WO2019159273A1 - Radiation therapy device - Google Patents

Radiation therapy device Download PDF

Info

Publication number
WO2019159273A1
WO2019159273A1 PCT/JP2018/005191 JP2018005191W WO2019159273A1 WO 2019159273 A1 WO2019159273 A1 WO 2019159273A1 JP 2018005191 W JP2018005191 W JP 2018005191W WO 2019159273 A1 WO2019159273 A1 WO 2019159273A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
patient
region
image
representative point
Prior art date
Application number
PCT/JP2018/005191
Other languages
French (fr)
Japanese (ja)
Inventor
優 水城
泰三 本田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2018/005191 priority Critical patent/WO2019159273A1/en
Publication of WO2019159273A1 publication Critical patent/WO2019159273A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • This application relates to a radiotherapy apparatus for treating cancer and the like.
  • Cancer is one of the causes of death. Cancer treatment methods are roughly divided into three categories: surgical therapy, chemotherapy, and radiation therapy. Surgical treatment is a method of removing the tumor or its surroundings by surgery, and is a method that hopes for a complete cure. Chemotherapy is a method of tumor reduction or metastasis prevention by administration of an anticancer drug. Radiotherapy is a method of suppressing the growth of only tumor cells by irradiating the tumor with photons such as X-rays or ⁇ -rays, particle beams such as protons or carbon rays, and utilizing the difference in the repair mechanism between normal cells and tumor cells. It is.
  • photons such as X-rays or ⁇ -rays, particle beams such as protons or carbon rays
  • an irradiation field in an appropriate position according to the shape or size of the tumor in order to suppress the irradiation of normal cells as much as possible.
  • On the day of irradiation, an operation called positioning is performed while comparing an X-ray image acquired in advance with an X-ray fluoroscopic image.
  • the position of the treatment table is set so that the reference position of the X-ray image acquired in advance and the X-ray fluoroscopic image acquired on the day of irradiation coincide with the bone that is considered to have little daily fluctuation in position, Adjust the angle.
  • This work is indispensable to reproduce the posture at the time of treatment planning.
  • a tumor exists in a highly movable organ such as the liver or prostate, there is a method of using a pure gold marker placed in the vicinity of the tumor instead of bone at the reference position (see, for example, Patent Document 1).
  • a method is used in which a pure gold marker is placed near the tumor and the position of the tumor is identified by tracking the movement of the marker.
  • Patent Document 2 proposes a technique for identifying a lesioned part by performing X-ray imaging using a contrast agent having a property of being specifically accumulated in a lesioned part such as a tumor.
  • a marker made of pure gold was placed in the vicinity of the tumor as a preliminary preparation for irradiation, so the marker might move or drop off depending on the placement site.
  • the marker blocks the irradiation field, so it has to be placed at a position away from the tumor.
  • an error occurs when the position of the tumor is specified, and high-accuracy position specification cannot be realized.
  • local anesthesia for injection needle puncture to the placement site and insertion of the catheter is necessary, which causes a physical burden on the patient.
  • the present application discloses a technique for solving the above-described problem, and obtains a radiotherapy apparatus capable of specifying the position of a tumor with high accuracy without inserting or placing a marker in the body. With the goal.
  • a radiation therapy apparatus disclosed in the present application includes a radiation generation apparatus that generates radiation, a radiation irradiation apparatus that irradiates the patient with radiation generated by the radiation generation apparatus, and an X-ray treatment X image of the patient.
  • the radiotherapy apparatus comprising the X-ray imaging apparatus
  • the X-ray imaging apparatus during treatment extracts a neovascular network region from an image of a new blood vessel around a diseased part of a patient obtained from the acquired X-ray image, and performs radiation irradiation.
  • the apparatus irradiates the affected area with radiation based on the extracted neovascular network region.
  • radiotherapy apparatus it is possible to obtain a radiotherapy apparatus that can specify the position of a tumor with high accuracy without inserting or placing a marker in the body.
  • FIG. 1 is a block diagram showing a schematic configuration of a radiotherapy system including a radiotherapy apparatus according to Embodiment 1.
  • FIG. 1 is a conceptual block diagram of a radiation therapy apparatus according to Embodiment 1.
  • FIG. 3 is a flowchart for explaining the operation of the radiotherapy apparatus according to the first embodiment.
  • 4A is a diagram showing an example of an X-ray image of a taken neovascular network
  • FIG. 4B is a diagram showing an example of an image subjected to median filter processing
  • FIG. 4C is a diagram showing an example of an image subjected to thinning filter processing
  • FIG. FIG. 4 is a diagram illustrating an example of an image subjected to edge extraction filter processing.
  • FIG. 10 is a flowchart for explaining the operation of the radiotherapy apparatus according to the second embodiment.
  • 6 is a conceptual block diagram of a radiation therapy apparatus according to Embodiment 3.
  • FIG. 10 is a flowchart for explaining the operation of the radiotherapy apparatus according to the third embodiment.
  • It is a notional block diagram of the radiotherapy apparatus by Embodiment 4.
  • FIG. 10 is a flowchart for explaining the operation of the radiotherapy apparatus according to the fourth embodiment. It is a block diagram which shows an example of a structure of a controller or a computing unit in each embodiment.
  • This application pays attention to this new blood vessel network, and by observing the new blood vessel network at the time of treatment, it determines the position of the affected part at the time of radiation treatment, the shape of the affected part, etc., and corresponds to the position of the affected part at the time of treatment or the shape of the affected part
  • a technique for controlling the radiotherapy apparatus is disclosed.
  • FIG. 1 is a block diagram showing a schematic configuration of a radiation therapy system including a radiation therapy apparatus 1 according to the first embodiment.
  • the radiotherapy apparatus 1 includes a radiation generation apparatus 2, a radiation irradiation apparatus 3, and a treatment X-ray imaging apparatus 4.
  • the radiation generation apparatus 2 includes a radiation generation source 21 that generates radiation such as X-rays, ⁇ -rays, proton beams, carbon rays, and electron beams, and a radiation generation controller 22 that controls the radiation generation source 21.
  • the radiation irradiating apparatus 3 includes a radiation irradiator 31 for irradiating the affected part of a patient who is a treatment target of radiation therapy with the radiation 5 generated by the radiation source 21 and an irradiation controller 32 for controlling the radiation irradiator 31.
  • the treatment X-ray imaging apparatus 4 has a function of performing X-ray imaging of a region including an affected part of a patient at the time of treatment, and extracting a region of a neovascular network around the affected part from a photographed image.
  • the treatment planning apparatus 10 plans in advance how to irradiate the patient to be treated, and stores parameters of various devices in the radiation treatment apparatus as data for irradiating the patient with radiation according to the plan. In this case, the data is given to the radiotherapy apparatus 1.
  • the radiation therapy apparatus 1 can perform radiation therapy according to the treatment plan by irradiating the patient with radiation based on the data given from the treatment planning apparatus 10.
  • FIG. 2 is a block diagram conceptually showing a configuration of a radiotherapy apparatus using a particle beam such as a carbon beam or a proton beam which is a bundle of charged particles as radiation.
  • An accelerator for accelerating charged particles generates the particle beam 5 as the radiation generation source 21, and the particle beam 5 passes through the vacuum duct 51 and is transported to a radiation irradiator 31 provided downstream of the vacuum duct 51.
  • a bending electromagnet for changing the traveling direction of the particle beam 5 is provided at a portion where the vacuum duct 51 is bent, but is omitted in FIG.
  • the radiation irradiator 31 the particle beam 5a is irradiated to the affected part 6 of the patient who is the irradiation target placed on the treatment table.
  • Various irradiation parameters for irradiation are set by the treatment planning apparatus 10.
  • the parameters of the accelerator and radiation irradiator 31 as the radiation generation source 21 for irradiating with the irradiation parameters are transmitted from the system controller 20 to the radiation generation controller 22 and the irradiation controller 32 to generate radiation.
  • the respective commands are output to the accelerator 21 and the radiation irradiator 31 as the source 21.
  • an X-ray apparatus constituted by, for example, X-ray tubes 41a and 41b and flat panel detectors (FPD) 42a and 42b 40 is installed.
  • X-rays emitted from the X-ray tube 41a are detected by the FPD 42a
  • X-rays emitted from the X-ray tube 41b are detected by the FPD 42b.
  • X-ray images of the area including the affected area 6 are acquired by the X-ray tubes 41a and 41b and the FPDs 42a and 42b.
  • the X-ray image processing calculator 43 processes the X-ray image acquired by the X-ray apparatus 40.
  • the X-ray apparatus 40 and the X-ray image processing calculator 43 are collectively shown as a treatment X-ray imaging apparatus 4.
  • the X-ray image processing calculator 43 may be configured to control the X-ray apparatus 40 and acquire an image.
  • the entire treatment X-ray imaging apparatus 4 may be configured to acquire an X-ray image of an area including the affected part 6 and process the X-ray image.
  • the X-ray apparatus 40 is configured to perform X-ray imaging from two directions. However, for example, when the therapeutic radiation is X-ray, the X-ray apparatus 40 may be configured to perform imaging only from one direction. Further, when it is necessary to grasp the position of the affected part 6 with higher accuracy, a configuration may be adopted in which X-ray imaging is performed from three directions.
  • the X-ray apparatus 40 continuously X-rays the neovascular network in the region including the affected part 6 to be tracked (for example, the frame rate is several tens of fps) (step ST1). At this time, it is desirable to inject the patient with a contrast agent for imaging blood vessels.
  • the X-ray image processing calculator 43 filters the X-ray image data acquired by imaging using, for example, a so-called median filter (step ST2).
  • the median filter performs processing for replacing the value of each pixel with the median value of surrounding pixels. This process is usually performed by executing software.
  • FIG. 4A shows an example of an X-ray image obtained by imaging new blood vessels around the tumor.
  • FIG. 4A is an image diagram of an X-ray image obtained by X-ray imaging of a region including a patient's tumor by injecting a contrast medium.
  • An image obtained by imaging new blood vessels around a tumor is often obtained as an image having a difference in brightness in a region as a new blood vessel network.
  • FIG. 4B shows an example of a processed image obtained by filtering the image data of FIG. 4A with a median filter of software. By performing the filtering process, it is possible to obtain an image in which the light and dark differences are averaged and the neovascular network region is extracted as an integral image.
  • the region of the neovascular network extracted using the filtered image is stored as a shape.
  • the shape of the neovascular network extracted from X-ray images that are continuously captured is subjected to pattern matching with the shape of the neovascular network obtained before the start of treatment, so that the new blood vessel to be treated
  • the position of the net is discriminated, and the position of the center of gravity of the neovascular network area is obtained (step ST3).
  • the barycentric position can be obtained for the reference coordinates set in the X-ray apparatus 40.
  • the coordinates set in the X-ray apparatus 40 are usually matched with the reference coordinates of the radiation irradiator 31.
  • the X-ray image processing calculator 43 thins the X-ray image data acquired by photographing.
  • the thinning process is a process of converting an image into a line image with a narrow width, and is realized by, for example, a process of extracting a center line by repeating a step of narrowing the line width of an input image. This processing is usually performed by executing software.
  • FIG. 4C shows an example of the image after the thinning filter processing is performed on the image of FIG. 4A by the thinning processing of software.
  • the thinning process is equivalent to calculating the number density of blood vessels in the X-ray image. A region of the neovascular network is extracted from this image.
  • step ST3 In the calculation of the centroid position of the neovascular network region (step ST3), the following processing may be performed.
  • one blood vessel In the X-ray image subjected to the thinning process, one blood vessel is represented as one line regardless of the thickness of the blood vessel, so the density of the line in the X-ray image corresponds to the density of the blood vessel. Further, by performing the thinning process so that the line thickness of the X-ray image subjected to the thinning process is constant (for example, 1 pixel), the density of pixels having a brightness equal to or greater than the brightness threshold is determined in advance.
  • a region that is equal to or higher than the density threshold can be determined as a region having a high number of blood vessels, that is, a region of a new blood vessel network, and a region of the new blood vessel network can be extracted.
  • the center-of-gravity position of the region extracted as the neovascular network region is obtained.
  • the brightness threshold is set to a higher value of the X-ray absorption amount of the two gradations. That is, for example, when 1 out of the pixel values 0 and 1 corresponds to a pixel value having a larger X-ray absorption amount, 1 is set as the brightness threshold.
  • the X-ray image after the thinning process is not two gradations, it is set so that the blood vessel can be detected by being input by a user interface or by calculation by a computer.
  • the density threshold value is set so that a new blood vessel can be discriminated by being input from a user interface or calculated by a computer.
  • the region of the new blood vessel network is determined based on the blood vessel density.
  • the thinning process is not performed. It is also possible to extract the neovascular network region by obtaining the blood vessel density from the acquired X-ray image itself.
  • the shape of the tumor can be obtained by extracting a region of the neovascular network from the processed image by performing a filtering process using an edge extraction filter for extracting an outline from the X-ray image in step ST2. May be identified.
  • the filter processing by the edge extraction filter can be performed after the median filter processing, so that more appropriate shape extraction can be performed.
  • FIG. 4D shows an image obtained by filtering the image of FIG. 4B using an edge extraction filter.
  • the barycentric position of the neovascular network region can be obtained from the image subjected to the filter processing by the edge extraction filter.
  • the X-ray image processing calculator 43 determines whether or not the centroid position is within the allowable region (step ST4).
  • the allowable region is set by inputting from the user interface or calculating by a computer as a range in which the displacement of the center of gravity position is allowable with respect to the irradiation region set by the treatment plan. If the calculated position of the center of gravity of the neovascular network region is within the allowable region (YES in step ST4), an irradiation command signal is transmitted to the radiation generator 2 and the radiation irradiation device 3 to irradiate the radiation (step ST5).
  • step ST4 If it is not within the allowable region (NO in step ST4), an irradiation stop signal is transmitted, and the process returns to step ST1 without irradiation. Since the X-ray image is acquired in real time, the irradiation can be stopped in real time when the position of the affected part 6 to be irradiated is shifted due to the patient's breathing or the like. While the irradiation dose does not reach the planned dose (NO in step ST6), this series of operations is continued. When the irradiation dose reaches the planned dose (step ST6 YES), the irradiation is terminated.
