WO2019189635A1 - Expanded beads, molded foam, fiber-reinforced composite, and automotive component - Google Patents

Expanded beads, molded foam, fiber-reinforced composite, and automotive component Download PDF

Info

Publication number
WO2019189635A1
WO2019189635A1 PCT/JP2019/013737 JP2019013737W WO2019189635A1 WO 2019189635 A1 WO2019189635 A1 WO 2019189635A1 JP 2019013737 W JP2019013737 W JP 2019013737W WO 2019189635 A1 WO2019189635 A1 WO 2019189635A1
Authority
WO
WIPO (PCT)
Prior art keywords
foamed
bubble
bubbles
less
particles
Prior art date
Application number
PCT/JP2019/013737
Other languages
French (fr)
Japanese (ja)
Inventor
大地 景山
遥香 福岡
皓平 田積
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018185208A external-priority patent/JP2019183099A/en
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2019189635A1 publication Critical patent/WO2019189635A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles

Definitions

  • the present invention relates to expanded particles, expanded molded articles, fiber reinforced composites, and automotive parts. More specifically, the present invention relates to foamed particles that can provide a foamed molded article having improved mechanical properties, and a foamed molded article, a fiber reinforced composite, and an automotive part obtained from the foamed particle.
  • the inventors of the present invention further examined the technique of Patent Document 1, and as long as the foamed particles have small bubbles and large bubbles, the foamed molded article has a beautiful appearance while improving the mechanical properties. Surprisingly, the present invention has been completed.
  • a foamed particle composed of a base resin containing a polycarbonate-based resin is a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at 30 times with a scanning electron microscope.
  • Expanded particles comprising small bubbles having a bubble diameter of 10 ⁇ m or more and less than 200 ⁇ m and large bubbles having a bubble diameter of 300 ⁇ m or more and 1500 ⁇ m or less are provided.
  • a foam molded body composed of a base resin containing a polycarbonate resin, the foam molded body is composed of a plurality of foam particles, and the foam particles are scanned by a scanning electron microscope.
  • a foamed molded article comprising small bubbles having a bubble diameter of 10 ⁇ m or more and less than 200 ⁇ m and large bubbles having a bubble diameter of 300 ⁇ m or more and 1500 ⁇ m or less is provided. Furthermore, according to the present invention, there is provided a fiber reinforced composite comprising the above foam molded body and a fiber reinforced plastic layer laminated and integrated on the surface of the foam molded body. Moreover, according to this invention, the components for motor vehicles comprised from said foaming molding or a fiber reinforced composite are provided.
  • a foamed molded article having a beautiful appearance while exhibiting excellent mechanical properties and foamed particles capable of producing the foamed molded article can be provided.
  • a foamed molded article having a beautiful appearance while exhibiting better mechanical properties, and foamed particles capable of producing the foamed molded article can be provided.
  • (2) The ratio of the total area of the large bubbles to the area of one bubble of the small bubbles calculated from the average cell diameter is 150 or more and 3000 or less in the foamed particles, and 150 or more and 6000 or less in the foamed molded product.
  • the small bubble and the large bubble have an average bubble diameter difference of 300 ⁇ m or more.
  • the small bubbles have an average bubble diameter of 15 ⁇ m or more and 90 ⁇ m or less, preferably 20 ⁇ m or more and 60 ⁇ m or less, and the large bubbles have an average bubble diameter of 400 ⁇ m or more and 1500 ⁇ m or less, preferably 400 ⁇ m or more and 1000 ⁇ m or less.
  • FIG. 6 is an electron micrograph of cross sections of expanded particles and expanded molded articles of Examples 6 to 8.
  • FIG. It is an electron micrograph of the cross section of the expanded particle of Example 9 and Example 10, and a foaming molding. It is an electron micrograph of the cross section of the expanded particle of Comparative Example 1 and Comparative Example 2, and the foaming molding.
  • Foamed particles (1-1) Base resin
  • the foamed particles are composed of a base resin containing a polycarbonate resin.
  • the proportion of the polycarbonate resin in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and may be 100% by weight. This proportion may be, for example, 70%, 75%, 80%, 85%, 90%, 95% or 100% by weight.
  • (A) Polycarbonate-based resin The polycarbonate-based resin preferably has a polyester structure of carbonic acid and glycol or divalent phenol. From the viewpoint of further improving the heat resistance, the polycarbonate resin preferably has an aromatic skeleton.
  • polycarbonate-based resin examples include 2,2-bis (4-oxyphenyl) propane, 2,2-bis (4-oxyphenyl) butane, 1,1-bis (4-oxyphenyl) cyclohexane, 1, Examples thereof include polycarbonate resins derived from bisphenols such as 1-bis (4-oxyphenyl) butane, 1,1-bis (4-oxyphenyl) isobutane, and 1,1-bis (4-oxyphenyl) ethane.
  • polycarbonate-based resin examples include a linear polycarbonate resin and a branched polycarbonate resin, and both of them may be blended.
  • the base resin may contain other resins than the polycarbonate resin. Examples of other resins include acrylic resins, saturated polyester resins, ABS resins, polystyrene resins, and polyphenylene oxide resins.
  • Additive The base resin may contain an additive in addition to the resin, if necessary. Additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, bubble regulators, fillers, colorants, weathering agents, anti-aging agents, antioxidants, UV absorbers, lubricants , Antifogging agents, fragrances and the like.
  • the expanded particle is a cross-sectional photograph of an area of 11.9 mm 2 at 30 ⁇ , and a small bubble having a bubble diameter of 10 ⁇ m or more and less than 200 ⁇ m and a large bubble having a bubble diameter of 300 ⁇ m or more and 1500 ⁇ m or less And.
  • the bubble diameter of the small bubbles may be, for example, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 150 ⁇ m, or 190 ⁇ m.
  • the bubble diameter of the large bubbles may be, for example, 300 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m, 900 ⁇ m, 1000 ⁇ m, 1100 ⁇ m, 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m, or 1500 ⁇ m.
  • the number of large bubbles in one expanded particle is not particularly limited, and may be one or plural.
  • the number of large bubbles in one expanded particle may be 1, 2 or 3, for example. However, if the number of large bubbles in one expanded particle is too large, the cell rate is increased and the mechanical properties of the expanded molded article are lowered.
  • the ratio of the total area of large bubbles to the area of one bubble of small bubbles calculated from the average bubble diameter is 150 or more and 3000 or less. Preferably, it is 500 or more and 2500 or less.
  • This ratio is, for example, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, or 3000.
  • the area of one bubble is calculated from the average bubble diameter of the small bubbles, it means the average area of one bubble.
  • the total area of the large bubbles is the total area of the large bubbles. When only one large bubble exists in one expanded particle, the area of the one large bubble is defined as the total area of the large bubbles.
  • the area of one small bubble and the total area of the large bubbles can be obtained from a cross-sectional photograph of expanded particles obtained by photographing an area of 11.9 mm 2 at 30 times.
  • the average bubble diameter of small bubbles and the average bubble diameter of large bubbles preferably have a difference of 300 ⁇ m or more. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties.
  • a preferable difference is 300 ⁇ m to 1500 ⁇ m, and a more preferable difference is 300 ⁇ m to 600 ⁇ m. This difference may be, for example, 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m, 900 ⁇ m, 1000 ⁇ m, 1100 ⁇ m, 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m, or 1500 ⁇ m.
  • the average bubble diameter of the small bubbles is preferably 15 ⁇ m or more and 90 ⁇ m or less, and more preferably 20 ⁇ m or more and 60 ⁇ m or less.
  • the average bubble diameter of the large bubbles is preferably 400 ⁇ m or more and 1500 ⁇ m or less, and more preferably 400 ⁇ m or more and 1000 ⁇ m or less.
  • the average bubble diameter of the small bubbles is, for example, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m or 90 ⁇ m. There may be.
  • the average bubble diameter of the large bubbles is, for example, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m, 600 ⁇ m, 650 ⁇ m, 700 ⁇ m, 750 ⁇ m, 800 ⁇ m, 850 ⁇ m, 900 ⁇ m, 950 ⁇ m, 1000 ⁇ m, 1050 ⁇ m, 1100 ⁇ m, 1150 ⁇ m, 1200 ⁇ m, 1250 ⁇ m, 1300 ⁇ m, 1350 ⁇ m, It may be 1400 ⁇ m, 1450 ⁇ m, or 1500 ⁇ m.
  • the average particle diameter of the expanded particles is preferably 2000 ⁇ m or more and 4000 ⁇ m or less, and more preferably 2500 ⁇ m or more and 3500 ⁇ m or less.
  • the average particle diameter of the expanded particles may be, for example, 2000 ⁇ m, 2500 ⁇ m, 3000 ⁇ m, 3500 ⁇ m, or 4000 ⁇ m.
  • the outer shape of the expanded particles is not particularly limited as long as a foamed molded product can be produced. And a cylindrical shape.
  • the expanded particles preferably have an outer shape represented by an average aspect ratio of 0.7 or more (the upper limit is 1 true sphere). The aspect ratio may be 0.7, 0.8, 0.9, or 1, for example.
  • the expanded particles preferably have a bulk factor of 30 to 2 times.
  • the bulk multiple may be, for example, 30 times, 25 times, 20 times, 15 times, 10 times, 9 times, 8 times, 7 times, 6 times, 5 times, 4 times, 3 times, or 2 times.
  • the bulk factor is larger than 30 times, the open cell ratio of the foamed particles increases, and the foamability of the foamed particles may decrease during foam molding. If it is less than 2 times, the foamed particles may have uneven bubbles, and the foamability of the foamed particles during foam molding may be insufficient.
  • the bulk multiple is more preferably 25 to 3 times, and particularly preferably 20 to 5 times.
  • (1-3) Manufacturing Method As a manufacturing method of the expanded particles, there is a method in which the expandable particles are obtained by impregnating the resin particles with a foaming agent in a gas phase, and the expandable particles are expanded.
  • the resin particles can be obtained using a known production method and production equipment.
  • the adjustment of the number of voids described below can be performed, for example, by adjusting the amount of chemical foaming agent added to the resin.
  • resin particles can be produced by melt-kneading the raw material resin using an extruder and then granulating by extrusion, underwater cut (underwater cut), strand cut, or the like. The temperature, time, pressure, etc.
  • the melt kneading temperature in the extruder at the time of melt kneading may be a temperature at which the raw material resin is sufficiently softened, preferably 270 ° C. to 350 ° C., more preferably 290 ° C. to 300 ° C.
  • the melt-kneading temperature means the temperature of the melt-kneaded material inside the extruder as measured at the center temperature of the melt-kneaded material flow path near the extruder head with a thermocouple thermometer.
  • the large bubbles which are one of the characteristics of the expanded particles of the present invention, are considered to be derived from voids formed in the central region of the resin particles by rapid cooling from the surroundings during the production of the resin particles. Therefore, in the production of foamed particles, an underwater cut that is easily controlled for rapid cooling is particularly preferable.
  • a bubble regulator is supplied to an extruder.
  • the air conditioner include polytetrafluoroethylene powder, polytetrafluoroethylene powder modified with an acrylic resin, and talc.
  • the amount of the bubble regulator is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin composition.
  • the foamed bubbles may be coarse and the appearance of the obtained foamed molded product may be deteriorated.
  • the amount is more than 5 parts by weight, the closed cell ratio of the foamed particles may decrease due to bubble breakage.
  • the amount of the bubble regulator is more preferably 0.05 to 3 parts by weight, and particularly preferably 0.1 to 2 parts by weight.
  • a method for producing expandable particles a method in which a foaming agent is impregnated in a gas phase with a foaming agent in a hermetically sealed container can be mentioned.
  • the blowing agent include propane, normal butane, isobutane, normal pentane, isopentane, hexane and other saturated aliphatic hydrocarbons, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, 1, Examples thereof include chlorofluorocarbons such as 1-difluoroethane and monochlorodifluoromethane, and inorganic gases such as carbon dioxide, nitrogen and air.
  • dimethyl ether, propane, normal butane, isobutane, and carbon dioxide are preferable, propane, normal butane, isobutane, and carbon dioxide are more preferable, and normal butane, isobutane, and carbon dioxide are particularly preferable.
  • a foaming agent may be used independently or 2 or more types may be used together. If the amount of the foaming agent charged into the container is too small, the foamed particles may not be foamed to a desired expansion ratio. When the amount of the foaming agent is too large, the foaming agent acts as a plasticizer, so that the viscoelasticity of the base resin is excessively decreased, the foamability is decreased, and good expanded particles may not be obtained.
  • the amount of the blowing agent is preferably 3 to 15 parts by weight, more preferably 4 to 12 parts by weight, and particularly preferably 5 to 8 parts by weight with respect to 100 parts by weight of the raw material resin.
  • steam in the container which can be sealed is mentioned.
  • heating conditions include a gauge pressure of 0.3 MPa to 0.5 MPa, a temperature of 120 ° C. to 159 ° C., and 10 seconds to 180 seconds.
  • the particle size of the expanded particles can be varied by changing the diameter of a multi-nozzle mold attached to the front end of the extruder.
  • Foam molded body (2-1) Base resin The base resin constituting the foam molded body is the same as the base resin of the foamed particles. (2-2) Physical properties The foamed molded article is a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at 30 times. Small bubbles with a bubble diameter of 10 ⁇ m or more and less than 200 ⁇ m and large bubbles with a bubble diameter of 300 ⁇ m or more and 1500 ⁇ m or less The foamed particles are fused to each other.
  • the bubble diameter of the small bubbles may be, for example, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 150 ⁇ m, or 190 ⁇ m.
  • the bubble diameter of the large bubbles may be, for example, 300 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m, 900 ⁇ m, 1000 ⁇ m, 1100 ⁇ m, 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m, or 1500 ⁇ m.
  • the number of large bubbles in one foamed particle in the foamed molded product is not particularly limited, and may be one or plural.
  • the number of large bubbles in one expanded particle may be 1, 2 or 3, for example.
  • the cell rate is increased and the mechanical properties of the expanded molded article are lowered. For this reason, it is preferable that only one large bubble exists per one expanded particle, although it depends on the bubble diameter of the large bubble.
  • the ratio of the total area of large bubbles to the area of one bubble of small bubbles calculated from the average bubble diameter in one expanded particle in the foamed molded product is: 150 or more and 6000 or less, preferably 400 or more and 5000 or less. This ratio is, for example, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 2000, It may be 3000, 4000, 5000, 5500 or 6000.
  • the details of the area of one small bubble and the total area of large bubbles are as described above.
  • the average bubble diameter of small bubbles and the average bubble diameter of large bubbles preferably have a difference of 300 ⁇ m or more. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties.
  • a preferable difference is 300 ⁇ m to 1500 ⁇ m, and a more preferable difference is 300 ⁇ m to 600 ⁇ m. This difference may be, for example, 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m, 900 ⁇ m, 1000 ⁇ m, 1100 ⁇ m, 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m, or 1500 ⁇ m.
  • the average bubble diameter of the small bubbles is preferably 15 ⁇ m or more and 90 ⁇ m or less, and more preferably 20 ⁇ m or more and 60 ⁇ m or less.
  • the average bubble diameter of the large bubbles is preferably 400 ⁇ m or more and 1500 ⁇ m or less, and more preferably 400 ⁇ m or more and 1000 ⁇ m or less.
  • the average bubble diameter of the small bubbles is, for example, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m or 90 ⁇ m. There may be.
  • the average bubble diameter of the large bubbles is, for example, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m, 600 ⁇ m, 650 ⁇ m, 700 ⁇ m, 750 ⁇ m, 800 ⁇ m, 850 ⁇ m, 900 ⁇ m, 950 ⁇ m, 1000 ⁇ m, 1050 ⁇ m, 1100 ⁇ m, 1150 ⁇ m, 1200 ⁇ m, 1250 ⁇ m, 1300 ⁇ m, 1350 ⁇ m, It may be 1400 ⁇ m, 1450 ⁇ m, or 1500 ⁇ m.
  • the average particle diameter of the fused foam particles constituting the foam molded article is preferably 2000 ⁇ m or more and 4000 ⁇ m or less, and more preferably 2500 ⁇ m or more and 3500 ⁇ m or less.
  • the average particle diameter of the expanded particles may be, for example, 2000 ⁇ m, 2500 ⁇ m, 3000 ⁇ m, 3500 ⁇ m, or 4000 ⁇ m.
  • the outer shape of the fused expanded particles is not particularly limited as long as the expanded molded body can be maintained.
  • the foamed molded article preferably has a multiple of 30 to 2 times.
  • the foamed molded article has a multiple of, for example, 30 times, 25 times, 20 times, 15 times, 10 times, 9 times, 8 times, 7 times, 6 times, 5 times, 4 times, 3 times or 2 times May be.
  • the multiple is larger than 30 times, the mechanical properties may be insufficient. If it is less than 2 times, the advantage of foaming may be reduced due to increased weight.
  • the multiple is more preferably 25 to 2 times, particularly preferably 20 to 5 times. Therefore, the foamed molded article preferably has a density of 0.06 g / cm 3 or more and 0.24 g / cm 3 or less (60 kg / m 3 or more and 240 kg / m 3 or less).
  • Maximum point bending stress per unit density in the foam molded article is preferably from 0.008MPa / (kg / m 3) or more, 0.01MPa / (kg / m 3 ) or more is more preferable. If the bending maximum point stress is too small, the foamed molded product may be easily broken.
  • Flexural modulus per unit density of the foamed molded article is preferably 0.18MPa / (kg / m 3) or more, 0.2MPa / (kg / m 3 ) or more is more preferable. If the flexural modulus is too small, the foamed molded product may be deformed by pressure applied when a skin material such as fiber reinforced plastic is laminated and integrated on the surface of the foamed molded product.
  • the flexural modulus for example, 0.18MPa / (kg / m 3 ), 0.19MPa / (kg / m 3), 0.2MPa / (kg / m 3), 0.23MPa / (kg / m 3 ), 0.25MPa / (kg / m 3), 0.28MPa / (kg / m 3), 0.3MPa / (kg / m 3), 0.35MPa / (kg / m 3), 0.4MPa / (Kg / m 3 ), 0.45 MPa / (kg / m 3 ), 0.5 MPa / (kg / m 3 ) 0.55 MPa / (kg / m 3 ), 0.6 MPa / (kg / m 3 ) or It may be 1 MPa / (kg / m 3 ).
  • the appearance of the foamed molded product may be evaluated by, for example, the presence or absence of irregularities due to the fused foam particles on the surface of the foamed molded product, whether or not the boundary between the fused foam particles on the surface can be confirmed, and the like. Appearance can be evaluated by visually observing the foamed molded product or touching it with fingers. When the foamed molded product has a smooth surface that is substantially free of unevenness or a surface in which the boundary between the fused foamed particles is substantially not recognized, the foamed molded product is evaluated as having a beautiful appearance. Good.
  • a foamed molded product can be obtained, for example, by applying a force for expanding the bubbles of the foamed particles and then subjecting the foamed particles to a molding step.
  • a foaming agent Before producing the foamed molded article, it is preferable to impregnate the foamed particles with a foaming agent to impart foaming power (secondary foaming power).
  • the impregnation method include a wet impregnation method in which foamed particles are dispersed in an aqueous system and impregnated by press-fitting a foaming agent while stirring, or the foamed particles are injected into a sealable container and the foaming agent is injected and impregnated.
  • a dry impregnation method (vapor phase impregnation method) that does not use water.
  • a dry impregnation method capable of impregnation without using water is preferable.
  • the impregnation pressure, impregnation time, and impregnation temperature when impregnating the foaming agent with the foamed particles are not particularly limited.
  • the foaming agent to be used the foaming agent at the time of producing foamed particles can be used.
  • the pressure for applying the internal pressure is desirably a pressure that does not cause the foamed particles to be crushed and is within a range in which the foaming force can be applied.
  • Such pressure is preferably 0.1 MPa to 4 MPa (gauge pressure), and more preferably 0.3 MPa to 3 MPa (gauge pressure).
  • a heating medium After taking out the expanded particles with internal pressure from the container at the time of impregnation and supplying them to the molding space formed in the molding die of the foam molding machine, by introducing a heating medium, it can be molded into the desired foamed molded product .
