WO2019188052A1 - Foam particles, foam molded article, fiber-reinforced composite article and automobile parts - Google Patents

Foam particles, foam molded article, fiber-reinforced composite article and automobile parts Download PDF

Info

Publication number
WO2019188052A1
WO2019188052A1 PCT/JP2019/008696 JP2019008696W WO2019188052A1 WO 2019188052 A1 WO2019188052 A1 WO 2019188052A1 JP 2019008696 W JP2019008696 W JP 2019008696W WO 2019188052 A1 WO2019188052 A1 WO 2019188052A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
unsaturated dicarboxylic
meth
particles
Prior art date
Application number
PCT/JP2019/008696
Other languages
French (fr)
Japanese (ja)
Inventor
佑輔 ▲桑▼▲原▼
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018141721A external-priority patent/JP2019183093A/en
Priority claimed from JP2018162325A external-priority patent/JP2020033484A/en
Priority claimed from JP2018182437A external-priority patent/JP2020050786A/en
Priority claimed from JP2018182430A external-priority patent/JP2020050785A/en
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2019188052A1 publication Critical patent/WO2019188052A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent

Definitions

  • the present invention relates to expanded particles, expanded molded articles, fiber reinforced composites, and automotive parts. More specifically, the present invention relates to a foamed particle that can provide a foamed molded article having improved mechanical properties (for example, heat insulation, maximum point stress by bending test), and a foamed molded article obtained from the foamed particle, fiber reinforced.
  • the present invention relates to composites and automotive parts.
  • the foamed molded article of Patent Document 1 has room for improvement in terms of mechanical properties (for example, heat insulation, maximum point stress by bending test), and mechanical properties that are further superior to the foamed molded article of Patent Document 1. It is desired to provide a foamed molded article having a foam and foamed particles capable of producing the foamed molded article. Then, this invention makes it a subject to provide the foaming particle
  • the inventor of the present invention further examined the technique of Patent Document 1, and by increasing the bubble diameter difference between small bubbles and large bubbles, mechanical properties (for example, heat insulation, maximum point stress by bending test).
  • the present invention has been completed by surprisingly finding that it is possible to significantly improve the above.
  • the expanded particles composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and the expanded particles are 30 times larger.
  • the foamed particles are provided and a large bubble of the small bubble and less bubble diameter 300 [mu] m or more and 2mm of bubble size of less than 50 ⁇ m and not more than 300 [mu] m.
  • a foam molded article composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, wherein the foam molded article is In a cross-sectional photograph composed of a plurality of the foamed particles, the foamed particles having an area of 11.9 mm 2 taken 30 times, a small bubble having a bubble diameter of 50 ⁇ m or more and less than 300 ⁇ m and a bubble of 300 ⁇ m or more and 2 mm or less There is provided a foamed molded article having large diameter bubbles.
  • a fiber reinforced composite comprising the above foam molded article and a fiber reinforced plastic layer laminated and integrated on the surface of the foam molded article.
  • the components for motor vehicles comprised from said foaming molding or a fiber reinforced composite are provided.
  • the foaming molding which can manufacture the foaming molding which shows the outstanding mechanical property (for example, heat insulation, the maximum point stress by a bending test), and the foaming molding can be provided. Further, in any of the following cases, a foamed molded article exhibiting more excellent mechanical properties (for example, heat insulation, maximum point stress by a bending test) and foamed particles capable of producing the foamed molded article can be provided. (1) The expanded particles have only one large bubble in one of them.
  • Aromatic vinyl is a styrene monomer
  • (meth) acrylic acid ester is (meth) acrylic acid alkyl ester (the alkyl group has 1 to 5 carbon atoms)
  • unsaturated dicarboxylic acid is 2 to 6 carbon atoms
  • An aliphatic unsaturated dicarboxylic acid, and the copolymer is aromatic when the total of units derived from three of vinyl aromatic, (meth) acrylic acid ester and unsaturated dicarboxylic acid is 100 parts by weight. 30 to 80 parts by weight of units derived from vinyl, 8 to 35 parts by weight of units derived from (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from unsaturated dicarboxylic acid.
  • the foamed particles give a maximum point stress by a bending test of 1.0 MPa or more to the foamed molded body composed of the fused product.
  • the aromatic vinyl is styrene, ⁇ -methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, divinylbenzene, trivinylbenzene, divinyltoluene, Divinyl xylene, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, bisphenol A ethylene oxide adduct di (meth) Selected from acrylate and propylene oxide adduct di (meth) acrylate of bisphenol A; (Meth) acrylic acid ester is selected from methyl (meth)
  • Copolymer A of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, copolymer B of aromatic vinyl, unsaturated dicarboxylic acid and unsaturated dicarboxylic imide The difference between the glass transition temperature A of the copolymer A and the glass transition temperature B of the copolymer B is 10 to 50 ° C., and the expanded particles are 30 In a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at a magnification, a small bubble having a bubble diameter of 50 ⁇ m or more and less than 300 ⁇ m and a large bubble having a bubble diameter of 300 ⁇ m or more and 2 mm or less are provided.
  • aromatic vinyl is a styrene monomer
  • (meth) acrylic ester is (meth) acrylic acid alkyl ester (the alkyl group has 1 to 5 carbon atoms)
  • unsaturated dicarboxylic acid is Each of which is selected from aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms
  • copolymer A has a total of 100 units derived from three of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid.
  • the aromatic vinyl is selected from a styrene monomer
  • the unsaturated dicarboxylic acid is an aliphatic unsaturated dicarboxylic acid having 2 to 6 carbon atoms
  • the unsaturated dicarboxylic imide is a maleimide monomer
  • the unit derived from the aromatic vinyl is 20 to 80 parts by weight. 2-30 parts by weight of units derived from unsaturated dicarboxylic acid and 20-80 parts by weight of units derived from unsaturated dicarboxylic imide.
  • Aromatic vinyl is styrene, ⁇ -methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, divinylbenzene, trivinylbenzene, divinyltoluene, Divinyl xylene, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, bisphenol A ethylene oxide adduct di (meth) Selected from acrylate and propylene oxide adduct di (meth) acrylate of bisphenol A; (Meth) acrylic acid ester is selected from methyl (meth)
  • 2 is a cross-sectional photograph of expanded particles and expanded molded articles of Examples 1a to 3a. It is a cross-sectional photograph of the expanded particle of Comparative Example 1a and 2a, and a foaming molding. It is a cross-sectional photograph of the expanded particle of Example 4a and 5a and a foaming molding. 2 is a cross-sectional photograph of expanded particles and expanded molded articles of Examples 6a to 8a. It is a cross-sectional photograph of the expanded particle of Example 1b and 2b, and a foaming molding. It is a cross-sectional photograph of the expanded particle of Example 3b and a foaming molding. It is a cross-sectional photograph of the expanded particle of Example 4b and a foaming molding.
  • 2 is a cross-sectional photograph of expanded particles and expanded molded articles of Reference Examples 1b to 3b. It is a cross-sectional photograph of the expanded particle of Example 1c and 2c and a foaming molding. It is a cross-sectional photograph of the expanded particle of Example 3c and a foaming molding. It is a cross-sectional photograph of the expanded particle of Example 4c and 5c, and a foaming molding.
  • 3 is a cross-sectional photograph of expanded particles and expanded molded articles of Reference Examples 1c to 3c.
  • 2 is a cross-sectional photograph of expanded particles and expanded molded articles of Examples 1d to 3d. It is a cross-sectional photograph of the expanded particles and expanded molded article of Reference Example 3d.
  • Foamed Particles are composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid.
  • the proportion of the copolymer in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and may be 100% by weight.
  • the copolymer preferably has a glass transition temperature Tg of 115 to 160 ° C. When Tg is lower than 115 ° C., lamination and integration of the skin material on the surface of the foamed molded product produced using the foamed particles may be insufficient, and mechanical properties may be lowered.
  • Tg can take 115 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C and 160 ° C. A more preferable Tg is 120 to 150 ° C.
  • Aromatic vinyl is an aromatic compound having a substituent composed of a vinyl group.
  • the number of vinyl groups and the number of carbon atoms of the aromatic compound are not particularly limited.
  • Specific aromatic vinyls include styrene monofunctional monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, Divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, Examples thereof include
  • the (meth) acrylic acid ester is not particularly limited, and examples thereof include (meth) acrylic acid alkyl esters.
  • the alkyl group in the (meth) acrylic acid alkyl ester may have 1 to 5 carbon atoms.
  • Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate.
  • (Meth) acrylic acid ester may be used independently, or 2 or more types may be used together. From the viewpoint of improving the mechanical properties of the foam molded article, methyl (meth) acrylate is preferred, and methyl methacrylate is more preferred.
  • Unsaturated dicarboxylic acid is not particularly limited, and examples thereof include aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms. Specific examples of the unsaturated dicarboxylic acid include maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof. Unsaturated dicarboxylic acid may be used independently or 2 or more types may be used together.
  • (D) Ratio of units derived from aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid The total number of units derived from aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid is 100. In terms of parts by weight, 30 to 80 parts by weight of units derived from aromatic vinyl, 8 to 35 parts by weight of units derived from (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from unsaturated dicarboxylic acid It is preferable to contain. When the proportion of units derived from aromatic vinyl is less than 30 parts by weight, the foamability of the foamed particles is reduced during foam molding, and the heat fusion integration between the foamed particles becomes insufficient, and Mechanical properties may deteriorate.
  • this ratio When this ratio is larger than 80 parts by weight, the heat resistance of the foamed molded product may be lowered.
  • This ratio can take 30 parts, 40 parts, 45 parts, 50 parts, 60 parts, 70 parts, 75 parts and 80 parts by weight. This ratio is more preferably 40 to 75 parts by weight, and still more preferably 45 to 70 parts by weight.
  • the proportion of units derived from (meth) acrylic acid ester is less than 8 parts by weight, the mechanical properties of the foamed molded product may be lowered.
  • this ratio is larger than 35 parts by weight, the foamability of the foamed particles may be reduced during foam molding, and the heat fusion integration between the foamed particles may be insufficient and the mechanical properties of the foamed molded product may be degraded. is there.
  • This ratio can take 8 parts, 10 parts, 15 parts, 20 parts, 25 parts, 30 parts, 33 parts and 35 parts by weight. This ratio is more preferably 10 to 33 parts by weight, and further preferably 15 to 30 parts by weight.
  • the ratio which the unit derived from unsaturated dicarboxylic acid accounts is less than 10 weight part, the heat resistance of a foaming molding may fall.
  • this ratio is larger than 50 parts by weight, the foamability of the foamed particles may be reduced during foam molding, and the heat-fusion integration between the foamed particles may be insufficient, and the mechanical properties of the foamed molded product may be degraded. is there.
  • This ratio can take 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight and 50 parts by weight. This ratio is more preferably 15 to 40 parts by weight, still more preferably 20 to 35 parts by weight.
  • usage-amount of a monomer and content of the unit derived from the monomer are substantially in agreement.
  • the ratio of each component that is, the ratio of units derived from aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and further derived from other monomers and other resins described below is 1 It can be defined by the peak height of H-NMR or the area ratio of FT-IR. A specific measurement method will be described in Examples.
  • the base resin may be a further copolymer with components derived from other monomers as long as the properties of the present invention are not impaired in addition to the above three monomers.
  • examples of other monomers include (meth) acrylonitrile, dimethyl maleate, diethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, (meth) acrylic acid, and the like.
  • the proportion of units derived from other monomers in the base resin is preferably 30% by weight or less, and may be 0% by weight.
  • (F) Other resin Other resin may be mixed with the base resin.
  • rubber-modified resistance such as polyolefin resins such as polyethylene and polypropylene, polybutadiene, styrene-butadiene copolymers, and diene rubber polymers such as ethylene-propylene-nonconjugated diene three-dimensional copolymers are added.
  • the expanded particles preferably contain polymethyl methacrylate.
  • the content of polymethyl methacrylate in the expanded particles is preferably 10 to 500 parts by weight, more preferably 20 to 450 parts by weight, and particularly preferably 30 to 400 parts by weight with respect to 100 parts by weight of the copolymer.
  • the foamed particles preferably contain an acrylic resin as a processing aid.
  • a processing aid By containing a processing aid, the foam tension of the foamed particles is suppressed by making the melt tension (viscoelasticity) at the time of foaming of the resin constituting the foamed particles suitable for foaming.
  • the content of the processing aid in the expanded particles is preferably 0.5 to 5 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the copolymer.
  • the acrylic resin as a processing aid is not particularly limited, and contains 50% by weight or more of a homopolymer of an acrylic monomer or a copolymer composed of two or more of these, and an acrylic monomer.
  • examples thereof include a copolymer of an acrylic monomer and a vinyl monomer copolymerizable therewith.
  • the acrylic monomer include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like.
  • vinyl monomers copolymerizable with acrylic monomers include ⁇ -methylstyrene and acrylonitrile.
  • the weight average molecular weight of the acrylic resin is preferably 1.5 million to 6 million, more preferably 2 million to 4.5 million, and particularly preferably 2.5 million to 4 million. Even if the weight average molecular weight of the acrylic resin is too low or too high, it is difficult to sufficiently adjust the melt tension (viscoelasticity) during foam molding of the resin constituting the foamed particles to that suitable for foaming. The foamability of the particles may not be improved.
  • (G) Aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboxylic imide copolymer
  • the above (f) other resin includes an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboxylic imide copolymer (copolymer).
  • Polymer B) is preferred from the viewpoint of improving the heat resistance and / or elastic modulus of the foamed molded product.
  • the expanded particles include a copolymer of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid (also referred to as copolymer A), aromatic vinyl, and unsaturated dicarboxylic acid.
  • a base resin containing copolymer B with unsaturated dicarboxylic imide When the base resin contains the copolymer B, the heat resistance and / or elastic modulus of the obtained foamed molded product can be improved as compared with the case where the base resin is made of only the copolymer A.
  • the ratio of the total of copolymers A and B in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and may be 100% by weight.
  • Copolymers A and B are preferably contained in the base resin in a weight ratio of 70:30 to 95: 5.
  • the weight ratio of copolymers A and B can be 70:30, 75:25, 80:20, 85:15, 90:10 and 95: 5.
  • the copolymer A preferably has a glass transition temperature Tg of 115 to 160 ° C.
  • Tg glass transition temperature
  • Tg can take 115 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C and 160 ° C.
  • a more preferable Tg is 120 to 150 ° C.
  • the copolymer B preferably has a glass transition temperature Tg of 160 to 200 ° C.
  • Tg glass transition temperature
  • the laminate integration of the skin material on the surface of the foam molded body produced using the foamed particles may be insufficient, and the mechanical properties may be lowered.
  • the temperature is higher than 200 ° C., the foamability of the foamed particles is lowered, and the heat fusion integration between the foamed particles is insufficient, and the mechanical properties of the foamed molded product may be lowered.
  • Tg can take 160 ° C, 170 ° C, 180 ° C, 190 ° C and 200 ° C.
  • a more preferable Tg is 170 to 190 ° C.
  • the difference between the glass transition temperature A of the copolymer A and the glass transition temperature B of the copolymer B is 10 to 50 ° C.
  • the difference is less than 10 ° C., sufficient heat resistance improvement effect cannot be obtained, and the lamination and integration of the skin material on the surface of the foam molded body produced using the foamed particles becomes insufficient, resulting in mechanical Physical properties may deteriorate.
  • the temperature is higher than 50 ° C., the difference in melt viscosity becomes large and kneading may be insufficient.
  • the difference can be 10 ° C, 20 ° C, 30 ° C, 35 ° C, 45 ° C, 47 ° C and 50 ° C.
  • the difference is preferably 20 to 47 ° C, more preferably 30 to 45 ° C.
  • Aromatic vinyl may be used independently or 2 or more types may be used together. Of these, styrene is preferred from the viewpoint of availability. Although it does not specifically limit as unsaturated dicarboxylic acid, The compound illustrated in said (c) is mentioned. Unsaturated dicarboxylic acid may be used independently or 2 or more types may be used together. From the viewpoint of improving the mechanical properties of the foam molded article, maleic anhydride is preferable.
  • the unsaturated dicarboxylic acid imide is not particularly limited, and examples thereof include maleimide monomers such as maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide and N-naphthylmaleimide. .
  • An unsaturated dicarboxylic imide derivative may be used independently or 2 or more types may be used together. From the viewpoint of improving the heat resistance of the foam molded article, N-phenylmaleimide is preferred.
  • the proportion of units derived from aromatic vinyl, unsaturated dicarboxylic acid and unsaturated dicarboxylic imide is 20 to 80 parts by weight of units derived from aromatic vinyl, assuming that the total of the units derived from 3 is 100 parts by weight. It is preferable that 2 to 30 parts by weight of units derived from unsaturated dicarboxylic acid and 20 to 80 parts by weight of units derived from unsaturated dicarboxylic imide are included.
  • the proportion of units derived from aromatic vinyl is less than 20 parts by weight, the foamability of the foamed particles is reduced during foam molding, and the thermal fusion integration between the foamed particles becomes insufficient, and Mechanical properties may deteriorate.
  • This ratio can take 20 parts by weight, 30 parts by weight, 40 parts by weight, 50 parts by weight, 60 parts by weight, 70 parts by weight, 75 parts by weight and 80 parts by weight. This ratio is more preferably 30 to 75 parts by weight, and still more preferably 50 to 70 parts by weight.
  • the proportion of units derived from unsaturated dicarboxylic acids can be 2 parts by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight and 30 parts by weight.
  • the proportion of units derived from unsaturated dicarboxylic imides can be 20 parts, 30 parts, 40 parts, 50 parts, 60 parts, 70 parts, 75 parts and 80 parts by weight.
  • the base resin includes the copolymer A and the copolymer B
  • polymethyl methacrylate is contained as the other resin.
  • the content of polymethyl methacrylate in the expanded particles is preferably 10 to 500 parts by weight, more preferably 20 to 450 parts by weight, and more preferably 30 to 400 parts by weight with respect to 100 parts by weight of the total of the copolymers A and B. Particularly preferred.
  • the base resin contains the copolymer A and the copolymer B, it is preferable that the foamed particles contain an acrylic resin as the processing aid.
  • the foam tension of the foamed particles is suppressed by making the melt tension (viscoelasticity) at the time of foaming of the resin constituting the foamed particles suitable for foaming.
  • the content of the processing aid in the expanded particles is preferably 0.5 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the total of the copolymers A and B.
  • the base resin may contain an additive in addition to the resin, if necessary.
  • Additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, foam control agents, fillers, colorants, weathering agents, anti-aging agents, lubricants, antifogging agents, fragrances, etc. Can be mentioned.
  • (1-2) Configuration Foamed particles have a bubble size of 50 ⁇ m or more and less than 300 ⁇ m and a bubble size of 300 ⁇ m or more and 2 mm or less in a cross-sectional photograph of the entire expanded particle taken at an area of 11.9 mm 2 at 30 times magnification.
  • the number of large bubbles per one expanded particle is not particularly limited and may be plural. However, if the number is too large, the bubble rate is increased, and the mechanical properties of the foamed molded product are lowered. For this reason, it is preferable that the expanded particle has only one large bubble in one of them, although it depends on the bubble diameter of the large bubble.
  • the difference may be 300-600 ⁇ m.
  • the difference can be 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m and 600 ⁇ m.
  • the average bubble diameter of small bubbles may be in the range of 100 to 250 ⁇ m
  • the average bubble diameter of large bubbles may be in the range of 350 to 900 ⁇ m.
  • the average bubble diameter of small bubbles can be 100 ⁇ m, 150 ⁇ m, 200 ⁇ m and 250 ⁇ m, and the average bubble diameter of large bubbles can be 350 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m and 900 ⁇ m. Further, there may be a difference of 1000 ⁇ m or more and less than 1500 ⁇ m between the average bubble diameter of small bubbles and the average bubble diameter of large bubbles. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties. The difference can be 1000 ⁇ m, 1100 ⁇ m, 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m and 1499 ⁇ m.
  • the average bubble diameter of the small bubbles may be in the range of 30 to 100 ⁇ m, and the average bubble diameter of the large bubbles may be in the range of 1200 to 1600 ⁇ m.
  • the average bubble diameter of small bubbles can be 30 ⁇ m, 50 ⁇ m, 70 ⁇ m and 100 ⁇ m, and the average bubble diameter of large bubbles can be 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m, 1500 ⁇ m and 1600 ⁇ m.
  • the foamed particles give a maximum point stress by a bending test of 1.0 MPa or more to the foamed molded body composed of the fused body, a foamed molded body resistant to bending can be provided.
  • the range of the maximum point stress can be realized by using foamed particles that use a specific resin as a base resin and have bubbles in a specific bubble diameter range.
  • the maximum point stress is preferably 1.0 MPa or more, and more preferably 1.5 MPa or more.
  • the outer shape of the expanded particles is not particularly limited as long as the expanded molded body can be produced, and examples thereof include a spherical shape, a substantially spherical shape, and a cylindrical shape.
  • the expanded particles preferably have an outer shape represented by an average aspect ratio of 0.7 or more (the upper limit is 1 true sphere).
  • the expanded particles preferably have a bulk multiple of 30 to 2 times. When the bulk factor is larger than 30 times, the open cell ratio of the foamed particles increases, and the foamability of the foamed particles may decrease during foam molding. If it is less than 2 times, the foamed particles may have uneven bubbles, and the foamability of the foamed particles during foam molding may be insufficient.
  • the bulk multiple is more preferably 25 to 3 times, and particularly preferably 20 to 5 times.
  • (1-3) Manufacturing Method As a manufacturing method of the expanded particles, there is a method in which the expandable particles are obtained by impregnating the resin particles with a foaming agent in a gas phase, and the expandable particles are expanded.
  • the resin particles can be obtained using a known production method and production equipment.
  • the adjustment of the number of voids described below can be performed, for example, by adjusting the amount of chemical foaming agent added to the resin.
  • resin particles can be produced by melt-kneading the raw material resin using an extruder and then granulating by extrusion, underwater cut (underwater cut), strand cut, or the like. The temperature, time, pressure, etc.
  • the melt kneading temperature in the extruder during melt kneading is preferably 220 to 280 ° C., more preferably 240 to 270 ° C., which is a temperature at which the raw material resin is sufficiently softened.
  • the melt-kneading temperature means the temperature of the melt-kneaded material inside the extruder as measured at the center temperature of the melt-kneaded material flow path near the extruder head with a thermocouple thermometer.
  • the large bubbles which are one of the characteristics of the expanded particles of the present invention, are considered to be derived from voids formed in the central region of the resin particles by rapid cooling from the surroundings during the production of the resin particles. Therefore, in the production of foamed particles, an underwater cut that is easily controlled for rapid cooling is particularly preferable.
  • a bubble regulator is supplied to an extruder.
  • the air conditioner include polytetrafluoroethylene powder, polytetrafluoroethylene powder modified with an acrylic resin, and talc.
  • the amount of the cell regulator is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin composition.
  • the foamed bubbles may be coarse and the appearance of the obtained foamed molded product may be deteriorated.
  • the amount is more than 5 parts by weight, the closed cell ratio of the foamed particles may decrease due to bubble breakage.
  • the amount of the cell regulator is more preferably 0.05 to 3 parts by weight, and particularly preferably 0.1 to 2 parts by weight.
  • a method for producing expandable particles a method in which a foaming agent is impregnated in a gas phase with a foaming agent in a hermetically sealed container can be mentioned.
  • the blowing agent include propane, normal butane, isobutane, normal pentane, isopentane, hexane and other saturated aliphatic hydrocarbons, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, 1, Examples thereof include chlorofluorocarbons such as 1-difluoroethane and monochlorodifluoromethane, and inorganic gases such as carbon dioxide and nitrogen.
  • a foaming agent may be used independently or 2 or more types may be used together. If the amount of the foaming agent charged into the container is too small, the foamed particles may not be foamed to a desired expansion ratio. If the amount of the foaming agent is too large, the foaming agent acts as a plasticizer, so that the viscoelasticity of the base resin is excessively lowered, the foamability is lowered, and good foamed particles may not be obtained.
  • the amount of the blowing agent is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, and particularly preferably 0.3 to 3 parts by weight with respect to 100 parts by weight of the raw material resin.
  • steam in the container which can be sealed is mentioned.
  • heating conditions include a gauge pressure of 0.3 to 0.5 MPa, a temperature of 120 to 159 ° C., and 10 to 180 seconds.
  • the particle diameter of the expanded particles can be changed by changing the diameter of a multi-nozzle mold attached to the front end of the extruder.
  • Foam molded body (2-1) Base resin The base resin constituting the foam molded body is the same as the base resin of the foamed particles. (2-2) Physical properties The foamed molded article is a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at a magnification of 30 times. And. Further, the foam molded body is composed of a plurality of foam particles. Each expanded particle is provided with a small bubble having a bubble diameter of 50 ⁇ m or more and less than 300 ⁇ m and a large bubble having a bubble diameter of 300 ⁇ m or more and 2 mm or less in a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at 30 times. .
  • the number of large bubbles per one expanded particle is not particularly limited and may be plural. However, if the number is too large, the bubble rate is increased, and the mechanical properties of the foamed molded product are lowered. For this reason, it is preferable that the expanded particle has only one large bubble in one of them, although it depends on the bubble diameter of the large bubble. Moreover, it is preferable that there is a difference of 300 ⁇ m or more between the average bubble diameter of small bubbles and the average bubble diameter of large bubbles. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties. The difference may be 300-600 ⁇ m.
  • the difference can be 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m and 600 ⁇ m.
  • the average bubble diameter of small bubbles may be in the range of 100 to 250 ⁇ m
  • the average bubble diameter of large bubbles may be in the range of 350 to 900 ⁇ m.
  • the average bubble diameter of small bubbles can be 100 ⁇ m, 150 ⁇ m, 200 ⁇ m and 250 ⁇ m
  • the average bubble diameter of large bubbles can be 350 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m and 900 ⁇ m.
  • the outer shape of the fused expanded particles is not particularly limited as long as the expanded molded body can be maintained.
  • the foamed molded article preferably has a multiple of 30 to 2 times. When the multiple is larger than 30 times, the mechanical properties may be insufficient. If it is less than 2 times, the advantage of foaming may be reduced due to increased weight.
  • the multiple is more preferably 27 to 3 times, further preferably 25 to 3 times, particularly preferably 25 to 5 times, and particularly preferably 20 to 5 times. Therefore, the foamed molded product may have a density of 0.046 to 0.23 g / cm 3 (46 to 230 kg / m 3 ) or 0.058 to 0.23 g / cm 3 (58 to 230 kg / m 3 ). preferable.
  • the bending maximum point stress per unit density in the foam molded article is preferably 0.012 MPa / (kg / m 3 ) or more. If the bending maximum point stress is too small, the foamed molded product may be easily broken. As for the bending maximum point stress per unit density in a foaming molding, 0.015 Mpa / (kg / m ⁇ 3 >) or more is more preferable.
  • the flexural modulus per unit density in the foamed molded product is preferably 0.4 MPa / (kg / m 3 ) or more.
  • the foamed molded product may be deformed by pressure applied when a skin material such as fiber reinforced plastic is laminated and integrated on the surface of the foamed molded product.
  • 5% compressive stress per unit density in the foam molded article is preferably from 0.007MPa / (kg / m 3) or more, 0.008MPa / (kg / m 3 ) or more preferably, 0.009 MPa / (kg / m 3 ) or more is more preferable. If the 5% compressive stress is too small, the foam molded body may be deformed by the pressure applied when a skin material such as fiber reinforced plastic is laminated and integrated on the surface of the foam molded body.
  • the compression elastic modulus per unit density in the foam molded article is preferably 0.3 MPa / (kg / m 3 ) or more. If the compression elastic modulus is too small, the foam molded body may be deformed by the pressure applied when a skin material such as fiber reinforced plastic is laminated and integrated on the surface of the foam molded body. Further, there may be a difference of 1450 ⁇ m or more between the average bubble diameter of small bubbles and the average bubble diameter of large bubbles. Due to this difference, a foamed molded product with improved heat insulation can be provided. The difference may be 1450-1800 ⁇ m. The difference can take 1450 ⁇ m, 1500 ⁇ m, 1600 ⁇ m, 1700 ⁇ m and 1800 ⁇ m.
  • the average bubble diameter of small bubbles may be in the range of 130 to 180 ⁇ m
  • the average bubble diameter of large bubbles may be in the range of 1580 to 1980 ⁇ m.
  • the average bubble diameter of small bubbles can be 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m and 180 ⁇ m
  • the average bubble diameter of large bubbles can be 1580 ⁇ m, 1600 ⁇ m, 1700 ⁇ m, 1800 ⁇ m, 1900 ⁇ m and 1980 ⁇ m. Since the expanded particles give a thermal conductivity of 0.0350 W / m ⁇ K or less to the expanded molded body composed of the fusion-bonded body, it is possible to provide a expanded molded body for applications requiring high heat insulation.
  • This heat insulating range can be realized by using foamed particles that use a specific resin as a base resin and have bubbles in a specific cell diameter range.
  • the thermal conductivity is preferably 0.0345 W / m ⁇ K or less.
  • the difference can be 1000 ⁇ m, 1100 ⁇ m, 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m and 1499 ⁇ m.
  • the average bubble diameter of small bubbles may be in the range of 30 to 100 ⁇ m
  • the average bubble diameter of large bubbles may be in the range of 1200 to 1800 ⁇ m.
  • the average bubble diameter of small bubbles can be 30 ⁇ m, 50 ⁇ m, 70 ⁇ m and 100 ⁇ m
  • the average bubble diameter of large bubbles can be 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m, 1500 ⁇ m and 1600 ⁇ m.
  • the range of the maximum point stress can be realized by using foamed particles that use a specific resin as a base resin and have bubbles in a specific bubble diameter range.
  • the maximum point stress is preferably 1.0 MPa or more, and more preferably 1.5 MPa or more.
  • the foamed molded article is excellent in light weight, heat resistance, heat insulation, and mechanical properties, and particularly excellent in load resistance in a high temperature environment. Therefore, for example, it can be suitably used for parts of transportation equipment such as automobiles, airplanes, railway vehicles, and ships.
  • automobile parts include parts used in the vicinity of the engine and exterior materials.
  • an automotive part composed of the foamed molded article of the present invention. Examples of the automotive part include a floor panel, a roof, a bonnet, a fender, an under cover, a wheel, a steering wheel, and a container. (Housing), hood panel, suspension arm, bumper, sun visor, trunk lid, luggage box, seat, door, cowl and other parts.
  • a skin material may be laminated and integrated on the surface of the foamed molded product to be used as a reinforced composite.
  • the foamed molded body is a foamed sheet, it is not necessary to be laminated and integrated on both surfaces of the foamed molded body, and the skin material only needs to be laminated and integrated on at least one surface of both surfaces of the foamed molded body.
  • the lamination of the skin material may be determined according to the use of the reinforced composite. Among these, in consideration of the surface hardness and mechanical strength of the reinforced composite, it is preferable that the skin material is laminated and integrated on each of both surfaces in the thickness direction of the foamed molded product.
  • the skin material is not particularly limited, and examples thereof include fiber reinforced plastics, metal sheets, and synthetic resin films.
  • a reinforced composite using a fiber reinforced plastic as a skin material is referred to as a fiber reinforced composite.
  • the reinforcing fibers constituting the fiber reinforced plastic include glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, Tyranno fibers, basalt fibers, ceramic fibers and other inorganic fibers; stainless steel fibers, steel fibers and other metal fibers; aramid Organic fibers such as fibers, polyethylene fibers, polyparaphenylene benzoxazole (PBO) fibers; and boron fibers.
  • Reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fiber, glass fiber, and aramid fiber are preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical properties despite being lightweight.
  • the reinforcing fiber is preferably used as a reinforcing fiber substrate processed into a desired shape.
  • the reinforcing fiber base material include woven fabrics, knitted fabrics, non-woven fabrics, and face materials obtained by binding (stitching) fiber bundles (strands) obtained by aligning reinforcing fibers in one direction with yarns.
  • the weaving method include plain weave, twill weave and satin weave.
  • the yarn include a synthetic resin yarn such as a polyamide resin yarn and a polyester resin yarn, and a stitch yarn such as a glass fiber yarn.
  • the reinforcing fiber substrate may be used without laminating only one reinforcing fiber substrate, or a plurality of reinforcing fiber substrates may be laminated and used as a laminated reinforcing fiber substrate.
  • a laminated reinforcing fiber base material in which a plurality of reinforcing fiber base materials are laminated (1) a plurality of reinforcing fiber base materials of only one kind are prepared, and a laminated reinforcing fiber base material in which these reinforcing fiber base materials are laminated, 2) A plurality of types of reinforcing fiber base materials are prepared, a laminated reinforcing fiber base material obtained by laminating these reinforcing fiber base materials, and (3) a fiber bundle (strand) in which the reinforcing fibers are aligned in one direction is bound with a thread ( A plurality of reinforcing fiber base materials prepared by stitching) are prepared, and these reinforcing fiber base materials are superposed so that the fiber directions of the fiber bundles are different from each other.
  • the fiber reinforced plastic is obtained by impregnating a reinforced fiber with a synthetic resin.
  • the reinforcing fibers are bonded and integrated by the impregnated synthetic resin.
  • the method of impregnating the reinforcing fiber with the synthetic resin is not particularly limited, and examples thereof include (1) a method of immersing the reinforcing fiber in the synthetic resin, and (2) a method of applying the synthetic resin to the reinforcing fiber.
  • As the synthetic resin impregnated into the reinforcing fiber either a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used.
  • the thermosetting resin impregnated into the reinforcing fiber is not particularly limited, and is an epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide.
  • examples thereof include a resin obtained by prepolymerizing a resin and a cyanate ester resin, and an epoxy resin and a vinyl ester resin are preferable because they are excellent in heat resistance, shock absorption or chemical resistance.
  • the thermosetting resin may contain additives such as a curing agent and a curing accelerator.
  • a thermosetting resin may be used independently and 2 or more types may be used together.
  • thermoplastic resin impregnated into the reinforcing fiber is not particularly limited, and examples thereof include olefin resins, polyester resins, thermoplastic epoxy resins, amide resins, thermoplastic polyurethane resins, sulfide resins, acrylic resins, and the like. Polyester resins and thermoplastic epoxy resins are preferred because they are excellent in adhesiveness with the foamed molded article or adhesiveness between the reinforcing fibers constituting the fiber reinforced plastic.
  • a thermoplastic resin may be used independently and 2 or more types may be used together.
  • the thermoplastic epoxy resin may be a polymer or copolymer of epoxy compounds having a linear structure, or a copolymer of an epoxy compound and a monomer that can be polymerized with the epoxy compound.
  • thermoplastic epoxy resin for example, bisphenol A type epoxy resin, bisphenol fluorene type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, cyclic aliphatic type epoxy resin, long chain aliphatic type
  • an epoxy resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin and the like can be mentioned, and a bisphenol A type epoxy resin and a bisphenol fluorene type epoxy resin are preferable.
  • a thermoplastic epoxy resin may be used independently and 2 or more types may be used together.
  • thermoplastic polyurethane resin examples include a polymer having a linear structure obtained by polymerizing diol and diisocyanate.
  • diol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and the like. Diols may be used alone or in combination of two or more.
  • diisocyanate include aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Diisocyanate may be used independently or 2 or more types may be used together.
  • a thermoplastic polyurethane resin may be used independently and 2 or more types may be used together.
  • the content of the synthetic resin in the fiber reinforced plastic is preferably 20 to 70% by weight. When the content is less than 20% by weight, the binding property between the reinforcing fibers and the adhesion between the fiber reinforced plastic and the foamed molded article are insufficient, and the mechanical properties of the fiber reinforced plastic and the mechanical strength of the fiber reinforced composite are obtained. May not be sufficiently improved. When the amount is more than 70% by weight, the mechanical properties of the fiber reinforced plastic may be lowered, and the mechanical strength of the fiber reinforced composite may not be sufficiently improved.
  • the content is more preferably 30 to 60% by weight.
  • the thickness of the fiber reinforced plastic is preferably 0.02 to 2 mm, more preferably 0.05 to 1 mm. A fiber reinforced plastic having a thickness within this range is excellent in mechanical properties despite being lightweight.
  • Basis weight of the fiber-reinforced plastics preferably 50 ⁇ 4000g / m 2, more preferably 100 ⁇ 1000g / m 2. A fiber reinforced plastic having a basis weight within this range is excellent in mechanical properties despite being lightweight.
  • the method for producing a reinforced composite by laminating and integrating the skin material on the surface of the foam molded body is not particularly limited.
  • the skin material is laminated and integrated on the surface of the foam molded body via an adhesive.
  • a method of laminating and integrating the fiber reinforced plastic formed by curing the thermosetting resin with the thermosetting resin impregnated in the reinforcing fiber on the surface of the foam molded body (4) A skin material that is heated and softened is disposed on the surface of the foam molded body, and the skin material is deformed along the surface of the foam molded body as necessary by pressing the skin material against the surface of the foam molded body.
  • the method (4) can also be suitably used.
  • the method used for molding the fiber reinforced plastic include an autoclave method, a hand lay-up method, a spray-up method, a PCM (Prepre Compression Molding) method, an RTM (Resin Transfer Molding) method, a VaRTM (Vacuum Assisted Resin Transfer Transfer). Law.
  • the fiber reinforced composite thus obtained is excellent in heat resistance, mechanical strength and lightness. Therefore, it can be used in a wide range of applications such as the field of transportation equipment such as automobiles, airplanes, railway vehicles, ships, etc., the household appliances field, the information terminal field, and the furniture field.
  • the fiber reinforced composite is composed of parts for transportation equipment, parts for transportation equipment including structural parts constituting the main body of transportation equipment (particularly parts for automobiles), windmill blades, robot arms, cushioning materials for helmets, It can be suitably used as an agricultural product box, a transport container such as a thermal insulation container, a rotor blade of an industrial helicopter, or a component packing material.
  • an automotive part composed of the fiber-reinforced composite of the present invention.
  • Examples of the automotive part include a floor panel, a roof, a bonnet, a fender, an under cover, a wheel, a steering wheel, Examples include containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage boxes, seats, doors, cowls and the like.
  • the bulk density was measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. That is, it measured using the apparent density measuring device based on JISK6911, and measured the bulk density based on the following formula.
  • Bulk density of expanded particles (kg / m 3 ) [weight of measuring cylinder containing sample (kg) ⁇ weight of measuring cylinder (kg)] / [capacity of measuring cylinder (m 3 )]
  • the bulk multiple was a value obtained by integrating (multiplying) the resin density to the reciprocal of the bulk density.
  • the bending maximum point stress of the bending strength was calculated using a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Softbrain).
  • the strip-shaped test piece was placed on a support table, and the maximum bending point stress was measured under the conditions of a load cell 1000N, a test speed of 10 mm / min, a tip jig 5R of the support table, and an opening width of 100 mm.
  • the number of test pieces shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition over a standard atmosphere of 2nd grade for 16 hours. Measurement was performed under a standard atmosphere.
  • the arithmetic mean value of the bending maximum point stress of each test piece was taken as the bending maximum point stress of the foamed molded product.
  • the bending maximum point stress per unit density was calculated by dividing the bending maximum point stress by the density of the foamed molded product.
  • the density (kg / m 3 ) of the foam molded article was obtained by the formula (a) / (b) by measuring the weight (a) and volume (b) of the test piece cut out from the foam molded article.
  • the flexural modulus was measured by a method in accordance with JIS K7221-1: 2006 “Hard foamed plastics—Bending test—Part 1: Determination of flexural properties”. That is, a rectangular parallelepiped test piece having a length of 20 mm, a width of 25 mm, and a height of 130 mm was cut out from the foamed molded body. For the measurement, a Tensilon universal testing machine ("UCT-10T" manufactured by Orientec Co., Ltd.) was used. The flexural modulus was calculated using a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Soft Brain).
  • UCT-10T Tensilon universal testing machine
  • the number of test pieces shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition over a standard atmosphere of 2nd grade for 16 hours. Measurement was performed under a standard atmosphere. The arithmetic average value of the compression elastic modulus of each test piece was used as the bending elastic modulus of the foamed molded product. The flexural modulus was calculated by the following equation using the first linear part of the load-deformation curve.
  • the number of specimens shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition for 16 hours under a second grade standard atmosphere. Measurements were performed under a standard atmosphere. The arithmetic mean values of the compressive strength (5% deformation compression stress, 10% deformation compression stress, 25% deformation compression stress) of each test piece are respectively 5% compression stress, 10% compression stress, and 25% of the foam molded article. Compressive stress was assumed. (5% (10%, 25%) deformation compressive stress) 5% (10%, 25%) deformation compressive stress was calculated by the following equation. The values in parentheses are the conditions for calculating 10% deformation compression stress and 25% deformation compression stress.
  • ⁇ 5 (10, 25) F5 (10, 25) / A 0 ⁇ 5 (10, 25): 5% (10%, 25%) Deformation compressive stress (MPa) F5 (10, 25): 5% (10%, 25%) Deformation force (N) A 0 : Initial cross-sectional area of the test piece (mm 2 ) The 5% deformation compressive stress per unit density was calculated by dividing the 5% deformation compressive stress by the density of the foamed molded product.
  • compression test elastic modulus
  • the compression modulus of the foamed molded product was measured by the method described in JIS K7220: 2006 “Hard foamed plastics—How to obtain compression characteristics”. That is, using a Tensilon universal testing machine ("UCT-10T” manufactured by Orientec Co., Ltd.) and a universal testing machine data processing system ("UTPS-237S Ver, 1.00” manufactured by Softbrain), the specimen size cross section is 50 mm.
  • the compression elastic modulus was measured at a compression speed of 2.5 mm / min with ⁇ 50 mm and a thickness of 25 mm.
  • the number of specimens shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition for 16 hours under a second grade standard atmosphere. Measurements were performed under a standard atmosphere. The arithmetic average value of the compression elastic modulus of each test piece was used as the compression elastic modulus of the foamed molded article. (Compressive modulus) The compression elastic modulus was calculated by the following equation using the first linear portion of the load-deformation curve.
  • composition ratio of the base resin was calculated from the integrated intensity ratio of each signal in the spectrum obtained from 1 H-NMR measurement. In addition, when signals presumed to be derived from impurities were observed in each signal region, these contributions were ignored in the calculation.
  • the absorbance ratio (D1780 / D698, D1720 / D698) of the base resin was measured as follows. Each of 10 randomly selected resin particles was subjected to surface analysis by an infrared spectroscopic analysis ATR measurement method to obtain an infrared absorption spectrum. In this analysis, an infrared absorption spectrum having a depth ranging from the sample surface to several ⁇ m (about 2 ⁇ m) was obtained. The absorbance ratio (D1780 / D698, D1720 / D698) was calculated from each infrared absorption spectrum, and the arithmetic average of the calculated absorbance ratio was used as the absorbance ratio.
  • Absorbances D1780, D1720, and D698 are connected to a measuring device sold by Thermo SCIENTIFIC under the trade name “Fourier Transform Infrared Spectrophotometer Nicolet iS10” by connecting “Smart-iTR” manufactured by Thermo SCIENTIFIC as an ATR accessory. It was measured. Infrared spectroscopic analysis ATR measurement was performed under the following conditions.
  • Measurement apparatus Fourier transform infrared spectrophotometer Nicolet iS10 (manufactured by Thermo SCIENTIFIC) and single reflection type horizontal ATR Smart-iTR (manufactured by Thermo SCIENTIFIC)
  • Measurement method Single ATR method Measurement wave number range: 4000 cm ⁇ 1 to 650 cm ⁇ 1 -Wave depth dependence of measurement depth: No correction-Detector: Triglycine deuterated sulfate (DTGS) detector and KBr beam splitter-Resolution: 4 cm -1 ⁇ Number of integration: 16 times (same for background measurement)
  • the intensity of the infrared absorption spectrum obtained by measurement changes depending on the degree of adhesion between the sample and the high-refractive-index crystal.
  • the measurement was performed.
  • the infrared absorption spectrum obtained under the above conditions was subjected to peak processing as follows to obtain D1780, D1720, and D698, respectively.
  • the absorbance D1780 at 1780 cm ⁇ 1 obtained from the infrared absorption spectrum meant the absorbance corresponding to the absorption spectrum derived from the antisymmetric stretching vibration due to C ⁇ O of the two carbonyl groups in maleic anhydride. In this measurement of absorbance, peak separation was not performed even when other absorption spectra overlapped at 1780 cm ⁇ 1 .
  • Absorbance D1780 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as the baseline, were mean maximum absorbance between 1810 cm -1 and 1745 cm -1.
  • the absorbance D1720 at 1720 cm ⁇ 1 meant the absorbance corresponding to the absorption spectrum derived from the antisymmetric stretching vibration caused by the carbonyl group C ⁇ O contained in methyl methacrylate. In this absorbance measurement, no peak separation was performed even when other absorption spectra overlapped at 1720 cm ⁇ 1 .
  • Absorbance D1720 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as the baseline, were mean maximum absorbance between 1745 cm -1 and 1690 cm -1.
  • Absorbance D698 at 698 cm ⁇ 1 meant the absorbance corresponding to the absorption spectrum derived from the out-of-plane bending vibration of C—H in the monosubstituted benzene ring in styrene.
  • Absorbance D698 is a straight line connecting the 1510 cm -1 and 810 cm -1 as a baseline had mean maximum absorbance between 720 cm -1 and 660 cm -1.
  • the ratio of styrene, methyl methacrylate and maleic anhydride was calculated from the absorbance ratio (D1780 / D698, D1720 / D698) based on the calibration curve described later.
  • the peak processing method used the method similar to the above-mentioned resin particle.
  • a method for determining the composition ratio of styrene and methyl methacrylate from the absorbance ratio a plurality of types of standard samples prepared by uniformly mixing styrene resin and methyl methacrylate resin at a predetermined composition ratio were prepared.
  • monomers measured by weight ratios of methyl methacrylate and styrene at a weight ratio of 0/100, 20/80, 40/60, 50/50, and 60/40, respectively, are placed in a 10 ml screw vial.
  • 10 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) was added to 100 parts by weight of the monomer to dissolve the monomer.
  • the obtained mixed solution was transferred to a 2 ml sample tube ( ⁇ 7 mm ⁇ 122 mm ⁇ 190 mm), purged with nitrogen, and sealed. Next, this was put into a water bath set at 65 ° C.
  • styrene resin and maleic anhydride resin As standard samples of styrene resin and maleic anhydride resin, a 1/1 copolymer of styrene and maleic anhydride (trade name “SMA1000 (P)”, manufactured by CRAY VALLEY) and 3 of styrene and maleic anhydride are used. / 1 copolymer (trade name “SMA3000 (P)”, manufactured by CRAY VALLEY) was used. After obtaining an infrared absorption spectrum for each standard sample by the infrared spectroscopic analysis ATR method, an absorbance ratio (D1720 / D698) was calculated.
  • the composition ratios of styrene and methyl methacrylate and styrene and maleic anhydride were determined from the calibration curves. From each composition ratio, the composition ratio of the three components of styrene, methyl methacrylate, and maleic anhydride in the resin was determined by the following procedure.
  • the ratio of each standard sample was set as follows.
  • Styrene: maleic anhydride C: D [2] Since styrene is a common term, the styrene ratio C in [2] was matched with the styrene ratio B in [1].
  • the number of bubbles in the expanded particles and the expanded molded body was measured in the following manner. First, an area of 11.9 mm 2 was photographed at a magnification of 30 with a scanning electron microscope (“SU1510” manufactured by Hitachi High-Technologies Corporation). For the foamed particles, the central part of the cross-section substantially divided into two at the central part of the foamed particles was photographed. The photographed image was printed on A4 paper, and the average bubble diameter was calculated for all bubbles. In addition, the bubble diameter measured the long diameter and short diameter of the bubble cross section, and made it the value obtained by the arithmetic mean value of a short diameter and a long diameter.
  • any two points where the mutual distance is maximum are selected from any two points where the straight line perpendicular to the major axis of the bubble and the outer contour line of the bubble cross section intersect, and the distance between the two points is expressed as “ The short diameter of the bubbles ”.
  • the number of individual bubbles was counted on the paper for small bubbles having a bubble diameter of 50 ⁇ m or more and less than 300 ⁇ m and large bubbles having a bubble diameter of 300 ⁇ m or more and 2 mm or less.
  • Each of the nine foam particles and the molded foam is cut in the same manner as described above to obtain enlarged photographs. Based on these enlarged photographs, the number of small bubbles and the individual bubbles of large bubbles are obtained in the same manner as described above. Numbers were calculated. The arithmetic average value of 10 individual bubbles was defined as the number of bubbles.
  • the average bubble diameter of large bubbles and the average bubble diameter of small bubbles were measured by the following methods, respectively.
  • the average cell diameter of the large bubbles is the scanning electron microscope ("SU1510" manufactured by Hitachi High-Technologies Corporation) on the center part of the cross-section substantially divided into two at the center part of the foamed particle for the foamed particles and any cut surface for the molded product.
  • the photographed image was printed on A4 paper, and the bubble diameter was calculated for all large bubbles.
  • the bubble diameter measured the long diameter and short diameter of the bubble cross section, and made it the value obtained by the arithmetic mean value of a short diameter and a long diameter.
  • any two points where the mutual distance is maximum are selected from any two points where the straight line perpendicular to the major axis of the bubble and the outer contour line of the bubble cross section intersect, and the distance between the two points is expressed as “ The short diameter of the bubbles ”.
  • Nine foamed particles and foamed molded body were cut in the same manner as described above to obtain enlarged photographs, and the average bubble diameter of large bubbles was calculated in the same manner as described above based on these enlarged photographs.
  • the arithmetic average value of the bubble diameters of the large bubbles in the 10 photographs was taken as the average bubble diameter.
  • the average bubble diameter of the small bubbles is determined by using a scanning electron microscope ("SU1510" manufactured by Hitachi High-Technologies Corporation) at the center of the cross-section substantially divided into two at the center for the foamed particles and an arbitrary cut surface for the molded product. I took a picture. At this time, the micrograph was taken so as to have a predetermined magnification when printed in a state in which two images (total of four images in total) were aligned on one A4 paper in landscape orientation.
  • SU1510 scanning electron microscope
  • an arbitrary straight line does not contact a large bubble, and the bubble is prevented from touching only at the contact point as much as possible. In the case where it comes into contact, this bubble is also added to the number.
  • the number of bubbles counted for six arbitrary straight lines in each of the vertical and horizontal directions was arithmetically averaged to obtain the number of bubbles in each direction. From the magnification of the image obtained by counting the number of bubbles and the number of bubbles, the average chord length (t) of the bubbles was calculated by the following equation.
  • Average chord length t (mm) 60 / (number of bubbles ⁇ photo magnification)
  • the magnification of the image was determined by measuring the scale bar on the photograph to 1/100 mm with “Digimatic Caliper” manufactured by Mitutoyo Co., Ltd.
  • Image magnification Scale bar measured value (mm) / Scale bar display value (mm)
  • the bubble diameter in each direction was computed by following Formula.
  • Bubble diameter D (mm) t / 0.616 Further, the square root of the product was taken as the average bubble diameter of small bubbles.
  • Average bubble diameter of small bubbles (mm) (D vertical x D horizontal) 1/2
  • the thermal conductivity is measured by using a thermal conductivity measuring device HC-074 / 200 (Auto ⁇ ) manufactured by Eiko Seiki Co., Ltd., JIS A1412-2 “Measurement method of thermal resistance and thermal conductivity of thermal insulation material—Part 2: The measurement was carried out by the method described in “Heat flow meter method (HFM method)”. A test piece having a length of 200 mm, a width of 200 mm, and a thickness of 30 mm cut out from the foam molded article was allowed to stand under standard conditions of a temperature of 23 ° C. ⁇ 2 ° C. and a humidity of 50% ⁇ 5% for 24 hours.
  • HFM method Heat flow meter method
  • the thermal conductivity was measured by the above thermal conductivity measuring device under the conditions of a temperature of 23 ° C. (a high temperature side plate temperature of 38 ° C., a low temperature side plate temperature of 8 ° C.) and a temperature difference of 30 ° C.
  • NIST National Institute of Standards and Technology
  • SRM1450B registered in the thermal conductivity measuring apparatus was adopted as a reference value for calibration.
  • Example 1a (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 270 ° C. Subsequently, about 70 ° C.
  • cooling water is supplied from the die hole (5 nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 285 ° C., inlet side resin pressure: 13 MPa) attached to the tip of the single screw extruder.
  • the resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of the rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying. .
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred with water vapor at a foaming temperature of 143 ° C. for 50 seconds. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 102 kg / m 3 (expanding ratio 10 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 2a (Foaming step) In the same manner as in Example 1a except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 143 ° C. for 60 seconds, the foaming density was 61 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
  • Example 3a (Foaming step) In the same manner as in Example 1a except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the foaming temperature was 143 ° C. while stirring for 55 seconds, the foaming density was 74 kg / kg. Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
  • the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder.
  • the extruded resin was immediately cooled in a cooling water bath.
  • the cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles.
  • the obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
  • the foamed particles are subjected to (impregnation step), (foaming step) and (molding step) in the same manner as in Example 1a and have a foaming density of 108 kg / m 3 (foaming ratio: 10 times). A foamed molded product was obtained.
  • Example 4a (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-200”, manufactured by Denka Co., Ltd., styrene: 55 parts by weight, methyl methacrylate: 26 parts by weight, maleic anhydride: 19 parts by weight, density 1.16 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 260 ° C. Subsequently, cooling water at about 70 ° C.
  • the resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of the rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying. .
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred at a foaming temperature of 131 ° C. for 50 seconds using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the above-described method, it was 105 kg / m 3 (foaming ratio 10 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 5a (Foaming step) In the same manner as in Example 4a, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 131 ° C. for 70 seconds, the foaming density was 52 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
  • Table 2 summarizes the physical properties of the foamed particles and foamed molded products of Examples 4a and 5a. Moreover, the cross-sectional photograph of the expanded particle of Example 4a and 5a and a foaming molding is shown in FIG.
  • Example 6a Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, manufactured by Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight is 85 parts by weight, and the remaining 15 parts by weight is a styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, manufactured by Denka Co., Ltd.) 100 parts by weight of styrene: 58 parts by weight, maleic anhydride: 4 parts by weight, N-phenylmaleimide: 38 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) was 10 kg / hr per hour.
  • the mixture was supplied to a single screw extruder having a diameter of 40 mm and melt-kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from a die hole (5 nozzles with a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder.
  • the resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of the rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying. .
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 80 seconds at a foaming temperature of 145 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 (expanding ratio 10 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 7a (Foaming step) In the same manner as in Example 6a, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 145 ° C. for 90 seconds, a foaming density of 72 kg / Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
  • Example 8a (Foaming step) In the same manner as in Example 6a except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 145 ° C. for 100 seconds, a foaming density of 47 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained. Table 3 summarizes the physical properties of the foamed particles and foamed molded products of Examples 6a to 8a. Further, cross-sectional photographs of the expanded particles and the expanded molded articles of Examples 6a to 8a are shown in FIG.
  • Example 1b (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 270 ° C. Subsequently, about 70 ° C.
  • cooling water is supplied from the die hole (5 nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 285 ° C., inlet side resin pressure: 13 MPa) attached to the tip of the single screw extruder.
  • the resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced.
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred for 55 seconds at a foaming temperature of 143 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the method described above, it was 74 kg / m 3 (foaming ratio 15 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 2b (Foaming step) In the same manner as in Example 1b except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 143 ° C. for 60 seconds. An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained. Table 4 shows the physical properties of the foamed particles and foamed molded products of Examples 1b and 2b. Moreover, the cross-sectional photograph of the expanded particle of Example 1b and 2b and a foaming molding is shown in FIG.
  • Example 3b (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-200”, manufactured by Denka Co., Ltd., styrene: 55 parts by weight, methyl methacrylate: 26 parts by weight, maleic anhydride: 19 parts by weight, density 1.16 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 260 ° C. Subsequently, cooling water at about 70 ° C.
  • the resin particles were extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced.
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred for 70 seconds at a foaming temperature of 131 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the method described above, it was 52 kg / m 3 (foaming ratio 20 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 4b (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, manufactured by Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight is 85 parts by weight, and the remaining 15 parts by weight is a styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, manufactured by Denka Co., Ltd.) 100 parts by weight of styrene: 58 parts by weight, maleic anhydride: 4 parts by weight, N-phenylmaleimide: 38 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) was 10 kg / hr per hour.
  • the mixture was supplied to a single screw extruder having a diameter of 40 mm and melt-kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from a die hole (5 nozzles with a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder.
  • the resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced.
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred for 100 seconds at a foaming temperature of 145 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 47 kg / m 3 (expanding ratio 20 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder.
  • the extruded resin was immediately cooled in a cooling water bath.
  • the cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles.
  • the obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 150 seconds at a foaming temperature of 136 ° C. using water vapor.
  • the particles were taken out from the high-pressure foaming tank, and after removing calcium carbonate with an aqueous hydrogen chloride solution, drying was performed with an air dryer to obtain foamed particles.
  • the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 .
  • a cross-sectional photograph of the expanded particles was confirmed, no large bubbles were present.
  • Example 1c (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 270 ° C. Subsequently, about 70 ° C.
  • cooling water is supplied from the die hole (5 nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 285 ° C., inlet side resin pressure: 13 MPa) attached to the tip of the single screw extruder.
  • the resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced.
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred with water vapor at a foaming temperature of 143 ° C. for 50 seconds. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 102 kg / m 3 (expanding ratio 10 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 2c (Foaming step) In the same manner as in Example 1c except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the foaming temperature was 143 ° C. while stirring for 55 seconds, the foaming density was 74 kg / kg. Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained. Table 8 shows the physical properties of the expanded particles and the expanded molded articles of Examples 1c and 2c. Moreover, the cross-sectional photograph of the expanded particle of Example 1c and 2c and a foaming molding is shown in FIG.
  • Example 3c (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-200”, manufactured by Denka Co., Ltd., styrene: 55 parts by weight, methyl methacrylate: 26 parts by weight, maleic anhydride: 19 parts by weight, density 1.16 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 260 ° C. Subsequently, cooling water at about 70 ° C.
  • the resin particles were extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced.
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred at a foaming temperature of 131 ° C. for 50 seconds using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the above-described method, it was 105 kg / m 3 (foaming ratio 10 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 4c (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, manufactured by Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight is 85 parts by weight, and the remaining 15 parts by weight is a styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, manufactured by Denka Co., Ltd.) 100 parts by weight of styrene: 58 parts by weight, maleic anhydride: 4 parts by weight, N-phenylmaleimide: 38 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) was 10 kg / hr per hour.
  • the mixture was supplied to a single screw extruder having a diameter of 40 mm and melt-kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from a die hole (5 nozzles with a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder.
  • the resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced.
  • the obtained resin particles had an average particle diameter of 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 80 seconds at a foaming temperature of 145 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 (expanding ratio 10 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 5c (Foaming step) In the same manner as in Example 4c, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 145 ° C. for 90 seconds, a foaming density of 72 kg / Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
  • Table 10 shows the physical properties of the foamed particles and foamed molded products of Examples 4c to 5c. Further, FIG. 11 shows cross-sectional photographs of the expanded particles and the expanded molded articles of Examples 4c to 5c.
  • the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder.
  • the extruded resin was immediately cooled in a cooling water bath.
  • the cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles.
  • the obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 150 seconds at a foaming temperature of 136 ° C. using water vapor.
  • the particles were taken out from the high-pressure foaming tank, and after removing calcium carbonate with an aqueous hydrogen chloride solution, drying was performed with an air dryer to obtain foamed particles.
  • the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 .
  • a cross-sectional photograph of the expanded particles was confirmed, no large bubbles were present.
  • Example 1d (Resin particle manufacturing process) Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 , glass transition temperature Tg 143 ° C.) 85 parts by weight, styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, Denka, styrene: 67 parts by weight 100 parts by weight of maleic anhydride: 5 parts by weight, N-phenylmaleimide: 27 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) 15 parts by weight at a rate of 10 kg / hr per hour The mixture was supplied to a single screw extruder having
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 80 seconds at a foaming temperature of 145 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 (expanding ratio 10 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • Example 2d (Foaming step) In the same manner as in Example 1d, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 145 ° C. for 90 seconds, a foaming density of 72 kg / Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
  • Example 3d (Foaming step) In the same manner as in Example 1d, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 145 ° C. for 100 seconds, a foaming density of 47 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
  • Table 12 summarizes the physical properties of the expanded particles and expanded molded articles of Examples 1d to 3d.
  • FIG. 13 shows cross-sectional photographs of the foamed particles and foamed molded products of Examples 1d to 3d.
  • the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder.
  • the extruded resin composition was immediately cooled in a cooling water bath.
  • the cooled strand-shaped resin composition was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles.
  • the obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred at a foaming temperature of 130 ° C. for 80 seconds using water vapor, but foamed particles could not be obtained. Further, even if the foaming temperature was changed to either 135 ° C. or 145 ° C., foamed particles could not be obtained.
  • the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder.
  • the extruded resin composition was immediately cooled in a cooling water bath.
  • the cooled strand-shaped resin composition was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles.
  • the obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred at a foaming temperature of 120 ° C. for 80 seconds using water vapor, but foamed particles could not be obtained. Further, even if the foaming temperature was changed to any of 125 ° C, 130 ° C, 135 ° C and 145 ° C, foamed particles could not be obtained. Table 13 summarizes the glass transition temperature differences of Reference Examples 1d to 2d.
  • the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder.
  • the extruded resin was immediately cooled in a cooling water bath.
  • the cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles.
  • the obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred with water vapor at a foaming temperature of 143 ° C. for 50 seconds. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 102 kg / m 3 (expanding ratio 10 times). (Molding process) The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted.
  • the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder.
  • the extruded resin was immediately cooled in a cooling water bath.
  • the cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles.
  • the obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
  • the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 150 seconds at a foaming temperature of 136 ° C. using water vapor.
  • the particles were taken out from the high-pressure foaming tank, and after removing calcium carbonate with an aqueous hydrogen chloride solution, drying was performed with an air dryer to obtain foamed particles.
  • the bulk density of the obtained foamed particles was measured by the method described above, it was 0.12 g / cm 3 .