  • the radiotherapy apparatus which uses a particle beam as a therapeutic radiation
  • other radiations such as not only a particle beam but X-rays, may be sufficient.
  • the center of gravity is used as the position of the representative point that represents the position of the neovascular network area.
  • the representative point is not limited to the center of gravity, and any point can be determined as the position of the neovascular network area. It may be a point. The same applies to the subsequent embodiments with respect to the position of the representative point representing the position of the neovascular network region.
  • the radiotherapy apparatus when treating by irradiating with radiation, a region of the neovascular network around the affected area of the patient is extracted from the photographed X-ray image, and the extracted neovascularization
  • the radiation irradiation device irradiates the affected area with radiation based on the area of the net. More specifically, the position of the representative point such as the center of gravity position is obtained from the area of the neovascular network extracted by the filtered image of the X-ray image of the area including the tumor that is the affected area, and the position of the representative point is the allowable area. In this case, therapeutic radiation was applied, and when it was not within the allowable range, radiation was not applied.
  • the position of the affected part is obtained using an X-ray image obtained by X-ray imaging of the structure of the new blood vessel network that does not depend on the metabolic function.
  • the position of the affected part can be determined with higher accuracy than the method of determining the affected part from the image of the contrast agent that is accumulated depending on the metabolic function of the affected part.
  • the position of the affected part can be determined with high accuracy without using a marker.
  • FIG. FIG. 5 is a block diagram conceptually showing the structure of the radiation therapy apparatus according to the second embodiment.
  • the radiation irradiator 31 is provided with a multi-leaf collimator 32 for setting the two-dimensional shape of the irradiation region by limiting the irradiation region of the radiation.
  • An example of the configuration of the multi-leaf collimator 32 is shown in FIG. 6 as a plan view seen from the direction of the radiation irradiation axis.
  • the multi-leaf collimator 32 is configured to set the shape of the region through which radiation passes, that is, the opening 323 by driving a large number of collimator leaves 321 left and right in the example of FIG. Yes.
  • the X-ray apparatus 40 continuously X-rays the neovascular network in the region including the affected part 6 to be tracked (for example, the frame rate is several tens of fps) (step ST1). At this time, it is desirable to inject the patient with a contrast agent for imaging blood vessels.
  • the X-ray image processing calculator 43 the X-ray image data acquired by imaging is filtered by the median filter described in the first embodiment, for example (step ST2). Further, the thinning process described in Embodiment 1 may be performed.
  • the center-of-gravity position of the neovascular network region is obtained (step ST3).
  • the X-ray image processing calculator 43 determines whether or not the center-of-gravity position coordinates are within the allowable region (step ST4).
  • the allowable region is set by inputting from the user interface or calculating by a computer as a range in which the displacement of the center of gravity position is allowable with respect to the irradiation region set by the treatment plan. If the calculated centroid position of the neovascular network area is within the allowable area (step ST4 YES), the position of the opening 323 of the multi-leaf collimator 32 is moved corresponding to the deviation of the centroid position coordinate from the treatment plan.
  • the setting condition of the multi-leaf collimator 32 is corrected with respect to the condition set by the treatment planning apparatus (step ST41), and radiation irradiation is performed (step ST5). If it is not within the allowable region (NO in step ST4), an irradiation stop signal is transmitted, and the process returns to step ST1 without irradiation. Since the X-ray image is acquired in real time, when the position of the affected part 6 that is the irradiation target is shifted due to the patient's breathing or the like, or when there is a slight shift, the irradiation is performed by correcting the setting conditions of the multi-leaf collimator 32. Try to shift the position. If it deviates significantly, the irradiation is stopped. While the irradiation dose does not reach the planned dose (NO in step ST6), this series of operations is continued. When the irradiation dose reaches the planned dose (step ST6 YES), the irradiation is terminated.
  • the shape of the tumor can be obtained by extracting a region of the new blood vessel network from the processed image by performing filter processing using an edge extraction filter for extracting an outline from the X-ray image in step ST2.
  • the filter processing by the edge extraction filter can be performed after the median filter processing so that a more appropriate shape can be extracted.
  • the setting condition of the multi-leaf collimator 32 is corrected based on the position and shape of the neovascular network region, and the opening shape is corrected, so that not only the position of the opening 323 but also the irradiation region.
  • the shape itself can also be corrected.
  • the shape of the neovascular network region may be obtained from an image obtained by median filter processing, or may be obtained from the neovascular network region extracted by thinning processing. Also in these processes, as in the edge extraction filter process, the setting conditions of the multi-leaf collimator 32 are corrected based on the position and shape of the neovascular network region, and the opening shape is corrected, so that only the position of the opening 323 is obtained. Instead, the shape of the irradiation area itself can be corrected.
  • the example of the radiotherapy apparatus which uses a particle beam as a radiation was shown and demonstrated,
  • the radiation is not limited to a particle beam, but may be other radiation such as an X-ray.
  • the radiotherapy apparatus when treating by irradiating with radiation, a region of the neovascular network around the affected area of the patient is extracted from the captured X-ray image, and the extracted neovascularization
  • the radiation irradiation device irradiates the affected area with radiation based on the area of the net.
  • the position of the representative point such as the center of gravity of the affected area is obtained from the area of the neovascular network extracted by an image obtained by filtering the X-ray image of the area including the tumor which is the affected area, or the position of the representative point
  • the setting condition of the multi-leaf collimator 32 is corrected and the therapeutic radiation is irradiated, and the position of the representative point is within the allowable range. If not, radiation was not applied.
  • the position of the representative point of the affected area or the shape of the irradiation region is obtained using an X-ray image obtained by X-ray imaging of the structure of the neovascular network that does not depend on the metabolic function. Therefore, the position or shape of the affected part can be determined with higher accuracy than the method of determining the affected part from the contrast agent images accumulated depending on the metabolic function of the affected part described in Patent Document 2. be able to. Moreover, the position of the affected part can be determined with high accuracy without using a marker.
  • FIG. FIG. 8 is a block diagram conceptually showing the structure of the radiation therapy apparatus according to the third embodiment.
  • the radiation irradiator 31 includes a scanning electromagnet 33 that uses a particle beam as radiation and deflects the particle beam in a two-dimensional direction perpendicular to the traveling direction of the particle beam.
  • the operation of the scanning electromagnet 33 is set by a signal from the irradiation controller 32.
  • the scanning electromagnet 33 scans so that the excitation current is set so as to sequentially change the deflection angle of the particle beam 5b, and as a result, the particle beam 5b irradiates the irradiation region set by the treatment plan.
  • the X-ray apparatus 40 continuously X-rays the neovascular network in the region including the affected part 6 to be tracked (for example, the frame rate is several tens of fps) (step ST1). At this time, it is desirable to inject the patient with a contrast agent for imaging blood vessels.
  • the X-ray image processing calculator 43 the X-ray image data acquired by imaging is filtered by the median filter described in the first embodiment, for example (step ST2). Further, the thinning process described in Embodiment 1 may be performed. Alternatively, the processing by the edge extraction filter described in Embodiments 1 and 2 may be performed. Using the neovascular network region extracted from the processed image, the center-of-gravity position of the neovascular network region is obtained (step ST3).
  • the X-ray image processing calculator 43 determines whether or not the centroid position is within the allowable region (step ST4).
  • the allowable region is set by inputting from the user interface or calculating by a computer as a range in which the displacement of the center of gravity position is allowable with respect to the irradiation region set by the treatment plan. If it is within the allowable region (YES in step ST4), the excitation current value of the scanning electromagnet 33 is corrected with respect to a preset set value corresponding to the displacement of the center of gravity position from the treatment plan (step ST42). ), Radiation irradiation is performed (step ST5).
  • step ST4 If it is not within the allowable region (NO in step ST4), an irradiation stop signal is transmitted, and the process returns to step ST1 without irradiation. Since the X-ray image is acquired in real time, when the position of the affected part 6 that is the irradiation target is shifted due to the patient's breathing or the like, the setting value of the excitation current value of the scanning electromagnet 33 is corrected in the case of a slight shift. Therefore, the irradiation position is shifted. If there is a large deviation, stop irradiation.
  • the radiation irradiation device when irradiating with a particle beam as radiation, the region of the neovascular network around the affected area of the patient is extracted from the photographed X-ray image, Based on the extracted neovascular network region, the radiation irradiation device irradiates the affected area with radiation. More specifically, the position of a representative point such as the position of the center of gravity of the affected area is obtained from the area of the neovascular network extracted by an image obtained by filtering the X-ray image of the area including the tumor that is the affected area.
  • the setting condition of the scanning electromagnet 33 that deflects the particle beam in accordance with the displacement of the representative point is corrected to irradiate therapeutic radiation, and the position of the representative point is allowable When it was not in range, radiation was not irradiated.
  • the center of gravity position of the affected area is obtained using an X-ray image obtained by X-ray imaging of the structure of the neovascular network that does not depend on the metabolic function. Compared to the method of determining a lesion from a contrast agent image accumulated depending on the metabolic function of the lesion described in the above, the position of the lesion can be determined with higher accuracy. Moreover, the position of the affected part can be determined with high accuracy without using a marker.
  • FIG. 10 is a block diagram conceptually showing the structure of the radiation therapy apparatus according to the fourth embodiment.
  • a patient is placed on a treatment table 60 and irradiated with radiation.
  • the treatment table 60 is provided with a mechanism for moving the treatment top plate 61 on which the patient is fixed.
  • the positioning calculator 62 obtains the amount of movement of the treatment top plate 61 for positioning based on the X-ray image of the new blood vessel network imaged by the X-ray apparatus 40, The treatment top 61 is moved to position the patient.
  • the treatment table 60, the treatment top plate 61, and the positioning calculator 62 which are members necessary for positioning, are referred to as the positioning mechanism 6.
  • the X-ray apparatus 40 performs X-ray imaging of a neovascular network in a region including the affected part 6 to be tracked (step ST1). At this time, it is desirable to inject the patient with a contrast agent for imaging blood vessels.
  • the X-ray image processing calculator 43 the X-ray image data acquired by imaging is filtered by the median filter described in the first embodiment, for example (step ST2). Further, the thinning process described in Embodiment 1 may be performed. Alternatively, the processing by the edge extraction filter described in Embodiments 1 and 2 may be performed. Using the neovascular network region extracted from the processed image, the center-of-gravity position of the neovascular network region is obtained (step ST3).
  • an amount of movement of the treatment top plate 61 so that the center of gravity position becomes a predetermined position is calculated (step ST43).
  • the amount of movement (step ST43) is not calculated from the position of the center of gravity, but an image of the neovascular network obtained by filtering in step ST2 and X obtained by filtering by X-ray imaging during treatment planning. It can also be calculated by collating with a line image. The collation can be performed by subtracting both images, calculating a movement amount on the image that minimizes the difference information, and converting the movement amount on the image into a movement amount of the treatment table 61.
  • the treatment top 61 is driven and controlled so as to correct the position of the treatment top 61 according to the calculated movement amount (step ST44).
  • an X-ray image of a region including a tumor which is an affected part is filtered and is newly born.
  • the region of the blood vessel network is extracted, the position of the representative point such as the priority position of the region of the new blood vessel network is obtained, and the patient is positioned based on the obtained position of the representative point.
  • an image of a neovascular network extracted by filtering an X-ray image of a region including a tumor which is an affected part, and an X-ray image of a region including a tumor obtained by X-ray imaging at the time of treatment planning are filtered.
  • the amount of movement of the treatment top 61 for positioning is obtained using an X-ray image obtained by X-ray imaging of the structure of the neovascular network that does not depend on the metabolic function. Therefore, compared to the method described in Patent Document 2 for determining a lesion from an image of a contrast agent accumulated depending on the metabolic function of the lesion, positioning can be performed with high accuracy. Further, it is possible to perform positioning accurately without using a marker.
  • the radiation generation controller 22, the irradiation controller 32, the X-ray image processing calculator 43, and the positioning calculator 62 each have a hardware configuration as shown in FIG.
  • it is realized as a computer including a processor 11 such as a CPU, a memory 12, and an input / output interface 13 for exchanging data and signals with other devices, and includes a display 14 for displaying information as necessary.
  • a processor 11 that executes a program stored in the memory 12.
  • the processing performed by each of the above controllers or arithmetic units is realized by the processor 11 executing the programs stored in the memory 12.
  • one processor 11 may serve as, for example, the radiation generation controller 22 and the irradiation controller 32, or may serve as the irradiation controller 32 and the X-ray image processing arithmetic unit 43.
  • the generation controller 22, the irradiation controller 32, the X-ray image processing calculator 43, etc. may all be realized by a single processor.
  • Radiation therapy device 2. Radiation generation device, 3. Radiation irradiation device, 4. Treatment X-ray imaging device, 5. Radiation, 6. Positioning mechanism, 32. Multi-leaf collimator, 33. Scanning electromagnet

