 104. If necessary, the fluorescence detection unit 30 also detects plasmon scattered light generated by the irradiation of the excitation light ⁇ to the metal film 104.
  • the fluorescence detection unit 30 includes, for example, a light receiving unit 31, a position switching mechanism 37, and a sensor control unit 38.
  • the light receiving unit 31 is disposed in the normal direction of the metal film 104 of the sensor chip 100 (z-axis direction in FIG. 1).
  • the light receiving unit 31 includes a first lens 32, an optical filter 33, a second lens 34, and a light receiving sensor 35.
  • the first lens 32 is, for example, a condensing lens and condenses light generated on the metal film 104.
  • the second lens 34 is, for example, an imaging lens, and forms an image of the light collected by the first lens 32 on the light receiving surface of the light receiving sensor 35.
  • the optical path between both lenses 32 and 34 is a substantially parallel optical path.
  • the optical filter 33 is disposed between the lenses 32 and 34.
  • the optical filter 33 guides only the fluorescent component to the light receiving sensor 35 and removes the excitation light component (plasmon scattered light) in order to detect the fluorescent ⁇ with high S / N.
  • the optical filter 33 includes, for example, an excitation light reflection filter, a short wavelength cut filter, and a band pass filter.
  • the optical filter 33 is, for example, a filter including a multilayer film that reflects a predetermined light component, but may be a colored glass filter that absorbs the predetermined light component.
  • the light receiving sensor 35 detects fluorescence ⁇ .
  • the light receiving sensor 35 is not particularly limited as long as it has a high sensitivity and can detect weak fluorescence ⁇ from a fluorescent substance labeled with a very small amount of analyte.
  • a multiplier tube (PMT), an avalanche photodiode (APD), a low noise photodiode (PD), or the like can be used.
  • the position switching mechanism 37 switches the position of the optical filter 33 on or off the optical path in the light receiving unit 31. Specifically, when the light receiving sensor 35 detects the fluorescence ⁇ , the optical filter 33 is disposed on the optical path of the light receiving unit 31, and when the light receiving sensor 35 detects plasmon scattered light, the optical filter 33 is placed on the light receiving unit 31. Place outside the optical path.
  • the position switching mechanism 37 includes, for example, a rotation driving unit and a known mechanism (such as a turntable or a rack and pinion) that moves the optical filter 33 in the horizontal direction by using a rotational motion.
  • the sensor control unit 38 controls detection of an output value of the light receiving sensor 35, management of sensitivity of the light receiving sensor 35 based on the detected output value, change of sensitivity of the light receiving sensor 35 for obtaining an appropriate output value, and the like.
  • the sensor control unit 38 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the transport unit 40 with the sensor chip 100 attached, sucks and discharges liquids such as sample liquid, labeling liquid, and washing liquid in the pipette chip 106 and moves the pipette chip 106.
  • the transport unit 40 includes a syringe pump 41, a pipette nozzle 46, a pump drive mechanism 44, and a pipette nozzle moving mechanism 45.
  • the transport unit 40 is used with the pipette tip 106 of the sensor chip 100 attached to the tip of the pipette nozzle 46.
  • the syringe pump 41 includes a syringe 42 and a plunger 43 that can reciprocate inside the syringe 42. By the reciprocating motion of the plunger 43, the liquid is sucked and discharged quantitatively.
  • the pump drive mechanism 44 is a device for reciprocating the plunger 43 in order to drive the syringe pump 41, and includes, for example, a stepping motor.
  • a drive device including a stepping motor is preferable from the viewpoint of managing the amount of liquid remaining in the pipette tip 106 because it can manage the amount and rate of liquid delivery of the syringe pump 41.
  • the pipette nozzle moving mechanism 45 freely moves the pipette nozzle 46 in two directions, for example, an axial direction (for example, a vertical direction) of the pipette nozzle 46 and a direction crossing the axial direction (for example, a horizontal direction).
  • the moving device of the pipette nozzle 46 is constituted by, for example, a robot arm, a two-axis stage, or a turntable that can move up and down.
  • the transport unit 40 sucks various liquids from the liquid storage unit 60 by the syringe pump 41 and supplies them into the pipette chip 106 of the sensor chip 100. Thereby, a primary reaction or a secondary reaction can be caused in the pipette tip 106.
  • the transport unit 40 moves the sensor chip 100 to the supply / drainage position or the measurement position with the sensor chip 100 mounted on the pipette nozzle 46.
  • the “supply / drainage position” is a position where the liquid is supplied to or removed from the pipette tip 106 from the liquid reservoir 60.
  • the “measurement position” is a position where the excitation light irradiation unit 20 irradiates the sensor chip 100 with the excitation light ⁇ , and the fluorescence detection unit 30 detects the fluorescence ⁇ generated therewith.
  • FIG. 4 is a flowchart illustrating an example of an operation procedure of the PC-SPFS apparatus 10.
  • the user attaches the sensor chip 100 to the pipette nozzle 46 of the transport unit 40 (S100).
  • the control unit 50 operates the pipette nozzle moving mechanism 45 to move the sensor chip 100 attached to the pipette nozzle 46 to the supply / drainage position (S110).
  • control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to introduce the cleaning liquid into the pipette tip 106 from the liquid storage unit 60, and cleans the inside of the pipette tip 106 to keep the moisture on the reaction field.
  • the agent is removed (S120).
  • the control unit 50 may agitate the cleaning liquid in the pipette tip 106 by operating the pipette nozzle moving mechanism 45 to vibrate the sensor chip 100.
  • the cleaning liquid used for cleaning can be discharged to the liquid storage section 60 or a waste liquid section (not shown).
  • control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to introduce the measurement liquid from the liquid storage unit 60 into the pipette tip 106 (S130). If there is no influence on the result of the enhancement angle detection (S150) in the subsequent step, the enhancement angle measurement can be performed as it is without discharging the cleaning liquid by using both the cleaning liquid and the measurement liquid.
  • control unit 50 operates the pipette nozzle moving mechanism 45 to move the sensor chip 100 to the measurement position (S140). Then, the control unit 50 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 with the excitation light ⁇ and to detect and enhance the plasmon scattered light having the same wavelength as the excitation light ⁇ . A corner is detected (S150).
  • control unit 50 operates the excitation light irradiation unit 20 to scan the incident angle of the excitation light ⁇ with respect to the metal film 104 and operates the fluorescence detection unit 30 to detect plasmon scattered light. .
  • the control unit 50 operates the position switching mechanism 37 to place the optical filter 33 outside the light path of the light receiving unit 31.
  • the control part 50 determines the incident angle of the excitation light (alpha) when the light quantity of a plasmon scattered light is the maximum as an enhancement angle.
  • control unit 50 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 arranged at the measurement position with the excitation light ⁇ , and outputs the output value (optical blank value) of the light receiving sensor 35. ) Is recorded (S160).
  • control unit 50 operates the angle adjustment mechanism 22 to set the incident angle of the excitation light ⁇ to the enhancement angle. Further, the control unit 50 operates the position switching mechanism 37 to place the optical filter 33 in the optical path of the light receiving unit 31.
  • control unit 50 operates the pipette nozzle moving mechanism 45 to move the sensor chip 100 to the supply / drainage position (S170). Then, the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to discharge the measurement liquid in the pipette tip 106 and introduce the sample liquid stored in the liquid storage unit 60 into the pipette tip 106. (S180). In the pipette tip 106, the analyte is captured in the reaction field on the metal film 104 by the antigen-antibody reaction (primary reaction). During the primary reaction, the control unit 50 may agitate the sample liquid in the pipette chip 106 by operating the pipette nozzle moving mechanism 45 to vibrate the sensor chip 100.
  • sample liquid used here is a liquid prepared using a specimen, and for example, a specimen and a reagent are mixed to perform a treatment for binding a fluorescent substance to an analyte contained in the specimen. Things. Examples of such specimens include blood, serum, plasma, urine, nasal fluid, saliva, stool, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.).
  • the analyte contained in the sample is, for example, a nucleic acid (DNA that may be single-stranded or double-stranded, RNA, polynucleotide, oligonucleotide, PNA (peptide nucleic acid), etc., or nucleoside Nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modified molecules thereof, Specific examples thereof include a complex, and may be a carcinoembryonic antigen such as AFP ( ⁇ -fetoprotein), a tumor marker, a signal transduction substance, a hormone, and the like, and is not particularly limited.
  • AFP ⁇ -fetoprotein
  • control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to discharge the sample liquid in the pipette tip 106, introduce a cleaning liquid into the pipette tip 106, and wash the inside of the pipette tip 106. (S190).
  • the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to introduce the labeling liquid stored in the liquid storage unit 60 into the pipette tip 106 (S200).
  • the analyte captured on the metal film 104 is labeled with a fluorescent substance by an antigen-antibody reaction (secondary reaction).
  • a liquid containing a secondary antibody labeled with a fluorescent substance can be used.
  • the controller 50 may operate the pipette nozzle moving mechanism 45 to vibrate the sensor chip 100 so that the labeling liquid in the pipette chip 106 is agitated.
  • control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to discharge the labeling liquid in the pipette tip 106, introduce a cleaning liquid into the pipette tip 106, and wash the inside of the pipette tip 106. (S210).
  • control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to discharge the cleaning liquid in the pipette tip 106 and introduce the measurement liquid into the pipette tip 106 (S220).
  • control unit 50 operates the pipette nozzle moving mechanism 45 to move the sensor chip 100 to the measurement position (S230).
  • control unit 50 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 arranged at the measurement position with the excitation light ⁇ and to label the analyte captured by the ligand.
  • the fluorescent ⁇ emitted from the fluorescent substance to be detected is detected (S240). Based on the intensity of the detected fluorescence ⁇ , it can be converted into the amount or concentration of the analyte as required.
  • enhancement angle detection (S150) and optical blank value measurement (S160) are performed before the primary reaction (S180). However, enhancement angle detection (S150) is performed after the primary reaction (S180). ), Optical blank value measurement (S160) may be performed.
  • the detection of the enhancement angle (S150) may be omitted.
  • the secondary reaction (S200) for labeling the analyte with a fluorescent substance is performed after the primary reaction (S180) for reacting the analyte and the ligand (two-step method).
  • the timing for labeling the analyte with a fluorescent substance is not particularly limited.
  • a labeling solution can be added to the sample solution to label the analyte with a fluorescent substance in advance. Further, by simultaneously injecting the sample solution and the labeling solution into the pipette tip 106, the analyte labeled with the fluorescent substance is captured by the ligand. In this case, the analyte is labeled with a fluorescent substance, and the analyte is captured by the ligand.
  • both the primary reaction and the secondary reaction can be completed (one-step method).
  • the enhancement angle detection (S150) is performed before the antigen-antibody reaction.
  • FIG. 5 is a schematic diagram for explaining a configuration of a diffraction grating coupled surface plasmon excitation enhanced fluorescence spectrometer (GC-SPFS apparatus) according to another embodiment of the present invention
  • FIG. 6 is an embodiment of the present invention.
  • FIG. 6A is a schematic view for explaining a configuration of a sensor chip according to the embodiment
  • FIG. 6A is a cross-sectional view along the height direction of the sensor chip
  • FIG. 6B is a cross-section along the horizontal direction of the sensor chip.
  • the GC-SPFS apparatus 70 in this embodiment includes an excitation light irradiation unit 20, a fluorescence detection unit 30, a transport unit 40, and a control unit 50. Note that the GC-SPFS device 70 in this embodiment is used in a state where the sensor chip 200 is mounted on the transport unit 40.
  • the sensor chip 200 includes a substrate 202 having a film formation surface 202a, a metal film 104 formed on the film formation surface 202a, and a pipette chip 106 fixed to the film formation surface 202a or the metal film 104. And have.
  • a diffraction grating 203 as an optical element is formed on the substrate 202 at least at a part corresponding to the reaction field on the metal film 104.
  • the substrate 202 having a diffraction grating, which is an optical element, the metal film 104, and the reaction field form a side wall member.
  • the sensor chip 200 is replaced for each specimen test.
  • the shape of the substrate 202 is not particularly limited.
  • the substrate 202 can be formed of materials such as various inorganic materials such as glass and ceramics, natural polymers, and synthetic polymers.
  • the diffraction grating 203 is formed on the substrate 202.
  • the diffraction grating 203 only needs to be formed on at least a part of the portion corresponding to the reaction field on the metal film 104, and may be formed on the entire surface of the substrate 202 on the pipette tip 106 side. It may be formed only in part.
  • the surface plasmon generated in the metal film 104 and the evanescent light generated by the diffraction grating 203 are combined to generate surface plasmon resonance, and the surface of the metal film 104 is A localized enhanced electric field can be generated.
  • the diffraction grating 203 generates evanescent light when the excitation light ⁇ is irradiated.
  • the shape of the diffraction grating 203 is not particularly limited as long as it can generate evanescent light.
  • the diffraction grating 203 may be a one-dimensional diffraction grating as shown in FIG. 7A or a two-dimensional diffraction grating as shown in FIG. 7B.
  • a plurality of ridges parallel to each other are formed on the surface of the substrate 202 at a predetermined interval.
  • convex portions having a predetermined shape are periodically arranged on the surface of the substrate 202. Examples of the arrangement of the convex portions include a square lattice, a triangular (hexagonal) lattice, and the like.
  • Examples of the cross-sectional shape of the diffraction grating 203 include a rectangular wave shape, a sine wave shape, and a sawtooth shape.
  • the pitch of the diffraction grating 203 is preferably in the range of 100 to 2000 nm from the viewpoint of generating surface plasmon resonance.
  • the “diffraction grating pitch” refers to the center-to-center distance ⁇ of protrusions in the arrangement direction of the protrusions, as shown in FIGS.
  • the diffraction grating 203 is arranged so that the arrangement direction of the convex portions is along the depth direction of the pipette tip 106.
  • the formation method of the diffraction grating 203 is not particularly limited.
  • the metal film 104 may be formed on the film formation surface 202 a of the flat substrate 202 and then the uneven shape may be imparted to the metal film 104.