  • the heating medium when the heating time becomes long, shrinkage or poor fusion may occur in the foamed particles. Therefore, a heating medium that can give high energy in a short time is desired. Therefore, water vapor is suitable as such a heating medium.
  • the water vapor pressure is preferably 0.2 MPa to 1.0 MPa (gauge pressure).
  • the heating time is preferably 10 seconds to 90 seconds, more preferably 20 seconds to
  • the foamed molded article is excellent in light weight, heat resistance and mechanical properties, and particularly excellent in load resistance in a high temperature environment. Therefore, a foaming molding can be used suitably for parts of transportation equipment, such as a car, an airplane, a railway vehicle, a ship, for example.
  • parts for automobiles include parts used in the vicinity of an engine and exterior materials. More specific automotive parts include, for example, floor panels, roofs, bonnets, fenders, under covers, wheels, steering wheels, containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage Examples include boxes, seats, doors, cowls and the like.
  • a skin material may be laminated and integrated on the surface of the foamed molded product to be used as a reinforced composite.
  • the foamed molded body is a foamed sheet, it is not necessary to be laminated and integrated on both surfaces of the foamed molded body, and the skin material only needs to be laminated and integrated on at least one surface of both surfaces of the foamed molded body.
  • the lamination of the skin material may be determined according to the use of the reinforced composite. Among these, in consideration of the surface hardness and mechanical properties of the reinforced composite, it is preferable that the skin material is laminated and integrated on each of both surfaces in the thickness direction of the foamed molded product.
  • a skin material is not specifically limited, A fiber reinforced plastic, a metal sheet, a synthetic resin film, etc.
  • fiber reinforced plastic is preferred.
  • a reinforced composite using a fiber reinforced plastic as a skin material is referred to as a fiber reinforced composite.
  • the reinforcing fibers constituting the fiber reinforced plastic include glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, Tyranno fibers, basalt fibers, ceramic fibers and other inorganic fibers; stainless steel fibers, steel fibers and other metal fibers; aramid Organic fibers such as fibers, polyethylene fibers, polyparaphenylene benzoxador (PBO) fibers; and boron fibers.
  • Reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fiber, glass fiber, and aramid fiber are preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical properties despite being lightweight.
  • the reinforcing fiber is preferably used as a reinforcing fiber substrate processed into a desired shape.
  • the reinforcing fiber base material include woven fabrics, knitted fabrics, non-woven fabrics, and face materials obtained by binding (stitching) fiber bundles (strands) obtained by aligning reinforcing fibers in one direction with yarns.
  • the weaving method include plain weave, twill weave and satin weave.
  • the yarn include a synthetic resin yarn such as a polyamide resin yarn and a polyester resin yarn, and a stitch yarn such as a glass fiber yarn.
  • the reinforcing fiber substrate may be used without laminating only one reinforcing fiber substrate, or a plurality of reinforcing fiber substrates may be laminated and used as a laminated reinforcing fiber substrate.
  • a laminated reinforcing fiber base material in which a plurality of reinforcing fiber base materials are laminated (1) a plurality of reinforcing fiber base materials of only one kind are prepared, and a laminated reinforcing fiber base material in which these reinforcing fiber base materials are laminated, 2) A plurality of types of reinforcing fiber base materials are prepared, a laminated reinforcing fiber base material obtained by laminating these reinforcing fiber base materials, and (3) a fiber bundle (strand) in which the reinforcing fibers are aligned in one direction is bound with a thread ( A plurality of reinforcing fiber base materials prepared by stitching) are prepared, and these reinforcing fiber base materials are superposed so that the fiber directions of the fiber bundles are different from each other.
  • the fiber reinforced plastic is obtained by impregnating a reinforced fiber with a synthetic resin.
  • the reinforcing fibers are bonded and integrated by the impregnated synthetic resin.
  • the method for impregnating the reinforcing fiber with the synthetic resin is not particularly limited, and examples thereof include (1) a method of immersing the reinforcing fiber in the synthetic resin, and (2) a method of applying the synthetic resin to the reinforcing fiber.
  • As the synthetic resin impregnated into the reinforcing fiber either a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used.
  • the thermosetting resin impregnated into the reinforcing fiber is not particularly limited, and includes epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide resin. Examples thereof include a resin obtained by prepolymerizing a cyanate ester resin. Epoxy resins and vinyl ester resins are preferred because they are excellent in heat resistance, impact absorption or chemical resistance.
  • the thermosetting resin may contain additives such as a curing agent and a curing accelerator. In addition, a thermosetting resin may be used independently and 2 or more types may be used together.
  • thermoplastic resin impregnated in the reinforcing fiber is not particularly limited, and examples thereof include olefin resins, polyester resins, thermoplastic epoxy resins, amide resins, thermoplastic polyurethane resins, sulfide resins, acrylic resins, and the like. Polyester resins and thermoplastic epoxy resins are preferred because they are excellent in adhesiveness with the foamed molded article or adhesiveness between the reinforcing fibers constituting the fiber reinforced plastic.
  • a thermoplastic resin may be used independently and 2 or more types may be used together.
  • the thermoplastic epoxy resin may be a polymer or copolymer of epoxy compounds having a linear structure, or a copolymer of an epoxy compound and a monomer that can be polymerized with the epoxy compound.
  • thermoplastic epoxy resin for example, bisphenol A type epoxy resin, bisphenol fluorene type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, cyclic aliphatic type epoxy resin, long chain aliphatic type epoxy resin Examples thereof include a resin, a glycidyl ester type epoxy resin, and a glycidyl amine type epoxy resin. Among these, bisphenol A type epoxy resins and bisphenol fluorene type epoxy resins are preferable.
  • a thermoplastic epoxy resin may be used independently and 2 or more types may be used together.
  • thermoplastic polyurethane resin examples include a polymer having a linear structure obtained by polymerizing diol and diisocyanate.
  • diol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and the like. Diols may be used alone or in combination of two or more.
  • diisocyanate include aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Diisocyanate may be used independently or 2 or more types may be used together.
  • a thermoplastic polyurethane resin may be used independently and 2 or more types may be used together.
  • the content of the synthetic resin in the fiber reinforced plastic is preferably 20% by weight to 70% by weight.
  • the content is less than 20% by weight, the binding property between the reinforcing fibers and the adhesive property between the fiber reinforced plastic and the foamed molded article are insufficient, and the mechanical properties of the fiber reinforced plastic and the mechanical properties of the fiber reinforced composite are obtained. May not be sufficiently improved.
  • the amount is more than 70% by weight, the mechanical properties of the fiber reinforced plastic may be lowered, and the mechanical properties of the fiber reinforced composite may not be sufficiently improved.
  • the content is more preferably 30% to 60% by weight.
  • the thickness of the fiber reinforced plastic is preferably 0.02 mm to 2 mm, more preferably 0.05 mm to 1 mm.
  • a fiber reinforced plastic having a thickness within this range is excellent in mechanical properties despite being lightweight.
  • Basis weight of the fiber-reinforced plastic preferably 50g / m 2 ⁇ 4000g / m 2, 100g / m 2 ⁇ 1000g / m 2 is more preferable.
  • a fiber reinforced plastic having a basis weight within this range is excellent in mechanical properties despite being lightweight.
  • the method for producing a reinforced composite by laminating and integrating the skin material on the surface of the foam molded body is not particularly limited.
  • the skin material is laminated and integrated on the surface of the foam molded body via an adhesive.
  • Method (2)
  • the surface of a foamed molded article is formed by laminating a fiber reinforced plastic forming material in which a reinforcing fiber is impregnated with a thermoplastic resin on the surface of the foamed molded article, and using the thermoplastic resin impregnated in the reinforcing fiber as a binder.
  • Examples thereof include a method of stacking and integrating on the surface of the molded body, and a method generally applied in (5) molding of fiber reinforced plastics. From the viewpoint of excellent mechanical properties such as load resistance under a high temperature environment, the foamed molded product can be suitably used the method (4).
  • Examples of the method used for molding the fiber reinforced plastic include an autoclave method, a hand lay-up method, a spray-up method, a PCM (Prepre Compression Molding) method, an RTM (Resin Transfer Molding) method, a VaRTM (Vacuum Assisted Resin Transfer Transfer). Law.
  • the fiber reinforced composite thus obtained is excellent in heat resistance, mechanical properties and lightness. Therefore, it can be used in a wide range of applications such as the field of transportation equipment such as automobiles, airplanes, railway vehicles, ships, etc., the household appliances field, the information terminal field, and the furniture field.
  • the fiber reinforced composite is composed of parts for transportation equipment, parts for transportation equipment including structural parts constituting the main body of transportation equipment (particularly parts for automobiles), windmill blades, robot arms, cushioning materials for helmets, It can be suitably used as an agricultural product box, a transport container such as a thermal insulation container, a rotor blade of an industrial helicopter, or a component packing material.
  • Examples of automotive parts include floor panels, roofs, bonnets, fenders, under covers, wheels, steering wheels, containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage boxes, seats, Examples include parts such as doors and cowls.
  • the bulk density was measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. That is, it measured using the apparent density measuring device based on JISK6911, and measured the bulk density based on the following formula.
  • Bulk density of expanded particles (g / cm 3 ) [weight of graduated cylinder with sample (g) ⁇ weight of graduated cylinder (g)] / [volume of graduated cylinder (cm 3 )]
  • the bulk multiple was obtained by adding the resin density to the reciprocal of the bulk density.
  • the number of bubbles in the expanded particles and the expanded molded body was measured in the following manner. First, an area of 11.9 mm 2 was photographed at 30 times with a scanning electron microscope (“SU1510” manufactured by Hitachi High-Technologies Corporation) on the cut surface. For the expanded particles, the central portion of the cross-section substantially divided into two at the central portion of the expanded particles was photographed in the same manner. The photographed image was printed on A4 paper, and the bubble diameter was calculated for all bubbles. In addition, the bubble diameter measured the long diameter and short diameter of the bubble cross section, and made it the value obtained by the arithmetic mean value of a short diameter and a long diameter.
  • any two points where the mutual distance is maximum are selected from any two points where the straight line perpendicular to the major axis of the bubble and the outer contour line of the bubble cross section intersect, and the distance between the two points is expressed as “ The short diameter of the bubbles ”.
  • the number of individual bubbles was counted on the paper for small bubbles having a bubble diameter of 10 ⁇ m or more and less than 200 ⁇ m and large bubbles having a bubble diameter of 300 ⁇ m or more and 1500 ⁇ m or less.
  • Each of the nine foam particles and the molded foam is cut in the same manner as described above to obtain enlarged photographs. Based on these enlarged photographs, the number of small bubbles and the individual bubbles of large bubbles are obtained in the same manner as described above. Numbers were calculated. The arithmetic average value of the number of individual bubbles in each of the 10 expanded particles and the expanded molded article was defined as the number of bubbles.
  • the average bubble diameter of large bubbles was measured by the following method. For the expanded particles, the central portion of the cross-section substantially divided into two at the central portion of the expanded particles, and for the molded body, an arbitrary cut surface is obtained with a scanning electron microscope ("SU1510" manufactured by Hitachi High-Technologies Corporation) at 30 times 11. An area of 9 mm 2 was photographed. The captured image was printed on A4 paper, and the individual bubble diameter was calculated for all large bubbles. The individual cell diameter was determined by measuring the major axis and minor axis of the cell cross section and obtaining an arithmetic average value of the minor axis and major axis.
  • any two points where the mutual distance is maximum are selected from any two points where the straight line perpendicular to the major axis of the bubble and the outer contour line of the bubble cross section intersect, and the distance between the two points is expressed as “ The short diameter of the bubbles ”.
  • Nine foamed particles and foamed molded product were cut in the same manner as described above to obtain enlarged photographs, and the individual bubble diameters of large bubbles were calculated in the same manner as described above based on these enlarged photographs.
  • the arithmetic average value of the individual bubble diameters of the large bubbles in the ten photographs was taken as the average bubble diameter of the large bubbles. Area of the large bubbles was calculated by (average cell diameter ⁇ 2) 2 ⁇ .
  • the average cell diameter of the small bubbles is determined by using a scanning electron microscope (Hitachi High-Technologies' “SU1510”) for the center part of the cross-section substantially divided into two at the center part for the foamed particles, and an arbitrary cut surface for the molded body. Used to shoot. At this time, the micrograph was taken so as to have a predetermined magnification when printed in a state in which two images (total of four images in total) were aligned on one A4 paper in landscape orientation.
  • this bubble is also added to the number.
  • the number of bubbles counted for six arbitrary straight lines in each of the vertical and horizontal directions was arithmetically averaged to obtain the number of bubbles in each direction.
  • the magnification of the image was determined by measuring the scale bar on the photograph up to 1/100 mm with “Digimatic Caliper” manufactured by Mitutoyo Corporation, and calculating by the following formula.
  • Image magnification Scale bar measured value (mm) / Scale bar display value (mm)
  • bubble diameter in each direction was computed by following Formula.
  • Bubble diameter D (mm) t / 0.616
  • the square root of the product was taken as the average bubble diameter of small bubbles.
  • Average bubble diameter of small bubbles (mm) (D vertical x D horizontal) 1/2
  • the area of one small bubble was calculated by (average bubble diameter ⁇ 2) 2 ⁇ .
  • the bending maximum point stress of the bending strength was calculated using a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Softbrain).
  • the strip-shaped test piece was placed on a support, and the bending maximum point stress was measured under the conditions of a load cell 1000N, a test speed of 10 mm / min, a tip jig 5R of the support, and an opening width of 100 mm.
  • the number of test pieces shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition over a standard atmosphere of 2nd grade for 16 hours. Measurement was performed under a standard atmosphere.
  • the arithmetic mean value of the bending maximum point stress of each test piece was taken as the bending maximum point stress of the foamed molded product. Moreover, the bending maximum point stress per unit density was calculated by dividing the bending maximum point stress by the density of the foamed molded product. The weight of the test piece cut out from the foamed molded article (a) and volume (b) was measured to determine the density of the foamed molded article (kg / m 3) by the formula (a) / (b).
  • the flexural modulus was measured by a method in accordance with JIS K7221-1: 2006 “Hard foamed plastics—Bending test—Part 1: Determination of flexural properties”. That is, a rectangular parallelepiped test piece having a length of 20 mm, a width of 25 mm, and a height of 130 mm was cut out from the foamed molded body. For the measurement, a Tensilon universal testing machine ("UCT-10T" manufactured by Orientec Co., Ltd.) was used. The flexural modulus was calculated using a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Soft Brain).
  • UCT-10T Tensilon universal testing machine
  • the number of test pieces shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition over a standard atmosphere of 2nd grade for 16 hours. Measurement was performed under a standard atmosphere. The arithmetic average value of the compression elastic modulus of each test piece was used as the bending elastic modulus of the foamed molded product. The flexural modulus was calculated by the following equation using the first linear part of the load-deformation curve.
  • Example 1 Polycarbonate resin particles (Tanjin Panlite, L-1250Y density 1.20 g / cm 3 ) were dried at 120 ° C. for 4 hours. The obtained dried product was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 290 ° C. Subsequently, about 10 ° C. cooling water is supplied from a die hole (four nozzles having a diameter of 1.5 mm arranged) of a die (temperature: 290 ° C., inlet side resin pressure: 13 MPa) attached to the tip of the single screw extruder. The resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of a rotary blade having four cutting blades at a rotational speed of 5000 rpm, and cutting into granules, thereby cooling with the cooling water.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred for 15 seconds at a foaming temperature of 147 ° C. using water vapor.
  • the particles were taken out from the high-pressure foaming tank, and after removing calcium carbonate with an aqueous hydrogen chloride solution, drying was performed with an air dryer to obtain foamed particles.
  • the bulk density of the obtained foamed particles was measured by the above-described method, it was 0.140 g / cm 3 (foaming ratio 8.6 times).
  • Example 2 Except for using Panlite (Z-2601 density 1.20 g / cm 3 ) manufactured by Teijin Ltd. as the polycarbonate resin particles, a foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1. It was.
  • Example 3 A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the impregnation pressure was 2.0 MPa.
  • Example 4 A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the impregnation pressure was 1.5 MPa.
  • Example 5 A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the foaming time was 10 seconds.
  • Example 6 A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the impregnation pressure was 1.3 MPa.
  • Example 7 A foamed molded article was obtained through the impregnation step, the foaming step, and the molding step of Example 1 except that Sabic Lexan (101R density 1.20 g / cm 3 ) was used as the polycarbonate resin particles.
  • Example 8 A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the impregnation pressure was 4.0 MPa.
  • Example 9 A foamed molded product was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the foaming temperature was 144 ° C.
  • Example 10 A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the foaming time was 22 seconds.
  • Comparative Example 2 A foamed molded article was obtained through the impregnation process, the foaming process and the molding process of Comparative Example 1 except that the impregnation pressure was 4.0 MPa.
  • Tables 1 and 2 summarize the physical properties of the foamed particles and foamed molded products of Examples 1 to 10 and Comparative Examples 1 and 2. Further, photographs of the appearance and cross section of the expanded particles of Example 1, and photographs of the appearance and cross section of the foamed molded product are shown in FIGS. 1 (a) to 1 (d). Furthermore, the photograph of the external appearance of the foaming particle of Comparative Example 1 and a foaming molding is shown to Fig.2 (a) and (b). Furthermore, FIGS. 3 to 7 show electron micrographs obtained by photographing the cross sections of the foamed particles of Examples 1 to 10 and Comparative Examples 1 and 2 and the foamed molded article at 30 times and 200 times, respectively.
  • the foam-molded product obtained from the foamed particles having small bubbles and large bubbles having a specific range of cell diameters has excellent mechanical properties and a beautiful appearance.