Abstract

This radiation therapy device is provided with: a radiation generating device (2) that generates radiation; a radiation irradiating device (3) that irradiates a patient with the radiation generated by the radiation generating device (2); and an in-therapy X-ray imaging device (4) that captures an X-ray image of the patient, wherein the in-therapy X-ray imaging device (4) extracts a neovascular plexus region around an affected part of the patient from the captured X-ray image, and the radiation irradiating device (3) irradiates the affected part with the radiation on the basis of the extracted neovascular plexus region.

Description

放射線治療装置Radiation therapy equipment
 本願は、癌などを治療するための放射線治療装置に関するものである。 This application relates to a radiotherapy apparatus for treating cancer and the like.
 癌は死因の一つである。癌の治療方法は、外科療法、化学療法及び放射線治療の三つに大別される。外科療法は腫瘍あるいはその周辺を手術によって摘出する方法で、根治を望める方法である。化学療法は、抗がん剤の投与により腫瘍の縮小あるいは転移阻止を行う方法である。放射線治療は腫瘍にX線あるいはγ線といった光子線、陽子線あるいは炭素線といった粒子線を照射し、正常細胞と腫瘍細胞の修復機構の相違を利用して、腫瘍細胞のみの増殖を抑制する方法である。 Cancer is one of the causes of death. Cancer treatment methods are roughly divided into three categories: surgical therapy, chemotherapy, and radiation therapy. Surgical treatment is a method of removing the tumor or its surroundings by surgery, and is a method that hopes for a complete cure. Chemotherapy is a method of tumor reduction or metastasis prevention by administration of an anticancer drug. Radiotherapy is a method of suppressing the growth of only tumor cells by irradiating the tumor with photons such as X-rays or γ-rays, particle beams such as protons or carbon rays, and utilizing the difference in the repair mechanism between normal cells and tumor cells. It is.
 放射線治療においては、正常細胞への照射を極力抑えるため、腫瘍の形状あるいは大きさに合わせた照射野を適切な位置に形成する必要がある。照射野を適切な位置に形成するには、腫瘍の位置を正確に把握する必要がある。そのため、照射までにいくつかの準備を必要とする。まず、X線CT撮影により腫瘍を含む領域の画像を取得し、この画像をもとに治療計画を立案する。照射当日、事前に取得したX線画像とX線透視画像とを照合しながら、位置決めと呼ばれる作業を行う。具体的には、位置の日間変動が少ないと考えられる骨を基準位置とし、事前に取得したX線画像と照射当日に取得するX線透視画像の基準位置が一致するよう、治療台の位置、角度を調整する。この作業は治療計画立案時の体位を再現するために必要不可欠である。可動性の大きい臓器例えば肝臓や前立腺に腫瘍が存在する場合は、基準位置に骨ではなく、腫瘍の付近に留置した純金製のマーカを使用する方法がある(例えば特許文献1参照)。 In radiotherapy, it is necessary to form an irradiation field in an appropriate position according to the shape or size of the tumor in order to suppress the irradiation of normal cells as much as possible. In order to form the irradiation field at an appropriate position, it is necessary to accurately grasp the position of the tumor. Therefore, some preparation is required before irradiation. First, an image of a region including a tumor is acquired by X-ray CT imaging, and a treatment plan is drawn up based on this image. On the day of irradiation, an operation called positioning is performed while comparing an X-ray image acquired in advance with an X-ray fluoroscopic image. Specifically, the position of the treatment table is set so that the reference position of the X-ray image acquired in advance and the X-ray fluoroscopic image acquired on the day of irradiation coincide with the bone that is considered to have little daily fluctuation in position, Adjust the angle. This work is indispensable to reproduce the posture at the time of treatment planning. When a tumor exists in a highly movable organ such as the liver or prostate, there is a method of using a pure gold marker placed in the vicinity of the tumor instead of bone at the reference position (see, for example, Patent Document 1).
 また、胸腹部にできた腫瘍は呼吸性移動を伴うため、腫瘍の位置の時間変動を正確にとらえる必要がある。この場合も位置決めと同様、腫瘍付近に純金製のマーカを留置し、マーカの動きを追跡することで腫瘍の位置を特定する方法がとられている。 Also, since the tumor formed in the thoracoabdominal region is accompanied by respiratory movement, it is necessary to accurately grasp the time variation of the tumor position. In this case as well, as with positioning, a method is used in which a pure gold marker is placed near the tumor and the position of the tumor is identified by tracking the movement of the marker.
 また、治療用の放射線を患部に精度良く照射するために、患部の位置をX線画像などの画像で確認しながら治療用の放射線を照射する、画像誘導放射線治療(IGRT:Image Guided Radiation Therapy)が提案されている(例えば特許文献2)。特許文献2では、腫瘍等の病変部に特異的に集積する性質を有する造影剤を用いてX線撮影し、病変部を特定する技術が提案されている。 In addition, in order to accurately irradiate the affected area with therapeutic radiation, image-guided radiation therapy (IGRT: Image Guided Radiation Therapy) is performed while irradiating therapeutic radiation while confirming the position of the affected area with an image such as an X-ray image. Has been proposed (for example, Patent Document 2). Patent Document 2 proposes a technique for identifying a lesioned part by performing X-ray imaging using a contrast agent having a property of being specifically accumulated in a lesioned part such as a tumor.
特開2004-97646号公報(段落0146)JP 2004-97646 A (paragraph 0146) 特開2013-252420号公報JP 2013-252420 A
 従来の放射線治療では、照射の事前準備として腫瘍付近に純金製のマーカを留置していたため、留置部位によってはマーカが移動あるいは脱落することがあった。また、放射線、特に粒子線ではマーカが照射野を遮るため、腫瘍と離れた位置に留置する必要があった。しかし、マーカと腫瘍とが離れることで、腫瘍の位置を特定する際に誤差が生じ、高精度な位置特定を実現することができなかった。加えて、マーカを留置する際は、留置部位への注射針穿刺やカテーテル挿入のための局部麻酔が必要であるので、患者の身体的な負担が生じていた。 In conventional radiotherapy, a marker made of pure gold was placed in the vicinity of the tumor as a preliminary preparation for irradiation, so the marker might move or drop off depending on the placement site. In addition, for radiation, particularly particle beams, the marker blocks the irradiation field, so it has to be placed at a position away from the tumor. However, when the marker and the tumor are separated from each other, an error occurs when the position of the tumor is specified, and high-accuracy position specification cannot be realized. In addition, when placing the marker, local anesthesia for injection needle puncture to the placement site and insertion of the catheter is necessary, which causes a physical burden on the patient.
 また、特許文献2で提案されている、腫瘍等の病変部に特異的に集積する性質を有する造影剤を用いてX線撮影して病変部を特定する技術にあっては、病変部の代謝機能の変動によって造影剤の集積度合いに差異が生じ、X線画像の濃淡に差異が生じる可能性がある。このため、病変部全体を精度良く把握できない可能性がある。 Further, in the technique proposed in Patent Document 2 for identifying a lesion part by X-ray imaging using a contrast agent having a property of being specifically accumulated in a lesion part such as a tumor, the metabolism of the lesion part is described. Differences in the degree of accumulation of contrast agent may occur due to functional variations, and differences in the density of X-ray images may occur. For this reason, there is a possibility that the entire lesion cannot be accurately grasped.
 本願は、上記のような課題を解決するための技術を開示するものであり、体内にマーカを挿入・留置せずに、腫瘍の位置を高精度で特定することができる放射線治療装置を得ることを目的とする。 The present application discloses a technique for solving the above-described problem, and obtains a radiotherapy apparatus capable of specifying the position of a tumor with high accuracy without inserting or placing a marker in the body. With the goal.
 本願に開示される放射線治療装置は、放射線を発生する放射線発生装置と、放射線発生装置が発生した放射線を前記患者に対して照射する放射線照射装置と、患者のX線画像を撮像する治療時X線撮影装置とを備えた放射線治療装置において、治療時X線撮影装置は、撮影したX線画像から得られる患者の患部の周辺の新生血管の画像から新生血管網の領域を抽出し、放射線照射装置は抽出した新生血管網の領域に基づいて患部に放射線を照射するものである。 A radiation therapy apparatus disclosed in the present application includes a radiation generation apparatus that generates radiation, a radiation irradiation apparatus that irradiates the patient with radiation generated by the radiation generation apparatus, and an X-ray treatment X image of the patient. In the radiotherapy apparatus comprising the X-ray imaging apparatus, the X-ray imaging apparatus during treatment extracts a neovascular network region from an image of a new blood vessel around a diseased part of a patient obtained from the acquired X-ray image, and performs radiation irradiation. The apparatus irradiates the affected area with radiation based on the extracted neovascular network region.
 本願に開示される放射線治療装置によれば、体内にマーカを挿入・留置せずに、腫瘍の位置を高精度で特定することができる放射線治療装置が得られる。 According to the radiotherapy apparatus disclosed in the present application, it is possible to obtain a radiotherapy apparatus that can specify the position of a tumor with high accuracy without inserting or placing a marker in the body.
実施の形態1による放射線治療装置を含む放射線治療システムの概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a radiotherapy system including a radiotherapy apparatus according to Embodiment 1. FIG. 実施の形態1による放射線治療装置の概念的なブロック図である。1 is a conceptual block diagram of a radiation therapy apparatus according to Embodiment 1. FIG. 実施の形態1による放射線治療装置の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the radiotherapy apparatus according to the first embodiment. 図4Aは撮影された新生血管網のX線画像の一例を示す図、図4Bはメディアンフィルタ処理した画像の一例を示す図、図4Cは細線化フィルタ処理した画像の一例を示す図、図4Dはエッジ抽出フィルタ処理した画像の一例を示す図である。4A is a diagram showing an example of an X-ray image of a taken neovascular network, FIG. 4B is a diagram showing an example of an image subjected to median filter processing, FIG. 4C is a diagram showing an example of an image subjected to thinning filter processing, and FIG. FIG. 4 is a diagram illustrating an example of an image subjected to edge extraction filter processing. 実施の形態2による放射線治療装置の概念的なブロック図である。It is a notional block diagram of the radiotherapy apparatus by Embodiment 2. FIG. 実施の形態2による放射線治療装置のマルチリーフコリメータの構成例を示す平面図である。It is a top view which shows the structural example of the multileaf collimator of the radiotherapy apparatus by Embodiment 2. FIG. 実施の形態2による放射線治療装置の動作を説明するためのフローチャートである。10 is a flowchart for explaining the operation of the radiotherapy apparatus according to the second embodiment. 実施の形態3による放射線治療装置の概念的なブロック図である。6 is a conceptual block diagram of a radiation therapy apparatus according to Embodiment 3. FIG. 実施の形態3による放射線治療装置の動作を説明するためのフローチャートである。10 is a flowchart for explaining the operation of the radiotherapy apparatus according to the third embodiment. 実施の形態4による放射線治療装置の概念的なブロック図である。It is a notional block diagram of the radiotherapy apparatus by Embodiment 4. FIG. 実施の形態4による放射線治療装置の動作を説明するためのフローチャートである。10 is a flowchart for explaining the operation of the radiotherapy apparatus according to the fourth embodiment. 各実施の形態における、制御器あるいは演算器の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a controller or a computing unit in each embodiment.
 放射線治療の治療対象である腫瘍に関し、しばしば、腫瘍の近接に新生血管が観察される。これは、悪性腫瘍が自らの成長のため、酸素と栄養の供給路としての血管を形成する生理機能によるものである。新生血管は、腫瘍の表面を取り囲むように密着して成長していく。また、血管には造影剤を注入してX線撮影を行うと、他の組織と識別しやすくなることが知られている。血管においては造影剤が集積することなく、常に血管を流れるため、X線撮影により新生血管全体、すなわち新生血管網の画像を得ることができる。本願は、この新生血管網に注目し、新生血管網を治療時に観察することにより、放射線治療時の患部の位置、患部の形状などを判定し、治療時の患部の位置または患部の形状に対応して放射線治療装置を制御する技術を開示するものである。 新生 Regarding tumors that are the subject of radiation therapy, new blood vessels are often observed in the vicinity of the tumor. This is due to the physiological function of forming a blood vessel as a supply path of oxygen and nutrients for the malignant tumor to grow. New blood vessels grow in close contact with each other so as to surround the surface of the tumor. In addition, it is known that when a contrast medium is injected into a blood vessel and X-ray imaging is performed, it becomes easier to distinguish from other tissues. In the blood vessels, since the contrast agent always flows without accumulating in the blood vessels, an image of the whole new blood vessels, that is, the new blood vessel network can be obtained by X-ray imaging. This application pays attention to this new blood vessel network, and by observing the new blood vessel network at the time of treatment, it determines the position of the affected part at the time of radiation treatment, the shape of the affected part, etc., and corresponds to the position of the affected part at the time of treatment or the shape of the affected part Thus, a technique for controlling the radiotherapy apparatus is disclosed.
実施の形態1.
 図1は、実施の形態1による放射線治療装置1を含む放射線治療システムの概略構成を示すブロック図である。放射線治療装置1は放射線発生装置2、放射線照射装置3、治療時X線撮影装置4を備えている。放射線発生装置2は、X線、γ線、陽子線、炭素線又は電子線などの放射線を発生する放射線発生源21と、この放射線発生源21を制御する放射線発生制御器22を備えている。放射線照射装置3は、放射線発生源21で発生された放射線5を放射線治療の治療対象である患者の患部に照射するための放射線照射器31とこの放射線照射器31を制御する照射制御器32を備えている。治療時X線撮影装置4は、治療時に患者の患部を含む領域をX線撮影して、撮影画像から患部周辺の新生血管網の領域を抽出する機能を有している。治療計画装置10は、治療対象の患者にどのように放射線を照射するかを予め計画して、計画に従って放射線を患者に照射するための、放射線治療装置における種々の機器のパラメータなどをデータとして保存し、それらのデータを放射線治療装置1に与えるための装置である。放射線治療装置1は、治療計画装置10から与えられたデータに基づいて患者に放射線を照射することにより、治療計画に従った放射線治療を実施することができる。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a schematic configuration of a radiation therapy system including a radiation therapy apparatus 1 according to the first embodiment. The radiotherapy apparatus 1 includes a radiation generation apparatus 2, a radiation irradiation apparatus 3, and a treatment X-ray imaging apparatus 4. The radiation generation apparatus 2 includes a radiation generation source 21 that generates radiation such as X-rays, γ-rays, proton beams, carbon rays, and electron beams, and a radiation generation controller 22 that controls the radiation generation source 21. The radiation irradiating apparatus 3 includes a radiation irradiator 31 for irradiating the affected part of a patient who is a treatment target of radiation therapy with the radiation 5 generated by the radiation source 21 and an irradiation controller 32 for controlling the radiation irradiator 31. I have. The treatment X-ray imaging apparatus 4 has a function of performing X-ray imaging of a region including an affected part of a patient at the time of treatment, and extracting a region of a neovascular network around the affected part from a photographed image. The treatment planning apparatus 10 plans in advance how to irradiate the patient to be treated, and stores parameters of various devices in the radiation treatment apparatus as data for irradiating the patient with radiation according to the plan. In this case, the data is given to the radiotherapy apparatus 1. The radiation therapy apparatus 1 can perform radiation therapy according to the treatment plan by irradiating the patient with radiation based on the data given from the treatment planning apparatus 10.
