WO2015072072A1 - Image processing device and method for operation thereof, imaging device and method for operation thereof, imaging system, and computer program - Google Patents

Image processing device and method for operation thereof, imaging device and method for operation thereof, imaging system, and computer program Download PDF

Info

Publication number
WO2015072072A1
WO2015072072A1 PCT/JP2014/005145 JP2014005145W WO2015072072A1 WO 2015072072 A1 WO2015072072 A1 WO 2015072072A1 JP 2014005145 W JP2014005145 W JP 2014005145W WO 2015072072 A1 WO2015072072 A1 WO 2015072072A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
ray image
breast
timing
Prior art date
Application number
PCT/JP2014/005145
Other languages
French (fr)
Japanese (ja)
Inventor
辻井 修
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2015072072A1 publication Critical patent/WO2015072072A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography

Definitions

  • the present invention relates to an image processing apparatus and its operating method, an imaging apparatus and its operating method, an imaging system, and a computer program, and more particularly to a technique for detecting a neoplasm such as cancer from the breast.
  • Patent Document 1 a method of taking a moving image while moving the X-ray generator (Patent Document 1) and a method of creating a tomosynthesis image by taking X-ray photography from a plurality of directions (Patent Document 2) have been further developed. ing.
  • a technique for detecting pulmonary embolism using a plurality of X-ray images is also known.
  • the pixel value of the blood vessel portion varies with changes in blood flow in accordance with the heartbeat. Further, in a blood vessel in which an embolus exists, a change in blood flow volume corresponding to the heartbeat is small.
  • Patent Document 3 the change of the pixel value in the X-ray image of the lung is presented to the user, thereby enabling the user to determine the embolic site.
  • JP 2004-166834 A Special table 2012-512669 gazette International Publication No. 2007/0778012
  • the mammography method has a problem that a calcification or a tumor, that is, cancer, is not visible in an X-ray image particularly when the breast as a subject has a large number of mammary glands (dense breast).
  • the present invention provides a further method for detecting a neoplasm such as cancer from a fluoroscopic image of the breast.
  • an image processing apparatus comprises the following arrangement. That is, A first X-ray image obtained by imaging a breast at a first timing, and a second X-ray image obtained by imaging the breast at a second timing with less blood flow than the first timing Obtaining means for obtaining a plurality of X-ray images including: Generating means for generating an image based on a difference between regions including mammary glands from the first X-ray image and the second X-ray image; It is characterized by providing.
  • a further method for detecting a neoplasm such as cancer from a fluoroscopic image of the breast can be provided.
  • FIG. 1 is a block diagram illustrating an example of an imaging apparatus according to Embodiment 1.
  • FIG. FIG. 5 is a diagram illustrating an example of a process according to the first embodiment.
  • FIG. 4 is a block diagram illustrating an example of an imaging apparatus according to Embodiments 2 and 3.
  • FIG. 10 is a diagram illustrating an example of a process according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a process according to a third embodiment.
  • 5 is a flowchart of an example of processing in the first embodiment.
  • the present inventor has found that a change in blood flow according to the heartbeat occurs at a site where a neoplasm such as cancer exists in the breast, and that this change in blood flow can be detected by radiography. It came to complete. Embodiments of the present invention will be described below with reference to the drawings. However, the scope of the present invention is not limited to the following examples.
  • FIG. 1 is a block diagram of the photographing apparatus according to the first embodiment.
  • the imaging apparatus according to Embodiment 1 performs X-ray imaging of a subject, and includes an X-ray generation unit 1, an X-ray detection unit 3, a compression unit 4, a pulsation detection unit 5, and a calculation unit 6.
  • the photographing apparatus is connected to the display unit 7.
  • the X-ray generator 1 generates a plurality of X-ray pulses.
  • the generated X-ray pulse passes through the subject and reaches the X-ray detector 3.
  • the X-ray detection unit 3 images the X-rays that have arrived for each X-ray pulse, and transfers the obtained image to the calculation unit 6. That is, X-ray imaging is performed using the X-ray generator 1 and the X-ray detector 3.
  • an operation method of such an imaging apparatus will be described.
  • the imaging device including the X-ray generation unit 1, the X-ray detection unit 3, the compression unit 4 and the pulsation detection unit 5 and the image processing device including the calculation unit 6 may be separate devices.
  • the photographing apparatus and the image processing apparatus constitute a photographing system.
  • the photographing apparatus performs mammography photographing. That is, X-ray imaging is performed while the compression unit 4 is compressing the breast 2 of the subject.
  • an X-ray fluoroscopic image of the breast is captured by a mammography method, but the imaging method is not limited to this method.
  • a fluoroscopic image of the breast can be taken using any suitable radiation.
  • a fluoroscopic image refers to an image captured using radiation or the like that passes through a subject, and the fluoroscopic image includes a normal X-ray image captured using an X-ray imaging apparatus. .
  • photographing may be performed without using the mammography method, that is, without compressing the breast.
  • the subject is not limited to the breast.
  • a fluoroscopic image of a site other than the breast may be taken to detect a neoplasm.
  • the pulsation detecting unit 5 detects the pulsation of the subject.
  • the pulsation detection unit 5 is connected to the compression unit 4.
  • the pulsation detection unit 5 detects a pulsation in the breast 2 compressed by the compression unit 4, that is, a pulsation of a blood vessel included in the breast 2.
  • the pulsation detection unit 5 may detect the pulsation of the subject in the vicinity of the breast 2 or in a part other than the breast 2 or the vicinity of the breast 2.
  • the pulsation detection unit 5 can more accurately synchronize the pulsation of the blood vessels of the breast 2 and the timing of X-ray irradiation by detecting the pulsation in the breast 2 or in the vicinity of the breast 2.
  • the pulsation detection unit 5 can detect pulsation using, for example, an oxygen saturation meter using near infrared rays.
  • the pulsation detection method by the pulsation detection unit 5 is not particularly limited.
  • the pulsation detection unit 5 can detect the pulsation of the subject using an electrocardiograph (not shown), or can detect the pulsation using a vibration sensor in contact with the breast 2.
  • the state of the blood flow can be specified by detecting the pulsation.
  • the X-ray generator 1 generates at least two pulses of X-rays.
  • each X-ray pulse is exposed in synchronization with the pulsation detected by the pulsation detection unit 5.
  • the pulsation detection unit 5 determines a first timing and a second timing with a smaller blood flow volume than the first timing from the detected pulsation.
  • a timing at which the blood flow volume in a predetermined region within the imaging region of the subject imaged by the X-ray detection unit is less than the first timing is determined as the second timing.
  • a timing at which the blood flow rate in a predetermined region of the breast 2 is less than the first timing is determined as the second timing. Assuming that the blood flow in each region of the breast 2 changes in the same manner, it can be said that the blood flow in the breast 2 is smaller than that in the first timing at the second timing.
  • a timing with a larger blood flow is determined as a first timing
  • a timing with a smaller blood flow is determined as a second timing
  • the first timing may correspond to the systole and the second timing may correspond to the diastole.
  • the first timing with more blood flow than the second timing is referred to as “timing with high blood flow”
  • the second timing with less blood flow than the first timing is referred to as “timing with low blood flow”.
  • the pulsation detection unit 5 transmits a timing signal indicating these timings to the X-ray generation unit 1.
  • the X-ray generator 1 emits X-rays at least at a timing when the blood flow in the breast 2 is high and at a timing when the blood flow is low.
  • a first fluoroscopic image (hereinafter referred to as a systolic image) of the breast 2 is obtained by photographing the breast 2 when the blood flow is large, and the breast 2 is photographed by photographing the breast 2 when the blood flow is small.
  • the second fluoroscopic image (hereinafter referred to as a diastole image) is obtained.
  • a difference image between the systolic image and the diastolic image is generated. For this reason, the systolic image and the diastole image are taken from the same predetermined direction.
  • the acquisition unit (not shown) included in the calculation unit 6 includes the first fluoroscopic image (systolic image) obtained by imaging the breast at the first timing and the second timing obtained as described above.
  • a plurality of fluoroscopic images including a second fluoroscopic image (diastolic image) obtained by photographing the breast are obtained.
  • generation part (not shown) with which the calculating part 6 is provided produces
  • the image based on this difference includes a region including the mammary gland.
  • the generation unit generates a difference image obtained by performing a subtraction process between a systolic image and a diastole image as an image based on the difference.
  • the generation unit may generate an image obtained by further performing arbitrary image processing on the difference image as an image based on the difference.
  • the difference image obtained in this way may be a small signal in addition to the location of blood vessels that normally exist in the breast 2, but if present, it indicates the location of new blood vessels. The presence of such new blood vessels suggests the presence of breast cancer (for example, microcalcification or mass).
  • a display control unit (not shown) included in the calculation unit 6 causes the display unit 7 to display the obtained difference image.
  • the user can find the location of breast cancer by referring to the difference image.
  • the calculation unit 6 may perform processing such as specifying the presence of breast cancer or the location thereof by performing further processing on the difference image.
  • the display control unit can cause the display unit 7 to display a result image including the processing result.
  • Image processing performed by the calculation unit 6 will be described along the flow shown in FIG.
  • the pulsation detection unit 5 acquires an electrocardiogram 8 obtained by an electrocardiograph and detects the timing of pulsation in the breast 2 according to the electrocardiogram 8 will be described.
  • the systole and diastole of the heart can be detected. Specifically, the period when the potential is large is the systole, and this corresponds to the timing when the blood flow (that is, the blood volume) flowing through the blood vessel is large as shown in the perspective image 10 in the systole.
  • the timing at which the potential is flat is the diastole, and as shown in the perspective image 9 in the diastole, this corresponds to the timing when the blood flow (that is, the blood volume) flowing through the blood vessel is small.
  • the state of the blood flow rate can be specified by referring to the electrocardiogram 8.
  • Electrocardiogram 8 shows the timing when blood flow is sent from the heart. Therefore, in consideration of the time required for blood flowing in the blood vessel (particularly an artery) to reach the breast 2 from the heart, the timing for exposing two X-ray pulses is determined. Then, an imaging control unit (not shown) included in the arithmetic unit 6 captures a systolic image when the blood flow rate of the breast 2 is large, and so as to capture a diastolic image when the blood flow rate of the breast 2 is small.
  • the line generator 1 is controlled.
  • the time required for blood to reach the breast 2 from the heart depends on the age and physique of the subject of the subject. This time can be determined empirically based on patient data. Here, in order to simplify the description, it is assumed that this time is zero.
  • the transmitted dose of X-rays in the blood vessel portion is reduced.
  • the increase in blood flow in the neovascular portion is particularly noticeable. Therefore, by creating the difference image 11 between the systolic image and the diastolic image, an image suggesting the presence of breast cancer can be created. Specifically, in the systolic image, blood flow in blood vessels (particularly arteries) increases, so that the amount of X-ray transmission in a breast cancer portion (new blood vessel portion) is relatively small.
  • the pixel value of the breast cancer portion 23 becomes negative when the pixel value of the diastolic image is subtracted from the pixel value of the systolic image.
  • the calculation unit 6 includes a radiation dose detection unit (not shown) that detects the radiation dose emitted when the systolic image and the diastolic image are captured. .
  • the actual radiation dose of each pulse can be measured.
  • a reference detector (not shown) attached in the vicinity of the X-ray generator 1 as a measuring device.
  • Such a reference detector is arranged at a position where an X-ray pulse irradiated when a systolic image and a diastole image are captured.
  • the radiation dose detection unit can acquire the radiation dose irradiated when capturing the systolic image and the diastolic image from such a reference detector.
  • the actual radiation dose can be detected based on the pixel value in the correction data area.
  • the correction data area is an image area corresponding to an X-ray that does not transmit through the subject as shown in FIG. 2, and is an area in which the breast 2 is not shown in the present embodiment.
  • the correction data region is a region of an image taken in the region opposite to the subject's chest wall in the X-ray detection unit 3.
  • the radiation dose detection unit detects the irradiated radiation dose or a change in the radiation dose based on the average pixel value in the correction data area.
  • the correction unit included in the calculation unit 6 compensates for the difference in the radiation dose irradiated when the systolic image and the diastolic image are captured. As described above, at least one pixel value of the systolic image and the diastolic image is corrected. Thus, it is possible to estimate a systolic image and a diastolic image obtained when an X-ray pulse having the same radiation dose is exposed.
  • the radiation dose of the X-ray pulse exposed to capture the diastolic image is a times the radiation dose of the X-ray pulse exposed to capture the systolic image. In some cases, there is a method of dividing the pixel value of the diastole image by a.
  • the difference image is an image of an area including the mammary gland. Since breast cancer occurs in the mammary gland portion, it can be detected from an image of an area including the mammary gland.
  • the difference image may be an image of the entire breast including the mammary gland, in one embodiment, the difference image is an image of an area including the mammary gland portion selected from the entire breast. While the difference image includes a noise component, the pixel value indicating the breast cancer portion in the difference image is very small. Therefore, the noise portion can be reduced by extracting a region including the mammary gland portion from the difference image.
  • a region having a radiation transmission amount smaller than a predetermined threshold can be extracted as a mammary gland region.
  • the region of the mammary gland portion can be extracted from the difference image by binarizing the X-ray image using an appropriate threshold value.
