WO2019087706A1 - Ultrasonic probe - Google Patents

Ultrasonic probe Download PDF

Info

Publication number
WO2019087706A1
WO2019087706A1 PCT/JP2018/037611 JP2018037611W WO2019087706A1 WO 2019087706 A1 WO2019087706 A1 WO 2019087706A1 JP 2018037611 W JP2018037611 W JP 2018037611W WO 2019087706 A1 WO2019087706 A1 WO 2019087706A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic probe
cable
signal
ultrasonic
main body
Prior art date
Application number
PCT/JP2018/037611
Other languages
French (fr)
Japanese (ja)
Inventor
恵太 執行
賢亮 小島
真紀 中川
俊郎 坂部
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to CN201880070452.3A priority Critical patent/CN111295140A/en
Priority to JP2019550957A priority patent/JPWO2019087706A1/en
Publication of WO2019087706A1 publication Critical patent/WO2019087706A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to ultrasound probes.
  • an ultrasonic probe for transmitting and receiving ultrasonic waves to and from an object, and an ultrasonic probe are connected, and an image of the object is received based on an ultrasonic signal received by the ultrasonic probe.
  • a processing unit having a generating unit for generating data, a display control unit for performing control to display image data on an information terminal connected to the processing unit and having a display unit, and identification based on identification information of the information terminal
  • the display control means controls the display to be displayed on the information terminal with different sizes relative to the display unit of the diagnostic image area according to the identification result of the identification means.
  • a portable ultrasound system is disclosed.
  • the display part of those information terminals can be simply used as an ultrasound diagnostic monitor only by connecting the various information terminals which have a monitor to a processing unit.
  • the display monitor and the processing unit can be separated, and it becomes possible to improve two contradictory performances, that is, the portability of the ultrasound diagnostic apparatus and the visibility of the display monitor. It has been described that the apparatus can be carried easily and conveniently at the time of diagnosis, and at the same time a reliable diagnosis can be performed by a monitor with excellent visibility.
  • connection Disconnection may occur near the unit.
  • the cable replacement work needs to be disassembled to such an extent that the cable can be removed not only on the ultrasonic probe side but also on the processing unit side, and it takes time to replace with a new cable.
  • portable ultrasonic diagnostic equipment is characterized by easy carrying and is considered to be useful at the site of visiting medical treatment etc.
  • it disassembles and exchanges the cable When it is necessary to do so, there is also a problem that the medical treatment etc. at the visiting place will be disturbed because the doctor can not keep up with the hand.
  • the present invention has been made in view of the above circumstances, and is an ultrasonic probe which reduces the time and effort of cable replacement, and more preferably, an ultrasonic probe which can be easily replaced even by a doctor or the like. Intended to provide.
  • the ultrasonic probe according to the present invention comprises an ultrasonic probe main body and a cable which is connected to the ultrasonic probe main body and can be detachably connected to an external device, and the ultrasonic probe main body is an ultrasonic signal
  • a sensor unit (element + drive substrate) for transmitting the reflected wave of the ultrasonic signal and receiving the reflected wave of the ultrasonic signal, and a digital signal of the analog reflected wave signal which is connected to the sensor unit and transmitted from the sensor unit
  • an image processing unit connected to the signal conversion unit and performing processing up to generation of an echo image based on the digital signal sent from the signal conversion unit.
  • the signal conversion unit is stopped except when the sensor unit receives the reflected wave.
  • the number of wires between the signal conversion unit and the image processing unit is smaller than the number of wires between the sensor unit and the signal conversion unit.
  • a conversion unit divides the plurality of signals sent simultaneously from the sensor unit into a plurality of times, shifts the time, and sends the signals to the image processing unit.
  • the multi-layer substrate including the signal conversion unit and the image processing unit is provided, and the multi-layer substrate includes a plurality of ground layers for reducing noise. Is equipped.
  • the sensor unit is connected to an element that transmits the ultrasonic signal and receives the reflected wave, and the element and the signal conversion unit. And a drive circuit board for driving the element.
  • the image processing unit calculates a time difference from transmission of the ultrasonic signal to reception of the reflected wave, and at least the signal processing unit. And an image creation unit that creates the echo image based on the time difference and the reflected wave.
  • the cable is slidably disposed in the terminal portion formed at the connection portion of the ultrasonic probe main body and the detachable terminal portion.
  • the resin cover is provided with a ring-shaped protrusion at its tip, and the ring-shaped protrusion is on the receiving portion of the cable terminal portion of the ultrasonic probe main body. It fits in the ring-shaped recessed part formed.
  • the ultrasonic probe of the present invention includes an ultrasonic probe main body and a cable detachably connectable to an external device, the ultrasonic probe main body being disposed in a housing and the housing, the main body A main body side first connection portion having a first side terminal portion inside, and the cable is A cable-side second terminal portion connected to the first terminal portion, and a cable-side second connection portion threadedly connected to the first connection portion; and provided slidably on the cable And a resin cover fixed to the housing so as to cover the second connection portion.
  • the first connection portion includes a first fixing portion to which the first terminal portion is fixed, and the second connection portion rotates with respect to the second terminal portion.
  • the first fixed portion includes a first inner surface formed with a first screwing groove and separated from a first outer surface of the first terminal portion, and the second rotatable portion includes: It has the 2nd outer surface in which the 2nd screwing slot screwed to the 1st screwing slot was formed in the tip side.
  • the ultrasonic probe main body has a first hole portion in which a screwing groove for fixing the first fixing portion is formed on the inner surface, and is fitted in the housing
  • the first fixing portion has a screwing groove formed on the outer surface thereof to be screwed into the screwing groove on the inner surface of the first hole portion.
  • the cover includes a cylindrical outer portion having a ring-shaped protrusion at a tip end, and the housing receives the second connection portion.
  • a receiving opening is provided, and the receiving opening is provided with a ring-shaped recess in which the projection is fitted.
  • the cable is a large-sized portion larger than the outer diameter of the outer cover integrated with the outer cover of the cable near the rear of the second connection portion.
  • the cover includes an inner surface in close contact with the large portion.
  • the cover is made of rubber.
  • the cable is a USB cable conforming to the USB 3.1 standard having a USB connector on the side connected to the external device, Power can be supplied to the ultrasonic probe main body via a cable.
  • the present invention it is possible to provide an ultrasonic probe in which the labor of cable exchange is reduced, and more preferably, even a doctor or the like can easily exchange the cable.
  • FIG. 1 is a perspective view of an ultrasonic probe 1 according to an embodiment of the present invention.
  • the ultrasonic probe 1 includes an ultrasonic probe main body A, and a cable B which is connected to the ultrasonic probe main body A and can be detachably connected to an external device.
  • the external device may be a portable terminal having a display unit capable of displaying an image such as a notebook computer or a tablet terminal, or may be a stationary terminal having a display unit capable of displaying an image such as a desktop personal computer .
  • a dedicated application is installed on the external device, and when the application is launched on the external device, the mode (for example, B mode, M mode, D mode, etc.) of the echo image displayed on the display unit of the external device is selected.
  • the mode for example, B mode, M mode, D mode, etc.
  • a selection icon is displayed, and echo images corresponding to the selected mode can be displayed.
  • a command for sending an echo image corresponding to the mode to the external device is sent to the ultrasonic probe main body A via the cable B.
  • the M mode is a mode in which the locus of the time change (movement) of the ultrasonic echo source is displayed as a waveform on the display unit, and the D mode (for example, the D mode (for example, , Pulse doppler, color doppler, power doppler, etc. can be selected.)
  • the movement of blood can be displayed in color (for example, the arteries and veins are displayed in different colors) on a two-dimensional tomographic image as changes in ultrasonic frequency.
  • the modes that can be selected do not have to be limited to these, and other modes (for example, A mode etc.) may be selected.
  • the ultrasonic probe main body A As shown in FIG. 1, the ultrasonic probe main body A is provided with a housing 10 formed by combining a first half 11 having an opening 11A on the front side with a second half 12. The opening 11A of the first half 11 is provided with a detection unit 21 of a sensor unit 20 described later.
  • FIG. 2 is a schematic view schematically showing the main part of the internal configuration of the ultrasonic probe main body A.
  • the shapes and the like are not exactly illustrated (for example, the detection unit 21 and the like are originally a slightly curved shape as can be seen from FIG. 1).
  • a multi-layered structure in which a sensor unit 20, a signal conversion unit 30, an image processing unit 40, a signal conversion unit 30, and an image processing unit 40 are provided inside the case 10 of the ultrasonic probe main body A. And a substrate MLS.
  • the sensor unit 20 includes a detection unit 21, a drive circuit board 22, and a plurality of wirings L1 connecting the detection unit 21 and the drive circuit board 22.
  • the detection unit 21 includes a plurality of elements 23; Electrodes provided on the front and back of the element 23 (first electrode 24 on the front side and second electrode 25 on the rear side), an acoustic matching layer 26 provided on the first electrode 24, and an acoustic matching layer 26 The acoustic lens 27 and the backing layer 28 provided on the second electrode 25 are provided.
  • the element 23 is a piezoelectric element, and the application of a voltage to the element 23 generates an ultrasonic signal. Conversely, when the element 23 receives a reflected wave, a voltage is generated.
  • the 1st electrode 24 and the 2nd electrode 25 are illustrated like a solid electrode, the voltage and ultrasonic wave which generate
  • the electrode pattern is capable of applying a voltage to the element 23 for transmitting a signal
  • the wiring L1 is a wiring for electrical connection between the element 23 and the drive circuit board 22.
  • the number of elements 23 and the number of excitations need not be limited to 256 elements (256 elements) and the number of excitations 32, but may be 128 elements and the number of excitations 16, and the number of elements and the number of excitations increase.
  • the resolution of the echo image is increased, the configuration of the wiring is also increased and the cost and the like are increased. Therefore, it is preferable to select an appropriate number of elements according to the required resolution.
  • the acoustic matching layer 26 has a large difference in acoustic impedance between the element 23 and an object (for example, an object) for taking an echo image, the ultrasonic wave transmitted by the element 23 efficiently enters the object (in the object) as it is. It is a layer to take acoustic matching in order to suppress many of them from being reflected.
  • the acoustic matching layer 26 is a single layer formed of a single material, but may be formed of a plurality of layers of different materials.
  • the acoustic lens 27 is a layer provided to suppress the spread of the transmitted ultrasonic signal as it travels and to enhance the resolution of the echo image. As shown in FIG. 1, since the acoustic lens 27 is located on the outermost side of the detection unit 21 and is a layer directly in contact with the subject etc., it is preferable to use a material such as silicone rubber which is excellent in compatibility with living bodies. Good.
  • the backing layer 28 is a layer for suppressing extra vibration of the element 23 and shortening the pulse width of the transmitted ultrasonic signal, which can enhance the distance resolution of echo image.
  • the drive circuit substrate 22 is a substrate provided with a control circuit for driving the element 23.
  • the drive circuit board 22 performs a process of exciting the element 23 (process of applying a voltage to the element 23) at a determined timing.
  • the drive circuit board 22 detects a change in voltage when the element 23 receives a reflected wave at a determined timing, and sends the change in voltage generated by the reflected wave to the signal conversion unit 30. .
  • the signal conversion unit 30 is connected to the sensor unit 20 (more specifically, the drive circuit board 22) by the wiring L2, and converts an analog reflected wave signal (voltage signal) from the sensor unit 20 into a digital signal. It is a converter (ADC).
  • the number of the wirings L2 is set to 32, which is the same as the number of the wirings L1, so that the change in voltage simultaneously detected by the drive circuit board 22 can be sent to the signal conversion unit 30 as it is.
  • the ADC functioning as the signal conversion unit 30 is mounted on the multilayer substrate MLS, and receives the signal of the reflected wave via the wiring L22 formed on the multilayer substrate MLS. That is, the wiring L2 is not directly connected to the signal conversion unit 30, but is connected to the wiring L22 formed on the multilayer substrate MLS.
  • the signal of the reflected wave is sent as a digital signal from the signal conversion unit 30 to the image processing unit 40 through the wiring L3 formed on the multilayer substrate MLS.
  • the image processing unit 40 is configured by an FPGA (Field Programmable Array) mounted on the multilayer board MLS, and the circuit design of the FPGA realizes the functions of the DSP and the CPU.
  • the functional block of the second embodiment exerts the function of the signal processing unit 41, the functional block of the CPU exhibits the function of the image creating unit 42, and further includes an area as the storage unit 43.
  • the image processing unit 40 has a signal processing unit 41, an image creating unit 42, and a storage unit 43 as functional components.
  • the signal processing unit 41 calculates the time difference from the transmission of the ultrasonic signal to the reception of the reflected wave based on the signal of the reflected wave sent from the signal conversion unit 30.
  • the reflected wave reflected by the reflective source with high reflectance has high intensity (amplitude), and conversely, the reflected wave reflected by the reflective source with low reflectance has low intensity.
  • the signal processing unit 41 mainly performs a process of calculating a time difference for this.
  • the image creation unit 42 creates an echo image based on at least the time difference calculated by the signal processing unit 41 and the reflected wave.
  • the image creating unit 42 performs processing by the functional block as the CPU of the FPGA as described above, the functional block that executes this processing also performs the function as the CPU. It also oversees general control.
  • the image creating unit 42 obtains the position of the reflection source from the time difference, and converts the intensity (amplitude) of the reflected wave that is the basis of the time difference into luminance to form a two-dimensional tomographic image Create an echo image for
  • the data processing itself in the M mode and the D mode is the same as the processing generally performed, and the image creating unit 42 creates an echo image for the M mode and the D mode according to the general processing. .
  • the storage unit 43 stores programs necessary for the operation of the image processing unit 40 (the signal processing unit 41 and the image creating unit 42) and data generated in the processing process.
  • the echo image created by the image processing unit 40 is sent as a digital signal to the first connection unit 50 on the main body side having the first terminal unit 51 for connecting to the cable B via the wiring L4. .