 図2は、放射線として、荷電粒子の束である炭素線あるいは陽子線といった粒子線を用いる放射線治療装置の構成を概念的に示すブロック図である。荷電粒子を加速する加速器が放射線発生源21として粒子線5を発生し、粒子線5が真空ダクト51内を通って、真空ダクト51の下流に設けられた放射線照射器31に輸送される。ここで、真空ダクト51が曲がっている部分には、粒子線5の進行方向を変化させるための偏向電磁石が設けられるが、図2では省略して図示している。放射線照射器31によって、粒子線5aが治療台に載せられた照射対象である患者の患部6に照射される。照射する際の、種々の照射パラメータは治療計画装置10で設定される。その照射パラメータで照射するための、放射線発生源21である加速器および放射線照射器31の各機器のパラメータが、システム制御器20から、放射線発生制御器22および照射制御器32へ送信され、放射線発生源21である加速器および放射線照射器31の各機器に対してそれぞれの指令が出力される。 FIG. 2 is a block diagram conceptually showing a configuration of a radiotherapy apparatus using a particle beam such as a carbon beam or a proton beam which is a bundle of charged particles as radiation. An accelerator for accelerating charged particles generates the particle beam 5 as the radiation generation source 21, and the particle beam 5 passes through the vacuum duct 51 and is transported to a radiation irradiator 31 provided downstream of the vacuum duct 51. Here, a bending electromagnet for changing the traveling direction of the particle beam 5 is provided at a portion where the vacuum duct 51 is bent, but is omitted in FIG. By the radiation irradiator 31, the particle beam 5a is irradiated to the affected part 6 of the patient who is the irradiation target placed on the treatment table. Various irradiation parameters for irradiation are set by the treatment planning apparatus 10. The parameters of the accelerator and radiation irradiator 31 as the radiation generation source 21 for irradiating with the irradiation parameters are transmitted from the system controller 20 to the radiation generation controller 22 and the irradiation controller 32 to generate radiation. The respective commands are output to the accelerator 21 and the radiation irradiator 31 as the source 21.
 一方、X線画像を取得して照射対象である患部6の位置などを確認するために、例えば、X線管41a、41b、フラットパネル検出器(FPD)42a、42bによって構成されるX線装置40が設置されている。X線管41aから照射されたX線はFPD42aで検出され、X線管41bから照射されたX線はFPD42bで検出される。X線管41a、41b、FPD42a、42bにより、患部6を含む領域のX線画像を取得する。X線画像処理演算器43はX線装置40で取得したX線画像を処理する。図1では、X線装置40とX線画像処理演算器43をまとめて治療時X線撮影装置4として示している。X線画像処理演算器43がX線装置40を制御して画像を取得する構成であっても構わない。治療時X線撮影装置4全体として、患部6を含む領域のX線画像を取得し、X線画像を処理する構成であればよい。図2では、X線装置40として、2方向からX線撮影する構成を示したが、例えば、治療用の放射線がX線の場合などは、一方向からのみ撮影する構成であってもよい。また、より高精度に患部6の位置を把握する必要がある場合は、3方向からX線撮影する構成としてもよい。 On the other hand, in order to acquire an X-ray image and confirm the position of the affected part 6 which is an irradiation target, an X-ray apparatus constituted by, for example, X-ray tubes 41a and 41b and flat panel detectors (FPD) 42a and 42b 40 is installed. X-rays emitted from the X-ray tube 41a are detected by the FPD 42a, and X-rays emitted from the X-ray tube 41b are detected by the FPD 42b. X-ray images of the area including the affected area 6 are acquired by the X-ray tubes 41a and 41b and the FPDs 42a and 42b. The X-ray image processing calculator 43 processes the X-ray image acquired by the X-ray apparatus 40. In FIG. 1, the X-ray apparatus 40 and the X-ray image processing calculator 43 are collectively shown as a treatment X-ray imaging apparatus 4. The X-ray image processing calculator 43 may be configured to control the X-ray apparatus 40 and acquire an image. The entire treatment X-ray imaging apparatus 4 may be configured to acquire an X-ray image of an area including the affected part 6 and process the X-ray image. In FIG. 2, the X-ray apparatus 40 is configured to perform X-ray imaging from two directions. However, for example, when the therapeutic radiation is X-ray, the X-ray apparatus 40 may be configured to perform imaging only from one direction. Further, when it is necessary to grasp the position of the affected part 6 with higher accuracy, a configuration may be adopted in which X-ray imaging is performed from three directions.
 次に、実施の形態1による放射線治療装置1の動作を、図3のフローチャートにしたがって説明する。X線装置40が追跡対象となる患部6を含む領域の新生血管網を連続的に(例えばフレームレートは数十fps)X線撮影する(ステップST1)。このとき、患者には、血管を造影するための造影剤を注入するのが望ましい。X線画像処理演算器43では、撮影して取得したX線画像のデータを、例えばいわゆるメディアンフィルタによりフィルタ処理する(ステップST2)。メディアンフィルタは各画素の値を周辺画素の中央値に置き換える処理を行うものである。この処理は、通常ソフトウエアを実行することにより行われる。図4Aに、腫瘍周辺における新生血管を撮影したX線画像の一例を示す。図4Aは、造影剤を注入して患者の腫瘍を含む領域をX線撮影したX線画像のイメージ図である。腫瘍周辺における新生血管を撮影した画像は、一般的に新生血管網としての領域内に明暗差がある画像として得られる場合が多い。図4Aの画像データを、ソフトウエアのメディアンフィルタによりフィルタ処理した処理後の画像の一例を図4Bに示す。フィルタ処理することにより明暗差が平均化され新生血管網の領域が一体的な像として抽出された画像が得られる。放射線を照射する治療を開始する前に、フィルタ処理した画像を用いて抽出した新生血管網の領域を形状として記憶する。治療中は、連続的に撮影するX線画像から抽出した新生血管網の形状に対して、治療開始前に得られた新生血管網の形状とパターンマッチングを行うことにより、治療対象となる新生血管網の位置を判別して、新生血管網の領域の重心位置を求める(ステップST3)。重心位置は、X線装置40に設定された基準座標について求めることができる。X線装置40に設定された座標は、通常、放射線照射器31の基準座標と一致させておく。 Next, the operation of the radiation therapy apparatus 1 according to Embodiment 1 will be described with reference to the flowchart of FIG. The X-ray apparatus 40 continuously X-rays the neovascular network in the region including the affected part 6 to be tracked (for example, the frame rate is several tens of fps) (step ST1). At this time, it is desirable to inject the patient with a contrast agent for imaging blood vessels. The X-ray image processing calculator 43 filters the X-ray image data acquired by imaging using, for example, a so-called median filter (step ST2). The median filter performs processing for replacing the value of each pixel with the median value of surrounding pixels. This process is usually performed by executing software. FIG. 4A shows an example of an X-ray image obtained by imaging new blood vessels around the tumor. FIG. 4A is an image diagram of an X-ray image obtained by X-ray imaging of a region including a patient's tumor by injecting a contrast medium. An image obtained by imaging new blood vessels around a tumor is often obtained as an image having a difference in brightness in a region as a new blood vessel network. FIG. 4B shows an example of a processed image obtained by filtering the image data of FIG. 4A with a median filter of software. By performing the filtering process, it is possible to obtain an image in which the light and dark differences are averaged and the neovascular network region is extracted as an integral image. Before starting the treatment for irradiating radiation, the region of the neovascular network extracted using the filtered image is stored as a shape. During the treatment, the shape of the neovascular network extracted from X-ray images that are continuously captured is subjected to pattern matching with the shape of the neovascular network obtained before the start of treatment, so that the new blood vessel to be treated The position of the net is discriminated, and the position of the center of gravity of the neovascular network area is obtained (step ST3). The barycentric position can be obtained for the reference coordinates set in the X-ray apparatus 40. The coordinates set in the X-ray apparatus 40 are usually matched with the reference coordinates of the radiation irradiator 31.
 フィルタ処理(ステップST2)においては、以下の処理を行うこととしてもよい。X線画像処理演算器43では、撮影して取得したX線画像のデータを細線化処理する。細線化処理とは、画像を幅の狭い線画像に変換する処理であり、例えば入力画像の線幅を細くするステップを繰り返して中心線を抽出する処理により実現される。この処理は通常ソフトウエアを実行することにより行われる。図4Aの画像を、ソフトウエアの細線化処理により細線化フィルタ処理した処理後の画像の一例を図4Cに示す。細線化処理は、X線画像において血管の本数密度を算出することに相当する。この画像から新生血管網の領域を抽出する。 In the filtering process (step ST2), the following process may be performed. The X-ray image processing calculator 43 thins the X-ray image data acquired by photographing. The thinning process is a process of converting an image into a line image with a narrow width, and is realized by, for example, a process of extracting a center line by repeating a step of narrowing the line width of an input image. This processing is usually performed by executing software. FIG. 4C shows an example of the image after the thinning filter processing is performed on the image of FIG. 4A by the thinning processing of software. The thinning process is equivalent to calculating the number density of blood vessels in the X-ray image. A region of the neovascular network is extracted from this image.
 新生血管網の領域の重心位置算出(ステップST3)においては、以下の処理を行うこととしてもよい。細線化処理を行ったX線画像においては、血管の太さに関わらず1本の血管は1本の線として表現されることから、X線画像における線の密度が血管の密度に対応する。また細線化処理を行ったX線画像の線の太さを一定(例えば1ピクセル)となるように細線化処理を行うことにより、明るさ閾値以上の明るさを持つ画素の密度が予め定めた密度閾値以上である領域を血管の本数密度が高い領域、すなわち新生血管網の領域と判定することができ、新生血管網の領域を抽出できる。新生血管網の領域として抽出した領域の重心位置を求める。 In the calculation of the centroid position of the neovascular network region (step ST3), the following processing may be performed. In the X-ray image subjected to the thinning process, one blood vessel is represented as one line regardless of the thickness of the blood vessel, so the density of the line in the X-ray image corresponds to the density of the blood vessel. Further, by performing the thinning process so that the line thickness of the X-ray image subjected to the thinning process is constant (for example, 1 pixel), the density of pixels having a brightness equal to or greater than the brightness threshold is determined in advance. A region that is equal to or higher than the density threshold can be determined as a region having a high number of blood vessels, that is, a region of a new blood vessel network, and a region of the new blood vessel network can be extracted. The center-of-gravity position of the region extracted as the neovascular network region is obtained.
 細線化処理を行った後のX線画像が2階調であれば、明るさ閾値は2階調のうちX線吸収量のより高い値とする。すなわち、例えば画素値0、1のうち1がX線吸収量のより大きい画素値に対応する場合は1を明るさ閾値とする。細線化処理を行った後のX線画像が2階調でなければ、ユーザーインターフェースにより入力される、あるいは計算機によって算出するなどにより血管を検出できるように設定される。密度閾値はユーザーインターフェースにより入力される、あるいは計算機によって算出するなどにより新生血管を判別できるように設定される。上述のようなX線画像の血管を血管密度に換算する処理を行う場合には、新生血管の領域および位置をより精度よく判定することができる。 If the X-ray image after the thinning process has two gradations, the brightness threshold is set to a higher value of the X-ray absorption amount of the two gradations. That is, for example, when 1 out of the pixel values 0 and 1 corresponds to a pixel value having a larger X-ray absorption amount, 1 is set as the brightness threshold. If the X-ray image after the thinning process is not two gradations, it is set so that the blood vessel can be detected by being input by a user interface or by calculation by a computer. The density threshold value is set so that a new blood vessel can be discriminated by being input from a user interface or calculated by a computer. When performing the process of converting the blood vessel of the X-ray image to the blood vessel density as described above, the region and position of the new blood vessel can be determined with higher accuracy.
 以上では、細線化処理を行った後、血管密度に基づいて新生血管網の領域を判定するようにしたが、新生血管の鮮明度が高いX線画像が得られる場合、細線化処理を行わず、取得したX線画像そのものから血管密度を求めて新生血管網の領域を抽出することも可能である。 In the above, after performing the thinning process, the region of the new blood vessel network is determined based on the blood vessel density. However, when an X-ray image with high definition of the new blood vessel is obtained, the thinning process is not performed. It is also possible to extract the neovascular network region by obtaining the blood vessel density from the acquired X-ray image itself.
 また、腫瘍によっては、ステップST2において、X線画像に対して輪郭を抽出するためのエッジ抽出フィルタによるフィルタ処理を行うことで、処理した画像から新生血管網の領域を抽出することにより腫瘍の形状を特定できる場合もある。エッジ抽出フィルタによるフィルタ処理は、メディアンフィルタ処理の後で行うことでより適切な形状抽出が行える。図4Bの画像に対してエッジ抽出フィルタによるフィルタ処理を行った画像を図4Dに示す。このエッジ抽出フィルタによるフィルタ処理を行った画像から、新生血管網の領域の重心位置を求めることができる。 In addition, depending on the tumor, the shape of the tumor can be obtained by extracting a region of the neovascular network from the processed image by performing a filtering process using an edge extraction filter for extracting an outline from the X-ray image in step ST2. May be identified. The filter processing by the edge extraction filter can be performed after the median filter processing, so that more appropriate shape extraction can be performed. FIG. 4D shows an image obtained by filtering the image of FIG. 4B using an edge extraction filter. The barycentric position of the neovascular network region can be obtained from the image subjected to the filter processing by the edge extraction filter.
 新生血管網の領域の重心位置の算出が終わると、X線画像処理演算器43は、重心位置が許容領域内にあるか否かを判定する(ステップST4)。許容領域は、治療計画によって設定された照射領域に対して重心位置の位置ずれが許容される範囲として、ユーザーインターフェースより入力される、あるいは計算機によって算出するなどにより設定される。算出された新生血管網の領域の重心位置が許容領域内にある場合(ステップST4 YES)は放射線発生装置2および放射線照射装置3に照射指令信号を送信して放射線を照射する(ステップST5)。許容領域内にない場合(ステップST4 NO)は、照射停止信号を送信して、放射線を照射することなくステップST1に戻る。X線画像はリアルタイムで取得しているため、患者の呼吸などで照射対象である患部6の位置がずれた場合、リアルタイムで照射を停止することができる。照射線量が予定線量に達しない間は(ステップST6 NO)この一連の動作を続け、照射線量が予定線量に達したら(ステップST6 YES)照射を終了する。 When the calculation of the centroid position of the neovascular network region is completed, the X-ray image processing calculator 43 determines whether or not the centroid position is within the allowable region (step ST4). The allowable region is set by inputting from the user interface or calculating by a computer as a range in which the displacement of the center of gravity position is allowable with respect to the irradiation region set by the treatment plan. If the calculated position of the center of gravity of the neovascular network region is within the allowable region (YES in step ST4), an irradiation command signal is transmitted to the radiation generator 2 and the radiation irradiation device 3 to irradiate the radiation (step ST5). If it is not within the allowable region (NO in step ST4), an irradiation stop signal is transmitted, and the process returns to step ST1 without irradiation. Since the X-ray image is acquired in real time, the irradiation can be stopped in real time when the position of the affected part 6 to be irradiated is shifted due to the patient's breathing or the like. While the irradiation dose does not reach the planned dose (NO in step ST6), this series of operations is continued. When the irradiation dose reaches the planned dose (step ST6 YES), the irradiation is terminated.