  • the determination of the mammary gland region may be performed based on either the systolic image or the diastolic image, or may be performed based on another X-ray image.
  • the image used for determining the region of the mammary gland is a fluoroscopic image of the breast 2 taken from the same direction as the systolic image and the diastolic image.
  • the region of the mammary gland portion is determined based on the image having the larger actual radiation dose detected as described above, between the systolic image and the diastolic image. In this case, the mammary gland region 22 can be determined more accurately.
  • the mammary gland and the fat region 22 adjacent to the mammary gland may be detected as the region including the mammary gland.
  • the mammary gland and the mammary gland are adjacent to each other by enlarging the area of the detected mammary gland, that is, an area having a radiation transmission amount smaller than a predetermined threshold extracted from the X-ray image using a morphological operation or the like.
  • the fat region 22 can be determined.
  • the amount of enlargement is not particularly limited, and may be a predetermined amount determined empirically, for example. In order to erase a small signal, the reduction process may be performed before the enlargement process.
  • the X-ray detection unit 3 acquires one systolic image and one diastole image, and a difference image is generated based on the two images.
  • a difference image is generated based on the two images.
  • Three or more X-ray images are taken and used.
  • the X-ray pulse is exposed without being synchronized with the pulsation.
  • the X-ray generator 1 can expose a plurality of X-ray pulses at a constant cycle. In one example, the X-ray generator 1 exposes three or more X-ray pulses during one pulsation cycle. Then, the X-ray detection unit 3 generates an X-ray image for each X-ray pulse.
  • the number of X-ray pulses exposed during one cycle can be, for example, 3 or more and 10 or less.
  • the interval of one cycle of pulsation may be detected by the pulsation detecting unit 5, or a predetermined value (for example, 1 second) determined empirically may be used as the interval of one cycle.
  • a selection unit included in the calculation unit 6 selects a systolic image and a diastolic image from a plurality of X-ray images.
  • the selection unit performs image processing on the obtained plurality of X-ray images, thereby obtaining an image of the breast 2 when the blood flow is increased and an image of the breast 2 when the blood flow is decreased.
  • the selection unit selects an image having the smallest amount of radiation transmission among the plurality of X-ray images as the systolic image and selects an image having the largest amount of radiation transmission as the diastolic image. Thereafter, the calculation unit 6 generates a difference image between the systolic image and the diastolic image.
  • the photographing apparatus includes the pulsation detecting unit 5.
  • the pulsation detector 5 detects a pulsation using an electrocardiograph or when detecting a pulsation using an oxygen saturation meter attached to the fingertip. Can do.
  • the timing of pulsation shifts between the pulsation detection site and the breast 2
  • it is difficult to accurately determine when the blood flow in the breast 2 is high and when the blood flow is low.
  • an image of the breast 2 when the blood flow is increased and an image of the breast 2 when the blood flow is decreased with reference to the period of the pulsation detected by the pulsation detection unit 5. It is possible to detect more accurately.
  • each X-ray image can be corrected so as to compensate for the X-ray dose variation for each X-ray pulse.
  • each X-ray pulse can be exposed with a different delay from the reference timing. Specifically, when it is desired to acquire an X-ray image every N times for one cycle of pulsation (the time of one cycle is T), when taking an n-th X-ray image, n is counted from the reference timing. X-ray pulses are exposed with a delay of T / N.
  • the reference timing is a timing that is repeated at the same cycle as the cycle of pulsation, and specifically may be a systolic timing or the like.
  • mT + n ⁇ T / N m is a natural number
  • the calculation unit 6 may cause the display unit 7 to display an image in which the difference image is superimposed on the X-ray image of the breast 2.
  • the X-ray image on which the difference image is superimposed is a perspective image of the breast 2 taken from the same direction as the systolic image, the diastolic image, or the systolic image and the diastolic image.
  • step S ⁇ b> 610 the imaging control unit included in the calculation unit 6 instructs the X-ray generation unit 1 about imaging timing.
  • step S620 the calculation unit 6 acquires a systolic image and a diastolic image from the X-ray detection unit 3.
  • the imaging control unit can instruct imaging timing according to the detection result of the pulsation detecting unit 5 as in the first embodiment.
  • the imaging control unit may cause the X-ray generation unit 1 to perform imaging at a constant cycle as in the modification example.
  • step S620 the calculation unit 6 selects a systolic image and a diastolic image from a plurality of X-ray images.
  • step S630 the calculation unit 6 generates a difference image as described above.
  • step S640 the display control unit included in the calculation unit 6 causes the display unit 7 to display the difference image or the result of the process performed on the difference image.
  • the processing by the calculation unit 6 can also be performed using a general-purpose computer.
  • a storage medium including a computer program including instructions for causing the computer to perform processing performed by the calculation unit 6 is prepared. Then, the program included in the storage medium is loaded into a memory included in the computer, and the processor included in the computer operates according to the program, whereby the above-described processing performed by the arithmetic unit 6 can be realized.
  • FIG. 3 is a block diagram of the photographing apparatus according to the second embodiment.
  • the imaging apparatus according to the second embodiment is the same as that of the first embodiment, but further includes an X-ray moving unit 13. Further, the processing in the second embodiment can be performed according to the flowchart shown in FIG. 6 although the acquisition method of the systolic image, the diastolic image, and the difference image is different.
  • the X-ray moving unit 13 moves the X-ray generating unit 1.
  • the X-ray generator 1 exposes a plurality of X-ray pulses from multiple directions to the breast 2 while moving.
  • the X-ray detection unit 3 captures an X-ray image in synchronization with the X-ray pulse exposure. According to this configuration, images from multiple directions can be acquired for the breast 2, and the resolution and signal quality of the image can be improved.
  • the plurality of X-ray images thus taken include a plurality of X-ray images taken from a plurality of directions when the blood flow volume of the blood vessels included in the breast 2 is large, and a plurality of X-ray images captured when the blood flow volume of the blood vessels included in the breast 2 is small. And a plurality of X-ray images taken from the direction.
  • N X-ray pulses are exposed during one cycle of pulsation, and N X-ray images are acquired.
  • the number of X-ray pulses is not particularly limited, but may be, for example, 10 or more and 20 or less. However, the X-ray pulse may be exposed over two or more cycles of pulsation.
  • Specific X-ray pulse irradiation control can be performed in the same manner as in the first embodiment or its modification.
  • the calculation unit 6 selects N 1 systolic images and N 2 diastole images from N X-ray images 14.
  • N N 1 + N 2 and each X-ray image is classified as either a systolic image or a diastolic image.
  • the selection of the systolic image and the diastolic image can be performed, for example, based on the detected pulsation or the magnitude of the X-ray transmission amount, as in the first embodiment or the modification thereof.
  • a super-resolution processing unit included in the calculation unit 6 creates a super-resolution image S1 corresponding to N 1 systolic images.
  • the super-resolution technique is known as a technique for creating a single image with higher resolution using a plurality of images.
  • super-resolution processing can be performed according to a known technique.
  • the super-resolution processing in addition to the pixel information of the target image, by referring to the pixel information of the image obtained from other directions, the noise included in the target image is effectively removed, and the target image The quality of pixel information can be improved.
  • the super-resolution processing unit further creates a super-resolution image S2 corresponding to the N 2 expansion period images by the same processing.
  • the X-ray moving unit 13 moves the X-ray generating unit 1 along two axes. Therefore, in the present embodiment, super-resolution processing is performed in consideration of the biaxial movement amount of the X-ray generator 1.
  • the moving method of the X-ray generation unit 1 is not limited to this method, and in another embodiment, the X-ray moving unit 13 moves on an arc. In this case, the super-resolution processing can be performed in consideration of the rotation angle of the X-ray generator 1.
  • the super solution This delay time needs to be taken into account when performing image processing. Specifically, when the X-ray generation unit 1 rotates and moves by an angle ⁇ while taking N X-ray images and the imaging interval is mT + T / N, the X-ray moving unit Rotate by / N (m is a natural number).
  • the reference image T1 is selected from N 1 systolic images
  • the reference image T2 is selected from N 2 diastolic images.
  • the super-resolution images S1 and S2 are obtained by improving the quality of the reference images T1 and T2 by super-resolution processing. That is, the super-resolution processing unit improves the resolution of the reference image T1 by using a plurality of fluoroscopic images of the breast 2 further photographed from a plurality of directions when the blood flow is large. In addition, the super-resolution processing unit improves the resolution of the reference image T2 by using a plurality of fluoroscopic images of the breast 2 further photographed from a plurality of directions when the blood flow is small.
  • the images obtained by exposing the X-ray pulse from the same predetermined direction are the reference images T1 and T2. Selected as. However, it is not necessary that the imaging directions (X-ray pulse exposure directions) are exactly the same, and it is only necessary that the imaging directions of the reference images T1 and T2 are substantially the same. For example, in one embodiment, the angle formed by the exposure direction of the X-ray pulse when capturing the reference image T1 and the exposure direction of the X-ray pulse when capturing the reference image T2 is equal to or less than a predetermined threshold. Thus, the reference images T1 and T2 are selected.
  • the reference image T1 can be selected as follows. That is, the direction of the average vector of N 1 unit vectors representing the exposure direction of each X-ray pulse when N 1 systolic images are captured, and the X-ray pulse when capturing the reference image T1 The angle formed by the exposure direction is set to a predetermined threshold value or less. The same applies to the reference image T2.
  • the calculation unit 6 generates a difference image using the super-resolution images S1 and S2 instead of the systolic image and the diastolic image as in the first embodiment.
  • the mammary gland and its peripheral fat region may be extracted from the difference image.
  • the tomosynthesis image 17 may be reconstructed from the N X-ray images 14.
  • the tomosynthesis image 17 can be composed of a plurality of tomographic images in a cross section orthogonal to the imaging direction of the super-resolution images S1 and S2.
  • the calculation unit 6 can cause the display unit 7 to display an image 18 in which the difference image is superimposed on an arbitrary tomographic image selected from a plurality of tomographic images. At this time, by displaying the difference image and the tomographic image in different colors, the user can easily detect the breast cancer site from the tomographic image.
  • FIG. 3 is a block diagram of the photographing apparatus according to the third embodiment.
  • the photographing apparatus according to the third embodiment has the same configuration as that of the second embodiment. Further, the processing in the third embodiment can be performed according to the flowchart shown in FIG. 6 although the acquisition method of the systolic image, the diastolic image, and the difference image is different.
  • the imaging apparatus reconstructs a tomosynthesis image by imaging the breast 2 from multiple directions.
  • the tomosynthesis image is composed of a plurality of tomographic images of the breast 2 and is obtained by reconstructing each tomographic image from subject images taken from multiple directions.
  • the reconstruction can be performed using a known technique that is not specifically limited. For example, a back projection method or a successive approximation method can be used.
  • Imaging of N X-ray images and selection of N 1 systolic images and N 2 diastolic images are performed in the same manner as in the second embodiment.
  • the calculation unit 6 reconstructs a systolic tomosynthesis image C1 using N 1 systolic images.
  • the tomosynthesis image C1 is composed of M tomographic images C1 (m) (1 ⁇ m ⁇ M).
  • the calculation unit 6 also uses the N 2 diastolic images to reconstruct a diastolic tomosynthesis image C2 composed of M tomographic images C2 (m).
  • the tomographic image C1 (m) in the systole and the tomographic image C2 (m) in the diastole are tomographic images on the same cross section of the breast 2.
  • the tomosynthesis image C1 includes the first tomographic image C1 (m) in the first cross section of the breast 2
  • the tomosynthesis image C2 includes the second tomographic image in the first cross section of the breast 2. It is out.
  • the reconstruction of the tomosynthesis image is performed in consideration of the movement amount of the X-ray generation unit 1.
  • the amount of movement of the X-ray generation unit 1 can be considered in the same manner as the super-resolution processing in the second embodiment.
  • the calculation unit 6 uses the systolic tomographic image C1 (m) and the diastolic tomographic image C2 (m) to generate a difference image for each cross section in the same manner as in the second embodiment.
  • the mammary gland and its peripheral fat region may be extracted from the difference image.
  • the calculation unit 6 may further create a tomosynthesis image of the breast 2 from N X-ray images.
  • the calculation unit 6 may cause the display unit 7 to simultaneously display the obtained difference image or the result image obtained by further processing the difference image and the tomosynthesis image of the breast 2.
  • the computing unit 6 reconstructs a tomosynthesis image C3 composed of M tomographic images C3 (m) from N X-ray images.
  • the tomographic image C1 (m) in the systole, the tomographic image C2 (m) in the diastole, and the tomographic image C3 (m) are tomographic images in the same cross section of the breast 2.
  • the calculation unit 6 displays on the display unit 7 an image 21 in which a difference image between the tomographic image C1 (m) in the systole and the tomographic image C2 (m) in the diastole is superimposed on the tomographic image C3 (m). Display. At this time, the difference image and the tomographic image are displayed in different colors.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program
  • This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided is a further method for detecting neoplasia such as cancer from fluoroscopic images of breasts. A plurality of X-ray images are obtained which include a first X-ray image that is obtained by imaging a breast at a first timing and a second X-ray image that is obtained by imaging the breast at a second timing where blood flow is less than the first timing. An image is generated on the basis of difference in regions that include mammary glands from the first X-ray image and the second X-ray image.