Abstract

These expanded beads comprise a base resin containing a polycarbonate resin. The expanded beads have small cells having a diameter of 10 µm (inclusive) to 200 µm (exclusive) and large cells having a diameter of 300 µm to 1500 µm (both inclusive) in a photograph at a magnification of x30 of a cross section having an area of 11.9 mm2.

Description

発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品Foamed particles, foamed molded products, fiber reinforced composites, and automotive parts
 本発明は、発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品に関する。更に詳しくは、本発明は、機械的物性が向上した発泡成形体を与え得る発泡粒子、及びその発泡粒子から得られた発泡成形体、繊維強化複合体及び自動車用部品に関する。 The present invention relates to expanded particles, expanded molded articles, fiber reinforced composites, and automotive parts. More specifically, the present invention relates to foamed particles that can provide a foamed molded article having improved mechanical properties, and a foamed molded article, a fiber reinforced composite, and an automotive part obtained from the foamed particle.
 近年、航空機、自動車、船舶等の乗り物は、地球環境への負荷低減のために燃費の向上を求められており、これらの乗り物を構成する金属材料を樹脂材料へ転換し、大きな軽量化を図る流れが強くなってきている。これらの樹脂材料としては、繊維強化プラスチックが挙げられるが、一部に軽量コア材を使用することで更なる軽量化や高剛性化を図ることも検討されている。軽量コア材として用いられる材料として、高い圧縮強度を有するポリスチレン発泡体が検討されている。
 しかしながら、ポリスチレン系樹脂は、ガラス転移温度が低いため、耐熱性のような機械的物性が十分でなかった。そのため、機械的物性が向上した発泡成形体及びその発泡成形体を製造し得る発泡粒子の提供が望まれていた。
 そこで、本願出願人は、ポリスチレン系樹脂に代えて他の種類の樹脂を使用すれば機械的物性が向上するのではないかとの考えの下で試験を繰り返した。その結果、耐熱性だけでなく機械的強度に優れていることから、ポリカーボネート系樹脂が発泡粒子の基材樹脂として適していることを見出した。一方で、従来のポリカーボネート系樹脂製の発泡粒子は発泡性が十分ではないという課題があった。しかし、本願出願人は、高倍の発泡成形体を得ることができる、ポリカーボネート系樹脂製の発泡粒子を見出した(特許第6279496号公報:特許文献1)。
In recent years, vehicles such as airplanes, automobiles and ships have been required to improve fuel efficiency in order to reduce the burden on the global environment, and the metal materials constituting these vehicles have been changed to resin materials to achieve a large weight reduction. The flow is getting stronger. Examples of these resin materials include fiber reinforced plastics, and it has been studied to further reduce weight and increase rigidity by using a lightweight core material in part. As a material used as a lightweight core material, a polystyrene foam having a high compressive strength has been studied.
However, since the polystyrene-based resin has a low glass transition temperature, mechanical properties such as heat resistance are not sufficient. Therefore, it has been desired to provide a foamed molded article having improved mechanical properties and foamed particles capable of producing the foamed molded article.
Therefore, the applicant of the present application repeated the test under the idea that mechanical properties would be improved if another type of resin was used instead of the polystyrene resin. As a result, it was found that the polycarbonate resin is suitable as a base resin for the expanded particles because of excellent mechanical strength as well as heat resistance. On the other hand, conventional polycarbonate resin foamed particles have a problem that foamability is not sufficient. However, the applicant of the present application has found a foamed particle made of a polycarbonate-based resin capable of obtaining a high-magnification foamed molded product (Japanese Patent No. 627996: Patent Document 1).
特許第6279496号公報Japanese Patent No. 627996
 しかしながら、特許文献1の発泡成形体は外観が美麗ではなかった。そこで、本発明は、優れた機械的物性を示しつつ、美麗な外観を有する発泡成形体及びその発泡成形体を製造し得る発泡粒子を提供することを課題とする。 However, the appearance of the foamed molded article of Patent Document 1 was not beautiful. Then, this invention makes it a subject to provide the foaming particle | grains which can manufacture the foaming molding which has the beautiful external appearance while showing the outstanding mechanical physical property, and the foaming molding.
 本発明の発明者等は、特許文献1の技術について更に検討したところ、小気泡と大気泡とを備えた発泡粒子であれば、機械的物性を向上しつつ、美麗な外観を有する発泡成形体を提供できることを意外にも見出して、本発明を完成するに至った。 The inventors of the present invention further examined the technique of Patent Document 1, and as long as the foamed particles have small bubbles and large bubbles, the foamed molded article has a beautiful appearance while improving the mechanical properties. Surprisingly, the present invention has been completed.
 かくして本発明によれば、ポリカーボネート系樹脂を含む基材樹脂から構成された発泡粒子であり、前記発泡粒子が、走査型電子顕微鏡により30倍で11.9mm2の面積を撮影した断面写真において、10μm以上かつ200μm未満の気泡径の小気泡と300μm以上かつ1500μm以下の気泡径の大気泡とを備える発泡粒子が提供される。
 また、本発明によれば、ポリカーボネート系樹脂を含む基材樹脂から構成された発泡成形体であり、前記発泡成形体が、複数の発泡粒子から構成され、前記発泡粒子が、走査型電子顕微鏡により30倍で11.9mm2の面積を撮影した断面写真において、10μm以上かつ200μm未満の気泡径の小気泡と300μm以上かつ1500μm以下の気泡径の大気泡とを備える発泡成形体が提供される。
 更に、本発明によれば、上記の発泡成形体と、この発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有することを特徴とする繊維強化複合体が提供される。
 また、本発明によれば、上記の発泡成形体又は繊維強化複合体から構成される自動車用部品が提供される。
Thus, according to the present invention, a foamed particle composed of a base resin containing a polycarbonate-based resin, and the foamed particle is a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at 30 times with a scanning electron microscope. Expanded particles comprising small bubbles having a bubble diameter of 10 μm or more and less than 200 μm and large bubbles having a bubble diameter of 300 μm or more and 1500 μm or less are provided.
Further, according to the present invention, there is provided a foam molded body composed of a base resin containing a polycarbonate resin, the foam molded body is composed of a plurality of foam particles, and the foam particles are scanned by a scanning electron microscope. In a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at 30 times, a foamed molded article comprising small bubbles having a bubble diameter of 10 μm or more and less than 200 μm and large bubbles having a bubble diameter of 300 μm or more and 1500 μm or less is provided.
Furthermore, according to the present invention, there is provided a fiber reinforced composite comprising the above foam molded body and a fiber reinforced plastic layer laminated and integrated on the surface of the foam molded body.
Moreover, according to this invention, the components for motor vehicles comprised from said foaming molding or a fiber reinforced composite are provided.
 本発明によれば、優れた機械的物性を示しつつ、美麗な外観を有する発泡成形体及びその発泡成形体を製造し得る発泡粒子を提供できる。
 また、以下のいずれかの場合、より優れた機械的物性を示しつつ、美麗な外観を有する発泡成形体、及びその発泡成形体を製造し得る発泡粒子を提供できる。
(1)大気泡が、前記発泡粒子1つに対してただ1つ存在する。
(2)平均気泡径から算出される小気泡の1気泡の面積に対する大気泡の合計面積の比が、発泡粒子において150以上かつ3000以下であり、発泡成形体において150以上かつ6000以下である。
(3)小気泡と大気泡とが、300μm以上の平均気泡径差を有する。
(4)小気泡が、15μm以上かつ90μm以下、好ましくは20μm以上かつ60μm以下の平均気泡径を有し、大気泡が、400μm以上かつ1500μm以下、好ましくは400μm以上かつ1000μm以下の平均気泡径を有する。
According to the present invention, it is possible to provide a foamed molded article having a beautiful appearance while exhibiting excellent mechanical properties and foamed particles capable of producing the foamed molded article.
In any of the following cases, a foamed molded article having a beautiful appearance while exhibiting better mechanical properties, and foamed particles capable of producing the foamed molded article can be provided.
(1) There is only one large bubble for each of the expanded particles.
(2) The ratio of the total area of the large bubbles to the area of one bubble of the small bubbles calculated from the average cell diameter is 150 or more and 3000 or less in the foamed particles, and 150 or more and 6000 or less in the foamed molded product.
(3) The small bubble and the large bubble have an average bubble diameter difference of 300 μm or more.
(4) The small bubbles have an average bubble diameter of 15 μm or more and 90 μm or less, preferably 20 μm or more and 60 μm or less, and the large bubbles have an average bubble diameter of 400 μm or more and 1500 μm or less, preferably 400 μm or more and 1000 μm or less. Have.
実施例1の発泡粒子及び発泡成形体の外観及び断面の写真である。(a)は発泡粒子の外観を示し、(b)は発泡粒子の断面を示し、(c)は発泡成形体の外観を示し、(d)は発泡成形体の断面を示す。It is a photograph of the appearance and cross section of the expanded particles and the expanded molded article of Example 1. (A) shows the appearance of the expanded particles, (b) shows the cross section of the expanded particles, (c) shows the appearance of the expanded molded product, and (d) shows the cross section of the expanded molded product. 比較例1の発泡粒子及び発泡成形体の外観の写真である。(a)は発泡粒子の外観を示し、(b)は発泡成形体の外観を示す。It is a photograph of the external appearance of the expanded particle of Comparative Example 1, and a foaming molding. (A) shows the appearance of the expanded particles, and (b) shows the appearance of the foamed molded product. 実施例1及び実施例2の発泡粒子及び発泡成形体の断面の電子顕微鏡写真である。It is an electron micrograph of the cross section of the expanded particle of Example 1 and Example 2, and a foaming molding. 実施例3~5の発砲粒子及び発泡成形体の断面の電子顕微鏡写真である。6 is an electron micrograph of cross sections of foamed particles and foamed molded articles of Examples 3 to 5. 実施例6~8の発泡粒子及び発泡成形体の断面の電子顕微鏡写真である。FIG. 6 is an electron micrograph of cross sections of expanded particles and expanded molded articles of Examples 6 to 8. FIG. 実施例9及び実施例10の発泡粒子及び発泡成形体の断面の電子顕微鏡写真である。It is an electron micrograph of the cross section of the expanded particle of Example 9 and Example 10, and a foaming molding. 比較例1及び比較例2の発泡粒子及び発泡成形体の断面の電子顕微鏡写真である。It is an electron micrograph of the cross section of the expanded particle of Comparative Example 1 and Comparative Example 2, and the foaming molding.
(1)発泡粒子
(1-1)基材樹脂
 発泡粒子は、ポリカーボネート系樹脂を含む基材樹脂から構成される。基材樹脂中にポリカーボネート系樹脂が占める割合は、70重量%以上であることが好ましく、85重量%以上であることがより好ましく、100重量%であってもよい。この割合は、例えば、70重量%、75重量%、80重量%、85重量%、90重量%、95重量%又は100重量%であってもよい。
 (a)ポリカーボネート系樹脂
 ポリカーボネート系樹脂は、炭酸と、グリコール又は2価のフェノールとのポリエステル構造を有することが好ましい。耐熱性をより一層高める観点からは、ポリカーボネート系樹脂は、芳香族骨格を有することが好ましい。ポリカーボネート系樹脂の具体例としては、2,2-ビス(4-オキシフェニル)プロパン、2,2-ビス(4-オキシフェニル)ブタン、1,1-ビス(4-オキシフェニル)シクロヘキサン、1,1-ビス(4-オキシフェニル)ブタン、1,1-ビス(4-オキシフェニル)イソブタン、1,1-ビス(4-オキシフェニル)エタン等のビスフェノールから誘導されるポリカーボネート樹脂等が挙げられる。
 ポリカーボネート系樹脂としては、直鎖状ポリカーボネート樹脂及び分岐状ポリカーボネート樹脂等が挙げられ、これら両者がブレンドされていてもよい。
(1) Foamed particles (1-1) Base resin The foamed particles are composed of a base resin containing a polycarbonate resin. The proportion of the polycarbonate resin in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and may be 100% by weight. This proportion may be, for example, 70%, 75%, 80%, 85%, 90%, 95% or 100% by weight.
(A) Polycarbonate-based resin The polycarbonate-based resin preferably has a polyester structure of carbonic acid and glycol or divalent phenol. From the viewpoint of further improving the heat resistance, the polycarbonate resin preferably has an aromatic skeleton. Specific examples of the polycarbonate-based resin include 2,2-bis (4-oxyphenyl) propane, 2,2-bis (4-oxyphenyl) butane, 1,1-bis (4-oxyphenyl) cyclohexane, 1, Examples thereof include polycarbonate resins derived from bisphenols such as 1-bis (4-oxyphenyl) butane, 1,1-bis (4-oxyphenyl) isobutane, and 1,1-bis (4-oxyphenyl) ethane.
Examples of the polycarbonate-based resin include a linear polycarbonate resin and a branched polycarbonate resin, and both of them may be blended.
 (b)他の樹脂
 基材樹脂は、ポリカーボネート系樹脂以外の他の樹脂を含んでいてもよい。他の樹脂としては、アクリル系樹脂、飽和ポリエステル系樹脂、ABS系樹脂、ポリスチレン系樹脂、及びポリフェニレンオキサイド系樹脂等が挙げられる。
 (c)添加剤
 基材樹脂には、必要に応じて、樹脂以外に添加剤が含まれていてもよい。添加剤としては、可塑剤、難燃剤、難燃助剤、帯電防止剤、展着剤、気泡調整剤、充填剤、着色剤、耐候剤、老化防止剤、酸化防止剤、紫外線吸収剤、滑剤、防曇剤、香料等が挙げられる。
(B) Other resins The base resin may contain other resins than the polycarbonate resin. Examples of other resins include acrylic resins, saturated polyester resins, ABS resins, polystyrene resins, and polyphenylene oxide resins.
(C) Additive The base resin may contain an additive in addition to the resin, if necessary. Additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, bubble regulators, fillers, colorants, weathering agents, anti-aging agents, antioxidants, UV absorbers, lubricants , Antifogging agents, fragrances and the like.
(1-2)構成
 発泡粒子は、30倍で11.9mm2の面積を撮影した断面写真において、10μm以上かつ200μm未満の気泡径の小気泡と、300μm以上かつ1500μm以下の気泡径の大気泡とを備えている。小気泡の気泡径は、例えば、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、150μm又は190μmであってもよい。大気泡の気泡径は、例えば、300μm、400μm、500μm、600μm、700μm、800μm、900μm、1000μm、1100μm、1200μm、1300μm、1400μm又は1500μmであってもよい。
 また、1つの発泡粒子における大気泡の数は特に限定されず、1つであってもよいし、複数個であってもよい。1つの発泡粒子における大気泡の数は、例えば、1、2又は3であってもよい。しかし、1つの発泡粒子における大気泡の数が多すぎると気泡率が高くなり、発泡成形体の機械的物性の低下を招くことになる。このようなことから、大気泡の気泡径にもよるが、発泡粒子1つに対して、大気泡はただ1つ存在するのが好ましい。
 1つの発泡粒子において、平均気泡径から算出される小気泡の1気泡の面積に対する大気泡の合計面積の比(大気泡の合計面積/小気泡の1気泡の面積)は、150以上かつ3000以下であり、好ましくは500以上かつ2500以下である。この比は、例えば、150、160、170、180、190、200、250、300、350、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000、2100、2200、2300、2400、2500、2600、2700、2800、2900又は3000であってもよい。小気泡の1気泡の面積は、小気泡の平均気泡径から算出されるため、小気泡の1気泡の平均面積を意味する。大気泡の合計面積とは、各大気泡の面積の総和である。1つの発泡粒子中に大気泡が1つだけ存在する場合は、その1つの大気泡の面積を大気泡の合計面積とする。小気泡の1気泡の面積及び大気泡の合計面積は、30倍で11.9mm2の面積を撮影した発泡粒子の断面写真から取得できる。
(1-2) Configuration The expanded particle is a cross-sectional photograph of an area of 11.9 mm 2 at 30 ×, and a small bubble having a bubble diameter of 10 μm or more and less than 200 μm and a large bubble having a bubble diameter of 300 μm or more and 1500 μm or less And. The bubble diameter of the small bubbles may be, for example, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, 150 μm, or 190 μm. The bubble diameter of the large bubbles may be, for example, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1000 μm, 1100 μm, 1200 μm, 1300 μm, 1400 μm, or 1500 μm.
Further, the number of large bubbles in one expanded particle is not particularly limited, and may be one or plural. The number of large bubbles in one expanded particle may be 1, 2 or 3, for example. However, if the number of large bubbles in one expanded particle is too large, the cell rate is increased and the mechanical properties of the expanded molded article are lowered. For this reason, it is preferable that only one large bubble exists per one expanded particle, although it depends on the bubble diameter of the large bubble.
In one foamed particle, the ratio of the total area of large bubbles to the area of one bubble of small bubbles calculated from the average bubble diameter (total area of large bubbles / area of one bubble of small bubbles) is 150 or more and 3000 or less. Preferably, it is 500 or more and 2500 or less. This ratio is, for example, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, or 3000. Since the area of one bubble is calculated from the average bubble diameter of the small bubbles, it means the average area of one bubble. The total area of the large bubbles is the total area of the large bubbles. When only one large bubble exists in one expanded particle, the area of the one large bubble is defined as the total area of the large bubbles. The area of one small bubble and the total area of the large bubbles can be obtained from a cross-sectional photograph of expanded particles obtained by photographing an area of 11.9 mm 2 at 30 times.
 小気泡の平均気泡径と大気泡の平均気泡径とは300μm以上の差を有することが好ましい。この差があることで、機械的物性の向上した発泡成形体を与える発泡粒子を提供できる。好ましい差は300μm~1500μmであり、より好ましい差は300μm~600μmである。この差は、例えば、300μm、350μm、400μm、450μm、500μm、550μm、600μm、700μm、800μm、900μm、1000μm、1100μm、1200μm、1300μm、1400μm又は1500μmであってもよい。ここで、小気泡の平均気泡径は、好ましくは15μm以上かつ90μm以下であり、より好ましくは20μm以上かつ60μm以下である。また、大気泡の平均気泡径は、好ましくは400μm以上かつ1500μm以下であり、より好ましくは400μm以上かつ1000μm以下である。小気泡の平均気泡径は、例えば、15μm、16μm、17μm、18μm、19μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm又は90μmであってもよい。大気泡の平均気泡径は、例えば、400μm、450μm、500μm、550μm、600μm、650μm、700μm、750μm、800μm、850μm、900μm、950μm、1000μm、1050μm、1100μm、1150μm、1200μm、1250μm、1300μm、1350μm、1400μm、1450μm又は1500μmであってもよい。 The average bubble diameter of small bubbles and the average bubble diameter of large bubbles preferably have a difference of 300 μm or more. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties. A preferable difference is 300 μm to 1500 μm, and a more preferable difference is 300 μm to 600 μm. This difference may be, for example, 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1000 μm, 1100 μm, 1200 μm, 1300 μm, 1400 μm, or 1500 μm. Here, the average bubble diameter of the small bubbles is preferably 15 μm or more and 90 μm or less, and more preferably 20 μm or more and 60 μm or less. The average bubble diameter of the large bubbles is preferably 400 μm or more and 1500 μm or less, and more preferably 400 μm or more and 1000 μm or less. The average bubble diameter of the small bubbles is, for example, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm or 90 μm. There may be. The average bubble diameter of the large bubbles is, for example, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 650 μm, 700 μm, 750 μm, 800 μm, 850 μm, 900 μm, 950 μm, 1000 μm, 1050 μm, 1100 μm, 1150 μm, 1200 μm, 1250 μm, 1300 μm, 1350 μm, It may be 1400 μm, 1450 μm, or 1500 μm.
 発泡粒子の平均粒子径は、2000μm以上かつ4000μm以下であることが好ましく、2500μm以上かつ3500μm以下であることがより好ましい。発泡粒子の平均粒子径は、例えば、2000μm、2500μm、3000μm、3500μm又は4000μmであってもよい
 発泡粒子の外形は、発泡成形体を製造できさえすれば特に限定されず、例えば、球状、略球状、円筒形等が挙げられる。発泡粒子は、0.7以上の平均のアスペクト比で示される外形を有していることが好ましい(上限は1の真球状)。アスペクト比は、例えば、0.7、0.8、0.9又は1であってもよい。
 発泡粒子は、30倍~2倍の嵩倍数を有することが好ましい。嵩倍数は、例えば、30倍、25倍、20倍、15倍、10倍、9倍、8倍、7倍、6倍、5倍、4倍、3倍又は2倍であってもよい。嵩倍数が30倍より大きい場合、発泡粒子の連続気泡率が上昇して、発泡成形の発泡時に発泡粒子の発泡性が低下することがある。2倍より小さい場合、発泡粒子の気泡が不均一となって、発泡成形時における発泡粒子の発泡性が不十分となることがある。嵩倍数は、25倍~3倍がより好ましく、20倍~5倍が特に好ましい。
The average particle diameter of the expanded particles is preferably 2000 μm or more and 4000 μm or less, and more preferably 2500 μm or more and 3500 μm or less. The average particle diameter of the expanded particles may be, for example, 2000 μm, 2500 μm, 3000 μm, 3500 μm, or 4000 μm. The outer shape of the expanded particles is not particularly limited as long as a foamed molded product can be produced. And a cylindrical shape. The expanded particles preferably have an outer shape represented by an average aspect ratio of 0.7 or more (the upper limit is 1 true sphere). The aspect ratio may be 0.7, 0.8, 0.9, or 1, for example.
The expanded particles preferably have a bulk factor of 30 to 2 times. The bulk multiple may be, for example, 30 times, 25 times, 20 times, 15 times, 10 times, 9 times, 8 times, 7 times, 6 times, 5 times, 4 times, 3 times, or 2 times. When the bulk factor is larger than 30 times, the open cell ratio of the foamed particles increases, and the foamability of the foamed particles may decrease during foam molding. If it is less than 2 times, the foamed particles may have uneven bubbles, and the foamability of the foamed particles during foam molding may be insufficient. The bulk multiple is more preferably 25 to 3 times, and particularly preferably 20 to 5 times.
(1-3)製造方法
 発泡粒子の製造方法としては、樹脂粒子に発泡剤を気相含浸させて発泡性粒子を得、発泡性粒子を発泡させる方法が挙げられる。
 樹脂粒子は、公知の製造方法及び製造設備を使用して得ることができる。ここで、以下で説明するボイドの数の調整は、例えば、樹脂への化学気泡剤等の添加量の調整により行うことができる。
 例えば、押出機を使用して原料樹脂を溶融混練し、次いで押出、水中カット(アンダーウォーターカット)、ストランドカット等により造粒することによって、樹脂粒子を製造できる。溶融混練時の温度、時間、圧力等は、使用原料及び製造設備に合わせて適宜設定できる。
 溶融混練時の押出機内の溶融混練温度は、原料樹脂が十分に軟化する温度であればよく、270℃~350℃が好ましく、290℃~300℃がより好ましい。溶融混練温度とは、押出機ヘッド付近の溶融混練物流路の中心部温度を熱電対式温度計で測定した押出機内部の溶融混練物の温度を意味する。