 なお、図2では、治療用の放射線として粒子線を用いる放射線治療装置の例を図示したが、治療用の放射線としては、粒子線に限らず、X線など他の放射線であっても構わない。
また、新生血管網の領域の位置を表す代表点の位置として重心位置を用いたが、代表点として用いるのは重心に限られず、新生血管網の領域の位置として確定できる点であればどのような点であっても良い。この新生血管網の領域の位置を表す代表点の位置に関しては、以降の実施の形態についても同様である。
In addition, although the example of the radiotherapy apparatus which uses a particle beam as a therapeutic radiation was illustrated in FIG. 2, as a therapeutic radiation, other radiations, such as not only a particle beam but X-rays, may be sufficient. .
The center of gravity is used as the position of the representative point that represents the position of the neovascular network area. However, what is used as the representative point is not limited to the center of gravity, and any point can be determined as the position of the neovascular network area. It may be a point. The same applies to the subsequent embodiments with respect to the position of the representative point representing the position of the neovascular network region.
 以上のように、実施の形態1による放射線治療装置では、放射線を照射して治療するときに、撮影したX線画像から患者の患部周辺の新生血管網の領域を抽出して、抽出した新生血管網の領域に基づいて放射線照射装置が患部に放射線を照射するようにした。より具体的には、患部である腫瘍を含む領域のX線画像をフィルタ処理した画像によって抽出した新生血管網の領域から重心位置など、代表点の位置を求めて、代表点の位置が許容領域にある場合に治療用放射線を照射し、許容範囲にない場合は放射線を照射しないようにした。実施の形態1による放射線治療装置では、代謝機能に依存しない新生血管網の構造そのものをX線撮影して得られたX線画像を用いて患部の位置を求めるようにしたので、特許文献2に記載されている、病変部の代謝機能に依存して集積される造影剤の画像から病変部を判定する方法に比べて、精度良く患部の位置を判定することができる。また、マーカを用いずに精度良く患部の位置を判定することができる。 As described above, in the radiotherapy apparatus according to the first embodiment, when treating by irradiating with radiation, a region of the neovascular network around the affected area of the patient is extracted from the photographed X-ray image, and the extracted neovascularization The radiation irradiation device irradiates the affected area with radiation based on the area of the net. More specifically, the position of the representative point such as the center of gravity position is obtained from the area of the neovascular network extracted by the filtered image of the X-ray image of the area including the tumor that is the affected area, and the position of the representative point is the allowable area. In this case, therapeutic radiation was applied, and when it was not within the allowable range, radiation was not applied. In the radiotherapy apparatus according to Embodiment 1, the position of the affected part is obtained using an X-ray image obtained by X-ray imaging of the structure of the new blood vessel network that does not depend on the metabolic function. The position of the affected part can be determined with higher accuracy than the method of determining the affected part from the image of the contrast agent that is accumulated depending on the metabolic function of the affected part. Moreover, the position of the affected part can be determined with high accuracy without using a marker.
実施の形態2.
 図5は、実施の形態2による放射線治療装置の構成を概念的に示すブロック図である。本実施の形態2による放射線治療装置においては、放射線照射器31に放射線の照射領域を制限して照射領域の2次元形状を設定するための、マルチリーフコリメータ32を備えている。図6にマルチリーフコリメータ32の構成の一例を放射線の照射軸の方向から見た平面図として示す。マルチリーフコリメータ32は、多数のコリメータリーフ321を、コリメータリーフ駆動機構322により、図6の例では左右に駆動することで、放射線が通過する領域、すなわち開口323の形状を設定する構成となっている。
Embodiment 2. FIG.
FIG. 5 is a block diagram conceptually showing the structure of the radiation therapy apparatus according to the second embodiment. In the radiotherapy apparatus according to the second embodiment, the radiation irradiator 31 is provided with a multi-leaf collimator 32 for setting the two-dimensional shape of the irradiation region by limiting the irradiation region of the radiation. An example of the configuration of the multi-leaf collimator 32 is shown in FIG. 6 as a plan view seen from the direction of the radiation irradiation axis. The multi-leaf collimator 32 is configured to set the shape of the region through which radiation passes, that is, the opening 323 by driving a large number of collimator leaves 321 left and right in the example of FIG. Yes.
 次に、本実施の形態2による放射線治療装置1の動作を、図7のフローチャートにしたがって説明する。X線装置40が追跡対象となる患部6を含む領域の新生血管網を連続的に(例えばフレームレートは数十fps)X線撮影する(ステップST1)。このとき、患者には、血管を造影するための造影剤を注入するのが望ましい。X線画像処理演算器43では、撮影して取得したX線画像のデータを、例えば実施の形態1で説明したメディアンフィルタによりフィルタ処理する(ステップST2)。また、実施の形態1で説明した細線化処理を行っても良い。処理した画像から抽出した新生血管網の領域を用いて、新生血管網の領域の重心位置を求める(ステップST3)。 Next, the operation of the radiation therapy apparatus 1 according to the second embodiment will be described with reference to the flowchart of FIG. The X-ray apparatus 40 continuously X-rays the neovascular network in the region including the affected part 6 to be tracked (for example, the frame rate is several tens of fps) (step ST1). At this time, it is desirable to inject the patient with a contrast agent for imaging blood vessels. In the X-ray image processing calculator 43, the X-ray image data acquired by imaging is filtered by the median filter described in the first embodiment, for example (step ST2). Further, the thinning process described in Embodiment 1 may be performed. Using the neovascular network region extracted from the processed image, the center-of-gravity position of the neovascular network region is obtained (step ST3).
 新生血管網の領域の重心位置座標の算出が終わると、X線画像処理演算器43は、重心位置座標が許容領域内にあるか否かを判定する(ステップST4)。許容領域は、治療計画によって設定された照射領域に対して重心位置の位置ずれが許容される範囲として、ユーザーインターフェースより入力される、あるいは計算機によって算出するなどにより設定される。算出された新生血管網の領域の重心位置が許容領域内にある場合(ステップST4 YES)は重心位置座標の、治療計画からのずれに対応して、マルチリーフコリメータ32の開口323の位置を移動させるように、マルチリーフコリメータ32の設定条件を治療計画装置により設定された条件に対して補正して(ステップST41)、放射線照射を行う(ステップST5)。許容領域内にない場合(ステップST4 NO)は、照射停止信号を送信して、放射線を照射することなくステップST1に戻る。X線画像はリアルタイムで取得しているため、患者の呼吸などで照射対象である患部6の位置がずれた場合、少しのずれの場合は、マルチリーフコリメータ32の設定条件を補正することにより照射位置をずらすようにする。大きくずれた場合は、照射を停止する。照射線量が予定線量に達しない間は(ステップST6 NO)この一連の動作を続け、照射線量が予定線量に達したら(ステップST6 YES)照射を終了する。 When the calculation of the center-of-gravity position coordinates of the neovascular network region is completed, the X-ray image processing calculator 43 determines whether or not the center-of-gravity position coordinates are within the allowable region (step ST4). The allowable region is set by inputting from the user interface or calculating by a computer as a range in which the displacement of the center of gravity position is allowable with respect to the irradiation region set by the treatment plan. If the calculated centroid position of the neovascular network area is within the allowable area (step ST4 YES), the position of the opening 323 of the multi-leaf collimator 32 is moved corresponding to the deviation of the centroid position coordinate from the treatment plan. Thus, the setting condition of the multi-leaf collimator 32 is corrected with respect to the condition set by the treatment planning apparatus (step ST41), and radiation irradiation is performed (step ST5). If it is not within the allowable region (NO in step ST4), an irradiation stop signal is transmitted, and the process returns to step ST1 without irradiation. Since the X-ray image is acquired in real time, when the position of the affected part 6 that is the irradiation target is shifted due to the patient's breathing or the like, or when there is a slight shift, the irradiation is performed by correcting the setting conditions of the multi-leaf collimator 32. Try to shift the position. If it deviates significantly, the irradiation is stopped. While the irradiation dose does not reach the planned dose (NO in step ST6), this series of operations is continued. When the irradiation dose reaches the planned dose (step ST6 YES), the irradiation is terminated.
 さらに、腫瘍によっては、ステップST2において、X線画像に対して輪郭を抽出するためのエッジ抽出フィルタによるフィルタ処理を行うことで、処理した画像から新生血管網の領域を抽出することにより腫瘍の形状、あるいは腫瘍の領域にマージンを付加した照射領域の形状を特定できる場合もある。このエッジ抽出フィルタによるフィルタ処理は、メディアンフィルタ処理の後で行うことでより適切な形状抽出が行える。この場合、ステップST41において、新生血管網の領域の位置および形状に基づいてマルチリーフコリメータ32の設定条件を補正して、開口形状を補正することにより、開口323の位置だけではなく、照射領域の形状そのものを補正することもできる。なお、新生血管網の領域の形状は、メディアンフィルタ処理により得た画像から得られる場合もあり、細線化処理して抽出した新生血管網の領域から得られる場合もある。これらの処理によっても、エッジ抽出フィルタ処理と同様、新生血管網の領域の位置および形状に基づいてマルチリーフコリメータ32の設定条件を補正して、開口形状を補正することにより、開口323の位置だけではなく、照射領域の形状そのものを補正することもできる。 Furthermore, depending on the tumor, the shape of the tumor can be obtained by extracting a region of the new blood vessel network from the processed image by performing filter processing using an edge extraction filter for extracting an outline from the X-ray image in step ST2. Alternatively, it may be possible to specify the shape of the irradiation region by adding a margin to the tumor region. The filter processing by the edge extraction filter can be performed after the median filter processing so that a more appropriate shape can be extracted. In this case, in step ST41, the setting condition of the multi-leaf collimator 32 is corrected based on the position and shape of the neovascular network region, and the opening shape is corrected, so that not only the position of the opening 323 but also the irradiation region. The shape itself can also be corrected. The shape of the neovascular network region may be obtained from an image obtained by median filter processing, or may be obtained from the neovascular network region extracted by thinning processing. Also in these processes, as in the edge extraction filter process, the setting conditions of the multi-leaf collimator 32 are corrected based on the position and shape of the neovascular network region, and the opening shape is corrected, so that only the position of the opening 323 is obtained. Instead, the shape of the irradiation area itself can be corrected.
 なお、図5では、放射線として粒子線を用いる放射線治療装置の例を示して説明したが、放射線としては、粒子線に限らず、X線など他の放射線であっても構わない。 In addition, in FIG. 5, the example of the radiotherapy apparatus which uses a particle beam as a radiation was shown and demonstrated, However, The radiation is not limited to a particle beam, but may be other radiation such as an X-ray.
 以上のように、実施の形態2による放射線治療装置では、放射線を照射して治療するときに、撮影したX線画像から患者の患部周辺の新生血管網の領域を抽出して、抽出した新生血管網の領域に基づいて放射線照射装置が患部に放射線を照射するようにした。より具体的には、患部である腫瘍を含む領域のX線画像をフィルタ処理した画像によって抽出した新生血管網の領域から患部の重心位置など、代表点の位置を求めて、あるいは代表点の位置および新生血管網の領域の形状を求めて、代表点の位置が許容領域にある場合は、マルチリーフコリメータ32の設定条件を補正して治療用放射線を照射し、代表点の位置が許容範囲にない場合は放射線を照射しないようにした。実施の形態2による放射線治療装置では、代謝機能に依存しない新生血管網の構造そのものをX線撮影して得られたX線画像を用いて患部の代表点の位置あるいは照射領域の形状を求めるようにしたので、特許文献2に記載されている、病変部の代謝機能に依存して集積される造影剤の画像から病変部を判定する方法に比べて、精度良く患部の位置あるいは形状を判定することができる。また、マーカを用いずに精度良く患部の位置を判定することができる。 As described above, in the radiotherapy apparatus according to the second embodiment, when treating by irradiating with radiation, a region of the neovascular network around the affected area of the patient is extracted from the captured X-ray image, and the extracted neovascularization The radiation irradiation device irradiates the affected area with radiation based on the area of the net. More specifically, the position of the representative point such as the center of gravity of the affected area is obtained from the area of the neovascular network extracted by an image obtained by filtering the X-ray image of the area including the tumor which is the affected area, or the position of the representative point When the shape of the region of the neovascular network is obtained and the position of the representative point is in the allowable region, the setting condition of the multi-leaf collimator 32 is corrected and the therapeutic radiation is irradiated, and the position of the representative point is within the allowable range. If not, radiation was not applied. In the radiotherapy apparatus according to the second embodiment, the position of the representative point of the affected area or the shape of the irradiation region is obtained using an X-ray image obtained by X-ray imaging of the structure of the neovascular network that does not depend on the metabolic function. Therefore, the position or shape of the affected part can be determined with higher accuracy than the method of determining the affected part from the contrast agent images accumulated depending on the metabolic function of the affected part described in Patent Document 2. be able to. Moreover, the position of the affected part can be determined with high accuracy without using a marker.
実施の形態3.
 図8は、実施の形態3による放射線治療装置の構成を概念的に示すブロック図である。本実施の形態3による放射線治療装置においては、放射線として粒子線を用い、この粒子線を粒子線の進行方向に垂直な2次元方向に偏向するスキャニング電磁石33を放射線照射器31に備えている。このスキャニング電磁石33の動作は照射制御器32からの信号により設定される。スキャニング電磁石33は、粒子線5bの偏向角度を順次変化させるように励磁電流が設定され、その結果、粒子線5bが治療計画により設定された照射領域を照射するように走査する。
Embodiment 3 FIG.
FIG. 8 is a block diagram conceptually showing the structure of the radiation therapy apparatus according to the third embodiment. In the radiotherapy apparatus according to the third embodiment, the radiation irradiator 31 includes a scanning electromagnet 33 that uses a particle beam as radiation and deflects the particle beam in a two-dimensional direction perpendicular to the traveling direction of the particle beam. The operation of the scanning electromagnet 33 is set by a signal from the irradiation controller 32. The scanning electromagnet 33 scans so that the excitation current is set so as to sequentially change the deflection angle of the particle beam 5b, and as a result, the particle beam 5b irradiates the irradiation region set by the treatment plan.