Abstract

Provided are foam particles constituted of a base resin including a copolymer of an aromatic vinyl, a (meth)acrylic acid ester, and an unsaturated dicarboxylic acid. In a 30-times magnification cross-sectional image of a 11.9 mm2 area of one of the foam particles, the foam particle has small bubbles having a diameter of 50 μm or greater but less than 300 μm and large bubbles having a diameter of 300 μm-2 mm.

Description

発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品Foamed particles, foamed molded products, fiber reinforced composites, and automotive parts
 本発明は、発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品に関する。更に詳しくは、本発明は、機械的物性(例えば、断熱性、曲げ試験による最大点応力)が向上した発泡成形体を与え得る発泡粒子、及びその発泡粒子から得られた発泡成形体、繊維強化複合体及び自動車用部品に関する。 The present invention relates to expanded particles, expanded molded articles, fiber reinforced composites, and automotive parts. More specifically, the present invention relates to a foamed particle that can provide a foamed molded article having improved mechanical properties (for example, heat insulation, maximum point stress by bending test), and a foamed molded article obtained from the foamed particle, fiber reinforced. The present invention relates to composites and automotive parts.
 近年、航空機、自動車、船舶等の乗り物は、地球環境への負荷低減のために燃費向上が必要とされており、これらの乗り物を構成する金属材料を樹脂材料へ転換し、大きな軽量化を図る流れが強くなってきている。これらの樹脂材料としては、繊維強化プラスチックが挙げられるが、一部に軽量コア材を使用することで更なる軽量化や高剛性化を図ることも検討されている。軽量コア材として用いられる材料として高い圧縮強度を有するポリスチレン発泡体が検討されている。
 しかしながら、ポリスチレン系樹脂は、ガラス転移温度が低いため、耐熱性のような機械的物性が十分でなかった。そのため、機械的物性が向上した発泡成形体及びその発泡成形体を製造し得る発泡粒子の提供が望まれていた。
 そこで、本願出願人は、ポリスチレン系樹脂に代えて他の種類の樹脂を使用すれば機械的物性が向上するのではないかとの考えの下で試験を繰り返した。その結果、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を発泡粒子の基材樹脂として使用すれば発泡成形体の機械的物性をある程度向上できることに気付き、この基材樹脂を使用しつつ、発泡粒子を構成する気泡径を制御することにより、機械的物性を大幅に向上できることを見出した(特開2017-186503号公報:特許文献1)。
In recent years, vehicles such as aircraft, automobiles, and ships have been required to improve fuel efficiency in order to reduce the burden on the global environment, and the metal materials that make up these vehicles have been changed to resin materials to achieve significant weight savings. The flow is getting stronger. Examples of these resin materials include fiber reinforced plastics, and it has been studied to further reduce weight and increase rigidity by using a lightweight core material in part. Polystyrene foam having high compressive strength has been studied as a material used as a lightweight core material.
However, since the polystyrene-based resin has a low glass transition temperature, mechanical properties such as heat resistance are not sufficient. Therefore, it has been desired to provide a foamed molded article having improved mechanical properties and foamed particles capable of producing the foamed molded article.
Therefore, the applicant of the present application repeated the test under the idea that mechanical properties would be improved if another type of resin was used instead of the polystyrene resin. As a result, when using a copolymer of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid as a base resin for the foamed particles, the mechanical properties of the foamed molded product can be improved to some extent, It has been found that mechanical properties can be greatly improved by controlling the bubble diameter of the expanded particles while using this base resin (Japanese Patent Laid-Open No. 2017-186503: Patent Document 1).
特開2017-186503号公報JP 2017-186503 A
 しかしながら、特許文献1の発泡成形体は機械的物性(例えば、断熱性、曲げ試験による最大点応力)の観点において改善の余地があり、特許文献1の発泡成形体よりも更に優れた機械的物性を有する発泡成形体及びその発泡成形体を製造し得る発泡粒子の提供が望まれている。
 そこで、本発明は、優れた機械的物性(例えば、断熱性、曲げ試験による最大点応力)を示す発泡成形体及びその発泡成形体を製造し得る発泡粒子を提供することを課題とする。
However, the foamed molded article of Patent Document 1 has room for improvement in terms of mechanical properties (for example, heat insulation, maximum point stress by bending test), and mechanical properties that are further superior to the foamed molded article of Patent Document 1. It is desired to provide a foamed molded article having a foam and foamed particles capable of producing the foamed molded article.
Then, this invention makes it a subject to provide the foaming particle | grains which can manufacture the foaming molding which shows the outstanding mechanical property (for example, heat insulation, the maximum point stress by a bending test), and the foaming molding.
 本発明の発明者は、特許文献1の技術について更に検討したところ、小気泡と大気泡の気泡径差をより大きくすることにより、機械的物性(例えば、断熱性、曲げ試験による最大点応力)を大幅に向上できることを意外にも見出すことで本発明を完成するに至った。 The inventor of the present invention further examined the technique of Patent Document 1, and by increasing the bubble diameter difference between small bubbles and large bubbles, mechanical properties (for example, heat insulation, maximum point stress by bending test). The present invention has been completed by surprisingly finding that it is possible to significantly improve the above.
 かくして本発明によれば、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡粒子であり、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備える発泡粒子が提供される。
 また、本発明によれば、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡成形体であり、前記発泡成形体が、複数の前記発泡粒子から構成され、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備える発泡成形体が提供される。
 更に、本発明によれば、上記の発泡成形体と、この発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体が提供される。
 また、本発明によれば、上記の発泡成形体又は繊維強化複合体から構成される自動車用部品が提供される。
Thus, according to the present invention, there are expanded particles composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and the expanded particles are 30 times larger. in the cross section photograph of an area of 11.9 mm 2, the foamed particles are provided and a large bubble of the small bubble and less bubble diameter 300 [mu] m or more and 2mm of bubble size of less than 50μm and not more than 300 [mu] m.
Further, according to the present invention, there is provided a foam molded article composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, wherein the foam molded article is In a cross-sectional photograph composed of a plurality of the foamed particles, the foamed particles having an area of 11.9 mm 2 taken 30 times, a small bubble having a bubble diameter of 50 μm or more and less than 300 μm and a bubble of 300 μm or more and 2 mm or less There is provided a foamed molded article having large diameter bubbles.
Furthermore, according to the present invention, there is provided a fiber reinforced composite comprising the above foam molded article and a fiber reinforced plastic layer laminated and integrated on the surface of the foam molded article.
Moreover, according to this invention, the components for motor vehicles comprised from said foaming molding or a fiber reinforced composite are provided.
 本発明によれば、優れた機械的物性(例えば、断熱性、曲げ試験による最大点応力)を示す発泡成形体及びその発泡成形体を製造し得る発泡粒子を提供することができる。
 また、以下のいずれかの場合、より優れた機械的物性(例えば、断熱性、曲げ試験による最大点応力)を示す発泡成形体、及びその発泡成形体を製造し得る発泡粒子を提供できる。
(1)発泡粒子が、その1つにおいて、唯1つの大気泡を有する。
(2)芳香族ビニルがスチレン系単量体、(メタ)アクリル酸エステルが(メタ)アクリル酸アルキルエステル(アルキル基の炭素数は1~5)、不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、からそれぞれ選択され、共重合体が、芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を30~80重量部、(メタ)アクリル酸エステルに由来する単位を8~35重量部、不飽和ジカルボン酸に由来する単位を10~50重量部を含む。
(3)小気泡の平均気泡径と大気泡の平均気泡径との差が1450μm以上であり、発泡粒子が、その融着体から構成される発泡成形体に、0.0350W/m・K以下の熱伝導率を与える。
(4)芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡粒子であり、発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備え、小気泡の平均気泡径と大気泡の平均気泡径との差が1000μm以上、1500μm未満であり、発泡粒子が、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与える。
(5)芳香族ビニルが、スチレン、α-メチルスチレン、ビニルトルエン、エチルスチレン、i-プロピルスチレン、t-ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート及びビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレートから選択され、
 (メタ)アクリル酸エステルが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル及び(メタ)アクリル酸ブチルから選択され、
 不飽和ジカルボン酸が、マレイン酸、イタコン酸、シトラコン酸、アコニット酸、及びこれらの無水物から選択される。
(6)芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体Aと、芳香族ビニルと、不飽和ジカルボン酸と、不飽和ジカルボン酸イミドとの共重合体Bとを含む基材樹脂から構成された発泡粒子であり、共重合体Aのガラス転移温度Aと共重合体Bのガラス転移温度Bとの差が10~50℃であり、発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備える。
(7)共重合体Aにおいて、芳香族ビニルがスチレン系単量体、(メタ)アクリル酸エステルが(メタ)アクリル酸アルキルエステル(アルキル基の炭素数は1~5)、不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、からそれぞれ選択され、共重合体Aが、芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を30~80重量部、(メタ)アクリル酸エステルに由来する単位を8~35重量部、不飽和ジカルボン酸に由来する単位を10~50重量部含み、
 共重合体Bにおいて、芳香族ビニルがスチレン系単量体、不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、不飽和ジカルボン酸イミドがマレイミド系単量体、からそれぞれ選択され、共重合体Bが、芳香族ビニルと不飽和ジカルボン酸と不飽和ジカルボン酸イミドの3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を20~80重量部、不飽和ジカルボン酸に由来する単位を2~30重量部、不飽和ジカルボン酸イミドに由来する単位を20~80重量部含む。
(8)芳香族ビニルが、スチレン、α-メチルスチレン、ビニルトルエン、エチルスチレン、i-プロピルスチレン、t-ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート及びビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレートから選択され、
 (メタ)アクリル酸エステルが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル及び(メタ)アクリル酸ブチルから選択され、
 不飽和ジカルボン酸が、マレイン酸、イタコン酸、シトラコン酸、アコニット酸、及びこれらの無水物から選択され、
 不飽和ジカルボン酸イミドが、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド及びN-ナフチルマレイミドから選択され、
 共重合体A及びBが、70:30~95:5の重量比で基材樹脂に含まれている。
ADVANTAGE OF THE INVENTION According to this invention, the foaming molding which can manufacture the foaming molding which shows the outstanding mechanical property (for example, heat insulation, the maximum point stress by a bending test), and the foaming molding can be provided.
Further, in any of the following cases, a foamed molded article exhibiting more excellent mechanical properties (for example, heat insulation, maximum point stress by a bending test) and foamed particles capable of producing the foamed molded article can be provided.
(1) The expanded particles have only one large bubble in one of them.
(2) Aromatic vinyl is a styrene monomer, (meth) acrylic acid ester is (meth) acrylic acid alkyl ester (the alkyl group has 1 to 5 carbon atoms), and unsaturated dicarboxylic acid is 2 to 6 carbon atoms An aliphatic unsaturated dicarboxylic acid, and the copolymer is aromatic when the total of units derived from three of vinyl aromatic, (meth) acrylic acid ester and unsaturated dicarboxylic acid is 100 parts by weight. 30 to 80 parts by weight of units derived from vinyl, 8 to 35 parts by weight of units derived from (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from unsaturated dicarboxylic acid.
(3) The difference between the average bubble diameter of the small bubbles and the average bubble diameter of the large bubbles is 1450 μm or more, and the foamed molded product is 0.0350 W / m · K or less in the foamed molded body composed of the fused body. Gives the thermal conductivity of.
(4) Expanded particles composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid, and the expanded particles are 11.9 mm 2 at 30 times. A cross-sectional photograph of the area of the above, comprising a small bubble having a bubble diameter of 50 μm or more and less than 300 μm and a large bubble having a bubble diameter of 300 μm or more and 2 mm or less, the average bubble diameter of the small bubbles and the average bubble diameter of the large bubbles The foamed particles give a maximum point stress by a bending test of 1.0 MPa or more to the foamed molded body composed of the fused product.
(5) The aromatic vinyl is styrene, α-methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, divinylbenzene, trivinylbenzene, divinyltoluene, Divinyl xylene, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, bisphenol A ethylene oxide adduct di (meth) Selected from acrylate and propylene oxide adduct di (meth) acrylate of bisphenol A;
(Meth) acrylic acid ester is selected from methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and butyl (meth) acrylate,
The unsaturated dicarboxylic acid is selected from maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof.
(6) Copolymer A of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, copolymer B of aromatic vinyl, unsaturated dicarboxylic acid and unsaturated dicarboxylic imide The difference between the glass transition temperature A of the copolymer A and the glass transition temperature B of the copolymer B is 10 to 50 ° C., and the expanded particles are 30 In a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at a magnification, a small bubble having a bubble diameter of 50 μm or more and less than 300 μm and a large bubble having a bubble diameter of 300 μm or more and 2 mm or less are provided.
(7) In copolymer A, aromatic vinyl is a styrene monomer, (meth) acrylic ester is (meth) acrylic acid alkyl ester (the alkyl group has 1 to 5 carbon atoms), and unsaturated dicarboxylic acid is Each of which is selected from aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms, and copolymer A has a total of 100 units derived from three of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid. In terms of parts by weight, 30 to 80 parts by weight of units derived from aromatic vinyl, 8 to 35 parts by weight of units derived from (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from unsaturated dicarboxylic acid Including
In the copolymer B, the aromatic vinyl is selected from a styrene monomer, the unsaturated dicarboxylic acid is an aliphatic unsaturated dicarboxylic acid having 2 to 6 carbon atoms, and the unsaturated dicarboxylic imide is a maleimide monomer. When the total of the units derived from the copolymer B in three units of the aromatic vinyl, the unsaturated dicarboxylic acid, and the unsaturated dicarboxylic imide is 100 parts by weight, the unit derived from the aromatic vinyl is 20 to 80 parts by weight. 2-30 parts by weight of units derived from unsaturated dicarboxylic acid and 20-80 parts by weight of units derived from unsaturated dicarboxylic imide.
(8) Aromatic vinyl is styrene, α-methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, divinylbenzene, trivinylbenzene, divinyltoluene, Divinyl xylene, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, bisphenol A ethylene oxide adduct di (meth) Selected from acrylate and propylene oxide adduct di (meth) acrylate of bisphenol A;
(Meth) acrylic acid ester is selected from methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and butyl (meth) acrylate,
The unsaturated dicarboxylic acid is selected from maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof;
The unsaturated dicarboxylic imide is selected from maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide and N-naphthylmaleimide;
Copolymers A and B are contained in the base resin in a weight ratio of 70:30 to 95: 5.
実施例1a~3aの発泡粒子及び発泡成形体の断面写真である。2 is a cross-sectional photograph of expanded particles and expanded molded articles of Examples 1a to 3a. 比較例1a及び2aの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particle of Comparative Example 1a and 2a, and a foaming molding. 実施例4a及び5aの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particle of Example 4a and 5a and a foaming molding. 実施例6a~8aの発泡粒子及び発泡成形体の断面写真である。2 is a cross-sectional photograph of expanded particles and expanded molded articles of Examples 6a to 8a. 実施例1b及び2bの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particle of Example 1b and 2b, and a foaming molding. 実施例3bの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particle of Example 3b and a foaming molding. 実施例4bの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particle of Example 4b and a foaming molding. 参考例1b~3bの発泡粒子及び発泡成形体の断面写真である。2 is a cross-sectional photograph of expanded particles and expanded molded articles of Reference Examples 1b to 3b. 実施例1c及び2cの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particle of Example 1c and 2c and a foaming molding. 実施例3cの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particle of Example 3c and a foaming molding. 実施例4c及び5cの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particle of Example 4c and 5c, and a foaming molding. 参考例1c~3cの発泡粒子及び発泡成形体の断面写真である。3 is a cross-sectional photograph of expanded particles and expanded molded articles of Reference Examples 1c to 3c. 実施例1d~3dの発泡粒子及び発泡成形体の断面写真である。2 is a cross-sectional photograph of expanded particles and expanded molded articles of Examples 1d to 3d. 参考例3dの発泡粒子及び発泡成形体の断面写真である。It is a cross-sectional photograph of the expanded particles and expanded molded article of Reference Example 3d.
(1)発泡粒子
(1-1)基材樹脂
 発泡粒子は、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成される。基材樹脂中に共重合体が占める割合は、70重量%以上であることが好ましく、85重量%以上であることがより好ましく、100重量%であってもよい。共重合体は115~160℃のガラス転移温度Tgを有していることが好ましい。Tgが115℃より低い場合、発泡粒子を用いて製造された発泡成形体の表面への表皮材の積層一体化が不十分となって、機械的物性が低下することがある。160℃より高い場合、発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。Tgは、115℃、120℃、130℃、140℃、150℃及び160℃を取り得る。より好ましいTgは120~150℃である。
(1) Foamed Particles (1-1) Base Resin Foamed particles are composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid. The proportion of the copolymer in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and may be 100% by weight. The copolymer preferably has a glass transition temperature Tg of 115 to 160 ° C. When Tg is lower than 115 ° C., lamination and integration of the skin material on the surface of the foamed molded product produced using the foamed particles may be insufficient, and mechanical properties may be lowered. When the temperature is higher than 160 ° C., the foamability of the foamed particles is lowered, and the heat fusion integration between the foamed particles is insufficient, and the mechanical properties of the foamed molded product may be lowered. Tg can take 115 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C and 160 ° C. A more preferable Tg is 120 to 150 ° C.
 (a)芳香族ビニル
 芳香族ビニルは、ビニル基からなる置換基を備えた芳香族化合物である。ビニル基の数及び芳香族化合物の炭素数は特に限定されない。具体的な芳香族ビニルとしては、スチレン、α-メチルスチレン、ビニルトルエン、エチルスチレン、i-プロピルスチレン、t-ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン等のスチレン系単官能単量体、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレートが挙げられる。芳香族ビニルは、単独で用いられても二種以上が併用されてもよい。この内、入手容易性の観点から、スチレンが好ましい。
(A) Aromatic vinyl Aromatic vinyl is an aromatic compound having a substituent composed of a vinyl group. The number of vinyl groups and the number of carbon atoms of the aromatic compound are not particularly limited. Specific aromatic vinyls include styrene monofunctional monomers such as styrene, α-methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, Divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, Examples thereof include bisphenol A ethylene oxide adduct di (meth) acrylate and bisphenol A propylene oxide adduct di (meth) acrylate. Aromatic vinyl may be used independently or 2 or more types may be used together. Of these, styrene is preferred from the viewpoint of availability.
 (b)(メタ)アクリル酸エステル
 (メタ)アクリル酸エステルとしては、特に限定されないが、例えば、(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステル中のアルキル基の炭素数は1~5とすることができる。具体的な(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。(メタ)アクリル酸エステルは、単独で用いられても二種以上が併用されてもよい。発泡成形体の機械的物性を向上させる観点から、(メタ)アクリル酸メチルが好ましく、メタクリル酸メチルがより好ましい。
 (c)不飽和ジカルボン酸
 不飽和ジカルボン酸は、特に限定されないが、炭素数2~6の脂肪族不飽和ジカルボン酸が挙げられる。具体的な不飽和ジカルボン酸としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸、これらの無水物等が挙げられる。不飽和ジカルボン酸は、単独で用いられても二種以上が併用されてもよい。
(B) (Meth) acrylic acid ester The (meth) acrylic acid ester is not particularly limited, and examples thereof include (meth) acrylic acid alkyl esters. The alkyl group in the (meth) acrylic acid alkyl ester may have 1 to 5 carbon atoms. Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. (Meth) acrylic acid ester may be used independently, or 2 or more types may be used together. From the viewpoint of improving the mechanical properties of the foam molded article, methyl (meth) acrylate is preferred, and methyl methacrylate is more preferred.
(C) Unsaturated dicarboxylic acid The unsaturated dicarboxylic acid is not particularly limited, and examples thereof include aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms. Specific examples of the unsaturated dicarboxylic acid include maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof. Unsaturated dicarboxylic acid may be used independently or 2 or more types may be used together.
 (d)芳香族ビニル、(メタ)アクリル酸エステル、不飽和ジカルボン酸に由来する単位の割合
 芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を30~80重量部、(メタ)アクリル酸エステルに由来する単位を8~35重量部、不飽和ジカルボン酸に由来する単位を10~50重量部を含むことが好ましい。
 芳香族ビニルに由来する単位が占める割合が30重量部未満の場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。この割合が80重量部より大きい場合、発泡成形体の耐熱性が低下することがある。この割合は、30重量部、40重量部、45重量部、50重量部、60重量部、70重量部、75重量部及び80重量部を取り得る。この割合は40~75重量部であることがより好ましく、45~70重量部であることが更に好ましい。
 (メタ)アクリル酸エステルに由来する単位が占める割合が8重量部未満の場合、発泡成形体の機械的物性が低下することがある。この割合が35重量部より大きい場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。この割合は、8重量部、10重量部、15重量部、20重量部、25重量部、30重量部、33重量部及び35重量部を取り得る。この割合は10~33重量部であることがより好ましく、15~30重量部であることが更に好ましい。
 不飽和ジカルボン酸に由来する単位が占める割合が10重量部未満の場合、発泡成形体の耐熱性が低下することがある。この割合が50重量部より大きい場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。この割合は、10重量部、15重量部、20重量部、25重量部、30重量部、35重量部、40重量部及び50重量部を取り得る。この割合は15~40重量部であることがより好ましく、20~35重量部であることが更に好ましい。
 なお、単量体の使用量とその単量体に由来する単位の含有量とはほぼ一致している。
 各成分比、すなわち、芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸に由来する単位、更には以下に説明する他の単量体及び他の樹脂に由来する単位の割合は、H-NMRのピーク高さ又はFT-IRの面積比で規定することができる。具体的な測定方法については、実施例において説明する。
(D) Ratio of units derived from aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid The total number of units derived from aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid is 100. In terms of parts by weight, 30 to 80 parts by weight of units derived from aromatic vinyl, 8 to 35 parts by weight of units derived from (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from unsaturated dicarboxylic acid It is preferable to contain.
When the proportion of units derived from aromatic vinyl is less than 30 parts by weight, the foamability of the foamed particles is reduced during foam molding, and the heat fusion integration between the foamed particles becomes insufficient, and Mechanical properties may deteriorate. When this ratio is larger than 80 parts by weight, the heat resistance of the foamed molded product may be lowered. This ratio can take 30 parts, 40 parts, 45 parts, 50 parts, 60 parts, 70 parts, 75 parts and 80 parts by weight. This ratio is more preferably 40 to 75 parts by weight, and still more preferably 45 to 70 parts by weight.
When the proportion of units derived from (meth) acrylic acid ester is less than 8 parts by weight, the mechanical properties of the foamed molded product may be lowered. When this ratio is larger than 35 parts by weight, the foamability of the foamed particles may be reduced during foam molding, and the heat fusion integration between the foamed particles may be insufficient and the mechanical properties of the foamed molded product may be degraded. is there. This ratio can take 8 parts, 10 parts, 15 parts, 20 parts, 25 parts, 30 parts, 33 parts and 35 parts by weight. This ratio is more preferably 10 to 33 parts by weight, and further preferably 15 to 30 parts by weight.
When the ratio which the unit derived from unsaturated dicarboxylic acid accounts is less than 10 weight part, the heat resistance of a foaming molding may fall. When this ratio is larger than 50 parts by weight, the foamability of the foamed particles may be reduced during foam molding, and the heat-fusion integration between the foamed particles may be insufficient, and the mechanical properties of the foamed molded product may be degraded. is there. This ratio can take 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight and 50 parts by weight. This ratio is more preferably 15 to 40 parts by weight, still more preferably 20 to 35 parts by weight.
In addition, the usage-amount of a monomer and content of the unit derived from the monomer are substantially in agreement.
The ratio of each component, that is, the ratio of units derived from aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and further derived from other monomers and other resins described below is 1 It can be defined by the peak height of H-NMR or the area ratio of FT-IR. A specific measurement method will be described in Examples.
 (e)他の単量体
 基材樹脂は上記3つの単量体以外に本発明の特性を阻害しない範囲で他の単量体由来の成分との更なる共重合体であってもよい。他の単量体としては例えば、(メタ)アクリロニトリル、ジメチルマレエート、ジエチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレート、(メタ)アクリル酸等が挙げられる。
 基材樹脂中に他の単量体由来の単位が占める割合は、30重量%以下であることが好ましく、0重量%であってもよい。
 (f)他の樹脂
 基材樹脂には他の樹脂が混合されていてもよい。他の樹脂としてはポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体等のジエン系のゴム状重合体を添加したゴム変性耐衝撃性ポリスチレン系樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリフェニレンエーテル、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、ポリメタクリル酸メチル、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸エステル共重合体、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体等が挙げられる。
 上記他の樹脂の内、発泡粒子には、ポリメタクリル酸メチルが含有されていることが好ましい。ポリメタクリル酸メチルが含有されていることによって、発泡粒子の熱融着性が向上し、発泡粒子同士をより強固に熱融着一体化させて、更に優れた機械的物性を有する発泡成形体を得ることができる。発泡粒子中におけるポリメタクリル酸メチルの含有量は、共重合体100重量部に対して10~500重量部が好ましく、20~450重量部がより好ましく、30~400重量部が特に好ましい。
(E) Other monomer The base resin may be a further copolymer with components derived from other monomers as long as the properties of the present invention are not impaired in addition to the above three monomers. Examples of other monomers include (meth) acrylonitrile, dimethyl maleate, diethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, (meth) acrylic acid, and the like.
The proportion of units derived from other monomers in the base resin is preferably 30% by weight or less, and may be 0% by weight.
(F) Other resin Other resin may be mixed with the base resin. As other resins, rubber-modified resistance such as polyolefin resins such as polyethylene and polypropylene, polybutadiene, styrene-butadiene copolymers, and diene rubber polymers such as ethylene-propylene-nonconjugated diene three-dimensional copolymers are added. Impact polystyrene resin, polycarbonate resin, polyester resin, polyamide resin, polyphenylene ether, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polymethyl methacrylate, styrene- (meth) acrylic acid copolymer, Examples thereof include styrene- (meth) acrylic acid ester copolymers and aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboxylic imide copolymers.
Of the other resins, the expanded particles preferably contain polymethyl methacrylate. By containing poly (methyl methacrylate), the heat-fusibility of the foamed particles is improved, and the foamed particles are more strongly heat-fused and integrated with each other. Obtainable. The content of polymethyl methacrylate in the expanded particles is preferably 10 to 500 parts by weight, more preferably 20 to 450 parts by weight, and particularly preferably 30 to 400 parts by weight with respect to 100 parts by weight of the copolymer.
 発泡粒子には加工助剤としてのアクリル系樹脂が含有されていることが好ましい。加工助剤を含有していることによって、発泡粒子を構成している樹脂の発泡時における溶融張力(粘弾性)を発泡に適したものとして発泡粒子の連続気泡化を抑制し、発泡粒子の発泡性を向上させて、発泡粒子同士の熱融着をより強固なものとし、更に優れた機械的物性を有する発泡成形体を製造できる。発泡粒子中における加工助剤の含有量は、共重合体100重量部に対して0.5~5重量部が好ましく、0.5~3重量部がより好ましい。
 加工助剤としてのアクリル系樹脂としては、特に限定されず、アクリル系単量体の単独重合体又はこれらの二種以上からなる共重合体、アクリル系単量体を50重量%以上含有し且つアクリル系単量体とこれと共重合可能なビニルモノマーとの共重合体等が挙げられる。アクリル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等が挙げられる。アクリル系単量体と共重合可能なビニルモノマーとしては、α-メチルスチレン、アクリロニトリル等が挙げられる。アクリル系樹脂の重量平均分子量は、150万~600万が好ましく、200万~450万がより好ましく、250万~400万が特に好ましい。アクリル系樹脂の重量平均分子量が低すぎても高すぎても、発泡粒子を構成している樹脂の発泡成形時における溶融張力(粘弾性)を発泡に適したものに十分に調整し難く、発泡粒子の発泡性を向上できないことがある。
The foamed particles preferably contain an acrylic resin as a processing aid. By containing a processing aid, the foam tension of the foamed particles is suppressed by making the melt tension (viscoelasticity) at the time of foaming of the resin constituting the foamed particles suitable for foaming. Thus, it is possible to produce a foamed molded article having improved mechanical properties by further strengthening heat fusion between the foamed particles. The content of the processing aid in the expanded particles is preferably 0.5 to 5 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the copolymer.
The acrylic resin as a processing aid is not particularly limited, and contains 50% by weight or more of a homopolymer of an acrylic monomer or a copolymer composed of two or more of these, and an acrylic monomer. Examples thereof include a copolymer of an acrylic monomer and a vinyl monomer copolymerizable therewith. Examples of the acrylic monomer include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like. Examples of vinyl monomers copolymerizable with acrylic monomers include α-methylstyrene and acrylonitrile. The weight average molecular weight of the acrylic resin is preferably 1.5 million to 6 million, more preferably 2 million to 4.5 million, and particularly preferably 2.5 million to 4 million. Even if the weight average molecular weight of the acrylic resin is too low or too high, it is difficult to sufficiently adjust the melt tension (viscoelasticity) during foam molding of the resin constituting the foamed particles to that suitable for foaming. The foamability of the particles may not be improved.
 (g)芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体
 上記の(f)他の樹脂としては、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体(共重合体B)が、発泡成形体の耐熱性及び/又は弾性率を向上させる観点から好ましい。
 具体的には、発泡粒子は、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体(共重合体Aとも称する)と、芳香族ビニルと、不飽和ジカルボン酸と、不飽和ジカルボン酸イミドとの共重合体Bとを含む基材樹脂から構成されることが好ましい。基材樹脂が、共重合体Bを含むことで、共重合体Aのみからなる場合より、得られる発泡成形体の耐熱性及び/又は弾性率を向上できる。基材樹脂中に共重合体A及びBの合計が占める割合は、70重量%以上であることが好ましく、85重量%以上であることがより好ましく、100重量%であってもよい。共重合体A及びBは、70:30~95:5の重量比で基材樹脂に含まれていることが好ましい。共重合体A及びBの重量比は、70:30、75:25、80:20、85:15、90:10及び95:5を取り得る。より好ましい重量比は、80:20~90:10である。
 共重合体Aは115~160℃のガラス転移温度Tgを有していることが好ましい。Tgが115℃より低い場合、発泡粒子を用いて製造された発泡成形体の表面への表皮材の積層一体化が不十分となって、機械的物性が低下することがある。160℃より高い場合、発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。Tgは、115℃、120℃、130℃、140℃、150℃及び160℃を取り得る。より好ましいTgは120~150℃である。
 共重合体Bは160~200℃のガラス転移温度Tgを有していることが好ましい。Tgが160℃より低い場合、発泡粒子を用いて製造された発泡成形体の表面への表皮材の積層一体化が不十分となって、機械的物性が低下することがある。200℃より高い場合、発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。Tgは、160℃、170℃、180℃、190℃及び200℃を取り得る。より好ましいTgは170~190℃である。
 共重合体Aのガラス転移温度Aと共重合体Bのガラス転移温度Bとの差は、10~50℃である。差が、10℃未満の場合、十分な耐熱性向上効果が得られず、発泡粒子を用いて製造された発泡成形体の表面への表皮材の積層一体化が不十分となって、機械的物性が低下することがある。50℃より高い場合、溶融粘度の差が大きくなり、混練が不十分となることがある。差は、10℃、20℃、30℃、35℃、45℃、47℃及び50℃を取り得る。差は、20~47℃であることが好ましく、30~45℃であることがより好ましい。
(G) Aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboxylic imide copolymer The above (f) other resin includes an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboxylic imide copolymer (copolymer). Polymer B) is preferred from the viewpoint of improving the heat resistance and / or elastic modulus of the foamed molded product.