  • the USB connector C can be easily attached to and detached from the USB port of the external device, and the external device can be digitalized via the cable B simply by connecting the USB connector C to the USB port of the external device.
  • An echo image can be received as a signal of.
  • an echo image is sent to an external device as a digital signal, it is not easily affected by noise, and since the echo image is created on the ultrasonic probe main body A side, the external device itself It is not necessary to have high processing power, and even notebook computers and tablet terminals with low specifications can be used for external devices to which the ultrasonic probe main body A is connected.
  • the ultrasonic probe main body A has an auxiliary battery
  • the USB cable conforming to the USB 3.1 standard is used for the cable B
  • the ultrasonic probe main body A is usually driven.
  • the power required to do this is supplied from an external device via the cable B.
  • the USB 2.0 can be used as long as the data transfer amount to be used can be compensated by the transfer speed of 480 Mbit / sec.
  • the ultrasonic probe 1 of the present embodiment incorporates all the components necessary for processing until the echo image is created in the ultrasonic probe main body A, the cable B can be used. At the time of replacement, it is only necessary to release the connection between the ultrasonic probe main body A and the cable B.
  • Patent Document 1 it is not necessary to release the connection at two points on the ultrasonic probe side and the processing unit side at the time of cable replacement, so it is possible to greatly reduce the labor when replacing the cable. .
  • the ultrasonic probe 1 As described later, when replacing the cable B, the ultrasonic probe 1 according to the present embodiment does not need to disassemble the ultrasonic probe main body A, and the doctor B or the like can replace the cable B. Is also easy to do.
  • the cable B for replacement does not take up a place for storage and is not an obstacle for carrying it, for example, it is connected at the visiting place by bringing the cable B for replacement at the time of visiting medical treatment etc. If a defect is noticed, it can be replaced on the spot, so it is possible to avoid a situation where medical treatment can not be performed due to a poor connection.
  • the calorific value increases, which may result in a harsh environment for the built-in devices, and It is important to reduce internal noise so that the influence of noise does not appear in the echo image, since the process up to the creation of the echo image in the sound wave probe main body A is performed.
  • the connection structure of the cable B is described, which allows the doctor or the like to exchange the cable B.
  • a large heat source includes an ADC functioning as the signal conversion unit 30.
  • This ADC may be operated as long as the signal conversion unit 30 sends a signal of a reflected wave to the image processing unit 40. .
  • the timing of transmitting the signal of the reflected wave to the image processing unit 40 is at the time of the operation of the sensor unit 20 to receive the reflected wave. Therefore, in the present embodiment, the timing of transmitting the signal of the reflected wave Controls the signal conversion unit 30 to stop. In addition, except when the sensor unit 20 receives the reflected wave, stopping the signal conversion unit 30 starts the signal conversion unit 30 in the power saving mode according to the time when the sensor unit 20 receives the reflected wave. After the operation of transmitting the signal of the reflected wave to the image processing unit 40, it means that the signal conversion unit 30 is put into the power saving mode again until the next sensor unit 20 receives the reflected wave. Do.
  • the ultrasonic probe main body A since the ultrasonic probe main body A has a CPU function in the built-in FPGA, it is possible to cause the ADC functioning as the signal conversion unit 30 to control the operation start and the operation stop at high speed.
  • the ADC can be activated in accordance with the determined timing of the drive circuit board 22 that detects a change in voltage when the element 23 receives a reflected wave.
  • the signal conversion unit 30 does not send the signals of a plurality of reflected waves simultaneously sent from the sensor unit 20 to the image processing unit 40 at one time, but sends them to the image processing unit 40 while dividing time into multiple times. By doing so, the amount of processing of ADCs and FPGAs that must be processed at one time is reduced.
  • the signal conversion unit 30 sends the signals of the plurality of reflected waves simultaneously sent from the sensor unit 20 to the image processing unit 40 in two divided steps.
  • the wiring L3 formed on the multilayer substrate MLS electrically connecting the signal conversion unit 30 and the image processing unit 40 is half the number of wirings between the sensor unit 20 and the signal conversion unit 30, that is, the wiring We can reduce L3 to 16 or less.
  • the time to operate for each functional block and the time that it is not necessary to operate is separated, and when it is not necessary to operate, the functional block is stopped.
  • a substrate multilayer substrate MLS on which the signal conversion unit 30 and the image processing unit 40 are provided, and a substrate for driving the element 23 (Drive circuit board 22) is separated.
  • the layout of the arrangement position of the analog switch of the drive circuit board 22, the signal conversion unit 30, and the image processing unit 40 can be easily made into a layout in consideration of heat measures by making the substrate two sheets, and two substrates are provided.
  • the temperature rise in the ultrasonic probe main body A can be further suppressed by using the above.
  • the substrate is provided with a plurality of ground layers for reducing noise, and the FPGA is further less susceptible to noise. It has become.
  • FIG. 3 is a view for explaining a state in which the cable B is connected to the ultrasonic probe main body A, and for the ultrasonic probe main body A, the first half 11 of the housing 10 and the first fitting portion 13 It shows only a part of
  • FIG. 4 is a view for explaining a configuration concerning connection of the ultrasonic probe main body A and the cable B
  • FIG. 4 (A) is a view showing a connecting portion of the ultrasonic probe main body A and the cable B shown in FIG.
  • FIG. 4B is a perspective view showing the first fitting portion 13 and the first connection portion 50 connected to the first fitting portion 13. As shown in FIG.
  • the ultrasonic probe main body A is disposed in the housing 10 and is connected to the cable B as described above.
  • a first connection unit 50 is provided.
  • the 1st terminal area 51 has the 1st terminal area 51 by the side of the main part to which the 2nd terminal area 61 of cable B mentioned below is connected, and the 1st terminal area 51 in the 1st terminal area 50 inside And a first fixing portion 52 to be fixed.
  • the other end of the plurality of wires L4 (see FIG. 2) whose one end is connected to the multilayer board MLS is connected to the first terminal portion 51, and the first terminal portion 51 is connected to the second of the cable B described later.
  • the connection of the terminal portion 61 enables transmission and reception of various signals between the cable B and the multilayer board MLS and power feeding from the cable B to the multilayer board MLS side.
  • the first fixing portion 52 of the first connection portion 50 is formed with a first screwing groove, and a first outer surface 51A (an outer peripheral surface of a cylindrical first terminal portion 51 ) And the cable B is screwed to the first screwing groove formed in the first inner surface 52A, as described later. Become.
  • a screwing groove is also formed on the outer surface 52B (outer peripheral surface), and this screwing groove will be described hereinafter
  • the first fitting portion 13 is screwed and fixed.
  • the ultrasonic probe main body A includes the first fitting portion 13 to which the first connection portion 50 (see FIG. 4A) is fixed.
  • the first fitting portion 13 has a first hole portion 13A in which a screwing groove for fixing the first fixing portion 52 is formed on the inner surface (inner peripheral surface).
  • the first connection portion 50 (first fixing portion 52) is formed by screwing the screwing groove of the outer surface 52B (outer peripheral surface) of the first fixing portion 52 into the screwing groove of the inner surface of the first hole portion 13A. It is screwed and fixed to the first fitting portion 13.
  • the first fitting portion 13 is fitted in the first half 11 of the housing 10, and the first fitting portion 14 is provided to restrict the first fitting portion 13 so as not to move.
  • the shape of the first fitting portion 13 is not particularly limited, but in the present embodiment, the first fitting portion 14 also corresponds to the first fitting portion 13 as shown in FIG. It has a shape.
  • the second half 12 has a tip surface 11 AA in which the opening 11 A of the first half 11 is formed. Of the second half 12 and restricts the second fitting 12 so that the first fitting part 13 similar to the first fitting part 14 of the first half 11 does not move. Have.
  • the first fitting portion 13 is fitted to the fitting portion of the housing 10 formed by the first fitting portion 14 of the first half 11 and the second fitting portion of the second half 12. And the first connection portion 13 is fixed to the first fitting portion 13 as shown in FIG. 4A by fixing the first fitting portion 13 as such. 50 are arranged to be located at a predetermined first position relative to the housing 10.
  • the second half 12 substantially corresponds to the opening of the first half 11.
  • the second half 12 is also provided with a semicircular second notch shaped portion similar to the first notch shaped portion 11B of the first half 11 except for the tip surface 11AA on which 11A is formed. It is done.
  • the housing 10 when the first connection portion 50 is positioned at the predetermined first position with respect to the housing 10, the housing 10 is provided with the first notch of the first half 11 in a portion facing the first connection portion 50.
  • the shape 11B and the second notched portion of the second half 12 are combined to provide a circular opening, and the circular opening corresponds to the first connecting portion 50. Therefore, it becomes a receiving opening for receiving the second connection portion 60 so that the second connection portion 60 of the cable B described later can be connected.
  • the cable B is connected to the first terminal 51 (see FIG. 4B) and the second terminal 61 on the cable B side (see FIG. 4A).
  • the second connection portion 60 has a plurality of terminals 61A inserted into the plurality of terminal receiving holes 51B (see FIG. 4B) of the first terminal portion 51.
  • a second terminal portion 61 having a cylindrical outer wall portion 61B which surrounds the terminal 61A and covers the first outer surface 51A (outer peripheral surface) of the first terminal portion 51 at the time of connection, and the rear side of the second terminal portion 61.
  • a second rotating portion 62 rotatable relative to the second terminal portion 61.
  • the second rotating portion 62 is formed on the first inner surface 52A (see FIG. 4B) of the first connection portion 50 (first fixing portion 52) on the tip end side.
  • the second screwing portion has a second outer surface 62A (outer peripheral surface) on which the second screwing groove is formed to engage with the first screwing groove, and the outer diameter is large with a step on the rear side of the second outer surface 62A.
  • a knob 62B is provided with an anti-slip member in which a plurality of concave portions having an arc-shaped cross section extending in the front-rear direction are formed on the outer surface (outer peripheral surface) in the circumferential direction.
  • the terminal 61A (see FIG. 4A) of the second terminal portion 61 of the second connection portion 60 is inserted into the terminal receiving hole 51B (see FIG. 4B) of the first terminal portion 51.
  • the second rotating portion 62 of the second connecting portion 60 is rotated after the second connecting portion 60 is pushed into the first connecting portion 50 side, the second outer surface 62A (the outer peripheral surface) of the second rotating portion 62 is formed.
  • the second connection groove is screwed into the first connection groove formed in the first inner surface 52A (see FIG. 4B) of the first connection portion 50 (first fixing portion 52), and the first connection portion is formed. 50 and the second connection portion 60 are screwed together.
  • the cable B is connected to the ultrasonic probe main body A such that the first connection portion 50 and the second connection portion 60 are screwed and connected, the ultrasonic probe for medical examination and the like
  • the cable B is not easily removed from the ultrasonic probe main body A by the operation (movement) of the main body A.
  • the resin-made cover 63 is provided with a cylindrical outer portion 63A having a ring-shaped protrusion 63AA at the tip, and the first notch 11B of the first half 11 is ring-shaped.
  • a semicircular first recess 11BA is provided for fitting the protrusion 63AA.
  • the second half 12 substantially has the opening 11A of the first half 11 formed.
  • the second half 12 is provided with a semicircular second recess similar to the semicircular first recess 11BA of the first half 11 in the second half 12 as well.
  • the housing 10 is for receiving the second connection portion 60 formed by combining the first cutout shape portion 11B of the first half body 11 and the second cutout shape portion of the second half body 12 described above.
  • the receiving opening has a ring-shaped recess formed by the semi-circular first recess 11BA and the semi-circular second recess, into which the ring-shaped protrusion 63AA of the cover 63 is fitted.
  • the cover 63 is slid forward on the cable B. After moving the cover 63 to elastically deform and fitting the protrusion 63AA of the cover 63 into the first recess 11BA of the first half 11, the protrusion of the cover 63 is inserted into the second recess of the second half 12
  • the housing 10 is formed to fit the second half 12 to the first half 11 so that 63AA is inserted.
  • An adhesive is provided at the contact portion between the first half 11 and the second half 12 so that the first half 11 and the second half 12 are not easily separated, and the inside of the housing 10 is highly airtight. It is assumed that
  • the cover 63 when the cover 63 is fixed to the housing 10, as shown in FIG. 1, the cover 63 covers the second connection portion 60 (see FIG. 3).
  • the cable B has a large-sized portion 64 larger than the outer diameter of the outer shell 63B integrated with the outer skin 63B of the cable B in the rear vicinity of the second connection portion 60 (second rotating portion 62). Have.
  • the large-sized portion 64 has the same outer diameter as that of the second connecting portion 60 (second rotating portion 62), which is the same as the outer diameter of the knob 62B (see FIG. 4A).
  • a straight body portion 64A and a tapered portion 64B whose outer diameter decreases from the straight body portion 64A to the rear side are provided.
  • the inner surface portion 63C (see FIG. 4A) is formed of a portion of the second connection portion 60 and the large-sized portion 64. It is in close contact, and therefore, high airtightness is ensured also in the portion of the ultrasonic probe main body A to which the cable B is connected.
  • the cover 63 is moved to the rear side to perform the second connection.
  • the knob portion 62B (see FIG. 4A) of the portion 60 (second rotating portion 62) is exposed.
  • the cover 63 is only fixed to the housing 10 by the protrusion 63AA being fitted in the ring-shaped recess of the housing 10, the cover 63 is strongly backward with respect to the cover 63. By applying a pull-out force, the fitting is released and the cover 63 can be moved rearward.
  • the 2nd connection part 60 (2nd rotation part 62 (refer FIG. 4 (A))) was connected to the 1st connection part 50 (refer FIG. 4 (A)) Even in the state, it is set to such a length that a part on the rear side is exposed to the outside from the housing 10.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

An ultrasonic probe is provided with which work for exchanging a cable is reduced, and more preferably, an ultrasonic probe is provided with which the exchange of a cable is easy even for a doctor or the like. This ultrasonic probe 1 is provided with an ultrasonic probe body A and a cable B connected to the ultrasonic probe body A and connectable in a removable manner to an external apparatus. The ultrasonic probe body A is provided with: a sensor part 20 that emits ultrasonic signals and receives reflection waves of the ultrasonic signals; a signal conversion part 30 that is connected to the sensor part 20, and that converts the analog reflection wave signals sent by the sensor part 20 into digital signals; and an image processing part 40 that is connected to the signal conversion part 30, and that performs processing on the basis of the digital signals sent by the signal conversion part 30, until the creation of an echo image.