Description

画像処理装置及びその作動方法、撮影装置及びその作動方法、撮影システム、並びにコンピュータプログラムImage processing apparatus and operating method thereof, imaging apparatus and operating method thereof, imaging system, and computer program
 本発明は、画像処理装置及びその作動方法、撮影装置及びその作動方法、撮影システム、並びにコンピュータプログラムに関し、特に、乳房からがん等の新生物を検出する技術に関するものである。 The present invention relates to an image processing apparatus and its operating method, an imaging apparatus and its operating method, an imaging system, and a computer program, and more particularly to a technique for detecting a neoplasm such as cancer from the breast.
 乳房からがん等の新生物を検出する方法として、放射線撮影方法が広く用いられており、一般的にはマンモグラフィー法が用いられる。近年では、マンモグラフィー撮影において、X線発生部を移動させながら動画撮影を行う方法(特許文献1)、及び複数方向からX線撮影を行いトモシンセシス画像を作成する方法(特許文献2)がさらに開発されている。 As a method for detecting a neoplasm such as cancer from the breast, a radiographic method is widely used, and a mammography method is generally used. In recent years, in mammography photography, a method of taking a moving image while moving the X-ray generator (Patent Document 1) and a method of creating a tomosynthesis image by taking X-ray photography from a plurality of directions (Patent Document 2) have been further developed. ing.
 一方で、複数のX線画像を用いて肺塞栓を検出する技術も知られている。X線画像においては心拍に応じた血流量の変化に伴い血管部分の画素値は変動する。また、塞栓が存在する血管においては心拍に応じた血流量の変化が小さくなる。特許文献3では、肺のX線画像における画素値の変化をユーザに提示することにより、ユーザが塞栓部位を判定することを可能としている。 Meanwhile, a technique for detecting pulmonary embolism using a plurality of X-ray images is also known. In the X-ray image, the pixel value of the blood vessel portion varies with changes in blood flow in accordance with the heartbeat. Further, in a blood vessel in which an embolus exists, a change in blood flow volume corresponding to the heartbeat is small. In Patent Document 3, the change of the pixel value in the X-ray image of the lung is presented to the user, thereby enabling the user to determine the embolic site.
特開2004-166834号公報JP 2004-166834 A 特表2012-512669号公報Special table 2012-512669 gazette 国際公開第2007/078012号International Publication No. 2007/0778012
 マンモグラフィー法には、特に被写体である乳房において乳腺が多い(デンスブレスト)の場合に、石灰化又は腫瘤、すなわちがんがX線画像において見えにいという課題があった。 The mammography method has a problem that a calcification or a tumor, that is, cancer, is not visible in an X-ray image particularly when the breast as a subject has a large number of mammary glands (dense breast).
 本発明は、乳房の透視像からがん等の新生物を検出するためのさらなる方法を提供する。 The present invention provides a further method for detecting a neoplasm such as cancer from a fluoroscopic image of the breast.
 本発明の目的を達成するために、本発明の一実施形態に係る画像処理装置は以下の構成を備える。すなわち、
 第1のタイミングで乳房を撮影して得られる第1のX線画像と、該第1のタイミングよりも血流量が少ない第2のタイミングで前記乳房を撮影して得られる第2のX線画像とを含む複数のX線画像を得る取得手段と、
 前記第1のX線画像及び前記第2のX線画像から乳腺を含む領域の差分に基づく画像を生成する生成手段と、
 を備えることを特徴とする。
In order to achieve the object of the present invention, an image processing apparatus according to an embodiment of the present invention comprises the following arrangement. That is,
A first X-ray image obtained by imaging a breast at a first timing, and a second X-ray image obtained by imaging the breast at a second timing with less blood flow than the first timing Obtaining means for obtaining a plurality of X-ray images including:
Generating means for generating an image based on a difference between regions including mammary glands from the first X-ray image and the second X-ray image;
It is characterized by providing.
 乳房の透視像からがん等の新生物を検出するためのさらなる方法を提供できる。 A further method for detecting a neoplasm such as cancer from a fluoroscopic image of the breast can be provided.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態1に係る撮影装置の一例のブロック図。 実施形態1における処理の一例の流れを示す図。 実施形態2,3に係る撮影装置の一例のブロック図。 実施形態2における処理の一例の流れを示す図。 実施形態3における処理の一例の流れを示す図。 実施形態1における処理の一例のフローチャート。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
1 is a block diagram illustrating an example of an imaging apparatus according to Embodiment 1. FIG. FIG. 5 is a diagram illustrating an example of a process according to the first embodiment. FIG. 4 is a block diagram illustrating an example of an imaging apparatus according to Embodiments 2 and 3. FIG. 10 is a diagram illustrating an example of a process according to the second embodiment. FIG. 10 is a diagram illustrating an example of a process according to a third embodiment. 5 is a flowchart of an example of processing in the first embodiment.
 本発明者は、乳房におけるがん等の新生物が存在する部位では心拍に応じた血流量の変化が生じること、及びこの血流量の変化は放射線撮影により検知可能であることを見出し、本発明を完成するに至った。以下、本発明の実施例を図面に基づいて説明する。ただし、本発明の範囲は以下の実施例に限定されるものではない。 The present inventor has found that a change in blood flow according to the heartbeat occurs at a site where a neoplasm such as cancer exists in the breast, and that this change in blood flow can be detected by radiography. It came to complete. Embodiments of the present invention will be described below with reference to the drawings. However, the scope of the present invention is not limited to the following examples.
[実施形態1]
 図1は、実施形態1に係る撮影装置のブロック図を示す。実施形態1に係る撮影装置は、被験者のX線撮影を行うものであり、X線発生部1、X線検出部3、圧迫部4、拍動検出部5、及び演算部6を備える。また、撮影装置は、表示部7に接続されている。X線発生部1は、複数のX線パルスを発生させる。発生されたX線パルスは、被写体を透過してX線検出部3に到達する。X線検出部3は、それぞれのX線パルスについて到達したX線を画像化し、得られた画像を演算部6に転送する。すなわち、X線発生部1とX線検出部3とを用いてX線撮影が行われる。以下に、このような撮影装置の作動方法について説明する。
[Embodiment 1]
FIG. 1 is a block diagram of the photographing apparatus according to the first embodiment. The imaging apparatus according to Embodiment 1 performs X-ray imaging of a subject, and includes an X-ray generation unit 1, an X-ray detection unit 3, a compression unit 4, a pulsation detection unit 5, and a calculation unit 6. In addition, the photographing apparatus is connected to the display unit 7. The X-ray generator 1 generates a plurality of X-ray pulses. The generated X-ray pulse passes through the subject and reaches the X-ray detector 3. The X-ray detection unit 3 images the X-rays that have arrived for each X-ray pulse, and transfers the obtained image to the calculation unit 6. That is, X-ray imaging is performed using the X-ray generator 1 and the X-ray detector 3. Hereinafter, an operation method of such an imaging apparatus will be described.
 X線発生部1、X線検出部3、圧迫部4及び拍動検出部5を備える撮影装置と、演算部6を備える画像処理装置とは、別個の装置であってもよい。この場合、撮影装置と画像処理装置とは撮影システムを構成する。 The imaging device including the X-ray generation unit 1, the X-ray detection unit 3, the compression unit 4 and the pulsation detection unit 5 and the image processing device including the calculation unit 6 may be separate devices. In this case, the photographing apparatus and the image processing apparatus constitute a photographing system.
 被験者は特定の生物に限定されるわけではないが、以下ではヒトであるものとして説明する。本実施形態において、撮影装置はマンモグラフィー撮影を行う。すなわち、圧迫部4が被験者の乳房2を圧迫している間に、X線撮影が行われる。本実施形態においては、マンモグラフィー法により乳房のX線透視像が撮影されるが、撮影方法はこの方法に限定されない。例えば、任意の適切な放射線を用いて乳房の透視像を撮影することができる。本明細書において、透視像とは、被写体を透過する放射線等を用いて撮影された画像のことを指し、透視像にはX線撮影装置を用いて撮影された通常のX線画像が含まれる。また、マンモグラフィー法を用いず、すなわち乳房を圧迫しないで撮影を行ってもよい。また、被写体は乳房に限定されるわけではない。例えば、乳がんに限らず、一般にがん部位には新生血管が多いことから、乳房以外の部位の透視像を撮影し、新生物の検出を行ってもよい。 Although the subject is not limited to a specific organism, it will be described below as a human. In the present embodiment, the photographing apparatus performs mammography photographing. That is, X-ray imaging is performed while the compression unit 4 is compressing the breast 2 of the subject. In the present embodiment, an X-ray fluoroscopic image of the breast is captured by a mammography method, but the imaging method is not limited to this method. For example, a fluoroscopic image of the breast can be taken using any suitable radiation. In this specification, a fluoroscopic image refers to an image captured using radiation or the like that passes through a subject, and the fluoroscopic image includes a normal X-ray image captured using an X-ray imaging apparatus. . Further, photographing may be performed without using the mammography method, that is, without compressing the breast. The subject is not limited to the breast. For example, since there are many new blood vessels in a cancer site, not limited to breast cancer, a fluoroscopic image of a site other than the breast may be taken to detect a neoplasm.
 拍動検出部5は、被験者の拍動を検出する。本実施形態において、拍動検出部5は圧迫部4に接続されている。そして、拍動検出部5は、圧迫部4に圧迫されている乳房2における拍動、すなわち乳房2が有する血管の拍動を検出する。拍動検出部5は、乳房2付近における、又は乳房2又は乳房2付近以外の部分における被験者の拍動を検出してもよい。しかしながら、拍動検出部5は、乳房2又は乳房2付近における拍動を検出することにより、乳房2が有する血管の拍動と、X線照射のタイミングとをより正確に同期させることができる。拍動検出部5は、例えば近赤外線を用いた酸素飽和度計を用いて拍動を検出することができる。しかし、拍動検出部5による拍動検出方式は特に限定されない。例えば、拍動検出部5は、心電計(不図示)を用いて被験者の拍動を検出することもできるし、乳房2に接する振動センサを用いて拍動を検出することもできる。このように、拍動は血流量の変化に同期するから、拍動を検出することにより、血流量の状態を特定することができる。 The pulsation detecting unit 5 detects the pulsation of the subject. In the present embodiment, the pulsation detection unit 5 is connected to the compression unit 4. The pulsation detection unit 5 detects a pulsation in the breast 2 compressed by the compression unit 4, that is, a pulsation of a blood vessel included in the breast 2. The pulsation detection unit 5 may detect the pulsation of the subject in the vicinity of the breast 2 or in a part other than the breast 2 or the vicinity of the breast 2. However, the pulsation detection unit 5 can more accurately synchronize the pulsation of the blood vessels of the breast 2 and the timing of X-ray irradiation by detecting the pulsation in the breast 2 or in the vicinity of the breast 2. The pulsation detection unit 5 can detect pulsation using, for example, an oxygen saturation meter using near infrared rays. However, the pulsation detection method by the pulsation detection unit 5 is not particularly limited. For example, the pulsation detection unit 5 can detect the pulsation of the subject using an electrocardiograph (not shown), or can detect the pulsation using a vibration sensor in contact with the breast 2. Thus, since the pulsation synchronizes with the change in the blood flow, the state of the blood flow can be specified by detecting the pulsation.
 X線発生部1は、少なくとも2パルスのX線を発生させる。本実施形態において、それぞれのX線パルスは、拍動検出部5によって検出された拍動に同期して曝射される。具体的には、拍動検出部5は、検出した拍動から、第1のタイミングと、この第1のタイミングよりも血流量が少ない第2のタイミングとを決定する。具体的には、X線検出部により撮影される被写体の撮影領域内の所定領域の血流量が第1のタイミングよりも少ないタイミングが、第2のタイミングとして決定される。例えば、マンモグラフィー撮影のような乳房2の撮影を行う実施形態においては、乳房2の所定領域の血流量が第1のタイミングよりも少ないタイミングが、第2のタイミングとして決定される。乳房2の各領域の血流量が同様に変化すると仮定すれば、第2のタイミングにおいては、乳房2の血流量が第1のタイミングよりも少ないといえる。 The X-ray generator 1 generates at least two pulses of X-rays. In the present embodiment, each X-ray pulse is exposed in synchronization with the pulsation detected by the pulsation detection unit 5. Specifically, the pulsation detection unit 5 determines a first timing and a second timing with a smaller blood flow volume than the first timing from the detected pulsation. Specifically, a timing at which the blood flow volume in a predetermined region within the imaging region of the subject imaged by the X-ray detection unit is less than the first timing is determined as the second timing. For example, in an embodiment in which imaging of the breast 2 such as mammography imaging is performed, a timing at which the blood flow rate in a predetermined region of the breast 2 is less than the first timing is determined as the second timing. Assuming that the blood flow in each region of the breast 2 changes in the same manner, it can be said that the blood flow in the breast 2 is smaller than that in the first timing at the second timing.
 差分画像のノイズを減らすために、一実施形態においては、より血流量の多いタイミングが第1のタイミングとして、より血流量の少ないタイミングが第2のタイミングとして、それぞれ決定される。例えば、第1のタイミングは収縮期に、第2のタイミングは拡張期に、それぞれ対応しうる。以下では、第2のタイミングより血流量が多い第1のタイミングを「血流が多いタイミング」と呼び、第1のタイミングより血流量が少ない第2のタイミングを「血流が少ないタイミング」と呼ぶ。 In order to reduce noise in the difference image, in one embodiment, a timing with a larger blood flow is determined as a first timing, and a timing with a smaller blood flow is determined as a second timing. For example, the first timing may correspond to the systole and the second timing may correspond to the diastole. In the following, the first timing with more blood flow than the second timing is referred to as “timing with high blood flow”, and the second timing with less blood flow than the first timing is referred to as “timing with low blood flow”. .
 そして、拍動検出部5は、これらのタイミングを示すタイミング信号をX線発生部1に送信する。このようにして、X線発生部1は、少なくとも乳房2における血流が多いタイミングと血流が少ないタイミングとにおいてX線を曝射する。 Then, the pulsation detection unit 5 transmits a timing signal indicating these timings to the X-ray generation unit 1. In this way, the X-ray generator 1 emits X-rays at least at a timing when the blood flow in the breast 2 is high and at a timing when the blood flow is low.
 こうして、血流量が多い時に乳房2を撮影することにより乳房2の第1の透視像(以下、収縮期画像と呼ぶ)が得られ、また血流量が少ない時に乳房2を撮影することにより乳房2の第2の透視像(以下、拡張期画像と呼ぶ)が得られる。後述するように、収縮期画像と拡張期画像との比較を行うために、収縮期画像と拡張期画像との差分画像が生成される。このため、収縮期画像と拡張期画像とは同じ所定方向から撮影されている。 In this way, a first fluoroscopic image (hereinafter referred to as a systolic image) of the breast 2 is obtained by photographing the breast 2 when the blood flow is large, and the breast 2 is photographed by photographing the breast 2 when the blood flow is small. The second fluoroscopic image (hereinafter referred to as a diastole image) is obtained. As will be described later, in order to compare the systolic image and the diastolic image, a difference image between the systolic image and the diastolic image is generated. For this reason, the systolic image and the diastole image are taken from the same predetermined direction.