Specifically, the expanded particles include a copolymer of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid (also referred to as copolymer A), aromatic vinyl, and unsaturated dicarboxylic acid. And a base resin containing copolymer B with unsaturated dicarboxylic imide. When the base resin contains the copolymer B, the heat resistance and / or elastic modulus of the obtained foamed molded product can be improved as compared with the case where the base resin is made of only the copolymer A. The ratio of the total of copolymers A and B in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and may be 100% by weight. Copolymers A and B are preferably contained in the base resin in a weight ratio of 70:30 to 95: 5. The weight ratio of copolymers A and B can be 70:30, 75:25, 80:20, 85:15, 90:10 and 95: 5. A more preferred weight ratio is 80:20 to 90:10.
The copolymer A preferably has a glass transition temperature Tg of 115 to 160 ° C. When Tg is lower than 115 ° C., lamination and integration of the skin material on the surface of the foamed molded product produced using the foamed particles may be insufficient, and mechanical properties may be lowered. When the temperature is higher than 160 ° C., the foamability of the foamed particles is lowered, and the heat fusion integration between the foamed particles is insufficient, and the mechanical properties of the foamed molded product may be lowered. Tg can take 115 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C and 160 ° C. A more preferable Tg is 120 to 150 ° C.
The copolymer B preferably has a glass transition temperature Tg of 160 to 200 ° C. When Tg is lower than 160 ° C., the laminate integration of the skin material on the surface of the foam molded body produced using the foamed particles may be insufficient, and the mechanical properties may be lowered. When the temperature is higher than 200 ° C., the foamability of the foamed particles is lowered, and the heat fusion integration between the foamed particles is insufficient, and the mechanical properties of the foamed molded product may be lowered. Tg can take 160 ° C, 170 ° C, 180 ° C, 190 ° C and 200 ° C. A more preferable Tg is 170 to 190 ° C.
The difference between the glass transition temperature A of the copolymer A and the glass transition temperature B of the copolymer B is 10 to 50 ° C. When the difference is less than 10 ° C., sufficient heat resistance improvement effect cannot be obtained, and the lamination and integration of the skin material on the surface of the foam molded body produced using the foamed particles becomes insufficient, resulting in mechanical Physical properties may deteriorate. When the temperature is higher than 50 ° C., the difference in melt viscosity becomes large and kneading may be insufficient. The difference can be 10 ° C, 20 ° C, 30 ° C, 35 ° C, 45 ° C, 47 ° C and 50 ° C. The difference is preferably 20 to 47 ° C, more preferably 30 to 45 ° C.
 芳香族ビニルとしては、特に限定されないが、上記の(a)に例示の化合物が挙げられる。芳香族ビニルは、単独で用いられても二種以上が併用されてもよい。この内、入手容易性の観点から、スチレンが好ましい。
 不飽和ジカルボン酸としては、特に限定されないが、上記の(c)に例示の化合物が挙げられる。不飽和ジカルボン酸は、単独で用いられても二種以上が併用されてもよい。発泡成形体の機械的物性を向上させる観点から、無水マレイン酸が好ましい。
 不飽和ジカルボン酸イミドとしては、特に限定されないが、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ナフチルマレイミド等のマレイミド系単量体等が挙げられる。不飽和ジカルボン酸イミド誘導体は、単独で用いられても二種以上が併用されてもよい。発泡成形体の耐熱性を向上させる観点から、N-フェニルマレイミドが好ましい。
 芳香族ビニルと不飽和ジカルボン酸と不飽和ジカルボン酸イミドに由来する単位の割合は、3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を20~80重量部、不飽和ジカルボン酸に由来する単位を2~30重量部、不飽和ジカルボン酸イミドに由来する単位を20~80重量部含むことが好ましい。
 芳香族ビニルに由来する単位が占める割合が20重量部未満の場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。この割合が80重量部より大きい場合、発泡成形体の耐熱性が低下することがある。この割合は、20重量部、30重量部、40重量部、50重量部、60重量部、70重量部、75重量部及び80重量部を取り得る。この割合は30~75重量部であることがより好ましく、50~70重量部であることが更に好ましい。
 不飽和ジカルボン酸に由来する単位が占める割合は、2重量部、5重量部、10重量部、15重量部、20重量部、25重量部及び30重量部を取り得る。不飽和ジカルボン酸イミドに由来する単位が占める割合は、20重量部、30重量部、40重量部、50重量部、60重量部、70重量部、75重量部及び80重量部を取り得る。
Although it does not specifically limit as aromatic vinyl, The compound illustrated to said (a) is mentioned. Aromatic vinyl may be used independently or 2 or more types may be used together. Of these, styrene is preferred from the viewpoint of availability.
Although it does not specifically limit as unsaturated dicarboxylic acid, The compound illustrated in said (c) is mentioned. Unsaturated dicarboxylic acid may be used independently or 2 or more types may be used together. From the viewpoint of improving the mechanical properties of the foam molded article, maleic anhydride is preferable.
The unsaturated dicarboxylic acid imide is not particularly limited, and examples thereof include maleimide monomers such as maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide and N-naphthylmaleimide. . An unsaturated dicarboxylic imide derivative may be used independently or 2 or more types may be used together. From the viewpoint of improving the heat resistance of the foam molded article, N-phenylmaleimide is preferred.
The proportion of units derived from aromatic vinyl, unsaturated dicarboxylic acid and unsaturated dicarboxylic imide is 20 to 80 parts by weight of units derived from aromatic vinyl, assuming that the total of the units derived from 3 is 100 parts by weight. It is preferable that 2 to 30 parts by weight of units derived from unsaturated dicarboxylic acid and 20 to 80 parts by weight of units derived from unsaturated dicarboxylic imide are included.
When the proportion of units derived from aromatic vinyl is less than 20 parts by weight, the foamability of the foamed particles is reduced during foam molding, and the thermal fusion integration between the foamed particles becomes insufficient, and Mechanical properties may deteriorate. When this ratio is larger than 80 parts by weight, the heat resistance of the foamed molded product may be lowered. This ratio can take 20 parts by weight, 30 parts by weight, 40 parts by weight, 50 parts by weight, 60 parts by weight, 70 parts by weight, 75 parts by weight and 80 parts by weight. This ratio is more preferably 30 to 75 parts by weight, and still more preferably 50 to 70 parts by weight.
The proportion of units derived from unsaturated dicarboxylic acids can be 2 parts by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight and 30 parts by weight. The proportion of units derived from unsaturated dicarboxylic imides can be 20 parts, 30 parts, 40 parts, 50 parts, 60 parts, 70 parts, 75 parts and 80 parts by weight.
 共重合体A及び共重合体Bを基材樹脂が含む場合、上記他の樹脂としてポリメタクリル酸メチルが含有されていることが好ましい。ポリメタクリル酸メチルが含有されていることによって、発泡粒子の熱融着性が向上し、発泡粒子同士をより強固に熱融着一体化させて、更に優れた機械的物性を有する発泡成形体を得ることができる。発泡粒子中におけるポリメタクリル酸メチルの含有量は、共重合体A及びBの合計100重量部に対して10~500重量部が好ましく、20~450重量部がより好ましく、30~400重量部が特に好ましい。
 共重合体A及び共重合体Bを基材樹脂が含む場合、発泡粒子には上記加工助剤としてのアクリル系樹脂が含有されていることが好ましい。加工助剤を含有していることによって、発泡粒子を構成している樹脂の発泡時における溶融張力(粘弾性)を発泡に適したものとして発泡粒子の連続気泡化を抑制し、発泡粒子の発泡性を向上させて、発泡粒子同士の熱融着をより強固なものとし、更に優れた機械的物性を有する発泡成形体を製造できる。発泡粒子中における加工助剤の含有量は、共重合体A及びBの合計100重量部に対して0.5~5重量部が好ましく、0.5~3重量部がより好ましい。
 (h)添加剤
 基材樹脂には必要に応じて、樹脂以外に添加剤が含まれていてもよい。添加剤としては、可塑剤、難燃剤、難燃助剤、帯電防止剤、展着剤、気泡調整剤、充てん剤、着色剤、耐候剤、老化防止剤、滑剤、防曇剤、香料等が挙げられる。
When the base resin includes the copolymer A and the copolymer B, it is preferable that polymethyl methacrylate is contained as the other resin. By containing poly (methyl methacrylate), the heat-fusibility of the foamed particles is improved, and the foamed particles are more strongly heat-fused and integrated with each other. Obtainable. The content of polymethyl methacrylate in the expanded particles is preferably 10 to 500 parts by weight, more preferably 20 to 450 parts by weight, and more preferably 30 to 400 parts by weight with respect to 100 parts by weight of the total of the copolymers A and B. Particularly preferred.
When the base resin contains the copolymer A and the copolymer B, it is preferable that the foamed particles contain an acrylic resin as the processing aid. By containing a processing aid, the foam tension of the foamed particles is suppressed by making the melt tension (viscoelasticity) at the time of foaming of the resin constituting the foamed particles suitable for foaming. Thus, it is possible to produce a foamed molded article having improved mechanical properties by further strengthening heat fusion between the foamed particles. The content of the processing aid in the expanded particles is preferably 0.5 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the total of the copolymers A and B.
(H) Additive The base resin may contain an additive in addition to the resin, if necessary. Additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, foam control agents, fillers, colorants, weathering agents, anti-aging agents, lubricants, antifogging agents, fragrances, etc. Can be mentioned.
(1-2)構成
 発泡粒子は、30倍で11.9mmの面積を撮影した発泡粒子全体の断面写真において50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備えている。
 また、発泡粒子1つに対する大気泡の数は特に限定されず、複数個であってもよいが、多過ぎると気泡率が高くなり、発泡成形体の機械的物性の低下を招くことになる。このようなことから、大気泡の気泡径にも因るが、発泡粒子が、その1つにおいて、唯1つの大気泡を有するのが好ましい。
 また、小気泡の平均気泡径と大気泡の平均気泡径とは300μm以上の差があることが好ましい。この差があることで、機械的物性の向上した発泡成形体を与える発泡粒子を提供できる。差は300~600μmでもよい。差は、300μm、350μm、400μm、450μm、500μm、550μm及び600μmを取り得る。ここで、小気泡の平均気泡径は100~250μmの範囲内に存在してもよく、大気泡の平均気泡径は350~900μmの範囲内に存在してもよい。小気泡の平均気泡径は100μm、150μm、200μm及び250μmを取り得、大気泡の平均気泡径は350μm、400μm、500μm、600μm、700μm、800μm及び900μmを取り得る。
 また、小気泡の平均気泡径と大気泡の平均気泡径とは1000μm以上、1500μm未満の差があってもよい。この差があることで、機械的物性の向上した発泡成形体を与える発泡粒子を提供できる。差は、1000μm、1100μm、1200μm、1300μm、1400μm及び1499μmを取り得る。ここで、小気泡の平均気泡径は30~100μmの範囲内に存在してもよく、大気泡の平均気泡径は1200~1600μmの範囲内に存在してもよい。小気泡の平均気泡径は30μm、50μm、70μm及び100μmを取り得、大気泡の平均気泡径は1200μm、1300μm、1400μm、1500μm及び1600μmを取り得る。
 発泡粒子は、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与えるため、曲げに強い発泡成形体を提供し得る。この最大点応力の範囲は、特定の樹脂を基材樹脂として使用し、特定の気泡径の範囲の気泡を備える発泡粒子により実現可能である。最大点応力は、1.0MPa以上であることが好ましく、1.5MPa以上であることがより好ましい。
(1-2) Configuration Foamed particles have a bubble size of 50 μm or more and less than 300 μm and a bubble size of 300 μm or more and 2 mm or less in a cross-sectional photograph of the entire expanded particle taken at an area of 11.9 mm 2 at 30 times magnification. With large bubbles.
Further, the number of large bubbles per one expanded particle is not particularly limited and may be plural. However, if the number is too large, the bubble rate is increased, and the mechanical properties of the foamed molded product are lowered. For this reason, it is preferable that the expanded particle has only one large bubble in one of them, although it depends on the bubble diameter of the large bubble.
Moreover, it is preferable that there is a difference of 300 μm or more between the average bubble diameter of small bubbles and the average bubble diameter of large bubbles. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties. The difference may be 300-600 μm. The difference can be 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm and 600 μm. Here, the average bubble diameter of small bubbles may be in the range of 100 to 250 μm, and the average bubble diameter of large bubbles may be in the range of 350 to 900 μm. The average bubble diameter of small bubbles can be 100 μm, 150 μm, 200 μm and 250 μm, and the average bubble diameter of large bubbles can be 350 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm and 900 μm.
Further, there may be a difference of 1000 μm or more and less than 1500 μm between the average bubble diameter of small bubbles and the average bubble diameter of large bubbles. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties. The difference can be 1000 μm, 1100 μm, 1200 μm, 1300 μm, 1400 μm and 1499 μm. Here, the average bubble diameter of the small bubbles may be in the range of 30 to 100 μm, and the average bubble diameter of the large bubbles may be in the range of 1200 to 1600 μm. The average bubble diameter of small bubbles can be 30 μm, 50 μm, 70 μm and 100 μm, and the average bubble diameter of large bubbles can be 1200 μm, 1300 μm, 1400 μm, 1500 μm and 1600 μm.
Since the foamed particles give a maximum point stress by a bending test of 1.0 MPa or more to the foamed molded body composed of the fused body, a foamed molded body resistant to bending can be provided. The range of the maximum point stress can be realized by using foamed particles that use a specific resin as a base resin and have bubbles in a specific bubble diameter range. The maximum point stress is preferably 1.0 MPa or more, and more preferably 1.5 MPa or more.
 発泡粒子の外形は、発泡成形体を製造できさえすれば特に限定されず、例えば、球状、略球状、円筒形等が挙げられる。発泡粒子は、0.7以上の平均のアスペクト比で示される外形を有していることが好ましい(上限は1の真球状)。
 発泡粒子は、30~2倍の嵩倍数を有することが好ましい。嵩倍数が30倍より大きい場合、発泡粒子の連続気泡率が上昇して、発泡成形の発泡時に発泡粒子の発泡性が低下することがある。2倍より小さい場合、発泡粒子の気泡が不均一となって、発泡成形時における発泡粒子の発泡性が不十分となることがある。嵩倍数は、25~3倍がより好ましく、20~5倍が特に好ましい。
The outer shape of the expanded particles is not particularly limited as long as the expanded molded body can be produced, and examples thereof include a spherical shape, a substantially spherical shape, and a cylindrical shape. The expanded particles preferably have an outer shape represented by an average aspect ratio of 0.7 or more (the upper limit is 1 true sphere).
The expanded particles preferably have a bulk multiple of 30 to 2 times. When the bulk factor is larger than 30 times, the open cell ratio of the foamed particles increases, and the foamability of the foamed particles may decrease during foam molding. If it is less than 2 times, the foamed particles may have uneven bubbles, and the foamability of the foamed particles during foam molding may be insufficient. The bulk multiple is more preferably 25 to 3 times, and particularly preferably 20 to 5 times.
(1-3)製造方法
 発泡粒子の製造方法としては、樹脂粒子に発泡剤を気相含浸させて発泡性粒子を得、発泡性粒子を発泡させる方法が挙げられる。
 樹脂粒子は、公知の製造方法及び製造設備を使用して得ることができる。ここで、以下で説明するボイドの数の調整は、例えば、樹脂への化学気泡剤等の添加量の調整により行うことができる。
 例えば、押出機を使用して原料樹脂を溶融混練し、次いで押出、水中カット(アンダーウォーターカット)、ストランドカット等により造粒することによって、樹脂粒子を製造できる。溶融混練時の温度、時間、圧力等は、使用原料及び製造設備に合わせて適宜設定できる。
 溶融混練時の押出機内の溶融混練温度は、原料樹脂が十分に軟化する温度である、220~280℃が好ましく、240~270℃がより好ましい。溶融混練温度とは、押出機ヘッド付近の溶融混練物流路の中心部温度を熱電対式温度計で測定した押出機内部の溶融混練物の温度を意味する。
 本発明の発泡粒子の特徴の1つである大気泡は、樹脂粒子の製造時に周囲からの急冷により樹脂粒子の中心領域に形成されるボイドに由来するものと考えられる。したがって、発泡粒子の製造では、急冷制御が容易な水中カットが特に好ましい。
 なお、押出機には気泡調整剤が供給されることが好ましい。気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末、タルク等が挙げられる。気泡調整剤の量は、樹脂組成物100重量部に対して0.01~5重量部が好ましい。気泡調整剤の量が0.01重量部未満の場合、発泡粒子の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。5重量部より多い場合、破泡により発泡粒子の独立気泡率が低下することがある。気泡調整剤の量は、0.05~3重量部がより好ましく、0.1~2重量部が特に好ましい。
(1-3) Manufacturing Method As a manufacturing method of the expanded particles, there is a method in which the expandable particles are obtained by impregnating the resin particles with a foaming agent in a gas phase, and the expandable particles are expanded.
The resin particles can be obtained using a known production method and production equipment. Here, the adjustment of the number of voids described below can be performed, for example, by adjusting the amount of chemical foaming agent added to the resin.
For example, resin particles can be produced by melt-kneading the raw material resin using an extruder and then granulating by extrusion, underwater cut (underwater cut), strand cut, or the like. The temperature, time, pressure, etc. at the time of melt-kneading can be appropriately set according to the raw materials used and the production equipment.
The melt kneading temperature in the extruder during melt kneading is preferably 220 to 280 ° C., more preferably 240 to 270 ° C., which is a temperature at which the raw material resin is sufficiently softened. The melt-kneading temperature means the temperature of the melt-kneaded material inside the extruder as measured at the center temperature of the melt-kneaded material flow path near the extruder head with a thermocouple thermometer.
The large bubbles, which are one of the characteristics of the expanded particles of the present invention, are considered to be derived from voids formed in the central region of the resin particles by rapid cooling from the surroundings during the production of the resin particles. Therefore, in the production of foamed particles, an underwater cut that is easily controlled for rapid cooling is particularly preferable.
In addition, it is preferable that a bubble regulator is supplied to an extruder. Examples of the air conditioner include polytetrafluoroethylene powder, polytetrafluoroethylene powder modified with an acrylic resin, and talc. The amount of the cell regulator is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin composition. When the amount of the air bubble adjusting agent is less than 0.01 parts by weight, the foamed bubbles may be coarse and the appearance of the obtained foamed molded product may be deteriorated. When the amount is more than 5 parts by weight, the closed cell ratio of the foamed particles may decrease due to bubble breakage. The amount of the cell regulator is more preferably 0.05 to 3 parts by weight, and particularly preferably 0.1 to 2 parts by weight.
 次に、発泡性粒子の製造方法としては、密閉し得る容器中で、発泡剤を樹脂粒子に気相含浸させる方法が挙げられる。発泡剤としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテルのようなエーテル類、塩化メチル、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロエタン、モノクロロジフルオロメタン等のフロン、二酸化炭素、窒素等の無機ガスが挙げられる。中でも、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタン、二酸化炭素がより好ましく、ノルマルブタン、イソブタン、二酸化炭素が特に好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。
 容器に投入される発泡剤量は、少なすぎると、発泡粒子を所望の発泡倍率まで発泡できないことがある。発泡剤量は、多すぎると、発泡剤が可塑剤として作用することから基材樹脂の粘弾性が低下し過ぎて発泡性が低下し良好な発泡粒子を得ることができないことがある。従って、発泡剤量は、原料樹脂100重量部に対して0.1~5重量部が好ましく、0.2~4重量部がより好ましく、0.3~3重量部が特に好ましい。
 更に、発泡粒子の製造方法としては、密閉し得る容器中で、水蒸気のような加熱媒体で加熱する方法が挙げられる。加熱条件としては、例えば、0.3~0.5MPaのゲージ圧、120~159℃の温度、10~180秒が挙げられる。
 発泡粒子の粒径は押出機の前端に取り付けたマルチノズル金型の径を変えること等によって変動させることができる。
Next, as a method for producing expandable particles, a method in which a foaming agent is impregnated in a gas phase with a foaming agent in a hermetically sealed container can be mentioned. Examples of the blowing agent include propane, normal butane, isobutane, normal pentane, isopentane, hexane and other saturated aliphatic hydrocarbons, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, 1, Examples thereof include chlorofluorocarbons such as 1-difluoroethane and monochlorodifluoromethane, and inorganic gases such as carbon dioxide and nitrogen. Among them, dimethyl ether, propane, normal butane, isobutane, and carbon dioxide are preferable, propane, normal butane, isobutane, and carbon dioxide are more preferable, and normal butane, isobutane, and carbon dioxide are particularly preferable. In addition, a foaming agent may be used independently or 2 or more types may be used together.
If the amount of the foaming agent charged into the container is too small, the foamed particles may not be foamed to a desired expansion ratio. If the amount of the foaming agent is too large, the foaming agent acts as a plasticizer, so that the viscoelasticity of the base resin is excessively lowered, the foamability is lowered, and good foamed particles may not be obtained. Accordingly, the amount of the blowing agent is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, and particularly preferably 0.3 to 3 parts by weight with respect to 100 parts by weight of the raw material resin.
Furthermore, as a manufacturing method of expanded particle, the method of heating with a heating medium like water vapor | steam in the container which can be sealed is mentioned. Examples of heating conditions include a gauge pressure of 0.3 to 0.5 MPa, a temperature of 120 to 159 ° C., and 10 to 180 seconds.
The particle diameter of the expanded particles can be changed by changing the diameter of a multi-nozzle mold attached to the front end of the extruder.
(2)発泡成形体
(2-1)基材樹脂
 発泡成形体を構成する基材樹脂は、上記発泡粒子の基材樹脂と同様である。
(2-2)物性
 発泡成形体は、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備えている。
 更に、発泡成形体は、複数の発泡粒子から構成されている。個々の発泡粒子は、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備えている。
 また、発泡粒子1つに対する大気泡の数は特に限定されず、複数個であってもよいが、多過ぎると気泡率が高くなり、発泡成形体の機械的物性の低下を招くことになる。このようなことから、大気泡の気泡径にも因るが、発泡粒子が、その1つにおいて、唯1つの大気泡を有するのが好ましい。
 また、小気泡の平均気泡径と大気泡の平均気泡径とは300μm以上の差があることが好ましい。この差があることで、機械的物性の向上した発泡成形体を与える発泡粒子を提供できる。差は300~600μmでもよい。差は、300μm、350μm、400μm、450μm、500μm、550μm及び600μmを取り得る。ここで、小気泡の平均気泡径は100~250μmの範囲内に存在してもよく、大気泡の平均気泡径は350~900μmの範囲内に存在してもよい。小気泡の平均気泡径は100μm、150μm、200μm及び250μmを取り得、大気泡の平均気泡径は350μm、400μm、500μm、600μm、700μm、800μm及び900μmを取り得る。
(2) Foam molded body (2-1) Base resin The base resin constituting the foam molded body is the same as the base resin of the foamed particles.
(2-2) Physical properties The foamed molded article is a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at a magnification of 30 times. And.
Further, the foam molded body is composed of a plurality of foam particles. Each expanded particle is provided with a small bubble having a bubble diameter of 50 μm or more and less than 300 μm and a large bubble having a bubble diameter of 300 μm or more and 2 mm or less in a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at 30 times. .
Further, the number of large bubbles per one expanded particle is not particularly limited and may be plural. However, if the number is too large, the bubble rate is increased, and the mechanical properties of the foamed molded product are lowered. For this reason, it is preferable that the expanded particle has only one large bubble in one of them, although it depends on the bubble diameter of the large bubble.
Moreover, it is preferable that there is a difference of 300 μm or more between the average bubble diameter of small bubbles and the average bubble diameter of large bubbles. Due to this difference, it is possible to provide foamed particles that give a foamed molded article having improved mechanical properties. The difference may be 300-600 μm. The difference can be 300 μm, 350 μm, 400 μm, 450 μm, 500 μm, 550 μm and 600 μm. Here, the average bubble diameter of small bubbles may be in the range of 100 to 250 μm, and the average bubble diameter of large bubbles may be in the range of 350 to 900 μm. The average bubble diameter of small bubbles can be 100 μm, 150 μm, 200 μm and 250 μm, and the average bubble diameter of large bubbles can be 350 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm and 900 μm.
 融着した発泡粒子の外形は、発泡成形体を維持できさえすれば特に限定されない。
 発泡成形体は、30~2倍の倍数を有することが好ましい。倍数が30倍より大きい場合、機械的物性が不十分となることがある。2倍より小さい場合、重量が増えるため発泡の利点が小さくなることがある。倍数は、27~3倍がより好ましく、25~3倍が更に好ましく、25~5倍が特に好ましく、20~5倍が特により好ましい。
 したがって、発泡成形体は、0.046~0.23g/cm(46~230kg/m)又は0.058~0.23g/cm(58~230kg/m)の密度を有することが好ましい。
The outer shape of the fused expanded particles is not particularly limited as long as the expanded molded body can be maintained.
The foamed molded article preferably has a multiple of 30 to 2 times. When the multiple is larger than 30 times, the mechanical properties may be insufficient. If it is less than 2 times, the advantage of foaming may be reduced due to increased weight. The multiple is more preferably 27 to 3 times, further preferably 25 to 3 times, particularly preferably 25 to 5 times, and particularly preferably 20 to 5 times.
Therefore, the foamed molded product may have a density of 0.046 to 0.23 g / cm 3 (46 to 230 kg / m 3 ) or 0.058 to 0.23 g / cm 3 (58 to 230 kg / m 3 ). preferable.
 発泡成形体における単位密度当たりの曲げ最大点応力は、0.012MPa/(kg/m)以上が好ましい。曲げ最大点応力が小さすぎると、発泡成形体が容易に破断することがある。発泡成形体における単位密度当たりの曲げ最大点応力は、0.015MPa/(kg/m)以上がより好ましい。
 発泡成形体における単位密度当たりの曲げ弾性率は、0.4MPa/(kg/m)以上が好ましい。曲げ弾性率が小さすぎると、発泡成形体の表面に繊維強化プラスチックのような表皮材を積層一体化する際に加えられる圧力によって発泡成形体が変形することがある。
 発泡成形体における単位密度当たりの5%圧縮応力は、0.007MPa/(kg/m)以上が好ましく、0.008MPa/(kg/m)以上がより好ましく、0.009MPa/(kg/m)以上が更に好ましい。5%圧縮応力が小さすぎると、発泡成形体の表面に繊維強化プラスチックのような表皮材を積層一体化する際に加えられる圧力によって発泡成形体が変形することがある。
 発泡成形体における単位密度当たりの圧縮弾性率は、0.3MPa/(kg/m)以上が好ましい。圧縮弾性率が小さすぎると、発泡成形体の表面に繊維強化プラスチックのような表皮材を積層一体化する際に加えられる圧力によって発泡成形体が変形することがある。
 また、小気泡の平均気泡径と大気泡の平均気泡径とは1450μm以上の差があってもよい。この差があることで、断熱性の向上した発泡成形体を提供できる。差は1450~1800μmでもよい。差は、1450μm、1500μm、1600μm、1700μm及び1800μmを取り得る。ここで、小気泡の平均気泡径は130~180μmの範囲内に存在してもよく、大気泡の平均気泡径は1580~1980μmの範囲内に存在してもよい。小気泡の平均気泡径は130μm、140μm、150μm、160μm、170μm及び180μmを取り得、大気泡の平均気泡径は1580μm、1600μm、1700μm、1800μm、1900μm及び1980μmを取り得る。
 発泡粒子は、その融着体から構成される発泡成形体に0.0350W/m・K以下の熱伝導率を与えるため、高い断熱性が求められる用途の発泡成形体を提供し得る。この断熱性の範囲は、特定の樹脂を基材樹脂として使用し、特定の気泡径の範囲の気泡を備える発泡粒子により実現可能である。熱伝導率は0.0345W/m・K以下であることが好ましい。
 また、小気泡の平均気泡径と大気泡の平均気泡径とは1000μm以上、1500μm未満の差があってもよい。この差があることで、曲げに強い発泡成形体を与える発泡粒子を提供できる。差は、1000μm、1100μm、1200μm、1300μm、1400μm及び1499μmを取り得る。ここで、小気泡の平均気泡径は30~100μmの範囲内に存在してもよく、大気泡の平均気泡径は1200~1800μmの範囲内に存在してもよい。小気泡の平均気泡径は30μm、50μm、70μm及び100μmを取り得、大気泡の平均気泡径は1200μm、1300μm、1400μm、1500μm及び1600μmを取り得る。
 発泡粒子は、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与えるため、曲げに強い発泡成形体を提供し得る。この最大点応力の範囲は、特定の樹脂を基材樹脂として使用し、特定の気泡径の範囲の気泡を備える発泡粒子により実現可能である。最大点応力は、1.0MPa以上であることが好ましく、1.5MPa以上であることがより好ましい。
The bending maximum point stress per unit density in the foam molded article is preferably 0.012 MPa / (kg / m 3 ) or more. If the bending maximum point stress is too small, the foamed molded product may be easily broken. As for the bending maximum point stress per unit density in a foaming molding, 0.015 Mpa / (kg / m < 3 >) or more is more preferable.
The flexural modulus per unit density in the foamed molded product is preferably 0.4 MPa / (kg / m 3 ) or more. If the flexural modulus is too small, the foamed molded product may be deformed by pressure applied when a skin material such as fiber reinforced plastic is laminated and integrated on the surface of the foamed molded product.
5% compressive stress per unit density in the foam molded article is preferably from 0.007MPa / (kg / m 3) or more, 0.008MPa / (kg / m 3 ) or more preferably, 0.009 MPa / (kg / m 3 ) or more is more preferable. If the 5% compressive stress is too small, the foam molded body may be deformed by the pressure applied when a skin material such as fiber reinforced plastic is laminated and integrated on the surface of the foam molded body.
The compression elastic modulus per unit density in the foam molded article is preferably 0.3 MPa / (kg / m 3 ) or more. If the compression elastic modulus is too small, the foam molded body may be deformed by the pressure applied when a skin material such as fiber reinforced plastic is laminated and integrated on the surface of the foam molded body.
Further, there may be a difference of 1450 μm or more between the average bubble diameter of small bubbles and the average bubble diameter of large bubbles. Due to this difference, a foamed molded product with improved heat insulation can be provided. The difference may be 1450-1800 μm. The difference can take 1450 μm, 1500 μm, 1600 μm, 1700 μm and 1800 μm. Here, the average bubble diameter of small bubbles may be in the range of 130 to 180 μm, and the average bubble diameter of large bubbles may be in the range of 1580 to 1980 μm. The average bubble diameter of small bubbles can be 130 μm, 140 μm, 150 μm, 160 μm, 170 μm and 180 μm, and the average bubble diameter of large bubbles can be 1580 μm, 1600 μm, 1700 μm, 1800 μm, 1900 μm and 1980 μm.
Since the expanded particles give a thermal conductivity of 0.0350 W / m · K or less to the expanded molded body composed of the fusion-bonded body, it is possible to provide a expanded molded body for applications requiring high heat insulation. This heat insulating range can be realized by using foamed particles that use a specific resin as a base resin and have bubbles in a specific cell diameter range. The thermal conductivity is preferably 0.0345 W / m · K or less.
Further, there may be a difference of 1000 μm or more and less than 1500 μm between the average bubble diameter of small bubbles and the average bubble diameter of large bubbles. Due to this difference, it is possible to provide foamed particles that give a foamed molded product that is resistant to bending. The difference can be 1000 μm, 1100 μm, 1200 μm, 1300 μm, 1400 μm and 1499 μm. Here, the average bubble diameter of small bubbles may be in the range of 30 to 100 μm, and the average bubble diameter of large bubbles may be in the range of 1200 to 1800 μm. The average bubble diameter of small bubbles can be 30 μm, 50 μm, 70 μm and 100 μm, and the average bubble diameter of large bubbles can be 1200 μm, 1300 μm, 1400 μm, 1500 μm and 1600 μm.
Since the foamed particles give a maximum point stress by a bending test of 1.0 MPa or more to the foamed molded body composed of the fused body, a foamed molded body resistant to bending can be provided. The range of the maximum point stress can be realized by using foamed particles that use a specific resin as a base resin and have bubbles in a specific bubble diameter range. The maximum point stress is preferably 1.0 MPa or more, and more preferably 1.5 MPa or more.
(2-3)製造方法
 発泡成形体の製造方法としては、上記発泡粒子を金型のキャビティ内に充てんし、キャビティ内に加熱媒体を供給して、発泡粒子を加熱して再発泡させ、再発泡させた発泡粒子同士をこれらの発泡圧力によって互いに熱融着一体化させることによって発泡成形体を得る方法が挙げられる。加熱媒体としては、例えば、水蒸気、熱風、温水等が挙げられ、水蒸気が好ましい。
(2-3) Manufacturing Method As a manufacturing method of a foamed molded article, the above-mentioned foamed particles are filled into a cavity of a mold, a heating medium is supplied into the cavity, the foamed particles are heated and re-foamed, There is a method of obtaining a foamed molded article by thermally fusing the foamed foamed particles together with these foaming pressures. Examples of the heating medium include water vapor, hot air, hot water, and the like, and water vapor is preferable.
(2-4)用途
 発泡成形体は、軽量性、耐熱性、断熱性及び機械的物性に優れており、特に、高温環境下での耐荷重性に優れている。そのため、例えば、自動車、航空機、鉄道車輛、船舶等の輸送機器の部品に好適に用いることができる。自動車の部品としては、例えば、エンジン付近に用いられる部品、外装材等が挙げられる。
 本発明によれば、本発明の発泡成形体から構成される自動車用部品が提供され、その自動車用部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。
(2-4) Applications The foamed molded article is excellent in light weight, heat resistance, heat insulation, and mechanical properties, and particularly excellent in load resistance in a high temperature environment. Therefore, for example, it can be suitably used for parts of transportation equipment such as automobiles, airplanes, railway vehicles, and ships. Examples of automobile parts include parts used in the vicinity of the engine and exterior materials.
According to the present invention, there is provided an automotive part composed of the foamed molded article of the present invention. Examples of the automotive part include a floor panel, a roof, a bonnet, a fender, an under cover, a wheel, a steering wheel, and a container. (Housing), hood panel, suspension arm, bumper, sun visor, trunk lid, luggage box, seat, door, cowl and other parts.
 発泡成形体の表面に表皮材を積層一体化させて強化複合体として用いてもよい。発泡成形体が発泡シートである場合、発泡成形体の両面に積層一体化されている必要はなく、発泡成形体の両面のうち少なくとも一方の面に表皮材が積層一体化されていればよい。表皮材の積層は、強化複合体の用途に応じて決定すればよい。なかでも、強化複合体の表面硬度や機械的強度を考慮すると、発泡成形体の厚み方向における両面のそれぞれに表皮材が積層一体化されていることが好ましい。
 表皮材としては、特に限定されず、繊維強化プラスチック、金属シート、合成樹脂フィルム等が挙げられる。この内、繊維強化プラスチックが好ましい。繊維強化プラスチックを表皮材とする強化複合体を繊維強化複合体と称する。
 繊維強化プラスチックを構成している強化繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維等の無機繊維;ステンレス繊維、スチール繊維等の金属繊維;アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維等の有機繊維;ボロン繊維が挙げられる。強化繊維は、一種単独で用いられてもよく、二種以上が併用されてもよい。なかでも、炭素繊維、ガラス繊維及びアラミド繊維が好ましく、炭素繊維がより好ましい。これらの強化繊維は、軽量であるにも関わらず優れた機械的物性を有している。