 本発明の発泡粒子の特徴の1つである大気泡は、樹脂粒子の製造時に周囲からの急冷により樹脂粒子の中心領域に形成されるボイドに由来すると考えられる。したがって、発泡粒子の製造では、急冷制御が容易な水中カットが特に好ましい。
 なお、押出機には気泡調整剤が供給されることが好ましい。気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末、タルク等が挙げられる。気泡調整剤の量は、樹脂組成物100重量部に対して0.01重量部~5重量部が好ましい。気泡調整剤の量が0.01重量部未満の場合、発泡粒子の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。5重量部より多い場合、破泡により発泡粒子の独立気泡率が低下することがある。気泡調整剤の量は、0.05重量部~3重量部がより好ましく、0.1重量部~2重量部が特に好ましい。
(1-3) Manufacturing Method As a manufacturing method of the expanded particles, there is a method in which the expandable particles are obtained by impregnating the resin particles with a foaming agent in a gas phase, and the expandable particles are expanded.
The resin particles can be obtained using a known production method and production equipment. Here, the adjustment of the number of voids described below can be performed, for example, by adjusting the amount of chemical foaming agent added to the resin.
For example, resin particles can be produced by melt-kneading the raw material resin using an extruder and then granulating by extrusion, underwater cut (underwater cut), strand cut, or the like. The temperature, time, pressure, etc. at the time of melt-kneading can be appropriately set according to the raw materials used and the production equipment.
The melt kneading temperature in the extruder at the time of melt kneading may be a temperature at which the raw material resin is sufficiently softened, preferably 270 ° C. to 350 ° C., more preferably 290 ° C. to 300 ° C. The melt-kneading temperature means the temperature of the melt-kneaded material inside the extruder as measured at the center temperature of the melt-kneaded material flow path near the extruder head with a thermocouple thermometer.
The large bubbles, which are one of the characteristics of the expanded particles of the present invention, are considered to be derived from voids formed in the central region of the resin particles by rapid cooling from the surroundings during the production of the resin particles. Therefore, in the production of foamed particles, an underwater cut that is easily controlled for rapid cooling is particularly preferable.
In addition, it is preferable that a bubble regulator is supplied to an extruder. Examples of the air conditioner include polytetrafluoroethylene powder, polytetrafluoroethylene powder modified with an acrylic resin, and talc. The amount of the bubble regulator is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin composition. When the amount of the air bubble adjusting agent is less than 0.01 parts by weight, the foamed bubbles may be coarse and the appearance of the obtained foamed molded product may be deteriorated. When the amount is more than 5 parts by weight, the closed cell ratio of the foamed particles may decrease due to bubble breakage. The amount of the bubble regulator is more preferably 0.05 to 3 parts by weight, and particularly preferably 0.1 to 2 parts by weight.
 次に、発泡性粒子の製造方法としては、密閉し得る容器中で、発泡剤を樹脂粒子に気相含浸させる方法が挙げられる。発泡剤としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテルのようなエーテル類、塩化メチル、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロエタン、モノクロロジフルオロメタン等のフロン、二酸化炭素、窒素、空気等の無機ガスが挙げられる。中でも、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタン、二酸化炭素がより好ましく、ノルマルブタン、イソブタン、二酸化炭素が特に好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。
 容器に投入される発泡剤量が少なすぎると、発泡粒子を所望の発泡倍率まで発泡できないことがある。発泡剤量が多すぎると、発泡剤が可塑剤として作用することから、基材樹脂の粘弾性が低下し過ぎて発泡性が低下し、良好な発泡粒子を得ることができないことがある。従って、発泡剤量は、原料樹脂100重量部に対して3重量部~15重量部が好ましく、4重量部~12重量部がより好ましく、5重量部~8重量部が特に好ましい。
 更に、発泡粒子の製造方法としては、密閉し得る容器中で、水蒸気のような加熱媒体で加熱する方法が挙げられる。加熱条件としては、例えば、0.3MPa~0.5MPaのゲージ圧、120℃~159℃の温度、10秒~180秒が挙げられる。
 発泡粒子の粒径は、押出機の前端に取り付けたマルチノズル金型の直径を変えること等によって変動させることができる。
Next, as a method for producing expandable particles, a method in which a foaming agent is impregnated in a gas phase with a foaming agent in a hermetically sealed container can be mentioned. Examples of the blowing agent include propane, normal butane, isobutane, normal pentane, isopentane, hexane and other saturated aliphatic hydrocarbons, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, 1, Examples thereof include chlorofluorocarbons such as 1-difluoroethane and monochlorodifluoromethane, and inorganic gases such as carbon dioxide, nitrogen and air. Among them, dimethyl ether, propane, normal butane, isobutane, and carbon dioxide are preferable, propane, normal butane, isobutane, and carbon dioxide are more preferable, and normal butane, isobutane, and carbon dioxide are particularly preferable. In addition, a foaming agent may be used independently or 2 or more types may be used together.
If the amount of the foaming agent charged into the container is too small, the foamed particles may not be foamed to a desired expansion ratio. When the amount of the foaming agent is too large, the foaming agent acts as a plasticizer, so that the viscoelasticity of the base resin is excessively decreased, the foamability is decreased, and good expanded particles may not be obtained. Accordingly, the amount of the blowing agent is preferably 3 to 15 parts by weight, more preferably 4 to 12 parts by weight, and particularly preferably 5 to 8 parts by weight with respect to 100 parts by weight of the raw material resin.
Furthermore, as a manufacturing method of expanded particle, the method of heating with a heating medium like water vapor | steam in the container which can be sealed is mentioned. Examples of heating conditions include a gauge pressure of 0.3 MPa to 0.5 MPa, a temperature of 120 ° C. to 159 ° C., and 10 seconds to 180 seconds.
The particle size of the expanded particles can be varied by changing the diameter of a multi-nozzle mold attached to the front end of the extruder.
(2)発泡成形体
(2-1)基材樹脂
 発泡成形体を構成する基材樹脂は、上記発泡粒子の基材樹脂と同様である。
(2-2)物性
 発泡成形体は、30倍で11.9mm2の面積を撮影した断面写真において、10μm以上かつ200μm未満の気泡径の小気泡と300μm以上かつ1500μm以下の気泡径の大気泡を備えた複数の発泡粒子から構成され、発泡粒子は互いに融着している。小気泡の気泡径は、例えば、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、150μm又は190μmであってもよい。大気泡の気泡径は、例えば、300μm、400μm、500μm、600μm、700μm、800μm、900μm、1000μm、1100μm、1200μm、1300μm、1400μm又は1500μmであってもよい。
 また、発泡成形体中、1つの発泡粒子における大気泡の数は特に限定されず、1つであってもよいし、複数個であってもよい。1つの発泡粒子における大気泡の数は、例えば、1、2又は3であってもよい。しかし、1つの発泡粒子における大気泡の数が多すぎると気泡率が高くなり、発泡成形体の機械的物性の低下を招くことになる。このようなことから、大気泡の気泡径にもよるが、発泡粒子1つに対して、大気泡はただ1つ存在するのが好ましい。
 発泡成形体中、1つの発泡粒子において、平均気泡径から算出される小気泡の1気泡の面積に対する大気泡の合計面積の比(大気泡の合計面積/小気泡の1気泡の面積)は、150以上かつ6000以下であり、好ましくは400以上かつ5000以下である。この比は、例えば、150、160、170、180、190、200、250、300、350、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、2000、3000、4000、5000、5500又は6000であってもよい。小気泡の1気泡の面積及び大気泡の合計面積の詳細は上述のとおりである。
(2) Foam molded body (2-1) Base resin The base resin constituting the foam molded body is the same as the base resin of the foamed particles.
(2-2) Physical properties The foamed molded article is a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at 30 times. Small bubbles with a bubble diameter of 10 μm or more and less than 200 μm and large bubbles with a bubble diameter of 300 μm or more and 1500 μm or less The foamed particles are fused to each other. The bubble diameter of the small bubbles may be, for example, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, 150 μm, or 190 μm. The bubble diameter of the large bubbles may be, for example, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1000 μm, 1100 μm, 1200 μm, 1300 μm, 1400 μm, or 1500 μm.
Further, the number of large bubbles in one foamed particle in the foamed molded product is not particularly limited, and may be one or plural. The number of large bubbles in one expanded particle may be 1, 2 or 3, for example. However, if the number of large bubbles in one expanded particle is too large, the cell rate is increased and the mechanical properties of the expanded molded article are lowered. For this reason, it is preferable that only one large bubble exists per one expanded particle, although it depends on the bubble diameter of the large bubble.
The ratio of the total area of large bubbles to the area of one bubble of small bubbles calculated from the average bubble diameter in one expanded particle in the foamed molded product (total area of large bubbles / area of one bubble of small bubbles) is: 150 or more and 6000 or less, preferably 400 or more and 5000 or less. This ratio is, for example, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 2000, It may be 3000, 4000, 5000, 5500 or 6000. The details of the area of one small bubble and the total area of large bubbles are as described above.
 小気泡の平均気泡径と大気泡の平均気泡径とは300μm以上の差を有することが好ましい。この差があることで、機械的物性の向上した発泡成形体を与える発泡粒子を提供できる。好ましい差は300μm~1500μmであり、より好ましい差は300μm~600μmである。この差は、例えば、300μm、350μm、400μm、450μm、500μm、550μm、600μm、700μm、800μm、900μm、1000μm、1100μm、1200μm、1300μm、1400μm又は1500μmであってもよい。ここで、小気泡の平均気泡径は、好ましくは15μm以上かつ90μm以下であり、より好ましくは20μm以上かつ60μm以下である。また、大気泡の平均気泡径は、好ましくは400μm以上かつ1500μm以下であり、より好ましくは400μm以上かつ1000μm以下である。小気泡の平均気泡径は、例えば、15μm、16μm、17μm、18μm、19μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm又は90μmであってもよい。大気泡の平均気泡径は、例えば、400μm、450μm、500μm、550μm、600μm、650μm、700μm、750μm、800μm、850μm、900μm、950μm、1000μm、1050μm、1100μm、1150μm、1200μm、1250μm、1300μm、1350μm、1400μm、1450μm又は1500μmであってもよい。 The average bubble diameter of small bubbles and the average bubble diameter of large bubbles preferably have a difference of 300 μm or more. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties. A preferable difference is 300 μm to 1500 μm, and a more preferable difference is 300 μm to 600 μm. This difference may be, for example, 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1000 μm, 1100 μm, 1200 μm, 1300 μm, 1400 μm, or 1500 μm. Here, the average bubble diameter of the small bubbles is preferably 15 μm or more and 90 μm or less, and more preferably 20 μm or more and 60 μm or less. The average bubble diameter of the large bubbles is preferably 400 μm or more and 1500 μm or less, and more preferably 400 μm or more and 1000 μm or less. The average bubble diameter of the small bubbles is, for example, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm or 90 μm. There may be. The average bubble diameter of the large bubbles is, for example, 400 μm, 450 μm, 500 μm, 550 μm, 600 μm, 650 μm, 700 μm, 750 μm, 800 μm, 850 μm, 900 μm, 950 μm, 1000 μm, 1050 μm, 1100 μm, 1150 μm, 1200 μm, 1250 μm, 1300 μm, 1350 μm, It may be 1400 μm, 1450 μm, or 1500 μm.
 発泡成形体を構成する融着した発泡粒子の平均粒子径は、2000μm以上かつ4000μm以下であることが好ましく、2500μm以上かつ3500μm以下であることがより好ましい。発泡粒子の平均粒子径は、例えば2000μm、2500μm、3000μm、3500μm又は4000μmであってもよい。
 融着した発泡粒子の外形は、発泡成形体を維持できさえすれば特に限定されない。
 発泡成形体は、30倍~2倍の倍数を有することが好ましい。発泡成形体は、例えば、30倍、25倍、20倍、15倍、10倍、9倍、8倍、7倍、6倍、5倍、4倍、3倍又は2倍の倍数を有してもよい。倍数が30倍より大きい場合、機械的物性が不十分となることがある。2倍より小さい場合、重量が増えるため発泡の利点が小さくなることがある。倍数は、25倍~2倍がより好ましく、20倍~5倍が特に好ましい。
 したがって、発泡成形体は、0.06g/cm3以上かつ0.24g/cm3以下(60kg/m3以上かつ240kg/m3以下)の密度を有することが好ましい。
 発泡成形体における単位密度当たりの曲げ最大点応力は、0.008MPa/(kg/m3)以上が好ましく、0.01MPa/(kg/m3)以上がより好ましい。曲げ最大点応力が小さすぎると、発泡成形体が容易に破断することがある。この曲げ最大点応力は、例えば、0.008MPa/(kg/m3)、0.009MPa/(kg/m3)、0.01MPa/(kg/m3)、0.011MPa/(kg/m3)、0.012MPa/(kg/m3)、0.013MPa/(kg/m3)、0.014MPa/(kg/m3)、0.015MPa/(kg/m3)、0.02MPa/(kg/m3)、0.05MPa/(kg/m3)、0.1MPa/(kg/m3)、0.5MPa/(kg/m3)、1MPa/(kg/m3)、1.5MPa/(kg/m3)、2MPa/(kg/m3)、3MPa/(kg/m3)、4MPa/(kg/m3)又は5MPa/(kg/m3)であってもよい。
 発泡成形体における単位密度当たりの曲げ弾性率は、0.18MPa/(kg/m3)以上が好ましく、0.2MPa/(kg/m3)以上がより好ましい。曲げ弾性率が小さすぎると、発泡成形体の表面に繊維強化プラスチックのような表皮材を積層一体化する際に加えられる圧力によって発泡成形体が変形することがある。この曲げ弾性率は、例えば、0.18MPa/(kg/m3)、0.19MPa/(kg/m3)、0.2MPa/(kg/m3)、0.23MPa/(kg/m3)、0.25MPa/(kg/m3)、0.28MPa/(kg/m3)、0.3MPa/(kg/m3)、0.35MPa/(kg/m3)、0.4MPa/(kg/m3)、0.45MPa/(kg/m3)、0.5MPa/(kg/m3)0.55MPa/(kg/m3)、0.6MPa/(kg/m3)又は1MPa/(kg/m3)であってもよい。
The average particle diameter of the fused foam particles constituting the foam molded article is preferably 2000 μm or more and 4000 μm or less, and more preferably 2500 μm or more and 3500 μm or less. The average particle diameter of the expanded particles may be, for example, 2000 μm, 2500 μm, 3000 μm, 3500 μm, or 4000 μm.
The outer shape of the fused expanded particles is not particularly limited as long as the expanded molded body can be maintained.
The foamed molded article preferably has a multiple of 30 to 2 times. The foamed molded article has a multiple of, for example, 30 times, 25 times, 20 times, 15 times, 10 times, 9 times, 8 times, 7 times, 6 times, 5 times, 4 times, 3 times or 2 times May be. When the multiple is larger than 30 times, the mechanical properties may be insufficient. If it is less than 2 times, the advantage of foaming may be reduced due to increased weight. The multiple is more preferably 25 to 2 times, particularly preferably 20 to 5 times.
Therefore, the foamed molded article preferably has a density of 0.06 g / cm 3 or more and 0.24 g / cm 3 or less (60 kg / m 3 or more and 240 kg / m 3 or less).
Maximum point bending stress per unit density in the foam molded article is preferably from 0.008MPa / (kg / m 3) or more, 0.01MPa / (kg / m 3 ) or more is more preferable. If the bending maximum point stress is too small, the foamed molded product may be easily broken. Maximum point stress this bending, for example, 0.008MPa / (kg / m 3 ), 0.009MPa / (kg / m 3), 0.01MPa / (kg / m 3), 0.011MPa / (kg / m 3 ), 0.012 MPa / (kg / m 3 ), 0.013 MPa / (kg / m 3 ), 0.014 MPa / (kg / m 3 ), 0.015 MPa / (kg / m 3 ), 0.02 MPa / (Kg / m 3 ), 0.05 MPa / (kg / m 3 ), 0.1 MPa / (kg / m 3 ), 0.5 MPa / (kg / m 3 ), 1 MPa / (kg / m 3 ), Even 1.5 MPa / (kg / m 3 ), 2 MPa / (kg / m 3 ), 3 MPa / (kg / m 3 ), 4 MPa / (kg / m 3 ) or 5 MPa / (kg / m 3 ) Good.
Flexural modulus per unit density of the foamed molded article is preferably 0.18MPa / (kg / m 3) or more, 0.2MPa / (kg / m 3 ) or more is more preferable. If the flexural modulus is too small, the foamed molded product may be deformed by pressure applied when a skin material such as fiber reinforced plastic is laminated and integrated on the surface of the foamed molded product. The flexural modulus, for example, 0.18MPa / (kg / m 3 ), 0.19MPa / (kg / m 3), 0.2MPa / (kg / m 3), 0.23MPa / (kg / m 3 ), 0.25MPa / (kg / m 3), 0.28MPa / (kg / m 3), 0.3MPa / (kg / m 3), 0.35MPa / (kg / m 3), 0.4MPa / (Kg / m 3 ), 0.45 MPa / (kg / m 3 ), 0.5 MPa / (kg / m 3 ) 0.55 MPa / (kg / m 3 ), 0.6 MPa / (kg / m 3 ) or It may be 1 MPa / (kg / m 3 ).
 発泡成形体の外観は、例えば、発泡成形体表面における融着した発泡粒子による凹凸の有無、前記表面における融着した発泡粒子間の境界が確認できるか否か等により評価してもよい。外観の評価は、発泡成形体を目視で観察するか又は手指で触れることにより行うことができる。発泡成形体が、実質的に凹凸のない滑らかな表面、又は融着した発泡粒子間の境界が実質的に認められない表面を有する場合、該発泡成形体は美麗な外観を有すると評価してよい。 The appearance of the foamed molded product may be evaluated by, for example, the presence or absence of irregularities due to the fused foam particles on the surface of the foamed molded product, whether or not the boundary between the fused foam particles on the surface can be confirmed, and the like. Appearance can be evaluated by visually observing the foamed molded product or touching it with fingers. When the foamed molded product has a smooth surface that is substantially free of unevenness or a surface in which the boundary between the fused foamed particles is substantially not recognized, the foamed molded product is evaluated as having a beautiful appearance. Good.
(2-3)製造方法
 発泡成形体は、例えば、上記発泡粒子の気泡を押し広げる力を付与させ、次いでこの発泡粒子を成形工程に付すことで得ることができる。発泡成形体を作製する前に、発泡粒子内に発泡剤を含浸させ発泡力(2次発泡力)を付与することが好ましい。
 含浸方法としては、発泡粒子を水系に分散し、撹拌させながら発泡剤を圧入することで含浸させる湿式含浸法や、密閉可能な容器に発泡粒子を投入し、発泡剤を圧入して含浸させる実質的に水を使用しない乾式含浸法(気相含浸法)などが挙げられる。特に、水を使用せずに含浸できる乾式含浸法が好ましい。発泡粒子に発泡剤を含浸させる際の含浸圧、含浸時間及び含浸温度は特に限定されない。
 使用する発泡剤は、発泡粒子製造時の発泡剤を使用できる。その中でも、無機発泡剤を使用することが好ましい。特に、窒素ガス、空気、不活性ガス(ヘリウム、アルゴン)、及び炭酸ガスから1つを使用すること又は2つ以上を併用することが好ましい。内圧を付与するための圧力は、発泡粒子がつぶれてしまわない程度の圧力であって、かつ発泡力を付与できる範囲であることが望ましい。そのような圧力は、0.1MPa~4MPa(ゲージ圧)であることが好ましく、0.3MPa~3MPa(ゲージ圧)であることがより好ましい。
 内圧付与した発泡粒子を含浸時の容器から取り出し、発泡成形機の成形金型内に形成された成形空間に供給した後、加熱媒体を導入することで、所望の発泡成形体に型内成形できる。加熱媒体は、加熱時間が長くなると発泡粒子に収縮や融着不良が生じることがあるため、短時間に高エネルギーを与えうる加熱媒体が望まれる。よって、そのような加熱媒体としては、水蒸気が好適である。水蒸気の圧力は、0.2MPa~1.0MPa(ゲージ圧)であることが好ましい。また、加熱時間は、10秒~90秒であることが好ましく、20秒~80秒であることがより好ましい。
(2-3) Manufacturing Method A foamed molded product can be obtained, for example, by applying a force for expanding the bubbles of the foamed particles and then subjecting the foamed particles to a molding step. Before producing the foamed molded article, it is preferable to impregnate the foamed particles with a foaming agent to impart foaming power (secondary foaming power).
Examples of the impregnation method include a wet impregnation method in which foamed particles are dispersed in an aqueous system and impregnated by press-fitting a foaming agent while stirring, or the foamed particles are injected into a sealable container and the foaming agent is injected and impregnated. For example, there is a dry impregnation method (vapor phase impregnation method) that does not use water. In particular, a dry impregnation method capable of impregnation without using water is preferable. The impregnation pressure, impregnation time, and impregnation temperature when impregnating the foaming agent with the foamed particles are not particularly limited.
As the foaming agent to be used, the foaming agent at the time of producing foamed particles can be used. Among these, it is preferable to use an inorganic foaming agent. In particular, it is preferable to use one of nitrogen gas, air, inert gas (helium, argon), and carbon dioxide gas, or to use two or more in combination. The pressure for applying the internal pressure is desirably a pressure that does not cause the foamed particles to be crushed and is within a range in which the foaming force can be applied. Such pressure is preferably 0.1 MPa to 4 MPa (gauge pressure), and more preferably 0.3 MPa to 3 MPa (gauge pressure).
After taking out the expanded particles with internal pressure from the container at the time of impregnation and supplying them to the molding space formed in the molding die of the foam molding machine, by introducing a heating medium, it can be molded into the desired foamed molded product . As the heating medium, when the heating time becomes long, shrinkage or poor fusion may occur in the foamed particles. Therefore, a heating medium that can give high energy in a short time is desired. Therefore, water vapor is suitable as such a heating medium. The water vapor pressure is preferably 0.2 MPa to 1.0 MPa (gauge pressure). The heating time is preferably 10 seconds to 90 seconds, more preferably 20 seconds to 80 seconds.
(2-4)用途
 発泡成形体は、軽量性、耐熱性及び機械的物性に優れており、特に、高温環境下での耐荷重性に優れている。そのため、発泡成形体は、例えば、自動車、航空機、鉄道車輛、船舶等の輸送機器の部品に好適に用いることができる。自動車用部品としては、例えば、エンジン付近に用いられる部品、外装材等が挙げられる。
 より具体的な自動車用部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等が挙げられる。