 演算部6が備える取得部(不図示)は、以上のように得られた、第1のタイミングで乳房を撮影して得られる第1の透視像(収縮期画像)と、第2のタイミングで乳房を撮影して得られる第2の透視像(拡張期画像)と、を含む複数の透視像を得る。そして、演算部6が備える生成部(不図示)は、収縮期画像と拡張期画像との差分に基づく画像を生成する。乳房2を撮影する実施形態において、この差分に基づく画像は、乳腺を含む領域を含んでいる。本実施形態においては、生成部は、収縮期画像と拡張期画像との減算処理を行うことにより得られる差分画像を、差分に基づく画像として生成するものとする。しかしながら、他の実施形態において、生成部は、差分画像に対してさらに任意の画像処理を行って得られる画像を、差分に基づく画像として生成してもよい。こうして得られた差分画像は、乳房2において通常存在する血管の場所の他に、小さい信号であるかもしれないが、存在する場合には新生血管の場所を示す。このような新生血管の存在は、乳がんの存在(例えば微小石灰化又は腫瘤等)を示唆している。 The acquisition unit (not shown) included in the calculation unit 6 includes the first fluoroscopic image (systolic image) obtained by imaging the breast at the first timing and the second timing obtained as described above. A plurality of fluoroscopic images including a second fluoroscopic image (diastolic image) obtained by photographing the breast are obtained. And the production | generation part (not shown) with which the calculating part 6 is provided produces | generates the image based on the difference of a systole image and a diastole image. In the embodiment in which the breast 2 is imaged, the image based on this difference includes a region including the mammary gland. In the present embodiment, the generation unit generates a difference image obtained by performing a subtraction process between a systolic image and a diastole image as an image based on the difference. However, in another embodiment, the generation unit may generate an image obtained by further performing arbitrary image processing on the difference image as an image based on the difference. The difference image obtained in this way may be a small signal in addition to the location of blood vessels that normally exist in the breast 2, but if present, it indicates the location of new blood vessels. The presence of such new blood vessels suggests the presence of breast cancer (for example, microcalcification or mass).
 演算部6が有する表示制御部(不図示)は、得られた差分画像を表示部7に表示させる。ユーザは、差分画像を参照することにより、乳がんの存在箇所を発見することができる。特に、従来から用いられているX線画像の読影技術と、差分画像とを組み合わせることにより、従来よりも高い精度で乳がんを検出することが可能となる。演算部6は、差分画像に対してさらなる処理を行うことにより、例えば乳がんの存在又はその存在箇所を特定する等の処理を行ってもよい。この場合、表示制御部は、処理結果を含む結果画像を表示部7に表示させることができる。 A display control unit (not shown) included in the calculation unit 6 causes the display unit 7 to display the obtained difference image. The user can find the location of breast cancer by referring to the difference image. In particular, by combining a conventional X-ray image interpretation technique and a difference image, it becomes possible to detect breast cancer with higher accuracy than before. For example, the calculation unit 6 may perform processing such as specifying the presence of breast cancer or the location thereof by performing further processing on the difference image. In this case, the display control unit can cause the display unit 7 to display a result image including the processing result.
 演算部6が行う画像処理について、図2に示すフローに沿って説明する。図2では、拍動検出部5が心電計により得られた心電図8を取得し、この心電図8に従って乳房2における拍動のタイミングを検出する場合について説明する。心電計により得られた心電図8からは、心臓の収縮期と拡張期とを検知できる。具体的には、電位が大きい時期が収縮期であり、収縮期における透視像10に示されるように、これは血管を流れる血流(すなわち血液量)が多いタイミングに相当する。一方で、電位が平坦であるタイミングが拡張期であり、拡張期における透視像9に示されるように、これは血管を流れる血流(すなわち血液量)が少ないタイミングに相当する。このように、心電図8を参照することにより、血流量の状態を特定することができる。 Image processing performed by the calculation unit 6 will be described along the flow shown in FIG. In FIG. 2, the case where the pulsation detection unit 5 acquires an electrocardiogram 8 obtained by an electrocardiograph and detects the timing of pulsation in the breast 2 according to the electrocardiogram 8 will be described. From the electrocardiogram 8 obtained by the electrocardiograph, the systole and diastole of the heart can be detected. Specifically, the period when the potential is large is the systole, and this corresponds to the timing when the blood flow (that is, the blood volume) flowing through the blood vessel is large as shown in the perspective image 10 in the systole. On the other hand, the timing at which the potential is flat is the diastole, and as shown in the perspective image 9 in the diastole, this corresponds to the timing when the blood flow (that is, the blood volume) flowing through the blood vessel is small. Thus, the state of the blood flow rate can be specified by referring to the electrocardiogram 8.
 心電図8は、血流が心臓から送りだされるタイミングを示している。したがって、血管中(特に動脈)を流れる血液が、心臓から乳房2に到達するまでに要する時間を考慮して、2個のX線パルスを曝射するタイミングが決定される。そして、演算部6が有する撮影制御部(不図示)は、乳房2の血流量が多い時に収縮期画像を撮影し、かつ乳房2の血流量が少ない時に拡張期画像を撮影するように、X線発生部1を制御する。血液が心臓から乳房2に到達するまでに要する時間は、被験者の被検者の年齢や体格等に依存する。この時間は、患者データに基づいて経験的に決定することが可能である。ここでは、説明を簡単にするために、この時間がゼロであるものとして説明する。 Electrocardiogram 8 shows the timing when blood flow is sent from the heart. Therefore, in consideration of the time required for blood flowing in the blood vessel (particularly an artery) to reach the breast 2 from the heart, the timing for exposing two X-ray pulses is determined. Then, an imaging control unit (not shown) included in the arithmetic unit 6 captures a systolic image when the blood flow rate of the breast 2 is large, and so as to capture a diastolic image when the blood flow rate of the breast 2 is small. The line generator 1 is controlled. The time required for blood to reach the breast 2 from the heart depends on the age and physique of the subject of the subject. This time can be determined empirically based on patient data. Here, in order to simplify the description, it is assumed that this time is zero.
 収縮期画像では、拡張期画像と比べ、血管中(特に動脈)の血流が増えているため、血管部分におけるX線の透過線量が小さくなる。血管を流れる血流が多いタイミングと血管を流れる血流が少ないタイミングとを比較すると、新生血管の部分での血流増加は特に顕著に起こる。したがって、収縮期画像と拡張期画像との差分画像11を作成することにより、乳がんの存在を示唆する画像を作成することができる。具体的には、収縮期画像では、血管中(特に動脈)の血流が増えるため、乳がん部分(新生血管部分)でのX線透過量が比較的小さくなる。X線透過量が大きいほど画像の画素値が大きい場合、収縮期画像の画素値から拡張期画像の画素値を減算した場合に、乳がん部分23(新生血管部分)の画素値はマイナスになる。 In the systolic image, since the blood flow in the blood vessel (particularly the artery) is increased as compared with the diastole image, the transmitted dose of X-rays in the blood vessel portion is reduced. When comparing the timing when the blood flow flowing through the blood vessel is large and the timing when the blood flow flowing through the blood vessel is small, the increase in blood flow in the neovascular portion is particularly noticeable. Therefore, by creating the difference image 11 between the systolic image and the diastolic image, an image suggesting the presence of breast cancer can be created. Specifically, in the systolic image, blood flow in blood vessels (particularly arteries) increases, so that the amount of X-ray transmission in a breast cancer portion (new blood vessel portion) is relatively small. When the pixel value of the image is larger as the X-ray transmission amount is larger, the pixel value of the breast cancer portion 23 (neovascular portion) becomes negative when the pixel value of the diastolic image is subtracted from the pixel value of the systolic image.
 しかしながら、収縮期画像と拡張期画像との画素値の差は非常に小さいことを考慮して、より正確に検出を行うために、X線の放射線量に応じて2枚の画像の画素値を補正することができる。一般的に、X線発生部1から曝射されるそれぞれのX線パルスの放射線量には、数%のずれが存在する。このずれを補償するために、一実施形態において、演算部6は、収縮期画像及び拡張期画像を撮影する際に照射された放射線量を検出する放射線量検出部(不図示)を備えている。 However, considering that the difference between the pixel values of the systolic image and the diastolic image is very small, in order to perform detection more accurately, the pixel values of the two images are set in accordance with the X-ray radiation dose. It can be corrected. In general, there is a deviation of several percent in the radiation dose of each X-ray pulse emitted from the X-ray generator 1. In order to compensate for this shift, in one embodiment, the calculation unit 6 includes a radiation dose detection unit (not shown) that detects the radiation dose emitted when the systolic image and the diastolic image are captured. .
 例えば、X線発生部1の近傍に取り付けたリファレンス検出器(不図示)を測定装置として用いることにより、それぞれのパルスの実際の放射線量を測定することができる。このようなリファレンス検出器は、収縮期画像及び拡張期画像を撮影する際に照射されたX線パルスが入射する位置に配置される。放射線量検出部は、このようなリファレンス検出器から、収縮期画像及び拡張期画像を撮影する際に照射された放射線量を取得することができる。 For example, by using a reference detector (not shown) attached in the vicinity of the X-ray generator 1 as a measuring device, the actual radiation dose of each pulse can be measured. Such a reference detector is arranged at a position where an X-ray pulse irradiated when a systolic image and a diastole image are captured. The radiation dose detection unit can acquire the radiation dose irradiated when capturing the systolic image and the diastolic image from such a reference detector.
 別の方法として、補正データ領域の画素値に基づいて、実際の放射線量を検出することもできる。補正データ領域とは、図2に示すような、被写体を透過しないX線に対応する画像領域であり、本実施形態においては乳房2が写っていない領域である。図1の例においては、補正データ領域は、X線検出部3のうち被験者の胸壁とは反対側の領域で撮影された画像の領域である。一実施形態において、放射線量検出部は、補正データ領域の平均画素値に基づいて、照射された放射線量又は放射線量の変化を検出する。 As another method, the actual radiation dose can be detected based on the pixel value in the correction data area. The correction data area is an image area corresponding to an X-ray that does not transmit through the subject as shown in FIG. 2, and is an area in which the breast 2 is not shown in the present embodiment. In the example of FIG. 1, the correction data region is a region of an image taken in the region opposite to the subject's chest wall in the X-ray detection unit 3. In one embodiment, the radiation dose detection unit detects the irradiated radiation dose or a change in the radiation dose based on the average pixel value in the correction data area.
 このようにして検出されたX線の放射線量に基づいて、演算部6が有する補正部(不図示)は、収縮期画像及び拡張期画像を撮影する際に照射された放射線量の違いを補償するように、収縮期画像と拡張期画像との少なくとも一方の画素値を補正する。こうして、同じ放射線量のX線パルスが曝射された場合に得られる収縮期画像及び拡張期画像を推定することができる。具体的な補正方法としては、拡張期画像を撮影するために曝射されたX線パルスの放射線量が、収縮期画像を撮影するために曝射されたX線パルスの放射線量のa倍である場合に、拡張期画像の画素値をaで除算する方法が挙げられる。 Based on the X-ray radiation dose detected in this way, the correction unit (not shown) included in the calculation unit 6 compensates for the difference in the radiation dose irradiated when the systolic image and the diastolic image are captured. As described above, at least one pixel value of the systolic image and the diastolic image is corrected. Thus, it is possible to estimate a systolic image and a diastolic image obtained when an X-ray pulse having the same radiation dose is exposed. As a specific correction method, the radiation dose of the X-ray pulse exposed to capture the diastolic image is a times the radiation dose of the X-ray pulse exposed to capture the systolic image. In some cases, there is a method of dividing the pixel value of the diastole image by a.
 差分画像は、乳腺を含む領域の画像である。乳がんは乳腺部分に発生することから、乳腺を含む領域の画像から乳がんを検出することができる。差分画像は乳腺を含む乳房全体の画像であってもよいが、一実施形態においては、差分画像は、乳房全体から選択された乳腺部分を含む領域の画像である。差分画像にはノイズ成分が存在する一方、差分画像において乳がん部分を示す画素値は非常に小さい。そこで、差分画像から乳腺部分を含む領域を抽出することにより、ノイズ部分を減らすことができる。 The difference image is an image of an area including the mammary gland. Since breast cancer occurs in the mammary gland portion, it can be detected from an image of an area including the mammary gland. Although the difference image may be an image of the entire breast including the mammary gland, in one embodiment, the difference image is an image of an area including the mammary gland portion selected from the entire breast. While the difference image includes a noise component, the pixel value indicating the breast cancer portion in the difference image is very small. Therefore, the noise portion can be reduced by extracting a region including the mammary gland portion from the difference image.
 乳腺部分はX線透過量が少ないため、所定の閾値より放射線透過量が小さい領域を、乳腺部分の領域として抽出することができる。具体的には、X線画像を適切な閾値を用いて2値化することにより、差分画像から乳腺部分の領域を抽出することができる。乳腺部分の領域の決定は、収縮期画像と拡張期画像とのどちらに基づいて行ってもよいし、別のX線画像に基づいて行ってもよい。ここで、乳腺部分の領域の決定に用いられる画像は、収縮期画像及び拡張期画像と同じ方向から撮影された乳房2の透視像である。 Since the mammary gland portion has a small amount of X-ray transmission, a region having a radiation transmission amount smaller than a predetermined threshold can be extracted as a mammary gland region. Specifically, the region of the mammary gland portion can be extracted from the difference image by binarizing the X-ray image using an appropriate threshold value. The determination of the mammary gland region may be performed based on either the systolic image or the diastolic image, or may be performed based on another X-ray image. Here, the image used for determining the region of the mammary gland is a fluoroscopic image of the breast 2 taken from the same direction as the systolic image and the diastolic image.
 一実施形態においては、収縮期画像と拡張期画像とのうち、上述のように検出された実際の放射線量が多い方の画像に基づいて、乳腺部分の領域が決定される。この場合、乳腺部分の領域22をより正確に決定することが可能となる。 In one embodiment, the region of the mammary gland portion is determined based on the image having the larger actual radiation dose detected as described above, between the systolic image and the diastolic image. In this case, the mammary gland region 22 can be determined more accurately.