A skin material may be laminated and integrated on the surface of the foamed molded product to be used as a reinforced composite. When the foamed molded body is a foamed sheet, it is not necessary to be laminated and integrated on both surfaces of the foamed molded body, and the skin material only needs to be laminated and integrated on at least one surface of both surfaces of the foamed molded body. The lamination of the skin material may be determined according to the use of the reinforced composite. Among these, in consideration of the surface hardness and mechanical strength of the reinforced composite, it is preferable that the skin material is laminated and integrated on each of both surfaces in the thickness direction of the foamed molded product.
The skin material is not particularly limited, and examples thereof include fiber reinforced plastics, metal sheets, and synthetic resin films. Of these, fiber reinforced plastic is preferred. A reinforced composite using a fiber reinforced plastic as a skin material is referred to as a fiber reinforced composite.
The reinforcing fibers constituting the fiber reinforced plastic include glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, Tyranno fibers, basalt fibers, ceramic fibers and other inorganic fibers; stainless steel fibers, steel fibers and other metal fibers; aramid Organic fibers such as fibers, polyethylene fibers, polyparaphenylene benzoxazole (PBO) fibers; and boron fibers. Reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fiber, glass fiber, and aramid fiber are preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical properties despite being lightweight.
 強化繊維は、所望の形状に加工された強化繊維基材として用いられることが好ましい。強化繊維基材としては、強化繊維を用いてなる織物、編物、不織布、及び強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる面材等が挙げられる。織物の織り方としては、平織、綾織、朱子織等が挙げられる。また、糸としては、ポリアミド樹脂糸、ポリエステル樹脂糸等の合成樹脂糸、及びガラス繊維糸のようなステッチ糸が挙げられる。
 強化繊維基材は、一枚の強化繊維基材のみを積層せずに用いてもよく、複数枚の強化繊維基材を積層して積層強化繊維基材として用いてもよい。複数枚の強化繊維基材を積層した積層強化繊維基材としては、(1)一種のみの強化繊維基材を複数枚用意し、これらの強化繊維基材を積層した積層強化繊維基材、(2)複数種の強化繊維基材を用意し、これらの強化繊維基材を積層した積層強化繊維基材、(3)強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる強化繊維基材を複数枚用意し、これらの強化繊維基材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた強化繊維基材同士を糸で一体化(縫合)してなる積層強化繊維基材等が用いられる。
The reinforcing fiber is preferably used as a reinforcing fiber substrate processed into a desired shape. Examples of the reinforcing fiber base material include woven fabrics, knitted fabrics, non-woven fabrics, and face materials obtained by binding (stitching) fiber bundles (strands) obtained by aligning reinforcing fibers in one direction with yarns. . Examples of the weaving method include plain weave, twill weave and satin weave. Examples of the yarn include a synthetic resin yarn such as a polyamide resin yarn and a polyester resin yarn, and a stitch yarn such as a glass fiber yarn.
The reinforcing fiber substrate may be used without laminating only one reinforcing fiber substrate, or a plurality of reinforcing fiber substrates may be laminated and used as a laminated reinforcing fiber substrate. As a laminated reinforcing fiber base material in which a plurality of reinforcing fiber base materials are laminated, (1) a plurality of reinforcing fiber base materials of only one kind are prepared, and a laminated reinforcing fiber base material in which these reinforcing fiber base materials are laminated, 2) A plurality of types of reinforcing fiber base materials are prepared, a laminated reinforcing fiber base material obtained by laminating these reinforcing fiber base materials, and (3) a fiber bundle (strand) in which the reinforcing fibers are aligned in one direction is bound with a thread ( A plurality of reinforcing fiber base materials prepared by stitching) are prepared, and these reinforcing fiber base materials are superposed so that the fiber directions of the fiber bundles are different from each other. For example, a laminated reinforcing fiber base material integrated (stitched) with is used.
 繊維強化プラスチックは強化繊維に合成樹脂が含浸されてなるものである。含浸させた合成樹脂によって強化繊維同士を結着一体化させている。
 強化繊維に合成樹脂を含浸させる方法としては、特に限定されず、例えば、(1)強化繊維を合成樹脂中に浸漬する方法、(2)強化繊維に合成樹脂を塗布する方法等が挙げられる。
 強化繊維に含浸させる合成樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のいずれも用いることができ、熱硬化性樹脂が好ましく用いられる。強化繊維に含浸させる熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂とを予備重合した樹脂等が挙げられ、耐熱性、衝撃吸収性又は耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。熱硬化性樹脂には、硬化剤、硬化促進剤等の添加剤が含有されていてもよい。なお、熱硬化性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
The fiber reinforced plastic is obtained by impregnating a reinforced fiber with a synthetic resin. The reinforcing fibers are bonded and integrated by the impregnated synthetic resin.
The method of impregnating the reinforcing fiber with the synthetic resin is not particularly limited, and examples thereof include (1) a method of immersing the reinforcing fiber in the synthetic resin, and (2) a method of applying the synthetic resin to the reinforcing fiber.
As the synthetic resin impregnated into the reinforcing fiber, either a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used. The thermosetting resin impregnated into the reinforcing fiber is not particularly limited, and is an epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide. Examples thereof include a resin obtained by prepolymerizing a resin and a cyanate ester resin, and an epoxy resin and a vinyl ester resin are preferable because they are excellent in heat resistance, shock absorption or chemical resistance. The thermosetting resin may contain additives such as a curing agent and a curing accelerator. In addition, a thermosetting resin may be used independently and 2 or more types may be used together.
 また、強化繊維に含浸させる熱可塑性樹脂としては、特に限定されず、オレフィン系樹脂、ポリエステル系樹脂、熱可塑性エポキシ樹脂、アミド系樹脂、熱可塑性ポリウレタン樹脂、サルファイド系樹脂、アクリル系樹脂等が挙げられ、発泡成形体との接着性又は繊維強化プラスチックを構成している強化繊維同士の接着性に優れていることから、ポリエステル系樹脂、熱可塑性エポキシ樹脂が好ましい。なお、熱可塑性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
 熱可塑性エポキシ樹脂としては、エポキシ化合物同士の重合体又は共重合体であって直鎖構造を有する重合体や、エポキシ化合物と、このエポキシ化合物と重合し得る単量体との共重合体であって直鎖構造を有する共重合体が挙げられる。具体的には、熱可塑性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられ、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂が好ましい。なお、熱可塑性エポキシ樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
The thermoplastic resin impregnated into the reinforcing fiber is not particularly limited, and examples thereof include olefin resins, polyester resins, thermoplastic epoxy resins, amide resins, thermoplastic polyurethane resins, sulfide resins, acrylic resins, and the like. Polyester resins and thermoplastic epoxy resins are preferred because they are excellent in adhesiveness with the foamed molded article or adhesiveness between the reinforcing fibers constituting the fiber reinforced plastic. In addition, a thermoplastic resin may be used independently and 2 or more types may be used together.
The thermoplastic epoxy resin may be a polymer or copolymer of epoxy compounds having a linear structure, or a copolymer of an epoxy compound and a monomer that can be polymerized with the epoxy compound. And a copolymer having a linear structure. Specifically, as the thermoplastic epoxy resin, for example, bisphenol A type epoxy resin, bisphenol fluorene type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, cyclic aliphatic type epoxy resin, long chain aliphatic type An epoxy resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin and the like can be mentioned, and a bisphenol A type epoxy resin and a bisphenol fluorene type epoxy resin are preferable. In addition, a thermoplastic epoxy resin may be used independently and 2 or more types may be used together.
 熱可塑性ポリウレタン樹脂としては、ジオールとジイソシアネートとを重合させて得られる直鎖構造を有する重合体が挙げられる。ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等が挙げられる。ジオールは、単独で用いられても二種以上が併用されてもよい。ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環式ジイソシアネートが挙げられる。ジイソシアネートは、単独で用いられても二種以上が併用されてもよい。なお、熱可塑性ポリウレタン樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
 繊維強化プラスチック中における合成樹脂の含有量は、20~70重量%が好ましい。含有量が20重量%未満の場合、強化繊維同士の結着性や繊維強化プラスチックと発泡成形体との接着性が不十分となり、繊維強化プラスチックの機械的物性や繊維強化複合体の機械的強度を十分に向上できないことがある。70重量%より多い場合、繊維強化プラスチックの機械的物性が低下して、繊維強化複合体の機械的強度を十分に向上できないことがある。含有量は30~60重量%がより好ましい。
 繊維強化プラスチックの厚みは、0.02~2mmが好ましく、0.05~1mmがより好ましい。厚みがこの範囲内である繊維強化プラスチックは、軽量であるにも関わらず機械的物性に優れている。
 繊維強化プラスチックの目付は、50~4000g/mが好ましく、100~1000g/mがより好ましい。目付がこの範囲内である繊維強化プラスチックは、軽量であるにも関わらず機械的物性に優れている。
Examples of the thermoplastic polyurethane resin include a polymer having a linear structure obtained by polymerizing diol and diisocyanate. Examples of the diol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and the like. Diols may be used alone or in combination of two or more. Examples of the diisocyanate include aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Diisocyanate may be used independently or 2 or more types may be used together. In addition, a thermoplastic polyurethane resin may be used independently and 2 or more types may be used together.
The content of the synthetic resin in the fiber reinforced plastic is preferably 20 to 70% by weight. When the content is less than 20% by weight, the binding property between the reinforcing fibers and the adhesion between the fiber reinforced plastic and the foamed molded article are insufficient, and the mechanical properties of the fiber reinforced plastic and the mechanical strength of the fiber reinforced composite are obtained. May not be sufficiently improved. When the amount is more than 70% by weight, the mechanical properties of the fiber reinforced plastic may be lowered, and the mechanical strength of the fiber reinforced composite may not be sufficiently improved. The content is more preferably 30 to 60% by weight.
The thickness of the fiber reinforced plastic is preferably 0.02 to 2 mm, more preferably 0.05 to 1 mm. A fiber reinforced plastic having a thickness within this range is excellent in mechanical properties despite being lightweight.
Basis weight of the fiber-reinforced plastics, preferably 50 ~ 4000g / m 2, more preferably 100 ~ 1000g / m 2. A fiber reinforced plastic having a basis weight within this range is excellent in mechanical properties despite being lightweight.
 次に、強化複合体の製造方法を説明する。発泡成形体の表面に表皮材を積層一体化させて強化複合体を製造する方法としては、特に限定されず、例えば、(1)発泡成形体の表面に接着剤を介して表皮材を積層一体化する方法、(2)発泡成形体の表面に、強化繊維に熱可塑性樹脂が含浸されてなる繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱可塑性樹脂をバインダーとして発泡成形体の表面に繊維強化プラスチック形成材を繊維強化プラスチックとして積層一体化する方法、(3)発泡成形体の表面に、強化繊維に未硬化の熱硬化性樹脂が含浸された繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱硬化性樹脂をバインダーとして、熱硬化性樹脂を硬化させて形成された繊維強化プラスチックを発泡成形体の表面に積層一体化する方法、(4)発泡成形体の表面に、加熱されて軟化状態の表皮材を配設し、発泡成形体の表面に表皮材を押圧させることによって表皮材を必要に応じて発泡成形体の表面に沿って変形させながら発泡成形体の表面に積層一体化させる方法、(5)繊維強化プラスチックの成形で一般的に適用される方法等が挙げられる。発泡成形体は高温環境下における耐荷重性のような機械的物性に優れている観点では、上記(4)の方法も好適に用いることができる。
 繊維強化プラスチックの成形で用いられる方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法等が挙げられる。
Next, a method for producing a reinforced composite will be described. The method for producing a reinforced composite by laminating and integrating the skin material on the surface of the foam molded body is not particularly limited. For example, (1) the skin material is laminated and integrated on the surface of the foam molded body via an adhesive. (2) A foam-molded article obtained by laminating a fiber-reinforced plastic forming material in which a reinforcing fiber is impregnated with a thermoplastic resin on the surface of the foam-molded article, and using the thermoplastic resin impregnated in the reinforcing fiber as a binder (3) Laminating a fiber reinforced plastic forming material in which a reinforcing fiber is impregnated with an uncured thermosetting resin on the surface of the foam molded body And a method of laminating and integrating the fiber reinforced plastic formed by curing the thermosetting resin with the thermosetting resin impregnated in the reinforcing fiber on the surface of the foam molded body (4) A skin material that is heated and softened is disposed on the surface of the foam molded body, and the skin material is deformed along the surface of the foam molded body as necessary by pressing the skin material against the surface of the foam molded body. However, a method of laminating and integrating on the surface of the foamed molded product, (5) a method generally applied in molding of fiber reinforced plastics, and the like can be mentioned. From the viewpoint that the foamed molded article is excellent in mechanical properties such as load resistance under a high temperature environment, the method (4) can also be suitably used.
Examples of the method used for molding the fiber reinforced plastic include an autoclave method, a hand lay-up method, a spray-up method, a PCM (Prepre Compression Molding) method, an RTM (Resin Transfer Molding) method, a VaRTM (Vacuum Assisted Resin Transfer Transfer). Law.
 このようにして得られた繊維強化複合体は、耐熱性、機械的強度及び軽量性に優れている。そのため、自動車、航空機、鉄道車輛、船舶等の輸送機器分野、家電分野、情報端末分野、家具の分野等の広範な用途に用いることができる。
 例えば、繊維強化複合体は、輸送機器の部品、及び、輸送機器の本体を構成する構造部品を含めた輸送機器構成用部品(特に自動車用部品)、風車翼、ロボットアーム、ヘルメット用緩衝材、農産箱、保温保冷容器等の輸送容器、産業用ヘリコプターのローターブレード、部品梱包材として好適に用いることができる。
 本発明によれば、本発明の繊維強化複合体から構成される自動車用部品が提供され、その自動車用部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。
The fiber reinforced composite thus obtained is excellent in heat resistance, mechanical strength and lightness. Therefore, it can be used in a wide range of applications such as the field of transportation equipment such as automobiles, airplanes, railway vehicles, ships, etc., the household appliances field, the information terminal field, and the furniture field.
For example, the fiber reinforced composite is composed of parts for transportation equipment, parts for transportation equipment including structural parts constituting the main body of transportation equipment (particularly parts for automobiles), windmill blades, robot arms, cushioning materials for helmets, It can be suitably used as an agricultural product box, a transport container such as a thermal insulation container, a rotor blade of an industrial helicopter, or a component packing material.
According to the present invention, there is provided an automotive part composed of the fiber-reinforced composite of the present invention. Examples of the automotive part include a floor panel, a roof, a bonnet, a fender, an under cover, a wheel, a steering wheel, Examples include containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage boxes, seats, doors, cowls and the like.
 以下に実施例を挙げて本発明を更に詳細に説明するが、本実施例に何ら限定されるものでない。まず、実施例、参考例及び比較例中の測定方法及び評価方法について説明する。
(ガラス転移温度)
 ガラス転移温度は、JIS K7121:1987「プラスチックの転移温度測定方法」に記載されている方法で測定した。但し、サンプリング方法・温度条件に関しては以下のように行った。
 示差走査熱量計装置 DSC6220型(エスアイアイナノテクノロジー社製)を用いアルミニウム製測定容器の底にすきまのないよう試料を約6mg充てんした。試料を、窒素ガス流量20mL/minの下、20℃/minの昇温速度で30℃から220℃まで昇温した。10分間保持後速やかに試料を取出し、25±10℃の環境下にて放冷させた後、20℃/minの昇温速度で30℃から220℃まで昇温した時に得られたDSC曲線よりガラス転移温度(開始点)を算出した。この時に基準物質としてアルミナを用いた。このガラス転移開始温度は規格(9.3「ガラス転移温度の求め方」)より求めた。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples. First, measurement methods and evaluation methods in Examples, Reference Examples and Comparative Examples will be described.
(Glass-transition temperature)
The glass transition temperature was measured by the method described in JIS K7121: 1987 “Method for measuring plastic transition temperature”. However, the sampling method and temperature conditions were as follows.
Using a differential scanning calorimeter device DSC 6220 type (manufactured by SII Nano Technology), about 6 mg of the sample was filled so that there was no gap at the bottom of the aluminum measurement container. The sample was heated from 30 ° C. to 220 ° C. at a temperature increase rate of 20 ° C./min under a nitrogen gas flow rate of 20 mL / min. From the DSC curve obtained when the sample was quickly removed after being held for 10 minutes, allowed to cool in an environment of 25 ± 10 ° C., and then heated from 30 ° C. to 220 ° C. at a temperature increase rate of 20 ° C./min. The glass transition temperature (starting point) was calculated. At this time, alumina was used as a reference material. The glass transition start temperature was determined from the standard (9.3 “How to determine the glass transition temperature”).
(嵩密度及び嵩倍数)
 嵩密度は、JIS K6911:1995「熱硬化性プラスチック一般試験方法」に準拠して測定した。即ち、JIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて嵩密度を測定した。
 発泡粒子の嵩密度(kg/m)=〔試料を入れたメスシリンダーの重量(kg)-メスシリンダーの重量(kg)〕/〔メスシリンダーの容量(m)〕
 嵩倍数は、嵩密度の逆数に樹脂の密度を積算(乗算)した値とした。
(Bulk density and bulk multiple)
The bulk density was measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. That is, it measured using the apparent density measuring device based on JISK6911, and measured the bulk density based on the following formula.
Bulk density of expanded particles (kg / m 3 ) = [weight of measuring cylinder containing sample (kg) −weight of measuring cylinder (kg)] / [capacity of measuring cylinder (m 3 )]
The bulk multiple was a value obtained by integrating (multiplying) the resin density to the reciprocal of the bulk density.
(曲げ試験:密度ならびに最大点の荷重、応力、変位及びエネルギー)
 最大点の荷重、応力、変位及びエネルギーはJIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:たわみ特性の求め方」に準拠した方法により測定した。即ち、発泡成形体から、縦20mm×横25mm×高さ130mmの直方体形状の試験片を切り出した。測定には、テンシロン万能試験機(オリエンテック社製「UCT-10T」)を用いた。曲げ強度の曲げ最大点応力は、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS-237S Ver,1.00」)を用いて算出した。
 短冊状試験片を支持台に載置し、ロードセル1000N、試験速度10mm/min、支持台の先端治具5R、開き幅100mmの条件下で曲げ最大点応力を測定した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定した。各試験片の曲げ最大点応力の相加平均値をそれぞれ、発泡成形体の曲げ最大点応力とした。
 また、単位密度当たりの曲げ最大点応力は、曲げ最大点応力を発泡成形体の密度で除して算出した。
 なお、発泡成形体の密度(kg/m)は、発泡成形体から切り出した試験片の重量(a)と体積(b)を測定し、式(a)/(b)により求めた。
(Bending test: density and maximum point load, stress, displacement and energy)
The load, stress, displacement and energy at the maximum point were measured by a method in accordance with JIS K7221-1: 2006 “Rigid foamed plastics—Bending test—Part 1: Determination of flexural properties”. That is, a rectangular parallelepiped test piece having a length of 20 mm, a width of 25 mm, and a height of 130 mm was cut out from the foamed molded body. For the measurement, a Tensilon universal testing machine ("UCT-10T" manufactured by Orientec Co., Ltd.) was used. The bending maximum point stress of the bending strength was calculated using a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Softbrain).
The strip-shaped test piece was placed on a support table, and the maximum bending point stress was measured under the conditions of a load cell 1000N, a test speed of 10 mm / min, a tip jig 5R of the support table, and an opening width of 100 mm. The number of test pieces shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition over a standard atmosphere of 2nd grade for 16 hours. Measurement was performed under a standard atmosphere. The arithmetic mean value of the bending maximum point stress of each test piece was taken as the bending maximum point stress of the foamed molded product.
Moreover, the bending maximum point stress per unit density was calculated by dividing the bending maximum point stress by the density of the foamed molded product.
In addition, the density (kg / m 3 ) of the foam molded article was obtained by the formula (a) / (b) by measuring the weight (a) and volume (b) of the test piece cut out from the foam molded article.
(曲げ試験:弾性率)
 曲げ弾性率はJIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:たわみ特性の求め方」に準拠した方法により測定した。即ち、発泡成形体から、縦20mm×横25mm×高さ130mmの直方体形状の試験片を切り出した。測定には、テンシロン万能試験機(オリエンテック社製「UCT-10T」)を用いた。曲げ弾性率は、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS-237S Ver,1.00」)を用いて算出した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定した。各試験片の圧縮弾性率の相加平均値をそれぞれ、発泡成形体の曲げ弾性率とした。
 曲げ弾性率は、荷重-変形曲線の始めの直線部分を用いて次式により計算した。
  E=Δσ/Δε
  E:曲げ弾性率(MPa)
  Δσ:直線上の2点間の応力の差(MPa)
  Δε:同じ2点間の変形の差(%)
 また、単位密度当たりの曲げ弾性率は、曲げ弾性率を発泡成形体の密度で除して算出した。
(Bending test: elastic modulus)
The flexural modulus was measured by a method in accordance with JIS K7221-1: 2006 “Hard foamed plastics—Bending test—Part 1: Determination of flexural properties”. That is, a rectangular parallelepiped test piece having a length of 20 mm, a width of 25 mm, and a height of 130 mm was cut out from the foamed molded body. For the measurement, a Tensilon universal testing machine ("UCT-10T" manufactured by Orientec Co., Ltd.) was used. The flexural modulus was calculated using a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Soft Brain). The number of test pieces shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition over a standard atmosphere of 2nd grade for 16 hours. Measurement was performed under a standard atmosphere. The arithmetic average value of the compression elastic modulus of each test piece was used as the bending elastic modulus of the foamed molded product.
The flexural modulus was calculated by the following equation using the first linear part of the load-deformation curve.
E = Δσ / Δε
E: Flexural modulus (MPa)
Δσ: Stress difference between two points on the straight line (MPa)
Δε: Difference in deformation between the same two points (%)
The flexural modulus per unit density was calculated by dividing the flexural modulus by the density of the foamed molded product.
(圧縮試験:密度ならびに5%、10%及び25%応力)
 発泡成形体の5%圧縮応力、10%圧縮応力、25%圧縮応力は、JIS K7220:2006「硬質発泡プラスチック-圧縮特性の求め方」記載の方法により測定した。即ち、テンシロン万能試験機(オリエンテック社製「UCT-10T」)、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS-237S Ver,1.00」)を用いて、試験体サイズ断面50mm×50mm、厚み25mmで圧縮速度を2.5mm/minとして圧縮強さ(5%変形圧縮応力、25%変形圧縮応力、圧縮弾性率)を測定した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定を行った。各試験片の圧縮強さ(5%変形圧縮応力、10%変形圧縮応力、25%変形圧縮応力)の相加平均値をそれぞれ、発泡成形体の5%圧縮応力、10%圧縮応力、25%圧縮応力とした。
(5%(10%、25%)変形圧縮応力)
 5%(10%、25%)変形圧縮応力は次式により算出した。なお、()内は10%変形圧縮応力、25%変形圧縮応力を算出するときの条件とした。
  σ5(10、25)=F5(10、25)/A
  σ5(10、25):5%(10%、25%)変形圧縮応力(MPa)
  F5(10、25):5%(10%、25%)変形時の力(N)
  A:試験片の初めの断面積(mm
 また、単位密度当たりの5%変形圧縮応力は、5%変形圧縮応力を発泡成形体の密度で除して算出した。
(Compression test: density and 5%, 10% and 25% stress)
The 5% compressive stress, 10% compressive stress, and 25% compressive stress of the foam molded article were measured by the method described in JIS K7220: 2006 “Rigid Foamed Plastics—How to Obtain Compression Properties”. That is, using a Tensilon universal testing machine ("UCT-10T" manufactured by Orientec Co., Ltd.) and a universal testing machine data processing system ("UTPS-237S Ver, 1.00" manufactured by Softbrain), the specimen size cross section is 50 mm. The compression strength (5% deformation compression stress, 25% deformation compression stress, compression elastic modulus) was measured with a compression rate of 2.5 mm / min with a thickness of 50 mm and a thickness of 25 mm. The number of specimens shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition for 16 hours under a second grade standard atmosphere. Measurements were performed under a standard atmosphere. The arithmetic mean values of the compressive strength (5% deformation compression stress, 10% deformation compression stress, 25% deformation compression stress) of each test piece are respectively 5% compression stress, 10% compression stress, and 25% of the foam molded article. Compressive stress was assumed.
(5% (10%, 25%) deformation compressive stress)
5% (10%, 25%) deformation compressive stress was calculated by the following equation. The values in parentheses are the conditions for calculating 10% deformation compression stress and 25% deformation compression stress.
σ5 (10, 25) = F5 (10, 25) / A 0
σ5 (10, 25): 5% (10%, 25%) Deformation compressive stress (MPa)
F5 (10, 25): 5% (10%, 25%) Deformation force (N)
A 0 : Initial cross-sectional area of the test piece (mm 2 )
The 5% deformation compressive stress per unit density was calculated by dividing the 5% deformation compressive stress by the density of the foamed molded product.
(圧縮試験:弾性率)
 発泡成形体の圧縮弾性率は、JIS K7220:2006「硬質発泡プラスチック-圧縮特性の求め方」記載の方法により測定した。即ち、テンシロン万能試験機(オリエンテック社製「UCT-10T」)、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS-237S Ver,1.00」)を用いて、試験体サイズ断面50mm×50mm、厚み25mmで圧縮速度を2.5mm/minとして圧縮弾性率を測定した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定を行った。各試験片の圧縮弾性率の相加平均値を、発泡成形体の圧縮弾性率とした。
(圧縮弾性率)
 圧縮弾性率は、荷重-変形曲線の始めの直線部分を用いて次式により計算した。
  E=Δσ/Δε
  E:圧縮弾性率(MPa)
  Δσ:直線上の2点間の応力の差(MPa)
  Δε:同じ2点間の変形の差(%)
 また、単位密度当たりの圧縮弾性率は、圧縮弾性率を発泡成形体の密度で除して算出した。
(Compression test: elastic modulus)
The compression modulus of the foamed molded product was measured by the method described in JIS K7220: 2006 “Hard foamed plastics—How to obtain compression characteristics”. That is, using a Tensilon universal testing machine ("UCT-10T" manufactured by Orientec Co., Ltd.) and a universal testing machine data processing system ("UTPS-237S Ver, 1.00" manufactured by Softbrain), the specimen size cross section is 50 mm. The compression elastic modulus was measured at a compression speed of 2.5 mm / min with × 50 mm and a thickness of 25 mm. The number of specimens shall be 5 or more, and the same as JIS K 7100: 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%) after adjusting the condition for 16 hours under a second grade standard atmosphere. Measurements were performed under a standard atmosphere. The arithmetic average value of the compression elastic modulus of each test piece was used as the compression elastic modulus of the foamed molded article.
(Compressive modulus)
The compression elastic modulus was calculated by the following equation using the first linear portion of the load-deformation curve.
E = Δσ / Δε
E: Compression modulus (MPa)
Δσ: Stress difference between two points on the straight line (MPa)
Δε: Difference in deformation between the same two points (%)
Further, the compression elastic modulus per unit density was calculated by dividing the compression elastic modulus by the density of the foamed molded product.
(基材樹脂の樹脂成分の割合)
 (1H-NMR)
 日本電子製 ECX400P型核磁気共鳴装置を用い、以下の条件で測定した。
 <測定条件>
・測定モード     シングルパルス
・パルス幅      45°(6.05μ秒)
・ポイント数     32k
・繰り返し時間    7.0秒
・積算回数      128回
・測定溶媒      重クロロホルム
・試料濃度      約20mg/0.6mL
・測定温度      50℃
・ケミカルシフト基準 クロロホルム:7.24ppm
・測定範囲      20ppm(-5ppm~15ppm)
・ウインドウ関数   exponnential(BF:0.12Hz)
 基材樹脂の組成比を、H-NMR測定から得られたスペクトルの各シグナルの積分強度比より算出した。なお、各シグナルの領域に不純物由来と推測されるシグナルが観測される場合には、計算の際、これらの寄与を無視した。
(Ratio of resin component of base resin)
( 1 H-NMR)
Measurement was performed under the following conditions using an ECX400P nuclear magnetic resonance apparatus manufactured by JEOL.
<Measurement conditions>
・ Measurement mode Single pulse ・ Pulse width 45 ° (6.05μsec)
・ Number of points 32k
・ Repetition time: 7.0 seconds ・ Number of integrations: 128 times ・ Measurement solvent: Deuterated chloroform ・ Sample concentration: Approx. 20 mg / 0.6 mL
Measurement temperature 50 ℃
・ Chemical shift standard Chloroform: 7.24ppm
・ Measurement range: 20ppm (-5ppm to 15ppm)
-Window function exponential (BF: 0.12 Hz)
The composition ratio of the base resin was calculated from the integrated intensity ratio of each signal in the spectrum obtained from 1 H-NMR measurement. In addition, when signals presumed to be derived from impurities were observed in each signal region, these contributions were ignored in the calculation.
(FT-IR)
 基材樹脂の吸光度比(D1780/D698、D1720/D698)を次の要領で測定した。
 無作為に選択した10個の各樹脂粒子について、赤外分光分析ATR測定法により表面分析を行って赤外吸収スペクトルを得た。この分析では、試料表面から数μm(約2μm)までの深さの範囲の赤外吸収スペクトルが得られた。各赤外吸収スペクトルから吸光度比(D1780/D698、D1720/D698)を算出し、算出した吸光度比の相加平均を吸光度比とした。
 吸光度D1780、D1720及びD698は、Thermo SCIENTIFIC社から商品名「フーリエ変換赤外分光光度計 Nicolet iS10」で販売されている測定装置に、ATRアクセサリーとしてThermo SCIENTIFIC社製「Smart-iTR」を接続して測定した。以下の条件にて赤外分光分析ATR測定を行った。
(FT-IR)
The absorbance ratio (D1780 / D698, D1720 / D698) of the base resin was measured as follows.
Each of 10 randomly selected resin particles was subjected to surface analysis by an infrared spectroscopic analysis ATR measurement method to obtain an infrared absorption spectrum. In this analysis, an infrared absorption spectrum having a depth ranging from the sample surface to several μm (about 2 μm) was obtained. The absorbance ratio (D1780 / D698, D1720 / D698) was calculated from each infrared absorption spectrum, and the arithmetic average of the calculated absorbance ratio was used as the absorbance ratio.
Absorbances D1780, D1720, and D698 are connected to a measuring device sold by Thermo SCIENTIFIC under the trade name “Fourier Transform Infrared Spectrophotometer Nicolet iS10” by connecting “Smart-iTR” manufactured by Thermo SCIENTIFIC as an ATR accessory. It was measured. Infrared spectroscopic analysis ATR measurement was performed under the following conditions.
 <測定条件>
・測定装置:フーリエ変換赤外分光光度計 Nicolet iS10(Thermo SCIENTIFIC社製)及び一回反射型水平状ATR Smart-iTR(Thermo SCIENTIFIC社製)
・ATRクリスタル:Diamond with ZnSe lens、角度=42°
・測定法:一回ATR法
・測定波数領域:4000cm-1~650cm-1
・測定深度の波数依存性:補正せず
・検出器:重水素化硫酸トリグリシン(DTGS)検出器及びKBrビームスプリッター・分解能:4cm-1
・積算回数:16回(バックグランド測定時も同様)
 ATR法では、試料と高屈折率結晶の密着度合によって測定で得られる赤外吸収スペクトルの強度が変化するため、ATRアクセサリーの「Smart-iTR」で掛けられる最大荷重を掛けて密着度合をほぼ均一にして測定を行った。
 以上の条件で得られた赤外線吸収スペクトルは、次のようにピーク処理をしてそれぞれのD1780、D1720及びD698を求めた。
 赤外吸収スペクトルから得られる1780cm-1での吸光度D1780は、無水マレイン酸中の2つのカルボニル基のC=Oによる逆対称の伸縮振動に由来する吸収スペクトルに対応する吸光度を意味していた。
 この吸光度の測定では、1780cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しなかった。吸光度D1780は、1920cm-1と1620cm-1を結ぶ直線をベースラインとして、1810cm-1と1745cm-1間の最大吸光度を意味していた。
<Measurement conditions>
Measurement apparatus: Fourier transform infrared spectrophotometer Nicolet iS10 (manufactured by Thermo SCIENTIFIC) and single reflection type horizontal ATR Smart-iTR (manufactured by Thermo SCIENTIFIC)
ATR crystal: Diamond with ZnSe lens, angle = 42 °
Measurement method: Single ATR method Measurement wave number range: 4000 cm −1 to 650 cm −1
-Wave depth dependence of measurement depth: No correction-Detector: Triglycine deuterated sulfate (DTGS) detector and KBr beam splitter-Resolution: 4 cm -1
・ Number of integration: 16 times (same for background measurement)
In the ATR method, the intensity of the infrared absorption spectrum obtained by measurement changes depending on the degree of adhesion between the sample and the high-refractive-index crystal. The measurement was performed.
The infrared absorption spectrum obtained under the above conditions was subjected to peak processing as follows to obtain D1780, D1720, and D698, respectively.
The absorbance D1780 at 1780 cm −1 obtained from the infrared absorption spectrum meant the absorbance corresponding to the absorption spectrum derived from the antisymmetric stretching vibration due to C═O of the two carbonyl groups in maleic anhydride.
In this measurement of absorbance, peak separation was not performed even when other absorption spectra overlapped at 1780 cm −1 . Absorbance D1780 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as the baseline, were mean maximum absorbance between 1810 cm -1 and 1745 cm -1.