(2-4) Applications The foamed molded article is excellent in light weight, heat resistance and mechanical properties, and particularly excellent in load resistance in a high temperature environment. Therefore, a foaming molding can be used suitably for parts of transportation equipment, such as a car, an airplane, a railway vehicle, a ship, for example. Examples of parts for automobiles include parts used in the vicinity of an engine and exterior materials.
More specific automotive parts include, for example, floor panels, roofs, bonnets, fenders, under covers, wheels, steering wheels, containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage Examples include boxes, seats, doors, cowls and the like.
 発泡成形体の表面に表皮材を積層一体化させて強化複合体として用いてもよい。発泡成形体が発泡シートである場合、発泡成形体の両面に積層一体化されている必要はなく、発泡成形体の両面のうち少なくとも一方の面に表皮材が積層一体化されていればよい。表皮材の積層は、強化複合体の用途に応じて決定すればよい。なかでも、強化複合体の表面硬度や機械的物性を考慮すると、発泡成形体の厚み方向における両面のそれぞれに表皮材が積層一体化されていることが好ましい。
 表皮材は特に限定されず、繊維強化プラスチック、金属シート、合成樹脂フィルム等が挙げられる。この内、繊維強化プラスチックが好ましい。繊維強化プラスチックを表皮材とする強化複合体を繊維強化複合体と称する。
 繊維強化プラスチックを構成している強化繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維等の無機繊維;ステンレス繊維、スチール繊維等の金属繊維;アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維等の有機繊維;ボロン繊維が挙げられる。強化繊維は、一種単独で用いられてもよく、二種以上が併用されてもよい。なかでも、炭素繊維、ガラス繊維及びアラミド繊維が好ましく、炭素繊維がより好ましい。これらの強化繊維は、軽量であるにも関わらず優れた機械的物性を有している。
A skin material may be laminated and integrated on the surface of the foamed molded product to be used as a reinforced composite. When the foamed molded body is a foamed sheet, it is not necessary to be laminated and integrated on both surfaces of the foamed molded body, and the skin material only needs to be laminated and integrated on at least one surface of both surfaces of the foamed molded body. The lamination of the skin material may be determined according to the use of the reinforced composite. Among these, in consideration of the surface hardness and mechanical properties of the reinforced composite, it is preferable that the skin material is laminated and integrated on each of both surfaces in the thickness direction of the foamed molded product.
A skin material is not specifically limited, A fiber reinforced plastic, a metal sheet, a synthetic resin film, etc. are mentioned. Of these, fiber reinforced plastic is preferred. A reinforced composite using a fiber reinforced plastic as a skin material is referred to as a fiber reinforced composite.
The reinforcing fibers constituting the fiber reinforced plastic include glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, Tyranno fibers, basalt fibers, ceramic fibers and other inorganic fibers; stainless steel fibers, steel fibers and other metal fibers; aramid Organic fibers such as fibers, polyethylene fibers, polyparaphenylene benzoxador (PBO) fibers; and boron fibers. Reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fiber, glass fiber, and aramid fiber are preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical properties despite being lightweight.
 強化繊維は、所望の形状に加工された強化繊維基材として用いられることが好ましい。強化繊維基材としては、強化繊維を用いてなる織物、編物、不織布、及び強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる面材等が挙げられる。織物の織り方としては、平織、綾織、朱子織等が挙げられる。また、糸としては、ポリアミド樹脂糸、ポリエステル樹脂糸等の合成樹脂糸、及びガラス繊維糸のようなステッチ糸が挙げられる。
 強化繊維基材は、一枚の強化繊維基材のみを積層せずに用いてもよく、複数枚の強化繊維基材を積層して積層強化繊維基材として用いてもよい。複数枚の強化繊維基材を積層した積層強化繊維基材としては、(1)一種のみの強化繊維基材を複数枚用意し、これらの強化繊維基材を積層した積層強化繊維基材、(2)複数種の強化繊維基材を用意し、これらの強化繊維基材を積層した積層強化繊維基材、(3)強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる強化繊維基材を複数枚用意し、これらの強化繊維基材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた強化繊維基材同士を糸で一体化(縫合)してなる積層強化繊維基材等が用いられる。
The reinforcing fiber is preferably used as a reinforcing fiber substrate processed into a desired shape. Examples of the reinforcing fiber base material include woven fabrics, knitted fabrics, non-woven fabrics, and face materials obtained by binding (stitching) fiber bundles (strands) obtained by aligning reinforcing fibers in one direction with yarns. . Examples of the weaving method include plain weave, twill weave and satin weave. Examples of the yarn include a synthetic resin yarn such as a polyamide resin yarn and a polyester resin yarn, and a stitch yarn such as a glass fiber yarn.
The reinforcing fiber substrate may be used without laminating only one reinforcing fiber substrate, or a plurality of reinforcing fiber substrates may be laminated and used as a laminated reinforcing fiber substrate. As a laminated reinforcing fiber base material in which a plurality of reinforcing fiber base materials are laminated, (1) a plurality of reinforcing fiber base materials of only one kind are prepared, and a laminated reinforcing fiber base material in which these reinforcing fiber base materials are laminated, 2) A plurality of types of reinforcing fiber base materials are prepared, a laminated reinforcing fiber base material obtained by laminating these reinforcing fiber base materials, and (3) a fiber bundle (strand) in which the reinforcing fibers are aligned in one direction is bound with a thread ( A plurality of reinforcing fiber base materials prepared by stitching) are prepared, and these reinforcing fiber base materials are superposed so that the fiber directions of the fiber bundles are different from each other. For example, a laminated reinforcing fiber base material integrated (stitched) with is used.
 繊維強化プラスチックは強化繊維に合成樹脂が含浸されてなるものである。含浸させた合成樹脂によって強化繊維同士を結着一体化させている。
 強化繊維に合成樹脂を含浸させる方法は特に限定されず、例えば、(1)強化繊維を合成樹脂中に浸漬する方法、(2)強化繊維に合成樹脂を塗布する方法等が挙げられる。
 強化繊維に含浸させる合成樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のいずれも用いることができ、熱硬化性樹脂が好ましく用いられる。強化繊維に含浸させる熱硬化性樹脂は特に限定されず、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂とを予備重合した樹脂等が挙げられる。耐熱性、衝撃吸収性又は耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。熱硬化性樹脂には、硬化剤、硬化促進剤等の添加剤が含有されていてもよい。なお、熱硬化性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
The fiber reinforced plastic is obtained by impregnating a reinforced fiber with a synthetic resin. The reinforcing fibers are bonded and integrated by the impregnated synthetic resin.
The method for impregnating the reinforcing fiber with the synthetic resin is not particularly limited, and examples thereof include (1) a method of immersing the reinforcing fiber in the synthetic resin, and (2) a method of applying the synthetic resin to the reinforcing fiber.
As the synthetic resin impregnated into the reinforcing fiber, either a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used. The thermosetting resin impregnated into the reinforcing fiber is not particularly limited, and includes epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide resin. Examples thereof include a resin obtained by prepolymerizing a cyanate ester resin. Epoxy resins and vinyl ester resins are preferred because they are excellent in heat resistance, impact absorption or chemical resistance. The thermosetting resin may contain additives such as a curing agent and a curing accelerator. In addition, a thermosetting resin may be used independently and 2 or more types may be used together.
 また、強化繊維に含浸させる熱可塑性樹脂は特に限定されず、オレフィン系樹脂、ポリエステル系樹脂、熱可塑性エポキシ樹脂、アミド系樹脂、熱可塑性ポリウレタン樹脂、サルファイド系樹脂、アクリル系樹脂等が挙げられる。発泡成形体との接着性又は繊維強化プラスチックを構成している強化繊維同士の接着性に優れていることから、ポリエステル系樹脂、熱可塑性エポキシ樹脂が好ましい。なお、熱可塑性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
 熱可塑性エポキシ樹脂としては、エポキシ化合物同士の重合体又は共重合体であって直鎖構造を有する重合体や、エポキシ化合物と、このエポキシ化合物と重合し得る単量体との共重合体であって直鎖構造を有する共重合体が挙げられる。具体的には、熱可塑性エポキシ樹脂として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。それらの中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂が好ましい。なお、熱可塑性エポキシ樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
The thermoplastic resin impregnated in the reinforcing fiber is not particularly limited, and examples thereof include olefin resins, polyester resins, thermoplastic epoxy resins, amide resins, thermoplastic polyurethane resins, sulfide resins, acrylic resins, and the like. Polyester resins and thermoplastic epoxy resins are preferred because they are excellent in adhesiveness with the foamed molded article or adhesiveness between the reinforcing fibers constituting the fiber reinforced plastic. In addition, a thermoplastic resin may be used independently and 2 or more types may be used together.
The thermoplastic epoxy resin may be a polymer or copolymer of epoxy compounds having a linear structure, or a copolymer of an epoxy compound and a monomer that can be polymerized with the epoxy compound. And a copolymer having a linear structure. Specifically, as the thermoplastic epoxy resin, for example, bisphenol A type epoxy resin, bisphenol fluorene type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, cyclic aliphatic type epoxy resin, long chain aliphatic type epoxy resin Examples thereof include a resin, a glycidyl ester type epoxy resin, and a glycidyl amine type epoxy resin. Among these, bisphenol A type epoxy resins and bisphenol fluorene type epoxy resins are preferable. In addition, a thermoplastic epoxy resin may be used independently and 2 or more types may be used together.
 熱可塑性ポリウレタン樹脂としては、ジオールとジイソシアネートとを重合させて得られる直鎖構造を有する重合体が挙げられる。ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等が挙げられる。ジオールは、単独で用いられても二種以上が併用されてもよい。ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環式ジイソシアネートが挙げられる。ジイソシアネートは、単独で用いられても二種以上が併用されてもよい。なお、熱可塑性ポリウレタン樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
 繊維強化プラスチック中における合成樹脂の含有量は、20重量%~70重量%が好ましい。含有量が20重量%未満の場合、強化繊維同士の結着性や繊維強化プラスチックと発泡成形体との接着性が不十分となり、繊維強化プラスチックの機械的物性や繊維強化複合体の機械的物性を十分に向上できないことがある。70重量%より多い場合、繊維強化プラスチックの機械的物性が低下して、繊維強化複合体の機械的物性を十分に向上できないことがある。含有量は30重量%~60重量%がより好ましい。
 繊維強化プラスチックの厚みは、0.02mm~2mmが好ましく、0.05mm~1mmがより好ましい。厚みがこの範囲内である繊維強化プラスチックは、軽量であるにも関わらず機械的物性に優れている。
 繊維強化プラスチックの目付は、50g/m2~4000g/m2が好ましく、100g/m2~1000g/m2がより好ましい。目付がこの範囲内である繊維強化プラスチックは、軽量であるにも関わらず機械的物性に優れている。
Examples of the thermoplastic polyurethane resin include a polymer having a linear structure obtained by polymerizing diol and diisocyanate. Examples of the diol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and the like. Diols may be used alone or in combination of two or more. Examples of the diisocyanate include aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Diisocyanate may be used independently or 2 or more types may be used together. In addition, a thermoplastic polyurethane resin may be used independently and 2 or more types may be used together.
The content of the synthetic resin in the fiber reinforced plastic is preferably 20% by weight to 70% by weight. When the content is less than 20% by weight, the binding property between the reinforcing fibers and the adhesive property between the fiber reinforced plastic and the foamed molded article are insufficient, and the mechanical properties of the fiber reinforced plastic and the mechanical properties of the fiber reinforced composite are obtained. May not be sufficiently improved. When the amount is more than 70% by weight, the mechanical properties of the fiber reinforced plastic may be lowered, and the mechanical properties of the fiber reinforced composite may not be sufficiently improved. The content is more preferably 30% to 60% by weight.
The thickness of the fiber reinforced plastic is preferably 0.02 mm to 2 mm, more preferably 0.05 mm to 1 mm. A fiber reinforced plastic having a thickness within this range is excellent in mechanical properties despite being lightweight.
Basis weight of the fiber-reinforced plastic, preferably 50g / m 2 ~ 4000g / m 2, 100g / m 2 ~ 1000g / m 2 is more preferable. A fiber reinforced plastic having a basis weight within this range is excellent in mechanical properties despite being lightweight.
 次に、強化複合体の製造方法を説明する。発泡成形体の表面に表皮材を積層一体化させて強化複合体を製造する方法は特に限定されず、例えば、(1)発泡成形体の表面に接着剤を介して表皮材を積層一体化する方法、(2)発泡成形体の表面に、強化繊維に熱可塑性樹脂が含浸されてなる繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱可塑性樹脂をバインダーとして発泡成形体の表面に繊維強化プラスチック形成材を繊維強化プラスチックとして積層一体化する方法、(3)発泡成形体の表面に、強化繊維に未硬化の熱硬化性樹脂が含浸された繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱硬化性樹脂をバインダーとして、熱硬化性樹脂を硬化させて形成された繊維強化プラスチックを発泡成形体の表面に積層一体化する方法、(4)発泡成形体の表面に、加熱されて軟化状態の表皮材を配設し、発泡成形体の表面に表皮材を押圧させることによって表皮材を必要に応じて発泡成形体の表面に沿って変形させながら発泡成形体の表面に積層一体化させる方法、(5)繊維強化プラスチックの成形で一般的に適用される方法等が挙げられる。発泡成形体は高温環境下における耐荷重性のような機械的物性に優れている観点では、上記(4)の方法を好適に用いることができる。
 繊維強化プラスチックの成形で用いられる方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法等が挙げられる。
Next, a method for producing a reinforced composite will be described. The method for producing a reinforced composite by laminating and integrating the skin material on the surface of the foam molded body is not particularly limited. For example, (1) the skin material is laminated and integrated on the surface of the foam molded body via an adhesive. Method, (2) The surface of a foamed molded article is formed by laminating a fiber reinforced plastic forming material in which a reinforcing fiber is impregnated with a thermoplastic resin on the surface of the foamed molded article, and using the thermoplastic resin impregnated in the reinforcing fiber as a binder. (3) Laminating a fiber reinforced plastic forming material in which a reinforcing fiber is impregnated with an uncured thermosetting resin, and laminating and integrating the fiber reinforced plastic forming material as a fiber reinforced plastic; A method of laminating and integrating a fiber reinforced plastic formed by curing a thermosetting resin with a thermosetting resin impregnated in a reinforcing fiber on the surface of a foam molded article, The surface of the body is heated and softened, and the skin material is disposed on the surface of the foamed molded body. By pressing the skin material on the surface of the foamed molded body, the skin material is foamed while being deformed along the surface of the foamed molded body. Examples thereof include a method of stacking and integrating on the surface of the molded body, and a method generally applied in (5) molding of fiber reinforced plastics. From the viewpoint of excellent mechanical properties such as load resistance under a high temperature environment, the foamed molded product can be suitably used the method (4).
Examples of the method used for molding the fiber reinforced plastic include an autoclave method, a hand lay-up method, a spray-up method, a PCM (Prepre Compression Molding) method, an RTM (Resin Transfer Molding) method, a VaRTM (Vacuum Assisted Resin Transfer Transfer). Law.
 このようにして得られた繊維強化複合体は、耐熱性、機械的物性及び軽量性に優れている。そのため、自動車、航空機、鉄道車輛、船舶等の輸送機器分野、家電分野、情報端末分野、家具の分野等の広範な用途に用いることができる。
 例えば、繊維強化複合体は、輸送機器の部品、及び、輸送機器の本体を構成する構造部品を含めた輸送機器構成用部品(特に自動車用部品)、風車翼、ロボットアーム、ヘルメット用緩衝材、農産箱、保温保冷容器等の輸送容器、産業用ヘリコプターのローターブレード、部品梱包材として好適に用いることができる。
 自動車用部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。
The fiber reinforced composite thus obtained is excellent in heat resistance, mechanical properties and lightness. Therefore, it can be used in a wide range of applications such as the field of transportation equipment such as automobiles, airplanes, railway vehicles, ships, etc., the household appliances field, the information terminal field, and the furniture field.
For example, the fiber reinforced composite is composed of parts for transportation equipment, parts for transportation equipment including structural parts constituting the main body of transportation equipment (particularly parts for automobiles), windmill blades, robot arms, cushioning materials for helmets, It can be suitably used as an agricultural product box, a transport container such as a thermal insulation container, a rotor blade of an industrial helicopter, or a component packing material.
Examples of automotive parts include floor panels, roofs, bonnets, fenders, under covers, wheels, steering wheels, containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage boxes, seats, Examples include parts such as doors and cowls.
 以下に実施例を挙げて本発明を更に詳細に説明するが、本実施例に何ら限定されるものでない。まず、実施例及び比較例中の測定方法及び評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples. First, measurement methods and evaluation methods in Examples and Comparative Examples will be described.
(嵩密度及び嵩倍数)
 嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定した。即ち、JIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて嵩密度を測定した。
 発泡粒子の嵩密度(g/cm3)=〔試料を入れたメスシリンダーの重量(g)-メスシリンダーの重量(g)〕/〔メスシリンダーの容量(cm3)〕
 嵩倍数は、嵩密度の逆数に樹脂の密度を積算した値とした。
(Bulk density and bulk multiple)
The bulk density was measured in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. That is, it measured using the apparent density measuring device based on JISK6911, and measured the bulk density based on the following formula.
Bulk density of expanded particles (g / cm 3 ) = [weight of graduated cylinder with sample (g) −weight of graduated cylinder (g)] / [volume of graduated cylinder (cm 3 )]
The bulk multiple was obtained by adding the resin density to the reciprocal of the bulk density.
(気泡数)
 発泡粒子及び発泡成形体中の気泡の気泡数は、次の要領で測定した。まず、切断面を走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)により30倍で11.9mm2の面積を撮影した。発泡粒子については、発泡粒子の中心部で略二分割した断面の中心部を同様に撮影した。撮影した画像をA4用紙に印刷し、すべての気泡について気泡径を算出した。なお、気泡径は、気泡断面の長径及び短径を測定し、短径と長径の相加平均値により得られた値とした。具体的には、気泡断面の外側輪郭線上において相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の長径」とした。また、この気泡の長径に対して直交する直線と気泡断面の外側輪郭線とが交わる任意の2点のうち相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の短径」とした。10μm以上かつ200μm未満の気泡径の小気泡と、300μm以上かつ1500μm以下の気泡径の大気泡とについて、用紙上で個別気泡数を計数した。
 上述と同様の要領で9個の発泡粒子及び発泡成形体をそれぞれ切断し、拡大写真を得、これらの拡大写真に基づいて上述と同様の要領で小気泡の個別気泡数と大気泡の個別気泡数を算出した。10個の発泡粒子及び発泡成形体のそれぞれにおける個別気泡数の相加平均値を気泡数とした。
(Bubble count)
The number of bubbles in the expanded particles and the expanded molded body was measured in the following manner. First, an area of 11.9 mm 2 was photographed at 30 times with a scanning electron microscope (“SU1510” manufactured by Hitachi High-Technologies Corporation) on the cut surface. For the expanded particles, the central portion of the cross-section substantially divided into two at the central portion of the expanded particles was photographed in the same manner. The photographed image was printed on A4 paper, and the bubble diameter was calculated for all bubbles. In addition, the bubble diameter measured the long diameter and short diameter of the bubble cross section, and made it the value obtained by the arithmetic mean value of a short diameter and a long diameter. Specifically, two arbitrary points having the maximum mutual distance on the outer contour line of the bubble cross section were selected, and the distance between the two points was defined as the “bubble major diameter”. Also, any two points where the mutual distance is maximum are selected from any two points where the straight line perpendicular to the major axis of the bubble and the outer contour line of the bubble cross section intersect, and the distance between the two points is expressed as “ The short diameter of the bubbles ”. The number of individual bubbles was counted on the paper for small bubbles having a bubble diameter of 10 μm or more and less than 200 μm and large bubbles having a bubble diameter of 300 μm or more and 1500 μm or less.