  • the metal film 104 may be formed on the film formation surface 202a of the substrate 202 that has been provided with an uneven shape in advance.
  • the pipette tip 106 is formed of a material that is at least transparent to light having the wavelength of excitation light ⁇ and light having a wavelength of fluorescence ⁇ .
  • a part of the pipette tip 106 may be made of a material that is opaque to light as long as it does not interfere with light extraction in the detection method described later.
  • the pipette tip 106 can be bonded to the substrate 202 or the metal film 104 by, for example, adhesion using an adhesive or a transparent adhesive sheet, laser welding, ultrasonic welding, or the like.
  • the substrate 202 is preferably fixed to the body portion 108 of the pipette tip 106. With this configuration, the substrate 202 can be prevented from coming into contact with the liquid when the liquid is introduced from the liquid storage unit 60 into the pipette tip 106, as will be described later.
  • the GC-SPFS apparatus 70 in this embodiment is provided with an excitation light irradiation unit 20, a measurement light detection unit 80, a transport unit 40, and a control unit 50.
  • the excitation light irradiation unit 20 irradiates the sensor chip 100 at the measurement position with the excitation light ⁇ . At this time, the excitation light ⁇ is applied to the diffraction grating 203 via the pipette tip 106.
  • the excitation light irradiation unit 20 applies the excitation light ⁇ to the diffraction grating 203 so that the plane including the optical axis of the excitation light ⁇ and the optical axis of the reflected light ⁇ of the excitation light ⁇ is along the arrangement direction of the convex portions of the diffraction grating 203. Irradiate.
  • the measurement light detection unit 80 includes, for example, a light receiving unit 31, an angle adjustment mechanism 36, a position switching mechanism 37, and a sensor control unit 38.
  • the angle adjustment mechanism 36 adjusts the angle of the measurement light detection unit 80 in order to detect the reflected light ⁇ of the excitation light ⁇ reflected by the diffraction grating 203.
  • the angle adjustment mechanism 36 may adjust the angle in conjunction with the angle adjustment mechanism 22 of the excitation light irradiation unit 20.
  • the angle at which the amount of the reflected light ⁇ is minimized is the enhancement angle.
  • the incident angle of the excitation light ⁇ is appropriately selected according to the pitch ⁇ of the diffraction grating 203, the wavelength of the excitation light ⁇ , the thickness of the metal film 104, the type of metal to be configured, the refractive index of the sample liquid in the pipette tip 106, and the like. Is done.
  • the incident angle ⁇ of the excitation light ⁇ is set so as to satisfy the following formula (1).
  • ksp is the wave number of the plasmon excited at the interface between the two types of media (the interface between the metal film 104 and the liquid in the pipette tip 106), and is defined as the following equation (2).
  • angular frequency of excitation light
  • ⁇ c speed of light
  • the optimum incident angle (enhancement angle) of the excitation light ⁇ varies depending on various conditions and the shape error of the diffraction grating 203, it is preferable to obtain the optimum enhancement angle for each specimen examination.
  • the operation procedure of the GC-SPFS device 70 is basically the same as the operation procedure of the PC-SPFS device 10 shown in FIG. 4, and only the method of the enhancement angle detection (S150) is different. . Therefore, only the procedure for detecting the enhancement angle using the GC-SPFS device 70 will be described.
  • the controller 50 operates the measurement light detection unit 80 while operating the excitation light irradiation unit 20 to scan the incident angle of the excitation light ⁇ with respect to the diffraction grating 203.
  • the reflected light ⁇ is detected.
  • the control unit 50 operates the position switching mechanism 37 to place the optical filter 33 outside the light path of the light receiving unit 31.
  • the control unit 50 determines the incident angle of the excitation light ⁇ when the light amount of the reflected light ⁇ is minimum as the enhancement angle.
  • the sensor chip 200 is irradiated with the excitation light ⁇ at the enhancement angle determined in this way, and the detected fluorescence is detected by detecting the fluorescence ⁇ emitted from the fluorescent substance that labels the analyte captured by the ligand. Based on the intensity of ⁇ , the amount and concentration of the analyte can be converted as necessary.
  • the present invention has been described above.
  • the SPFS apparatus has been described in the above embodiment.
  • Various modifications can be made without departing from the object of the present invention, such as a sample detection apparatus using a fluorescence immunoassay (FIA) such as an SPR apparatus.
  • FIA fluorescence immunoassay

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

[Problem] To provide a specimen detecting chip and a specimen detecting device employing the same, with which it is possible to suppress a deterioration in detection accuracy resulting from a residue of a liquid in a well during a reaction step, with which it is possible to suppress the effects on a detection result of the liquid level of the liquid in the well during a detecting step, and with which the size of the specimen detecting device can be reduced. [Solution] The specimen detecting chip is provided with a side wall member including a reaction field for capturing an analyte, and a pipette tip disposed adjacent to the side wall member, wherein an opening portion is provided in the pipette tip such that the reaction field is in contact with a liquid introduced into the pipette tip, and the pipette tip and a dielectric member are arranged.

Description

検体検出チップ及びこれを用いた検体検出装置Sample detection chip and sample detection apparatus using the same
 本発明は、検体検出チップ(センサーチップ)内に含まれる測定対象物質の検出を行う検体検出装置及びこれで用いる検体検出チップに関する。 The present invention relates to a sample detection device for detecting a substance to be measured contained in a sample detection chip (sensor chip) and a sample detection chip used therefor.
 従来、極微少な物質の検出を行う場合において、物質の物理的現象を応用することでこのような物質の検出を可能とした様々な検体検出方法が提案されている。
 このような検体検出方法としては、例えば、試料液に含まれる測定対象物質である抗原と、標識物質で標識された抗体または抗原との抗原抗体反応を利用して、測定対象物質の有無やその量を測定する免疫測定法(イムノアッセイ)が知られている。
Conventionally, when detecting a very small substance, various specimen detection methods have been proposed that can detect such a substance by applying a physical phenomenon of the substance.
As such a specimen detection method, for example, by using an antigen-antibody reaction between an antigen, which is a measurement target substance contained in a sample solution, and an antibody or antigen labeled with a labeling substance, the presence or absence of the measurement target substance or its Immunoassay methods (immunoassays) for measuring amounts are known.
 免疫測定法には、標識物質として蛍光物質を用いた蛍光免疫測定法(FIA)などが知られている。
 例えば、蛍光免疫測定法を利用した検体検出装置としては、ナノメートルレベルなどの微細領域中で電子と光が共鳴することにより、高い光出力を得る現象(表面プラズモン共鳴(SPR:Surface Plasmon Resonance)現象)を応用し、例えば、生体内の極微少なアナライトの検出を行うようにした表面プラズモン共鳴装置(以下、「SPR装置」とも言う)が挙げられる。
As an immunoassay, a fluorescent immunoassay (FIA) using a fluorescent substance as a labeling substance is known.
For example, as a specimen detection device using a fluorescence immunoassay method, a phenomenon in which high light output is obtained by resonating electrons and light in a fine region such as a nanometer level (SPR: Surface Plasmon Resonance) For example, a surface plasmon resonance device (hereinafter, also referred to as “SPR device”) that detects minute analytes in a living body is used.
 また、特許文献1に開示されるように、表面プラズモン共鳴(SPR)現象を応用した、表面プラズモン励起増強蛍光分光法(SPFS:Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づき、SPR装置よりもさらに高精度にアナライト検出を行えるようにした表面プラズモン励起増強蛍光分光測定装置(以下、「SPFS装置」とも言う)も、このような検体検出装置の一つである。 Further, as disclosed in Patent Document 1, based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS: Surface Plasmon-field enhanced Fluorescence Spectroscopy) applying the surface plasmon resonance (SPR) phenomenon, rather than an SPR device. A surface plasmon excitation enhanced fluorescence spectrometer (hereinafter also referred to as “SPFS device”) that can perform analyte detection with higher accuracy is one of such specimen detection devices.
 SPFS装置では、誘電体部材と、誘電体部材の上面に隣接する金属膜と、金属膜の上面に配置される液保持部材とを備えるセンサーチップが用いられる。このようなセンサーチップでは、金属膜上に、アナライトを捕捉するためのリガンドを有する反応場が設けられている。 In the SPFS device, a sensor chip including a dielectric member, a metal film adjacent to the upper surface of the dielectric member, and a liquid holding member disposed on the upper surface of the metal film is used. In such a sensor chip, a reaction field having a ligand for capturing an analyte is provided on a metal film.
 液保持部材に、アナライトを含む試料液を供給することにより、アナライトがリガンドにより捕捉される(一次反応)。この状態で、蛍光物質で標識された二次抗体を含む液体(標識液)を液保持部材に導入する。液保持部材内では、抗原抗体反応(二次反応)によって、リガンドにより補足されているアナライトが蛍光物質で標識される。 The analyte is captured by the ligand (primary reaction) by supplying the sample liquid containing the analyte to the liquid holding member. In this state, a liquid (labeling liquid) containing a secondary antibody labeled with a fluorescent substance is introduced into the liquid holding member. In the liquid holding member, the analyte captured by the ligand is labeled with a fluorescent substance by an antigen-antibody reaction (secondary reaction).
 この状態で、誘電体部材を介して表面プラズモン共鳴が生じる角度で励起光を金属膜に照射すると、金属膜表面に発生した表面プラズモン光により蛍光物質が励起され、蛍光物質から蛍光が生じる。この蛍光を検出することにより、アナライトの有無やその量を測定することができる。 In this state, when the excitation light is irradiated to the metal film at an angle at which surface plasmon resonance occurs through the dielectric member, the fluorescent material is excited by the surface plasmon light generated on the surface of the metal film, and fluorescence is generated from the fluorescent material. By detecting this fluorescence, the presence or absence of the analyte and the amount thereof can be measured.
 このようなセンサーチップの液保持部材としては、特許文献2に開示されるように、試料液等を一時的に貯留するためのウェル部材や、試料液等を金属膜上の反応場に対して循環させることができる流路部材などが用いられている。 As a liquid holding member of such a sensor chip, as disclosed in Patent Document 2, a well member for temporarily storing a sample liquid or the like, a sample liquid or the like with respect to a reaction field on a metal film A flow path member that can be circulated is used.
特開2006-208069号公報JP 2006-208069 A 国際公開第2014/017433号International Publication No. 2014/017433
 特許文献2に記載のウェル部材を用いたセンサーチップ(ウェル型センサーチップ)では、ウェルの底面に金属膜及び反応場が設けられているため、ウェル内の液体を除去する際に、ピペットなどの送液手段の先端が金属膜又は反応場に接触して、これらを破損してしまうおそれがあった。このため、送液手段の先端をウェルの底面に押し付けることができず、ウェル内の液体を十分に除去することが困難であった。このように、ウェル内に液体が残存してしまうと、各種反応が適切に進まず、検出精度が低下してしまうおそれがある。 In the sensor chip (well type sensor chip) using the well member described in Patent Document 2, since a metal film and a reaction field are provided on the bottom surface of the well, when removing the liquid in the well, a pipette or the like is used. There is a possibility that the tip of the liquid feeding means may come into contact with the metal film or the reaction field and break them. For this reason, the tip of the liquid feeding means cannot be pressed against the bottom surface of the well, and it has been difficult to sufficiently remove the liquid in the well. Thus, if the liquid remains in the well, various reactions do not proceed appropriately, and the detection accuracy may be reduced.
 また、特許文献2に記載の検体検出装置では、検出部は、ウェルの上方に配置されており、ウェル内の液体の液面を通過した蛍光を検出している。このため、ウェルの内径が小さい場合には、蛍光の検出結果がメニスカスの影響を受けてしまう。また、ウェルの内径が大きい場合であっても、蛍光の検出結果が液面に存在する気泡の影響を受けてしまうおそれがある。 Further, in the specimen detection apparatus described in Patent Document 2, the detection unit is disposed above the well and detects fluorescence that has passed through the liquid surface of the liquid in the well. For this reason, when the inner diameter of the well is small, the fluorescence detection result is affected by the meniscus. Even if the inner diameter of the well is large, the fluorescence detection result may be affected by bubbles present on the liquid surface.
 また、ウェル型センサーチップでは、必要な試料液の量が比較的大きくなり、これに伴い、ウェル型センサーチップによる検体検出装置は大型化してしまう傾向にある。 Further, in the well type sensor chip, the amount of the necessary sample solution becomes relatively large, and accordingly, the specimen detection apparatus using the well type sensor chip tends to be enlarged.
 本発明は、反応工程中におけるウェル内の液体の残存による検出精度の低下を抑制することができ、かつ、検出工程中におけるウェル内の液体の液面による検出結果への影響を抑制することができる検体検出チップ及びこれを用いた検体検出装置を提供することを目的とする。 The present invention can suppress a decrease in detection accuracy due to the remaining liquid in the well during the reaction process, and can suppress the influence on the detection result due to the liquid level of the liquid in the well during the detection process. An object of the present invention is to provide a specimen detection chip that can be used and a specimen detection apparatus using the same.
 また、本発明は、必要な試料液の量は、ウェル型センサーチップと同等でありながら、検体検出装置を小型化することができる検体検出チップ及びこれを用いた検体検出装置を提供することを目的とする。 The present invention also provides a sample detection chip capable of reducing the size of the sample detection device and a sample detection device using the same, while the amount of the necessary sample solution is equivalent to that of the well-type sensor chip. Objective.
 本発明は、前述したような従来技術における課題を解決するために発明されたものであって、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した検体検出チップは、
 アナライトの検出に用いられる検体検出チップであって、
 アナライトを捕捉する反応場を有する側壁部材と、
 側壁部材と隣接して配置されるピペットチップと、を備え、
 反応場が前記ピペットチップ内に導入される液体と接触するように、ピペットチップに開口部が設けられるとともに、ピペットチップと前記誘電体部材が配置される。
The present invention was invented in order to solve the above-described problems in the prior art, and in order to achieve at least one of the above-described objects, a sample detection chip reflecting one aspect of the present invention. Is
An analyte detection chip used for analyte detection,
A sidewall member having a reaction field for capturing the analyte;
A pipette tip disposed adjacent to the side wall member,
The pipette tip is provided with an opening, and the pipette tip and the dielectric member are disposed so that the reaction field contacts the liquid introduced into the pipette tip.