 次に、本実施の形態3による放射線治療装置1の動作を、図9のフローチャートにしたがって説明する。X線装置40が追跡対象となる患部6を含む領域の新生血管網を連続的に(例えばフレームレートは数十fps)X線撮影する(ステップST1)。このとき、患者には、血管を造影するための造影剤を注入するのが望ましい。X線画像処理演算器43では、撮影して取得したX線画像のデータを、例えば実施の形態1で説明したメディアンフィルタによりフィルタ処理する(ステップST2)。また、実施の形態1で説明した細線化処理を行っても良い。あるいは、実施の形態1および2で説明したエッジ抽出フィルタによる処理を行っても良い。処理した画像から抽出した新生血管網の領域を用いて、新生血管網の領域の重心位置を求める(ステップST3)。 Next, the operation of the radiation therapy apparatus 1 according to the third embodiment will be described with reference to the flowchart of FIG. The X-ray apparatus 40 continuously X-rays the neovascular network in the region including the affected part 6 to be tracked (for example, the frame rate is several tens of fps) (step ST1). At this time, it is desirable to inject the patient with a contrast agent for imaging blood vessels. In the X-ray image processing calculator 43, the X-ray image data acquired by imaging is filtered by the median filter described in the first embodiment, for example (step ST2). Further, the thinning process described in Embodiment 1 may be performed. Alternatively, the processing by the edge extraction filter described in Embodiments 1 and 2 may be performed. Using the neovascular network region extracted from the processed image, the center-of-gravity position of the neovascular network region is obtained (step ST3).
 新生血管網の領域の重心位置の算出が終わると、X線画像処理演算器43は、重心位置が許容領域内にあるか否かを判定する(ステップST4)。許容領域は、治療計画によって設定された照射領域に対して重心位置の位置ずれが許容される範囲として、ユーザーインターフェースより入力される、あるいは計算機によって算出するなどにより設定される。許容領域内にある場合(ステップST4 YES)は重心位置の、治療計画からの位置ずれに対応して、スキャニング電磁石33の励磁電流値を予め設定された設定値に対して補正して(ステップST42)、放射線照射を行う(ステップST5)。許容領域内にない場合(ステップST4 NO)は、照射停止信号を送信して、放射線を照射することなくステップST1に戻る。X線画像はリアルタイムで取得しているため、患者の呼吸などで照射対象である患部6の位置がずれた場合、少しのずれの場合は、スキャニング電磁石33の励磁電流値の設定値を補正することにより照射位置をずらすようにする。大きくずれた場合は、照射を停止する。 When the calculation of the centroid position of the neovascular network region is completed, the X-ray image processing calculator 43 determines whether or not the centroid position is within the allowable region (step ST4). The allowable region is set by inputting from the user interface or calculating by a computer as a range in which the displacement of the center of gravity position is allowable with respect to the irradiation region set by the treatment plan. If it is within the allowable region (YES in step ST4), the excitation current value of the scanning electromagnet 33 is corrected with respect to a preset set value corresponding to the displacement of the center of gravity position from the treatment plan (step ST42). ), Radiation irradiation is performed (step ST5). If it is not within the allowable region (NO in step ST4), an irradiation stop signal is transmitted, and the process returns to step ST1 without irradiation. Since the X-ray image is acquired in real time, when the position of the affected part 6 that is the irradiation target is shifted due to the patient's breathing or the like, the setting value of the excitation current value of the scanning electromagnet 33 is corrected in the case of a slight shift. Therefore, the irradiation position is shifted. If there is a large deviation, stop irradiation.
 以上のように、実施の形態3による放射線治療装置では、放射線としての粒子線を照射して治療するときに、撮影したX線画像から患者の患部周辺の新生血管網の領域を抽出して、抽出した新生血管網の領域に基づいて放射線照射装置が患部に放射線を照射するようにした。より具体的には、患部である腫瘍を含む領域のX線画像をフィルタ処理した画像によって抽出した新生血管網の領域から患部の重心位置など代表点の位置を求める。代表点の位置が許容領域にある場合は、代表点の位置のずれに対応して粒子線を偏向するスキャニング電磁石33の設定条件を補正して治療用放射線を照射し、代表点の位置が許容範囲にない場合は放射線を照射しないようにした。実施の形態3による放射線治療装置では、代謝機能に依存しない新生血管網の構造そのものをX線撮影して得られたX線画像を用いて患部の重心位置を求めるようにしたので、特許文献2に記載されている、病変部の代謝機能に依存して集積される造影剤の画像から病変部を判定する方法に比べて、精度良く患部の位置を判定することができる。また、マーカを用いずに精度良く患部の位置を判定することができる。 As described above, in the radiotherapy apparatus according to the third embodiment, when irradiating with a particle beam as radiation, the region of the neovascular network around the affected area of the patient is extracted from the photographed X-ray image, Based on the extracted neovascular network region, the radiation irradiation device irradiates the affected area with radiation. More specifically, the position of a representative point such as the position of the center of gravity of the affected area is obtained from the area of the neovascular network extracted by an image obtained by filtering the X-ray image of the area including the tumor that is the affected area. When the position of the representative point is in the allowable region, the setting condition of the scanning electromagnet 33 that deflects the particle beam in accordance with the displacement of the representative point is corrected to irradiate therapeutic radiation, and the position of the representative point is allowable When it was not in range, radiation was not irradiated. In the radiotherapy apparatus according to Embodiment 3, the center of gravity position of the affected area is obtained using an X-ray image obtained by X-ray imaging of the structure of the neovascular network that does not depend on the metabolic function. Compared to the method of determining a lesion from a contrast agent image accumulated depending on the metabolic function of the lesion described in the above, the position of the lesion can be determined with higher accuracy. Moreover, the position of the affected part can be determined with high accuracy without using a marker.
実施の形態4.
 図10は、実施の形態4による放射線治療装置の構成を概念的に示すブロック図である。放射線治療装置では、患者は治療台60に載せられて放射線が照射される。放射線を患部6の位置に照射するために、患者を移動させて位置決めする必要がある。このため、治療台60には、患者が固定されている治療天板61を移動させる機構が設けられている。本実施の形態4の放射線治療装置では、位置決め演算器62において、X線装置40で撮影された新生血管網のX線画像に基づいて、位置決めするための治療天板61の移動量を求め、治療天板61を移動させて患者の位置決めを行う構成となっている。ここでは、位置決めを行うために必要な部材である、治療台60、治療天板61、位置決め演算器62を位置決め機構6と称することにする。
Embodiment 4 FIG.
FIG. 10 is a block diagram conceptually showing the structure of the radiation therapy apparatus according to the fourth embodiment. In the radiotherapy apparatus, a patient is placed on a treatment table 60 and irradiated with radiation. In order to irradiate the affected part 6 with radiation, it is necessary to move and position the patient. For this reason, the treatment table 60 is provided with a mechanism for moving the treatment top plate 61 on which the patient is fixed. In the radiotherapy apparatus of the fourth embodiment, the positioning calculator 62 obtains the amount of movement of the treatment top plate 61 for positioning based on the X-ray image of the new blood vessel network imaged by the X-ray apparatus 40, The treatment top 61 is moved to position the patient. Here, the treatment table 60, the treatment top plate 61, and the positioning calculator 62, which are members necessary for positioning, are referred to as the positioning mechanism 6.
 次に、実施の形態4による放射線治療装置の動作を、図11のフローチャートにしたがって説明する。X線装置40が追跡対象となる患部6を含む領域の新生血管網をX線撮影する(ステップST1)。このとき、患者には、血管を造影するための造影剤を注入するのが望ましい。X線画像処理演算器43では、撮影して取得したX線画像のデータを、例えば実施の形態1で説明したメディアンフィルタによりフィルタ処理する(ステップST2)。また、実施の形態1で説明した細線化処理を行っても良い。あるいは、実施の形態1および2で説明したエッジ抽出フィルタによる処理を行っても良い。処理した画像から抽出した新生血管網の領域を用いて、新生血管網の領域の重心位置を求める(ステップST3)。 Next, the operation of the radiation therapy apparatus according to the fourth embodiment will be described with reference to the flowchart of FIG. The X-ray apparatus 40 performs X-ray imaging of a neovascular network in a region including the affected part 6 to be tracked (step ST1). At this time, it is desirable to inject the patient with a contrast agent for imaging blood vessels. In the X-ray image processing calculator 43, the X-ray image data acquired by imaging is filtered by the median filter described in the first embodiment, for example (step ST2). Further, the thinning process described in Embodiment 1 may be performed. Alternatively, the processing by the edge extraction filter described in Embodiments 1 and 2 may be performed. Using the neovascular network region extracted from the processed image, the center-of-gravity position of the neovascular network region is obtained (step ST3).
 次に、重心位置が予め決められた位置となるための治療天板61の移動量を算出する(ステップST43)。移動量の算出(ステップST43)は、重心位置から算出するのではなく、ステップST2においてフィルタ処理して得た新生血管網の画像と、治療計画時にX線撮影してフィルタ処理して得たX線画像とを照合して算出することもできる。照合は、両画像のサブトラクションを行い、差分情報が最小となるような画像上の移動量を算出し、画像上の移動量を治療天板61の移動量に変換することで行うことができる。次に、算出された移動量にしたがって治療天板61の位置を補正するように治療天板61を駆動制御する(ステップST44)。 Next, an amount of movement of the treatment top plate 61 so that the center of gravity position becomes a predetermined position is calculated (step ST43). The amount of movement (step ST43) is not calculated from the position of the center of gravity, but an image of the neovascular network obtained by filtering in step ST2 and X obtained by filtering by X-ray imaging during treatment planning. It can also be calculated by collating with a line image. The collation can be performed by subtracting both images, calculating a movement amount on the image that minimizes the difference information, and converting the movement amount on the image into a movement amount of the treatment table 61. Next, the treatment top 61 is driven and controlled so as to correct the position of the treatment top 61 according to the calculated movement amount (step ST44).
 なお、図10では、治療用の放射線として粒子線を用いる放射線治療装置の例を示して説明したが、治療用の放射線としては、粒子線に限らず、X線など他の放射線であっても構わない。 In addition, in FIG. 10, the example of the radiotherapy apparatus which uses a particle beam as a therapeutic radiation was demonstrated and demonstrated, However, as a therapeutic radiation, other radiations, such as an X-ray, are not restricted to a particle beam. I do not care.
 以上のように、実施の形態4による放射線治療装置では、放射線としての粒子線を照射して治療するときに、患部である腫瘍を含む領域のX線画像をフィルタ処理して得た画像から新生血管網の領域を抽出し、新生血管網の領域の重点位置など代表点の位置を求めて、求めた代表点の位置に基づいて患者の位置決めを行うようにした。あるいは、患部である腫瘍を含む領域のX線画像をフィルタ処理して抽出した新生血管網の画像と、治療計画時にX線撮影して得た腫瘍を含む領域のX線画像をフィルタ処理して抽出した新生血管網の画像とを照合して、患者の位置決めを行うようにした。実施の形態4による放射線治療装置では、代謝機能に依存しない新生血管網の構造そのものをX線撮影して得られたX線画像を用いて位置決めのための治療天板61の移動量を求めるようにしたので、特許文献2に記載されている、病変部の代謝機能に依存して集積される造影剤の画像から病変部を判定する方法に比べて、精度良く位置決めすることができる。また、マーカを用いずに精度良く位置決めすることができる。 As described above, in the radiotherapy apparatus according to the fourth embodiment, when a treatment is performed by irradiating a particle beam as radiation, an X-ray image of a region including a tumor which is an affected part is filtered and is newly born. The region of the blood vessel network is extracted, the position of the representative point such as the priority position of the region of the new blood vessel network is obtained, and the patient is positioned based on the obtained position of the representative point. Alternatively, an image of a neovascular network extracted by filtering an X-ray image of a region including a tumor which is an affected part, and an X-ray image of a region including a tumor obtained by X-ray imaging at the time of treatment planning are filtered. The patient was positioned by collating with the extracted neovascular network image. In the radiotherapy apparatus according to the fourth embodiment, the amount of movement of the treatment top 61 for positioning is obtained using an X-ray image obtained by X-ray imaging of the structure of the neovascular network that does not depend on the metabolic function. Therefore, compared to the method described in Patent Document 2 for determining a lesion from an image of a contrast agent accumulated depending on the metabolic function of the lesion, positioning can be performed with high accuracy. Further, it is possible to perform positioning accurately without using a marker.
 以上、各実施の形態において、放射線発生制御器22、照射制御器32、X線画像処理演算器43、位置決め演算器62は、それぞれ、例えば図12に示すようなハードウエア構成となっている。例えば、CPUなどのプロセッサー11、メモリ12、他の装置とデータや信号をやり取りするための入出力インターフェース13を備えた計算機として実現され、必要に応じて情報を表示するディスプレイ14を備えている。各処理は、メモリ12に記憶されたプログラムを実行するプロセッサー11により実現される。例えば、上記のそれぞれの制御器あるいは演算器が行う処理は、それぞれメモリ12に記憶されたプログラムをプロセッサー11が実行することによって実現する。また、一つのプロセッサー11が、例えば放射線発生制御器22および照射制御器32を兼ねていても、また照射制御器32、およびX線画像処理演算器43を兼ねていても良く、さらには、放射線発生制御器22、照射制御器32、X線画像処理演算器43など全てを一つのプロセッサーで実現してもよい。 As described above, in each embodiment, the radiation generation controller 22, the irradiation controller 32, the X-ray image processing calculator 43, and the positioning calculator 62 each have a hardware configuration as shown in FIG. For example, it is realized as a computer including a processor 11 such as a CPU, a memory 12, and an input / output interface 13 for exchanging data and signals with other devices, and includes a display 14 for displaying information as necessary. Each process is realized by a processor 11 that executes a program stored in the memory 12. For example, the processing performed by each of the above controllers or arithmetic units is realized by the processor 11 executing the programs stored in the memory 12. Further, one processor 11 may serve as, for example, the radiation generation controller 22 and the irradiation controller 32, or may serve as the irradiation controller 32 and the X-ray image processing arithmetic unit 43. The generation controller 22, the irradiation controller 32, the X-ray image processing calculator 43, etc. may all be realized by a single processor.
 なお、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 It should be noted that the embodiments can be combined, or the embodiments can be appropriately modified or omitted.
 1 放射線治療装置、2 放射線発生装置、3 放射線照射装置、4 治療時X線撮影装置、5 放射線、6 位置決め機構、32 マルチリーフコリメータ、33 スキャニング電磁石 1. Radiation therapy device, 2. Radiation generation device, 3. Radiation irradiation device, 4. Treatment X-ray imaging device, 5. Radiation, 6. Positioning mechanism, 32. Multi-leaf collimator, 33. Scanning electromagnet