Each of the nine foam particles and the molded foam is cut in the same manner as described above to obtain enlarged photographs. Based on these enlarged photographs, the number of small bubbles and the individual bubbles of large bubbles are obtained in the same manner as described above. Numbers were calculated. The arithmetic average value of the number of individual bubbles in each of the 10 expanded particles and the expanded molded article was defined as the number of bubbles.
(大気泡の平均気泡径及び面積)
 大気泡の平均気泡径は、以下の方法により測定した。
 発泡粒子については発泡粒子の中心部で略二分割した断面の中心部を、成形体については任意の切断面を、走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)により30倍で11.9mm2の面積を撮影した。撮影した画像をA4用紙に印刷し、すべての大気泡について個別気泡径を算出した。なお、個別気泡径は、気泡断面の長径及び短径を測定し、短径と長径の相加平均値により得られた値とした。具体的には、気泡断面の外側輪郭線上において相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の長径」とした。また、この気泡の長径に対して直交する直線と気泡断面の外側輪郭線とが交わる任意の2点のうち相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の短径」とした。
 上述と同様の要領で9個の発泡粒子及び発泡成形体をそれぞれ切断し、拡大写真を得、これらの拡大写真に基づいて上述と同様の要領で大気泡の個別気泡径を算出した。10枚の写真の大気泡の個別気泡径の相加平均値を大気泡の平均気泡径とした。
 大気泡の面積は、(平均気泡径÷2)2πにより算出した。
(Average bubble diameter and area of large bubbles)
The average bubble diameter of large bubbles was measured by the following method.
For the expanded particles, the central portion of the cross-section substantially divided into two at the central portion of the expanded particles, and for the molded body, an arbitrary cut surface is obtained with a scanning electron microscope ("SU1510" manufactured by Hitachi High-Technologies Corporation) at 30 times 11. An area of 9 mm 2 was photographed. The captured image was printed on A4 paper, and the individual bubble diameter was calculated for all large bubbles. The individual cell diameter was determined by measuring the major axis and minor axis of the cell cross section and obtaining an arithmetic average value of the minor axis and major axis. Specifically, two arbitrary points having the maximum mutual distance on the outer contour line of the bubble cross section were selected, and the distance between the two points was defined as the “bubble major diameter”. Also, any two points where the mutual distance is maximum are selected from any two points where the straight line perpendicular to the major axis of the bubble and the outer contour line of the bubble cross section intersect, and the distance between the two points is expressed as “ The short diameter of the bubbles ”.
Nine foamed particles and foamed molded product were cut in the same manner as described above to obtain enlarged photographs, and the individual bubble diameters of large bubbles were calculated in the same manner as described above based on these enlarged photographs. The arithmetic average value of the individual bubble diameters of the large bubbles in the ten photographs was taken as the average bubble diameter of the large bubbles.
Area of the large bubbles was calculated by (average cell diameter ÷ 2) 2 π.
(小気泡の平均気泡径及び小気泡の1気泡の面積)
 小気泡の平均気泡径は、発泡粒子については中心部で略二分割した断面の中心部を、成形体については任意の切断面を、走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)を用いて撮影した。
 このとき、顕微鏡写真は、横向きのA4用紙1枚に縦横2画像(合計4画像)並んだ状態で印刷した際に所定の倍率となるように撮影した。具体的には、上記のように印刷した画像上に、タテ方向(画像の上下方向)、ヨコ方向(画像の左右方向)の各方向に平行する60mmの任意の直線を描いた際に、この任意の直線上に存在する気泡の数が10~50個程度となるように電子顕微鏡での拡大倍率を調整した。2粒の発泡粒子の断面に対して、1視野ずつ合計2視野の顕微鏡写真を撮影し、上記のようにA4用紙に印刷した。
 発泡粒子断面の2つの画像のそれぞれに、タテ方向及びヨコ方向に平行な3本の任意の直線(長さ60mm)を描き、任意の直線を各方向6本ずつ描いた。
 なお、任意の直線は大気泡に接することなく、できる限り気泡が接点でのみ接しないようにし、接してしまう場合には、この気泡も数に加えた。タテ方向、ヨコ方向の各方向の6本の任意の直線について数えた気泡数を算術平均し、各方向の気泡数とした。
 気泡数を数えた画像の倍率とこの気泡数から気泡の平均弦長(t)を次式により算出した。
  平均弦長t(mm)=60/(気泡数×写真倍率)
 画像の倍率は写真上のスケールバーを株式会社ミツトヨ製「デジマチックキャリパ」にて1/100mmまで計測し、次式により求めた。
  画像倍率=スケールバー実測値(mm)/スケールバーの表示値(mm)
 そして、次式により各方向における気泡径を算出した。
  気泡径D(mm)=t/0.616
 更に、それらの積の2乗根を小気泡の平均気泡径とした。
  小気泡の平均気泡径(mm)=(Dタテ×Dヨコ)1/2
 小気泡の1気泡の面積は、(平均気泡径÷2)2πにより算出した。
(Average bubble diameter of small bubbles and area of one small bubble)
The average cell diameter of the small bubbles is determined by using a scanning electron microscope (Hitachi High-Technologies' “SU1510”) for the center part of the cross-section substantially divided into two at the center part for the foamed particles, and an arbitrary cut surface for the molded body. Used to shoot.
At this time, the micrograph was taken so as to have a predetermined magnification when printed in a state in which two images (total of four images in total) were aligned on one A4 paper in landscape orientation. Specifically, when an arbitrary straight line of 60 mm is drawn on the image printed as described above, parallel to each of the vertical direction (the vertical direction of the image) and the horizontal direction (the horizontal direction of the image), The magnification in the electron microscope was adjusted so that the number of bubbles present on an arbitrary straight line was about 10-50. Two cross-sectional micrographs were taken for each section of the two expanded particles, and printed on A4 paper as described above.
Three arbitrary straight lines (length 60 mm) parallel to the vertical and horizontal directions were drawn on each of the two images of the expanded particle cross section, and six arbitrary straight lines were drawn in each direction.
In addition, an arbitrary straight line does not contact a large bubble, and the bubble is prevented from touching only at the contact point as much as possible. In the case where it comes into contact, this bubble is also added to the number. The number of bubbles counted for six arbitrary straight lines in each of the vertical and horizontal directions was arithmetically averaged to obtain the number of bubbles in each direction.
From the magnification of the image obtained by counting the number of bubbles and the number of bubbles, the average chord length (t) of the bubbles was calculated by the following equation.
Average chord length t (mm) = 60 / (number of bubbles × photo magnification)
The magnification of the image was determined by measuring the scale bar on the photograph up to 1/100 mm with “Digimatic Caliper” manufactured by Mitutoyo Corporation, and calculating by the following formula.
Image magnification = Scale bar measured value (mm) / Scale bar display value (mm)
And the bubble diameter in each direction was computed by following Formula.
Bubble diameter D (mm) = t / 0.616
Further, the square root of the product was taken as the average bubble diameter of small bubbles.
Average bubble diameter of small bubbles (mm) = (D vertical x D horizontal) 1/2
The area of one small bubble was calculated by (average bubble diameter ÷ 2) 2 π.
(外観)
 発泡成形体の表面を指で触ったときに、融着した発泡粒子間の境界がハッキリと感じられる場合を不可(×)とし、ハッキリとは感じられない場合を可(○)とし、ほとんど感じられない場合を優(◎)とした。
(appearance)
When the surface of the foamed product is touched with a finger, when the boundary between the fused foam particles is felt clear, it is judged as unsatisfactory (x), and when it is not felt clear, it is judged as acceptable (○). The case where it was not possible was judged as excellent (優).
(曲げ試験:密度ならびに最大点の荷重、応力、変位及びエネルギー)
 最大点の荷重、応力、変位及びエネルギーはJIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:たわみ特性の求め方」に準拠した方法により測定した。即ち、発泡成形体から、縦20mm×横25mm×高さ130mmの直方体形状の試験片を切り出した。測定には、テンシロン万能試験機(オリエンテック社製「UCT-10T」)を用いた。曲げ強度の曲げ最大点応力は、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS-237S Ver,1.00」)を用いて算出した。
 短冊状試験片を支持台に載置し、ロードセル1000N、試験速度10mm/分、支持台の先端治具5R、開き幅100mmの条件下で曲げ最大点応力を測定した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定した。各試験片の曲げ最大点応力の相加平均値をそれぞれ、発泡成形体の曲げ最大点応力とした。
 また、単位密度当たりの曲げ最大点応力は、曲げ最大点応力を発泡成形体の密度で除して算出した。
 なお、発泡成形体から切り出した試験片の重量(a)と体積(b)を測定し、式(a)/(b)により発泡成形体の密度(kg/m3)を求めた。
(Bending test: density and maximum point load, stress, displacement and energy)
The load, stress, displacement and energy at the maximum point were measured by a method in accordance with JIS K7221-1: 2006 “Rigid foamed plastics—Bending test—Part 1: Determination of flexural properties”. That is, a rectangular parallelepiped test piece having a length of 20 mm, a width of 25 mm, and a height of 130 mm was cut out from the foamed molded body. For the measurement, a Tensilon universal testing machine ("UCT-10T" manufactured by Orientec Co., Ltd.) was used. The bending maximum point stress of the bending strength was calculated using a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Softbrain).
The strip-shaped test piece was placed on a support, and the bending maximum point stress was measured under the conditions of a load cell 1000N, a test speed of 10 mm / min, a tip jig 5R of the support, and an opening width of 100 mm. The number of test pieces shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition over a standard atmosphere of 2nd grade for 16 hours. Measurement was performed under a standard atmosphere. The arithmetic mean value of the bending maximum point stress of each test piece was taken as the bending maximum point stress of the foamed molded product.
Moreover, the bending maximum point stress per unit density was calculated by dividing the bending maximum point stress by the density of the foamed molded product.
The weight of the test piece cut out from the foamed molded article (a) and volume (b) was measured to determine the density of the foamed molded article (kg / m 3) by the formula (a) / (b).
(曲げ試験:弾性率)
 曲げ弾性率はJIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:たわみ特性の求め方」に準拠した方法により測定した。即ち、発泡成形体から、縦20mm×横25mm×高さ130mmの直方体形状の試験片を切り出した。測定には、テンシロン万能試験機(オリエンテック社製「UCT-10T」)を用いた。曲げ弾性率は、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS-237S Ver,1.00」)を用いて算出した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定した。各試験片の圧縮弾性率の相加平均値をそれぞれ、発泡成形体の曲げ弾性率とした。
 曲げ弾性率は、荷重-変形曲線の始めの直線部分を用いて次式により計算した。
  E=Δσ/Δε
  E:曲げ弾性率(MPa)
  Δσ:直線上の2点間の応力の差(MPa)
  Δε:同じ2点間の変形の差(%)
 また、単位密度当たりの曲げ弾性率は、曲げ弾性率を発泡成形体の密度で除して算出した。
(Bending test: elastic modulus)
The flexural modulus was measured by a method in accordance with JIS K7221-1: 2006 “Hard foamed plastics—Bending test—Part 1: Determination of flexural properties”. That is, a rectangular parallelepiped test piece having a length of 20 mm, a width of 25 mm, and a height of 130 mm was cut out from the foamed molded body. For the measurement, a Tensilon universal testing machine ("UCT-10T" manufactured by Orientec Co., Ltd.) was used. The flexural modulus was calculated using a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Soft Brain). The number of test pieces shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition over a standard atmosphere of 2nd grade for 16 hours. Measurement was performed under a standard atmosphere. The arithmetic average value of the compression elastic modulus of each test piece was used as the bending elastic modulus of the foamed molded product.
The flexural modulus was calculated by the following equation using the first linear part of the load-deformation curve.
E = Δσ / Δε
E: Flexural modulus (MPa)
Δσ: Stress difference between two points on the straight line (MPa)
Δε: Difference in deformation between the same two points (%)
The flexural modulus per unit density was calculated by dividing the flexural modulus by the density of the foamed molded product.
(総合評価)
 外観が◎かつ単位密度当たりの最大点応力が0.01以上の場合を◎、外観が◎かつ単位密度当たりの最大点応力が0.008以上かつ0.01未満の場合を○、外観が○かつ単位密度当たりの最大点応力が0.008以上の場合を○、外観が×かつ単位密度当たりの最大点応力が0.01未満の場合を×、と評価した。
(Comprehensive evaluation)
◎ when the appearance is ◎ and the maximum point stress per unit density is 0.01 or more, ◯ when the appearance is ◎ and the maximum point stress per unit density is 0.008 or more and less than 0.01, ○ In addition, the case where the maximum point stress per unit density was 0.008 or more was evaluated as ◯, and the case where the appearance was × and the maximum point stress per unit density was less than 0.01 was evaluated as ×.
(実施例1)
 (樹脂粒子製造工程)
 ポリカーボネート系樹脂粒子(帝人社製パンライト、L-1250Y 密度1.20g/cm3)を120℃で4時間乾燥させた。得られた乾燥物を口径40mmの単軸押出機に時間当たり10kg/hrの割合で供給して290℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:290℃、入り口側樹脂圧:13MPa)のダイス孔(直径1.5mmのノズルが4個配置)から約10℃の冷却水を収容したチャンバー内に押出し、4枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて樹脂粒子を作製した。
Example 1
(Resin particle manufacturing process)
Polycarbonate resin particles (Tanjin Panlite, L-1250Y density 1.20 g / cm 3 ) were dried at 120 ° C. for 4 hours. The obtained dried product was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 290 ° C. Subsequently, about 10 ° C. cooling water is supplied from a die hole (four nozzles having a diameter of 1.5 mm arranged) of a die (temperature: 290 ° C., inlet side resin pressure: 13 MPa) attached to the tip of the single screw extruder. The resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of a rotary blade having four cutting blades at a rotational speed of 5000 rpm, and cutting into granules, thereby cooling with the cooling water.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)2.5MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、炭酸カルシウム0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度147℃で15秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、高圧の発泡槽から粒子を取り出して、塩化水素水溶液で炭酸カルシウムを除去した後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、0.140g/cm3(発泡倍率8.6倍)であった。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was injected to an impregnation pressure (gauge pressure) of 2.5 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of calcium carbonate was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred for 15 seconds at a foaming temperature of 147 ° C. using water vapor. After foaming, the particles were taken out from the high-pressure foaming tank, and after removing calcium carbonate with an aqueous hydrogen chloride solution, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the above-described method, it was 0.140 g / cm 3 (foaming ratio 8.6 times).
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を窒素ガスで置換した後、窒素ガスを、含浸圧(ゲージ圧)1.6MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充填し、0.85MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day, and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with nitrogen gas, the nitrogen gas was reduced to an impregnation pressure (gauge pressure) of 1.6 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled in a mold of 30 mm × 300 mm × 400 mm, heated with 0.85 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foamed molded product was obtained.
(実施例2)
 ポリカーボネート系樹脂粒子として、帝人社製パンライト(Z-2601 密度1.20g/cm3)を使用したこと以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
(Example 2)
Except for using Panlite (Z-2601 density 1.20 g / cm 3 ) manufactured by Teijin Ltd. as the polycarbonate resin particles, a foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1. It was.
(実施例3)
 含浸圧を2.0MPaとしたこと以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
Example 3
A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the impregnation pressure was 2.0 MPa.
(実施例4)
 含浸圧を1.5MPaとしたこと以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
Example 4
A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the impregnation pressure was 1.5 MPa.
(実施例5)
 発泡時間を10秒としたこと以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
(Example 5)
A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the foaming time was 10 seconds.
(実施例6)
 含浸圧を1.3MPaとしたこと以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
(Example 6)
A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the impregnation pressure was 1.3 MPa.
(実施例7)
 ポリカーボネート系樹脂粒子として、Sabic社製レキサン(101R  密度1.20g/cm3)を使用したこと以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
(Example 7)
A foamed molded article was obtained through the impregnation step, the foaming step, and the molding step of Example 1 except that Sabic Lexan (101R density 1.20 g / cm 3 ) was used as the polycarbonate resin particles.
(実施例8)
 含浸圧を4.0MPaとしたこと以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
(Example 8)
A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the impregnation pressure was 4.0 MPa.
(実施例9)
 発泡温度を144℃としたこと以外は実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
Example 9
A foamed molded product was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the foaming temperature was 144 ° C.
(実施例10)
 発泡時間を22秒としたこと以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
(Example 10)
A foamed molded article was obtained through the impregnation step, the foaming step and the molding step of Example 1 except that the foaming time was 22 seconds.
(比較例1)
 ポリカーボネート系樹脂粒子(帝人社製パンライト、L-1250Y 密度1.2g/cm3)を120℃で4時間乾燥させた。得られた乾燥物を金型口径が1.5mmの押出機で溶融混練し、ダイからストランド状に押出した。次いで押出したストランド状の樹脂を、冷却水槽中を通過させて冷却し、ペレタイザーで長さL/D=1.3mm~1.8mm/1.0mm~1.2mmにカットすることで樹脂粒子を得た。
 上記樹脂粒子を使用すること以外は、実施例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
(Comparative Example 1)
Polycarbonate resin particles (Teijin Panlite, L-1250Y density 1.2 g / cm 3 ) were dried at 120 ° C. for 4 hours. The obtained dried product was melt-kneaded with an extruder having a die diameter of 1.5 mm and extruded from a die into a strand. Next, the extruded strand resin is cooled by passing through a cooling water tank, and the resin particles are cut by a length L / D = 1.3 mm to 1.8 mm / 1.0 mm to 1.2 mm with a pelletizer. Obtained.
Except using the said resin particle, the foaming molding was obtained through the impregnation process of Example 1, a foaming process, and a shaping | molding process.
(比較例2)
 含浸圧を4.0MPaとしたこと以外は、比較例1の含浸工程、発泡工程及び成形工程を経て、発泡成形体を得た。
(Comparative Example 2)
A foamed molded article was obtained through the impregnation process, the foaming process and the molding process of Comparative Example 1 except that the impregnation pressure was 4.0 MPa.
 上記実施例1~10及び比較例1~2の発泡粒子及び発泡成形体の物性を表1及び2にまとめて示す。
 また、実施例1の発泡粒子の外観及び断面の写真、発泡成形体の外観及び断面の写真を図1(a)~(d)に示す。更に、比較例1の発泡粒子及び発泡成形体の外観の写真を図2(a)及び(b)に示す。また更に、実施例1~10及び比較例1~2の発泡粒子と発泡成形体の断面を30倍及び200倍で撮影した電子顕微鏡写真を図3~7に示す。
Tables 1 and 2 summarize the physical properties of the foamed particles and foamed molded products of Examples 1 to 10 and Comparative Examples 1 and 2.
Further, photographs of the appearance and cross section of the expanded particles of Example 1, and photographs of the appearance and cross section of the foamed molded product are shown in FIGS. 1 (a) to 1 (d). Furthermore, the photograph of the external appearance of the foaming particle of Comparative Example 1 and a foaming molding is shown to Fig.2 (a) and (b). Furthermore, FIGS. 3 to 7 show electron micrographs obtained by photographing the cross sections of the foamed particles of Examples 1 to 10 and Comparative Examples 1 and 2 and the foamed molded article at 30 times and 200 times, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2から、特定の範囲の気泡径の小気泡と大気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性と美麗な外観を有していることが分かる。 From Tables 1 and 2, it can be seen that the foam-molded product obtained from the foamed particles having small bubbles and large bubbles having a specific range of cell diameters has excellent mechanical properties and a beautiful appearance.