 また、1720cm-1での吸光度D1720は、メタクリル酸メチル中に含まれるカルボニル基C=Oによる逆対称の伸縮振動に由来する吸収スペクトルに対応する吸光度を意味していた。
 この吸光度の測定では、1720cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しなかった。吸光度D1720は、1920cm-1と1620cm-1を結ぶ直線をベースラインとして、1745cm-1と1690cm-1間の最大吸光度を意味していた。
 698cm-1での吸光度D698は、スチレン中の1置換ベンゼン環中のC-Hの面外変角振動に由来する吸収スペクトルに対応する吸光度を意味していた。
 この吸光度の測定では、698cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しなかった。吸光度D698は、1510cm-1と810cm-1を結ぶ直線をベースラインとして、720cm-1と660cm-1間の最大吸光度を意味していた。
Further, the absorbance D1720 at 1720 cm −1 meant the absorbance corresponding to the absorption spectrum derived from the antisymmetric stretching vibration caused by the carbonyl group C═O contained in methyl methacrylate.
In this absorbance measurement, no peak separation was performed even when other absorption spectra overlapped at 1720 cm −1 . Absorbance D1720 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as the baseline, were mean maximum absorbance between 1745 cm -1 and 1690 cm -1.
Absorbance D698 at 698 cm −1 meant the absorbance corresponding to the absorption spectrum derived from the out-of-plane bending vibration of C—H in the monosubstituted benzene ring in styrene.
In this absorbance measurement, peak separation was not performed even when other absorption spectra overlapped at 698 cm −1 . Absorbance D698 is a straight line connecting the 1510 cm -1 and 810 cm -1 as a baseline had mean maximum absorbance between 720 cm -1 and 660 cm -1.
 スチレン、メタクリル酸メチル、無水マレイン酸比率(重量%)を、後述の検量線に基づいて、吸光度比(D1780/D698、D1720/D698)から算出した。なお、ピーク処理方法は前述の樹脂粒子と同様の方法を用いた。
 吸光度比からスチレンとメタクリル酸メチルの組成割合を求める方法としては、スチレン樹脂とメタクリル酸メチル樹脂とを所定の組成割合に均一に混合してなる複数種類の標準試料を作製した。
 具体的には、メタクリル酸メチルとスチレンとをそれぞれ0/100、20/80、40/60、50/50及び60/40の重量割合で計量した単量体を10mlのスクリューバイアルに入れ、ここに単量体100重量部に対して10重量部の2,2’-アゾビス(2,4-ジメチルバレロニトリル)を加えて単量体を溶解させた。得られた混合液を2ml試料管(φ7mm×122mm×190mm)に移し入れ、窒素パージした後に封管した。次にこれを65℃に設定したウォーターバスに入れ、10時間加熱して重合を完了させ、アンプルから取り出した重合体を標準試料とした。
 各標準試料について赤外分光分析ATR法により赤外線吸収スペクトルを得た後に吸光度比(D1780/D698)を算出した。そして、縦軸に組成割合(標準試料中のスチレン樹脂比率=重量%)を、横軸に吸光度比(D1780/D698)をとることで検量線を描いた。この検量線に基づいて、スチレン樹脂とメタクリル酸メチル樹脂の組成割合を求めることができた。
The ratio of styrene, methyl methacrylate and maleic anhydride (% by weight) was calculated from the absorbance ratio (D1780 / D698, D1720 / D698) based on the calibration curve described later. In addition, the peak processing method used the method similar to the above-mentioned resin particle.
As a method for determining the composition ratio of styrene and methyl methacrylate from the absorbance ratio, a plurality of types of standard samples prepared by uniformly mixing styrene resin and methyl methacrylate resin at a predetermined composition ratio were prepared.
Specifically, monomers measured by weight ratios of methyl methacrylate and styrene at a weight ratio of 0/100, 20/80, 40/60, 50/50, and 60/40, respectively, are placed in a 10 ml screw vial. 10 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) was added to 100 parts by weight of the monomer to dissolve the monomer. The obtained mixed solution was transferred to a 2 ml sample tube (φ7 mm × 122 mm × 190 mm), purged with nitrogen, and sealed. Next, this was put into a water bath set at 65 ° C. and heated for 10 hours to complete the polymerization, and the polymer taken out from the ampule was used as a standard sample.
After obtaining an infrared absorption spectrum for each standard sample by the infrared spectroscopic analysis ATR method, an absorbance ratio (D1780 / D698) was calculated. A calibration curve was drawn by taking the composition ratio (styrene resin ratio in the standard sample = wt%) on the vertical axis and the absorbance ratio (D1780 / D698) on the horizontal axis. Based on this calibration curve, the composition ratio of the styrene resin and the methyl methacrylate resin could be determined.
 また、スチレン樹脂と無水マレイン酸樹脂の標準試料としては、スチレンと無水マレイン酸の1/1共重合体(商品名「SMA1000(P)」、CRAY VALLEY社製)及びスチレンと無水マレイン酸の3/1共重合体(商品名「SMA3000(P)」、CRAY VALLEY社製)を用いた。
 各標準試料について赤外分光分析ATR法により赤外線吸収スペクトルを得た後に吸光度比(D1720/D698)を算出した。そして、縦軸に組成割合(標準試料中のスチレン樹脂比率=重量%)を、横軸に吸光度比(D1720/D698)をとることで検量線を描いた。この検量線に基づいて、スチレン樹脂と無水マレイン酸樹脂の組成割合を求めることができた。
 検量線からスチレンとメタクリル酸メチル及びスチレンと無水マレイン酸の組成割合を求めた。それぞれの組成割合から、樹脂中のスチレン、メタクリル酸メチル、無水マレイン酸の3成分の組成割合を以下の手順で求めた。
 ここで、各標準試料の割合を以下のように設定した。
   メタクリル酸メチル:スチレン=A:B   [1]
   スチレン:無水マレイン酸  =C:D   [2]
 スチレンが共通項なので、[2]のスチレン割合Cを[1]のスチレン割合Bに合わせた。
 [2]より
   スチレン   :無水マレイン酸
  =C      :D
  =C×(B/C):D×(B/C)
  =B      :D×(B/C)   [3]
 [3]より、スチレンの割合が[1]と等しくなるので、[1]、[3]よりメタクリル酸メチル、スチレン、無水マレイン酸の存在比は以下のようになった。
   メタクリル酸メチル:スチレン:無水マレイン酸
  =A        :B   :D×(B/C)   [4]
 [4]の存在比より、各成分の割合は以下のようになった。
   メタクリル酸メチル={A/((A+B+D×(B/C))}×100
   スチレン     ={B/((A+B+D×(B/C))}×100
   無水マレイン酸  ={D×(B/C)/((A+B+D×(B/C))}×100
As standard samples of styrene resin and maleic anhydride resin, a 1/1 copolymer of styrene and maleic anhydride (trade name “SMA1000 (P)”, manufactured by CRAY VALLEY) and 3 of styrene and maleic anhydride are used. / 1 copolymer (trade name “SMA3000 (P)”, manufactured by CRAY VALLEY) was used.
After obtaining an infrared absorption spectrum for each standard sample by the infrared spectroscopic analysis ATR method, an absorbance ratio (D1720 / D698) was calculated. A calibration curve was drawn by taking the composition ratio (styrene resin ratio in the standard sample = wt%) on the vertical axis and the absorbance ratio (D1720 / D698) on the horizontal axis. Based on this calibration curve, the composition ratio of styrene resin and maleic anhydride resin could be determined.
The composition ratios of styrene and methyl methacrylate and styrene and maleic anhydride were determined from the calibration curves. From each composition ratio, the composition ratio of the three components of styrene, methyl methacrylate, and maleic anhydride in the resin was determined by the following procedure.
Here, the ratio of each standard sample was set as follows.
Methyl methacrylate: styrene = A: B [1]
Styrene: maleic anhydride = C: D [2]
Since styrene is a common term, the styrene ratio C in [2] was matched with the styrene ratio B in [1].
From [2] Styrene: Maleic anhydride = C: D
= C x (B / C): D x (B / C)
= B: D × (B / C) [3]
From [3], since the ratio of styrene becomes equal to [1], the abundance ratio of methyl methacrylate, styrene, and maleic anhydride is as follows from [1] and [3].
Methyl methacrylate: styrene: maleic anhydride = A: B: D × (B / C) [4]
From the abundance ratio of [4], the ratio of each component was as follows.
Methyl methacrylate = {A / ((A + B + D × (B / C))} × 100
Styrene = {B / ((A + B + D × (B / C))} × 100
Maleic anhydride = {D × (B / C) / ((A + B + D × (B / C))} × 100
(気泡数)
 発泡粒子及び発泡成形体中の気泡の気泡数は、次の要領で測定した。まず、切断面を走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)により30倍で11.9mmの面積を撮影した。発泡粒子については発泡粒子の中心部で略二分割した断面の中心部を撮影した。撮影した画像をA4用紙に印刷し、すべての気泡において平均気泡径を算出した。なお、気泡径は、気泡断面の長径及び短径を測定し、短径と長径の相加平均値により得られた値とした。具体的には、気泡断面の外側輪郭線上において相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の長径」とした。また、この気泡の長径に対して直交する直線と気泡断面の外側輪郭線とが交わる任意の2点のうち相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の短径」とした。平均気泡径が、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡について、用紙上で個別気泡数を計数した。
 上述と同様の要領で9個の発泡粒子及び発泡成形体をそれぞれ切断し、拡大写真を得、これらの拡大写真に基づいて上述と同様の要領で小気泡の個別気泡数と大気泡の個別気泡数を算出した。10個の個別気泡数の相加平均値を気泡数とした。
(Bubble count)
The number of bubbles in the expanded particles and the expanded molded body was measured in the following manner. First, an area of 11.9 mm 2 was photographed at a magnification of 30 with a scanning electron microscope (“SU1510” manufactured by Hitachi High-Technologies Corporation). For the foamed particles, the central part of the cross-section substantially divided into two at the central part of the foamed particles was photographed. The photographed image was printed on A4 paper, and the average bubble diameter was calculated for all bubbles. In addition, the bubble diameter measured the long diameter and short diameter of the bubble cross section, and made it the value obtained by the arithmetic mean value of a short diameter and a long diameter. Specifically, two arbitrary points having the maximum mutual distance on the outer contour line of the bubble cross section were selected, and the distance between the two points was defined as the “bubble major diameter”. Also, any two points where the mutual distance is maximum are selected from any two points where the straight line perpendicular to the major axis of the bubble and the outer contour line of the bubble cross section intersect, and the distance between the two points is expressed as “ The short diameter of the bubbles ”. The number of individual bubbles was counted on the paper for small bubbles having a bubble diameter of 50 μm or more and less than 300 μm and large bubbles having a bubble diameter of 300 μm or more and 2 mm or less.
Each of the nine foam particles and the molded foam is cut in the same manner as described above to obtain enlarged photographs. Based on these enlarged photographs, the number of small bubbles and the individual bubbles of large bubbles are obtained in the same manner as described above. Numbers were calculated. The arithmetic average value of 10 individual bubbles was defined as the number of bubbles.
(大気泡と小気泡の平均気泡径)
 大気泡の平均気泡径と小気泡の平均気泡径は、それぞれ以下の方法により測定した。
 大気泡の平均気泡径は、発泡粒子については発泡粒子の中心部で略二分割した断面の中心部、成形品については任意の切断面を走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)により30倍で11.9mmの面積を撮影した。撮影した画像をA4用紙に印刷し、すべての大気泡において気泡径を算出した。なお、気泡径は、気泡断面の長径及び短径を測定し、短径と長径の相加平均値により得られた値とした。具体的には、気泡断面の外側輪郭線上において相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の長径」とした。また、この気泡の長径に対して直交する直線と気泡断面の外側輪郭線とが交わる任意の2点のうち相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の短径」とした。
 上述と同様の要領で9個の発泡粒子及び発泡成形体をそれぞれ切断し、拡大写真を得、これらの拡大写真に基づいて上述と同様の要領で大気泡の平均気泡径を算出した。10枚の写真の大気泡の気泡径の相加平均値を平均気泡径とした。
 小気泡の平均気泡径は、発泡粒子については中心部で略二分割した断面の中心部、成形品については任意の切断面を走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)を用いて撮影した。
 このとき、顕微鏡写真は、横向きのA4用紙1枚に縦横2画像(合計4画像)並んだ状態で印刷した際に所定の倍率となるように撮影した。具体的には、上記のように印刷した画像上に、タテ方向(画像の上下方向)、ヨコ方向(画像の左右方向)の各方向に平行する60mmの任意の直線を描いた際に、この任意の直線上に存在する気泡の数が10~50個程度となるように電子顕微鏡での拡大倍率を調整した。2粒の発泡粒子の断面に対して、1視野ずつ合計2視野の顕微鏡写真を撮影し、上記のようにA4用紙に印刷した。
 発泡粒子断面の2つの画像のそれぞれに、タテ方向及びヨコ方向に平行な3本の任意の直線(長さ60mm)を描き、任意の直線を各方向6本ずつ描いた。
(Average bubble diameter of large and small bubbles)
The average bubble diameter of large bubbles and the average bubble diameter of small bubbles were measured by the following methods, respectively.
The average cell diameter of the large bubbles is the scanning electron microscope ("SU1510" manufactured by Hitachi High-Technologies Corporation) on the center part of the cross-section substantially divided into two at the center part of the foamed particle for the foamed particles and any cut surface for the molded product. Was used to photograph an area of 11.9 mm 2 at 30 ×. The photographed image was printed on A4 paper, and the bubble diameter was calculated for all large bubbles. In addition, the bubble diameter measured the long diameter and short diameter of the bubble cross section, and made it the value obtained by the arithmetic mean value of a short diameter and a long diameter. Specifically, two arbitrary points having the maximum mutual distance on the outer contour line of the bubble cross section were selected, and the distance between the two points was defined as the “bubble major diameter”. Also, any two points where the mutual distance is maximum are selected from any two points where the straight line perpendicular to the major axis of the bubble and the outer contour line of the bubble cross section intersect, and the distance between the two points is expressed as “ The short diameter of the bubbles ”.
Nine foamed particles and foamed molded body were cut in the same manner as described above to obtain enlarged photographs, and the average bubble diameter of large bubbles was calculated in the same manner as described above based on these enlarged photographs. The arithmetic average value of the bubble diameters of the large bubbles in the 10 photographs was taken as the average bubble diameter.
The average bubble diameter of the small bubbles is determined by using a scanning electron microscope ("SU1510" manufactured by Hitachi High-Technologies Corporation) at the center of the cross-section substantially divided into two at the center for the foamed particles and an arbitrary cut surface for the molded product. I took a picture.
At this time, the micrograph was taken so as to have a predetermined magnification when printed in a state in which two images (total of four images in total) were aligned on one A4 paper in landscape orientation. Specifically, when an arbitrary straight line of 60 mm is drawn on the image printed as described above, parallel to each of the vertical direction (the vertical direction of the image) and the horizontal direction (the horizontal direction of the image), The magnification in the electron microscope was adjusted so that the number of bubbles present on an arbitrary straight line was about 10-50. Two cross-sectional micrographs were taken for each section of the two expanded particles, and printed on A4 paper as described above.
Three arbitrary straight lines (length 60 mm) parallel to the vertical and horizontal directions were drawn on each of the two images of the expanded particle cross section, and six arbitrary straight lines were drawn in each direction.
 なお、任意の直線は大気泡に接することなく、できる限り気泡が接点でのみ接しないようにし、接してしまう場合には、この気泡も数に加えた。タテ方向、ヨコ方向の各方向の6本の任意の直線について数えた気泡数を相加平均し、各方向の気泡数とした。
 気泡数を数えた画像の倍率とこの気泡数から気泡の平均弦長(t)を次式により算出した。
  平均弦長t(mm)=60/(気泡数×写真倍率)
 画像の倍率は写真上のスケールバーをミツトヨ社製「デジマチックキャリパ」にて1/100mmまで計測し、次式により求めた。
  画像倍率=スケールバー実測値(mm)/スケールバーの表示値(mm)
 そして、次式により各方向における気泡径を算出した。
  気泡径D(mm)=t/0.616
 更に、それらの積の2乗根を小気泡の平均気泡径とした。
  小気泡の平均気泡径(mm)=(Dタテ×Dヨコ)1/2
In addition, an arbitrary straight line does not contact a large bubble, and the bubble is prevented from touching only at the contact point as much as possible. In the case where it comes into contact, this bubble is also added to the number. The number of bubbles counted for six arbitrary straight lines in each of the vertical and horizontal directions was arithmetically averaged to obtain the number of bubbles in each direction.
From the magnification of the image obtained by counting the number of bubbles and the number of bubbles, the average chord length (t) of the bubbles was calculated by the following equation.
Average chord length t (mm) = 60 / (number of bubbles × photo magnification)
The magnification of the image was determined by measuring the scale bar on the photograph to 1/100 mm with “Digimatic Caliper” manufactured by Mitutoyo Co., Ltd.
Image magnification = Scale bar measured value (mm) / Scale bar display value (mm)
And the bubble diameter in each direction was computed by following Formula.
Bubble diameter D (mm) = t / 0.616
Further, the square root of the product was taken as the average bubble diameter of small bubbles.
Average bubble diameter of small bubbles (mm) = (D vertical x D horizontal) 1/2
(熱伝導率)
 熱伝導率は、英弘精機社製の熱伝導率測定装置HC-074/200(オートΛ)を用い、JIS A1412-2「熱絶縁材の熱抵抗及び熱伝導率の測定方法-第2部:熱流計法(HFM法)」記載の方法にて測定した。発泡成形体から切り出した長さ200mm×幅200mm×厚み30mmの試験片を、温度23℃±2℃、湿度50%±5%の標準条件下にて24時間放置後、この試験片について、平均温度23℃(高温側プレート温度38℃、低温側プレート温度8℃)、プレートの温度差30℃の条件にて、上記熱伝導率測定装置により、熱伝導率を測定した。校正の基準値として上記熱伝導率測定装置に登録されているNIST(米国標準技術局)SRM1450Bを採用した。
(Thermal conductivity)
The thermal conductivity is measured by using a thermal conductivity measuring device HC-074 / 200 (Auto Λ) manufactured by Eiko Seiki Co., Ltd., JIS A1412-2 “Measurement method of thermal resistance and thermal conductivity of thermal insulation material—Part 2: The measurement was carried out by the method described in “Heat flow meter method (HFM method)”. A test piece having a length of 200 mm, a width of 200 mm, and a thickness of 30 mm cut out from the foam molded article was allowed to stand under standard conditions of a temperature of 23 ° C. ± 2 ° C. and a humidity of 50% ± 5% for 24 hours. The thermal conductivity was measured by the above thermal conductivity measuring device under the conditions of a temperature of 23 ° C. (a high temperature side plate temperature of 38 ° C., a low temperature side plate temperature of 8 ° C.) and a temperature difference of 30 ° C. NIST (National Institute of Standards and Technology) SRM1450B registered in the thermal conductivity measuring apparatus was adopted as a reference value for calibration.
(実施例1a)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm)100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:13MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断し、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
Example 1a
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from the die hole (5 nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 285 ° C., inlet side resin pressure: 13 MPa) attached to the tip of the single screw extruder. The resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of the rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying. . The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度143℃で50秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、102kg/m(発泡倍率10倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.38MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred with water vapor at a foaming temperature of 143 ° C. for 50 seconds. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 102 kg / m 3 (expanding ratio 10 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled in a 30 mm x 300 mm x 400 mm mold, heated with 0.38 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foamed molded product was obtained.
(実施例2a)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度143℃で60秒間撹拌しながら発泡させたこと以外は実施例1aと同様にして、発泡密度61kg/m(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
Example 2a
(Foaming step) In the same manner as in Example 1a except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 143 ° C. for 60 seconds, the foaming density was 61 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
(実施例3a)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度143℃で55秒間撹拌しながら発泡させたこと以外は実施例1aと同様にして、発泡密度74kg/m(発泡倍率15倍)の発泡粒子、発泡成形体を得た。
(Example 3a)
(Foaming step) In the same manner as in Example 1a except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the foaming temperature was 143 ° C. while stirring for 55 seconds, the foaming density was 74 kg / kg. Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
(比較例1a)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm)100重量部を、時間当たり6kg/hrの割合で口径が30mmの二軸押出機に供給して250℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが20個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3~1.8mmで、粒子の径Dが1.0~1.2mmであった。
 得られた樹脂粒子を用いること以外は実施例1aと同様にして(含浸工程)、(発泡工程)及び(成形工程)に付し、発泡密度108kg/m(発泡倍率10倍)の発泡粒子、発泡成形体を得た。
(Comparative Example 1a)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was supplied to a twin screw extruder having a diameter of 30 mm at a rate of 6 kg / hr per hour, and melt kneaded at 250 ° C. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder. The extruded resin was immediately cooled in a cooling water bath. The cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
Except that the obtained resin particles are used, the foamed particles are subjected to (impregnation step), (foaming step) and (molding step) in the same manner as in Example 1a and have a foaming density of 108 kg / m 3 (foaming ratio: 10 times). A foamed molded product was obtained.
(比較例2a)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度143℃で60秒撹拌しながら発泡させたこと以外は比較例1aと同様にして、発泡密度60kg/m(発泡倍率20倍)の発泡粒子を得た。
 得られた樹脂粒子を用いること以外は実施例1aと同様にして(成形工程)に付し、発泡成形体を得た。
 上記実施例1a~3a及び比較例1a~2aの発泡粒子及び発泡成形体の物性を表1にまとめて示す。
 また、実施例1a~3a及び比較例1a~2aの発泡粒子及び発泡成形体の断面写真をそれぞれ図1及び2に示す。
(Comparative Example 2a)
(Foaming step) In the same manner as in Comparative Example 1a except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 143 ° C. for 60 seconds, a foaming density of 60 kg / Expanded particles of m 3 (20 times expansion ratio) were obtained.
Except using the obtained resin particle, it attached | subjected to the (molding process) like Example 1a, and obtained the foaming molding.
Table 1 summarizes the physical properties of the expanded particles and expanded molded articles of Examples 1a to 3a and Comparative Examples 1a to 2a.
1 and 2 show cross-sectional photographs of the expanded particles and the expanded molded articles of Examples 1a to 3a and Comparative Examples 1a to 2a, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 1, it can be seen that the foamed molded product obtained from the foamed particles having a specific range of bubbles has excellent mechanical properties.
(実施例4a)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-200」、デンカ社製、スチレン:55重量部、メタクリル酸メチル:26重量部、無水マレイン酸:19重量部、密度1.16g/cm)100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して260℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:280℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断し、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
Example 4a
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-200”, manufactured by Denka Co., Ltd., styrene: 55 parts by weight, methyl methacrylate: 26 parts by weight, maleic anhydride: 19 parts by weight, density 1.16 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 260 ° C. Subsequently, cooling water at about 70 ° C. was poured from the die hole (five nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 280 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder. The resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of the rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying. . The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミドを0.1重量部添加し、混合した。その後、水蒸気を用いて、発泡温度131℃で50秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、105kg/m(発泡倍率10倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.30MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and then 0.1 part by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred at a foaming temperature of 131 ° C. for 50 seconds using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the above-described method, it was 105 kg / m 3 (foaming ratio 10 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.30 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foamed molded product was obtained.
(実施例5a)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度131℃で70秒間撹拌しながら発泡させたこと以外は実施例4aと同様にして、発泡密度52kg/m(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
 上記実施例4a及び5aの発泡粒子及び発泡成形体の物性を表2にまとめて示す。
 また、実施例4a及び5aの発泡粒子及び発泡成形体の断面写真を図3に示す。
(Example 5a)
(Foaming step) In the same manner as in Example 4a, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 131 ° C. for 70 seconds, the foaming density was 52 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
Table 2 summarizes the physical properties of the foamed particles and foamed molded products of Examples 4a and 5a.
Moreover, the cross-sectional photograph of the expanded particle of Example 4a and 5a and a foaming molding is shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 2, it can be seen that the foamed molded product obtained from the foamed particles having a specific range of bubbles has excellent mechanical properties.
(実施例6a)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm)100重量部を85重量部とし、残りの15重量部をスチレン-無水マレイン酸-N-フェニルマレイミド共重合体(商品名「DENKA IP MS-NIP」、デンカ社製、スチレン:58重量部、無水マレイン酸:4重量部、N-フェニルマレイミド:38重量部、密度1.18g/cm、ガラス転移温度Tg186℃)とした100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断し、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
Example 6a
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, manufactured by Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight is 85 parts by weight, and the remaining 15 parts by weight is a styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, manufactured by Denka Co., Ltd.) 100 parts by weight of styrene: 58 parts by weight, maleic anhydride: 4 parts by weight, N-phenylmaleimide: 38 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) was 10 kg / hr per hour. The mixture was supplied to a single screw extruder having a diameter of 40 mm and melt-kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from a die hole (5 nozzles with a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder. The resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of the rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying. . The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度145℃で80秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、104kg/m(発泡倍率10倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.45MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 80 seconds at a foaming temperature of 145 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 (expanding ratio 10 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After removal, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.45 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product drops to 0.05 MPa. Thus, a foamed molded product was obtained.
(実施例7a)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で90秒間撹拌しながら発泡させたこと以外は実施例6aと同様にして、発泡密度72kg/m(発泡倍率15倍)の発泡粒子、発泡成形体を得た。
(Example 7a)
(Foaming step) In the same manner as in Example 6a, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 145 ° C. for 90 seconds, a foaming density of 72 kg / Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
(実施例8a)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で100秒間撹拌しながら発泡させたこと以外は実施例6aと同様にして、発泡密度47kg/m(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
 上記実施例6a~8aの発泡粒子及び発泡成形体の物性を表3にまとめて示す。
 また、実施例6a~8aの発泡粒子及び発泡成形体の断面写真を図4に示す。
Example 8a
(Foaming step) In the same manner as in Example 6a except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 145 ° C. for 100 seconds, a foaming density of 47 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
Table 3 summarizes the physical properties of the foamed particles and foamed molded products of Examples 6a to 8a.
Further, cross-sectional photographs of the expanded particles and the expanded molded articles of Examples 6a to 8a are shown in FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 3, it can be seen that the foam-molded product obtained from the foamed particles having a specific range of bubbles has excellent mechanical properties.
(実施例1b)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm)100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:13MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 1b)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from the die hole (5 nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 285 ° C., inlet side resin pressure: 13 MPa) attached to the tip of the single screw extruder. The resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced. The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.15重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度143℃で55秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、74kg/m(発泡倍率15倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.38MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.15 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred for 55 seconds at a foaming temperature of 143 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the method described above, it was 74 kg / m 3 (foaming ratio 15 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled in a 30 mm x 300 mm x 400 mm mold, heated with 0.38 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foamed molded product was obtained.
(実施例2b)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度143℃で60秒間撹拌しながら発泡させたこと以外は実施例1bと同様にして、発泡密度61kg/m(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
 上記実施例1b及び2bの発泡粒子及び発泡成形体の物性を表4に示す。
 また、実施例1b及び2bの発泡粒子及び発泡成形体の断面写真をそれぞれ図5に示す。
(Example 2b)
(Foaming step) In the same manner as in Example 1b except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 143 ° C. for 60 seconds. An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
Table 4 shows the physical properties of the foamed particles and foamed molded products of Examples 1b and 2b.
Moreover, the cross-sectional photograph of the expanded particle of Example 1b and 2b and a foaming molding is shown in FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた断熱性を有していることが分かる。 From Table 4, it can be seen that the foamed molded product obtained from the foamed particles having a specific range of bubbles has excellent heat insulating properties.
(実施例3b)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-200」、デンカ社製、スチレン:55重量部、メタクリル酸メチル:26重量部、無水マレイン酸:19重量部、密度1.16g/cm)100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して260℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:280℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 3b)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-200”, manufactured by Denka Co., Ltd., styrene: 55 parts by weight, methyl methacrylate: 26 parts by weight, maleic anhydride: 19 parts by weight, density 1.16 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 260 ° C. Subsequently, cooling water at about 70 ° C. was poured from the die hole (five nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 280 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder. The resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced. The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミドを0.1重量部添加し、混合した。その後、水蒸気を用いて、発泡温度131℃で70秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、52kg/m(発泡倍率20倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.30MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
 上記実施例3bの発泡粒子及び発泡成形体の物性を表5に示す。
 また、実施例3bの発泡粒子及び発泡成形体の断面写真を図6に示す。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and then 0.1 part by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred for 70 seconds at a foaming temperature of 131 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the method described above, it was 52 kg / m 3 (foaming ratio 20 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.30 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foamed molded product was obtained.
Table 5 shows the physical properties of the expanded particles and the molded foam of Example 3b.
Moreover, the cross-sectional photograph of the expanded particle of Example 3b and a foaming molding is shown in FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた断熱性を有していることが分かる。 From Table 5, it can be seen that the foamed molded product obtained from the foamed particles having a specific range of bubbles has excellent heat insulation.
(実施例4b)
(樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm)100重量部を85重量部とし、残りの15重量部をスチレン-無水マレイン酸-N-フェニルマレイミド共重合体(商品名「DENKA IP MS-NIP」、デンカ社製、スチレン:58重量部、無水マレイン酸:4重量部、N-フェニルマレイミド:38重量部、密度1.18g/cm、ガラス転移温度Tg186℃)とした100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 4b)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, manufactured by Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight is 85 parts by weight, and the remaining 15 parts by weight is a styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, manufactured by Denka Co., Ltd.) 100 parts by weight of styrene: 58 parts by weight, maleic anhydride: 4 parts by weight, N-phenylmaleimide: 38 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) was 10 kg / hr per hour. The mixture was supplied to a single screw extruder having a diameter of 40 mm and melt-kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from a die hole (5 nozzles with a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder. The resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced. The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.15量部を添加し、混合した。その後、水蒸気を用いて、発泡温度145℃で100秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、47kg/m(発泡倍率20倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.45MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
 上記実施例4bの発泡粒子及び発泡成形体の物性を表6に示す。
 また、実施例4bの発泡粒子及び発泡成形体の断面写真を図7に示す。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.15 part by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred for 100 seconds at a foaming temperature of 145 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 47 kg / m 3 (expanding ratio 20 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After removal, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.45 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product drops to 0.05 MPa. Thus, a foamed molded product was obtained.
Table 6 shows the physical properties of the expanded particles and the expanded molded article of Example 4b.
Moreover, the cross-sectional photograph of the expanded particle of Example 4b and a foaming molding is shown in FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた断熱性を有していることが分かる。 From Table 6, it can be seen that the foamed molded product obtained from the foamed particles having a specific range of bubbles has excellent heat insulating properties.
(参考例1b)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.1重量部添加したことと、発泡温度143℃で50秒間撹拌しながら発泡させたこと以外は実施例1bと同様にして、発泡密度102kg/m(発泡倍率10倍)の発泡粒子、発泡成形体を得た。
(Reference Example 1b)
(Foaming step) In the same manner as in Example 1b except that 0.1 parts by weight of ethylenebisstearic acid amide was added and the mixture was stirred for 50 seconds at a foaming temperature of 143 ° C., the foaming density was 102 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 10 times) were obtained.
(参考例2b)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.1重量部添加したことと、発泡温度145℃で80秒間撹拌しながら発泡させたこと以外は実施例3bと同様にして、発泡密度104kg/m(発泡倍率10倍)の発泡粒子、発泡成形体を得た。
(Reference Example 2b)
(Foaming step) In the same manner as in Example 3b except that 0.1 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 145 ° C. for 80 seconds. An expanded particle and an expanded molded body of m 3 (expanding ratio 10 times) were obtained.
(参考例3b)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で90秒間撹拌しながら発泡させたこと以外は実施例3bと同様にして、発泡密度72kg/m(発泡倍率15倍)の発泡粒子、発泡成形体を得た。
(Reference Example 3b)
(Foaming step) In the same manner as in Example 3b except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the mixture was foamed with stirring at a foaming temperature of 145 ° C. for 90 seconds. Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
(参考例4b)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY KX-406」、デンカ社製、スチレン:70重量部、メタクリル酸メチル:9重量部、無水マレイン酸:21重量部、密度1.15g/cm)100重量部、及びタルクを含む樹脂組成物1重量部を口径が30mmの二軸押出機に供給して254℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが20個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3~1.8mmで、粒子の径Dが1.0~1.2mmであった。
(Reference Example 4b)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY KX-406”, manufactured by Denka Co., Ltd., styrene: 70 parts by weight, methyl methacrylate: 9 parts by weight, maleic anhydride: 21 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight and 1 part by weight of a resin composition containing talc were supplied to a twin screw extruder having a diameter of 30 mm and melt-kneaded at 254 ° C. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder. The extruded resin was immediately cooled in a cooling water bath. The cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧1.0MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、炭酸カルシウム0.08重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度136℃で150秒撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、高圧の発泡槽から粒子を取り出して、塩化水素水溶液で炭酸カルシウムを除去した後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、104kg/mであった。発泡粒子の断面写真を確認したところ、大気泡は存在していなかった。
(Impregnation process)
After sealing 100 parts by weight of the resin particles in a pressure vessel and replacing the inside of the pressure vessel with carbon dioxide, the carbon dioxide was press-fitted to an impregnation pressure of 1.0 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.08 part by weight of calcium carbonate was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 150 seconds at a foaming temperature of 136 ° C. using water vapor. After foaming, the particles were taken out from the high-pressure foaming tank, and after removing calcium carbonate with an aqueous hydrogen chloride solution, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 . When a cross-sectional photograph of the expanded particles was confirmed, no large bubbles were present.
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.4MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.42MPaの水蒸気にて60秒間加熱を行い、次いで、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することで、発泡成形体を得た。
 上記参考例1b~4bの発泡粒子及び発泡成形体の物性を表7に示す。
 また、参考例1b~3bの発泡粒子及び発泡成形体の断面写真を図8に示す。
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was added to an impregnation pressure (gauge pressure) of 0.4 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.42 MPa water vapor for 60 seconds, and then cooled until the maximum surface pressure of the foamed molded product decreases to 0.01 MPa. Thus, a foamed molded product was obtained.
Table 7 shows the physical properties of the expanded particles and the expanded molded articles of Reference Examples 1b to 4b.
Further, FIG. 8 shows cross-sectional photographs of the expanded particles and expanded molded articles of Reference Examples 1b to 3b.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例1c)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm)100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:13MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 1c)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from the die hole (5 nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 285 ° C., inlet side resin pressure: 13 MPa) attached to the tip of the single screw extruder. The resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced. The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度143℃で50秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、102kg/m(発泡倍率10倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.38MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred with water vapor at a foaming temperature of 143 ° C. for 50 seconds. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 102 kg / m 3 (expanding ratio 10 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled in a 30 mm x 300 mm x 400 mm mold, heated with 0.38 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foamed molded product was obtained.
(実施例2c)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度143℃で55秒間撹拌しながら発泡させたこと以外は実施例1cと同様にして、発泡密度74kg/m(発泡倍率15倍)の発泡粒子、発泡成形体を得た。
 上記実施例1c及び2cの発泡粒子及び発泡成形体の物性を表8に示す。
 また、実施例1c及び2cの発泡粒子及び発泡成形体の断面写真を図9に示す。
(Example 2c)
(Foaming step) In the same manner as in Example 1c except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the foaming temperature was 143 ° C. while stirring for 55 seconds, the foaming density was 74 kg / kg. Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
Table 8 shows the physical properties of the expanded particles and the expanded molded articles of Examples 1c and 2c.
Moreover, the cross-sectional photograph of the expanded particle of Example 1c and 2c and a foaming molding is shown in FIG.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 8, it can be seen that the foam molded product obtained from the foamed particles having a specific range of bubbles has excellent mechanical properties.
(実施例3c)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-200」、デンカ社製、スチレン:55重量部、メタクリル酸メチル:26重量部、無水マレイン酸:19重量部、密度1.16g/cm)100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して260℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:280℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 3c)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-200”, manufactured by Denka Co., Ltd., styrene: 55 parts by weight, methyl methacrylate: 26 parts by weight, maleic anhydride: 19 parts by weight, density 1.16 g / cm 3 ) 100 parts by weight was supplied to a single screw extruder having a diameter of 40 mm at a rate of 10 kg / hr per hour, and melt kneaded at 260 ° C. Subsequently, cooling water at about 70 ° C. was poured from the die hole (five nozzles with a diameter of 0.8 mm arranged) of the die (temperature: 280 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder. The resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced. The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミドを0.1重量部添加し、混合した。その後、水蒸気を用いて、発泡温度131℃で50秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、105kg/m(発泡倍率10倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.30MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
 上記実施例3cの発泡粒子及び発泡成形体の物性を表9に示す。
 また、実施例3cの発泡粒子及び発泡成形体の断面写真を図10に示す。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and then 0.1 part by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred at a foaming temperature of 131 ° C. for 50 seconds using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the above-described method, it was 105 kg / m 3 (foaming ratio 10 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.30 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foamed molded product was obtained.
Table 9 shows the physical properties of the expanded particles and the molded foam of Example 3c.
Moreover, the cross-sectional photograph of the expanded particle of Example 3c and a foaming molding is shown in FIG.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 9, it can be seen that the foam-molded product obtained from the foamed particles having a specific range of bubbles has excellent mechanical properties.
(実施例4c)
(樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm)100重量部を85重量部とし、残りの15重量部をスチレン-無水マレイン酸-N-フェニルマレイミド共重合体(商品名「DENKA IP MS-NIP」、デンカ社製、スチレン:58重量部、無水マレイン酸:4重量部、N-フェニルマレイミド:38重量部、密度1.18g/cm、ガラス転移温度Tg186℃)とした100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 4c)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, manufactured by Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight is 85 parts by weight, and the remaining 15 parts by weight is a styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, manufactured by Denka Co., Ltd.) 100 parts by weight of styrene: 58 parts by weight, maleic anhydride: 4 parts by weight, N-phenylmaleimide: 38 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) was 10 kg / hr per hour. The mixture was supplied to a single screw extruder having a diameter of 40 mm and melt-kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from a die hole (5 nozzles with a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder. The resin particles are extruded by being extruded into the housed chamber, rotating the rotary shaft of a rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying the resin particles. Produced. The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度145℃で80秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、104kg/m(発泡倍率10倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.45MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 80 seconds at a foaming temperature of 145 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 (expanding ratio 10 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After removal, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.45 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product drops to 0.05 MPa. Thus, a foamed molded product was obtained.
(実施例5c)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で90秒間撹拌しながら発泡させたこと以外は実施例4cと同様にして、発泡密度72kg/m(発泡倍率15倍)の発泡粒子、発泡成形体を得た。
 上記実施例4c~5cの発泡粒子及び発泡成形体の物性を表10に示す。
 また、実施例4c~5cの発泡粒子及び発泡成形体の断面写真を図11に示す。
(Example 5c)
(Foaming step) In the same manner as in Example 4c, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 145 ° C. for 90 seconds, a foaming density of 72 kg / Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
Table 10 shows the physical properties of the foamed particles and foamed molded products of Examples 4c to 5c.
Further, FIG. 11 shows cross-sectional photographs of the expanded particles and the expanded molded articles of Examples 4c to 5c.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 10, it can be seen that the foamed molded product obtained from the foamed particles having a specific range of bubbles has excellent mechanical properties.
(参考例1c)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度143℃で60秒間撹拌しながら発泡させたこと以外は実施例1cと同様にして、発泡密度61kg/m(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
(Reference Example 1c)
(Foaming step) In the same manner as in Example 1c except that 0.15 parts by weight of ethylenebisstearic acid amide was added and the foaming temperature was 143 ° C. with stirring for 60 seconds, the foaming density 61 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
(参考例2c)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度131℃で70秒間撹拌しながら発泡させたこと以外は実施例3cと同様にして、発泡密度52kg/m(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
(Reference Example 2c)
(Foaming step) In the same manner as in Example 3c, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 131 ° C. for 70 seconds, the foaming density was 52 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
(参考例3c)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で100秒間撹拌しながら発泡させたこと以外は実施例4cと同様にして、発泡密度47kg/m(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
(Reference Example 3c)
(Foaming step) In the same manner as in Example 4c, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 145 ° C. for 100 seconds, a foaming density of 47 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
(参考例4c)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY KX-406」、デンカ社製、スチレン:70重量部、メタクリル酸メチル:9重量部、無水マレイン酸:21重量部、密度1.15g/cm)100重量部、及びタルクを含む樹脂組成物1重量部を口径が30mmの二軸押出機に供給して254℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが20個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3~1.8mmで、粒子の径Dが1.0~1.2mmであった。
(Reference Example 4c)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY KX-406”, manufactured by Denka Co., Ltd., styrene: 70 parts by weight, methyl methacrylate: 9 parts by weight, maleic anhydride: 21 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight and 1 part by weight of a resin composition containing talc were supplied to a twin screw extruder having a diameter of 30 mm and melt-kneaded at 254 ° C. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder. The extruded resin was immediately cooled in a cooling water bath. The cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧1.0MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、炭酸カルシウム0.08重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度136℃で150秒撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、高圧の発泡槽から粒子を取り出して、塩化水素水溶液で炭酸カルシウムを除去した後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、104kg/mであった。発泡粒子の断面写真を確認したところ、大気泡は存在していなかった。
(Impregnation process)
After sealing 100 parts by weight of the resin particles in a pressure vessel and replacing the inside of the pressure vessel with carbon dioxide, the carbon dioxide was press-fitted to an impregnation pressure of 1.0 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.08 part by weight of calcium carbonate was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 150 seconds at a foaming temperature of 136 ° C. using water vapor. After foaming, the particles were taken out from the high-pressure foaming tank, and after removing calcium carbonate with an aqueous hydrogen chloride solution, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 . When a cross-sectional photograph of the expanded particles was confirmed, no large bubbles were present.
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.4MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.42MPaの水蒸気にて60秒間加熱を行い、次いで、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することで、発泡成形体を得た。
 上記参考例1c~4cの発泡粒子及び発泡成形体の物性を表11に示す。
 また、参考例1c~3cの発泡粒子及び発泡成形体の断面写真を図12に示す。
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was added to an impregnation pressure (gauge pressure) of 0.4 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.42 MPa water vapor for 60 seconds, and then cooled until the maximum surface pressure of the foamed molded product decreases to 0.01 MPa. Thus, a foamed molded product was obtained.
Table 11 shows the physical properties of the expanded particles and the expanded molded articles of Reference Examples 1c to 4c.
FIG. 12 shows cross-sectional photographs of the expanded particles and the expanded molded articles of Reference Examples 1c to 3c.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例1d)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm、ガラス転移温度Tg143℃)85重量部、スチレン-無水マレイン酸-N-フェニルマレイミド共重合体(商品名「DENKA IP MS-NIP」、デンカ社製、スチレン:67重量部、無水マレイン酸:5重量部、N-フェニルマレイミド:27重量部、密度1.18g/cm、ガラス転移温度Tg186℃)15重量部の合計100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断し、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
Example 1d
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 , glass transition temperature Tg 143 ° C.) 85 parts by weight, styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, Denka, styrene: 67 parts by weight 100 parts by weight of maleic anhydride: 5 parts by weight, N-phenylmaleimide: 27 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) 15 parts by weight at a rate of 10 kg / hr per hour The mixture was supplied to a single screw extruder having a diameter of 40 mm and melt kneaded at 270 ° C. Subsequently, about 70 ° C. cooling water is supplied from a die hole (5 nozzles with a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., inlet side resin pressure: 14 MPa) attached to the tip of the single screw extruder. The resin particles were produced by extruding into the housed chamber, rotating the rotary shaft of the rotary blade having six cutting blades at a rotational speed of 5000 rpm, cutting into granules, cooling with the cooling water, and dehydrating and drying. . The obtained resin particles had an average particle diameter of 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度145℃で80秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、104kg/m(発泡倍率10倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.45MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 80 seconds at a foaming temperature of 145 ° C. using water vapor. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 (expanding ratio 10 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After removal, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.45 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product drops to 0.05 MPa. Thus, a foamed molded product was obtained.
(実施例2d)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で90秒間撹拌しながら発泡させたこと以外は実施例1dと同様にして、発泡密度72kg/m(発泡倍率15倍)の発泡粒子、発泡成形体を得た。
(Example 2d)
(Foaming step) In the same manner as in Example 1d, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 145 ° C. for 90 seconds, a foaming density of 72 kg / Expanded particles of m 3 (foaming ratio 15 times) and foamed molded articles were obtained.
(実施例3d)
 (発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で100秒間撹拌しながら発泡させたこと以外は実施例1dと同様にして、発泡密度47kg/m(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
 上記実施例1d~3dの発泡粒子及び発泡成形体の物性を表12にまとめて示す。
 また、実施例1d~3dの発泡粒子及び発泡成形体の断面写真を図13に示す。
(Example 3d)
(Foaming step) In the same manner as in Example 1d, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and stirring was performed at a foaming temperature of 145 ° C. for 100 seconds, a foaming density of 47 kg / An expanded particle and an expanded molded body of m 3 (expanding ratio 20 times) were obtained.
Table 12 summarizes the physical properties of the expanded particles and expanded molded articles of Examples 1d to 3d.
FIG. 13 shows cross-sectional photographs of the foamed particles and foamed molded products of Examples 1d to 3d.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 12, it can be seen that the foamed molded article obtained from the foamed particles having a specific range of bubbles has excellent mechanical properties.
(参考例1d)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-200」、デンカ社製、スチレン:55重量部、メタクリル酸メチル:26重量部、無水マレイン酸:19重量部、密度1.16g/cm、ガラス転移温度Tg130℃)85重量部、スチレン-無水マレイン酸-N-フェニルマレイミド共重合体(商品名「DENKA IP MS-NIP」、デンカ社製、スチレン:67重量部、無水マレイン酸:5重量部、N-フェニルマレイミド:27重量部、密度1.18g/cm、ガラス転移温度Tg186℃)15重量部の合計100重量部を、時間当たり6kg/hrの割合で口径が30mmの二軸押出機に供給して250℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが20個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂組成物を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂組成物を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3~1.8mmで、粒子の径Dが1.0~1.2mmであった。
(Reference Example 1d)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-200”, manufactured by Denka Co., Ltd., styrene: 55 parts by weight, methyl methacrylate: 26 parts by weight, maleic anhydride: 19 parts by weight, density 1.16 g / cm 3 , glass transition temperature Tg 130 ° C.) 85 parts by weight, styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, Denka, styrene: 67 parts by weight 100 parts by weight of maleic anhydride: 5 parts by weight, N-phenylmaleimide: 27 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) 15 parts by weight at a rate of 6 kg / hr per hour The mixture was supplied to a twin screw extruder having a diameter of 30 mm and melt kneaded at 250 ° C. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder. The extruded resin composition was immediately cooled in a cooling water bath. The cooled strand-shaped resin composition was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度130℃で80秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させたが、発泡粒子を得ることはできなかった。また、発泡温度を135℃及び145℃のいずれに変更しても発泡粒子を得ることはできなかった。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred at a foaming temperature of 130 ° C. for 80 seconds using water vapor, but foamed particles could not be obtained. Further, even if the foaming temperature was changed to either 135 ° C. or 145 ° C., foamed particles could not be obtained.
(参考例2d)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-100」、デンカ社製、スチレン:64重量部、メタクリル酸メチル:23重量部、無水マレイン酸:12重量部、密度1.14g/cm、ガラス転移温度Tg120℃)85重量部、スチレン-無水マレイン酸-N-フェニルマレイミド共重合体(商品名「DENKA IP MS-NIP」、デンカ社製、スチレン:67重量部、無水マレイン酸:5重量部、N-フェニルマレイミド:27重量部、密度1.18g/cm、ガラス転移温度Tg186℃)15重量部の合計100重量部を、時間当たり6kg/hrの割合で口径が30mmの二軸押出機に供給して250℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが20個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂組成物を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂組成物を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3~1.8mmで、粒子の径Dが1.0~1.2mmであった
(Reference Example 2d)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-100”, manufactured by Denka Co., Ltd., styrene: 64 parts by weight, methyl methacrylate: 23 parts by weight, maleic anhydride: 12 parts by weight, density 1.14 g / cm 3 , 85 parts by weight of glass transition temperature Tg 120 ° C., styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, Denka Co., styrene: 67 parts by weight 100 parts by weight of maleic anhydride: 5 parts by weight, N-phenylmaleimide: 27 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) 15 parts by weight at a rate of 6 kg / hr per hour The mixture was supplied to a twin screw extruder having a diameter of 30 mm and melt kneaded at 250 ° C. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder. The extruded resin composition was immediately cooled in a cooling water bath. The cooled strand-shaped resin composition was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度120℃で80秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させたが、発泡粒子を得ることはできなかった。また、発泡温度を125℃、130℃、135℃及び145℃のいずれに変更しても発泡粒子を得ることはできなかった。
 上記参考例1d~2dのガラス転移温度差を表13にまとめて示す。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred at a foaming temperature of 120 ° C. for 80 seconds using water vapor, but foamed particles could not be obtained. Further, even if the foaming temperature was changed to any of 125 ° C, 130 ° C, 135 ° C and 145 ° C, foamed particles could not be obtained.
Table 13 summarizes the glass transition temperature differences of Reference Examples 1d to 2d.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13から、ガラス転移温度差が10~50℃の範囲外の場合、発泡成形体を製造可能な発泡粒子を得難いことが分かる。 From Table 13, it can be seen that when the glass transition temperature difference is outside the range of 10 to 50 ° C., it is difficult to obtain expanded particles capable of producing the expanded molded article.
(参考例3d)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm)100重量部を、時間当たり6kg/hrの割合で口径が30mmの二軸押出機に供給して250℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが20個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3~1.8mmで、粒子の径Dが1.0~1.2mmであった。
(Reference Example 3d)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY R-310”, Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was supplied to a twin screw extruder having a diameter of 30 mm at a rate of 6 kg / hr per hour, and melt kneaded at 250 ° C. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder. The extruded resin was immediately cooled in a cooling water bath. The cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度143℃で50秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、102kg/m(発泡倍率10倍)であった。
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.38MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
 また、参考例3dの発泡粒子及び発泡成形体の断面写真をそれぞれ図14に示す。
(Impregnation process)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide, carbon dioxide was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while being stirred with water vapor at a foaming temperature of 143 ° C. for 50 seconds. After foaming, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 102 kg / m 3 (expanding ratio 10 times).
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was reduced to an impregnation pressure (gauge pressure) of 0.5 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled in a 30 mm x 300 mm x 400 mm mold, heated with 0.38 MPa water vapor for 20 seconds, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foamed molded product was obtained.
Moreover, the cross-sectional photograph of the expanded particle of Example 3d and a foaming molding is shown in FIG. 14, respectively.
 (参考例4d)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体(商品名「DENKA RESISFY KX-406」、デンカ社製、スチレン:70重量部、メタクリル酸メチル:9重量部、無水マレイン酸:21重量部、密度1.15g/cm)100重量部、及びタルクを含む樹脂組成物1重量部を口径が30mmの二軸押出機に供給して254℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが20個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3~1.8mmで、粒子の径Dが1.0~1.2mmであった。
(Reference Example 4d)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISFY KX-406”, manufactured by Denka Co., Ltd., styrene: 70 parts by weight, methyl methacrylate: 9 parts by weight, maleic anhydride: 21 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight and 1 part by weight of a resin composition containing talc were supplied to a twin screw extruder having a diameter of 30 mm and melt-kneaded at 254 ° C. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles having a diameter of 1.0 mm arranged in a circle) attached to the front end of the twin-screw extruder. The extruded resin was immediately cooled in a cooling water bath. The cooled strand-shaped resin was sufficiently drained and then cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧1.0MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、炭酸カルシウム0.08重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度136℃で150秒撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、高圧の発泡槽から粒子を取り出して、塩化水素水溶液で炭酸カルシウムを除去した後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、0.12g/cmであった。
(Impregnation process)
After sealing 100 parts by weight of the resin particles in a pressure vessel and replacing the inside of the pressure vessel with carbon dioxide, the carbon dioxide was press-fitted to an impregnation pressure of 1.0 MPa. After leaving still at 20 degreeC environment and 24 hours of impregnation time passed, the pressure vessel was pressure-removed slowly over 5 minutes. In this way, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure removal in the impregnation step, the foamable particles were taken out from the pressure vessel, and 0.08 part by weight of calcium carbonate was added and mixed. Thereafter, the impregnated product was foamed with water vapor in a high-pressure foaming tank while stirring for 150 seconds at a foaming temperature of 136 ° C. using water vapor. After foaming, the particles were taken out from the high-pressure foaming tank, and after removing calcium carbonate with an aqueous hydrogen chloride solution, drying was performed with an air dryer to obtain foamed particles. When the bulk density of the obtained foamed particles was measured by the method described above, it was 0.12 g / cm 3 .
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.4MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.42MPaの水蒸気にて60秒間加熱を行い、次いで、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することで、発泡成形体を得た。
 上記参考例3d~4dの発泡粒子及び発泡成形体の物性を表14にまとめて示す。
(Molding process)
The obtained expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide, the carbon dioxide was added to an impregnation pressure (gauge pressure) of 0.4 MPa. Press-fitted. It left still in a 20 degreeC environment, and pressure curing was implemented for 8 hours. After taking out, it is filled into a 30 mm x 300 mm x 400 mm mold, heated with 0.42 MPa water vapor for 60 seconds, and then cooled until the maximum surface pressure of the foamed molded product decreases to 0.01 MPa. Thus, a foamed molded product was obtained.
Table 14 summarizes the physical properties of the expanded particles and expanded molded articles of Reference Examples 3d to 4d.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表12と14から、共重合体Bを含む場合、含まない場合に比べて、機械的物性が向上していることが分かる。 From Tables 12 and 14, it can be seen that when the copolymer B is included, the mechanical properties are improved as compared with the case where the copolymer B is not included.