 また、本発明の一側面を反映した検体検出装置は、
 上述するセンサーチップを用いて検体の検出を行う検体検出装置であって、
 金属膜に誘電体部材を介して励起光を照射する励起光照射ユニットと、
 金属膜に照射された励起光に基づき、反応場に捕捉された蛍光標識されたアナライトから生じる蛍光を検出する蛍光検出ユニットと、
 センサーチップの前記ピペットチップが装着され、該ピペットチップを移動させるとともに、ピペットチップ内の液体の吸排を行う搬送ユニットと、を備える。
In addition, a specimen detection apparatus reflecting one aspect of the present invention is
A sample detection apparatus that detects a sample using the sensor chip described above,
An excitation light irradiation unit that irradiates the metal film with excitation light via a dielectric member;
A fluorescence detection unit that detects fluorescence generated from the fluorescence-labeled analyte captured in the reaction field based on the excitation light irradiated to the metal film;
The pipette tip of the sensor tip is mounted, and includes a transport unit that moves the pipette tip and sucks and discharges the liquid in the pipette tip.
 また、本発明の一側面を反映した検体検出装置は、
 上述するセンサーチップを用いて検体の検出を行う検体検出装置であって、
 回折格子に励起光を照射する励起光照射ユニットと、
 回折格子に照射された励起光に基づき、反応場に捕捉された蛍光標識されたアナライトから生じる蛍光、及び、回折格子で反射した励起光の反射光を検出する測定光検出ユニットと、
 センサーチップのピペットチップが装着され、該ピペットチップを移動させるとともに、ピペットチップ内の液体の吸排を行う搬送ユニットと、を備える。
In addition, a specimen detection apparatus reflecting one aspect of the present invention is
A sample detection apparatus that detects a sample using the sensor chip described above,
An excitation light irradiation unit for irradiating the diffraction grating with excitation light;
A measurement light detection unit that detects fluorescence generated from fluorescently labeled analyte captured in the reaction field based on excitation light irradiated to the diffraction grating, and reflected light of the excitation light reflected by the diffraction grating;
A pipette tip of a sensor tip is attached, and a transport unit that moves the pipette tip and sucks and discharges the liquid in the pipette tip is provided.
 本発明によれば、反応工程中におけるウェル内の液体の残存による検出精度の低下を抑制することができ、かつ、検出工程中におけるウェル内の液体の液面による検出結果への影響を抑制することができる。 According to the present invention, it is possible to suppress a decrease in detection accuracy due to remaining liquid in the well during the reaction process, and to suppress an influence on the detection result due to the liquid level of the liquid in the well during the detection process. be able to.
 また、ピペットチップと、光学素子である誘電体部材や回折格子とを一体化したことにより、従来用いられていたウェルが不要となったため、検体検出装置の小型化を図ることができる。 Further, since the pipette tip and the dielectric member and diffraction grating, which are optical elements, are integrated, the wells that have been used conventionally are no longer necessary, and thus the sample detection apparatus can be downsized.
図1は、本発明の一実施形態に係るプリズム結合型表面プラズモン励起増強蛍光分光測定装置(PC-SPFS装置)の構成を説明するための模式図である。FIG. 1 is a schematic diagram for explaining the configuration of a prism-coupled surface plasmon excitation enhanced fluorescence spectrometer (PC-SPFS apparatus) according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るセンサーチップの構成を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a configuration of a sensor chip according to an embodiment of the present invention. 図3は、センサーチップの変形例を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a modified example of the sensor chip. 図4は、PC-SPFS装置の動作手順の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of an operation procedure of the PC-SPFS apparatus. 図5は、本発明の別の実施形態に係る回折格子結合型表面プラズモン励起増強蛍光分光測定装置(GC-SPFS装置)の構成を説明するための模式図である。FIG. 5 is a schematic diagram for explaining the configuration of a diffraction grating coupled surface plasmon excitation enhanced fluorescence spectrometer (GC-SPFS apparatus) according to another embodiment of the present invention. 図6は、本発明の一実施形態に係るセンサーチップの構成を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a configuration of a sensor chip according to an embodiment of the present invention. 図7は、回折格子の一例を説明するための斜視図である。FIG. 7 is a perspective view for explaining an example of the diffraction grating.
 以下、本発明の実施の形態(実施例)を図面に基づいて、より詳細に説明する。
 図1は、本発明の一実施形態に係るプリズム結合型表面プラズモン励起増強蛍光分光測定装置(PC-SPFS装置)の構成を説明するための模式図、図2は、本発明の一実施形態に係るセンサーチップの構成を説明するための模式図であり、図2(A)は、センサーチップの高さ方向に沿う断面図、図2(B)は、センサーチップの水平方向に沿う断面図である。
Hereinafter, embodiments (examples) of the present invention will be described in more detail based on the drawings.
FIG. 1 is a schematic diagram for explaining the configuration of a prism-coupled surface plasmon excitation enhanced fluorescence spectrometer (PC-SPFS apparatus) according to an embodiment of the present invention, and FIG. 2 shows an embodiment of the present invention. It is a schematic diagram for demonstrating the structure of the sensor chip which concerns, FIG. 2 (A) is sectional drawing in alignment with the height direction of a sensor chip, FIG.2 (B) is sectional drawing in alignment with the horizontal direction of a sensor chip. is there.
 図1に示すように、本実施形態におけるPC-SPFS装置10は、励起光照射ユニット20、蛍光検出ユニット30、搬送ユニット40及び制御部50を備える。なお、本実施形態におけるPC-SPFS装置10は、搬送ユニット40にセンサーチップ100を装着した状態で使用される。 As shown in FIG. 1, the PC-SPFS apparatus 10 in this embodiment includes an excitation light irradiation unit 20, a fluorescence detection unit 30, a transport unit 40, and a control unit 50. Note that the PC-SPFS apparatus 10 in the present embodiment is used in a state where the sensor chip 100 is mounted on the transport unit 40.
 図2に示すように、センサーチップ100は、入射面102a、成膜面102b及び出射面102cを有する誘電体部材102と、成膜面102bに形成された金属膜104と、成膜面102bまたは金属膜104と固着されたピペットチップ106とを有する。本実施形態において、光学素子である誘電体部材102と、金属膜104及び後述する反応場が側壁部材を形成する。通常、センサーチップ100は、検体検査毎に交換されるものである。 As shown in FIG. 2, the sensor chip 100 includes a dielectric member 102 having an incident surface 102a, a film formation surface 102b, and an emission surface 102c, a metal film 104 formed on the film formation surface 102b, and a film formation surface 102b or It has a metal film 104 and a pipette tip 106 fixed thereto. In the present embodiment, the dielectric member 102 that is an optical element, the metal film 104, and a reaction field described later form a side wall member. Usually, the sensor chip 100 is replaced for each specimen test.
 誘電体部材102は、励起光αに対して透明な誘電体からなるプリズムとすることができる。誘電体部材102の入射面102aは、励起光照射ユニット20から照射される励起光αが誘電体部材102の内部に入射される面である。また、成膜面102b上には、金属膜104が形成されている。誘電体部材102の内部に入射した励起光αは、この金属膜104と誘電体部材102の成膜面102bとの界面(以下、便宜上「金属膜104の裏面」という)において反射され、出射面102cを介して、励起光αは誘電体部材102の外部に出射される。 The dielectric member 102 can be a prism made of a dielectric that is transparent to the excitation light α. The incident surface 102 a of the dielectric member 102 is a surface on which the excitation light α irradiated from the excitation light irradiation unit 20 is incident on the inside of the dielectric member 102. A metal film 104 is formed on the film formation surface 102b. The excitation light α incident on the inside of the dielectric member 102 is reflected at the interface between the metal film 104 and the film formation surface 102b of the dielectric member 102 (hereinafter referred to as “the back surface of the metal film 104” for convenience), and the emission surface. The excitation light α is emitted to the outside of the dielectric member 102 through 102c.
 誘電体部材102の形状は特に限定されるものではなく、図1,2に示す誘電体部材102は、鉛直断面形状が略台形の六面体(截頭四角錐形状)からなるプリズムであるが、例えば、鉛直断面形状を三角形(いわゆる、三角プリズム)、半円形、半楕円形としたプリズムとすることもできる。 The shape of the dielectric member 102 is not particularly limited, and the dielectric member 102 shown in FIGS. 1 and 2 is a prism formed of a hexahedron having a substantially trapezoidal vertical cross-sectional shape (a truncated quadrangular pyramid shape). Also, a prism having a vertical cross-sectional shape of a triangle (a so-called triangular prism), a semicircular shape, and a semielliptical shape can be used.
 入射面102aは、励起光αが励起光照射ユニット20に戻らないように形成される。励起光αの光源が、例えば、レーザーダイオード(以下、「LD」ともいう)である場合、励起光αがLDに戻ると、LDの励起状態が乱れてしまい、励起光αの波長や出力が変動してしまう。このため、理想的な増強角を中心とする走査範囲において、励起光αが入射面102aに対して垂直に入射しないように、入射面102aの角度が設定される。 The incident surface 102 a is formed so that the excitation light α does not return to the excitation light irradiation unit 20. When the light source of the excitation light α is, for example, a laser diode (hereinafter also referred to as “LD”), when the excitation light α returns to the LD, the excitation state of the LD is disturbed, and the wavelength and output of the excitation light α are changed. It will fluctuate. Therefore, the angle of the incident surface 102a is set so that the excitation light α does not enter the incident surface 102a perpendicularly in the scanning range centered on the ideal enhancement angle.
 なお、センサーチップ100の設計により、共鳴角(及びその極近傍にある増強角)が概ね決定される。設計要素は、誘電体部材102の屈折率、金属膜104の屈折率、金属膜104の膜厚、金属膜104の消衰係数、励起光αの波長などである。金属膜104上に固定化されたアナライトによって共鳴角及び増強角がシフトするが、その量は数度未満である。 It should be noted that the resonance angle (and the enhancement angle in the vicinity thereof) is generally determined by the design of the sensor chip 100. The design elements are the refractive index of the dielectric member 102, the refractive index of the metal film 104, the film thickness of the metal film 104, the extinction coefficient of the metal film 104, the wavelength of the excitation light α, and the like. The resonance angle and the enhancement angle are shifted by the analyte immobilized on the metal film 104, but the amount is less than a few degrees.
 誘電体部材102は、複屈折特性を少なからず有する。誘電体部材102の材料は、例えば、ガラス、セラミックスなどの各種の無機物、天然ポリマー、合成ポリマーなどが含まれ、化学的安定性、製造安定性、光学的透明性、低複屈折性に優れる材料が好ましい。 The dielectric member 102 has a considerable amount of birefringence. The material of the dielectric member 102 includes, for example, various inorganic materials such as glass and ceramics, natural polymers, synthetic polymers, and the like, and is excellent in chemical stability, manufacturing stability, optical transparency, and low birefringence. Is preferred.
 少なくとも、励起光αに対して光学的に透明で、かつ低複屈折な材料から形成されていれば、その材質は、上記のように特に限定されないが、安価で取り扱い性に優れるセンサーチップ100を提供する上で、例えば、樹脂材料から形成されていることが好ましい。なお、誘電体部材102の製造方法は、特に限定されるものではないが、製造コストの観点から、金型を用いた射出成形が好ましい。 As long as it is made of a material that is at least optically transparent to the excitation light α and low birefringence, the material is not particularly limited as described above. In providing, for example, it is preferably formed from a resin material. The method for manufacturing the dielectric member 102 is not particularly limited, but injection molding using a mold is preferable from the viewpoint of manufacturing cost.
 誘電体部材102を樹脂材料から形成する場合、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリスチレン、ポリカーボネート(PC)、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。 When the dielectric member 102 is formed from a resin material, for example, polyolefins such as polyethylene (PE) and polypropylene (PP), polycyclic olefins such as cyclic olefin copolymer (COC) and cyclic olefin polymer (COP), polystyrene, Polycarbonate (PC), acrylic resin, triacetyl cellulose (TAC), or the like can be used.
 金属膜104は、誘電体部材102の成膜面102b上に形成される。これにより、成膜面102bに全反射条件で入射した励起光αの光子と、金属膜104中の自由電子との間で相互作用(表面プラズモン共鳴)が生じ、金属膜104の表面上に増強電場を生じさせることができる。 The metal film 104 is formed on the film formation surface 102 b of the dielectric member 102. As a result, an interaction (surface plasmon resonance) occurs between the photon of the excitation light α incident on the film formation surface 102b under total reflection conditions and free electrons in the metal film 104, and is enhanced on the surface of the metal film 104. An electric field can be generated.
 金属膜104の材料は、表面プラズモン共鳴を生じさせうる金属であれば、特に限定されるものではなく、例えば、金、銀、アルミニウム、銅、および白金からなる群から選ばれる少なくとも1種の金属からなり、より好ましくは金からなり、さらに、これら金属の合金から構成してもよい。このような金属は、酸化に対して安定であり、かつ、表面プラズモン光による電場増強が大きくなるため、金属膜104として好適である。 The material of the metal film 104 is not particularly limited as long as it is a metal capable of causing surface plasmon resonance. For example, at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum is used. Made of gold, more preferably made of gold, and may be made of an alloy of these metals. Such a metal is suitable as the metal film 104 because it is stable against oxidation and has a large electric field enhancement by surface plasmon light.
 また、金属膜104の形成方法としては、特に限定されるものではないが、例えば、スパッタリング法、蒸着法(抵抗加熱蒸着法、電子線蒸着法など)、電解メッキ、無電解メッキ法などが挙げられる。好ましくは、スパッタリング法、蒸着法を使用するのが、金属膜形成条件の調整が容易であるので望ましい。 Further, the method for forming the metal film 104 is not particularly limited, and examples thereof include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. It is done. Preferably, the sputtering method or the vapor deposition method is used because the adjustment of the metal film forming conditions is easy.