Claims (13)

  1.  ポリカーボネート系樹脂を含む基材樹脂から構成された発泡粒子であり、前記発泡粒子が、走査型電子顕微鏡により30倍で11.9mm2の面積を撮影した断面写真において、10μm以上かつ200μm未満の気泡径の小気泡と、300μm以上かつ1500μm以下の気泡径の大気泡とを備える発泡粒子。 A foamed particle composed of a base resin containing a polycarbonate-based resin, and the foamed particle is a bubble of 10 μm or more and less than 200 μm in a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at 30 times with a scanning electron microscope A foamed particle comprising small bubbles having a diameter and large bubbles having a bubble diameter of 300 μm or more and 1500 μm or less.
  2.  前記大気泡が、前記発泡粒子1つに対してただ1つ存在する請求項1に記載の発泡粒子。 The expanded particle according to claim 1, wherein there is only one large bubble for each expanded particle.
  3.  平均気泡径から算出される前記小気泡の1気泡の面積に対する前記大気泡の合計面積の比が、150以上かつ3000以下である請求項1に記載の発泡粒子。 The foamed particle according to claim 1, wherein a ratio of a total area of the large bubbles to an area of one bubble of the small bubbles calculated from an average bubble diameter is 150 or more and 3000 or less.
  4.  前記小気泡と大気泡とが、300μm以上の平均気泡径差を有する請求項1に記載の発泡粒子。 The expanded particles according to claim 1, wherein the small bubbles and the large bubbles have an average bubble diameter difference of 300 µm or more.
  5.  前記小気泡が、15μm以上かつ90μm以下の平均気泡径を有し、前記大気泡が、400μm以上かつ1500μm以下の平均気泡径を有する請求項1に記載の発泡粒子。 The foamed particles according to claim 1, wherein the small bubbles have an average cell diameter of 15 µm or more and 90 µm or less, and the large bubbles have an average cell size of 400 µm or more and 1500 µm or less.
  6.  ポリカーボネート系樹脂を含む基材樹脂から構成された発泡成形体であり、前記発泡成形体が、複数の発泡粒子から構成され、前記発泡粒子が、走査型電子顕微鏡により30倍で11.9mm2の面積を撮影した断面写真において、10μm以上かつ200μm未満の気泡径の小気泡と300μm以上かつ1500μm以下の気泡径の大気泡とを備える発泡成形体。 A foamed molded article composed of a base resin containing a polycarbonate-based resin, wherein the foamed molded article is composed of a plurality of foamed particles, and the foamed particles are 11.9 mm 2 at 30 times by a scanning electron microscope. A foamed molded article comprising small bubbles having a bubble diameter of 10 μm or more and less than 200 μm and large bubbles having a bubble diameter of 300 μm or more and 1500 μm or less in a cross-sectional photograph obtained by photographing an area.
  7.  前記大気泡が、前記発泡粒子1つに対してただ1つ存在する請求項6に記載の発泡成形体。 The foamed molded product according to claim 6, wherein there is only one large bubble for one foamed particle.
  8.  平均気泡径から算出される前記小気泡の1気泡の合計面積に対する前記大気泡の合計面積の比が、150以上かつ6000以下である請求項6に記載の発泡成形体。 The foam molded article according to claim 6, wherein a ratio of the total area of the large bubbles to the total area of one bubble of the small bubbles calculated from the average cell diameter is 150 or more and 6000 or less.
  9.  前記小気泡と大気泡とが、300μm以上の平均気泡径差を有する請求項6に記載の発泡成形体。 The foamed molded article according to claim 6, wherein the small bubbles and the large bubbles have an average bubble diameter difference of 300 µm or more.
  10.  前記小気泡が、15μm以上かつ90μm以下の平均気泡径を有し、前記大気泡が、400μm以上かつ1500μm以下の平均気泡径を有する請求項6に記載の発泡成形体。 The foamed molded product according to claim 6, wherein the small bubbles have an average cell diameter of 15 µm or more and 90 µm or less, and the large bubbles have an average cell size of 400 µm or more and 1500 µm or less.
  11.  請求項6に記載の発泡成形体と、前記発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体。 A fiber reinforced composite comprising the foam molded article according to claim 6 and a fiber reinforced plastic layer laminated and integrated on a surface of the foam molded article.
  12.  風車翼、ロボットアーム又は自動車部品に用いられる請求項11に記載の繊維強化複合体。 The fiber-reinforced composite according to claim 11, which is used for a wind turbine blade, a robot arm or an automobile part.
  13.  請求項6に記載の発泡成形体又は請求項11に記載の繊維強化複合体から構成される自動車用部品。 An automotive part composed of the foamed molded product according to claim 6 or the fiber-reinforced composite according to claim 11.
PCT/JP2019/013737 2018-03-30 2019-03-28 Expanded beads, molded foam, fiber-reinforced composite, and automotive component WO2019189635A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018067756 2018-03-30
JP2018-067756 2018-03-30
JP2018-185208 2018-09-28
JP2018185208A JP2019183099A (en) 2018-03-30 2018-09-28 Foam particle, foam molded body, fiber reinforced composite and automobile component