Claims (20)

  1.  芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡粒子であり、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備える発泡粒子。 Expanded particles composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and the expanded particles have an area of 11.9 mm 2 by 30 times 2 is a foamed particle comprising small bubbles having a bubble diameter of 50 μm or more and less than 300 μm and large bubbles having a bubble diameter of 300 μm or more and 2 mm or less.
  2.  前記発泡粒子が、その1つにおいて、唯1つの前記大気泡を有する請求項1に記載の発泡粒子。 The foamed particle according to claim 1, wherein the foamed particle has only one large bubble in one of them.
  3.  前記芳香族ビニルがスチレン系単量体、前記(メタ)アクリル酸エステルが(メタ)アクリル酸アルキルエステル(アルキル基の炭素数は1~5)、前記不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、からそれぞれ選択され、前記共重合体が、前記芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、前記芳香族ビニルに由来する単位を30~80重量部、前記(メタ)アクリル酸エステルに由来する単位を8~35重量部、前記不飽和ジカルボン酸に由来する単位を10~50重量部を含む請求項1に記載の発泡粒子。 The aromatic vinyl is a styrene monomer, the (meth) acrylic acid ester is a (meth) acrylic acid alkyl ester (the alkyl group has 1 to 5 carbon atoms), and the unsaturated dicarboxylic acid is 2 to 6 carbon atoms. Each selected from an aliphatic unsaturated dicarboxylic acid, and the copolymer is 100 parts by weight of the total of units derived from the aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, 30 to 80 parts by weight of units derived from the aromatic vinyl, 8 to 35 parts by weight of units derived from the (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from the unsaturated dicarboxylic acid The expanded particle according to claim 1.
  4.  小気泡の平均気泡径と大気泡の平均気泡径との差が1450μm以上であり、前記発泡粒子が、その融着体から構成される発泡成形体に、0.0350W/m・K以下の熱伝導率を与える請求項1に記載の発泡粒子。 The difference between the average bubble diameter of the small bubbles and the average bubble diameter of the large bubbles is 1450 μm or more, and the foamed particles have a heat of 0.0350 W / m · K or less in the foamed molded body constituted by the fused body The expanded particle according to claim 1, which provides conductivity.
  5.  芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡粒子であり、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備え、小気泡の平均気泡径と大気泡の平均気泡径との差が1000μm以上、1500μm未満であり、前記発泡粒子が、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与える請求項1に記載の発泡粒子。 Expanded particles composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and the expanded particles have an area of 11.9 mm 2 by 30 times The difference between the average bubble size of the small bubbles and the average bubble size of the large bubbles is provided with small bubbles having a bubble diameter of 50 μm or more and less than 300 μm and large bubbles having a bubble diameter of 300 μm or more and 2 mm or less. The foamed particle according to claim 1, wherein the foamed particle gives a maximum point stress by a bending test of 1.0 MPa or more to the foamed molded body composed of the fused body.
  6.  前記芳香族ビニルが、スチレン、α-メチルスチレン、ビニルトルエン、エチルスチレン、i-プロピルスチレン、t-ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート及びビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレートから選択され、
     前記(メタ)アクリル酸エステルが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル及び(メタ)アクリル酸ブチルから選択され、
     前記不飽和ジカルボン酸が、マレイン酸、イタコン酸、シトラコン酸、アコニット酸、及びこれらの無水物から選択される請求項1に記載の発泡粒子。
    The aromatic vinyl is styrene, α-methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene. Bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, ethylene oxide adduct di (meth) acrylate of bisphenol A and Selected from the propylene oxide adduct di (meth) acrylate of bisphenol A,
    The (meth) acrylic acid ester is selected from methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and butyl (meth) acrylate;
    The expanded particle according to claim 1, wherein the unsaturated dicarboxylic acid is selected from maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof.
  7.  芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体Aと、芳香族ビニルと、不飽和ジカルボン酸と、不飽和ジカルボン酸イミドとの共重合体Bとを含む基材樹脂から構成された発泡粒子であり、前記共重合体Aのガラス転移温度Aと前記共重合体Bのガラス転移温度Bとの差が10~50℃であり、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備える請求項1に記載の発泡粒子。 Copolymer A of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid, and copolymer B of aromatic vinyl, unsaturated dicarboxylic acid, and unsaturated dicarboxylic imide Expanded particles composed of a base resin, the difference between the glass transition temperature A of the copolymer A and the glass transition temperature B of the copolymer B is 10 to 50 ° C., and the expanded particles are 30 2. The expanded particle according to claim 1, comprising small bubbles having a bubble diameter of 50 μm or more and less than 300 μm and large bubbles having a bubble diameter of 300 μm or more and 2 mm or less in a cross-sectional photograph obtained by photographing an area of 11.9 mm 2 at a magnification.
  8.  前記共重合体Aにおいて、前記芳香族ビニルがスチレン系単量体、前記(メタ)アクリル酸エステルが(メタ)アクリル酸アルキルエステル(アルキル基の炭素数は1~5)、前記不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、からそれぞれ選択され、前記共重合体Aが、前記芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、前記芳香族ビニルに由来する単位を30~80重量部、前記(メタ)アクリル酸エステルに由来する単位を8~35重量部、前記不飽和ジカルボン酸に由来する単位を10~50重量部含み、
     前記共重合体Bにおいて、前記芳香族ビニルがスチレン系単量体、前記不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、前記不飽和ジカルボン酸イミドがマレイミド系単量体、からそれぞれ選択され、前記共重合体Bが、前記芳香族ビニルと不飽和ジカルボン酸と不飽和ジカルボン酸イミドの3つに由来する単位の合計を100重量部とすると、前記芳香族ビニルに由来する単位を20~80重量部、前記不飽和ジカルボン酸に由来する単位を2~30重量部、前記不飽和ジカルボン酸イミドに由来する単位を20~80重量部含む請求項7に記載の発泡粒子。
    In the copolymer A, the aromatic vinyl is a styrene monomer, the (meth) acrylic acid ester is a (meth) acrylic acid alkyl ester (the alkyl group has 1 to 5 carbon atoms), the unsaturated dicarboxylic acid Are each selected from aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms, and the copolymer A is composed of units derived from three of the aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid. When the total is 100 parts by weight, 30 to 80 parts by weight of units derived from the aromatic vinyl, 8 to 35 parts by weight of units derived from the (meth) acrylic acid ester, and units derived from the unsaturated dicarboxylic acid 10 to 50 parts by weight,
    In the copolymer B, the aromatic vinyl is a styrene monomer, the unsaturated dicarboxylic acid is an aliphatic unsaturated dicarboxylic acid having 2 to 6 carbon atoms, and the unsaturated dicarboxylic imide is a maleimide monomer, And the copolymer B is derived from the aromatic vinyl when the total of the units derived from the aromatic vinyl, unsaturated dicarboxylic acid and unsaturated dicarboxylic imide is 100 parts by weight. The expanded particle according to claim 7, comprising 20 to 80 parts by weight of a unit, 2 to 30 parts by weight of a unit derived from the unsaturated dicarboxylic acid, and 20 to 80 parts by weight of a unit derived from the unsaturated dicarboxylic imide.
  9.  前記芳香族ビニルが、スチレン、α-メチルスチレン、ビニルトルエン、エチルスチレン、i-プロピルスチレン、t-ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート及びビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレートから選択され、
     前記(メタ)アクリル酸エステルが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル及び(メタ)アクリル酸ブチルから選択され、
     前記不飽和ジカルボン酸が、マレイン酸、イタコン酸、シトラコン酸、アコニット酸、及びこれらの無水物から選択され、
     前記不飽和ジカルボン酸イミドが、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド及びN-ナフチルマレイミドから選択され、
     前記共重合体A及びBが、70:30~95:5の重量比で前記基材樹脂に含まれている請求項7に記載の発泡粒子。
    The aromatic vinyl is styrene, α-methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene. Bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, ethylene oxide adduct di (meth) acrylate of bisphenol A and Selected from the propylene oxide adduct di (meth) acrylate of bisphenol A,
    The (meth) acrylic acid ester is selected from methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and butyl (meth) acrylate;
    The unsaturated dicarboxylic acid is selected from maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof;
    The unsaturated dicarboxylic imide is selected from maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide and N-naphthylmaleimide;
    The expanded particles according to claim 7, wherein the copolymers A and B are contained in the base resin in a weight ratio of 70:30 to 95: 5.
  10.  芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡成形体であり、前記発泡成形体が、複数の前記発泡粒子から構成され、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備える発泡成形体。 It is a foam molded article composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid, and the foam molded article is composed of a plurality of the foamed particles. In the cross-sectional photograph in which the expanded particle is photographed in an area of 11.9 mm 2 at 30 times, the expanded particle is provided with small bubbles having a bubble diameter of 50 μm or more and less than 300 μm and large bubbles having a bubble diameter of 300 μm or more and 2 mm or less Molded body.
  11.  前記発泡粒子が、その1つにおいて、唯1つの前記大気泡を有する請求項10に記載の発泡成形体。 The foamed molded article according to claim 10, wherein the foamed particles have only one large bubble in one of them.
  12.  前記芳香族ビニルがスチレン系単量体、前記(メタ)アクリル酸エステルが(メタ)アクリル酸アルキルエステル(アルキル基の炭素数は1~5)、前記不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、からそれぞれ選択され、前記共重合体が、前記芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、前記芳香族ビニルに由来する単位を30~80重量部、前記(メタ)アクリル酸エステルに由来する単位を8~35重量部、前記不飽和ジカルボン酸に由来する単位を10~50重量部を含む請求項10に記載の発泡成形体。 The aromatic vinyl is a styrene monomer, the (meth) acrylic acid ester is a (meth) acrylic acid alkyl ester (the alkyl group has 1 to 5 carbon atoms), and the unsaturated dicarboxylic acid is 2 to 6 carbon atoms. Each selected from an aliphatic unsaturated dicarboxylic acid, and the copolymer is 100 parts by weight of the total of units derived from the aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, 30 to 80 parts by weight of units derived from the aromatic vinyl, 8 to 35 parts by weight of units derived from the (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from the unsaturated dicarboxylic acid The foamed molded product according to claim 10.
  13.  芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡成形体であり、前記発泡成形体が、複数の発泡粒子から構成され、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備え、小気泡の平均気泡径と大気泡の平均気泡径との差が1450μm以上であり、前記発泡粒子が、その融着体から構成される発泡成形体の熱伝導率が0.0350W/m・K以下である請求項10に記載の発泡成形体。 It is a foam molded article composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and the foam molded article is composed of a plurality of foam particles. In the cross-sectional photograph in which the expanded particle is photographed in an area of 11.9 mm 2 at 30 times, a small bubble having a bubble diameter of 50 μm or more and less than 300 μm and a large bubble having a bubble diameter of 300 μm or more and 2 mm or less are provided. The difference between the average bubble diameter of the bubbles and the average bubble diameter of the large bubbles is 1450 μm or more, and the thermal conductivity of the foamed molded body in which the foamed particles are composed of the fused product is 0.0350 W / m · K or less. The foamed molded product according to claim 10.
  14.  芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡成形体であり、前記発泡成形体が、複数の発泡粒子から構成され、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備え、小気泡の平均気泡径と大気泡の平均気泡径との差が1000μm以上、1500μm未満であり、前記発泡粒子が、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与える請求項10に記載の発泡成形体。 It is a foam molded article composed of a base resin containing a copolymer of aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and the foam molded article is composed of a plurality of foam particles. In the cross-sectional photograph in which the expanded particles are taken at an area of 11.9 mm 2 at 30 times, the expanded particles are provided with small bubbles having a bubble diameter of 50 μm or more and less than 300 μm and large bubbles having a bubble diameter of 300 μm or more and 2 mm or less. The difference between the average bubble diameter of the bubbles and the average bubble diameter of the large bubbles is 1000 μm or more and less than 1500 μm, and the foamed particle is a maximum of a foamed molded body composed of the fused body by a bending test of 1.0 MPa or more. The foaming molding of Claim 10 which gives a point stress.
  15.  芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体Aと、芳香族ビニルと、不飽和ジカルボン酸と、不飽和ジカルボン酸イミドとの共重合体Bとを含む基材樹脂から構成された発泡成形体であり、前記発泡成形体が、複数の発泡粒子から構成され、前記共重合体Aのガラス転移温度Aと前記共重合体Bのガラス転移温度Bとの差が10~50℃であり、前記発泡粒子が、30倍で11.9mmの面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備える請求項10に記載の発泡成形体。 Copolymer A of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid, and copolymer B of aromatic vinyl, unsaturated dicarboxylic acid, and unsaturated dicarboxylic imide A foam molded body composed of a base resin, wherein the foam molded body is composed of a plurality of foam particles, and the glass transition temperature A of the copolymer A and the glass transition temperature B of the copolymer B In a cross-sectional photograph in which the difference is 10 to 50 ° C. and the foamed particles are taken in an area of 11.9 mm 2 at 30 times, a small bubble having a bubble diameter of 50 μm or more and less than 300 μm and a bubble diameter of 300 μm or more and 2 mm or less The foamed molded product according to claim 10, comprising the large bubbles.
  16.  前記共重合体Aにおいて、前記芳香族ビニルがスチレン系単量体、前記(メタ)アクリル酸エステルが(メタ)アクリル酸アルキルエステル(アルキル基の炭素数は1~5)、前記不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、からそれぞれ選択され、前記共重合体Aが、前記芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、前記芳香族ビニルに由来する単位を30~80重量部、前記(メタ)アクリル酸エステルに由来する単位を8~35重量部、前記不飽和ジカルボン酸に由来する単位を10~50重量部含み、
     前記共重合体Bにおいて、前記芳香族ビニルがスチレン系単量体、前記不飽和ジカルボン酸が炭素数2~6の脂肪族不飽和ジカルボン酸、前記不飽和ジカルボン酸イミドがマレイミド系単量体、からそれぞれ選択され、前記共重合体Bが、前記芳香族ビニルと不飽和ジカルボン酸と不飽和ジカルボン酸イミドの3つに由来する単位の合計を100重量部とすると、前記芳香族ビニルに由来する単位を20~80重量部、前記不飽和ジカルボン酸に由来する単位を2~30重量部、前記不飽和ジカルボン酸イミドに由来する単位を20~80重量部含む請求項15に記載の発泡成形体。
    In the copolymer A, the aromatic vinyl is a styrene monomer, the (meth) acrylic acid ester is a (meth) acrylic acid alkyl ester (the alkyl group has 1 to 5 carbon atoms), the unsaturated dicarboxylic acid Are each selected from aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms, and the copolymer A is composed of units derived from three of the aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid. When the total is 100 parts by weight, 30 to 80 parts by weight of units derived from the aromatic vinyl, 8 to 35 parts by weight of units derived from the (meth) acrylic acid ester, and units derived from the unsaturated dicarboxylic acid 10 to 50 parts by weight,
    In the copolymer B, the aromatic vinyl is a styrene monomer, the unsaturated dicarboxylic acid is an aliphatic unsaturated dicarboxylic acid having 2 to 6 carbon atoms, and the unsaturated dicarboxylic imide is a maleimide monomer, And the copolymer B is derived from the aromatic vinyl when the total of the units derived from the aromatic vinyl, unsaturated dicarboxylic acid and unsaturated dicarboxylic imide is 100 parts by weight. The foam molded article according to claim 15, comprising 20 to 80 parts by weight of units, 2 to 30 parts by weight of units derived from the unsaturated dicarboxylic acid, and 20 to 80 parts by weight of units derived from the unsaturated dicarboxylic imide. .
  17.  請求項13に記載の発泡成形体の製造用の発泡粒子。 Expanded particles for producing the expanded molded article according to claim 13.
  18.  請求項10に記載の発泡成形体と、この発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体。 A fiber reinforced composite comprising the foam molded article according to claim 10 and a fiber reinforced plastic layer laminated and integrated on the surface of the foam molded article.
  19.  風車翼、ロボットアーム、自動車部品に用いられる請求項18に記載の繊維強化複合体。 The fiber-reinforced composite according to claim 18, which is used for wind turbine blades, robot arms, and automobile parts.
  20.  請求項10に記載の発泡成形体又は請求項18に記載の繊維強化複合体から構成される自動車用部品。 An automotive part comprising the foamed molded product according to claim 10 or the fiber-reinforced composite according to claim 18.
PCT/JP2019/008696 2018-03-30 2019-03-05 Foam particles, foam molded article, fiber-reinforced composite article and automobile parts WO2019188052A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018-067746 2018-03-30
JP2018067746 2018-03-30
JP2018141721A JP2019183093A (en) 2018-03-30 2018-07-27 Foam particle, foam molded body, fiber reinforced composite and automobile component
JP2018-141721 2018-07-27
JP2018-162325 2018-08-31
JP2018162325A JP2020033484A (en) 2018-08-31 2018-08-31 Foam particle, foam molding, fiber-reinforced composite body and component for automobile
JP2018-182437 2018-09-27
JP2018182437A JP2020050786A (en) 2018-09-27 2018-09-27 Foam particle, foam molded body, fiber reinforced composite, and automobile component
JP2018182430A JP2020050785A (en) 2018-09-27 2018-09-27 Foam particle, foam molded body, fiber reinforced composite, and automobile component
JP2018-182430 2018-09-27