 金属膜104の厚さとしては、特に限定されるものではないが、好ましくは、5~500nmの範囲内とするのが好ましく、電場増強効果の観点から、より好ましくは、金、銀、銅、白金の場合には20~70nm、アルミニウムの場合には、10~50nm、これらの合金の場合には10~70nmの範囲内であることが好ましい。 The thickness of the metal film 104 is not particularly limited, but is preferably in the range of 5 to 500 nm, and more preferably gold, silver, copper, In the case of platinum, it is preferably in the range of 20 to 70 nm, in the case of aluminum, 10 to 50 nm, and in the case of these alloys, it is preferably in the range of 10 to 70 nm.
 金属膜104の厚さが上記範囲内であれば、表面プラズモン光が発生し易く好適である。また、このような厚さを有する金属膜104であれば、大きさ(縦×横)の寸法、形状は、特に限定されない。 If the thickness of the metal film 104 is within the above range, it is preferable that surface plasmon light is easily generated. In addition, as long as the metal film 104 has such a thickness, the size (length × width) dimensions and shape are not particularly limited.
 また、図1,2では図示しないが、金属膜104の誘電体部材102と対向しない面(以下、便宜上「金属膜104の表面」という)には、アナライトを捕捉するためのリガンドが固定化されている。リガンドを固定化することで、アナライトを選択的に検出することが可能となる。 Although not shown in FIGS. 1 and 2, a ligand for capturing the analyte is immobilized on the surface of the metal film 104 that does not face the dielectric member 102 (hereinafter referred to as “the surface of the metal film 104” for convenience). Has been. By immobilizing the ligand, the analyte can be selectively detected.
 本実施形態では、金属膜104上の所定の領域(反応場)に、リガンドが均一に固定化されている。リガンドの種類は、アナライトを捕捉することができれば特に限定されない。本実施形態では、リガンドは、アナライトに特異的な抗体またはその断片である。 In this embodiment, the ligand is uniformly immobilized in a predetermined region (reaction field) on the metal film 104. The type of the ligand is not particularly limited as long as the analyte can be captured. In this embodiment, the ligand is an analyte specific antibody or fragment thereof.
 ピペットチップ106は、図2に示すように、略角筒状の胴部108と、液吸排孔110aを有する先端部110とを有する。また、金属膜104上の反応場とピペットチップ106内の液体とが接触するように、ピペットチップ106に開口部106bが設けられるとともに、ピペットチップ106と誘電体部材102が配置される。ピペットチップ106は、後述する、搬送ユニット40のピペットノズル46に装着可能な装着孔106cを有している。 As shown in FIG. 2, the pipette tip 106 has a substantially rectangular tube-shaped body portion 108 and a tip portion 110 having a liquid suction / discharge hole 110a. In addition, an opening 106 b is provided in the pipette tip 106 so that the reaction field on the metal film 104 and the liquid in the pipette tip 106 are in contact with each other, and the pipette tip 106 and the dielectric member 102 are disposed. The pipette tip 106 has a mounting hole 106c that can be mounted on a pipette nozzle 46 of the transport unit 40, which will be described later.
 なお、本実施例において、ピペットチップ106の胴部108は、略角筒状としているが、少なくとも、誘電体部材102との固着面106aを有する側壁108aが平面であり、かつ、発生した蛍光γを蛍光検出ユニット30が検出するのに支障をきたさない形状であれば、特に限定されるものではない。なお、本明細書において「側壁が平面」とは、ピペットチップ106の側壁の内面及び外面の両方が平面であることを意味する。 In the present embodiment, the body portion 108 of the pipette tip 106 has a substantially rectangular tube shape. However, at least the side wall 108a having the fixing surface 106a with the dielectric member 102 is flat, and the generated fluorescent γ If it is the shape which does not interfere with the fluorescence detection unit 30 detecting, it will not specifically limit. In this specification, “the side wall is a flat surface” means that both the inner surface and the outer surface of the side wall of the pipette tip 106 are flat surfaces.
 図3は、センサーチップ100の変形例を説明するための模式図である。
 図3(A)に示すように、反応場と蛍光検出ユニット30との間に配置される側壁、すなわち、蛍光γの光路上に配置される側壁108a,108bのみを平面とし、それ以外の側壁を曲面とすることもできる。
FIG. 3 is a schematic diagram for explaining a modified example of the sensor chip 100.
As shown in FIG. 3A, only the side wall disposed between the reaction field and the fluorescence detection unit 30, that is, the side walls 108a and 108b disposed on the optical path of the fluorescence γ is a flat surface, and the other side walls. Can also be curved.
 また、図3(B)に示すように、固着面106aを有する側壁108aのみを平面とし、それ以外の側壁を曲面としても構わない。また、図3(C)~図3(E)に示すように、胴部108において固着面106aを有する側壁108aと対向する側壁108bの内面及び外面の少なくとも一方を凸曲面とすることができる。このように、側壁108bの内面及び/又は外面を凸曲面とすることにより、側壁108bはシリンドリカルレンズとして機能し、反応場で生じた蛍光γを集光することができる。 Further, as shown in FIG. 3B, only the side wall 108a having the fixing surface 106a may be a flat surface, and the other side wall may be a curved surface. In addition, as shown in FIGS. 3C to 3E, at least one of the inner surface and the outer surface of the side wall 108b facing the side wall 108a having the fixing surface 106a in the body portion 108 can be a convex curved surface. Thus, by making the inner surface and / or outer surface of the side wall 108b a convex curved surface, the side wall 108b functions as a cylindrical lens and can collect the fluorescent γ generated in the reaction field.
 また、ピペットチップ106は、少なくとも蛍光γの波長の光に対して透明な材料で形成され、望ましくは、励起光αの波長の光及び蛍光γの波長の光に対して透明な材料で形成されている。ただし、後述する検出方法における光の取り出しの妨げにならない限り、ピペットチップ106の一部は光に対して不透明な材料で形成されていてもよい。 The pipette tip 106 is formed of a material that is transparent to at least light having the wavelength of fluorescence γ, and preferably formed of a material that is transparent to light having the wavelength of excitation light α and light having the wavelength of fluorescence γ. ing. However, a part of the pipette tip 106 may be made of a material that is opaque to light as long as it does not interfere with light extraction in the detection method described later.
 ピペットチップ106の材料は、例えば、ガラス、セラミックスなどの各種の無機物、天然ポリマー、合成ポリマーなどが含まれ、化学的安定性、製造安定性、光学的透明性、低複屈折性に優れる材料が好ましい。 The material of the pipette tip 106 includes, for example, various inorganic materials such as glass and ceramics, natural polymers, synthetic polymers, and the like, and materials excellent in chemical stability, manufacturing stability, optical transparency, and low birefringence are used. preferable.
 ピペットチップ106は、例えば、接着剤や透明な粘着シートによる接着、レーザー溶着、超音波溶着などにより誘電体部材102または金属膜104と接合することができる。 The pipette tip 106 can be joined to the dielectric member 102 or the metal film 104 by, for example, adhesion using an adhesive or a transparent adhesive sheet, laser welding, ultrasonic welding, or the like.
 なお、誘電体部材102は、ピペットチップ106の胴部108に固着することが好ましい。このように構成することにより、後述するように、液貯留部60からピペットチップ106に液体を導入する際に、誘電体部材102が液体と接触することを防止できる。 The dielectric member 102 is preferably fixed to the body portion 108 of the pipette tip 106. By configuring in this way, the dielectric member 102 can be prevented from coming into contact with the liquid when the liquid is introduced from the liquid reservoir 60 into the pipette tip 106, as will be described later.
 また、ピペットチップ106としては、その内部にフィルターを設けるようにしてもよい。ピペットチップ106内部にフィルターを設けることにより、ピペットノズル46とピペットチップ106の接続部にピペットチップ106を介して吸引排出して移動する液体及び気体(液体からの蒸発によるエアロゾル)の接触によるコンタミネーションを防ぐことができる。このようなフィルターとしては、例えば、フッ素樹脂(PTFE)など疎水性の多孔質フィルターを用いることができる。 Also, the pipette tip 106 may be provided with a filter inside. By providing a filter inside the pipette tip 106, contamination caused by contact of liquid and gas (aerosol by evaporation from the liquid) that is sucked and discharged through the pipette tip 106 to the connection between the pipette nozzle 46 and the pipette tip 106 Can be prevented. As such a filter, for example, a hydrophobic porous filter such as a fluororesin (PTFE) can be used.
 このように構成されるセンサーチップ100は、後述する給排液位置や測定位置に正確に停止させるため、位置決め部を設けることもできる。位置決め部は、例えば、給排液位置や測定位置に配置された位置決めピンと嵌合する穴や切欠きとしたり、逆に、給排液位置や測定位置に配置された位置決め孔と嵌合する突出部としたりすることができる。 The sensor chip 100 configured as described above may be provided with a positioning portion in order to accurately stop at a later-described supply / drainage position or measurement position. The positioning part is, for example, a hole or notch that fits with a positioning pin arranged at the supply / drain liquid position or measurement position, or conversely, a protrusion that fits with a positioning hole arranged at the supply / drain liquid position or measurement position. Or part.
 また、位置決め部としては、ピペットチップ106に設けてもよいし、ピペットノズル46に設けてもよい。
 例えば、ピペットノズル46に位置決め部として、凸部のような特徴のある形状を形成することで、ピペットチップ106の形状の複雑化や、ピペットチップ106の位置決め部のズレを抑制することができる。
The positioning portion may be provided on the pipette tip 106 or the pipette nozzle 46.
For example, by forming a shape having a characteristic such as a convex portion as a positioning portion in the pipette nozzle 46, it is possible to suppress complication of the shape of the pipette tip 106 and displacement of the positioning portion of the pipette tip 106.
 次に、PC-SPFS装置10の各構成要素について説明する。前述するように、本実施形態におけるPC-SPFS装置10は、励起光照射ユニット20、蛍光検出ユニット30、搬送ユニット40及び制御部50が設けられている。 Next, each component of the PC-SPFS apparatus 10 will be described. As described above, the PC-SPFS apparatus 10 in the present embodiment is provided with the excitation light irradiation unit 20, the fluorescence detection unit 30, the transport unit 40, and the control unit 50.
 励起光照射ユニット20は、測定位置にあるセンサーチップ100に対して励起光αを照射する。後述するように、蛍光γの測定時には、励起光照射ユニット20は、金属膜104に対する入射角が表面プラズモン共鳴を生じさせる角度となるように、金属膜104に対するP波のみを入射面102aに向けて出射する。 The excitation light irradiation unit 20 irradiates the sensor chip 100 at the measurement position with the excitation light α. As will be described later, when measuring the fluorescence γ, the excitation light irradiation unit 20 directs only the P wave with respect to the metal film 104 toward the incident surface 102a so that the incident angle with respect to the metal film 104 is an angle that causes surface plasmon resonance. And exit.
 ここで「励起光」とは、蛍光物質を直接または間接的に励起させる光である。例えば、励起光αは、誘電体部材102を介して金属膜104に表面プラズモン共鳴が生じる角度で照射されたときに、蛍光物質を励起させる局在場光を金属膜104の表面上に生じさせる光である。 Here, the “excitation light” is light that directly or indirectly excites the fluorescent substance. For example, when the excitation light α is irradiated through the dielectric member 102 at an angle at which surface plasmon resonance occurs on the metal film 104, local field light that excites the fluorescent material is generated on the surface of the metal film 104. Light.
 励起光照射ユニット20は、励起光αを誘電体部材102に向けて出射するための構成と、金属膜104の裏面に対する励起光αの入射角度を走査するための構成とを含む。本実施形態では、励起光照射ユニット20は、光源ユニット21、角度調整機構22及び光源制御部23を含む。 The excitation light irradiation unit 20 includes a configuration for emitting the excitation light α toward the dielectric member 102 and a configuration for scanning the incident angle of the excitation light α with respect to the back surface of the metal film 104. In the present embodiment, the excitation light irradiation unit 20 includes a light source unit 21, an angle adjustment mechanism 22, and a light source control unit 23.
 光源ユニット21は、コリメートされ、かつ波長及び光量が一定の励起光αを、金属膜104裏面に対して照射スポットの形状が略円形となるように照射する。光源ユニット21は、例えば、励起光αの光源、ビーム整形光学系、APC(Automatic Power-Control)機構及び温度調整機構(いずれも不図示)を含む。 The light source unit 21 irradiates collimated excitation light α having a constant wavelength and light amount so that the irradiation spot has a substantially circular shape on the back surface of the metal film 104. The light source unit 21 includes, for example, a light source of excitation light α, a beam shaping optical system, an APC (Automatic Power-Control) mechanism, and a temperature adjustment mechanism (all not shown).
 光源の種類は、特に限定されるものではなく、例えば、レーザーダイオード(LD)、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。光源から照射される光がビームでない場合には、光源から照射される光は、レンズや鏡、スリットなどによりビームに変換される。また、光源から照射される光が単色光でない場合には、光源から照射される光は、回折格子などにより単色光に変換される。さらに、光源から照射される光が直線偏光でない場合には、光源から照射される光は、偏光子などにより直線偏光の光に変換される。 The type of light source is not particularly limited, and includes, for example, a laser diode (LD), a light emitting diode, a mercury lamp, and other laser light sources. When the light emitted from the light source is not a beam, the light emitted from the light source is converted into a beam by a lens, a mirror, a slit, or the like. When the light emitted from the light source is not monochromatic light, the light emitted from the light source is converted into monochromatic light by a diffraction grating or the like. Further, when the light emitted from the light source is not linearly polarized light, the light emitted from the light source is converted into linearly polarized light by a polarizer or the like.