Publications (1)

Publication Number Publication Date
WO2019189635A1 true WO2019189635A1 (en) 2019-10-03

Family

ID=68060109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013737 WO2019189635A1 (en) 2018-03-30 2019-03-28 Expanded beads, molded foam, fiber-reinforced composite, and automotive component

Country Status (1)

Country Link
WO (1) WO2019189635A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065485A1 (en) * 2018-09-28 2020-04-02 積水化成品工業株式会社 Expanded particles and expanded molded article
JP2020055988A (en) * 2018-09-28 2020-04-09 積水化成品工業株式会社 Foam particle and foam molded body
JP2020164581A (en) * 2019-03-28 2020-10-08 積水化成品工業株式会社 Foam particle and foam molding
JP2020164775A (en) * 2019-03-29 2020-10-08 積水化成品工業株式会社 Foam molding

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369135A (en) * 1992-05-13 1994-11-29 Mobil Oil Corporation Controlled microcellular foams of crystalline amorphous polymers
JPH11287277A (en) * 1998-02-03 1999-10-19 Jsp Corp Automobile energy absorber consisting of polycarbonate resin forming molded body
WO2011115203A1 (en) * 2010-03-17 2011-09-22 株式会社 巴川製紙所 Polymer expanded particle, expanded toner and method for producing polymer expanded particle and expanded toner
JP2013067740A (en) * 2011-09-22 2013-04-18 Furukawa Electric Co Ltd:The Thermoplastic resin bead foam, and method for manufacturing the same
US20130133557A1 (en) * 2011-11-25 2013-05-30 New Style Package Hk Limited Pallet and method for manufacturing the same
JP2016113548A (en) * 2014-12-16 2016-06-23 積水化成品工業株式会社 Foam particle and foam molded body
JP2016125041A (en) * 2015-01-08 2016-07-11 積水化成品工業株式会社 Foam particle and foam molded body
JP2016155959A (en) * 2015-02-25 2016-09-01 積水化成品工業株式会社 Seed particle for seed polymerization, composite resin particle, foamable particle, form particle and composite resin foam molded body
JP2016188321A (en) * 2015-03-30 2016-11-04 積水化成品工業株式会社 Foamed particle and foamed molding
WO2018047316A1 (en) * 2016-09-09 2018-03-15 積水化成品工業株式会社 Polycarbonate-based resin foam particle and foam molded body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369135A (en) * 1992-05-13 1994-11-29 Mobil Oil Corporation Controlled microcellular foams of crystalline amorphous polymers
JPH11287277A (en) * 1998-02-03 1999-10-19 Jsp Corp Automobile energy absorber consisting of polycarbonate resin forming molded body
WO2011115203A1 (en) * 2010-03-17 2011-09-22 株式会社 巴川製紙所 Polymer expanded particle, expanded toner and method for producing polymer expanded particle and expanded toner
JP2013067740A (en) * 2011-09-22 2013-04-18 Furukawa Electric Co Ltd:The Thermoplastic resin bead foam, and method for manufacturing the same
US20130133557A1 (en) * 2011-11-25 2013-05-30 New Style Package Hk Limited Pallet and method for manufacturing the same
JP2016113548A (en) * 2014-12-16 2016-06-23 積水化成品工業株式会社 Foam particle and foam molded body
JP2016125041A (en) * 2015-01-08 2016-07-11 積水化成品工業株式会社 Foam particle and foam molded body
JP2016155959A (en) * 2015-02-25 2016-09-01 積水化成品工業株式会社 Seed particle for seed polymerization, composite resin particle, foamable particle, form particle and composite resin foam molded body
JP2016188321A (en) * 2015-03-30 2016-11-04 積水化成品工業株式会社 Foamed particle and foamed molding
WO2018047316A1 (en) * 2016-09-09 2018-03-15 積水化成品工業株式会社 Polycarbonate-based resin foam particle and foam molded body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065485A1 (en) * 2018-09-28 2020-04-02 積水化成品工業株式会社 Expanded particles and expanded molded article
JP2020055988A (en) * 2018-09-28 2020-04-09 積水化成品工業株式会社 Foam particle and foam molded body
JP7262266B2 (en) 2018-09-28 2023-04-21 積水化成品工業株式会社 Foamed particles and foamed moldings
JP2020164581A (en) * 2019-03-28 2020-10-08 積水化成品工業株式会社 Foam particle and foam molding
JP7262273B2 (en) 2019-03-28 2023-04-21 積水化成品工業株式会社 Foamed particles and foamed moldings
JP2020164775A (en) * 2019-03-29 2020-10-08 積水化成品工業株式会社 Foam molding
JP7277308B2 (en) 2019-03-29 2023-05-18 積水化成品工業株式会社 foam molding

Similar Documents

Publication Publication Date Title
WO2019189635A1 (en) Expanded beads, molded foam, fiber-reinforced composite, and automotive component
JP6161563B2 (en) Fiber reinforced composite
WO2019187947A1 (en) Foam particle, foam molded body, preparation method thereof and resin complex
JP6395896B2 (en) Foamed particles for in-mold foam molding, in-mold foam molded body and fiber reinforced composite
WO2018061263A1 (en) Expanded beads, molded foam, fiber-reinforced composite, and automotive component
JP2021155609A (en) Resin foam particle and resin foam molding
JP7262273B2 (en) Foamed particles and foamed moldings
JP2019183099A (en) Foam particle, foam molded body, fiber reinforced composite and automobile component
JP2014070153A (en) Method for manufacturing thermoplastic polyester resin foam particles, thermoplastic polyester resin foam particles, method for manufacturing foam molding using thermoplastic polyester resin foam particles, foam molding, and composite foam
JP6668433B1 (en) Expanded particles, expanded molded article, method for producing the same, and fiber-reinforced composite
JP2019044105A (en) Foamed particle, foamed molding, fiber-reinforced composite body, method for producing the same, and automobile parts
JP7262266B2 (en) Foamed particles and foamed moldings
JP7277308B2 (en) foam molding
WO2020065485A1 (en) Expanded particles and expanded molded article
TWI725550B (en) Expanded particles and expanded molded article
JP6484206B2 (en) Foamed particles, foamed molded products, fiber reinforced composites, and automotive parts
CN112739755B (en) Expanded particles and expanded molded article
JP2020033484A (en) Foam particle, foam molding, fiber-reinforced composite body and component for automobile
JP7203198B2 (en) Resin composition for manufacturing expanded beads, expanded beads, expanded moldings and composite structural members
TWI663199B (en) Foamed particle for manufacturing fiber reinforced composites and foamed molded articles, fiber reinforced composites parts for automobiles
JP2022129943A (en) Foam particle, foam molding and composite structure member
WO2019188052A1 (en) Foam particles, foam molded article, fiber-reinforced composite article and automobile parts
JP2021031623A (en) Foam particle, foam molded article and composite structural member
JP2019183093A (en) Foam particle, foam molded body, fiber reinforced composite and automobile component
JP2020050785A (en) Foam particle, foam molded body, fiber reinforced composite, and automobile component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777179

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777179

Country of ref document: EP

Kind code of ref document: A1