Publications (1)

Publication Number Publication Date
WO2019188052A1 true WO2019188052A1 (en) 2019-10-03

Family

ID=68060189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008696 WO2019188052A1 (en) 2018-03-30 2019-03-05 Foam particles, foam molded article, fiber-reinforced composite article and automobile parts

Country Status (1)

Country Link
WO (1) WO2019188052A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292489A (en) * 2003-03-25 2004-10-21 Sekisui Plastics Co Ltd Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product
JP2008156585A (en) * 2006-03-30 2008-07-10 Sekisui Plastics Co Ltd Expandable styrenic resin particle and method for producing the same, styrenic resin expanded particle and styrenic resin expanded and molded product
JP2011025521A (en) * 2009-07-24 2011-02-10 Kaneka Corp Extrusion foamed molding excellent in heat insulating performance
JP2015025070A (en) * 2013-07-26 2015-02-05 積水化成品工業株式会社 Acrylic resin foam manufacturing method and acrylic resin foam
JP2017141476A (en) * 2017-04-28 2017-08-17 積水化成品工業株式会社 Foaming particle for in-mold foam molding, in-mold foam molded body and fiber reinforced composite
JP2017186503A (en) * 2015-09-29 2017-10-12 積水化成品工業株式会社 Foam particle, foam molded body, fiber reinforced composite and automobile component
WO2018061263A1 (en) * 2016-09-27 2018-04-05 積水化成品工業株式会社 Expanded beads, molded foam, fiber-reinforced composite, and automotive component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292489A (en) * 2003-03-25 2004-10-21 Sekisui Plastics Co Ltd Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product
JP2008156585A (en) * 2006-03-30 2008-07-10 Sekisui Plastics Co Ltd Expandable styrenic resin particle and method for producing the same, styrenic resin expanded particle and styrenic resin expanded and molded product
JP2011025521A (en) * 2009-07-24 2011-02-10 Kaneka Corp Extrusion foamed molding excellent in heat insulating performance
JP2015025070A (en) * 2013-07-26 2015-02-05 積水化成品工業株式会社 Acrylic resin foam manufacturing method and acrylic resin foam
JP2017186503A (en) * 2015-09-29 2017-10-12 積水化成品工業株式会社 Foam particle, foam molded body, fiber reinforced composite and automobile component
WO2018061263A1 (en) * 2016-09-27 2018-04-05 積水化成品工業株式会社 Expanded beads, molded foam, fiber-reinforced composite, and automotive component
JP2017141476A (en) * 2017-04-28 2017-08-17 積水化成品工業株式会社 Foaming particle for in-mold foam molding, in-mold foam molded body and fiber reinforced composite

Similar Documents

Publication Publication Date Title
JP6161563B2 (en) Fiber reinforced composite
WO2018061263A1 (en) Expanded beads, molded foam, fiber-reinforced composite, and automotive component
WO2019189635A1 (en) Expanded beads, molded foam, fiber-reinforced composite, and automotive component
JP6395896B2 (en) Foamed particles for in-mold foam molding, in-mold foam molded body and fiber reinforced composite
JP2019044105A (en) Foamed particle, foamed molding, fiber-reinforced composite body, method for producing the same, and automobile parts
JP6244265B2 (en) Method for producing fiber reinforced composite and fiber reinforced composite
JP6484206B2 (en) Foamed particles, foamed molded products, fiber reinforced composites, and automotive parts
JP6200861B2 (en) Resin foam for forming composite and method for producing fiber-reinforced composite
JP2020033484A (en) Foam particle, foam molding, fiber-reinforced composite body and component for automobile
WO2019188052A1 (en) Foam particles, foam molded article, fiber-reinforced composite article and automobile parts
JP6050730B2 (en) In-mold foam molded article, fiber reinforced composite, and method for producing in-mold foam molded article
JP6449953B1 (en) Foamed particles and foamed moldings for the production of fiber reinforced composites, fiber reinforced composites and automotive parts
JP2019183093A (en) Foam particle, foam molded body, fiber reinforced composite and automobile component
JP2020050785A (en) Foam particle, foam molded body, fiber reinforced composite, and automobile component
JP2020050786A (en) Foam particle, foam molded body, fiber reinforced composite, and automobile component
JP2019183099A (en) Foam particle, foam molded body, fiber reinforced composite and automobile component
WO2020066349A1 (en) Foamed particles, foam molded article, method for producing same, and fiber-reinforced composite
JP2022057468A (en) Thermoplastic resin foamed particle, thermoplastic resin foamed particle molding, foamed resin composite body, method for producing thermoplastic resin foamed particle, and method for producing thermoplastic resin foamed particle molding
JP2019001980A (en) Aromatic vinyl resin composition for the production of foamed particle and use therefor
JP2020164581A (en) Foam particle and foam molding
JP2019001981A (en) Polylactic acid resin composition for the production of foamed particle and use therefor
WO2023238958A1 (en) Foamed thermoplastic resin particles, molded body of foamed thermoplastic resin particles, foamed resin composite, method for producing foamed thermoplastic resin particles, and method for producing molded body of foamed thermoplastic resin particles
JP7262266B2 (en) Foamed particles and foamed moldings
WO2020065485A1 (en) Expanded particles and expanded molded article
TWI725550B (en) Expanded particles and expanded molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774843

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19774843

Country of ref document: EP

Kind code of ref document: A1