 一方で、乳がんは乳腺部分に発生するが、年齢とともに乳腺は脂肪化する。そこで、検出漏れを減らすために、乳腺を含む領域として、乳腺及び乳腺に隣接する脂肪の領域22を検出してもよい。具体的には、検出された乳腺部分の領域、すなわちX線画像から抽出された所定の閾値より放射線透過量が小さい領域を、モルフォロジー演算等を用いて拡大することにより、乳腺及び乳腺に隣接する脂肪の領域22を決定することができる。拡大量は特に限定されず、例えば経験的に定められた所定量でありうる。小さい信号を消去するために、拡大処理を行う前に縮小処理を行ってもよい。 On the other hand, breast cancer occurs in the mammary gland part, but the mammary gland becomes fat with age. Therefore, in order to reduce detection omission, the mammary gland and the fat region 22 adjacent to the mammary gland may be detected as the region including the mammary gland. Specifically, the mammary gland and the mammary gland are adjacent to each other by enlarging the area of the detected mammary gland, that is, an area having a radiation transmission amount smaller than a predetermined threshold extracted from the X-ray image using a morphological operation or the like. The fat region 22 can be determined. The amount of enlargement is not particularly limited, and may be a predetermined amount determined empirically, for example. In order to erase a small signal, the reduction process may be performed before the enlargement process.
(変形例)
 実施形態1においては、X線検出部3は1枚の収縮期画像と1枚の拡張期画像とを取得し、2枚の画像に基づいて差分画像が生成されたが、本変形例においては3枚以上のX線画像が撮影され使用される。
(Modification)
In the first embodiment, the X-ray detection unit 3 acquires one systolic image and one diastole image, and a difference image is generated based on the two images. In this modification, Three or more X-ray images are taken and used.
 本変形例において、X線パルスは拍動に同期せずに曝射される。この場合、X線発生部1は、一定の周期で複数のX線パルスを曝射することができる。一例においては、X線発生部1は、拍動の1周期の間に、3以上のX線パルスを曝射する。そして、X線検出部3は、それぞれのX線パルスについてX線画像を生成する。1周期の間に曝射されるX線パルスの数は、例えば3以上10以下でありうる。拍動の1周期の間隔は拍動検出部5が検出してもよいし、経験的に決定された所定値(例えば1秒間)を1周期の間隔としてもよい。 In this modification, the X-ray pulse is exposed without being synchronized with the pulsation. In this case, the X-ray generator 1 can expose a plurality of X-ray pulses at a constant cycle. In one example, the X-ray generator 1 exposes three or more X-ray pulses during one pulsation cycle. Then, the X-ray detection unit 3 generates an X-ray image for each X-ray pulse. The number of X-ray pulses exposed during one cycle can be, for example, 3 or more and 10 or less. The interval of one cycle of pulsation may be detected by the pulsation detecting unit 5, or a predetermined value (for example, 1 second) determined empirically may be used as the interval of one cycle.
 本変形例においては、演算部6が備える選択部(不図示)は、複数のX線画像から、収縮期画像と拡張期画像とを選択する。選択部は、得られた複数のX線画像について画像処理を行うことにより、血流が多くなっている時の乳房2の画像と、血流が少なくなっている時の乳房2の画像とを選択することができる。例えば、収縮期においては、血流が増えるので画像全体において放射線透過量が小さくなる一方で、拡張期においては、血流が少なくなるので画像全体において放射線透過量が大きくなる。そこで、選択部は、拡張期画像における平均の放射線透過量が、収縮期画像における平均の放射線透過量よりも大きくなるように、収縮期画像と拡張期画像とを選択する。 In this modification, a selection unit (not shown) included in the calculation unit 6 selects a systolic image and a diastolic image from a plurality of X-ray images. The selection unit performs image processing on the obtained plurality of X-ray images, thereby obtaining an image of the breast 2 when the blood flow is increased and an image of the breast 2 when the blood flow is decreased. You can choose. For example, in the systole, since the blood flow increases, the radiation transmission amount decreases in the entire image. On the other hand, in the diastole, the blood flow decreases, and the radiation transmission amount increases in the entire image. Therefore, the selection unit selects the systolic image and the diastolic image so that the average radiation transmission amount in the diastolic image is larger than the average radiation transmission amount in the systolic image.
 一実施形態において、選択部は、複数のX線画像のうち、放射線透過量が最小の画像を収縮期画像として選択し、放射線透過量が最大の画像を拡張期画像として選択する。その後、演算部6は、収縮期画像と拡張期画像との差分画像を生成する。 In one embodiment, the selection unit selects an image having the smallest amount of radiation transmission among the plurality of X-ray images as the systolic image and selects an image having the largest amount of radiation transmission as the diastolic image. Thereafter, the calculation unit 6 generates a difference image between the systolic image and the diastolic image.
 このような構成を用いる場合、撮影装置が拍動検出部5を備えることは必須ではない。しかしながら、このような構成は、拍動検出部5が、心電計を用いて拍動を検出する場合、又は指先に取り付けた酸素飽和度計を用いて拍動を検出する場合にも用いることができる。これらの場合には、拍動の検出部位と乳房2との間で拍動のタイミングがずれるために、正確に乳房2における血流が多いタイミングと血流が少ないタイミングとを決定することが難しい場合がある。しかしながら、拍動検出部5によって検出した拍動の周期等を参照して、血流が多くなっている時の乳房2の画像と、血流が少なくなっている時の乳房2の画像とをより正確に検出することが可能である。 When such a configuration is used, it is not essential that the photographing apparatus includes the pulsation detecting unit 5. However, such a configuration is also used when the pulsation detector 5 detects a pulsation using an electrocardiograph or when detecting a pulsation using an oxygen saturation meter attached to the fingertip. Can do. In these cases, since the timing of pulsation shifts between the pulsation detection site and the breast 2, it is difficult to accurately determine when the blood flow in the breast 2 is high and when the blood flow is low. There is a case. However, an image of the breast 2 when the blood flow is increased and an image of the breast 2 when the blood flow is decreased with reference to the period of the pulsation detected by the pulsation detection unit 5. It is possible to detect more accurately.
 また、画像のS/N比を上げるために、複数のX線透過量が大きい画像、又は複数のX線透過量が小さい画像を平均化することもできる。さらに、上述のように、リファレンス検出器又は補正データ領域等を使用することで、X線パルス毎のX線量変動を補償するようにそれぞれのX線画像を補正することもできる。 Also, in order to increase the S / N ratio of an image, a plurality of images with a large amount of X-ray transmission or a plurality of images with a small amount of X-ray transmission can be averaged. Furthermore, as described above, by using a reference detector, a correction data area, or the like, each X-ray image can be corrected so as to compensate for the X-ray dose variation for each X-ray pulse.
 また、X線検出部3のフレームレートを、拍動の1周期の間に所望の数のX線画像を取得することができる程度に上げることが困難である場合には、次のような方法を用いることができる。すなわち、それぞれのX線パルスを、基準タイミングからそれぞれ異なった時間だけ遅延させて曝射することができる。具体的には、拍動の1周期(1周期の時間をTとする)についてN毎のX線画像を取得したい場合、n枚目のX線画像を撮影する際には、基準タイミングからn・T/Nだけ遅延させてX線パルスが曝射される。基準タイミングとは、拍動の周期と同じ周期で繰り返されるタイミングであり、具体的には収縮期のタイミング等でありうる。言い換えれば、n枚目のX線画像を撮影する際には、所定の時刻からmT+n・T/N(mは自然数)だけ遅延させてX線パルスが曝射される。このような構成によれば、フレームレートが小さいX線検出部3を用いる場合であっても、拍動の1周期中に撮影されるN枚の画像と実質的に同等である、N枚の画像を得ることができる。 When it is difficult to increase the frame rate of the X-ray detection unit 3 to such an extent that a desired number of X-ray images can be acquired during one pulsation cycle, the following method is used. Can be used. That is, each X-ray pulse can be exposed with a different delay from the reference timing. Specifically, when it is desired to acquire an X-ray image every N times for one cycle of pulsation (the time of one cycle is T), when taking an n-th X-ray image, n is counted from the reference timing. X-ray pulses are exposed with a delay of T / N. The reference timing is a timing that is repeated at the same cycle as the cycle of pulsation, and specifically may be a systolic timing or the like. In other words, when an n-th X-ray image is taken, the X-ray pulse is exposed with a delay of mT + n · T / N (m is a natural number) from a predetermined time. According to such a configuration, even when the X-ray detection unit 3 having a small frame rate is used, N images that are substantially equivalent to N images captured during one pulsation cycle, An image can be obtained.
 演算部6は、差分画像が、乳房2のX線画像に重畳されている画像を、表示部7に表示させてもよい。この際、差分画像とX線画像とを異なる色で表示することにより、ユーザによるX線画像からの乳がん部位の検出を容易とすることができる。ここで、差分画像が重畳されるX線画像は、収縮期画像、拡張期画像、又は収縮期画像及び拡張期画像と同じ方向から撮影された乳房2の透視像である。 The calculation unit 6 may cause the display unit 7 to display an image in which the difference image is superimposed on the X-ray image of the breast 2. At this time, by displaying the difference image and the X-ray image in different colors, the user can easily detect the breast cancer site from the X-ray image. Here, the X-ray image on which the difference image is superimposed is a perspective image of the breast 2 taken from the same direction as the systolic image, the diastolic image, or the systolic image and the diastolic image.
 以下に、実施形態1又はその変形例における処理のフローチャートを、図6を参照して説明する。ステップS610において、演算部6が有する撮影制御部は、X線発生部1に撮影タイミングを指示する。ステップS620において、演算部6は、X線検出部3から収縮期画像と拡張期画像とを取得する。ステップS610において、撮影制御部は、実施形態1のように拍動検出部5の検出結果に従って撮影タイミングを指示することができる。一方で、ステップS610において、撮影制御部は、変形例のように、一定の周期でX線発生部1に撮影を行わせてもよい。この場合、ステップS620において、演算部6は、複数のX線画像から収縮期画像と拡張期画像とを選択する。 Hereinafter, a flowchart of processing in the first embodiment or its modification will be described with reference to FIG. In step S <b> 610, the imaging control unit included in the calculation unit 6 instructs the X-ray generation unit 1 about imaging timing. In step S620, the calculation unit 6 acquires a systolic image and a diastolic image from the X-ray detection unit 3. In step S610, the imaging control unit can instruct imaging timing according to the detection result of the pulsation detecting unit 5 as in the first embodiment. On the other hand, in step S610, the imaging control unit may cause the X-ray generation unit 1 to perform imaging at a constant cycle as in the modification example. In this case, in step S620, the calculation unit 6 selects a systolic image and a diastolic image from a plurality of X-ray images.
 ステップS630において、演算部6は、上述のように差分画像を生成する。ステップS640において、演算部6が有する表示制御部は、差分画像又は差分画像に対して行った処理の結果を、表示部7に表示させる。 In step S630, the calculation unit 6 generates a difference image as described above. In step S640, the display control unit included in the calculation unit 6 causes the display unit 7 to display the difference image or the result of the process performed on the difference image.
 演算部6による処理は、汎用のコンピュータを用いて行うこともできる。この場合、演算部6が行う処理をコンピュータに行わせる命令を含むコンピュータプログラムを含む記憶媒体が用意される。そして、この記憶媒体に含まれるプログラムをコンピュータが有するメモリにロードし、コンピュータが有するプロセッサがこのプログラムに従って動作することにより、演算部6が行う上述の処理を実現できる。 The processing by the calculation unit 6 can also be performed using a general-purpose computer. In this case, a storage medium including a computer program including instructions for causing the computer to perform processing performed by the calculation unit 6 is prepared. Then, the program included in the storage medium is loaded into a memory included in the computer, and the processor included in the computer operates according to the program, whereby the above-described processing performed by the arithmetic unit 6 can be realized.
[実施形態2]
 図3は、実施形態2に係る撮影装置のブロック図を示す。実施形態2に係る撮影装置は、実施形態1と同様であるが、さらにX線移動部13を有している。また、実施形態2における処理は、収縮期画像、拡張期画像、及び差分画像の取得方法が異なるものの、図6に示したフローチャートに従って行うことができる。
[Embodiment 2]
FIG. 3 is a block diagram of the photographing apparatus according to the second embodiment. The imaging apparatus according to the second embodiment is the same as that of the first embodiment, but further includes an X-ray moving unit 13. Further, the processing in the second embodiment can be performed according to the flowchart shown in FIG. 6 although the acquisition method of the systolic image, the diastolic image, and the difference image is different.
 X線移動部13は、X線発生部1を移動させる。X線発生部1は、移動しながら乳房2に対して多方向から複数のX線パルスを曝射する。X線検出部3は、X線パルスの曝射に同期してX線画像を撮影する。この構成によれば、乳房2について多方向からの画像を取得することができ、画像の解像度及び信号品質等を向上させることができる。こうして撮影された複数のX線画像には、乳房2が有する血管の血流量が多い時に複数の方向から撮影された複数のX線画像と、乳房2が有する血管の血流量が少ない時に複数の方向から撮影された複数のX線画像と、が含まれている。 The X-ray moving unit 13 moves the X-ray generating unit 1. The X-ray generator 1 exposes a plurality of X-ray pulses from multiple directions to the breast 2 while moving. The X-ray detection unit 3 captures an X-ray image in synchronization with the X-ray pulse exposure. According to this configuration, images from multiple directions can be acquired for the breast 2, and the resolution and signal quality of the image can be improved. The plurality of X-ray images thus taken include a plurality of X-ray images taken from a plurality of directions when the blood flow volume of the blood vessels included in the breast 2 is large, and a plurality of X-ray images captured when the blood flow volume of the blood vessels included in the breast 2 is small. And a plurality of X-ray images taken from the direction.
 具体的には、拍動の1周期の間にN個のX線パルスが曝射され、N枚のX線画像が取得される。X線パルスの数は、特に限定されないが、例えば10以上20以下でありうる。もっとも、拍動の2周期以上にわたってX線パルスの曝射が行われてもよい。具体的なX線パルスの照射制御は、実施形態1又はその変形例と同様に行うことができる。 Specifically, N X-ray pulses are exposed during one cycle of pulsation, and N X-ray images are acquired. The number of X-ray pulses is not particularly limited, but may be, for example, 10 or more and 20 or less. However, the X-ray pulse may be exposed over two or more cycles of pulsation. Specific X-ray pulse irradiation control can be performed in the same manner as in the first embodiment or its modification.
 演算部6が行う画像処理について、図4に示すフローに沿って説明する。本実施形態において、演算部6は、N枚のX線画像14から、N枚の収縮期画像と、N枚の拡張期画像とを選択する。一実施形態においては、N=N+Nであり、それぞれのX線画像は、収縮期画像と拡張期画像とのいずれかに分類される。しかしながら、N枚のX線画像の全てが収縮期画像又は拡張期画像として用いられる必要はない。収縮期画像及び拡張期画像の選択は、実施形態1又はその変形例と同様に、例えば検出した拍動又に基づいて、又はX線透過量の大小に基づいて行うことができる。 The image processing performed by the calculation unit 6 will be described along the flow shown in FIG. In the present embodiment, the calculation unit 6 selects N 1 systolic images and N 2 diastole images from N X-ray images 14. In one embodiment, N = N 1 + N 2 and each X-ray image is classified as either a systolic image or a diastolic image. However, it is not necessary that all of the N X-ray images are used as the systolic image or the diastolic image. The selection of the systolic image and the diastolic image can be performed, for example, based on the detected pulsation or the magnitude of the X-ray transmission amount, as in the first embodiment or the modification thereof.