 ビーム整形光学系は、例えば、コリメーターやバンドパスフィルター、直線偏光フィルター、半波長板、スリット、ズーム手段などを含む。ビーム整形光学系は、これらの全てを含んでいてもよいし、一部のみを含んでいてもよい。 The beam shaping optical system includes, for example, a collimator, a band pass filter, a linear polarization filter, a half-wave plate, a slit, and a zoom means. The beam shaping optical system may include all of these or only a part thereof.
 コリメーターは、光源から照射された励起光αをコリメートする。バンドパスフィルターは、光源から照射された励起光αを中心波長のみの狭帯域光にする。光源からの励起光αは、若干の波長分布幅を有しているためである。 The collimator collimates the excitation light α irradiated from the light source. The band-pass filter turns the excitation light α irradiated from the light source into narrowband light having only the center wavelength. This is because the excitation light α from the light source has a slight wavelength distribution width.
 直線偏光フィルターは、光源から照射された励起光αを完全な直線偏光の光にする。半波長板は、金属膜104にP波成分が入射するように励起光αの偏光方向を調整する。スリット及びズーム手段は、金属膜104裏面における照射スポットの形状が所定サイズの円形となるように、励起光αのビーム径や輪郭形状などを調整する。 The linear polarization filter turns the excitation light α irradiated from the light source into completely linearly polarized light. The half-wave plate adjusts the polarization direction of the excitation light α so that the P-wave component is incident on the metal film 104. The slit and zoom means adjust the beam diameter, contour shape, and the like of the excitation light α so that the shape of the irradiation spot on the back surface of the metal film 104 is a circle having a predetermined size.
 APC機構は、光源の出力が一定となるように光源を制御する。より具体的には、APC機構は、励起光αから分岐させた光の光量を不図示のフォトダイオードなどで検出する。そして、APC機構は、回帰回路で投入エネルギーを制御することで、光源の出力を一定に制御する。 The APC mechanism controls the light source so that the output of the light source is constant. More specifically, the APC mechanism detects the amount of light branched from the excitation light α with a photodiode (not shown) or the like. The APC mechanism controls the input energy by a regression circuit, thereby controlling the output of the light source to be constant.
 温度調整機構は、例えば、ヒーターやペルチェ素子などである。光源の出射光の波長及びエネルギーは、温度によって変動することがある。このため、温度調整機構で光源の温度を一定に保つことにより、光源の出射光の波長及びエネルギーを一定に制御する。 The temperature adjustment mechanism is, for example, a heater or a Peltier element. The wavelength and energy of the light emitted from the light source may vary depending on the temperature. For this reason, the wavelength and energy of the light emitted from the light source are controlled to be constant by keeping the temperature of the light source constant by the temperature adjusting mechanism.
 角度調整機構22は、金属膜104への励起光αの入射角を調整する。角度調整機構22は、誘電体部材102を介して金属膜104の所定の位置に向けて所定の入射角で励起光αを照射するために、励起光αの光軸とセンサーチップ100とを相対的に回転させる。 The angle adjustment mechanism 22 adjusts the incident angle of the excitation light α to the metal film 104. In order to irradiate the excitation light α at a predetermined incident angle toward a predetermined position of the metal film 104 via the dielectric member 102, the angle adjustment mechanism 22 makes the optical axis of the excitation light α and the sensor chip 100 relative to each other. Rotate.
 例えば、角度調整機構22は、光源ユニット21を励起光αの光軸と直交する軸(図1の紙面に対して垂直な軸)を中心として回動させる。このとき、入射角を走査しても金属膜104上での照射スポットの位置がほとんど変化しないように、回転軸の位置を設定する。回転中心の位置を、入射角の走査範囲の両端における2つの励起光αの光軸の交点近傍(成膜面102b上の照射位置と入射面102aとの間)に設定することで、照射位置のズレを極小化することができる。 For example, the angle adjusting mechanism 22 rotates the light source unit 21 around an axis (axis perpendicular to the paper surface of FIG. 1) orthogonal to the optical axis of the excitation light α. At this time, the position of the rotation axis is set so that the position of the irradiation spot on the metal film 104 hardly changes even when the incident angle is scanned. By setting the position of the rotation center near the intersection of the optical axes of the two excitation lights α at both ends of the scanning range of the incident angle (between the irradiation position on the film formation surface 102b and the incident surface 102a), the irradiation position Can be minimized.
 金属膜104に対する励起光αの入射角のうち、プラズモン散乱光の最大光量を得られる角度が増強角である。増強角またはその近傍の角度に励起光αの入射角を設定することで、高強度の蛍光γを測定することが可能となる。 Among the incident angles of the excitation light α to the metal film 104, the angle at which the maximum amount of plasmon scattered light can be obtained is the enhancement angle. By setting the incident angle of the excitation light α to an enhancement angle or an angle in the vicinity thereof, it becomes possible to measure high-intensity fluorescence γ.
 なお、センサーチップ100の誘電体部材102の材料及び形状、金属膜104の膜厚や構成する金属の種類、ピペットチップ106内の試料液の屈折率などにより、励起光αの基本的な入射条件が決定されるが、ピペットチップ106内のアナライトの種類及び量、誘電体部材102の形状誤差などにより、最適な入射条件はわずかに変動する。このため、検体検査毎に最適な増強角を求めることが好ましい。 Note that the basic incident condition of the excitation light α depends on the material and shape of the dielectric member 102 of the sensor chip 100, the thickness of the metal film 104, the type of metal to be configured, the refractive index of the sample liquid in the pipette chip 106, and the like. However, the optimum incident condition varies slightly depending on the type and amount of the analyte in the pipette tip 106, the shape error of the dielectric member 102, and the like. For this reason, it is preferable to obtain an optimal enhancement angle for each specimen test.
 光源制御部23は、光源ユニット21に含まれる各種機器を制御して、光源ユニット21の励起光αの照射を制御する。光源制御部23は、例えば、演算装置、制御装置、記憶装置、入力装置及び出力装置を含む公知のコンピュータやマイコンなどによって構成される。 The light source control unit 23 controls various devices included in the light source unit 21 to control the irradiation of the excitation light α of the light source unit 21. The light source control unit 23 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
 蛍光検出ユニット30は、金属膜104への励起光αの照射により励起された蛍光物質から生じる蛍光γを検出する。また、必要に応じて、蛍光検出ユニット30は、金属膜104への励起光αの照射によって生じたプラズモン散乱光も検出する。蛍光検出ユニット30は、例えば、受光ユニット31、位置切替機構37及びセンサー制御部38を含む。 The fluorescence detection unit 30 detects the fluorescence γ generated from the fluorescent material excited by the irradiation of the excitation light α to the metal film 104. If necessary, the fluorescence detection unit 30 also detects plasmon scattered light generated by the irradiation of the excitation light α to the metal film 104. The fluorescence detection unit 30 includes, for example, a light receiving unit 31, a position switching mechanism 37, and a sensor control unit 38.
 受光ユニット31は、センサーチップ100の金属膜104の法線方向(図1におけるz軸方向)に配置される。受光ユニット31は、第1レンズ32、光学フィルター33、第2レンズ34及び受光センサー35を含む。 The light receiving unit 31 is disposed in the normal direction of the metal film 104 of the sensor chip 100 (z-axis direction in FIG. 1). The light receiving unit 31 includes a first lens 32, an optical filter 33, a second lens 34, and a light receiving sensor 35.
 第1レンズ32は、例えば、集光レンズであり、金属膜104上から生じる光を集光する。第2レンズ34は、例えば、結像レンズであり、第1レンズ32で集光された光を受光センサー35の受光面に結像させる。両レンズ32,34の間の光路は、略平行な光路となっている。光学フィルター33は、両レンズ32,34の間に配置されている。 The first lens 32 is, for example, a condensing lens and condenses light generated on the metal film 104. The second lens 34 is, for example, an imaging lens, and forms an image of the light collected by the first lens 32 on the light receiving surface of the light receiving sensor 35. The optical path between both lenses 32 and 34 is a substantially parallel optical path. The optical filter 33 is disposed between the lenses 32 and 34.
 光学フィルター33は、蛍光成分のみを受光センサー35に導き、高いS/Nで蛍光γを検出するために、励起光成分(プラズモン散乱光)を除去する。光学フィルター33は、例えば、励起光反射フィルター、短波長カットフィルター及びバンドパスフィルターが含まれる。光学フィルター33は、例えば、所定の光成分を反射する多層膜を含むフィルターであるが、所定の光成分を吸収する色ガラスフィルターであってもよい。 The optical filter 33 guides only the fluorescent component to the light receiving sensor 35 and removes the excitation light component (plasmon scattered light) in order to detect the fluorescent γ with high S / N. The optical filter 33 includes, for example, an excitation light reflection filter, a short wavelength cut filter, and a band pass filter. The optical filter 33 is, for example, a filter including a multilayer film that reflects a predetermined light component, but may be a colored glass filter that absorbs the predetermined light component.
 受光センサー35は、蛍光γを検出する。受光センサー35は、微少量のアナライトを標識した蛍光物質からの微弱な蛍光γを検出することが可能な、高い感度を有するものであれば、特に限定されるものではないが、例えば、光電子倍増管(PMT)やアバランシェフォトダイオード(APD)、低ノイズのフォロダイオード(PD)などを用いることができる。 The light receiving sensor 35 detects fluorescence γ. The light receiving sensor 35 is not particularly limited as long as it has a high sensitivity and can detect weak fluorescence γ from a fluorescent substance labeled with a very small amount of analyte. A multiplier tube (PMT), an avalanche photodiode (APD), a low noise photodiode (PD), or the like can be used.
 位置切替機構37は、光学フィルター33の位置を、受光ユニット31における光路上または光路外に切り替える。具体的には、受光センサー35が蛍光γを検出する時には、光学フィルター33を受光ユニット31の光路上に配置し、受光センサー35がプラズモン散乱光を検出する時には、光学フィルター33を受光ユニット31の光路外に配置する。位置切替機構37は、例えば、回転駆動部と、回転運動を利用して光学フィルター33を水平方向に移動させる公知の機構(ターンテーブルやラックアンドピニオンなど)とによって構成される。 The position switching mechanism 37 switches the position of the optical filter 33 on or off the optical path in the light receiving unit 31. Specifically, when the light receiving sensor 35 detects the fluorescence γ, the optical filter 33 is disposed on the optical path of the light receiving unit 31, and when the light receiving sensor 35 detects plasmon scattered light, the optical filter 33 is placed on the light receiving unit 31. Place outside the optical path. The position switching mechanism 37 includes, for example, a rotation driving unit and a known mechanism (such as a turntable or a rack and pinion) that moves the optical filter 33 in the horizontal direction by using a rotational motion.
 センサー制御部38は、受光センサー35の出力値の検出や、検出した出力値による受光センサー35の感度の管理、適切な出力値を得るための受光センサー35の感度の変更などを制御する。センサー制御部38は、例えば、演算装置、制御装置、記憶装置、入力装置及び出力装置を含む公知のコンピュータやマイコンなどによって構成される。 The sensor control unit 38 controls detection of an output value of the light receiving sensor 35, management of sensitivity of the light receiving sensor 35 based on the detected output value, change of sensitivity of the light receiving sensor 35 for obtaining an appropriate output value, and the like. The sensor control unit 38 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
 搬送ユニット40は、センサーチップ100を装着した状態で、ピペットチップ106内に、試料液や標識液、洗浄液などの液体の吸排をしたり、ピペットチップ106の移動を行う。搬送ユニット40は、シリンジポンプ41、ピペットノズル46、ポンプ駆動機構44及びピペットノズル移動機構45を含む。 The transport unit 40 with the sensor chip 100 attached, sucks and discharges liquids such as sample liquid, labeling liquid, and washing liquid in the pipette chip 106 and moves the pipette chip 106. The transport unit 40 includes a syringe pump 41, a pipette nozzle 46, a pump drive mechanism 44, and a pipette nozzle moving mechanism 45.
 搬送ユニット40は、ピペットノズル46の先端にセンサーチップ100のピペットチップ106を装着した状態で使用される。 The transport unit 40 is used with the pipette tip 106 of the sensor chip 100 attached to the tip of the pipette nozzle 46.
 シリンジポンプ41は、シリンジ42と、シリンジ42内を往復動作可能なプランジャー43とによって構成される。プランジャー43の往復運動によって、液体の吸引及び排出が定量的に行われる。 The syringe pump 41 includes a syringe 42 and a plunger 43 that can reciprocate inside the syringe 42. By the reciprocating motion of the plunger 43, the liquid is sucked and discharged quantitatively.
 ポンプ駆動機構44は、シリンジポンプ41を駆動させるために、プランジャー43を往復運動させるための装置であり、例えば、ステッピングモーターを含む。ステッピングモーターを含む駆動装置は、シリンジポンプ41の送液量や送液速度を管理できるため、ピペットチップ106内の残液量を管理する観点から好ましい。 The pump drive mechanism 44 is a device for reciprocating the plunger 43 in order to drive the syringe pump 41, and includes, for example, a stepping motor. A drive device including a stepping motor is preferable from the viewpoint of managing the amount of liquid remaining in the pipette tip 106 because it can manage the amount and rate of liquid delivery of the syringe pump 41.
 ピペットノズル移動機構45は、例えば、ピペットノズル46を、ピペットノズル46の軸方向(例えば垂直方向)と、軸方向を横断する方向(例えば水平方向)との二方向に自在に移動させる。ピペットノズル46の移動装置は、例えば、ロボットアーム、2軸ステージまたは上下動自在なターンテーブルによって構成される。 The pipette nozzle moving mechanism 45 freely moves the pipette nozzle 46 in two directions, for example, an axial direction (for example, a vertical direction) of the pipette nozzle 46 and a direction crossing the axial direction (for example, a horizontal direction). The moving device of the pipette nozzle 46 is constituted by, for example, a robot arm, a two-axis stage, or a turntable that can move up and down.