Description

超音波プローブUltrasound probe
 本発明は超音波プローブに関する。 The present invention relates to ultrasound probes.
 特許文献1には、被検体に対して超音波の送受波を行うための超音波プローブと、超音波プローブと接続され、超音波プローブで受波した超音波信号をもとに被検体の画像データを生成する生成部を備える処理ユニットと、画像データを処理ユニットに接続された、表示部を有する情報端末に表示させるための制御を行う表示制御手段と、情報端末の識別情報に基づいて識別を行うための識別手段と、を有し、表示制御手段は、識別手段の識別結果に応じ、診断画像エリアの表示部に対する相対的な大きさを異ならせて情報端末に表示するように制御を行うポータブル超音波診断装置が開示されている。 In Patent Document 1, an ultrasonic probe for transmitting and receiving ultrasonic waves to and from an object, and an ultrasonic probe are connected, and an image of the object is received based on an ultrasonic signal received by the ultrasonic probe. A processing unit having a generating unit for generating data, a display control unit for performing control to display image data on an information terminal connected to the processing unit and having a display unit, and identification based on identification information of the information terminal And the display control means controls the display to be displayed on the information terminal with different sizes relative to the display unit of the diagnostic image area according to the identification result of the identification means. A portable ultrasound system is disclosed.
 そして、特許文献1では、この超音波診断装置によれば、モニタを有する種々の情報端末を処理ユニットに接続するだけで、それら情報端末の表示部を超音波診断モニタとして簡便に用いることができ、その結果表示モニタと処理ユニットを分離可能にし、超音波診断装置の携帯性及び表示モニタの視認性という、相反する二つの性能の向上が可能になり、例えば医者が患者宅に出向いて超音波診断を行う際に装置を持ち運びやすく便利であると同時に、視認性に優れたモニタによって確実な診断を行うことができることが説明されている。 And in patent document 1, according to this ultrasound diagnostic apparatus, the display part of those information terminals can be simply used as an ultrasound diagnostic monitor only by connecting the various information terminals which have a monitor to a processing unit. As a result, the display monitor and the processing unit can be separated, and it becomes possible to improve two contradictory performances, that is, the portability of the ultrasound diagnostic apparatus and the visibility of the display monitor. It has been described that the apparatus can be carried easily and conveniently at the time of diagnosis, and at the same time a reliable diagnosis can be performed by a monitor with excellent visibility.
特開2013-111476号公報JP, 2013-111476, A
 ところで、特許文献1では、ケーブルによって超音波プローブと処理ユニットが一体化されており、このため、上記のように処理ユニットを情報端末に接続するだけでよい構成が実現されていると考えられる。 By the way, in patent document 1, the ultrasonic probe and the processing unit are integrated by the cable, and it is therefore considered that a configuration that only needs to connect the processing unit to the information terminal is realized as described above.
 一方、適切な位置に適切な角度で超音波プローブを当てる操作を行っているときに、超音波プローブとケーブルの接続部が酷使されることになるため、長期にわたって使用されていると、その接続部の近くで断線等が起こる場合がある。 On the other hand, when using an ultrasonic probe at an appropriate position at an appropriate angle, the connection between the ultrasonic probe and the cable will be overworked, so if it has been used for a long time, the connection Disconnection may occur near the unit.
 この場合、ケーブルの交換作業は、超音波プローブ側だけでなく、処理ユニット側もケーブルが取り外せる程度に分解する必要があり、新しいケーブルに交換するのに手間がかかる。 In this case, the cable replacement work needs to be disassembled to such an extent that the cable can be removed not only on the ultrasonic probe side but also on the processing unit side, and it takes time to replace with a new cable.
 また、ポータブル超音波診断装置は、簡単に持ち運べることに特徴があり、訪問診療等の現場で重宝すると考えられるが、訪問診療等の訪問先で接続不良に気がついても、分解してケーブルを交換しなければならない場合、医師等では手に追えないため、訪問先での診療等に支障をきたすという問題もある。 In addition, portable ultrasonic diagnostic equipment is characterized by easy carrying and is considered to be useful at the site of visiting medical treatment etc. However, even if it notices poor connection at visiting medical treatment etc, it disassembles and exchanges the cable When it is necessary to do so, there is also a problem that the medical treatment etc. at the visiting place will be disturbed because the doctor can not keep up with the hand.
 本発明は、上記事情に鑑みてなされたものであり、ケーブルの交換の手間を軽減した超音波プローブであって、より好ましくは、医師等であっても簡単にケーブルの交換ができる超音波プローブを提供することを目的とする。 The present invention has been made in view of the above circumstances, and is an ultrasonic probe which reduces the time and effort of cable replacement, and more preferably, an ultrasonic probe which can be easily replaced even by a doctor or the like. Intended to provide.
 本発明は、上記目的を達成するために、以下の構成によって把握される。
(1)本発明の超音波プローブは、超音波プローブ本体と、前記超音波プローブ本体に接続され、外部機器に着脱可能に接続できるケーブルと、を備え、前記超音波プローブ本体は、超音波信号の発信及び前記超音波信号の反射波の受信を行うセンサ部(素子+駆動用の基板)と、前記センサ部に接続され、前記センサ部から送られるアナログの前記反射波の信号をディジタルの信号に変換する信号変換部と、前記信号変換部に接続され、前記信号変換部から送られる前記ディジタルの信号に基づいて、エコー画像の作成までの処理を行う画像処理部と、を備えている。
The present invention is grasped by the following composition in order to achieve the above-mentioned object.
(1) The ultrasonic probe according to the present invention comprises an ultrasonic probe main body and a cable which is connected to the ultrasonic probe main body and can be detachably connected to an external device, and the ultrasonic probe main body is an ultrasonic signal A sensor unit (element + drive substrate) for transmitting the reflected wave of the ultrasonic signal and receiving the reflected wave of the ultrasonic signal, and a digital signal of the analog reflected wave signal which is connected to the sensor unit and transmitted from the sensor unit And an image processing unit connected to the signal conversion unit and performing processing up to generation of an echo image based on the digital signal sent from the signal conversion unit.
(2)上記(1)の構成において、前記センサ部が前記反射波を受信する動作時以外は、前記信号変換部が停止している。 (2) In the configuration of the above (1), the signal conversion unit is stopped except when the sensor unit receives the reflected wave.
(3)上記(1)又は(2)の構成において、前記信号変換部と前記画像処理部の間の配線数は、前記センサ部と前記信号変換部の間の配線数よりも少なく、前記信号変換部が、前記センサ部から同時に送られた複数の前記信号を複数回に分けて時間をずらして前記画像処理部に送る。 (3) In the configuration of the above (1) or (2), the number of wires between the signal conversion unit and the image processing unit is smaller than the number of wires between the sensor unit and the signal conversion unit. A conversion unit divides the plurality of signals sent simultaneously from the sensor unit into a plurality of times, shifts the time, and sends the signals to the image processing unit.
(4)上記(1)から(3)のいずれか1つの構成において、前記信号変換部と前記画像処理部とが設けられる多層基板を備え、前記多層基板は、ノイズを低減する複数のグランド層を備えている。 (4) In the configuration of any one of the above (1) to (3), the multi-layer substrate including the signal conversion unit and the image processing unit is provided, and the multi-layer substrate includes a plurality of ground layers for reducing noise. Is equipped.
(5)上記(1)から(4)のいずれか1つの構成において、前記センサ部は、前記超音波信号の発信及び前記反射波の受信を行う素子と、前記素子及び前記信号変換部に接続され、前記素子の駆動用の駆動回路基板と、を備えている。 (5) In the configuration according to any one of (1) to (4), the sensor unit is connected to an element that transmits the ultrasonic signal and receives the reflected wave, and the element and the signal conversion unit. And a drive circuit board for driving the element.
(6)上記(1)から(5)のいずれか1つの構成において、前記画像処理部は、前記超音波信号の発信から前記反射波の受信までの時間差を算出する信号処理部と、少なくとも前記時間差と前記反射波に基づいて、前記エコー画像を作成する画像作成部と、を備えている。 (6) In the configuration according to any one of (1) to (5), the image processing unit calculates a time difference from transmission of the ultrasonic signal to reception of the reflected wave, and at least the signal processing unit. And an image creation unit that creates the echo image based on the time difference and the reflected wave.
(7)上記(1)から(6)のいずれか1つの構成において、前記ケーブルは、前記超音波プローブ本体の接続部に形成された端子部と着脱自在の端子部と、スライド可能に配設された筒状の樹脂製カバーとを有し、前記樹脂製カバーは、先端にリング状の突起部を備え、前記リング状の突起部が、前記超音波プローブ本体のケーブル端子部の受入部に形成したリング状の凹部に嵌合する。 (7) In the configuration of any one of the above (1) to (6), the cable is slidably disposed in the terminal portion formed at the connection portion of the ultrasonic probe main body and the detachable terminal portion. And the resin cover is provided with a ring-shaped protrusion at its tip, and the ring-shaped protrusion is on the receiving portion of the cable terminal portion of the ultrasonic probe main body. It fits in the ring-shaped recessed part formed.
(8)本発明の超音波プローブは、超音波プローブ本体と、外部機器に着脱可能に接続できるケーブルと、を備え、前記超音波プローブ本体は、筐体と、前記筐体内に配置され、本体側の第1端子部を内部に有する本体側の第1接続部と、を備え、前記ケーブルは、
 前記第1端子部に接続されるケーブル側の第2端子部を有し、前記第1接続部に螺合接続されるケーブル側の第2接続部と、前記ケーブル上にスライド可能に設けられ、前記第2接続部を覆うように前記筐体に固定される樹脂製のカバーと、を備えている。
(8) The ultrasonic probe of the present invention includes an ultrasonic probe main body and a cable detachably connectable to an external device, the ultrasonic probe main body being disposed in a housing and the housing, the main body A main body side first connection portion having a first side terminal portion inside, and the cable is
A cable-side second terminal portion connected to the first terminal portion, and a cable-side second connection portion threadedly connected to the first connection portion; and provided slidably on the cable And a resin cover fixed to the housing so as to cover the second connection portion.
(9)上記(8)の構成において、前記第1接続部は、前記第1端子部が固定される第1固定部を備え、前記第2接続部は、前記第2端子部に対して回転自在の第2回転部を備え、前記第1固定部は、第1螺合溝が形成され、前記第1端子部の第1外面から離間した第1内面を備え、前記第2回転部は、先端側に前記第1螺合溝に螺合する第2螺合溝の形成された第2外面を備えている。 (9) In the configuration of (8), the first connection portion includes a first fixing portion to which the first terminal portion is fixed, and the second connection portion rotates with respect to the second terminal portion. The first fixed portion includes a first inner surface formed with a first screwing groove and separated from a first outer surface of the first terminal portion, and the second rotatable portion includes: It has the 2nd outer surface in which the 2nd screwing slot screwed to the 1st screwing slot was formed in the tip side.
(10)上記(9)の構成において、前記超音波プローブ本体は、内面に前記第1固定部を固定する螺合溝の形成された第1孔部を有し、前記筐体内に嵌合される第1嵌合部を備え、前記第1固定部は、外面に前記第1孔部の内面の前記螺合溝に螺合する螺合溝が形成されている。 (10) In the configuration of the above (9), the ultrasonic probe main body has a first hole portion in which a screwing groove for fixing the first fixing portion is formed on the inner surface, and is fitted in the housing The first fixing portion has a screwing groove formed on the outer surface thereof to be screwed into the screwing groove on the inner surface of the first hole portion.
(11)上記(8)から(10)のいずれか1つの構成において、前記カバーは、先端にリング状の突起部を有する円筒外形部を備え、前記筐体は、前記第2接続部を受け入れる受入開口部を備え、前記受入開口部には、前記突起部を嵌合するリング状の凹部が設けられている。 (11) In the configuration according to any one of (8) to (10), the cover includes a cylindrical outer portion having a ring-shaped protrusion at a tip end, and the housing receives the second connection portion. A receiving opening is provided, and the receiving opening is provided with a ring-shaped recess in which the projection is fitted.
(12)上記(8)から(11)のいずれか1つの構成において、前記ケーブルは、前記第2接続部の後方近傍に前記ケーブルの外皮に一体化された前記外皮の外形より大きい大形部を備え、前記カバーは、前記大形部に密着する内面部を備えている。 (12) In the configuration according to any one of (8) to (11), the cable is a large-sized portion larger than the outer diameter of the outer cover integrated with the outer cover of the cable near the rear of the second connection portion. And the cover includes an inner surface in close contact with the large portion.
(13)上記(7)から(12)のいずれか1つの構成において、前記カバーは、材質がゴムである。 (13) In the configuration of any one of (7) to (12), the cover is made of rubber.
(14)上記(1)から(13)のいずれか1つの構成において、前記ケーブルは、前記外部機器に接続される側にUSBコネクタを有するUSB3.1の規格に従ったUSBケーブルであり、前記ケーブルを介して前記超音波プローブ本体に給電が行える。 (14) In the configuration of any one of (1) to (13), the cable is a USB cable conforming to the USB 3.1 standard having a USB connector on the side connected to the external device, Power can be supplied to the ultrasonic probe main body via a cable.
 本発明によれば、ケーブルの交換の手間を軽減した超音波プローブであって、より好ましくは、医師等であっても簡単にケーブルの交換ができる超音波プローブを提供することができる。 According to the present invention, it is possible to provide an ultrasonic probe in which the labor of cable exchange is reduced, and more preferably, even a doctor or the like can easily exchange the cable.
本発明に係る実施形態の超音波プローブの斜視図である。It is a perspective view of the ultrasonic probe of the embodiment concerning the present invention. 本発明に係る実施形態の超音波プローブ本体の内部構成の主な部分を模式的に示した模式図である。It is the schematic diagram which showed typically the main part of the internal structure of the ultrasonic probe main body of embodiment which concerns on this invention. 本発明に係る実施形態の超音波プローブ本体にケーブルが接続された状態を説明するための図である。It is a figure for demonstrating the state to which the cable was connected to the ultrasonic probe main body of embodiment which concerns on this invention. 本発明に係る実施形態の超音波プローブ本体とケーブルの接続に関する構成を説明するための図である。It is a figure for demonstrating the structure regarding the connection of the ultrasonic probe main body of embodiment which concerns on this invention, and a cable.
 以下、本発明を実施するための形態(以下、「実施形態」という)を、添付図面に基づいて詳細に説明する。
 なお、実施形態の説明の全体を通して同じ要素には同じ番号又は符号を付している。
Hereinafter, modes for carrying out the present invention (hereinafter, referred to as “embodiments”) will be described in detail based on the attached drawings.
In addition, the same number or code | symbol is attached | subjected to the same element through the whole description of embodiment.
 図1は本発明に係る実施形態の超音波プローブ1の斜視図である。
 図1に示すように、超音波プローブ1は、超音波プローブ本体Aと、超音波プローブ本体Aに接続され、外部機器に着脱可能に接続できるケーブルBと、を備えている。
FIG. 1 is a perspective view of an ultrasonic probe 1 according to an embodiment of the present invention.
As shown in FIG. 1, the ultrasonic probe 1 includes an ultrasonic probe main body A, and a cable B which is connected to the ultrasonic probe main body A and can be detachably connected to an external device.
 例えば、外部機器は、ノートパソコンやタブレット端末のような画像を表示できる表示部を有する携帯端末でもよく、デスクトップパソコン等のような画像を表示できる表示部を有する据え置き式の端末であってもよい。 For example, the external device may be a portable terminal having a display unit capable of displaying an image such as a notebook computer or a tablet terminal, or may be a stationary terminal having a display unit capable of displaying an image such as a desktop personal computer .
 そして、外部機器には専用アプリケーションがインストールされ、外部機器でそのアプリケーションを立ち上げると、外部機器の有する表示部に表示するエコー画像のモード(例えば、Bモード、Mモード、Dモード等)を選択する選択アイコンが表示され、また、選択されたモードに対応するエコー画像の表示ができるようになる。
 なお、外部機器でモードの選択が行われると、そのモードに対応したエコー画像を外部機器に送るための指令がケーブルBを介して超音波プローブ本体Aに送られる。
Then, a dedicated application is installed on the external device, and when the application is launched on the external device, the mode (for example, B mode, M mode, D mode, etc.) of the echo image displayed on the display unit of the external device is selected. A selection icon is displayed, and echo images corresponding to the selected mode can be displayed.
When the mode is selected by the external device, a command for sending an echo image corresponding to the mode to the external device is sent to the ultrasonic probe main body A via the cable B.
 Bモードとは、発信した超音波が各部で反射(以下、反射する部分を反射源又は超音波エコー源ともいう。)して受信される反射波(超音波エコーともいう。)の振幅を輝度に変換した2次元断層画像を表示部に表示するモードであり、Mモードとは、超音波エコー源の時間変化(動き)の軌跡を波形として表示部に表示するモードであり、Dモード(例えば、パルスドプラ、カラードプラ、パワードプラ等が更に選択できる。)とは、超音波エコー源の動きを超音波周波数の変化として検出し、それに基づく画像を表示部に表示するモードである。 In the B mode, the amplitude of the reflected wave (also referred to as ultrasonic echo) received as the transmitted ultrasonic wave is reflected (hereinafter referred to as a reflection source or an ultrasonic echo source) at each part is also referred to as luminance. The M mode is a mode in which the locus of the time change (movement) of the ultrasonic echo source is displayed as a waveform on the display unit, and the D mode (for example, the D mode (for example, , Pulse doppler, color doppler, power doppler, etc. can be selected.) Is a mode in which the movement of the ultrasonic echo source is detected as a change in ultrasonic frequency, and an image based thereon is displayed on the display unit.
 例えば、Dモードとしてカラードプラを選択すれば、血液の動きを超音波周波数の変化として、2次元断層画像上にカラー表示(例えば、動脈と静脈が異なる色で表示)することができる。 For example, if color Doppler is selected as the D mode, the movement of blood can be displayed in color (for example, the arteries and veins are displayed in different colors) on a two-dimensional tomographic image as changes in ultrasonic frequency.
 ただし、選択できるモードは、これらに限定される必要はなく、その他のモード(例えば、Aモード等)が選択できるようになっていてもよい。 However, the modes that can be selected do not have to be limited to these, and other modes (for example, A mode etc.) may be selected.
(超音波プローブ本体A)
 図1に示すように、超音波プローブ本体Aは、前方側に開口部11Aを有する第1半体11と第2半体12を合わせて形成される筐体10を備えている。
 第1半体11の開口部11Aには、後述するセンサ部20の検出部21が設けられる。
(Ultrasonic probe main body A)
As shown in FIG. 1, the ultrasonic probe main body A is provided with a housing 10 formed by combining a first half 11 having an opening 11A on the front side with a second half 12.
The opening 11A of the first half 11 is provided with a detection unit 21 of a sensor unit 20 described later.
 図2は、超音波プローブ本体Aの内部構成の主な部分を模式的に示した模式図である。
 ただし、形状等についてまで正確に図示したものではない(例えば、検出部21等は、図1を見ればわかるように本来は若干湾曲した形状である。)。
 図2に示すように、超音波プローブ本体Aの筐体10内部には、センサ部20と、信号変換部30と、画像処理部40と、信号変換部30及び画像処理部40が設けられる多層基板MLSと、を備えている。
FIG. 2 is a schematic view schematically showing the main part of the internal configuration of the ultrasonic probe main body A. As shown in FIG.
However, the shapes and the like are not exactly illustrated (for example, the detection unit 21 and the like are originally a slightly curved shape as can be seen from FIG. 1).
As shown in FIG. 2, a multi-layered structure in which a sensor unit 20, a signal conversion unit 30, an image processing unit 40, a signal conversion unit 30, and an image processing unit 40 are provided inside the case 10 of the ultrasonic probe main body A. And a substrate MLS.
(センサ部20)
 センサ部20は、検出部21と、駆動回路基板22と、検出部21と駆動回路基板22の間を繋ぐ複数の配線L1と、を備えており、検出部21は、複数の素子23と、素子23の前後に設けられた電極(前方側の第1電極24、後方側の第2電極25)と、第1電極24上に設けられた音響整合層26と、音響整合層26上に設けられた音響レンズ27と、第2電極25上に設けられたバッキング層28と、を備えている。
(Sensor unit 20)
The sensor unit 20 includes a detection unit 21, a drive circuit board 22, and a plurality of wirings L1 connecting the detection unit 21 and the drive circuit board 22. The detection unit 21 includes a plurality of elements 23; Electrodes provided on the front and back of the element 23 (first electrode 24 on the front side and second electrode 25 on the rear side), an acoustic matching layer 26 provided on the first electrode 24, and an acoustic matching layer 26 The acoustic lens 27 and the backing layer 28 provided on the second electrode 25 are provided.
 素子23は、具体的には圧電素子であり、素子23への電圧の印加によって超音波信号が発生し、逆に、素子23で反射波が受信されると電圧が発生する。
 なお、図2では、第1電極24及び第2電極25がベタ電極のような図示になっているが、実際には、各々の素子23が反射波を受信したときに発生する電圧及び超音波信号を発信させるための素子23への電圧の印加が行える電極パターンになっており、配線L1は素子23と駆動回路基板22との間の電気的な接続のための配線である。
Specifically, the element 23 is a piezoelectric element, and the application of a voltage to the element 23 generates an ultrasonic signal. Conversely, when the element 23 receives a reflected wave, a voltage is generated.
In addition, in FIG. 2, although the 1st electrode 24 and the 2nd electrode 25 are illustrated like a solid electrode, the voltage and ultrasonic wave which generate | occur | produce when each element 23 receives a reflected wave in fact are shown. The electrode pattern is capable of applying a voltage to the element 23 for transmitting a signal, and the wiring L1 is a wiring for electrical connection between the element 23 and the drive circuit board 22.
 本実施形態では、256個の素子23が設けられており、配線L1の数は32になっており、超音波信号を発信するときの素子23の励振枚数が32になっている。
 ただし、素子23の数及び励振枚数は、256素子(256個の素子)、励振枚数32に限定される必要はなく、128素子、励振枚数16であってもよく、素子数と励振枚数が増えれば、エコー画像の解像度が高くなるものの、配線等の構成も増加してコスト等が増加するため、求められる解像度に応じて適切な素子数を選択するのがよい。
In the present embodiment, 256 elements 23 are provided, the number of wirings L1 is 32, and the number of excitations of the elements 23 when transmitting an ultrasonic wave signal is 32.
However, the number of elements 23 and the number of excitations need not be limited to 256 elements (256 elements) and the number of excitations 32, but may be 128 elements and the number of excitations 16, and the number of elements and the number of excitations increase. For example, although the resolution of the echo image is increased, the configuration of the wiring is also increased and the cost and the like are increased. Therefore, it is preferable to select an appropriate number of elements according to the required resolution.
 音響整合層26は、素子23とエコー画像を撮る対象(例えば、被写体)とで音響インピーダンスの差が大きい場合、そのままでは素子23で発信された超音波が対象内(被写体内)に効率よく入射せず、その多くが反射されてしまうのを抑制するために、音響的な整合を取るための層である。
 なお、本実施形態では、音響整合層26は、1つの材料で形成された1つの層としているが、異なる材料からなる複数の層で構成されていてもよい。
In the case where the acoustic matching layer 26 has a large difference in acoustic impedance between the element 23 and an object (for example, an object) for taking an echo image, the ultrasonic wave transmitted by the element 23 efficiently enters the object (in the object) as it is. It is a layer to take acoustic matching in order to suppress many of them from being reflected.
In the present embodiment, the acoustic matching layer 26 is a single layer formed of a single material, but may be formed of a plurality of layers of different materials.
 音響レンズ27は、発信された超音波信号が進行するのに従って、広がってしまうのを抑制し、エコー画像の分解能を高めるために設けられた層である。
 図1に示すように、音響レンズ27は、検出部21の最も外側に位置するため、被写体等と直接接触する層となるため、生体との適合性に優れるシリコンゴム等の材料を用いるのがよい。
The acoustic lens 27 is a layer provided to suppress the spread of the transmitted ultrasonic signal as it travels and to enhance the resolution of the echo image.
As shown in FIG. 1, since the acoustic lens 27 is located on the outermost side of the detection unit 21 and is a layer directly in contact with the subject etc., it is preferable to use a material such as silicone rubber which is excellent in compatibility with living bodies. Good.
 バッキング層28は、素子23の余分な振動を抑制し、発信される超音波信号のパルス幅を短くするための層であり、これによってエコー画像の距離分解能を高めることができる。 The backing layer 28 is a layer for suppressing extra vibration of the element 23 and shortening the pulse width of the transmitted ultrasonic signal, which can enhance the distance resolution of echo image.
 駆動回路基板22は、素子23の駆動用の制御回路が設けられた基板であり、例えば、決められたタイミングで素子23を励振させる処理(素子23に電圧を印加する処理)を行う。 The drive circuit substrate 22 is a substrate provided with a control circuit for driving the element 23. For example, the drive circuit board 22 performs a process of exciting the element 23 (process of applying a voltage to the element 23) at a determined timing.
 また、駆動回路基板22は、決められたタイミングで反射波を素子23が受信したときの電圧の変化を検出して、その反射波により発生する電圧の変化を信号変換部30に送る処理を行う。 Further, the drive circuit board 22 detects a change in voltage when the element 23 receives a reflected wave at a determined timing, and sends the change in voltage generated by the reflected wave to the signal conversion unit 30. .
(信号変換部30)
 信号変換部30は、センサ部20(より詳細には駆動回路基板22)に配線L2で接続され、センサ部20からのアナログの反射波の信号(電圧信号)をディジタル信号に変換するA/Dコンバータ(ADC)である。
(Signal conversion unit 30)
The signal conversion unit 30 is connected to the sensor unit 20 (more specifically, the drive circuit board 22) by the wiring L2, and converts an analog reflected wave signal (voltage signal) from the sensor unit 20 into a digital signal. It is a converter (ADC).
 本実施形態では、配線L2の数を配線L1の数と同じ32にしており、駆動回路基板22が、同時に検出した電圧の変化がそのまま信号変換部30に送れるようになっている。 In the present embodiment, the number of the wirings L2 is set to 32, which is the same as the number of the wirings L1, so that the change in voltage simultaneously detected by the drive circuit board 22 can be sent to the signal conversion unit 30 as it is.
 なお、信号変換部30として機能するADCは、多層基板MLS上に実装されており、多層基板MLSに形成された配線L22を介して反射波の信号を受信する。
 つまり、配線L2は、直接、信号変換部30に接続されているのではなく、多層基板MLSに形成された配線L22に接続されている。
The ADC functioning as the signal conversion unit 30 is mounted on the multilayer substrate MLS, and receives the signal of the reflected wave via the wiring L22 formed on the multilayer substrate MLS.
That is, the wiring L2 is not directly connected to the signal conversion unit 30, but is connected to the wiring L22 formed on the multilayer substrate MLS.
 そして、多層基板MLSに形成された配線L3を介して、信号変換部30からディジタルの信号として反射波の信号が画像処理部40に送られる。 Then, the signal of the reflected wave is sent as a digital signal from the signal conversion unit 30 to the image processing unit 40 through the wiring L3 formed on the multilayer substrate MLS.
(画像処理部40)
 画像処理部40は、本実施形態では、多層基板MLS上に実装されたFPGA(Field Programmable Array)で構成されており、そのFPGAの回路設計によって、DSPやCPUの機能を実現しており、DSPとしての機能ブロックが信号処理部41としての機能を発揮し、CPUとしての機能ブロックが画像作成部42としての機能を発揮し、その他、記憶部43としての領域も備えるものになっている。
(Image processing unit 40)
In the present embodiment, the image processing unit 40 is configured by an FPGA (Field Programmable Array) mounted on the multilayer board MLS, and the circuit design of the FPGA realizes the functions of the DSP and the CPU. The functional block of the second embodiment exerts the function of the signal processing unit 41, the functional block of the CPU exhibits the function of the image creating unit 42, and further includes an area as the storage unit 43.
 つまり、画像処理部40は、機能構成として、信号処理部41と、画像作成部42と、記憶部43と、を備えたものになっている。 That is, the image processing unit 40 has a signal processing unit 41, an image creating unit 42, and a storage unit 43 as functional components.
 信号処理部41は、信号変換部30から送られる反射波の信号に基づいて、超音波信号の発信から反射波の受信までの時間差を算出する。 The signal processing unit 41 calculates the time difference from the transmission of the ultrasonic signal to the reception of the reflected wave based on the signal of the reflected wave sent from the signal conversion unit 30.
 具体的には、超音波信号が発信され、対象内(被写体内)に入射して進行する過程で、反射源に到達すると、その反射源で一部の超音波信号が反射され、残る超音波信号は、更に対象内(被写体内)を進行する。
 この進行する超音波信号が次の反射源に到達すると、再び、同様のことが起こる。
Specifically, when an ultrasonic signal is emitted and travels in the object (in the object) and travels, when it reaches the reflection source, a part of the ultrasonic signal is reflected by the reflection source, and the remaining ultrasonic waves The signal further travels within the subject (within the subject).
When this advancing ultrasound signal reaches the next reflection source, the same thing happens again.
 なお、反射率の高い反射源で反射された反射波は、強度(振幅)が大きいものとなり、逆に、反射率の小さい反射源で反射された反射波は、強度が小さいものとなる。 The reflected wave reflected by the reflective source with high reflectance has high intensity (amplitude), and conversely, the reflected wave reflected by the reflective source with low reflectance has low intensity.
 このように、対象内(被写体内)の位置の違いに応じて、複数の反射波を受信することになるため、超音波信号の発信のタイミングから超音波信号の進行速度を基準として、どの程度の時間遅れで、各反射波を受信したかに基づいて、各反射波の位置を求めることができ、このための時間差を算出する処理を信号処理部41は主に行う。 As described above, since a plurality of reflected waves are to be received according to the difference in the position in the object (in the subject), how much is the speed of the ultrasonic signal from the timing of transmission of the ultrasonic signal as a reference With a time delay, the position of each reflected wave can be determined based on whether each reflected wave has been received, and the signal processing unit 41 mainly performs a process of calculating a time difference for this.
 画像作成部42は、少なくとも信号処理部41が算出した時間差と反射波に基づいて、エコー画像を作成する。
 なお、画像作成部42は、上述のようにFPGAのCPUとしての機能ブロックが処理を行っているが、この処理を実行する機能ブロックはCPUとしての機能も果たしているため、超音波プローブ本体Aの全般的な制御も司っている。
 画像作成部42は、例えば、時間差から反射源の位置を求め、その時間差を求めるもとになっている反射波の強度(振幅)を輝度に変換して2次元断層画像化することでBモード用のエコー画像を作成する等を行う。
The image creation unit 42 creates an echo image based on at least the time difference calculated by the signal processing unit 41 and the reflected wave.
Although the image creating unit 42 performs processing by the functional block as the CPU of the FPGA as described above, the functional block that executes this processing also performs the function as the CPU. It also oversees general control.
For example, the image creating unit 42 obtains the position of the reflection source from the time difference, and converts the intensity (amplitude) of the reflected wave that is the basis of the time difference into luminance to form a two-dimensional tomographic image Create an echo image for
 なお、MモードやDモードについてもデータ処理自体は、一般に行われている処理と同じであり、その一般的な処理に従って、画像作成部42は、MモードやDモード用のエコー画像を作成する。 The data processing itself in the M mode and the D mode is the same as the processing generally performed, and the image creating unit 42 creates an echo image for the M mode and the D mode according to the general processing. .
 記憶部43は、画像処理部40(信号処理部41や画像作成部42)が動作する上で必要なプログラムや処理過程で生成されたデータを記憶する。 The storage unit 43 stores programs necessary for the operation of the image processing unit 40 (the signal processing unit 41 and the image creating unit 42) and data generated in the processing process.
 そして、画像処理部40で作成されたエコー画像は、配線L4を介してケーブルBと接続するための第1端子部51を内部に有する本体側の第1接続部50にディジタルの信号として送られる。 Then, the echo image created by the image processing unit 40 is sent as a digital signal to the first connection unit 50 on the main body side having the first terminal unit 51 for connecting to the cable B via the wiring L4. .
 ここで、図1に示すように、ケーブルBには、外部機器に接続される側にUSBコネクタCを有するUSB3.1の規格に従ったUSBケーブルを用いている。
 このため、そのUSBコネクタCを外部機器のUSBポートに対して簡単に着脱することができ、USBコネクタCを外部機器のUSBポートに接続するだけで、外部機器は、ケーブルBを介して、ディジタルの信号としてエコー画像を受信することができる。
Here, as shown in FIG. 1, as the cable B, a USB cable conforming to the USB 3.1 standard having a USB connector C on the side connected to an external device is used.
Therefore, the USB connector C can be easily attached to and detached from the USB port of the external device, and the external device can be digitalized via the cable B simply by connecting the USB connector C to the USB port of the external device. An echo image can be received as a signal of.
 このように、ディジタルの信号としてエコー画像を外部機器に送るため、ノイズの影響を受け難いものになっており、かつ、エコー画像を超音波プローブ本体A側で作成しているため、外部機器自体が高い演算処理能力を有している必要はなく、スペックの低いノートパソコンやタブレット端末であっても超音波プローブ本体Aが接続される外部機器に使用できるようになっている。 As described above, since an echo image is sent to an external device as a digital signal, it is not easily affected by noise, and since the echo image is created on the ultrasonic probe main body A side, the external device itself It is not necessary to have high processing power, and even notebook computers and tablet terminals with low specifications can be used for external devices to which the ultrasonic probe main body A is connected.
 なお、本実施形態では、超音波プローブ本体Aが補助バッテリーを有するものとしているが、ケーブルBにUSB3.1の規格に従ったUSBケーブルを用いているので、通常、超音波プローブ本体Aが駆動するのに必要な電力は、外部機器からケーブルBを介して給電されるようになっている。なお、給電機能を有するUSB2.0の規格であっても使用するデータ転送量が転送速度480Mbit/secで補える範囲であればUSB2.0を使用することもできる。 In this embodiment, although the ultrasonic probe main body A has an auxiliary battery, since the USB cable conforming to the USB 3.1 standard is used for the cable B, the ultrasonic probe main body A is usually driven. The power required to do this is supplied from an external device via the cable B. Even in the USB 2.0 standard having a power supply function, the USB 2.0 can be used as long as the data transfer amount to be used can be compensated by the transfer speed of 480 Mbit / sec.
 そして、図1を見ればわかるとおり、本実施形態の超音波プローブ1は、超音波プローブ本体A内に、エコー画像を作成するまでの処理に必要な全ての構成を内蔵させたため、ケーブルBを交換するときに、超音波プローブ本体AとケーブルBとの接続を解除すればよいだけになっている。 Then, as can be seen from FIG. 1, since the ultrasonic probe 1 of the present embodiment incorporates all the components necessary for processing until the echo image is created in the ultrasonic probe main body A, the cable B can be used. At the time of replacement, it is only necessary to release the connection between the ultrasonic probe main body A and the cable B.
 このため、特許文献1のように、ケーブル交換時に、超音波プローブ側と処理ユニット側の2箇所で接続を解除する必要がないため、ケーブルを交換するときの手間を大幅に軽減することができる。 For this reason, as in Patent Document 1, it is not necessary to release the connection at two points on the ultrasonic probe side and the processing unit side at the time of cable replacement, so it is possible to greatly reduce the labor when replacing the cable. .
 なお、後ほど説明するように、本実施形態の超音波プローブ1は、ケーブルBを交換するときに、超音波プローブ本体Aを分解する必要がなく、また、ケーブルBの交換を医師等であっても簡単に行えるようにしている。 As described later, when replacing the cable B, the ultrasonic probe 1 according to the present embodiment does not need to disassemble the ultrasonic probe main body A, and the doctor B or the like can replace the cable B. Is also easy to do.
 そして、交換用のケーブルBは、収納に場所をとるものでもなく、持ち運びに困るものでもないため、例えば、訪問診療等のときに交換用のケーブルBを持って行くことで、訪問先で接続不良に気がついたら、その場で交換が行えるので、接続不良のために診療等ができないという事態を回避することができる。 And, since the cable B for replacement does not take up a place for storage and is not an obstacle for carrying it, for example, it is connected at the visiting place by bringing the cable B for replacement at the time of visiting medical treatment etc. If a defect is noticed, it can be replaced on the spot, so it is possible to avoid a situation where medical treatment can not be performed due to a poor connection.
 ところで、本実施形態のように、超音波プローブ本体A内に各種の機能構成を盛り込むようにすると、発熱量が大きくなり、内蔵している機器類にとって過酷な環境となるおそれがあるとともに、超音波プローブ本体A内でエコー画像の作成までを行っているため、内部ノイズを低減してエコー画像にノイズの影響が現れないようにすることが重要であり、先に、本実施形態の超音波プローブ本体Aに施されている対策について、述べた後に、ケーブルBの交換を医師等でもできるようにしたケーブルBの接続構造の説明を行う。 By the way, if various functional configurations are included in the ultrasonic probe main body A as in the present embodiment, the calorific value increases, which may result in a harsh environment for the built-in devices, and It is important to reduce internal noise so that the influence of noise does not appear in the echo image, since the process up to the creation of the echo image in the sound wave probe main body A is performed. After the measures taken for the probe main body A are described, the connection structure of the cable B is described, which allows the doctor or the like to exchange the cable B.
 例えば、発熱源として大きなものは、信号変換部30として機能するADCが挙げられるが、このADCは、信号変換部30から反射波の信号を画像処理部40に送るときに動作していればよい。 For example, a large heat source includes an ADC functioning as the signal conversion unit 30. This ADC may be operated as long as the signal conversion unit 30 sends a signal of a reflected wave to the image processing unit 40. .
 そして、画像処理部40への反射波の信号を送信するタイミングは、センサ部20が反射波を受信する動作時であるため、本実施形態では、センサ部20が反射波を受信する動作時以外は、信号変換部30が停止するように制御させている。
 なお、センサ部20が反射波を受信する動作時以外は、信号変換部30が停止するとは、センサ部20が反射波を受信する動作時に合わせて、省電力モードの信号変換部30を起動させ、反射波の信号を画像処理部40に送信する動作を行った後、再び、次のセンサ部20が反射波を受信する動作時までは、信号変換部30を省電力モードにすることを意味する。
Then, the timing of transmitting the signal of the reflected wave to the image processing unit 40 is at the time of the operation of the sensor unit 20 to receive the reflected wave. Therefore, in the present embodiment, the timing of transmitting the signal of the reflected wave Controls the signal conversion unit 30 to stop.
In addition, except when the sensor unit 20 receives the reflected wave, stopping the signal conversion unit 30 starts the signal conversion unit 30 in the power saving mode according to the time when the sensor unit 20 receives the reflected wave. After the operation of transmitting the signal of the reflected wave to the image processing unit 40, it means that the signal conversion unit 30 is put into the power saving mode again until the next sensor unit 20 receives the reflected wave. Do.
 具体的には、超音波プローブ本体Aは、内蔵するFPGAにCPUの機能があるため、信号変換部30として機能するADCに対して高速で動作開始及び動作停止の制御を行わせることができるようなっており、反射波を素子23が受信したときの電圧の変化を検出する駆動回路基板22の決められたタイミングにあわせて、ADCを起動させることができるようになっている。 Specifically, since the ultrasonic probe main body A has a CPU function in the built-in FPGA, it is possible to cause the ADC functioning as the signal conversion unit 30 to control the operation start and the operation stop at high speed. The ADC can be activated in accordance with the determined timing of the drive circuit board 22 that detects a change in voltage when the element 23 receives a reflected wave.
 また、信号変換部30として機能するADCも画像処理部40として機能するFPGAも一度に多くの処理を実行させるようにすると、その分だけ消費電力が必要であり、発熱量が増加することになる。 In addition, if both the ADC functioning as the signal conversion unit 30 and the FPGA functioning as the image processing unit 40 execute a large amount of processing at one time, the power consumption is correspondingly increased, and the heat generation amount increases. .
 そこで、信号変換部30が、センサ部20から同時に送られた複数の反射波の信号を一度に画像処理部40に送るのではなく、複数回に分けて時間をずらして画像処理部40に送るようにすることで一度に処理しなければならないADC及びFPGAの処理量を低減するようにしている。 Therefore, the signal conversion unit 30 does not send the signals of a plurality of reflected waves simultaneously sent from the sensor unit 20 to the image processing unit 40 at one time, but sends them to the image processing unit 40 while dividing time into multiple times. By doing so, the amount of processing of ADCs and FPGAs that must be processed at one time is reduced.
 具体的には、センサ部20から同時に送られた複数の反射波の信号を2回に分けて信号変換部30が画像処理部40に送るようにしている。
 なお、この結果、信号変換部30と画像処理部40を電気的に接続する多層基板MLSに形成された配線L3は、センサ部20と信号変換部30の間の配線数の半分、つまり、配線L3を16まで少なくすることができている。
Specifically, the signal conversion unit 30 sends the signals of the plurality of reflected waves simultaneously sent from the sensor unit 20 to the image processing unit 40 in two divided steps.
As a result, the wiring L3 formed on the multilayer substrate MLS electrically connecting the signal conversion unit 30 and the image processing unit 40 is half the number of wirings between the sensor unit 20 and the signal conversion unit 30, that is, the wiring We can reduce L3 to 16 or less.
 さらに、画像処理部40として機能するFPGAにおいても機能ブロックごとに動作すべきときと、動作する必要のないときを切り分けて、動作する必要のないときには、その機能ブロックを停止させるようにしている。 Furthermore, in the FPGA that functions as the image processing unit 40, the time to operate for each functional block and the time that it is not necessary to operate is separated, and when it is not necessary to operate, the functional block is stopped.
 これらの結果、超音波プローブ本体A内の発熱を抑えることができ、また、これらは消費電力の抑制にもなっているため、USB3.1で電力供給が可能な消費電力まで低減されたものになっている。 As a result of these, it is possible to suppress the heat generation in the ultrasonic probe main body A, and since these also serve to suppress the power consumption, the power consumption can be reduced to the power consumption that can be supplied by USB 3.1. It has become.
 一方、内部ノイズの影響を低減するために、本実施形態の超音波プローブ本体Aでは、信号変換部30及び画像処理部40の設けられる基板(多層基板MLS)と、素子23の駆動用の基板(駆動回路基板22)と、を分ける構成にしている。 On the other hand, in order to reduce the influence of internal noise, in the ultrasonic probe main body A of this embodiment, a substrate (multilayer substrate MLS) on which the signal conversion unit 30 and the image processing unit 40 are provided, and a substrate for driving the element 23 (Drive circuit board 22) is separated.
 これによって、素子23への電圧の印加と停止のための駆動回路基板22のアナログスイッチの回路から出るノイズが多層基板MLS側の構成に影響し難くなっている。 As a result, noise emitted from the circuit of the analog switch of the drive circuit board 22 for applying and stopping the voltage to the element 23 hardly affects the configuration on the multilayer board MLS side.
 なお、基板を2枚にすることで、駆動回路基板22のアナログスイッチ、信号変換部30及び画像処理部40の配置位置のレイアウトが熱対策を考慮したレイアウトにしやすくなっており、基板を2枚にすることでより一層、超音波プローブ本体A内の温度上昇を抑制することができるようになっている。 In addition, the layout of the arrangement position of the analog switch of the drive circuit board 22, the signal conversion unit 30, and the image processing unit 40 can be easily made into a layout in consideration of heat measures by making the substrate two sheets, and two substrates are provided. The temperature rise in the ultrasonic probe main body A can be further suppressed by using the above.
 また、画像処理部40として機能するFPGAを多層基板MLSとすることで、基板にノイズを低減する複数のグランド層を備えさせるようにしており、より一層、FPGAがノイズの影響を受け難いものになっている。 Further, by setting the FPGA functioning as the image processing unit 40 as the multilayer substrate MLS, the substrate is provided with a plurality of ground layers for reducing noise, and the FPGA is further less susceptible to noise. It has become.
 次に、主に、図3及び図4を参照しながら、ケーブルBの接続構造についての説明を行う。
 図3は、超音波プローブ本体AにケーブルBが接続された状態を説明するための図であり、超音波プローブ本体Aについては、筐体10の第1半体11、第1嵌合部13等の一部だけを示したものになっている。
Next, the connection structure of the cable B will be described mainly with reference to FIGS. 3 and 4.
FIG. 3 is a view for explaining a state in which the cable B is connected to the ultrasonic probe main body A, and for the ultrasonic probe main body A, the first half 11 of the housing 10 and the first fitting portion 13 It shows only a part of
 図4は超音波プローブ本体AとケーブルBの接続に関する構成を説明するための図であり、図4(A)は図3に示す超音波プローブ本体A及びケーブルBの接続する部分が見えるようにした斜視図である。
 また、図4(B)は、第1嵌合部13と第1嵌合部13に接続された第1接続部50を示した斜視図である。
FIG. 4 is a view for explaining a configuration concerning connection of the ultrasonic probe main body A and the cable B, and FIG. 4 (A) is a view showing a connecting portion of the ultrasonic probe main body A and the cable B shown in FIG. FIG.
4B is a perspective view showing the first fitting portion 13 and the first connection portion 50 connected to the first fitting portion 13. As shown in FIG.
 図4(A)及び図4(B)に示すように、超音波プローブ本体Aは、先に触れたように、筐体10内に配置され、ケーブルBとの接続を行うための本体側の第1接続部50を備えている。 As shown in FIGS. 4 (A) and 4 (B), the ultrasonic probe main body A is disposed in the housing 10 and is connected to the cable B as described above. A first connection unit 50 is provided.
 そして、第1接続部50は、後述するケーブルBの第2端子部61が接続される本体側の第1端子部51と、第1端子部51を内部に有するように第1端子部51が固定される第1固定部52と、を備えている。 And the 1st terminal area 51 has the 1st terminal area 51 by the side of the main part to which the 2nd terminal area 61 of cable B mentioned below is connected, and the 1st terminal area 51 in the 1st terminal area 50 inside And a first fixing portion 52 to be fixed.
 なお、第1端子部51には、一端が多層基板MLSに接続された複数の配線L4(図2参照)の他端が接続されており、第1端子部51に後述するケーブルBの第2端子部61が接続されることで、ケーブルBと多層基板MLSとの間での各種の信号の送受信及びケーブルBから多層基板MLS側への給電ができるようになる。 The other end of the plurality of wires L4 (see FIG. 2) whose one end is connected to the multilayer board MLS is connected to the first terminal portion 51, and the first terminal portion 51 is connected to the second of the cable B described later. The connection of the terminal portion 61 enables transmission and reception of various signals between the cable B and the multilayer board MLS and power feeding from the cable B to the multilayer board MLS side.
 また、図4(B)に示すように、第1接続部50の第1固定部52は、第1螺合溝が形成され、円柱形状の第1端子部51の第1外面51A(外周面)から離間した第1内面52A(内周面)を備えており、後述するように、この第1内面52Aに形成された第1螺合溝に対してケーブルBが螺合接続されることになる。 In addition, as shown in FIG. 4B, the first fixing portion 52 of the first connection portion 50 is formed with a first screwing groove, and a first outer surface 51A (an outer peripheral surface of a cylindrical first terminal portion 51 ) And the cable B is screwed to the first screwing groove formed in the first inner surface 52A, as described later. Become.
 さらに、第1接続部50の第1固定部52は、図4(B)に示すように、外面52B(外周面)にも螺合溝が形成されており、この螺合溝によって、これから説明する第1嵌合部13に螺合固定される。 Furthermore, as shown in FIG. 4 (B), in the first fixing portion 52 of the first connection portion 50, a screwing groove is also formed on the outer surface 52B (outer peripheral surface), and this screwing groove will be described hereinafter The first fitting portion 13 is screwed and fixed.
 先に触れたように、超音波プローブ本体Aは、第1接続部50(図4(A)参照)が固定される第1嵌合部13を備えている。
 第1嵌合部13は、図4(B)に示すように、内面(内周面)に第1固定部52を固定する螺合溝の形成された第1孔部13Aを有しており、この第1孔部13Aの内面の螺合溝に第1固定部52の外面52B(外周面)の螺合溝を螺合させることにより、第1接続部50(第1固定部52)が第1嵌合部13に対して螺合固定される。
As described above, the ultrasonic probe main body A includes the first fitting portion 13 to which the first connection portion 50 (see FIG. 4A) is fixed.
As shown in FIG. 4B, the first fitting portion 13 has a first hole portion 13A in which a screwing groove for fixing the first fixing portion 52 is formed on the inner surface (inner peripheral surface). The first connection portion 50 (first fixing portion 52) is formed by screwing the screwing groove of the outer surface 52B (outer peripheral surface) of the first fixing portion 52 into the screwing groove of the inner surface of the first hole portion 13A. It is screwed and fixed to the first fitting portion 13.
 そして、筐体10の第1半体11には、第1嵌合部13が嵌合され、第1嵌合部13が動かないように規制する第1嵌込部14が設けられている。第1嵌合部13の形状は、特に限定するものではないが、本実施形態においては図3に示すように円錐台形状とし、第1嵌込部14も第1嵌合部13に対応する形状としている。 The first fitting portion 13 is fitted in the first half 11 of the housing 10, and the first fitting portion 14 is provided to restrict the first fitting portion 13 so as not to move. The shape of the first fitting portion 13 is not particularly limited, but in the present embodiment, the first fitting portion 14 also corresponds to the first fitting portion 13 as shown in FIG. It has a shape.
 また、図3及び図4では、筐体10の第1半体11だけが示されているが、第2半体12は、ほぼ第1半体11の開口部11Aが形成される先端面11AAを除いただけの構造になっており、第2半体12も第1半体11の第1嵌込部14と同様の第1嵌合部13が動かないように規制する第2嵌込部を備えている。 Moreover, although only the first half 11 of the housing 10 is shown in FIGS. 3 and 4, the second half 12 has a tip surface 11 AA in which the opening 11 A of the first half 11 is formed. Of the second half 12 and restricts the second fitting 12 so that the first fitting part 13 similar to the first fitting part 14 of the first half 11 does not move. Have.
 したがって、第1嵌合部13は、第1半体11の第1嵌込部14と第2半体12の第2嵌込部で形成される筐体10の嵌込部に嵌合されることで動かないように固定され、そのように第1嵌合部13が固定されることで、図4(A)に示すように、第1嵌合部13に固定されている第1接続部50が筐体10に対して所定の第1位置に位置するように配置される。 Therefore, the first fitting portion 13 is fitted to the fitting portion of the housing 10 formed by the first fitting portion 14 of the first half 11 and the second fitting portion of the second half 12. And the first connection portion 13 is fixed to the first fitting portion 13 as shown in FIG. 4A by fixing the first fitting portion 13 as such. 50 are arranged to be located at a predetermined first position relative to the housing 10.
 そして、筐体10の第1半体11には、第1接続部50が筐体10に対して所定の第1位置に位置する状態のときに第1接続部50に対面することになる部分に、半円形の第1切欠形状部11Bが設けられている。 Then, in the first half 11 of the housing 10, a portion that faces the first connection 50 when the first connection portion 50 is positioned at a predetermined first position with respect to the housing 10. A semicircular first cutout portion 11B is provided in FIG.
 また、先にも述べたように、図4(A)では、筐体10の第1半体11だけが示されているが、第2半体12は、ほぼ第1半体11の開口部11Aが形成される先端面11AAを除いただけの構造になっており、第2半体12にも第1半体11の第1切欠形状部11Bと同様の半円形の第2切欠形状部が設けられている。 Further, as described above, although only the first half 11 of the housing 10 is shown in FIG. 4A, the second half 12 substantially corresponds to the opening of the first half 11. The second half 12 is also provided with a semicircular second notch shaped portion similar to the first notch shaped portion 11B of the first half 11 except for the tip surface 11AA on which 11A is formed. It is done.
 したがって、筐体10は、第1接続部50が筐体10に対して所定の第1位置に位置するときに、第1接続部50に対面する部分に、第1半体11の第1切欠形状部11Bと第2半体12の第2切欠形状部が合わさって、円形状となる開口部を備えたものになっており、この円形状となる開口部が、第1接続部50に対して、後述するケーブルBの第2接続部60が接続できるように、第2接続部60を受け入れるための受入開口部となる。 Therefore, when the first connection portion 50 is positioned at the predetermined first position with respect to the housing 10, the housing 10 is provided with the first notch of the first half 11 in a portion facing the first connection portion 50. The shape 11B and the second notched portion of the second half 12 are combined to provide a circular opening, and the circular opening corresponds to the first connecting portion 50. Therefore, it becomes a receiving opening for receiving the second connection portion 60 so that the second connection portion 60 of the cable B described later can be connected.
 一方、図3に示すように、ケーブルBは、第1端子部51(図4(B)参照)に着脱自在に接続されるケーブルB側の第2端子部61(図4(A)参照)を有し、第1接続部50に螺合接続されるケーブルB側の第2接続部60と、ケーブルB上にスライド可能に設けられた樹脂製のカバー63(本実施形態では、材質がゴムであるカバー63としている。)と、を備えている。 On the other hand, as shown in FIG. 3, the cable B is connected to the first terminal 51 (see FIG. 4B) and the second terminal 61 on the cable B side (see FIG. 4A). A second connection portion 60 on the cable B side screwed to the first connection portion 50, and a resin cover 63 slidably provided on the cable B (in the present embodiment, the material is rubber And the cover 63).
 具体的には、図4(A)に示すように、第2接続部60は、第1端子部51の複数の端子受入穴51B(図4(B)参照)に挿入される複数の端子61Aを有するとともに、端子61Aを取り囲み、接続時に第1端子部51の第1外面51A(外周面)に被さる円筒状の外壁部61Bを有する第2端子部61と、第2端子部61の後方側に位置し、第2端子部61に対して回転自在の第2回転部62と、を備えている。 Specifically, as shown in FIG. 4A, the second connection portion 60 has a plurality of terminals 61A inserted into the plurality of terminal receiving holes 51B (see FIG. 4B) of the first terminal portion 51. And a second terminal portion 61 having a cylindrical outer wall portion 61B which surrounds the terminal 61A and covers the first outer surface 51A (outer peripheral surface) of the first terminal portion 51 at the time of connection, and the rear side of the second terminal portion 61. And a second rotating portion 62 rotatable relative to the second terminal portion 61.
 そして、第2回転部62は、図4(A)に示すように、先端側に第1接続部50(第1固定部52)の第1内面52A(図4(B)参照)に形成された第1螺合溝に螺合する第2螺合溝の形成された第2外面62A(外周面)を有する第2螺合部と、第2外面62Aの後方側に段差をもって外径が大きくなった摘み部62Bと、を備えている。
 なお、摘み部62Bは、外面(外周面)に前後方向に延びる断面円弧状の凹部が周方向に複数形成された滑り止めを備えている。
Then, as shown in FIG. 4A, the second rotating portion 62 is formed on the first inner surface 52A (see FIG. 4B) of the first connection portion 50 (first fixing portion 52) on the tip end side. The second screwing portion has a second outer surface 62A (outer peripheral surface) on which the second screwing groove is formed to engage with the first screwing groove, and the outer diameter is large with a step on the rear side of the second outer surface 62A. And a knob 62B.
The knob portion 62B is provided with an anti-slip member in which a plurality of concave portions having an arc-shaped cross section extending in the front-rear direction are formed on the outer surface (outer peripheral surface) in the circumferential direction.
 したがって、第2接続部60の第2端子部61の端子61A(図4(A)参照)を第1端子部51の端子受入穴51B(図4(B)参照)に挿入するように、第2接続部60を第1接続部50側に押し込んだ後、第2接続部60の第2回転部62を回転させると、第2回転部62の第2外面62A(外周面)に形成された第2螺合溝が第1接続部50(第1固定部52)の第1内面52A(図4(B)参照)に形成された第1螺合溝に螺合して、第1接続部50と第2接続部60が螺合接続される。 Therefore, the terminal 61A (see FIG. 4A) of the second terminal portion 61 of the second connection portion 60 is inserted into the terminal receiving hole 51B (see FIG. 4B) of the first terminal portion 51. (2) When the second rotating portion 62 of the second connecting portion 60 is rotated after the second connecting portion 60 is pushed into the first connecting portion 50 side, the second outer surface 62A (the outer peripheral surface) of the second rotating portion 62 is formed. The second connection groove is screwed into the first connection groove formed in the first inner surface 52A (see FIG. 4B) of the first connection portion 50 (first fixing portion 52), and the first connection portion is formed. 50 and the second connection portion 60 are screwed together.
 このように、第1接続部50と第2接続部60が螺合接続されるようにして、ケーブルBが超音波プローブ本体Aに対して接続されているので、診察等のために超音波プローブ本体Aの操作(移動)によって、超音波プローブ本体AからケーブルBが簡単に外れることがない。 As described above, since the cable B is connected to the ultrasonic probe main body A such that the first connection portion 50 and the second connection portion 60 are screwed and connected, the ultrasonic probe for medical examination and the like The cable B is not easily removed from the ultrasonic probe main body A by the operation (movement) of the main body A.
 一方、図3に示すように、樹脂製のカバー63は、先端にリング状の突起部63AAを有する円筒外形部63Aを備えており、第1半体11の第1切欠形状部11Bにリング状の突起部63AAを嵌合する半円形の第1凹部11BAが設けられている。 On the other hand, as shown in FIG. 3, the resin-made cover 63 is provided with a cylindrical outer portion 63A having a ring-shaped protrusion 63AA at the tip, and the first notch 11B of the first half 11 is ring-shaped. A semicircular first recess 11BA is provided for fitting the protrusion 63AA.
 また、先にも述べたように、図3では、筐体10の第1半体11だけが示されているが、第2半体12は、ほぼ第1半体11の開口部11Aが形成される先端面11AAを除いただけの構造になっており、第2半体12にも第1半体11の半円形の第1凹部11BAと同様の半円形の第2凹部が設けられている。 Further, as described above, although only the first half 11 of the housing 10 is shown in FIG. 3, the second half 12 substantially has the opening 11A of the first half 11 formed. The second half 12 is provided with a semicircular second recess similar to the semicircular first recess 11BA of the first half 11 in the second half 12 as well.
 したがって、筐体10は、先に説明した第1半体11の第1切欠形状部11Bと第2半体12の第2切欠形状部が合わさって形成される第2接続部60を受け入れるための受入開口部に、半円形の第1凹部11BAと半円形の第2凹部によって形成され、カバー63のリング状の突起部63AAを嵌合するリング状の凹部が設けられたものになっている。 Therefore, the housing 10 is for receiving the second connection portion 60 formed by combining the first cutout shape portion 11B of the first half body 11 and the second cutout shape portion of the second half body 12 described above. The receiving opening has a ring-shaped recess formed by the semi-circular first recess 11BA and the semi-circular second recess, into which the ring-shaped protrusion 63AA of the cover 63 is fitted.
 そして、図3に示すように、第2接続部60が第1接続部50(図4(A)参照)に接続された後、ケーブルB上を前方側にスライド移動させるように、カバー63を移動させ、カバー63を弾性変形させて、第1半体11の第1凹部11BAにカバー63の突起部63AAを嵌め込んだ後、第2半体12の第2凹部内にカバー63の突起部63AAが挿入されるように、第2半体12を第1半体11に合わせるようにして筐体10が形成される。 Then, as shown in FIG. 3, after the second connection portion 60 is connected to the first connection portion 50 (see FIG. 4A), the cover 63 is slid forward on the cable B. After moving the cover 63 to elastically deform and fitting the protrusion 63AA of the cover 63 into the first recess 11BA of the first half 11, the protrusion of the cover 63 is inserted into the second recess of the second half 12 The housing 10 is formed to fit the second half 12 to the first half 11 so that 63AA is inserted.
 なお、第1半体11と第2半体12の接触部には接着剤が設けられ、簡単に第1半体11と第2半体12が分離しないとともに、筐体10内が高い気密性を有するものとされる。 An adhesive is provided at the contact portion between the first half 11 and the second half 12 so that the first half 11 and the second half 12 are not easily separated, and the inside of the housing 10 is highly airtight. It is assumed that
 このようにして、カバー63が筐体10に固定された状態となったときには、図1に示すように、カバー63が第2接続部60(図3参照)を覆った状態となる。 Thus, when the cover 63 is fixed to the housing 10, as shown in FIG. 1, the cover 63 covers the second connection portion 60 (see FIG. 3).
 また、ケーブルBは、図3に示すように、第2接続部60(第2回転部62)の後方近傍にケーブルBの外皮63Bに一体化された外皮63Bの外形より大きい大形部64を備えている。 In addition, as shown in FIG. 3, the cable B has a large-sized portion 64 larger than the outer diameter of the outer shell 63B integrated with the outer skin 63B of the cable B in the rear vicinity of the second connection portion 60 (second rotating portion 62). Have.
 なお、大形部64は、図3に示すように、第2接続部60(第2回転部62)側が摘み部62B(図4(A)参照)の外径と同じが若干小さい外径の直胴部64Aと、直胴部64Aから後方側に向かって外径が小さくなっていくテーパー部64Bと、を備えている。 As shown in FIG. 3, the large-sized portion 64 has the same outer diameter as that of the second connecting portion 60 (second rotating portion 62), which is the same as the outer diameter of the knob 62B (see FIG. 4A). A straight body portion 64A and a tapered portion 64B whose outer diameter decreases from the straight body portion 64A to the rear side are provided.
 そして、カバー63は、上述のように、筐体10に固定された状態のときに、内面部63C(図4(A)参照)が第2接続部60の一部と大形部64とに密着するようになっており、したがって、超音波プローブ本体AのケーブルBが接続される部分においても高い気密性が確保されるようになっている。 When the cover 63 is fixed to the housing 10 as described above, the inner surface portion 63C (see FIG. 4A) is formed of a portion of the second connection portion 60 and the large-sized portion 64. It is in close contact, and therefore, high airtightness is ensured also in the portion of the ultrasonic probe main body A to which the cable B is connected.
 一方、例えば、超音波プローブ本体Aの操作に伴う応力が大形部64の後方側近傍に長期にわたって加わることで、ケーブルBが断線した場合には、カバー63を後方側に動かして第2接続部60(第2回転部62)の摘み部62B(図4(A)参照)を露出させる。 On the other hand, for example, when the cable B is broken due to stress caused by the operation of the ultrasonic probe main body A being applied near the rear side of the large portion 64 for a long time, the cover 63 is moved to the rear side to perform the second connection. The knob portion 62B (see FIG. 4A) of the portion 60 (second rotating portion 62) is exposed.
 なお、上述のように、カバー63は、筐体10のリング状の凹部に突起部63AAが嵌合されることで筐体10に固定されているだけのため、カバー63に対して強く後方側に引き抜く力をかけることで、嵌合が解除され、カバー63を後方側に動かすことが可能である。 As described above, since the cover 63 is only fixed to the housing 10 by the protrusion 63AA being fitted in the ring-shaped recess of the housing 10, the cover 63 is strongly backward with respect to the cover 63. By applying a pull-out force, the fitting is released and the cover 63 can be moved rearward.
 そして、図3を見ればわかるように、第2接続部60(第2回転部62(図4(A)参照))は、第1接続部50(図4(A)参照)に接続された状態のときでも、後方側の一部が筐体10から外側に露出する程度の長さに設定されている。 And as FIG. 3 shows, the 2nd connection part 60 (2nd rotation part 62 (refer FIG. 4 (A))) was connected to the 1st connection part 50 (refer FIG. 4 (A)) Even in the state, it is set to such a length that a part on the rear side is exposed to the outside from the housing 10.
 このため、医師等でも簡単に、第2接続部60(第2回転部62)の摘み部62B(図4(A)参照)を摘んで第2回転部62(図4(A)参照)を回転させることで、第1接続部50(図4(A)参照)と第2接続部60の螺合接続(固定)を解除して、超音波プローブ本体AからケーブルBを取り外すことができるとともに、逆手順で、新しい交換用のケーブルBを接続することができる。 Therefore, even a doctor or the like can easily pick the second rotating portion 62 (see FIG. 4A) by picking the knob 62B (see FIG. 4A) of the second connection portion 60 (the second rotating portion 62). By rotating, the screw connection (fixing) of the first connection portion 50 (see FIG. 4A) and the second connection portion 60 can be released, and the cable B can be removed from the ultrasonic probe main body A. , Reverse procedure, a new replacement cable B can be connected.
 したがって、訪問診療等のときに交換用のケーブルBを持って行くことで、訪問先で接続不良に気がついたら、その場で交換が行えるので、接続不良のために診療等ができないという事態を回避することができる。 Therefore, by carrying the cable B for replacement at the time of visit medical treatment etc., if it is noticed that there is a bad connection at the visiting place, it can be replaced on the spot, avoiding the situation where medical treatment etc. can not be performed due to poor connection. can do.
 以上、本発明を実施形態に基づき説明したが、本発明は実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の変更が可能であることも言うまでもなく、要旨を逸脱しない範囲での種々の変更を行ったものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。 Although the present invention has been described above based on the embodiment, the present invention is not limited to the embodiment, and it goes without saying that various modifications can be made without departing from the scope of the present invention. It is also within the technical scope of the present invention to make various modifications without departing from the scope of the present invention, which will be apparent to the person skilled in the art from the description of the claims.
1 超音波プローブ
10 筐体
11 第1半体
11A 開口部
11AA 先端面
11B 第1切欠形状部
11BA 第1凹部
12 第2半体
13 第1嵌合部
13A 第1孔部
14 第1嵌込部
20 センサ部
21 検出部
22 駆動回路基板
23 素子
24 第1電極
25 第2電極
26 音響整合層
27 音響レンズ
28 バッキング層
30 信号変換部
40 画像処理部
41 信号処理部
42 画像作成部
43 記憶部
50 第1接続部
51 第1端子部
51A 第1外面
51B 端子受入穴
52 第1固定部
52A 第1内面
52B 外面
60 第2接続部
61 第2端子部
61A 端子
61B 外壁部
62 第2回転部
62A 第2外面
62B 摘み部
63 カバー
63A 円筒外形部
63AA 突起部
63B 外皮
63C 内面部
64 大形部
64A 直胴部
64B テーパー部
A 超音波プローブ本体
B ケーブル
C USBコネクタ
L1、L2、L22、L3、L4 配線
MLS 多層基板
DESCRIPTION OF SYMBOLS 1 Ultrasonic probe 10 Housing | casing 11 1st half body 11A Opening part 11AA Tip surface 11B 1st notch shape part 11BA 1st recessed part 12 2nd half body 13 1st fitting part 13A 1st hole part 14 1st fitting part Reference Signs List 20 sensor unit 21 detection unit 22 drive circuit board 23 element 24 first electrode 25 second electrode 26 acoustic matching layer 27 acoustic lens 28 backing layer 30 signal conversion unit 40 image processing unit 41 signal processing unit 42 image creation unit 43 storage unit 50 First connection portion 51 first terminal portion 51A first outer surface 51B terminal receiving hole 52 first fixed portion 52A first inner surface 52B outer surface 60 second connection portion 61 second terminal portion 61A terminal 61B outer wall portion 62 second rotating portion 62A second 2 Outer surface 62B Picking portion 63 Cover 63A Cylindrical outer shape portion 63AA Protrusion portion 63B Outer skin 63C Inner surface portion 64 Large-sized portion 64A Straight body portion 64B Tapered portion A Ultrasonic probe Body B Cable C USB connector L1, L2, L22, L3, L4 wiring MLS multilayer board

Claims (14)

  1.  超音波プローブ本体と、
     前記超音波プローブ本体に接続され、外部機器に着脱可能に接続できるケーブルと、を備え、
     前記超音波プローブ本体は、
     超音波信号の発信及び前記超音波信号の反射波の受信を行うセンサ部と、
     前記センサ部に接続され、前記センサ部から送られるアナログの前記反射波の信号をディジタルの信号に変換する信号変換部と、
     前記信号変換部に接続され、前記信号変換部から送られる前記ディジタルの信号に基づいて、エコー画像の作成までの処理を行う画像処理部と、を備えていることを特徴とする超音波プローブ。
    Ultrasonic probe body,
    A cable connected to the ultrasonic probe main body and detachably connectable to an external device;
    The ultrasonic probe body is
    A sensor unit for transmitting an ultrasonic signal and receiving a reflected wave of the ultrasonic signal;
    A signal conversion unit connected to the sensor unit and converting the analog reflected wave signal sent from the sensor unit into a digital signal;
    An image processing unit connected to the signal conversion unit and performing processing up to creation of an echo image based on the digital signal sent from the signal conversion unit.
  2.  前記センサ部が前記反射波を受信する動作時以外は、前記信号変換部が停止していることを特徴とする請求項1に記載の超音波プローブ。 The ultrasonic probe according to claim 1, wherein the signal conversion unit is stopped except when the sensor unit receives the reflected wave.
  3.  前記信号変換部と前記画像処理部の間の配線数は、前記センサ部と前記信号変換部の間の配線数よりも少なく、
     前記信号変換部が、前記センサ部から同時に送られた複数の前記信号を複数回に分けて時間をずらして前記画像処理部に送ることを特徴とする請求項1又は請求項2に記載の超音波プローブ。
    The number of wires between the signal conversion unit and the image processing unit is smaller than the number of wires between the sensor unit and the signal conversion unit,
    The signal processing unit according to claim 1 or 2, wherein the signal conversion unit divides a plurality of the signals simultaneously sent from the sensor unit into a plurality of times, shifts the time, and sends the signals to the image processing unit. Sound wave probe.
  4.  前記信号変換部と前記画像処理部とが設けられる多層基板を備え、
     前記多層基板は、ノイズを低減する複数のグランド層を備えていることを特徴とする請求項1から請求項3のいずれか1項に記載の超音波プローブ。
    A multi-layer substrate on which the signal conversion unit and the image processing unit are provided;
    The ultrasonic probe according to any one of claims 1 to 3, wherein the multilayer substrate comprises a plurality of ground layers for reducing noise.
  5.  前記センサ部は、
     前記超音波信号の発信及び前記反射波の受信を行う素子と、
     前記素子及び前記信号変換部に接続され、前記素子の駆動用の駆動回路基板と、を備えていることを特徴とする請求項1から請求項4のいずれか1項に記載の超音波プローブ。
    The sensor unit is
    An element for transmitting the ultrasonic signal and receiving the reflected wave;
    The ultrasonic probe according to any one of claims 1 to 4, further comprising: a drive circuit substrate connected to the element and the signal conversion unit for driving the element.
  6.  前記画像処理部は、
     前記超音波信号の発信から前記反射波の受信までの時間差を算出する信号処理部と、
     少なくとも前記時間差と前記反射波に基づいて、前記エコー画像を作成する画像作成部と、を備えていることを特徴とする請求項1から請求項5のいずれか1項に記載の超音波プローブ。
    The image processing unit
    A signal processing unit that calculates a time difference from transmission of the ultrasonic signal to reception of the reflected wave;
    The ultrasonic probe according to any one of claims 1 to 5, further comprising: an image creating unit that creates the echo image based on at least the time difference and the reflected wave.
  7.  前記ケーブルは、前記超音波プローブ本体の接続部に形成された端子部と着脱自在の端子部と、スライド可能に配設された筒状の樹脂製カバーとを有し、
     前記樹脂製カバーは、先端にリング状の突起部を備え、
     前記リング状の突起部が、前記超音波プローブ本体のケーブル端子部の受入部に形成したリング状の凹部に嵌合することを特徴とする請求項1から請求項6のいずれか1項に記載の超音波プローブ。
    The cable has a terminal portion formed on the connection portion of the ultrasonic probe main body, a detachable terminal portion, and a cylindrical resin cover slidably disposed.
    The resin cover has a ring-shaped protrusion at its tip,
    The said ring-shaped protrusion part fits in the ring-shaped recessed part formed in the receiving part of the cable terminal part of the said ultrasonic probe main body, The any one of the Claims 1-6 characterized by the above-mentioned. Ultrasound probe.
  8.  超音波プローブ本体と、
     外部機器に着脱可能に接続できるケーブルと、を備え、
     前記超音波プローブ本体は、
     筐体と、
     前記筐体内に配置され、本体側の第1端子部を内部に有する本体側の第1接続部と、を備え、
     前記ケーブルは、
     前記第1端子部に接続されるケーブル側の第2端子部を有し、前記第1接続部に螺合接続されるケーブル側の第2接続部と、
     前記ケーブル上にスライド可能に設けられ、前記第2接続部を覆うように前記筐体に固定される樹脂製のカバーと、を備えていることを特徴とする超音波プローブ。
    Ultrasonic probe body,
    And a cable detachably connectable to an external device;
    The ultrasonic probe body is
    And
    And a first connection portion on the main body side, the first connection portion being disposed in the housing and having therein the first terminal portion on the main body side,
    The cable is
    A cable-side second connection portion having a cable-side second terminal portion connected to the first terminal portion, and screw-connected to the first connection portion;
    An ultrasonic probe comprising: a resin cover slidably provided on the cable and fixed to the housing so as to cover the second connection portion.
  9.  前記第1接続部は、前記第1端子部が固定される第1固定部を備え、
     前記第2接続部は、前記第2端子部に対して回転自在の第2回転部を備え、
     前記第1固定部は、第1螺合溝が形成され、前記第1端子部の第1外面から離間した第1内面を備え、
     前記第2回転部は、先端側に前記第1螺合溝に螺合する第2螺合溝の形成された第2外面を備えていることを特徴とする請求項8に記載の超音波プローブ。
    The first connection portion includes a first fixing portion to which the first terminal portion is fixed,
    The second connection portion includes a second rotation portion rotatable with respect to the second terminal portion.
    The first fixing portion is formed with a first screwing groove, and has a first inner surface spaced apart from a first outer surface of the first terminal portion.
    9. The ultrasonic probe according to claim 8, wherein the second rotating portion has a second outer surface on a tip end side of which a second screwing groove is formed to be screwed into the first screwing groove. .
  10.  前記超音波プローブ本体は、内面に前記第1固定部を固定する螺合溝の形成された第1孔部を有し、前記筐体内に嵌合される第1嵌合部を備え、
     前記第1固定部は、外面に前記第1孔部の内面の前記螺合溝に螺合する螺合溝が形成されていることを特徴とする請求項9に記載の超音波プローブ。
    The ultrasonic probe main body has a first hole in which a screwing groove for fixing the first fixing portion is formed on an inner surface, and includes a first fitting portion fitted in the housing.
    10. The ultrasonic probe according to claim 9, wherein the first fixing portion has a screwing groove formed on an outer surface thereof to be screwed into the screwing groove on the inner surface of the first hole.
  11.  前記カバーは、先端にリング状の突起部を有する円筒外形部を備え、
     前記筐体は、前記第2接続部を受け入れる受入開口部を備え、
     前記受入開口部には、前記突起部を嵌合するリング状の凹部が設けられていることを特徴とする請求項8から請求項10のいずれか1項に記載の超音波プローブ。
    The cover is provided with a cylindrical outer portion having a ring-shaped protrusion at its tip,
    The housing comprises a receiving opening for receiving the second connection,
    The ultrasonic probe according to any one of claims 8 to 10, wherein the receiving opening is provided with a ring-shaped recess in which the projection is fitted.
  12.  前記ケーブルは、前記第2接続部の後方近傍に前記ケーブルの外皮に一体化された前記外皮の外形より大きい大形部を備え、
     前記カバーは、前記大形部に密着する内面部を備えていることを特徴とする請求項8から請求項11のいずれか1項に記載の超音波プローブ。
    The cable includes a large-sized portion larger than an outer shape of the sheath integrated with the sheath of the cable near the rear of the second connection portion,
    The ultrasonic probe according to any one of claims 8 to 11, wherein the cover includes an inner surface portion in close contact with the large diameter portion.
  13.  前記カバーは、材質がゴムであることを特徴とする請求項7から請求項12のいずれか1項に記載の超音波プローブ。 The ultrasonic probe according to any one of claims 7 to 12, wherein the cover is made of rubber.
  14.  前記ケーブルは、前記外部機器に接続される側にUSBコネクタを有するUSB3.1の規格に従ったUSBケーブルであり、
     前記ケーブルを介して前記超音波プローブ本体に給電が行えることを特徴とする請求項1から請求項13のいずれか1項に記載の超音波プローブ。
    The cable is a USB cable conforming to the USB 3.1 standard having a USB connector on the side connected to the external device,
    The ultrasonic probe according to any one of claims 1 to 13, wherein power can be supplied to the ultrasonic probe main body through the cable.
PCT/JP2018/037611 2017-10-30 2018-10-09 Ultrasonic probe WO2019087706A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880070452.3A CN111295140A (en) 2017-10-30 2018-10-09 Ultrasonic probe
JP2019550957A JPWO2019087706A1 (en) 2017-10-30 2018-10-09 Ultrasonic probe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017209593 2017-10-30
JP2017-209594 2017-10-30
JP2017209594 2017-10-30
JP2017-209593 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019087706A1 true WO2019087706A1 (en) 2019-05-09

Family

ID=66332543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037611 WO2019087706A1 (en) 2017-10-30 2018-10-09 Ultrasonic probe

Country Status (4)

Country Link
JP (1) JPWO2019087706A1 (en)
CN (1) CN111295140A (en)
TW (1) TW201927246A (en)
WO (1) WO2019087706A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794453A (en) * 2019-11-08 2020-02-14 深圳市深创谷技术服务有限公司 Detection member, sensing device, and seismic detection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528698A (en) * 2007-06-01 2010-08-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Wireless ultrasonic probe cable
JP2014057136A (en) * 2012-09-11 2014-03-27 Hitachi Aloka Medical Ltd Ultrasonic probe
JP2016512446A (en) * 2013-03-07 2016-04-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Multipurpose ultrasound image acquisition device
JP2016202355A (en) * 2015-04-17 2016-12-08 株式会社ソシオネクスト Ultrasonic inspection device and control method of ultrasonic inspection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134513B2 (en) * 2009-08-31 2017-05-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Magnetic diagnostic probe connector system
KR101175537B1 (en) * 2010-11-23 2012-08-22 알피니언메디칼시스템 주식회사 Probe having separable scanhead

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528698A (en) * 2007-06-01 2010-08-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Wireless ultrasonic probe cable
JP2014057136A (en) * 2012-09-11 2014-03-27 Hitachi Aloka Medical Ltd Ultrasonic probe
JP2016512446A (en) * 2013-03-07 2016-04-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Multipurpose ultrasound image acquisition device
JP2016202355A (en) * 2015-04-17 2016-12-08 株式会社ソシオネクスト Ultrasonic inspection device and control method of ultrasonic inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794453A (en) * 2019-11-08 2020-02-14 深圳市深创谷技术服务有限公司 Detection member, sensing device, and seismic detection system

Also Published As

Publication number Publication date
CN111295140A (en) 2020-06-16
JPWO2019087706A1 (en) 2020-09-24
TW201927246A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
US6645148B2 (en) Ultrasonic probe including pointing devices for remotely controlling functions of an associated imaging system
JP5452468B2 (en) Low power ultrasound system
JP6662578B2 (en) Ultrasonic probe and ultrasonic diagnostic device
JP2008245789A (en) System controller
EP3479773B1 (en) Ultrasonic endoscope
WO2017199571A1 (en) Ultrasonic endoscope
JP7463594B2 (en) Ultrasound probe
KR20130064260A (en) Ultrasonic diagnostic apparatus
WO2019087706A1 (en) Ultrasonic probe
EP3865071B1 (en) Ultrasonic probe
JP2022123124A (en) Positioning of treatment device under ultrasonic guide
US20210007718A1 (en) Ultrasound probe, control method of ultrasound probe, and ultrasound probe inspection system
JP2016501625A (en) Ultrasound imaging with variable line density
KR20110003057A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP6313719B2 (en) Ultrasonic observation system, ultrasonic processor device, and method of operating ultrasonic observation system
JP2006326204A (en) Ultrasonic probe
JP2007185549A (en) Diagnostic information generator and ultrasonic diagnostic equipment
JP2008173157A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP5230768B2 (en) Ultrasonic diagnostic equipment
JP6067966B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPH11104132A (en) Ultrasonic probe
WO2022195702A1 (en) Image generation device, endoscopic system, and image generation method
JP6781008B2 (en) Ultrasonic probe and ultrasonic diagnostic equipment
JP2006223622A (en) Ultrasonic diagnostic apparatus and probe
JP2005230378A (en) Connection adapter for ultrasonic inspection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872209

Country of ref document: EP

Kind code of ref document: A1