 次に、演算部6が有する超解像処理部(不図示)は、N枚の収縮期画像に対応する超解像画像S1を作成する。超解像技術は、複数の画像を用いてより解像度の高い1枚の画像を作成する技術として知られている。本実施形態においても、公知の技術に従って超解像処理を行うことができる。超解像処理においては、対象画像が持つ画素情報に加えて、他の方向から得られた画像が持つ画素情報を参照することで、対象画像に含まれるノイズを効果的に除去し、対象画像の画素情報の品質を改善することができる。 Next, a super-resolution processing unit (not shown) included in the calculation unit 6 creates a super-resolution image S1 corresponding to N 1 systolic images. The super-resolution technique is known as a technique for creating a single image with higher resolution using a plurality of images. Also in this embodiment, super-resolution processing can be performed according to a known technique. In the super-resolution processing, in addition to the pixel information of the target image, by referring to the pixel information of the image obtained from other directions, the noise included in the target image is effectively removed, and the target image The quality of pixel information can be improved.
 超解像処理部は、同様の処理により、N枚の拡張期画像に対応する超解像画像S2をさらに作成する。 The super-resolution processing unit further creates a super-resolution image S2 corresponding to the N 2 expansion period images by the same processing.
 各収縮期画像又は拡張期画像は撮影方向が異なるため、それぞれの画像においては移っている被写体の位置が異なる。本実施形態においては、X線移動部13は2軸に沿ってX線発生部1を移動させる。そこで、本実施形態においては、このX線発生部1の2軸の移動量を考慮して、超解像処理が行われる。X線発生部1の移動方法はこの方法に限られず、別の実施形態においては、X線移動部13は円弧上を移動する。この場合、X線発生部1の回転角を考慮して超解像処理を行うことができる。 Since each systolic image or diastole image has a different shooting direction, the position of the moving subject is different in each image. In the present embodiment, the X-ray moving unit 13 moves the X-ray generating unit 1 along two axes. Therefore, in the present embodiment, super-resolution processing is performed in consideration of the biaxial movement amount of the X-ray generator 1. The moving method of the X-ray generation unit 1 is not limited to this method, and in another embodiment, the X-ray moving unit 13 moves on an arc. In this case, the super-resolution processing can be performed in consideration of the rotation angle of the X-ray generator 1.
 実施形態1の変形例1で説明した、n枚目のX線画像を撮影する際に基準タイミングからn・T/Nだけ遅延させてX線パルスを曝射する方法を採用する場合、超解像処理を行う際にこの遅延時間を考慮する必要がある。具体的には、N枚のX線画像を撮影している間にX線発生部1が角度Θだけ回転移動し、撮影間隔がmT+T/Nである場合、撮影間隔においてX線移動部はΘ/Nだけ回転移動する(mは自然数)。 When adopting the method of exposing an X-ray pulse delayed by n · T / N from the reference timing when taking an n-th X-ray image, which is described in the first modification of the first embodiment, the super solution This delay time needs to be taken into account when performing image processing. Specifically, when the X-ray generation unit 1 rotates and moves by an angle Θ while taking N X-ray images and the imaging interval is mT + T / N, the X-ray moving unit Rotate by / N (m is a natural number).
 超解像技術においては、上述のように、N枚の収縮期画像から基準画像T1が選択され、また、N枚の拡張期画像から基準画像T2が選択される。そして、超解像画像S1,S2は、基準画像T1,T2のそれぞれの品質を超解像処理により向上させることにより得られる。すなわち、超解像処理部は、血流量が多いときに複数の方向からさらに撮影された乳房2の複数の透視像を用いて、基準画像T1の解像度を向上させる。また、超解像処理部は、血流量が少ないときに複数の方向からさらに撮影された乳房2の複数の透視像を用いて、基準画像T2の解像度を向上させる。 In the super-resolution technique, as described above, the reference image T1 is selected from N 1 systolic images, and the reference image T2 is selected from N 2 diastolic images. The super-resolution images S1 and S2 are obtained by improving the quality of the reference images T1 and T2 by super-resolution processing. That is, the super-resolution processing unit improves the resolution of the reference image T1 by using a plurality of fluoroscopic images of the breast 2 further photographed from a plurality of directions when the blood flow is large. In addition, the super-resolution processing unit improves the resolution of the reference image T2 by using a plurality of fluoroscopic images of the breast 2 further photographed from a plurality of directions when the blood flow is small.
 後述するように、超解像画像S1,S2の差分画像が計算されるので、一実施形態においては、同じ所定方向からX線パルスを曝射して得られた画像が、基準画像T1,T2として選択される。もっとも、撮影方向(X線パルスの曝射方向)が厳密に一致していることは必要ではなく、基準画像T1,T2の撮影方向は実質的に一致していればよい。例えば、一実施形態においては、基準画像T1を撮影する際のX線パルスの曝射方向と、基準画像T2を撮影する際のX線パルスの曝射方向とがなす角度が所定の閾値以下となるように、基準画像T1,T2が選択される。 As will be described later, since the difference image between the super-resolution images S1 and S2 is calculated, in one embodiment, the images obtained by exposing the X-ray pulse from the same predetermined direction are the reference images T1 and T2. Selected as. However, it is not necessary that the imaging directions (X-ray pulse exposure directions) are exactly the same, and it is only necessary that the imaging directions of the reference images T1 and T2 are substantially the same. For example, in one embodiment, the angle formed by the exposure direction of the X-ray pulse when capturing the reference image T1 and the exposure direction of the X-ray pulse when capturing the reference image T2 is equal to or less than a predetermined threshold. Thus, the reference images T1 and T2 are selected.
 また、基準画像T1を撮影した際のX線発生部1の位置が、N枚の収縮期画像を撮影した際のX線発生部1の複数の位置の中心付近に位置する場合には、超解像処理により品質をより大きく向上させることができる。この観点から、以下のように基準画像T1を選択することができる。すなわち、N枚の収縮期画像を撮影した際のそれぞれのX線パルスの曝射方向を表すN個の単位ベクトルの平均ベクトルの向きと、基準画像T1を撮影する際のX線パルスの曝射方向とがなす角度は、所定の閾値以下とされる。基準画像T2についても同様である。 In addition, when the position of the X-ray generation unit 1 when the reference image T1 is captured is positioned near the center of the plurality of positions of the X-ray generation unit 1 when the N one systolic images are captured, The quality can be greatly improved by the super-resolution processing. From this viewpoint, the reference image T1 can be selected as follows. That is, the direction of the average vector of N 1 unit vectors representing the exposure direction of each X-ray pulse when N 1 systolic images are captured, and the X-ray pulse when capturing the reference image T1 The angle formed by the exposure direction is set to a predetermined threshold value or less. The same applies to the reference image T2.
 その後、演算部6は、収縮期画像及び拡張期画像の代わりに、超解像画像S1及びS2を用いて、実施形態1と同様に差分画像を生成する。実施形態1と同様に、差分画像から乳腺及びその周辺脂肪領域を抽出してもよい。 Thereafter, the calculation unit 6 generates a difference image using the super-resolution images S1 and S2 instead of the systolic image and the diastolic image as in the first embodiment. Similarly to the first embodiment, the mammary gland and its peripheral fat region may be extracted from the difference image.
 また、実施形態3と同様に、N枚のX線画像14からトモシンセシス画像17を再構成してもよい。トモシンセシス画像17は、超解像画像S1及びS2の撮影方向に直交する断面における複数の断層画像により構成されうる。この場合、演算部6は、差分画像が、複数の断層画像から選択された任意の断層画像に重畳されている画像18を、表示部7に表示させることができる。この際、差分画像と断層画像とを異なる色で表示することにより、ユーザによる断層画像からの乳がん部位の検出を容易とすることができる。 Further, as in the third embodiment, the tomosynthesis image 17 may be reconstructed from the N X-ray images 14. The tomosynthesis image 17 can be composed of a plurality of tomographic images in a cross section orthogonal to the imaging direction of the super-resolution images S1 and S2. In this case, the calculation unit 6 can cause the display unit 7 to display an image 18 in which the difference image is superimposed on an arbitrary tomographic image selected from a plurality of tomographic images. At this time, by displaying the difference image and the tomographic image in different colors, the user can easily detect the breast cancer site from the tomographic image.
[実施形態3]
 図3は、実施形態3に係る撮影装置のブロック図を示す。実施形態3に係る撮影装置は、実施形態2と同様の構成を有している。また、実施形態3における処理は、収縮期画像、拡張期画像、及び差分画像の取得方法が異なるものの、図6に示したフローチャートに従って行うことができる。
[Embodiment 3]
FIG. 3 is a block diagram of the photographing apparatus according to the third embodiment. The photographing apparatus according to the third embodiment has the same configuration as that of the second embodiment. Further, the processing in the third embodiment can be performed according to the flowchart shown in FIG. 6 although the acquisition method of the systolic image, the diastolic image, and the difference image is different.
 本実施形態に係る撮影装置は、乳房2を多方向から撮影することによりトモシンセシス画像を再構成する。トモシンセシス画像は、乳房2の複数の断層像で構成され、多方向から撮影された被写体画像から各断層像を再構成することにより得られる。再構成は、具体的には限定されない公知の技術を用いて行うことができ、例えば逆投影法又は逐次近似法等を使用することができる。 The imaging apparatus according to the present embodiment reconstructs a tomosynthesis image by imaging the breast 2 from multiple directions. The tomosynthesis image is composed of a plurality of tomographic images of the breast 2 and is obtained by reconstructing each tomographic image from subject images taken from multiple directions. The reconstruction can be performed using a known technique that is not specifically limited. For example, a back projection method or a successive approximation method can be used.
 N枚のX線画像の撮影、及びN枚の収縮期画像とN枚の拡張期画像との選択は、実施形態2と同様に行われる。本実施形態において、演算部6は、N枚の収縮期画像を使用して、収縮期のトモシンセシス画像C1を再構成する。トモシンセシス画像C1はM枚の断層画像C1(m)(1≦m≦M)で構成されている。演算部6はまた、N枚の拡張期画像を使用して、M枚の断層画像C2(m)で構成される、拡張期のトモシンセシス画像C2を再構成する。収縮期の断層画像C1(m)と拡張期の断層画像C2(m)とは、乳房2の同一断面における断層画像である。言い換えれば、トモシンセシス画像C1は、乳房2の第1の断面における第1の断層画像C1(m)を含んでおり、トモシンセシス画像C2は、乳房2の第1の断面における第2の断層画像を含んでいる。 Imaging of N X-ray images and selection of N 1 systolic images and N 2 diastolic images are performed in the same manner as in the second embodiment. In the present embodiment, the calculation unit 6 reconstructs a systolic tomosynthesis image C1 using N 1 systolic images. The tomosynthesis image C1 is composed of M tomographic images C1 (m) (1 ≦ m ≦ M). The calculation unit 6 also uses the N 2 diastolic images to reconstruct a diastolic tomosynthesis image C2 composed of M tomographic images C2 (m). The tomographic image C1 (m) in the systole and the tomographic image C2 (m) in the diastole are tomographic images on the same cross section of the breast 2. In other words, the tomosynthesis image C1 includes the first tomographic image C1 (m) in the first cross section of the breast 2, and the tomosynthesis image C2 includes the second tomographic image in the first cross section of the breast 2. It is out.
 トモシンセシス画像の再構成は、X線発生部1の移動量を考慮しながら行われる。X線発生部1の移動量の考慮は、実施形態2における超解像処理と同様に行うことができる。 The reconstruction of the tomosynthesis image is performed in consideration of the movement amount of the X-ray generation unit 1. The amount of movement of the X-ray generation unit 1 can be considered in the same manner as the super-resolution processing in the second embodiment.
 そして、演算部6は、収縮期の断層画像C1(m)と拡張期の断層画像C2(m)とを用いて、各断面についての差分画像を、実施形態2と同様に生成する。実施形態1と同様に、差分画像から乳腺及びその周辺脂肪領域を抽出してもよい。 Then, the calculation unit 6 uses the systolic tomographic image C1 (m) and the diastolic tomographic image C2 (m) to generate a difference image for each cross section in the same manner as in the second embodiment. Similarly to the first embodiment, the mammary gland and its peripheral fat region may be extracted from the difference image.
 別の実施形態において、演算部6はさらに、N枚のX線画像から乳房2のトモシンセシス画像を作成してもよい。演算部6は、得られた差分画像又は差分画像に対してさらなる処理を行って得られた結果画像と、乳房2のトモシンセシス画像とを、同時に表示部7に表示させてもよい。一実施形態において、演算部6は、N枚のX線画像から、M枚の断層画像C3(m)で構成される、トモシンセシス画像C3を再構成する。収縮期の断層画像C1(m)と拡張期の断層画像C2(m)と断層画像C3(m)とは、乳房2の同一断面における断層画像である。そして、演算部6は、収縮期の断層画像C1(m)と拡張期の断層画像C2(m)との差分画像が、断層画像C3(m)に重畳された画像21を、表示部7に表示させる。この際、差分画像と断層画像とは異なる色で表示される。 In another embodiment, the calculation unit 6 may further create a tomosynthesis image of the breast 2 from N X-ray images. The calculation unit 6 may cause the display unit 7 to simultaneously display the obtained difference image or the result image obtained by further processing the difference image and the tomosynthesis image of the breast 2. In one embodiment, the computing unit 6 reconstructs a tomosynthesis image C3 composed of M tomographic images C3 (m) from N X-ray images. The tomographic image C1 (m) in the systole, the tomographic image C2 (m) in the diastole, and the tomographic image C3 (m) are tomographic images in the same cross section of the breast 2. Then, the calculation unit 6 displays on the display unit 7 an image 21 in which a difference image between the tomographic image C1 (m) in the systole and the tomographic image C2 (m) in the diastole is superimposed on the tomographic image C3 (m). Display. At this time, the difference image and the tomographic image are displayed in different colors.
(その他の実施形態)
 上述の実施形態において、被験者に造影剤を注入してX線撮影を行うことにより、血液による信号変化が大きくすることができ、乳がん部分(新生血管部分)をより精度良く検出することができる。
(Other embodiments)
In the above-described embodiment, by injecting a contrast medium into a subject and performing X-ray imaging, a signal change due to blood can be increased, and a breast cancer portion (neovascular portion) can be detected with higher accuracy.
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 The present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2013年11月18日提出の日本国特許出願特願2013-238265を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority based on Japanese Patent Application No. 2013-238265 filed on Nov. 18, 2013, the entire contents of which are incorporated herein by reference.

Claims (18)

  1.  第1のタイミングで乳房を撮影して得られる第1のX線画像と、該第1のタイミングよりも血流量が少ない第2のタイミングで前記乳房を撮影して得られる第2のX線画像とを含む複数のX線画像を得る取得手段と、
     前記第1のX線画像及び前記第2のX線画像から乳腺を含む領域の差分に基づく画像を生成する生成手段と、
     を備えることを特徴とする画像処理装置。
    A first X-ray image obtained by imaging a breast at a first timing, and a second X-ray image obtained by imaging the breast at a second timing with less blood flow than the first timing Obtaining means for obtaining a plurality of X-ray images including:
    Generating means for generating an image based on a difference between regions including mammary glands from the first X-ray image and the second X-ray image;
    An image processing apparatus comprising:
  2.  前記生成手段は、前記乳房を撮影して得られるX線画像から、前記乳腺を含む領域として、乳腺及び乳腺に隣接する脂肪の領域を検出することを特徴とする、請求項1に記載の画像処理装置。 The image according to claim 1, wherein the generation unit detects a mammary gland and a fat region adjacent to the mammary gland as an area including the mammary gland from an X-ray image obtained by imaging the breast. Processing equipment.
  3.  前記乳腺を含む領域は、前記乳房を撮影して得られるX線画像のうち所定の閾値より放射線透過量が小さい領域を拡大して得られた領域であることを特徴とする、請求項2に記載の画像処理装置。 The region including the mammary gland is a region obtained by enlarging a region having a radiation transmission amount smaller than a predetermined threshold in an X-ray image obtained by imaging the breast. The image processing apparatus described.
  4.  前記第1のX線画像及び前記第2のX線画像を撮影する際に照射された放射線量の違いを補償するように、前記第1のX線画像と前記第2のX線画像との少なくとも一方の画素値を補正する補正手段をさらに備えることを特徴とする、請求項1乃至3の何れか1項に記載の画像処理装置。 The first X-ray image and the second X-ray image are compensated for so as to compensate for a difference in radiation dose irradiated when the first X-ray image and the second X-ray image are captured. The image processing apparatus according to claim 1, further comprising a correction unit that corrects at least one pixel value.
  5.  前記補正手段は、前記第1のX線画像及び前記第2のX線画像のうち、乳房が写っていない部分の画素値に基づいて、前記第1のX線画像及び前記第2のX線画像を撮影する際に照射された放射線量を検出することを特徴とする、請求項4に記載の画像処理装置。 The correcting means is configured to determine the first X-ray image and the second X-ray based on a pixel value of a portion of the first X-ray image and the second X-ray image where a breast is not shown. The image processing apparatus according to claim 4, wherein a radiation amount irradiated when an image is taken is detected.
  6.  前記補正手段は、前記第1のX線画像及び前記第2のX線画像を撮影する際に照射された放射線が入射する位置に配置され前記第1のX線画像及び前記第2のX線画像を撮影する際に照射された放射線量を測定する測定手段から、前記第1のX線画像及び前記第2のX線画像を撮影する際に照射された放射線量を取得することを特徴とする、請求項4に記載の画像処理装置。 The correction means is arranged at a position where radiation irradiated when the first X-ray image and the second X-ray image are photographed, and the first X-ray image and the second X-ray. A radiation amount irradiated when the first X-ray image and the second X-ray image are captured is obtained from a measurement unit that measures the radiation amount irradiated when the image is captured. The image processing apparatus according to claim 4.
  7.  前記取得手段が取得した複数のX線画像から前記第1のX線画像及び前記第2のX線画像を選択する選択手段をさらに備えることを特徴とする、請求項1乃至6の何れか1項に記載の画像処理装置。 7. The apparatus according to claim 1, further comprising a selection unit that selects the first X-ray image and the second X-ray image from a plurality of X-ray images acquired by the acquisition unit. The image processing apparatus according to item.
  8.  前記選択手段は、平均のX線透過量が前記第1のX線画像より多いX線画像を前記第2のX線画像として選択することを特徴とする、請求項7に記載の画像処理装置。 The image processing apparatus according to claim 7, wherein the selection unit selects an X-ray image having an average X-ray transmission amount larger than that of the first X-ray image as the second X-ray image. .
  9.  前記複数のX線画像を用いて前記第1のX線画像と前記第2のX線画像との少なくとも一方の解像度を向上させる超解像処理手段をさらに備えることを特徴とする、請求項1乃至8の何れか1項に記載の画像処理装置。 The super-resolution processing means for improving the resolution of at least one of the first X-ray image and the second X-ray image using the plurality of X-ray images is further provided. The image processing apparatus according to any one of 1 to 8.
  10.  前記第1のX線画像及び前記第2のX線画像はマンモグラフィー撮影により得られていることを特徴とする、請求項1乃至9の何れか1項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 9, wherein the first X-ray image and the second X-ray image are obtained by mammography.
  11.  前記取得手段は、
      第1のタイミングで前記乳房を撮影して得られる複数のX線画像を取得し、該複数のX線画像から前記第1のX線画像を含むトモシンセシス画像を生成し、
      第2のタイミングで前記乳房を撮影して得られる複数のX線画像を取得し、該複数のX線画像から前記第2のX線画像を含むトモシンセシス画像を生成する
     ことを特徴とする、請求項1乃至3の何れか1項に記載の画像処理装置。
    The acquisition means includes
    Acquiring a plurality of X-ray images obtained by imaging the breast at a first timing, generating a tomosynthesis image including the first X-ray image from the plurality of X-ray images;
    A plurality of X-ray images obtained by imaging the breast at a second timing are acquired, and a tomosynthesis image including the second X-ray image is generated from the plurality of X-ray images. Item 4. The image processing device according to any one of Items 1 to 3.
  12.  表示手段に、前記乳房を撮影して得られるX線画像に重畳して、前記差分に基づく画像を当該X線画像とは異なる色で表示させる表示制御手段をさらに備えることを特徴とする、請求項1乃至11の何れか1項に記載の画像処理装置。 The display means further comprises display control means for displaying an image based on the difference in a color different from that of the X-ray image, superimposed on an X-ray image obtained by imaging the breast. Item 12. The image processing apparatus according to any one of Items 1 to 11.
  13.  乳房のX線画像を撮影する撮影手段と、
     被験者における血流量の状態を特定する特定手段と、
     前記特定した血流量に基づいて、第1のタイミングで乳房を撮影して第1のX線画像を取得し、該第1のタイミングよりも血流量が少ない第2のタイミングで前記乳房を撮影して第2のX線画像を取得するように、前記撮影手段を制御する制御手段と、
     を備えることを特徴とする撮影装置。
    Photographing means for photographing an X-ray image of the breast;
    A specifying means for specifying the state of blood flow in the subject;
    Based on the identified blood flow volume, the breast is imaged at a first timing to obtain a first X-ray image, and the breast is imaged at a second timing when the blood flow volume is lower than the first timing. Control means for controlling the imaging means so as to acquire a second X-ray image;
    An imaging apparatus comprising:
  14.  前記特定手段は、被験者における拍動を検出することにより血流量の状態を特定することを特徴とする、請求項13に記載の撮影装置。 14. The imaging apparatus according to claim 13, wherein the specifying means specifies a state of blood flow by detecting pulsation in a subject.
  15.  乳房のX線画像を撮影する撮影手段と、
     被験者における血流量の状態を特定する特定手段と、
     前記特定した血流量に基づいて、第1のタイミングで乳房を撮影して第1のX線画像を取得し、該第1のタイミングよりも血流量が少ない第2のタイミングで前記乳房を撮影して第2のX線画像を取得するように、前記撮影手段を制御する制御手段と、
     前記第1のX線画像及び前記第2のX線画像から乳腺を含む領域の差分に基づく画像を生成する生成手段と、
     を備えることを特徴とする撮影システム。
    Photographing means for photographing an X-ray image of the breast;
    A specifying means for specifying the state of blood flow in the subject;
    Based on the identified blood flow volume, the breast is imaged at a first timing to obtain a first X-ray image, and the breast is imaged at a second timing when the blood flow volume is lower than the first timing. Control means for controlling the imaging means so as to acquire a second X-ray image;
    Generating means for generating an image based on a difference between regions including mammary glands from the first X-ray image and the second X-ray image;
    An imaging system comprising:
  16.  画像処理装置の作動方法であって、
     第1のタイミングで乳房を撮影して得られる第1のX線画像と、該第1のタイミングよりも血流量が少ない第2のタイミングで前記乳房を撮影して得られる第2のX線画像とを含む複数のX線画像を得る取得工程と、
     前記第1のX線画像及び前記第2のX線画像から乳腺を含む領域の差分に基づく画像を生成する生成工程と、
     を有することを特徴とする作動方法。
    An operation method of an image processing apparatus,
    A first X-ray image obtained by imaging a breast at a first timing, and a second X-ray image obtained by imaging the breast at a second timing with less blood flow than the first timing Obtaining a plurality of X-ray images including:
    A generation step of generating an image based on a difference between regions including a mammary gland from the first X-ray image and the second X-ray image;
    An operating method characterized by comprising:
  17.  撮影装置の作動方法であって、
     被験者における血流量の状態を特定する特定工程と、
     前記特定した血流量に基づいて、第1のタイミングで乳房を撮影して第1のX線画像を取得し、該第1のタイミングよりも血流量が少ない第2のタイミングで前記乳房を撮影して第2のX線画像を取得するように、撮影タイミングを制御する制御工程と、
     を有することを特徴とする作動方法。
    A method of operating a photographing device,
    A specific step of identifying the state of blood flow in the subject;
    Based on the identified blood flow volume, the breast is imaged at a first timing to obtain a first X-ray image, and the breast is imaged at a second timing when the blood flow volume is lower than the first timing. A control process for controlling imaging timing so as to acquire a second X-ray image;
    An operating method characterized by comprising:
  18.  コンピュータに、請求項16又は17に記載の作動方法の各工程を実行させるための、コンピュータプログラム。 A computer program for causing a computer to execute each step of the operation method according to claim 16 or 17.
PCT/JP2014/005145 2013-11-18 2014-10-09 Image processing device and method for operation thereof, imaging device and method for operation thereof, imaging system, and computer program WO2015072072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013238265A JP6344902B2 (en) 2013-11-18 2013-11-18 Image processing apparatus and operating method thereof, imaging apparatus and operating method thereof, imaging system, and computer program
JP2013-238265 2013-11-18