 搬送ユニット40は、シリンジポンプ41により液貯留部60から各種液体を吸引し、センサーチップ100のピペットチップ106内に供給する。これにより、ピペットチップ106内において、一次反応や二次反応を生じさせることができる。 The transport unit 40 sucks various liquids from the liquid storage unit 60 by the syringe pump 41 and supplies them into the pipette chip 106 of the sensor chip 100. Thereby, a primary reaction or a secondary reaction can be caused in the pipette tip 106.
 また、搬送ユニット40は、センサーチップ100をピペットノズル46に装着した状態で、センサーチップ100を給排液位置または測定位置に移動させる。ここで、「給排液位置」とは、液貯留部60からピペットチップ106内に液体を供給したり除去したりする位置である。また、「測定位置」とは、励起光照射ユニット20がセンサーチップ100に励起光αを照射し、それに伴い発生する蛍光γを蛍光検出ユニット30が検出する位置である。 Further, the transport unit 40 moves the sensor chip 100 to the supply / drainage position or the measurement position with the sensor chip 100 mounted on the pipette nozzle 46. Here, the “supply / drainage position” is a position where the liquid is supplied to or removed from the pipette tip 106 from the liquid reservoir 60. The “measurement position” is a position where the excitation light irradiation unit 20 irradiates the sensor chip 100 with the excitation light α, and the fluorescence detection unit 30 detects the fluorescence γ generated therewith.
 以下、PC-SPFS装置10を用いた検体検出の流れについて説明する。図4は、PC-SPFS装置10の動作手順の一例を示すフローチャートである。
 先ずユーザーは、センサーチップ100を、搬送ユニット40のピペットノズル46に装着する(S100)。
 制御部50は、ピペットノズル移動機構45を操作して、ピペットノズル46に装着されたセンサーチップ100を給排液位置まで移動させる(S110)。
Hereinafter, the flow of specimen detection using the PC-SPFS apparatus 10 will be described. FIG. 4 is a flowchart illustrating an example of an operation procedure of the PC-SPFS apparatus 10.
First, the user attaches the sensor chip 100 to the pipette nozzle 46 of the transport unit 40 (S100).
The control unit 50 operates the pipette nozzle moving mechanism 45 to move the sensor chip 100 attached to the pipette nozzle 46 to the supply / drainage position (S110).
 次いで、制御部50は、ピペットノズル移動機構45及びポンプ駆動機構44を操作して、液貯留部60からピペットチップ106内に洗浄液を導入し、ピペットチップ106内を洗浄して反応場上の保湿剤を除去する(S120)。なお、洗浄の際に、制御部50はピペットノズル移動機構45を操作して、センサーチップ100を振動させることで、ピペットチップ106内の洗浄液を攪拌するようにしてもよい。洗浄に用いられた洗浄液は、液貯留部60や図示しない廃液部に排出することができる。 Next, the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to introduce the cleaning liquid into the pipette tip 106 from the liquid storage unit 60, and cleans the inside of the pipette tip 106 to keep the moisture on the reaction field. The agent is removed (S120). During cleaning, the control unit 50 may agitate the cleaning liquid in the pipette tip 106 by operating the pipette nozzle moving mechanism 45 to vibrate the sensor chip 100. The cleaning liquid used for cleaning can be discharged to the liquid storage section 60 or a waste liquid section (not shown).
 この後、制御部50は、ピペットノズル移動機構45及びポンプ駆動機構44を操作して、液貯留部60からピペットチップ106内に測定液を導入する(S130)。なお、後工程の増強角検出(S150)の結果に影響がなければ、洗浄液と測定液を兼用し、洗浄液を排出せずそのまま増強角測定を行うこともできる。 Thereafter, the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to introduce the measurement liquid from the liquid storage unit 60 into the pipette tip 106 (S130). If there is no influence on the result of the enhancement angle detection (S150) in the subsequent step, the enhancement angle measurement can be performed as it is without discharging the cleaning liquid by using both the cleaning liquid and the measurement liquid.
 次いで、制御部50は、ピペットノズル移動機構45を操作して、センサーチップ100を測定位置まで移動させる(S140)。そして、制御部50は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、センサーチップ100に励起光αを照射するとともに、励起光αと同一波長のプラズモン散乱光を検出して、増強角を検出する(S150)。 Next, the control unit 50 operates the pipette nozzle moving mechanism 45 to move the sensor chip 100 to the measurement position (S140). Then, the control unit 50 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 with the excitation light α and to detect and enhance the plasmon scattered light having the same wavelength as the excitation light α. A corner is detected (S150).
 具体的には、制御部50は、励起光照射ユニット20を操作して、金属膜104に対する励起光αの入射角を走査しつつ、蛍光検出ユニット30を操作して、プラズモン散乱光を検出する。このとき、制御部50は、位置切替機構37を操作して、光学フィルター33を受光ユニット31の光路外に配置する。そして、制御部50は、プラズモン散乱光の光量が最大の時の励起光αの入射角を増強角として決定する。 Specifically, the control unit 50 operates the excitation light irradiation unit 20 to scan the incident angle of the excitation light α with respect to the metal film 104 and operates the fluorescence detection unit 30 to detect plasmon scattered light. . At this time, the control unit 50 operates the position switching mechanism 37 to place the optical filter 33 outside the light path of the light receiving unit 31. And the control part 50 determines the incident angle of the excitation light (alpha) when the light quantity of a plasmon scattered light is the maximum as an enhancement angle.
 次いで、制御部50は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、測定位置に配置されたセンサーチップ100に励起光αを照射するとともに、受光センサー35の出力値(光学ブランク値)を記録する(S160)。 Next, the control unit 50 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 arranged at the measurement position with the excitation light α, and outputs the output value (optical blank value) of the light receiving sensor 35. ) Is recorded (S160).
 この時、制御部50は、角度調整機構22を操作して、励起光αの入射角を増強角に設定する。また、制御部50は、位置切替機構37を操作して、光学フィルター33を受光ユニット31の光路内に配置する。 At this time, the control unit 50 operates the angle adjustment mechanism 22 to set the incident angle of the excitation light α to the enhancement angle. Further, the control unit 50 operates the position switching mechanism 37 to place the optical filter 33 in the optical path of the light receiving unit 31.
 次いで、制御部50は、ピペットノズル移動機構45を操作して、センサーチップ100を給排液位置に移動させる(S170)。
 そして制御部50は、ピペットノズル移動機構45及びポンプ駆動機構44を操作して、ピペットチップ106内の測定液を排出し、液貯留部60に貯留される試料液をピペットチップ106内に導入する(S180)。ピペットチップ106内では、抗原抗体反応(一次反応)によって、金属膜104上の反応場にアナライトが捕捉される。なお、一次反応の際に、制御部50はピペットノズル移動機構45を操作して、センサーチップ100を振動させることで、ピペットチップ106内の試料液を攪拌するようにしてもよい。
Next, the control unit 50 operates the pipette nozzle moving mechanism 45 to move the sensor chip 100 to the supply / drainage position (S170).
Then, the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to discharge the measurement liquid in the pipette tip 106 and introduce the sample liquid stored in the liquid storage unit 60 into the pipette tip 106. (S180). In the pipette tip 106, the analyte is captured in the reaction field on the metal film 104 by the antigen-antibody reaction (primary reaction). During the primary reaction, the control unit 50 may agitate the sample liquid in the pipette chip 106 by operating the pipette nozzle moving mechanism 45 to vibrate the sensor chip 100.
 なお、ここで用いられる試料液は、検体を用いて調製された液体であり、例えば、検体と試薬とを混合して検体中に含有されるアナライトに蛍光物質を結合させるための処理をしたものが挙げられる。このような検体としては、例えば、血液、血清、血漿、尿、鼻孔液、唾液、便、体腔液(髄液、腹水、胸水等)などが挙げられる。 Note that the sample liquid used here is a liquid prepared using a specimen, and for example, a specimen and a reagent are mixed to perform a treatment for binding a fluorescent substance to an analyte contained in the specimen. Things. Examples of such specimens include blood, serum, plasma, urine, nasal fluid, saliva, stool, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.).
 また、検体中に含有されるアナライトは、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、またはヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、タンパク質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)、糖質(オリゴ糖、多糖類、糖鎖等)、脂質、またはこれらの修飾分子、複合体などが挙げられ、具体的には、AFP(αフェトプロテイン)等のがん胎児性抗原や腫瘍マーカー、シグナル伝達物質、ホルモンなどであってもよく、特に限定されない。 The analyte contained in the sample is, for example, a nucleic acid (DNA that may be single-stranded or double-stranded, RNA, polynucleotide, oligonucleotide, PNA (peptide nucleic acid), etc., or nucleoside Nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modified molecules thereof, Specific examples thereof include a complex, and may be a carcinoembryonic antigen such as AFP (α-fetoprotein), a tumor marker, a signal transduction substance, a hormone, and the like, and is not particularly limited.
 その後、制御部50は、ピペットノズル移動機構45及びポンプ駆動機構44を操作して、ピペットチップ106内の試料液を排出するとともに、ピペットチップ106内に洗浄液を導入し、ピペットチップ106内を洗浄する(S190)。 Thereafter, the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to discharge the sample liquid in the pipette tip 106, introduce a cleaning liquid into the pipette tip 106, and wash the inside of the pipette tip 106. (S190).
 次いで、制御部50は、ピペットノズル移動機構45及びポンプ駆動機構44を操作して、液貯留部60に貯留される標識液をピペットチップ106内に導入する(S200)。ピペットチップ106内では、抗原抗体反応(二次反応)によって、金属膜104上に捕捉されているアナライトが蛍光物質で標識される。なお、標識液としては、蛍光物質で標識された二次抗体を含む液体を用いることができる。また、二次反応の際に、制御部50はピペットノズル移動機構45を操作して、センサーチップ100を振動させることで、ピペットチップ106内の標識液を攪拌するようにしてもよい。 Next, the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to introduce the labeling liquid stored in the liquid storage unit 60 into the pipette tip 106 (S200). In the pipette chip 106, the analyte captured on the metal film 104 is labeled with a fluorescent substance by an antigen-antibody reaction (secondary reaction). As the labeling liquid, a liquid containing a secondary antibody labeled with a fluorescent substance can be used. In the secondary reaction, the controller 50 may operate the pipette nozzle moving mechanism 45 to vibrate the sensor chip 100 so that the labeling liquid in the pipette chip 106 is agitated.
 その後、制御部50は、ピペットノズル移動機構45及びポンプ駆動機構44を操作して、ピペットチップ106内の標識液を排出するとともに、ピペットチップ106内に洗浄液を導入し、ピペットチップ106内を洗浄する(S210)。 Thereafter, the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to discharge the labeling liquid in the pipette tip 106, introduce a cleaning liquid into the pipette tip 106, and wash the inside of the pipette tip 106. (S210).
 次いで、制御部50は、ピペットノズル移動機構45及びポンプ駆動機構44を操作して、ピペットチップ106内の洗浄液を排出するとともに、ピペットチップ106内に測定液を導入する(S220)。 Next, the control unit 50 operates the pipette nozzle moving mechanism 45 and the pump drive mechanism 44 to discharge the cleaning liquid in the pipette tip 106 and introduce the measurement liquid into the pipette tip 106 (S220).
 次いで、制御部50は、ピペットノズル移動機構45を操作して、センサーチップ100を測定位置に移動させる(S230)。 Next, the control unit 50 operates the pipette nozzle moving mechanism 45 to move the sensor chip 100 to the measurement position (S230).
 次いで、制御部50は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、測定位置に配置されたセンサーチップ100に励起光αを照射するとともに、リガンドに捕捉されているアナライトを標識する蛍光物質から放出された蛍光γを検出する(S240)。検出された蛍光γの強度に基づき、必要に応じて、アナライトの量や濃度などに換算することができる。 Next, the control unit 50 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 arranged at the measurement position with the excitation light α and to label the analyte captured by the ligand. The fluorescent γ emitted from the fluorescent substance to be detected is detected (S240). Based on the intensity of the detected fluorescence γ, it can be converted into the amount or concentration of the analyte as required.
 以上の手順により、試料液中のアナライトの存在またはその量を検出することができる。
 なお、本実施形態では、一次反応(S180)の前に、増強角検出(S150)、光学ブランク値測定(S160)を実施しているが、一次反応(S180)の後に、増強角検出(S150)、光学ブランク値測定(S160)を実施するようにしてもよい。
By the above procedure, the presence or amount of the analyte in the sample solution can be detected.
In this embodiment, enhancement angle detection (S150) and optical blank value measurement (S160) are performed before the primary reaction (S180). However, enhancement angle detection (S150) is performed after the primary reaction (S180). ), Optical blank value measurement (S160) may be performed.
 また、励起光αの入射角があらかじめ決まっている場合は、増強角の検出(S150)を省略してもよい。 Further, when the incident angle of the excitation light α is determined in advance, the detection of the enhancement angle (S150) may be omitted.
 また、上記の説明では、アナライトとリガンドとを反応させる一次反応(S180)の後に、アナライトを蛍光物質で標識する二次反応(S200)を行っている(2工程方式)。しかしながら、アナライトを蛍光物質で標識するタイミングは、特に限定されるものではない。 In the above description, the secondary reaction (S200) for labeling the analyte with a fluorescent substance is performed after the primary reaction (S180) for reacting the analyte and the ligand (two-step method). However, the timing for labeling the analyte with a fluorescent substance is not particularly limited.
 例えば、ピペットチップ106内に試料液を導入する前に、試料液に標識液を添加してアナライトを予め蛍光物質で標識しておくこともできる。また、ピペットチップ106内に試料液と標識液を同時に注入することで、蛍光物質で標識されたアナライトがリガンドに捕捉されることとなる。この場合、アナライトが蛍光物質で標識されるとともに、アナライトがリガンドに捕捉される。 For example, before introducing the sample solution into the pipette tip 106, a labeling solution can be added to the sample solution to label the analyte with a fluorescent substance in advance. Further, by simultaneously injecting the sample solution and the labeling solution into the pipette tip 106, the analyte labeled with the fluorescent substance is captured by the ligand. In this case, the analyte is labeled with a fluorescent substance, and the analyte is captured by the ligand.
 いずれの場合も、ピペットチップ106内に試料液を導入することで、一次反応及び二次反応の両方を完了することができる(1工程方式)。このように1工程方式を採用する場合は、抗原抗体反応の前に増強角検出(S150)が実施される。 In any case, by introducing the sample solution into the pipette tip 106, both the primary reaction and the secondary reaction can be completed (one-step method). Thus, when adopting the one-step method, the enhancement angle detection (S150) is performed before the antigen-antibody reaction.
 図5は、本発明の別の実施形態に係る回折格子結合型表面プラズモン励起増強蛍光分光測定装置(GC-SPFS装置)の構成を説明するための模式図、図6は、本発明の一実施形態に係るセンサーチップの構成を説明するための模式図であり、図6(A)は、センサーチップの高さ方向に沿う断面図、図6(B)は、センサーチップの水平方向に沿う断面図である。 FIG. 5 is a schematic diagram for explaining a configuration of a diffraction grating coupled surface plasmon excitation enhanced fluorescence spectrometer (GC-SPFS apparatus) according to another embodiment of the present invention, and FIG. 6 is an embodiment of the present invention. FIG. 6A is a schematic view for explaining a configuration of a sensor chip according to the embodiment, FIG. 6A is a cross-sectional view along the height direction of the sensor chip, and FIG. 6B is a cross-section along the horizontal direction of the sensor chip. FIG.
 本実施形態において、図1~4で説明したPC-SPFS装置10と同様な構成要素には、同じ符号を付して、その詳細な説明を省略する。 In this embodiment, the same components as those of the PC-SPFS apparatus 10 described with reference to FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図5に示すように、本実施形態におけるGC-SPFS装置70は、励起光照射ユニット20、蛍光検出ユニット30、搬送ユニット40及び制御部50を備える。なお、本実施形態におけるGC-SPFS装置70は、搬送ユニット40にセンサーチップ200を装着した状態で使用される。 As shown in FIG. 5, the GC-SPFS apparatus 70 in this embodiment includes an excitation light irradiation unit 20, a fluorescence detection unit 30, a transport unit 40, and a control unit 50. Note that the GC-SPFS device 70 in this embodiment is used in a state where the sensor chip 200 is mounted on the transport unit 40.
 図6に示すように、センサーチップ200は、成膜面202aを有する基板202と、成膜面202aに形成された金属膜104と、成膜面202aまたは金属膜104と固着されたピペットチップ106とを有する。 As shown in FIG. 6, the sensor chip 200 includes a substrate 202 having a film formation surface 202a, a metal film 104 formed on the film formation surface 202a, and a pipette chip 106 fixed to the film formation surface 202a or the metal film 104. And have.
 また、基板202には、金属膜104上の反応場に対応する部分の少なくとも一部に、光学素子としての回折格子203が形成されている。本実施形態において、光学素子である回折格子を有する基板202と、金属膜104及び反応場が側壁部材を形成する。通常、センサーチップ200は、検体検査毎に交換されるものである。 In addition, a diffraction grating 203 as an optical element is formed on the substrate 202 at least at a part corresponding to the reaction field on the metal film 104. In this embodiment, the substrate 202 having a diffraction grating, which is an optical element, the metal film 104, and the reaction field form a side wall member. Usually, the sensor chip 200 is replaced for each specimen test.
 基板202の形状は特に限定されるものではない。また、基板202は、例えば、ガラス、セラミックスなどの各種の無機物、天然ポリマー、合成ポリマーなどの材料により形成することができる。 The shape of the substrate 202 is not particularly limited. In addition, the substrate 202 can be formed of materials such as various inorganic materials such as glass and ceramics, natural polymers, and synthetic polymers.
 前述のとおり、基板202には、回折格子203が形成されている。回折格子203は、少なくとも、金属膜104上の反応場に対応する部分の少なくとも一部に形成されていればよく、基板202のピペットチップ106側の表面の全体に形成されていてもよいし、一部のみに形成されていてもよい。 As described above, the diffraction grating 203 is formed on the substrate 202. The diffraction grating 203 only needs to be formed on at least a part of the portion corresponding to the reaction field on the metal film 104, and may be formed on the entire surface of the substrate 202 on the pipette tip 106 side. It may be formed only in part.
 回折格子203に励起光照射ユニット20から励起光αを照射すると、金属膜104に生じる表面プラズモンと、回折格子203により生じるエバネッセント光が結合して表面プラズモン共鳴が生じ、金属膜104の表面上に局在する増強電場を生じさせることができる。 When the excitation light α is irradiated to the diffraction grating 203 from the excitation light irradiation unit 20, the surface plasmon generated in the metal film 104 and the evanescent light generated by the diffraction grating 203 are combined to generate surface plasmon resonance, and the surface of the metal film 104 is A localized enhanced electric field can be generated.
 回折格子203は、励起光αが照射された際に、エバネッセント光を生じさせる。回折格子203の形状は、エバネッセント光を生じさせることができれば、特に限定されるものではない。 The diffraction grating 203 generates evanescent light when the excitation light α is irradiated. The shape of the diffraction grating 203 is not particularly limited as long as it can generate evanescent light.
 例えば、回折格子203は、図7(A)に示すように、1次元回折格子であってもよいし、図7(B)に示すように、2次元回折格子であってもよい。図7(A)に示す1次元回折格子では、基板202の表面に、互いに平行な複数の凸条が所定の間隔で形成される。図7(B)に示す2次元回折格子では、基板202の表面に、所定形状の凸部が周期的に配置されている。凸部の配列の例としては、正方格子、三角(六方)格子などが含まれる。回折格子203の断面形状の例としては、矩形波形状、正弦波形状、鋸歯形状などが含まれる。回折格子203のピッチは、表面プラズモン共鳴を発生させる観点から、100~2000nmの範囲が好ましい。本明細書において、「回折格子のピッチ」とは、図7(A),(B)に示すように、凸部の配列方向における凸部の中心間距離Λをいう。なお、本実施形態では、凸部の配列方向がピペットチップ106の深さ方向に沿うように、回折格子203が配置される。 For example, the diffraction grating 203 may be a one-dimensional diffraction grating as shown in FIG. 7A or a two-dimensional diffraction grating as shown in FIG. 7B. In the one-dimensional diffraction grating shown in FIG. 7A, a plurality of ridges parallel to each other are formed on the surface of the substrate 202 at a predetermined interval. In the two-dimensional diffraction grating shown in FIG. 7B, convex portions having a predetermined shape are periodically arranged on the surface of the substrate 202. Examples of the arrangement of the convex portions include a square lattice, a triangular (hexagonal) lattice, and the like. Examples of the cross-sectional shape of the diffraction grating 203 include a rectangular wave shape, a sine wave shape, and a sawtooth shape. The pitch of the diffraction grating 203 is preferably in the range of 100 to 2000 nm from the viewpoint of generating surface plasmon resonance. In this specification, the “diffraction grating pitch” refers to the center-to-center distance Λ of protrusions in the arrangement direction of the protrusions, as shown in FIGS. In this embodiment, the diffraction grating 203 is arranged so that the arrangement direction of the convex portions is along the depth direction of the pipette tip 106.
 回折格子203の形成方法は、特に限定されるものではない。例えば、平板状の基板202の成膜面202aに金属膜104を形成した後、金属膜104に凹凸形状を付与してもよい。また、予め凹凸形状を付与された基板202の成膜面202aに、金属膜104を形成してもよい。 The formation method of the diffraction grating 203 is not particularly limited. For example, the metal film 104 may be formed on the film formation surface 202 a of the flat substrate 202 and then the uneven shape may be imparted to the metal film 104. Alternatively, the metal film 104 may be formed on the film formation surface 202a of the substrate 202 that has been provided with an uneven shape in advance.
 なお、本実施形態においてピペットチップ106は、少なくとも励起光αの波長の光及び蛍光γの波長の光に対して透明な材料で形成されている。ただし、後述する検出方法における光の取り出しの妨げにならない限り、ピペットチップ106の一部は光に対して不透明な材料で形成されていてもよい。 In the present embodiment, the pipette tip 106 is formed of a material that is at least transparent to light having the wavelength of excitation light α and light having a wavelength of fluorescence γ. However, a part of the pipette tip 106 may be made of a material that is opaque to light as long as it does not interfere with light extraction in the detection method described later.
 ピペットチップ106は、例えば、接着剤や透明な粘着シートによる接着、レーザー溶着、超音波溶着などにより基板202または金属膜104と接合することができる。 The pipette tip 106 can be bonded to the substrate 202 or the metal film 104 by, for example, adhesion using an adhesive or a transparent adhesive sheet, laser welding, ultrasonic welding, or the like.
 なお、基板202は、ピペットチップ106の胴部108に固着することが好ましい。このように構成することにより、後述するように、液貯留部60からピペットチップ106に液体を導入する際に、基板202が液体と接触することを防止できる。 The substrate 202 is preferably fixed to the body portion 108 of the pipette tip 106. With this configuration, the substrate 202 can be prevented from coming into contact with the liquid when the liquid is introduced from the liquid storage unit 60 into the pipette tip 106, as will be described later.
 次に、GC-SPFS装置70の各構成要素について説明する。本実施形態におけるGC-SPFS装置70は、励起光照射ユニット20、測定光検出ユニット80、搬送ユニット40及び制御部50が設けられている。 Next, each component of the GC-SPFS device 70 will be described. The GC-SPFS apparatus 70 in this embodiment is provided with an excitation light irradiation unit 20, a measurement light detection unit 80, a transport unit 40, and a control unit 50.
 励起光照射ユニット20は、測定位置にあるセンサーチップ100に対して励起光αを照射する。このとき、励起光αは、ピペットチップ106を介して、回折格子203に照射される。 The excitation light irradiation unit 20 irradiates the sensor chip 100 at the measurement position with the excitation light α. At this time, the excitation light α is applied to the diffraction grating 203 via the pipette tip 106.
 励起光照射ユニット20は、励起光αの光軸及び励起光αの反射光βの光軸を含む平面が回折格子203の凸部の配列方向に沿うように、回折格子203に励起光αを照射する。 The excitation light irradiation unit 20 applies the excitation light α to the diffraction grating 203 so that the plane including the optical axis of the excitation light α and the optical axis of the reflected light β of the excitation light α is along the arrangement direction of the convex portions of the diffraction grating 203. Irradiate.
 測定光検出ユニット80は、例えば、受光ユニット31、角度調整機構36、位置切替機構37及びセンサー制御部38を備える。
 角度調整機構36は、回折格子203において反射した励起光αの反射光βを検出するために測定光検出ユニット80の角度を調整する。角度調整機構36は、例えば、励起光照射ユニット20の角度調整機構22と連動して角度を調整するようにしてもよい。
The measurement light detection unit 80 includes, for example, a light receiving unit 31, an angle adjustment mechanism 36, a position switching mechanism 37, and a sensor control unit 38.
The angle adjustment mechanism 36 adjusts the angle of the measurement light detection unit 80 in order to detect the reflected light β of the excitation light α reflected by the diffraction grating 203. For example, the angle adjustment mechanism 36 may adjust the angle in conjunction with the angle adjustment mechanism 22 of the excitation light irradiation unit 20.
 回折格子203に対する励起光αの入射角のうち、反射光βの光量が最小となる角度が増強角である。増強角またはその近傍の角度に励起光αの入射角を設定することで、高強度の蛍光γを測定することが可能となる。 Among the incident angles of the excitation light α to the diffraction grating 203, the angle at which the amount of the reflected light β is minimized is the enhancement angle. By setting the incident angle of the excitation light α to an enhancement angle or an angle in the vicinity thereof, it becomes possible to measure high-intensity fluorescence γ.
 励起光αの入射角は、回折格子203のピッチΛや励起光αの波長、金属膜104膜厚や構成する金属の種類、ピペットチップ106内の試料液の屈折率などに応じて適切に選択される。例えば、励起光αの入射角θは、下記式(1)を満たすように設定される。 The incident angle of the excitation light α is appropriately selected according to the pitch Λ of the diffraction grating 203, the wavelength of the excitation light α, the thickness of the metal film 104, the type of metal to be configured, the refractive index of the sample liquid in the pipette tip 106, and the like. Is done. For example, the incident angle θ of the excitation light α is set so as to satisfy the following formula (1).
Figure JPOXMLDOC01-appb-M000001
0:励起光αの波数=2π/(λ0/n)λ0:真空中の励起光αの波長n:回折格子203上の媒質(ピペットチップ106内の液体)の屈折率θ:励起光αの回折格子203に対する入射角m:整数Λ:回折格子203のピッチ
Figure JPOXMLDOC01-appb-M000001
k 0 : Wave number of excitation light α = 2π / (λ 0 / n) λ 0 : Wavelength of excitation light α in vacuum n: Refractive index θ of medium (liquid in pipette tip 106) on diffraction grating 203: Excitation Incident angle m of light α to diffraction grating 203: integer Λ: pitch of diffraction grating 203
 ここで、kspは、2種類の媒質の界面(金属膜104とピペットチップ106内の液体との界面)において励起されるプラズモンの波数であり、下記式(2)のように定義される。 Here, ksp is the wave number of the plasmon excited at the interface between the two types of media (the interface between the metal film 104 and the liquid in the pipette tip 106), and is defined as the following equation (2).
Figure JPOXMLDOC01-appb-M000002
ω:励起光αの角周波数c:光速度ε1:回折格子203上の媒質(ピペットチップ106内の液体)の誘電率=n2ε2:金属膜104を構成する媒質(金属)の誘電率
Figure JPOXMLDOC01-appb-M000002
ω: angular frequency of excitation light α c: speed of light ε 1 : dielectric constant of medium (liquid in pipette tip 106) = n2ε 2 : dielectric constant of medium (metal) constituting metal film 104
 ただし、励起光αの最適な入射角(増強角)は、各種条件や回折格子203の形状誤差などにより変動するため、検体検査毎に最適な増強角を求めることが好ましい。 However, since the optimum incident angle (enhancement angle) of the excitation light α varies depending on various conditions and the shape error of the diffraction grating 203, it is preferable to obtain the optimum enhancement angle for each specimen examination.