Claims (18)

  1.  放射線を発生する放射線発生装置と、前記放射線発生装置が発生した放射線を患者に対して照射する放射線照射装置と、前記患者のX線画像を撮像する治療時X線撮影装置とを備えた放射線治療装置において、
    前記治療時X線撮影装置は、撮影したX線画像から得られる前記患者の患部の周辺の新生血管の画像から新生血管網の領域を抽出し、前記放射線照射装置は抽出した前記新生血管網の領域に基づいて前記患部に前記放射線を照射することを特徴とする放射線治療装置。
    Radiation therapy comprising a radiation generation device that generates radiation, a radiation irradiation device that irradiates a patient with radiation generated by the radiation generation device, and a treatment X-ray imaging device that captures an X-ray image of the patient In the device
    The X-ray imaging apparatus for treatment extracts a region of a new blood vessel network from an image of a new blood vessel around the affected area of the patient obtained from the photographed X-ray image, and the radiation irradiation device extracts the neovascular network of the extracted new blood vessel network. A radiotherapy apparatus that irradiates the affected area with the radiation based on a region.
  2.  前記治療時X線撮影装置は、前記患者の患部の周辺の新生血管の画像から、血管の密度を求めることにより前記新生血管網の領域を抽出することを特徴とする請求項1に記載の放射線治療装置。 2. The radiation according to claim 1, wherein the X-ray imaging apparatus for treatment extracts a region of the new blood vessel network by obtaining a blood vessel density from an image of a new blood vessel around the affected area of the patient. Therapeutic device.
  3.  前記治療時X線撮影装置は、前記患者の患部の周辺の新生血管の画像から、細線化処理を行って、前記血管の密度を求めることを特徴とする請求項2に記載の放射線治療装置。 3. The radiotherapy apparatus according to claim 2, wherein the X-ray radiographing apparatus at the time of treatment performs thinning processing from an image of new blood vessels around the affected area of the patient to obtain the density of the blood vessels.
  4.  前記治療時X線撮影装置は、前記患者の患部の周辺の新生血管の画像から、フィルタ処理により前記新生血管網の領域を抽出することを特徴とする請求項1に記載の放射線治療装置。 The radiotherapy apparatus according to claim 1, wherein the X-ray radiographing apparatus at the time of treatment extracts a region of the neovascular network from the neovascular image around the affected area of the patient by filtering.
  5.  前記フィルタ処理は、メディアンフィルタによるフィルタ処理であることを特徴とする請求項4に記載の放射線治療装置。 The radiotherapy apparatus according to claim 4, wherein the filtering process is a filtering process using a median filter.
  6.  前記フィルタ処理は、エッジ抽出フィルタによるフィルタ処理であることを特徴とする請求項4に記載の放射線治療装置。 The radiotherapy apparatus according to claim 4, wherein the filtering process is a filtering process using an edge extraction filter.
  7.  前記治療時X線撮影装置は、抽出した前記新生血管網の領域の代表点の位置を求め、
    前記放射線照射装置は、求めた前記代表点の位置が予め設定された許容領域にある場合は患者に放射線を照射し、求めた前記代表点の位置が予め設定された許容領域に無い場合は患者に放射線を照射しないよう制御することを特徴とする請求項1から6のいずれか1項に記載の放射線治療装置。
    The treatment X-ray imaging apparatus obtains a position of a representative point of the extracted neovascular network region,
    The radiation irradiating device irradiates the patient with radiation when the obtained position of the representative point is in a preset allowable region, and the patient when the obtained position of the representative point is not in the preset allowable region. The radiotherapy apparatus according to claim 1, wherein the radiation therapy apparatus is controlled not to irradiate the radiation.
  8.  前記治療時X線撮影装置は、抽出した前記新生血管網の領域の代表点の位置を求め、
    前記放射線照射装置は、照射領域を制限するマルチリーフコリメータを備え、求めた前記代表点の位置が予め設定された許容領域にある場合は、求めた前記代表点の位置と予め設定された代表点の位置とのずれに基づいてマルチリーフコリメータの開口形状を補正して患者に放射線を照射し、求めた前記代表点の位置が予め設定された許容領域に無い場合は患者に放射線を照射しないよう制御することを特徴とする請求項1から6のいずれか1項に記載の放射線治療装置。
    The treatment X-ray imaging apparatus obtains a position of a representative point of the extracted neovascular network region,
    The radiation irradiation apparatus includes a multi-leaf collimator for limiting an irradiation area, and when the obtained position of the representative point is in a preset allowable area, the position of the obtained representative point and a preset representative point The patient is irradiated with radiation by correcting the aperture shape of the multi-leaf collimator based on the deviation from the position, and the patient is not irradiated with radiation when the obtained representative point position is not in the preset allowable region. The radiotherapy apparatus according to claim 1, wherein the radiotherapy apparatus is controlled.
  9.  前記治療時X線撮影装置は、抽出した前記新生血管網の領域の代表点の位置および形状を求め、
    前記放射線照射装置は、照射領域を制限するマルチリーフコリメータを備え、求めた前記代表点の位置が予め設定された許容領域にある場合は、前記新生血管網の領域の前記代表点の位置および形状に基づいてマルチリーフコリメータの開口形状を補正して患者に放射線を照射し、求めた前記代表点の位置が予め設定された許容領域に無い場合は患者に放射線を照射しないよう制御することを特徴とする請求項1から6のいずれか1項に記載の放射線治療装置。
    The X-ray apparatus for treatment determines the position and shape of the representative point of the extracted neovascular network region,
    The radiation irradiating apparatus includes a multi-leaf collimator for limiting an irradiation area, and when the obtained representative point position is in a preset allowable area, the position and shape of the representative point in the neovascular network area Correcting the aperture shape of the multi-leaf collimator based on the above, and irradiating the patient with radiation, and controlling the patient not to irradiate with radiation when the obtained representative point position is not in a preset allowable region The radiotherapy apparatus according to any one of claims 1 to 6.
  10.  前記放射線は粒子線であり、前記放射線照射装置は、前記粒子線を偏向して走査するスキャニング電磁石を備え、
    求めた代表点の位置が予め設定された許容領域にある場合は、求めた前記代表点の位置と予め設定された代表点の位置とのずれに基づいて前記スキャニング電磁石の励磁電流値を補正して患者に放射線を照射し、求めた前記代表点の位置が予め設定された許容領域に無い場合は患者に放射線を照射しないよう制御することを特徴とする請求項1から6のいずれか1項に記載の放射線治療装置。
    The radiation is a particle beam, and the radiation irradiation device includes a scanning electromagnet that deflects and scans the particle beam,
    When the obtained representative point position is in a preset allowable region, the excitation current value of the scanning electromagnet is corrected based on the deviation between the obtained representative point position and the preset representative point position. The patient is irradiated with radiation, and control is performed so as not to irradiate the patient when the position of the obtained representative point is not within a preset allowable region. A radiotherapy device according to 1.
  11.  放射線を発生する放射線発生装置と、患者のX線画像を撮像する治療時X線撮影装置と、前記放射線発生装置が発生した放射線を前記患者に対して照射する放射線照射装置と、患者の位置決めを行うための位置決め機構とを備えた放射線治療装置において、
    前記治療時X線撮影装置は、撮影したX線画像から得られる前記患者の患部周辺の新生血管の画像から新生血管網の領域を抽出し、前記位置決め機構は抽出した前記新生血管網の領域に基づいて患者の位置決めを行うことを特徴とする放射線治療装置。
    A radiation generating apparatus that generates radiation, an X-ray imaging apparatus for treatment that captures an X-ray image of a patient, a radiation irradiation apparatus that irradiates the patient with radiation generated by the radiation generating apparatus, and positioning of the patient In a radiotherapy apparatus provided with a positioning mechanism for performing,
    The therapeutic X-ray imaging apparatus extracts a neovascular network region from an image of a new blood vessel around the affected area of the patient obtained from the captured X-ray image, and the positioning mechanism applies the extracted neovascular network region to the extracted neovascular network region. A radiotherapy apparatus characterized by positioning a patient on the basis thereof.
  12.  前記治療時X線撮影装置は、前記患者の患部周辺の新生血管の画像から、血管の密度を求めることにより前記新生血管網の領域を抽出することを特徴とする請求項11に記載の放射線治療装置。 The radiotherapy according to claim 11, wherein the X-ray imaging apparatus for treatment extracts a region of the new blood vessel network by obtaining a blood vessel density from an image of a new blood vessel around the affected area of the patient. apparatus.
  13.  前記治療時X線撮影装置は、前記患者の患部周辺の新生血管の画像から、細線化処理を行って、前記血管の密度を求めることを特徴とする請求項12に記載の放射線治療装置。 The radiotherapy apparatus according to claim 12, wherein the X-ray imaging apparatus during treatment obtains the density of the blood vessels by performing a thinning process from an image of new blood vessels around the affected area of the patient.
  14.  前記治療時X線撮影装置は、前記患者の患部周辺の新生血管の画像から、フィルタ処理により前記新生血管網の領域を抽出することを特徴とする請求項11に記載の放射線治療装置。 The radiotherapy apparatus according to claim 11, wherein the X-ray imaging apparatus for treatment extracts a region of the neovascular network from the neovascular image around the affected area of the patient by filtering.
  15.  前記フィルタ処理は、メディアンフィルタによるフィルタ処理であることを特徴とする請求項14に記載の放射線治療装置。 The radiotherapy apparatus according to claim 14, wherein the filtering process is a filtering process using a median filter.
  16.  前記フィルタ処理は、エッジ抽出フィルタによるフィルタ処理であることを特徴とする請求項14に記載の放射線治療装置。 The radiotherapy apparatus according to claim 14, wherein the filtering process is a filtering process using an edge extraction filter.
  17.  前記治療時X線撮影装置は、抽出した前記新生血管網の領域の代表点の位置を求め、
    前記位置決め機構は、求めた前記代表点の位置と予め設定された代表点の位置との差に基づいて位置決めを行うことを特徴とする請求項11から16のいずれか1項に記載の放射線治療装置。
    The treatment X-ray imaging apparatus obtains a position of a representative point of the extracted neovascular network region,
    The radiotherapy according to any one of claims 11 to 16, wherein the positioning mechanism performs positioning based on a difference between the obtained position of the representative point and a preset position of the representative point. apparatus.
  18.  前記位置決め機構は、前記撮影したX線画像をフィルタ処理して得られた新生血管網の画像と、予め治療計画時に撮影したX線画像をフィルタ処理して得られた新生血管網の画像とを照合して位置決めを行うことを特徴とする請求項11に記載の放射線治療装置。 The positioning mechanism includes a neovascular network image obtained by filtering the photographed X-ray image and a neovascular network image obtained by filtering an X-ray image photographed in advance during treatment planning. The radiotherapy apparatus according to claim 11, wherein positioning is performed by collation.
PCT/JP2018/005191 2018-02-15 2018-02-15 Radiation therapy device WO2019159273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005191 WO2019159273A1 (en) 2018-02-15 2018-02-15 Radiation therapy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005191 WO2019159273A1 (en) 2018-02-15 2018-02-15 Radiation therapy device