Publications (1)

Publication Number Publication Date
WO2015072072A1 true WO2015072072A1 (en) 2015-05-21

Family

ID=53057028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005145 WO2015072072A1 (en) 2013-11-18 2014-10-09 Image processing device and method for operation thereof, imaging device and method for operation thereof, imaging system, and computer program

Country Status (2)

Country Link
JP (1) JP6344902B2 (en)
WO (1) WO2015072072A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159273A1 (en) * 2018-02-15 2019-08-22 株式会社日立製作所 Radiation therapy device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6771968B2 (en) * 2016-07-03 2020-10-21 キヤノン株式会社 Information acquisition device, imaging device and information acquisition method
JP6964429B2 (en) 2017-04-11 2021-11-10 富士フイルム株式会社 Radiation image processing equipment, methods and programs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238868A (en) * 2000-03-01 2001-09-04 Konica Corp Method of image processing and its apparatus
JP2002191594A (en) * 1993-11-26 2002-07-09 Toshiba Medical System Co Ltd X-ray computed tomography photographing system
JP2005270562A (en) * 2004-03-26 2005-10-06 Canon Inc Radiation computer tomograph, radiation computer tomographic system and radiation computer tomographic method using the same
JP2006095267A (en) * 2004-04-05 2006-04-13 Fuji Photo Film Co Ltd Apparatus, method, and program for producing subtraction images
JP2007000205A (en) * 2005-06-21 2007-01-11 Sanyo Electric Co Ltd Image processing apparatus, image processing method, and image processing program
JP2013172825A (en) * 2012-02-24 2013-09-05 Toshiba Corp X-ray ct apparatus, and image display method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923951B2 (en) * 2011-01-06 2014-12-30 Mmtc, Inc. Diagnostic devices using thermal noise

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191594A (en) * 1993-11-26 2002-07-09 Toshiba Medical System Co Ltd X-ray computed tomography photographing system
JP2001238868A (en) * 2000-03-01 2001-09-04 Konica Corp Method of image processing and its apparatus
JP2005270562A (en) * 2004-03-26 2005-10-06 Canon Inc Radiation computer tomograph, radiation computer tomographic system and radiation computer tomographic method using the same
JP2006095267A (en) * 2004-04-05 2006-04-13 Fuji Photo Film Co Ltd Apparatus, method, and program for producing subtraction images
JP2007000205A (en) * 2005-06-21 2007-01-11 Sanyo Electric Co Ltd Image processing apparatus, image processing method, and image processing program
JP2013172825A (en) * 2012-02-24 2013-09-05 Toshiba Corp X-ray ct apparatus, and image display method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SADAKO AKASHI: "256 Retsu MDCT ni yoru Nyugan no Gazo Shindan", EIZO JOHO MEDICAL, vol. 40, no. 3, 1 March 2008 (2008-03-01), pages 220 - 221 , 232 TO 235 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159273A1 (en) * 2018-02-15 2019-08-22 株式会社日立製作所 Radiation therapy device

Also Published As

Publication number Publication date
JP6344902B2 (en) 2018-06-20
JP2015097590A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
US10229516B2 (en) Method and apparatus to improve a 3D + time reconstruction
US7536219B2 (en) 4D imaging with a C-arm X-ray system
JP6043187B2 (en) Visualization of motion in angiographic images
JP4647360B2 (en) DIFFERENTIAL IMAGE CREATION DEVICE, DIFFERENTIAL IMAGE CREATION METHOD, AND PROGRAM THEREOF
US8761864B2 (en) Methods and apparatus for gated acquisitions in digital radiography
CN107945850B (en) Method and device for processing medical images
CA2533538A1 (en) Method and system for identifying an optimal image within a series of images that depict a moving organ
JP5670738B2 (en) Correction of unconscious breathing motion in cardiac CT
JP2007044513A (en) Method and device for medical imaging
KR101665513B1 (en) Computer tomography apparatus and method for reconstructing a computer tomography image thereof
US10631810B2 (en) Image processing device, radiation imaging system, image processing method, and image processing program
US20130237815A1 (en) Method for determining a four-dimensional angiography dataset describing the flow of contrast agent
JP2007136164A (en) Medical image processor and medical image processing method
CN106999129B (en) Digital subtraction angiography
US20140328462A1 (en) Medical image processing apparatus, x-ray diagnostic apparatus, medical image processing method, and x-ray diagnostic method
JP5400358B2 (en) Radiation tomography equipment
JP4852451B2 (en) Synchronous imaging device for periodic motion and synchronous imaging method for periodic motion
JP2002336222A (en) X-ray diagnostic apparatus and image processor
WO2015072072A1 (en) Image processing device and method for operation thereof, imaging device and method for operation thereof, imaging system, and computer program
US11179122B2 (en) Bolus imaging
JP4777164B2 (en) HEART RATE DETERMINATION DEVICE, PROGRAM, AND X-RAY DIAGNOSIS DEVICE
JP2020036819A (en) X-ray imaging apparatus and X-ray image processing method
JP2001148005A (en) Method for reconstructing three-dimensional image of moving object
JP2008228829A (en) Apparatus and method for calculating synchronous to periodic movement
JP7159359B2 (en) System for improving radiological imaging of moving volumes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861331

Country of ref document: EP

Kind code of ref document: A1