 以下、GC-SPFS装置70を用いた検体検出の流れについて説明する。なお、GC-SPFS装置70の動作手順は、基本的には、図4に示すPC-SPFS装置10の動作手順と同様な動作手順と同様であり、増強角検出(S150)の方法のみが異なる。したがって、GC-SPFS装置70を用いた増強角検出の手順のみ説明する。 Hereinafter, the flow of specimen detection using the GC-SPFS apparatus 70 will be described. Note that the operation procedure of the GC-SPFS device 70 is basically the same as the operation procedure of the PC-SPFS device 10 shown in FIG. 4, and only the method of the enhancement angle detection (S150) is different. . Therefore, only the procedure for detecting the enhancement angle using the GC-SPFS device 70 will be described.
 本実施形態において、増強角検出手順では、制御部50は、励起光照射ユニット20を操作して、回折格子203に対する励起光αの入射角を走査しつつ、測定光検出ユニット80を操作して、反射光βを検出する。このとき、制御部50は、位置切替機構37を操作して、光学フィルター33を受光ユニット31の光路外に配置する。そして、制御部50は、反射光βの光量が最小の時の励起光αの入射角を増強角として決定する。 In this embodiment, in the enhancement angle detection procedure, the controller 50 operates the measurement light detection unit 80 while operating the excitation light irradiation unit 20 to scan the incident angle of the excitation light α with respect to the diffraction grating 203. The reflected light β is detected. At this time, the control unit 50 operates the position switching mechanism 37 to place the optical filter 33 outside the light path of the light receiving unit 31. Then, the control unit 50 determines the incident angle of the excitation light α when the light amount of the reflected light β is minimum as the enhancement angle.
 このように決定された増強角で励起光αをセンサーチップ200に照射するとともに、リガンドに捕捉されているアナライトを標識する蛍光物質から放出された蛍光γを検出することで、検出された蛍光γの強度に基づき、必要に応じて、アナライトの量や濃度などに換算することができる。 The sensor chip 200 is irradiated with the excitation light α at the enhancement angle determined in this way, and the detected fluorescence is detected by detecting the fluorescence γ emitted from the fluorescent substance that labels the analyte captured by the ligand. Based on the intensity of γ, the amount and concentration of the analyte can be converted as necessary.
 以上、本発明の好ましい実施の態様を説明してきたが、本発明はこれに限定されることはなく、例えば、上記実施例ではSPFS装置について説明したが、本発明に係る検体検出装置は、例えば、SPR装置などの蛍光免疫測定法(FIA)を利用した検体検出装置などにも適用することもできるなど、本発明の目的を逸脱しない範囲で種々の変更が可能である。 The preferred embodiment of the present invention has been described above. However, the present invention is not limited to this. For example, the SPFS apparatus has been described in the above embodiment. Various modifications can be made without departing from the object of the present invention, such as a sample detection apparatus using a fluorescence immunoassay (FIA) such as an SPR apparatus.
10   PC-SPFS装置
20   励起光照射ユニット
21   光源ユニット
22   角度調整機構
23   光源制御部
30   蛍光検出ユニット
31   受光ユニット
32   レンズ
33   光学フィルター
34   レンズ
35   受光センサー
36   角度調整機構
37   位置切替機構
38   センサー制御部
40   搬送ユニット
41   シリンジポンプ
42   シリンジ
43   プランジャー
44   ポンプ駆動機構
45   ピペットノズル移動機構
46   ピペットノズル
50   制御部
60   液貯留部
70   GC-SPFS装置
80   測定光検出ユニット
100  センサーチップ
102  誘電体部材
102a 入射面
102b 成膜面
102c 出射面
104  金属膜
106  ピペットチップ
106a 固着面
106b 開口部
106c 装着孔
108  胴部
108a 側壁
108b 側壁
110  先端部
110a 液吸排孔
200  センサーチップ
202  基板
202a 成膜面
203  回折格子
DESCRIPTION OF SYMBOLS 10 PC-SPFS apparatus 20 Excitation light irradiation unit 21 Light source unit 22 Angle adjustment mechanism 23 Light source control part 30 Fluorescence detection unit 31 Light reception unit 32 Lens 33 Optical filter 34 Lens 35 Light reception sensor 36 Angle adjustment mechanism 37 Position switching mechanism 38 Sensor control part 40 Transport unit 41 Syringe pump 42 Syringe 43 Plunger 44 Pump drive mechanism 45 Pipette nozzle moving mechanism 46 Pipette nozzle 50 Control unit 60 Liquid storage unit 70 GC-SPFS device 80 Measurement light detection unit 100 Sensor chip 102 Dielectric member 102a Incident surface 102b Deposition surface 102c Emission surface 104 Metal film 106 Pipette tip 106a Fixing surface 106b Opening 106c Mounting hole 108 Body 108a Side wall 108b side 110 tip 110a liquid suction and discharge hole 200 sensor chip 202 substrate 202a deposition surface 203 diffraction grating

Claims (12)

  1.  アナライトの検出に用いられる検体検出チップであって、
     前記アナライトを捕捉する反応場を有する側壁部材と、
     前記側壁部材と隣接して配置されるピペットチップと、を備え、
     前記反応場が前記ピペットチップ内に導入される液体と接触するように、前記ピペットチップに開口部が設けられるとともに、前記ピペットチップと前記側壁部材が配置される検体検出チップ。
    An analyte detection chip used for analyte detection,
    A side wall member having a reaction field for capturing the analyte;
    A pipette tip disposed adjacent to the side wall member,
    An analyte detection chip in which an opening is provided in the pipette chip and the pipette chip and the side wall member are arranged so that the reaction field contacts a liquid introduced into the pipette chip.
  2.  前記ピペットチップは、胴部と、液吸排孔を有する先端部とを有し、
     前記胴部に前記側壁部材が固着される請求項1に記載の検体検出チップ。
    The pipette tip has a body portion and a tip portion having a liquid suction / discharge hole,
    The specimen detection chip according to claim 1, wherein the side wall member is fixed to the body portion.
  3.  前記ピペットチップにおいて、前記胴部と前記側壁部材との固着面を有する側壁が平面である請求項2に記載の検体検出チップ。 3. The sample detection chip according to claim 2, wherein in the pipette chip, a side wall having a fixing surface between the body portion and the side wall member is a flat surface.
  4.  前記ピペットチップにおいて、前記固着面を有する側壁と対抗する側壁が平面である請求項3に記載の検体検出チップ。 4. The sample detection chip according to claim 3, wherein, in the pipette chip, a side wall facing the side wall having the fixing surface is a flat surface.
  5.  前記ピペットチップにおいて、前記固着面を有する側壁と対向する側壁の内面及び外面の少なくとも一方が凸曲面である請求項3に記載の検体検出チップ。 4. The sample detection chip according to claim 3, wherein in the pipette chip, at least one of an inner surface and an outer surface of the side wall facing the side wall having the fixing surface is a convex curved surface.
  6.  前記側壁部材は、光学素子を含む請求項1から5のいずれかに記載の検体検出チップ。 The specimen detection chip according to any one of claims 1 to 5, wherein the side wall member includes an optical element.
  7.  前記光学素子は、誘電体部材、微細な凸部または凹部が周期的に配列されている部材、光導波路または光反射部材である請求項6に記載の検体検出チップ。 The specimen detection chip according to claim 6, wherein the optical element is a dielectric member, a member in which fine convex portions or concave portions are periodically arranged, an optical waveguide, or a light reflecting member.
  8.  前記光学素子は、光を入射させるための入射面と、前記入射面で入射した光を反射させるための反射面とを含む誘電体部材であり、
     前記反応場は、前記反射面上配置されている請求項7に記載の検体検出チップ。
    The optical element is a dielectric member including an incident surface for entering light and a reflecting surface for reflecting light incident on the incident surface,
    The analyte detection chip according to claim 7, wherein the reaction field is disposed on the reflection surface.
  9.  前記誘電体部材は、前記反射面上に配置された金属膜を有し、
     前記反応場は、前記金属膜上に配置されている請求項8に記載の検体検出チップ。
    The dielectric member has a metal film disposed on the reflective surface,
    The analyte detection chip according to claim 8, wherein the reaction field is disposed on the metal film.
  10.  請求項9に記載の検体検出チップを用いて検体の検出を行う検体検出装置であって、
     前記金属膜に前記誘電体部材を介して励起光を照射する励起光照射ユニットと、
     前記金属膜に照射された励起光に基づき、前記反応場に捕捉された蛍光標識された前記アナライトから生じる蛍光を検出する蛍光検出ユニットと、
     前記センサーチップの前記ピペットチップが装着され、該ピペットチップを移動させるとともに、前記ピペットチップ内の液体の吸排を行う搬送ユニットと、を備える検体検出装置。
    A sample detection apparatus for detecting a sample using the sample detection chip according to claim 9,
    An excitation light irradiation unit for irradiating the metal film with excitation light via the dielectric member;
    A fluorescence detection unit for detecting fluorescence generated from the fluorescence-labeled analyte captured in the reaction field based on the excitation light irradiated to the metal film;
    A specimen detection apparatus comprising: a transport unit that is mounted with the pipette tip of the sensor chip, moves the pipette tip, and sucks and discharges liquid in the pipette tip.
  11.  前記光学素子は、微細な凸部または凹部が周期的に配列されており、かつ、その表面が金属で被覆されている回折格子であり、
     前記回折格子は、前記開口部を介して前記ピペットチップ内に露出し、
     前記反応場は、前記回折格子上に配置されている請求項6に記載の検体検出チップ。
    The optical element is a diffraction grating in which fine convex portions or concave portions are periodically arranged, and the surface thereof is coated with a metal,
    The diffraction grating is exposed in the pipette tip through the opening,
    The analyte detection chip according to claim 6, wherein the reaction field is disposed on the diffraction grating.
  12.  請求項11に記載の検体検出チップを用いて検体の検出を行う検体検出装置であって、
     前記回折格子に励起光を照射する励起光照射ユニットと、
     前記回折格子に照射された励起光に基づき、前記反応場に捕捉された蛍光標識された前記アナライトから生じる蛍光、及び、前記回折格子で反射した前記励起光の反射光を検出する測定光検出ユニットと、
     前記センサーチップの前記ピペットチップが装着され、該ピペットチップを移動させるとともに、前記ピペットチップ内の液体の吸排を行う搬送ユニットと、を備える検体検出装置。
    A sample detection apparatus for detecting a sample using the sample detection chip according to claim 11,
    An excitation light irradiation unit for irradiating the diffraction grating with excitation light;
    Measurement light detection for detecting fluorescence generated from the fluorescence-labeled analyte trapped in the reaction field and reflected light of the excitation light reflected by the diffraction grating based on the excitation light irradiated on the diffraction grating Unit,
    A specimen detection apparatus comprising: a transport unit that is mounted with the pipette tip of the sensor chip, moves the pipette tip, and sucks and discharges liquid in the pipette tip.
PCT/JP2019/018863 2018-05-16 2019-05-13 Specimen detecting chip, and specimen detecting device employing same WO2019221040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519613A JPWO2019221040A1 (en) 2018-05-16 2019-05-13 Specimen detection chip and sample detection device using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018094653 2018-05-16
JP2018-094653 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019221040A1 true WO2019221040A1 (en) 2019-11-21

Family

ID=68540395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018863 WO2019221040A1 (en) 2018-05-16 2019-05-13 Specimen detecting chip, and specimen detecting device employing same

Country Status (2)

Country Link
JP (1) JPWO2019221040A1 (en)
WO (1) WO2019221040A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116100656B (en) * 2023-03-28 2023-07-25 铜陵优必胜新材料科技有限公司 Ceramic wafer laminating shaping device, production line and shaping method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214759A (en) * 2005-02-01 2006-08-17 Universal Bio Research Co Ltd Analytical processing method and analytical processor
US20130171673A1 (en) * 2010-06-30 2013-07-04 Csem Centre Suisse D'electronique Et De Micro- Technique Sa Recherche Et Develo Pipette tip, pipette system and method for performing analysis with the pipette tip and system
WO2018021238A1 (en) * 2016-07-28 2018-02-01 コニカミノルタ株式会社 Detection chip, detection system, and detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214759A (en) * 2005-02-01 2006-08-17 Universal Bio Research Co Ltd Analytical processing method and analytical processor
US20130171673A1 (en) * 2010-06-30 2013-07-04 Csem Centre Suisse D'electronique Et De Micro- Technique Sa Recherche Et Develo Pipette tip, pipette system and method for performing analysis with the pipette tip and system
WO2018021238A1 (en) * 2016-07-28 2018-02-01 コニカミノルタ株式会社 Detection chip, detection system, and detection method

Also Published As

Publication number Publication date
JPWO2019221040A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP6991972B2 (en) Detection chip, detection system and detection method
JP7093766B2 (en) Specimen detection system
JP6648764B2 (en) Reaction method
JP6801656B2 (en) Detection device and detection method
WO2019221040A1 (en) Specimen detecting chip, and specimen detecting device employing same
WO2017134746A1 (en) Liquid sending method, and detection system and detection device using said method
EP3584561B1 (en) Inspection chip and inspection system
WO2018235332A1 (en) Specimen detection device and specimen detection method
JP6885458B2 (en) Sensor chip for sample detection system
JP7121742B2 (en) Optical specimen detection system using diffracted light removal slit
JP7093727B2 (en) Sensor chip position detection method and position detection device in optical sample detection system
WO2017130359A1 (en) Liquid feeding method, and detection system and detection device for carrying out said method
JP6922907B2 (en) Reaction methods, as well as reaction systems and equipment that perform this.
JP6658752B2 (en) Detection chip, detection method, detection device and detection system
JPWO2019230222A1 (en) Surface plasmon excitation enhanced fluorescence measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803766

Country of ref document: EP

Kind code of ref document: A1