Publications (1)

Publication Number Publication Date
WO2019159273A1 true WO2019159273A1 (en) 2019-08-22

Family

ID=67619234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005191 WO2019159273A1 (en) 2018-02-15 2018-02-15 Radiation therapy device

Country Status (1)

Country Link
WO (1) WO2019159273A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111789605A (en) * 2020-07-09 2020-10-20 康达洲际医疗器械有限公司 Dynamic low-dose DSA imaging method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299941A (en) * 2000-04-27 2001-10-30 Hamamatsu Photonics Kk Laser therapeutic device
JP2010506689A (en) * 2006-10-16 2010-03-04 オラヤ セラピューティクス,インコーポレーテッド Eye radiosurgery
WO2013129450A1 (en) * 2012-02-28 2013-09-06 三菱重工業株式会社 Treatment planning device, treatment planning method, and program therefor
WO2015045576A1 (en) * 2013-09-26 2015-04-02 富士フイルム株式会社 Endoscope system, processor device for endoscope system, operation method for endoscope system, and operation method for processor device
WO2015072072A1 (en) * 2013-11-18 2015-05-21 キヤノン株式会社 Image processing device and method for operation thereof, imaging device and method for operation thereof, imaging system, and computer program
JP2017042443A (en) * 2015-08-27 2017-03-02 キヤノン株式会社 Ophthalmologic apparatus, information processing method, and program
JP2017108769A (en) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 Image processing device, image processing method, and ultrasonic diagnostic device equipped with image processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299941A (en) * 2000-04-27 2001-10-30 Hamamatsu Photonics Kk Laser therapeutic device
JP2010506689A (en) * 2006-10-16 2010-03-04 オラヤ セラピューティクス,インコーポレーテッド Eye radiosurgery
WO2013129450A1 (en) * 2012-02-28 2013-09-06 三菱重工業株式会社 Treatment planning device, treatment planning method, and program therefor
WO2015045576A1 (en) * 2013-09-26 2015-04-02 富士フイルム株式会社 Endoscope system, processor device for endoscope system, operation method for endoscope system, and operation method for processor device
WO2015072072A1 (en) * 2013-11-18 2015-05-21 キヤノン株式会社 Image processing device and method for operation thereof, imaging device and method for operation thereof, imaging system, and computer program
JP2017042443A (en) * 2015-08-27 2017-03-02 キヤノン株式会社 Ophthalmologic apparatus, information processing method, and program
JP2017108769A (en) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 Image processing device, image processing method, and ultrasonic diagnostic device equipped with image processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111789605A (en) * 2020-07-09 2020-10-20 康达洲际医疗器械有限公司 Dynamic low-dose DSA imaging method

Similar Documents

Publication Publication Date Title
EP3655101B1 (en) Triggered treatment systems
JP6208535B2 (en) Radiotherapy apparatus and system and method
Jiang Radiotherapy of mobile tumors
EP1778351B1 (en) Verifying lesion characteristics using beam shapes
JP6375097B2 (en) Radiation treatment planning apparatus and treatment planning method
CN107530554A (en) Particle therapy system, particle beam therapeutic management system and method
JP2008000456A (en) Radiation therapy equipment controller and radiation irradiation method
US20160174921A1 (en) Method and imaging system for determining a reference radiograph for a later use in radiation therapy
JP2000140137A (en) Method and device for positioning patient of radiotherapy
TWI545521B (en) Radiation therapy simulator
US20190168025A1 (en) Image-guided radiation therapy
JP2023162439A (en) Method of providing proton radiation therapy utilizing periodic motion
JP6717453B2 (en) Radiation irradiation planning device, clinical decision support device and program
WO2019159273A1 (en) Radiation therapy device
US11351397B2 (en) Apparatus for treating a target site of a body
WO2020137234A1 (en) Particle therapy system, dose distribution evaluation system, and method for operating particle therapy system
Youl et al. Image‐guided radiation therapy
CN114599427A (en) Method for detecting change in internal structure of patient, device for detecting change in internal structure of patient, and computer program
JP7451285B2 (en) radiation therapy equipment
CN113628209B (en) Particle implantation needle simulation method and device
WO2022107399A1 (en) Positioning device, radiotherapy system, and positioning method
US20230226377A1 (en) Patient positioning for radiotherapy treatment
Ziegler 4D dose calculation as a basis of adaptive treatment schemes in radiation therapy
CN117836035A (en) Positioning device, radiotherapy device, and positioning method
WO2022009014A1 (en) System for planning and verifying treatment during iort procedures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP