WO2019083201A2 - 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 용도 - Google Patents

지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 용도

Info

Publication number
WO2019083201A2
WO2019083201A2 PCT/KR2018/011983 KR2018011983W WO2019083201A2 WO 2019083201 A2 WO2019083201 A2 WO 2019083201A2 KR 2018011983 W KR2018011983 W KR 2018011983W WO 2019083201 A2 WO2019083201 A2 WO 2019083201A2
Authority
WO
WIPO (PCT)
Prior art keywords
renal
exosome
present
exosomes
renal function
Prior art date
Application number
PCT/KR2018/011983
Other languages
English (en)
French (fr)
Other versions
WO2019083201A3 (ko
Inventor
이용원
조병성
Original Assignee
주식회사 엑소코바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엑소코바이오 filed Critical 주식회사 엑소코바이오
Publication of WO2019083201A2 publication Critical patent/WO2019083201A2/ko
Publication of WO2019083201A3 publication Critical patent/WO2019083201A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells

Definitions

  • the present invention relates to a pharmaceutical composition for improving kidney function and / or preventing, alleviating, improving or treating renal diseases, which comprises the above composition.
  • the present invention can provide a large amount of exosomes derived from adipose stem cells having high purity and uniform particle size distribution which can be clinically applicable in improving renal function and / or preventing, alleviating, improving or treating kidney disease
  • the present invention relates to a clinical and commercial superior technique capable of providing a large amount of a composition for improving kidney function containing exosome derived from adipose stem cells having excellent functional activity thus obtained as an effective ingredient at low cost.
  • Chronic renal failure refers to a kidney failure or renal dysfunction that lasts more than three months.
  • causes of chronic renal failure vary by region and age, but the main causes are diabetic kidney disease (41%), hypertension (16%), and glomerulonephritis (14%).
  • Other causes include polycystic kidney disease, genetic factors, and other urinary tract disorders.
  • Acute renal failure or acute kidney injury is characterized by sudden filtration disturbances of the kidneys, accumulation of uremia, imbalance of electrolyte and acid-base equilibrium, various drugs such as anticancer drugs or contrast agents, (20 ⁇ 25%) and acute tubular necrosis (nephrosis) due to renal ischemia (30 ⁇ 35%) are known to be caused by the infectious disease Nephritis accounts for about 10% of cases and 20% to 25% of cases.
  • Renal fibrosis is caused by fibrosis (collagen accumulation and hardening of tissues when the tissue returns after damage) during the healing process of the inflammation due to the repair process of renal failure and kidney damage.
  • tissue regeneration and treatment methods using stem cells have been proposed.
  • Embryonic stem cells or embryonic stem cells derived from embryonic stem cells are excellent in their ability to differentiate and regenerate and have a low rejection rate.
  • they can not be applied to clinical practice due to ethical problems, and there is a risk of forming tumors.
  • tissue regeneration and treatment methods using adult stem cells have been proposed.
  • adult adult stem cells use an adult adult stem cell, there is a risk of causing graft-versus-host disease.
  • stem cells are collected and cultured.
  • exosomes which have intercellular signal transduction
  • researches on its components and functions are actively under way.
  • Extracellular vesicles Cells release various membrane-type vesicles in the extracellular environment, and these release vesicles are commonly referred to as extracellular vesicles (EVs).
  • the extracellular endoplasmic reticulum is sometimes referred to as cell membrane-derived endoplasmic reticulum, ectosomes, shedding vesicles, microparticles, exosomes and, in some cases, differentiated from exosomes.
  • Exosome is an endoplasmic reticulum of several tens to several hundreds of nanometers in size, composed of double lipid membranes identical to the cell membrane structure, and contains proteins, nucleic acids (mRNA, miRNA, etc.) called exosomal cargo inside.
  • Exosomal cargo contains a wide range of signaling factors, which are known to be specific for cell types and differentially regulated by the environment of the secretory cells.
  • Exosome is an intercellular signaling mediator that is secreted by the cell, and various cell signals transmitted through it regulate cell behavior including activation, growth, migration, differentiation, de-differentiation, apoptosis, and necrosis of target cells It is known.
  • Exosomes contain specific genetic material and bioactivity factors depending on the nature and condition of the derived cells.
  • the proliferating stem cell-derived exosomes regulate cell behavior such as cell migration, proliferation and differentiation, and reflect the characteristics of stem cells involved in tissue regeneration (Nature Review Immunology 2002 (2) 569-579).
  • exosome isolated from adipose stem cell culture liquid solves the above-mentioned problems of stem cell itself or stem cell culture solution safety And is effective for preventing, alleviating, improving or treating kidney disease including acute kidney injury, thereby completing the present invention.
  • the present invention provides a composition for preventing, alleviating, improving or treating kidney function improvement and / or kidney disease, which comprises an exosome derived from adipose stem cells as an active ingredient.
  • the present invention can obtain a large amount of exosomes derived from adipose stem cells having a high purity and a uniform particle size distribution that can be clinically applied in renal function improvement and / or prevention, alleviation, improvement, or treatment of a renal disease , And a novel clinical and commercial superior technique that can provide a large amount of a composition for improving kidney function containing the exosome derived from adipose stem cells derived from such an excellent functional activity as an effective ingredient at low cost.
  • exosomes refers to an endoplasmic reticulum of several tens to several hundred nanometers (preferably about 30 to 200 nm) in size, consisting of double lipid membranes identical in structure to the cell membrane The particle size of the exosome can be varied according to the cell type, the separation method and the measurement method) (Vasiliy S. Chernyshev et al., "Size and shape characterization of hydrated and desiccated exosomes", Anal Bioanal Chem, DOI 10.1007 / s00216-015-8535-3). Exosomes contain proteins called exosomal cargo (cargo), nucleic acids (mRNA, miRNA, etc.).
  • Exosomal cargo contains a wide range of signaling factors, which are known to be specific for cell types and differentially regulated by the environment of the secretory cells.
  • Exosome is an intercellular signaling mediator that is secreted by the cell, and various cell signals transmitted through it regulate cell behavior including activation, growth, migration, differentiation, de-differentiation, apoptosis, and necrosis of target cells It is known.
  • kidney disease is not particularly limited, and is preferably selected from the group consisting of renal failure (e.g. acute renal failure, chronic renal failure, etc.), nephropathy (e.g., diabetic nephropathy, Nephritis (e.g., glomerulonephritis, interstitial nephritis (e.g., nephritis), nephritis (e.g., nephritis, nephropathy, nephropathy, gouty nephropathy, Nephrotic syndrome, nephrotic syndrome (nephrotic syndrome), nephrotic syndrome (nephrotic syndrome), nephrotic syndrome (nephrotic syndrome), nephrotic syndrome, nephrotic syndrome, nephrotic syndrome, nephrotic syndrome, renal fibrosis, nephrosclerosis, hematuria, urinary tract infections, pyelitis, and nerve
  • improving kidney function is used herein to mean improved renal function due to various causes, including, for example, renal dysfunction associated with glomerular filtration, kidney dysfunction caused by diabetes , Renal dysfunction caused by non-progenitor hypertension, renal dysfunction caused by glomerulonephritis, renal dysfunction caused by upper urinary tract infection, renal dysfunction caused by sickle cell anemia, compensatory after renal resection Alleviating, alleviating and / or alleviating kidney dysfunction caused by hypertrophy, renal dysfunction caused by vascular hepatocellular dysfunction, and the like.
  • renal failure that can be prevented, ameliorated, ameliorated or treated by the composition of the present invention may be selected from the group consisting of anticancer agents, antibiotics, antimicrobial agents, contrast agents, chemotherapeutic agents, Or acute or chronic renal failure caused by the use or exposure of a substance such as a drug.
  • the present invention relates to a method for treating or preventing acute kidney injury or ischemia-reperfusion injury using exosomes or extracellular cell bodies isolated from these cells, There were attempts to do so.
  • the bone marrow stem cells or vascular endothelial progenitor cells present in the bone marrow used in the prior art have a problem of using an invasive method accompanied by pain when they are taken from the human body, and the collected stem cells themselves have a small amount, Because of the small amount of exosome to be separated, there was a limit to widely applied in clinical practice.
  • umbilical stem cells, umbilical cord vein jelly stem cells, and umbilical cord blood stem cells can be obtained only from a limited number of mothers, and exosomes isolated from stem cell cultures are also small in quantity, there was.
  • exosomes isolated from embryonic stem cells or fetal tissue-derived stem cells and their cultures can not be applied to clinical practice due to ethical problems, and there is a risk that they can form tumors.
  • Adipose-derived stem cells derived from fat can be obtained in large quantities by simple procedures such as liposuction, but there are many impurities such as cellular debris, waste products, proteins and macromolecules in the fat, It is difficult to economically and massively separate exosomes having high purity and uniform particle size distribution from the culture.
  • Nephrol Dial Transplant (2013) 28: 788-793 states that bone marrow stem cells and cord blood stem cells are effective in improving acute renal failure, but fat derived stem cells have no effect 34), it has been a common practice in the art that exosomes derived from adipose stem cells are also not an effective means of improving or treating kidney disease.
  • Adipose-derived stem cells derived from fat can be obtained in large quantities by simple procedures such as liposuction, and about 40 times more stem cells than bone marrow, umbilical cord or umbilical cord blood, It is difficult to economically mass-separate exosomes having a high purity and uniform particle size distribution from the adipose-derived stem cell culture liquid because the fat is abundant in the fat, such as cellular debris, waste products, proteins and macromolecules. Therefore, in terms of economics, there were technical barriers to massive separation of exosomes having a high purity particle size distribution from the adipose stem cell culture fluid.
  • the exosome derived from adipose stem cells contained as an active ingredient exhibits a significant effect on the improvement of kidney function and / or prevention, alleviation, improvement or treatment of a kidney disease, And the safety problem of the stem cell culture liquid can be solved. Accordingly, the composition for improving renal function and / or preventing, alleviating, ameliorating or treating a renal disease overcomes the general common sense in the art that the adipocyte stem cell is not effective for the improvement or treatment of kidney disease, It is clear that it is unpredictable at all.
  • composition for improving renal function and / or preventing, alleviating, improving or treating renal disease includes exosome derived from adipose stem cells as an active ingredient.
  • the exosome can be obtained by performing the following steps: (a) adding trehalose to the adipose stem cell culture, (b) adding the trehalose (C) separating the exosomes from the filtered adipose stem cell culture liquid using TFF (Tangential Flow Filtration), and (d) separating the exosomes with diafiltration ) Was added to the buffer solution to be used for the separation of the exosomes, and the desalted and exfoliated diafiltration was performed using TFF (Tangential Flow Filtration) using the buffer solution to which the trehalose was added. ).
  • trehalose is added to the buffer solution used for desalting and diafiltration in the step (d), whereby the exosome having a uniform particle size distribution and high purity can be effectively (See Figs. 6A to 6E).
  • trehalose is used in the pre-filtration step (step (b) before separation of exosome by TFF) and desalting by TFF and buffer exchange step ((d) It is possible to obtain an exosome having a uniform size distribution with a high yield.
  • trehalose in the present invention imparts a function of efficiently separating exosomes from impurities such as cellular debris, waste products, proteins and macromolecules.
  • desalination and buffer exchange can be performed continuously or intermittently. Desalting and buffer exchange can be carried out using a buffer solution having a volume of at least 4 times, preferably 6 times to 10 times, more preferably 12 times the starting volume.
  • a TFF filter having a molecular weight cutoff (MWCO) of 100,000 Da (Dalton), 300,000 Da, 500,000 Da or 750,000 Da, or a 0.05 ⁇ TFF filter may be used for TFF.
  • the step (c) may further include a step of concentrating the solution to a volume of 1/100 to 1/25 using TFF (Tangential Flow Filtration).
  • compositions of one embodiment of the present invention may improve indicators related to nephrotoxicity.
  • the composition of one embodiment of the present invention can reduce blood urea nitrogen (BUN) and creatinine (CRE) levels, and in particular, the blood urea nitrogen (BUN) and creatinine (CRE) Can be reduced.
  • BUN blood urea nitrogen
  • CRE creatinine
  • composition of one embodiment of the present invention may exhibit at least one of efficacy of restoring individual body weight reduced by acute renal failure, reducing mortality by acute renal failure, or delaying the death of an individual by acute renal failure.
  • the efficacy may be dose-dependent of the exosome.
  • the exosome is characterized by reducing the expression levels of TNF-a and IL-6 in an in vitro assay.
  • the type of adipose stem cells is not limited as long as it does not cause the risk of infection by a pathogen and does not cause an immune rejection reaction, but may be preferably stem cells derived from human adipose.
  • composition of the present invention may exhibit significant efficacy in improving the renal function and / or preventing, alleviating, improving or treating kidney disease due to various causes.
  • composition of one embodiment of the present invention may be prepared from a pharmaceutical composition.
  • the pharmaceutical composition according to one embodiment of the present invention may be various oral or parenteral formulations.
  • the pharmaceutical composition of one embodiment of the present invention may include a pharmaceutically acceptable carrier, excipient or diluent.
  • the carrier, excipient and diluent include lactose, dextrose, trehalose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium carbonate, calcium silicate, cellulose , Methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil. .
  • composition according to one embodiment of the present invention may be administered orally or parenterally in the form of powders, pills, tablets, capsules, suspensions, emulsions, syrups, granules, elixirs, aerosols, Or in the form of sterile injectable solutions.
  • Administration of the pharmaceutical composition according to one embodiment of the present invention means introduction of a predetermined substance into a patient by any appropriate method, and the administration route of the pharmaceutical composition may be administered through any ordinary route so long as the drug can reach the target tissue .
  • the pharmaceutical composition of one embodiment of the present invention may be administered orally or parenterally, and examples of the parenteral administration include transdermal administration, intraperitoneal administration, intravenous administration, intraarterial administration, intramuscular administration, subcutaneous administration, Administration, topical administration, rectal administration, and the like.
  • the pharmaceutical composition of one embodiment of the present invention may be administered by any device capable of moving the active substance to a target tissue or cell.
  • An effective amount of the pharmaceutical composition of one embodiment of the present invention means an amount required for administration in order to expect the therapeutic effect of the disease.
  • the preparation for parenteral administration of the pharmaceutical composition of one embodiment of the present invention may be a sterilized aqueous solution, a non-aqueous solvent, a suspension, an emulsion, a lyophilized preparation, or a left-over preparation.
  • the preparation for parenteral administration of the pharmaceutical composition of one embodiment of the present invention may also be prepared by injection.
  • the injection agent of one embodiment of the present invention may be, but not limited to, an aqueous injection agent, a non-aqueous injection agent, an aqueous suspension injection agent, a non-aqueous suspension injection agent, or a solid injection agent used by dissolving or suspending.
  • Injection agents of one embodiment of the present invention may be administered orally or parenterally depending on the type thereof, for example, distilled water for injection, vegetable oil (for example, peanut oil, sesame oil, camellia oil, etc.), monoglyceride, diglyceride, propylene glycol, camphor, benzoic acid estradiol, , Arsenobenzazole sodium, or streptomycin sulfate, and may optionally contain stabilizers or preservatives.
  • the compounding ratio of the pharmaceutical composition according to one embodiment of the present invention can be appropriately selected depending on the kind, quantity and form of the additional components as described above.
  • the pharmaceutical composition of the present invention may contain about 0.1 to 99% by weight, preferably about 10 to 90% by weight.
  • a suitable dose of the pharmaceutical composition of one embodiment of the present invention may be appropriately determined depending on the kind of disease of the patient, the severity of the disease, the type of the formulation, the formulation method, the age, sex, weight, health condition, diet, Can be adjusted according to the method.
  • the pharmaceutical composition of one embodiment of the present invention when the pharmaceutical composition of one embodiment of the present invention is administered to an adult, it may be administered at a dose of 0.001 mg / kg to 100 mg / kg per day for 1 to several times.
  • Another embodiment of the invention provides a method of improving renal function or preventing, alleviating, ameliorating or treating a renal disease, comprising administering to the mammal a therapeutically effective amount of the pharmaceutical composition.
  • compositions of the present invention are useful for preventing, alleviating, and improving various renal diseases by reducing the production of inflammatory cytokines and inflammation-related factors associated with nephritis or acute kidney damage (AKI) and effectively improving nephrotoxicity-related indicators and kidney function , Or can be treated. Therefore, the composition of the present invention can be usefully used as a pharmaceutical composition for improving kidney function and / or preventing, alleviating, improving or treating kidney disease.
  • the present invention can obtain a large amount of exosome derived from adipose stem cells at a low cost and having a high purity and a uniform particle size distribution. Therefore, the present invention can provide a large amount of a composition for improving kidney function, which contains exosome derived from adipose stem cells having excellent functional activity as an active ingredient at low cost.
  • the composition of the present invention is scale-upable and is also suitable for GMP (Good Manufacturing Practice).
  • FIG. 1 is a flow chart illustrating a process of separating and purifying exosomes in a method for producing exosomes from an adipose stem cell culture solution according to one embodiment of the present invention.
  • FIG. 2 shows a result of measuring the relative amount of protein contained in a solution for each step of preparing exosome from an adipose stem cell culture solution according to one embodiment of the present invention.
  • the ratio of the total amount of protein in each step was expressed as a relative ratio of the total amount of protein to the total volume of adipose stem cell culture.
  • the experimental results show the results obtained in two different batches, respectively.
  • FIG. 3 shows the results of measuring the productivity and purity of exosomes obtained according to one embodiment of the present invention.
  • the productivity of exosome was calculated as "the number of particles of exosome obtained per mL of adipose stem cell culture (CM)" and the purity of exosome was calculated as "the number of particles of exosome per microgram of protein contained in the final fraction" Respectively.
  • the experimental results show the results obtained in five different batches.
  • 4A to 4E show results of physical property analysis of exosomes obtained according to one embodiment of the present invention.
  • 4A shows particle size distribution and number of particles by TRPS (tunable resistive pulse sensing) analysis.
  • Figure 4B shows particle size distribution and number of particles by NTA (nanoparticle tracking analysis) analysis.
  • 4C shows particle images by transmission electron microscopy (TEM) according to magnification.
  • 4D shows the Western blot results of exosomes obtained according to one embodiment of the present invention.
  • &Quot; Figure 4E shows flow cytometric analysis results for CD63 and CD81 in marker assays for exosomes obtained according to one embodiment of the present invention.
  • Figures 5A-5C show the results of NTA analysis on particle size distribution showing that a uniform and high-purity exosome is obtained with trehalose addition. As the amount of trehalose added increases, a particle size distribution having a single peak can be obtained.
  • 6A to 6C show results of NTA analysis showing particle size distribution according to whether trehalose was added in the process of producing exosome according to one embodiment of the present invention.
  • 6A shows a case where trehalose is added throughout the production process
  • Fig. 6B shows a case where trehalose is added after the cell culture solution is stored in a frozen state
  • the results are shown without adding os.
  • 6D shows the results of comparing relative productivity and relative concentration of exosomes isolated by the methods of FIGS. 6A to 6C.
  • 6E shows the mean size of exosomes isolated by the methods of FIGS. 6A to 6C.
  • FIG. 7 shows the result of confirming the absence of cytotoxicity after treatment of exosome according to one embodiment of the present invention with HS68 cells of human skin fibroblasts.
  • FIG. 8 is a graph showing real-time PCR results showing that the amount of mRNA expression of TNF-a and IL-6 induced by LPS was reduced when RAW 264.7 cells were treated with LPS and the exosome of the present invention.
  • FIG. 9 is a graph showing a decrease in the mortality rate due to acute renal injury as a result of treatment of exosome according to one embodiment of the present invention in an animal model (acute renal injury animal model 1) in which acute renal injury was induced by cisplatin to be.
  • FIG. 10 is a graph showing that the body weight reduced by the acute renal injury is recovered faster than the negative control as a result of treating the exosome according to one embodiment of the present invention in the model of acute kidney damage animal 1.
  • FIG. 11 shows the results of treatment of exosomes according to one embodiment of the present invention in the model of acute renal failure animal 1, in which the levels of blood urea nitrogen (BUN) and creatinine (CRE) in rat blood were reduced as compared to the negative control Graph.
  • BUN blood urea nitrogen
  • CRE creatinine
  • FIG. 13 shows that treatment of exosomes according to one embodiment of the present invention with acute renal injured animal model 2 showed that the body weight reduced by acute kidney injury was recovered faster than the negative control group, Graph.
  • FIG. 14 shows the results of treatment of exosomes according to one embodiment of the present invention in an animal model of acute renal failure.
  • BUN blood urea nitrogen
  • CRE creatinine
  • 15 is a diagram illustrating various pathways in which cisplatin causes acute renal failure and the substances and symptoms involved in the various pathways.
  • Mouse macrophage line RAW 264.7 was purchased from Korean Cell Line Bank and cultured.
  • DMEM purchased from ThermoFisher Scientific
  • medium containing 10% fetal bovine serum purchased from ThermoFisher Scientific
  • 1% antibiotic-antimycotics purchased from ThermoFisher Scientific 2 , and 37 ° C.
  • HS68 cells a human dermal fibroblast, were purchased from ATCC and cultured in RPMI 1640 supplemented with 10% fetal bovine serum (purchased from ThermoFisher Scientific) and 1% antibiotic-antimycotics (purchased from ThermoFisher Scientific) The cells were subcultured in DMEM (purchased from ThermoFisher Scientific) medium containing 5% CO 2 at 37 ° C.
  • adipose-derived stem cells were cultured at 5% CO 2 and 37 ° C. Then, the cells were washed with a phosphate-buffered saline (purchased from ThermoFisher Scientific), replaced with serum-free, non-phenol red medium, cultured for 1 to 10 days, and the supernatant .
  • a phosphate-buffered saline purchased from ThermoFisher Scientific
  • Trehalose was added to the culture medium in an amount of 2% by weight in order to obtain an exosome having a uniform particle size distribution and high purity in the process of separating exosome.
  • the culture was filtered with a 0.22 ⁇ m filter to remove impurities such as cellular debris, waste products and large particles.
  • the filtered cultures were immediately separated to isolate exosomes.
  • the filtered culture was stored in a refrigerator (image below 10 ° C) and used for exosome isolation.
  • the filtered culture was frozen in an ultra-low temperature freezer at -60 ° C or lower, and thawed, followed by exosome isolation. Then, the exosomes were separated from the culture medium by using Tangential Flow Filtration (TFF).
  • TMF Tangential Flow Filtration
  • Example 1 a TFF (Tangential Flow Filtration) method was used for separating, concentrating, desalting and diafiltration exosomes from a culture filtrated with a 0.22 ⁇ m filter.
  • a cartridge filter also called a hollow fiber filter (purchased from GE Healthcare) or a cassette filter (purchased from Pall or Sartorius or Merck Millipore) was used.
  • the TFF filter can be selected by a variety of molecular weight cutoffs (MWCO). Exosomes were selectively isolated and concentrated by selected MWCOs, and particles, proteins, lipids, nucleic acids, low molecular weight compounds, etc. smaller than MWCO were removed.
  • MWCO molecular weight cutoffs
  • TFF filters of MWCO 100,000 Da (Dalton), 300,000 Da, or 500,000 Da were used.
  • the culture medium was concentrated to a volume of about 1/100 to 1/25 using the TFF method, and substances smaller than MWCO were removed to separate the exosomes.
  • Separated and concentrated exosomal solutions were further desalted and buffered (diafiltration) using the TFF method.
  • the desalination and buffer exchange are performed by continuous diafiltration or discontinuous diafiltration, and at least 4 times, preferably 6 times to 10 times or more, more preferably, Was performed using a buffer solution having a volume of 12 times or more.
  • 2% by weight of trehalose dissolved in PBS was added to obtain an exosome having a uniform particle size distribution and high purity.
  • 6A to 6E show the effect of obtaining an exosome having a high purity and a uniform particle size distribution with trehalose treatment at a high yield.
  • the amount of protein in the fractions of the isolated exosome, culture medium, and TFF separation process was measured using BCA colorimetry (purchased from ThermoFisher Scientific) or FluoroProfile fluorescence (purchased from Sigma).
  • BCA colorimetry purchased from ThermoFisher Scientific
  • FluoroProfile fluorescence purchased from Sigma.
  • the extent to which the exosome was isolated and concentrated by the TFF method of the present invention and the removal of proteins, lipids, nucleic acids, and low-molecular compounds was monitored by a protein determination method, and the results are shown in FIG. As a result, it was found that the protein present in the culture solution was very effectively removed by the TFF method of one embodiment of the present invention.
  • FIG. 3 shows the results of comparing the productivity and purity in five independent batches when isolating exosomes by the TFF method of one embodiment of the present invention. As a result of analyzing the results obtained from the five independent batches, it was confirmed that the exosome can be separated very stably by the TFF method of one embodiment of the present invention.
  • 5A to 5C show results of NTA analysis of the size distribution of exosome according to whether or not trehalose was added after the exosome was separated by the TFF method.
  • concentration of trehalose was increased to 0% by weight, 1% by weight and 2% by weight (from top to bottom of FIGS. 5A to 5C) and repeated three times.
  • particles having a size of 300 nm or more were identified, while particles having a size of 300 nm or more were reduced by increasing the amount of trehalose, and the size distribution of the exosome was uniformized .
  • FIG. 4D shows the presence of CD9, CD63, CD81 and TSG101 markers as a result of performing Western blotting on isolated exosomes according to the method of one embodiment of the present invention.
  • Anti-CD9 purchased from Abcam
  • anti-CD63 purchasedd from System Biosciences
  • anti-CD81 purchasedd from System Biosciences
  • anti-TSG101 purchasedd from Abcam
  • FIG. 4E shows the presence of CD63 and CD81 markers as a result of analysis using a flow cytometer on exosomes isolated according to the method of one embodiment of the present invention.
  • Human CD63 isolation / detection kit purchased from ThermoFisher Scientific
  • PE-mouse anti-human CD63 PE-Mouse anti markers were stained using the PE-mouse CD63 (purchased from BD) and PE-mouse anti-human CD81 (purchased from BD), and analyzed using a flow cytometer (ACEA Biosciences) Respectively.
  • exosomes were treated by concentration to the cells and the proliferation rate of the cells was confirmed.
  • HS68 cells were suspended in DMEM containing 10% FBS, and the cells were mixed with 80 ⁇ 90% confluency and cultured in a 5% CO 2 incubator at 37 ° C for 24 hours. After 24 hours, the culture solution was removed, and the cell survival rate was evaluated by culturing the exosome prepared in Example 2 for each concentration and culturing for 24 to 72 hours.
  • WST-1 reagent purchased from Takara
  • MTT reagent purchased from Sigma
  • CellTiter-Glo reagent purchased from Promega
  • Aramar Blue reagent alamarBlue reagent purchased from ThermoFisher Scientific
  • a microplate reader purchased from Molecular Devices
  • the comparison group was based on the number of cells cultured in the normal cell culture medium not treated with exosome, and it was confirmed that the exosome-induced cytotoxicity did not appear within the tested concentration range (FIG. 7).
  • RAW 264.7 cells were suspended in DMEM medium containing 10% FBS and dispensed into each well of a multiwell plate to have a confluency of 80-90%.
  • the exosomes of the present invention diluted in a fresh serum-free medium containing LPS (exosome prepared in Example 2) were cultured for 1 to 24 hours at an appropriate concentration.
  • CDNA was prepared from the total RNA obtained from the RAW 264.7 cells treated as described above, and the amount of mRNA change of TNF- ⁇ and IL-6 was measured using a real-time PCR method.
  • the GAPDH gene was used as a standard gene for quantifying the above genes.
  • the types and sequences of the primers used in the real-time PCR are shown in Table 1 below.
  • the forward primer (5 '- > 3')
  • the reverse primer (5 '- > 3') TNF-a TCT CAT CAG TTC TAT GGC CCA GAC (SEQ ID NO: 1) GGC ACC ACT AGT TGG TTG TCT TTG (SEQ ID NO: 2) IL-6 GCC AGA GTC CTT CAG AGA GAT ACA (SEQ ID NO: 3) ATT GGA TGG TCT TGG TCC TTA GCC (SEQ ID NO: 4) GAPDH GAC ATC AAG AAG GTG GTG AAG CAG (SEQ ID NO: 5) CCC TGT TGC TGT AGC CGT ATT CAT (SEQ ID NO: 6)
  • proinflammatory cytokines such as TNF- ⁇ and IL-6) and anti-inflammatory cytokines (IL-10) are increased in patients with acute renal failure and leukocytes, chemokines, cytokines, Cells have been shown to play an important role in the development of acute renal failure (Kidney International, Vol. 66, Supplement 91 (2004), pp. S56-S61). Therefore, analysis of changes in TNF- ⁇ and IL-6 production or expression levels in macrophages involved in the inflammatory response revealed that the exosome of the present invention inhibited, reduced or alleviated the inflammatory response associated with acute renal failure, Can be evaluated.
  • the exosome of the present invention when the exosome of the present invention is treated with LPS against RAW 264.7 cells, which are macrophages of mice, the proinflammatory cytokine is closely related to acute renal failure and the inflammatory reaction involved therein And mRNA expression of TNF- ⁇ and IL-6, respectively.
  • Example 6 An animal model in which acute kidney damage was induced by cisplatin (acute kidney damage animal model 1)
  • Rats that underwent adaptation period were classified into 4 groups as follows. During the adaptation period, the rats were judged to be healthy and the rats were randomly distributed according to the weight of the rats so that the average weight of each group was maximally uniform. In the following experimental groups (2) to (4), cisplatin (purchased from Sigma) was dissolved in sterile physiological saline and intraperitoneally injected at a dose of 10 mg / kg to induce acute kidney injury.
  • Vehicle a normal control which does not show acute kidney injury
  • Cisplatin acute renal injury-induced control group: Negative control group in which acute renal injury was induced by intraperitoneal administration of cisplatin to rats;
  • Cisplatin + Exosome twice (exosome treatment group 2 of the present invention): 8 hours after administration of cisplatin, the exosome prepared in Example 2 was administered at a dose of 73.3 ⁇ g per subject And the same amount of exosomes repeatedly administered at 48 hours after the administration of the exosome.
  • FIG. 9 shows the survival rates of the rats in the rat model 1 in acute renal failure.
  • the survival rate rapidly decreased to 60% from the eighth day after the initiation of acute renal toxicity.
  • the experimental groups (3) to (4) in which the exosome of the present invention was administered after cisplatin administration 100%.
  • the exosome of the present invention was administered to an animal model of acute renal failure, the body weight reduced by acute renal injury was recovered faster than that of the negative control (FIG. 10).
  • FIG. 11 shows the results of confirming blood urea nitrogen (BUN) and creatinine (CRE) levels in blood collected from rats of the rat model of acute kidney damage. Blood was collected on the 6th day after cisplatin administration. It was found that the blood urea nitrogen and creatinine levels in the experimental groups (3) to (4) in which the exosome of the present invention was administered after cisplatin administration were significantly lower than those in the negative control group.
  • BUN blood urea nitrogen
  • CRE creatinine
  • the exosome of the present invention reduces the mortality rate due to acute renal failure in acute renal failure animal model 1, and quickly restores the reduced weight due to acute renal failure.
  • the exosomes of the present invention significantly improved indices relating to nephrotoxicity. Accordingly, the composition containing the exosome of the present invention as an active ingredient can effectively prevent nephropathy-related indicators and renal function, thereby preventing, alleviating, ameliorating, or treating various kidney diseases.
  • Example 7 An animal model in which acute kidney damage was induced by cisplatin (acute kidney damage animal model 2)
  • Rats that underwent adaptation period were classified into 6 groups as follows. During the adaptation period, the rats were judged to be healthy and the rats were randomly distributed according to the weight of the rats so that the average weight of each group was maximally uniform.
  • cisplatin purchased from Sigma
  • Vehicle a normal control which does not show acute kidney injury
  • Cisplatin acute renal injury-induced control group: Negative control group in which acute renal injury was induced by intraperitoneal administration of cisplatin to rats;
  • Example 2 Experimental group in which the exosomes prepared in Example 2 were administered intravenously at a dose of 70 ⁇ g per 8 hours after cisplatin administration;
  • Fig. 12 shows the survival rates of the rats in the rat model 2 in acute renal failure.
  • the survival rate rapidly decreased to 20% from the eighth day after the initiation of acute renal injury, whereas in the experimental groups (4) to (6) in which the exosome of the present invention was administered after cisplatin administration, acute renal failure The mortality rate was decreased and the mortality was delayed.
  • FIG. 14 shows the results of confirming blood urea nitrogen (BUN) and creatinine (CRE) levels in blood drawn from rats in an acute renal injured animal model 2. Blood sampling was performed on the day of initiation of acute renal injury induced by cisplatin (day 0) and on day 2 and 4 after initiation of acute renal injury induction, respectively.
  • the blood urea nitrogen (BUN) and creatinine (CRE) levels in the blood of each experimental group were measured for each day of blood sampling.
  • the blood urea nitrogen (BUN) and creatinine (CRE) levels in the negative control group rapidly increased on the fourth day after administration of cisplatin.
  • blood urea nitrogen and creatinine levels were significantly decreased in a dose-dependent manner compared with the negative control group.
  • the exosome of the present invention reduces the mortality rate due to acute renal injury dose-dependently in acute renal failure animal model 2, and quickly restores the reduced weight by acute renal failure .
  • the exosomes of the present invention significantly improved indices related to nephrotoxicity in a dose-dependent manner. Accordingly, the composition comprising the exosome of the present invention as an effective ingredient can effectively prevent the nephrotoxicity-related indicators and renal function of the exosome in a dose-dependent manner, thereby preventing, alleviating, ameliorating, or treating various kidney diseases.
  • cisplatin causes acute renal failure by various routes, and various substances and symptoms are involved in the pathway of acute renal failure.
  • the vascular injury, ischemia, inflammation, renal tubular cell death, and related substances in the diagram of FIG. 15 can be used for various renal diseases and kidney function besides acute renal failure You may be involved in disability.
  • the composition comprising the exosome of the present invention as an active ingredient can improve, reduce or alleviate the acute nephrotoxicity caused by cisplatin, suggests that the composition of the present invention merely improves, reduces or alleviates acute nephrotoxicity In addition, it strongly suggests that the above-mentioned various renal diseases and renal dysfunction can be treated, alleviated or ameliorated by interacting with various symptoms and substances associated with the mechanism of acute renal failure.
  • composition comprising the exosome of the present invention as an active ingredient may exhibit significant efficacy in the improvement of renal function and / or prevention, alleviation, improvement or treatment of a renal disease due to various causes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는, 신장 기능 개선 및/또는 신장 질환의 예방, 완화, 개선 또는 치료용 조성물을 제공한다. 본 발명의 조성물은 신장염 내지는 급성신장손상(AKI)과 관련이 있는 염증성 사이토카인 및 염증관련 인자의 생성을 감소시키고 신독성 관련 지표들 및 신장 기능을 효과적으로 개선하여 각종 신장 질환을 예방, 완화, 개선, 또는 치료할 수 있다.

Description

지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 용도
본 발명은 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 용도에 관한 것이다.
또한, 본 발명은 상기 조성물을 포함하는 신장 기능 개선 및/또는 신장질환의 예방, 완화, 개선 또는 치료용 약학 조성물에 관한 것이다.
추가로, 본 발명은 신장 기능 개선 및/또는 신장질환의 예방, 완화, 개선 또는 치료에 있어서 임상적 적용이 가능한 고순도이면서 입자크기 분포가 균일한 지방줄기세포 유래의 엑소좀을 대량으로 수득할 수 있고, 이와 같이 수득된 기능적 활성이 우수한 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 신장 기능 개선용 조성물을 저가로 대량으로 제공할 수 있는 임상 및 상업적으로 뛰어난 기술에 관한 것이다.
만성 신부전은 3개월 이상 신장이 손상되어 있거나 신장 기능 감소가 지속적으로 나타나는 것을 말한다. 만성 신부전의 원인은 지역 및 나이 등에 따라 다르지만, 주된 발병 원인은 당뇨병성 신장질환(41%), 고혈압(16%), 사구체신염(14%) 등이다. 그 밖의 원인으로는 다낭성 신질환과 유전적 요인, 기타 요로질환이 있다.
급성 신부전(acute renal failure) 또는 급성 신장 손상(acute kidney injury)은 신장의 급작스런 여과 장애, 요독의 축적, 전해질과 산-염기 평형의 불균형, 항암제 혹은 조영제 등의 다양한 약물 혹은 신독성을 가진 화학물질 등에 의해서 수시간에서 수일 동안 발생하게 되는 증후군으로 신장 독성물질(20~25%)과 신장 허혈(30~35%)에 의한 급성 세뇨관 괴사(nephrosis)가 주 원인으로 알려져 있으며, 기타 전염성 질병에 의한 신염(nephritis)에 의한 경우가 약 10%, 원인을 알 수 없는 경우가 20~25%로 알려져 있다.
신장 섬유증(renal fibrosis)은 상기 신부전의 복구과정 및 신장의 손상으로 인한 염증의 치유과정에서 섬유화(조직이 손상 후 복귀될 때, 콜라겐 등이 축적되어 조직이 경화)를 일으켜 발생하게 된다.
만성 신부전은 유병률이 전세계 성인의 약 10-14%에 해당하며, 미국 성인 집단에서 약 2천만명에 해당할 것으로 예측이 되고 있다. 2017년까지 전세계 만성 신부전 치료제 시장은 약 730 억불로 추정되고 있다(Kidney and renal disease global therapeutics market, GBI(2011)).
하지만, 아직까지 유효한 신장 기능 개선 및/또는 신장 질환의 치료용 조성물은 개발되어 있지 않으며, 만성 신부전의 원인이 되는 고혈압, 당뇨, 고지혈증에 대한 철저한 관리 및 이에 대한 치료요법을 사용하거나, 말기 신부전에 이를 경우 신장의 기능을 대신해 줄 수 있는 혈액투석, 복막투석이나 신장 이식을 받아야 하는 실정이다.
한편, 줄기세포를 이용한 조직 재생 및 치료 방법이 제안되고 있다. 배아줄기세포 또는 태아조직 유래 줄기세포는 분화능력 및 재생치료능력이 우수하고 거부반응이 적지만, 윤리적 문제로 임상에 적용될 수 없고 종양을 형성할 수 있는 위험성이 존재한다. 이에 대한 대안으로서 성체줄기세포를 이용한 조직 재생 및 치료 방법이 제안되었다. 그러나, 환자 자신의 성체줄기세포가 이닌 타인의 성체줄기세포를 사용한 경우 이식편대숙주병(graft-versus-host disease)을 일으킬 위험이 있고, 자가 성체줄기세포를 이용하여 치료를 하기 위해서는 환자로부터 성체줄기세포를 채취한 후 이를 배양하는 과정이 필요하여 복잡하고 비용이 많이 드는 문제가 있다.
최근에는 전술한 바와 같은 줄기세포의 문제점을 감안하여 성체줄기세포를 배양하여 얻은 배양액을 이용하여 조직 재생 및 치료를 하고자 하는 시도가 있다. 그러나, 성체줄기세포 배양액에는 성체줄기세포가 분비하는 다양한 단백질, 사이토카인, 성장인자 등이 함유되어 있는 반면, 세포가 성장하면서 분비한 노폐물, 오염방지를 위해 첨가된 항생제, 동물유래 혈청 등의 성분도 포함되어 있기 때문에 손상된 조직에 사용할 경우 각종 위험에 노출될 가능성이 높다.
최근 세포 분비물(secretome)에 세포의 행동(behavior)을 조절하는 다양한 생체활성인자가 포함되어 있다는 연구가 보고되고 있으며, 특히 세포 분비물 내에는 세포 간 신호전달 기능을 갖는 '엑소좀(exosome)'이 포함되어 있어 그 성분과 기능에 대한 연구가 활발히 진행 중에 있다.
세포는 세포외 환경에 다양한 막(membrane) 유형의 소포체를 방출하는데, 통상 이러한 방출 소포체들을 세포외 소포체(Extracellular vesicles, EV)라고 부르고 있다. 세포외 소포체는 세포막 유래 소포체, 엑토좀(ectosomes), 쉐딩 소포체(shedding vesicles), 마이크로파티클(microparticles), 엑소좀 등으로 불려지기도 하며, 경우에 따라서는 엑소좀과는 구별되어 사용되기도 한다.
엑소좀은 세포막의 구조와 동일한 이중인지질막으로 이루어진 수십 내지 수백 나노미터 크기의 소포체로서 내부에는 엑소좀 카고(cargo)라고 불리는 단백질, 핵산(mRNA, miRNA 등) 등이 포함되어 있다. 엑소좀 카고에는 광범위한 신호전달 요소들(signaling factors)이 포함되며, 이들 신호전달 요소들은 세포 타입에 특이적이고 분비세포의 환경에 따라 상이하게 조절되는 것으로 알려져 있다. 엑소좀은 세포가 분비하는 세포 간 신호전달 매개체로서 이를 통해 전달된 다양한 세포 신호는 표적 세포의 활성화, 성장, 이동, 분화, 탈분화, 사멸(apoptosis), 괴사(necrosis)를 포함한 세포 행동을 조절한다고 알려져 있다. 엑소좀은 유래된 세포의 성질 및 상태에 따라 특이적인 유전물질과 생체활성 인자들이 포함되어 있다. 증식하는 줄기세포 유래 엑소좀의 경우 세포의 이동, 증식 및 분화와 같은 세포 행동을 조절하고, 조직 재생과 관련된 줄기세포의 특성이 반영되어 있다(Nature Review Immunology 2002 (2) 569-579).
그러나, 엑소좀을 이용한 일부 질환의 치료에 대한 가능성 제시 등 다양한 연구가 이루어지고 있음에도 불구하고, 보다 면밀한 임상 및 비임상 연구가 필요하며, 특히 엑소좀이 작용하는 다양한 표적을 과학적으로 규명하여 엑소좀을 다양한 질환 치료에 응용할 수 있는 기술의 개발이 필요한 실정이다.
이에 본 발명자들은 지방줄기세포로부터 유래된 엑소좀의 새로운 용도에 대해 예의 연구를 거듭하던 중, 지방줄기세포 배양액으로부터 분리된 엑소좀이 전술한 바와 같은 줄기세포 자체나 줄기세포 배양액의 안전성 문제를 해결할 수 있고, 급성 신장 손상(acute kidney injury)을 포함한 신장질환의 예방, 완화, 개선 또는 치료에 효과적임을 확인하여 본 발명을 완성하였다.
한편, 상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 본 발명의 "선행 기술"로서 이용될 수 있다는 승인으로서 인용한 것은 아님을 이해하여야 한다.
본 발명의 목적은 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 및/또는 신장질환의 예방, 완화, 개선 또는 치료용도를 제공하는데 있다.
본 발명의 다른 목적은 상기 조성물을 포함하는 신장 기능 개선 및/또는 신장질환의 예방, 완화, 개선 또는 치료용 약학 조성물을 제공하는데 있다.
본 발명의 또 다른 목적은 고순도이면서 입자크기 분포가 균일한 지방줄기세포 유래의 엑소좀을 대량으로 수득할 수 있고, 이와 같이 수득된 기능적 활성이 우수한 지방줄기세포 유래의 엑소좀을 유효성분으로 함유하는 신장 기능 개선용 조성물을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 조성물을 이용하여 신장 기능을 개선하거나 신장질환을 예방, 완화, 개선 또는 치료하는 방법을 제공하는데 있다.
그러나, 전술한 바와 같은 본 발명의 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 제한되는 것은 아니다. 또한, 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는, 신장 기능 개선 및/또는 신장 질환의 예방, 완화, 개선 또는 치료용 조성물을 제공한다.
또한, 본 발명은 신장 기능 개선 및/또는 신장질환의 예방, 완화, 개선 또는 치료에 있어서 임상적 적용이 가능한 고순도이면서 입자크기 분포가 균일한 지방줄기세포 유래의 엑소좀을 대량으로 수득할 수 있고, 이와 같이 수득된 기능적 활성이 우수한 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 신장 기능 개선용 조성물을 저가로 대량으로 제공할 수 있는 임상 및 상업적으로 뛰어난 신규한 기술을 제공한다.
본 명세서에서 용어, "엑소좀(exosomes)"은 세포막의 구조와 동일한 이중인지질막으로 이루어진 수십 내지 수백 나노미터(바람직하게는 대략 30~200 nm) 크기의 소포체를 의미한다(단, 분리 대상이 되는 세포 종류, 분리방법 및 측정방법에 따라 엑소좀의 입자 크기는 가변될 수 있음)(Vasiliy S. Chernyshev et al., "Size and shape characterization of hydrated and desiccated exosomes", Anal Bioanal Chem, (2015) DOI 10.1007/s00216-015-8535-3). 엑소좀에는 엑소좀 카고(cargo)라고 불리는 단백질, 핵산(mRNA, miRNA 등) 등이 포함되어 있다. 엑소좀 카고에는 광범위한 신호전달 요소들(signaling factors)이 포함되며, 이들 신호전달 요소들은 세포 타입에 특이적이고 분비세포의 환경에 따라 상이하게 조절되는 것으로 알려져 있다. 엑소좀은 세포가 분비하는 세포 간 신호전달 매개체로서 이를 통해 전달된 다양한 세포 신호는 표적 세포의 활성화, 성장, 이동, 분화, 탈분화, 사멸(apoptosis), 괴사(necrosis)를 포함한 세포 행동을 조절한다고 알려져 있다.
본 명세서에서 용어 "신장 질환"은 특별히 제한되지 않으며, 바람직하게는 신부전(예를 들어, 급성 신부전, 만성 신부전 등), 신병증(nephropathy)(예를 들어, 당뇨병성 신병증, IgA 신병증, 진통제 신병증, 통풍 신병증, 고요산 신병증, 막성 신병증, 폐쇄 신병증, 역류 신병증, 요산염 신병증 등), 신염(nephritis)[예를 들어, 사구체 신염, 간질성 신염(interstitial nephritis), 루푸스 신염, 급성 진행성 신염, 진통제 신염, 사구체요세관 신염, 막성증식성사구체신염, 출혈성 신염, 칼륨상실 신염, 방사선 신염, 납독성 신염 등], 네프로제 증후군(nephrotic syndrome), 신섬유화증(renal fibrosis), 신경화증(nephrosclerosis), 혈뇨증, 요로감염증, 신우염 및 신경색 등을 포함한다.
또한, 본 명세서에서 용어 "신장 기능 개선"은 다양한 원인에 기인하여 저하된 신장 기능을 개선하는 의미로 사용되며, 예를 들어, 사구체 과다 여과와 관련된 신장 기능 장애, 당뇨병에 의해 발병한 신장 기능 장애, 비신장성 고혈압에 의해 발병한 신장 기능 장애, 사구체신염에 의해 발병한 신장 기능 장애, 상행성 요로 감염증에 의해 발병한 신장 기능 장애, 겸상 적혈구 빈혈증에 의해 발병한 신장 기능 장애, 신장 절제 후의 보상성 비대증에 의해 발병한 신장 기능 장애, 혈관간세포 기능 장애에 의해 발병한 신장 기능 장애 등을 개선, 경감 및/또는 완화하는 것을 의미할 수 있다.
본 발명을 한정하지 않고 설명을 위한 하나의 예시로서, 본 발명의 조성물에 의해 예방, 완화, 개선 또는 치료될 수 있는 신부전은 항암제, 항생제, 항균제, 조영제, 화학요법제, 금속, 유기용매 또는 화학약품과 같은 물질의 사용 또는 노출에 의해 발병되는 급성 또는 만성 신부전을 포함할 수 있다.
그 동안 골수 줄기세포, 혈관내피 전구세포(endothelial progenitor cell), 제대 줄기세포, 와튼젤리(Wharton's jelly) 줄기세포, 제대혈 줄기세포 등과 같은 성체줄기세포, 배아줄기세포, 또는 태아조직 유래 줄기세포 등과 같은 분화능이 우수한 세포들 및 이들 세포들로부터 분리된 엑소좀이나 세포외 세포체를 이용하여 급성 신장 손상(acute kidney injury)이나 허혈 재관류 손상(ischemia-reperfusion injury)을 완화 또는 개선시켜 이를 신장 질환 치료에 적용하고자 한 시도들이 있었다.
그러나, 종래기술에서 사용된 골수 줄기세포나 골수 내에 존재하는 혈관내피 전구세포는 인체로부터 채취 시 고통을 수반하는 침습적 방법을 사용하는 문제가 있고, 채취된 줄기세포 자체가 소량일 뿐만아니라 이의 배양액으로부터 분리되는 엑소좀 역시 소량이기 때문에 임상에 광범위하게 적용하기에는 한계가 있었다. 또한, 제대 줄기세포, 제대에 존재하는 와튼젤리 줄기세포, 및 제대혈 줄기세포 역시 산모로부터 제한적으로만 입수될 수 있고, 줄기세포 배양액으로부터 분리된 엑소좀 역시 소량이기 때문에 임상에 광범위하게 적용하기에는 한계가 있었다. 그리고, 배아줄기세포 또는 태아조직 유래 줄기세포와 이의 배양액으로부터 분리되는 엑소좀은 윤리적 문제로 임상에 적용될 수 없고, 종양을 형성할 수 있는 위험성이 존재한다.
지방에서 유래한 지방줄기세포(adipose-derived stem cells)는 지방 흡입술과 같은 간단한 시술에 의해 대량으로 입수가 가능하지만, 지방 내에 세포 잔해물, 노폐물, 단백질 및 거대입자와 같은 불순물이 많아 지방 유래 줄기세포 배양액으로부터 고순도이면서 입자크기 분포가 균일한 엑소좀을 경제적으로 대량으로 분리하는 것이 어렵다. 특히, Nephrol Dial Transplant (2013) 28: 788~793의 논문에서는 골수 줄기세포나 제대혈 줄기세포는 급성 신부전 개선에 효과가 있지만, 지방 유래 줄기세포는 그 효과가 없다고 기술하고 있어(789페이지 오른쪽 칼럼 28~34행 참조), 지방줄기세포 유래의 엑소좀 역시 신장 질환의 개선 또는 치료에 있어 효과적인 수단이 아니라는 것이 당업계의 일반적인 인식이었다.
현재까지 대량 배양이 가능한 지방줄기세포를 배양한 후, 지방줄기세포 배양액으로부터 대량으로 경제적으로 분리 정제된 엑소좀을 신장 기능 개선 및/또는 신장질환의 예방, 완화, 개선 또는 치료에 임상적으로 적용가능하게 구현한 치료제는 개발된 바가 없다. 지방에서 유래한 지방줄기세포(adipose-derived stem cells)는 지방 흡입술과 같은 간단한 시술에 의해 대량으로 입수가 가능하고 골수, 제대 또는 제대혈 등에 비해 약 40배 정도의 줄기세포가 있어 상업적으로는 가장 원가가 저렴하고 생산량이 많지만, 지방 내에 세포 잔해물, 노폐물, 단백질 및 거대입자와 같은 불순물이 많아 지방 유래 줄기세포 배양액으로부터 고순도이면서 입자크기 분포가 균일한 엑소좀을 경제적으로 대량으로 분리하는 것이 어렵다. 따라서, 경제성 측면에서 지방줄기세포 배양액으로부터 고순도의 입자크기 분포가 균일한 엑소좀을 대량으로 분리하는 것에는 기술적 장벽이 있었다.
본 발명의 조성물은 약학 조성물로 적용될 때, 유효성분으로 함유된 지방줄기세포 유래의 엑소좀이 신장 기능 개선 및/또는 신장질환의 예방, 완화, 개선 또는 치료에 유의적인 효과를 나타내며, 줄기세포 자체나 줄기세포 배양액의 안전성 문제를 해결할 수 있다. 따라서, 본 발명의 신장 기능 개선 및/또는 신장질환의 예방, 완화, 개선 또는 치료용 조성물은 지방줄기세포가 신장 질환의 개선 또는 치료에 있어 효과가 없다는 당업계의 일반적인 상식을 뒤엎는 것으로서 종래기술로부터 전혀 예측할 수 없는 것임을 명백히 밝혀 둔다.
본 발명의 일 구체예의 신장 기능 개선 및/또는 신장 질환의 예방, 완화, 개선 또는 치료용 조성물은, 지방줄기세포 유래의 엑소좀을 유효성분으로 포함한다.
본 발명의 일 구체예의 조성물에 있어서, 상기 엑소좀은 하기의 단계들을 수행하여 수득될 수 있다: (a) 지방줄기세포 배양액에 트레할로오스를 첨가하는 단계, (b) 상기 트레할로오스가 첨가된 지방줄기세포 배양액을 여과하는 단계, (c) 상기 여과된 지방줄기세포 배양액으로부터, TFF(Tangential Flow Filtration)를 이용하여 엑소좀을 분리하는 단계, 및 (d) 탈염과 버퍼교환(diafiltration)에 사용되는 완충용액에 트레할로오스를 첨가하고, 상기 트레할로오스가 첨가된 완충용액을 이용한 TFF(Tangential Flow Filtration)를 이용하여, 상기 분리된 엑소좀에 대한 탈염과 버퍼교환(diafiltration)을 수행하는 단계.
본 발명의 일 구체예의 조성물에 있어서, 상기 (d) 단계에서 탈염과 버퍼교환(diafiltration)에 사용되는 완충용액에 트레할로오스를 첨가하면, 입자크기 분포가 균일하고 순도가 높은 엑소좀을 효과적으로 수득할 수 있다(도 6A 내지 도 6E 참조). 본 발명에서는 TFF에 의한 엑소좀 분리 전의 사전 여과 과정((b) 단계)과 엑소좀 분리 후 TFF에 의한 탈염 및 버퍼교환 과정((d) 단계)에서 트레할로우스를 사용하는 것에 의해 고순도의 입자크기 분포가 균일한 엑소좀을 높은 수율로 수득할 수 있다.
한편, 본 발명에 있어서 트레할로오스는 세포 잔해물, 노폐물, 단백질 및 거대 입자와 같은 불순물에 대해 엑소좀을 효율적으로 분별할 수 있는 기능을 부여한다.
본 발명의 일 구체예의 조성물에 있어서, 상기 탈염과 버퍼교환은 연속적으로 수행하거나 단속적으로 수행할 수 있다. 시작 부피(starting volume)에 대하여 적어도 4배, 바람직하게는 6배 내지는 10배 이상, 보다 바람직하게는 12배 이상의 부피를 갖는 완충용액을 이용하여 탈염과 버퍼교환을 수행할 수 있다.
본 발명의 일 구체예의 조성물에 있어서, TFF를 위해 MWCO(molecular weight cutoff) 100,000 Da(Dalton), 300,000 Da, 500,000 Da 또는 750,000 Da의 TFF 필터, 또는 0.05 μm TFF 필터를 사용할 수 있다.
본 발명의 일 구체예의 조성물에 있어서, 상기 (c) 단계는 TFF(Tangential Flow Filtration)를 이용하여 1/100 내지 1/25의 부피까지 농축하는 과정을 더 포함할 수 있다.
본 발명의 일 구체예의 조성물은 신독성과 관련한 지표들을 개선할 수 있다. 예를 들어, 본 발명의 일 구체예의 조성물은 혈액요소질소(BUN)와 크레아티닌(CRE) 수치를 감소시킬 수 있고, 특히 상기 엑소좀의 용량 의존적으로 혈액요소질소(BUN)와 크레아티닌(CRE) 수치를 감소시킬 수 있다.
본 발명의 일 구체예의 조성물은 급성신장손상에 의해 감소된 개체 체중의 회복, 급성신장손상에 의한 개체 사망률 감소, 또는 급성신장손상에 의한 개체 사망의 지연 중 적어도 하나의 효능을 나타낼 수 있다. 특히, 상기 효능은 상기 엑소좀의 용량 의존적일 수 있다.
본 발명의 일 구체예의 조성물에 있어서, 상기 엑소좀은 시험관내 분석에서 TNF-α 및 IL-6의 발현량을 감소시키는 것을 특징으로 한다.
본 발명의 일 구체예의 조성물에서 상기 지방줄기세포의 종류는 병원체에 의한 감염의 위험이 없고 면역 거부 반응을 일으키지 않는 것이라면 제한되지 않으나, 바람직하게는 인간지방 유래 줄기세포일 수 있다.
본 발명의 조성물은 다양한 원인에 기인하여 저하된 신장 기능 개선 및/또는 신장 질환의 예방, 완화, 개선 또는 치료에 있어서 유의적인 효능을 나타낼 수 있다.
본 발명의 일 구체예의 조성물은 약학 조성물로 제조될 수 있다. 본 발명의 일 구체예의 조성물이 약학 조성물로 제조되는 경우, 본 발명의 일 구체예에 따른 약학 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다.
본 발명의 일 구체예의 약학 조성물은 약학적으로 허용 가능한 담체, 부형제 또는 희석제 등을 포함할 수 있다. 상기 담체, 부형제 및 희석제로는 락토오스, 덱스트로오스, 트레할로오스, 수크로오스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 카보네이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로오스, 미정질 셀룰로오스(microcrystalline cellulose), 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 미네랄 오일 등을 들 수 있으며, 이에 제한되지 않는다. 본 발명의 일 구체예의 약학 조성물은 통상의 방법에 따라 산제, 환제, 정제, 캡슐제, 현탁제, 에멀젼, 시럽, 과립제, 엘릭시르제(elixirs), 에어로졸 등의 경구투여용 제제, 외용제, 좌제, 또는 멸균 주사용액의 형태로 제형화하여 사용할 수 있다.
본 발명의 일 구체예의 약학 조성물의 투여는 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며, 상기 약학 조성물의 투여경로는 약물이 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 예를 들어, 본 발명의 일 구체예의 약학 조성물은 경구 또는 비경구 투여할 수 있으며, 비경구 투여로는 경피 투여, 복강 내 투여, 정맥 내 투여, 동맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여, 국소 투여, 직장 내 투여 등을 거론할 수 있다. 그러나, 이에 제한되는 것이 아니며 당업계에 알려진 다양한 투여 방법을 배제하지 않는다. 또한, 본 발명의 일 구체예의 약학 조성물은 활성 물질이 표적 조직 또는 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다. 또한, 본 발명의 일 구체예의 약학 조성물의 유효량은 질환 치료 효과를 기대하기 위하여 투여에 요구되는 양을 의미한다.
본 발명의 일 구체예의 약학 조성물의 비경구 투여용 제제는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조 제제, 또는 좌제일 수 있다. 본 발명의 일 구체예의 약학 조성물의 비경구 투여용 제제는 주사제로도 제조될 수 있다. 본 발명의 일 구체예의 주사제는 수성 주사제, 비수성 주사제, 수성 현탁 주사제, 비수성 현탁 주사제, 또는 용해 또는 현탁하여 사용하는 고형 주사제 등일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 일 구체예의 주사제는 그 종류에 따라 주사용 증류수, 식물유(예를 들어, 낙화생유, 참기름, 동백기름 등), 모노글리세리드, 디글리세리드, 프로필렌글리콜, 캄퍼, 벤조산에스트라디올, 차살리실산비스무트, 아르세노벤졸나트륨, 또는 황산스트렙토마이신 중 적어도 1종을 포함할 수 있고, 선택적으로 안정제나 방부제를 포함할 수 있다.
본 발명의 일 구체예의 약학 조성물의 배합비율은 전술한 바와 같은 추가 성분들의 종류나 양, 형태 등에 따라서 적당하게 선택할 수 있다. 예를 들어, 주사제 전량에 대해, 본 발명의 약학 조성물은 약 0.1 내지 99 중량%, 바람직하게는 약 10 내지 90 중량% 정도 포함될 수 있다. 또한, 본 발명의 일 구체예의 약학 조성물의 적합한 투여량은 환자의 질환 종류, 질환의 경중, 제형의 종류, 제제화 방법, 환자의 연령, 성별, 체중, 건강 상태, 식이, 배설률, 투여 시간 및 투여 방법에 따라 조절될 수 있다. 예를 들어, 성인에게 본 발명의 일 구체예의 약학 조성물을 투여하는 경우, 하루에 0.001 mg/kg ~ 100 mg/kg의 용량으로 1 내지 수회에 나누어 투여할 수 있다.
본 발명의 다른 구체예는 상기 약학 조성물의 치료학적으로 유효한 양을 포유동물에게 투여하는 단계를 포함하는, 신장 기능을 개선하거나 신장질환을 예방, 완화, 개선 또는 치료하는 방법을 제공한다.
본 발명의 조성물은 신장염 내지는 급성신장손상(AKI)과 관련이 있는 염증성 사이토카인 및 염증관련 인자의 생성을 감소시키고 신독성 관련 지표들 및 신장 기능을 효과적으로 개선하여 각종 신장 질환을 예방, 완화, 개선, 또는 치료할 수 있다. 따라서, 본 발명의 조성물은 신장 기능 개선 및/또는 신장 질환의 예방, 완화, 개선 또는 치료용 약학 조성물로서 유용하게 사용될 수 있다.
또한, 본 발명은 고순도이면서 입자크기 분포가 균일한 지방줄기세포 유래의 엑소좀을 저가로 대량으로 수득할 수 있다. 따라서, 본 발명은 기능적 활성이 우수한 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 신장 기능 개선용 조성물을 저가로 대량으로 제공할 수 있다. 또한, 본 발명의 조성물은 스케일-업(scale-up)이 가능하고 GMP(Good Manufacturing Practice)에도 적합하다.
한편, 전술한 바와 같은 효과들에 의해 본 발명의 범위가 제한되는 것은 아니다.
도 1은 본 발명의 일 구체예에 따라 지방줄기세포 배양액으로부터 엑소좀을 제조하는 방법에 있어서 엑소좀을 분리 및 정제하는 과정을 설명하는 플로우챠트이다.
도 2는 본 발명의 일 구체예에 따라 지방줄기세포 배양액으로부터 엑소좀을 제조하는 단계(step)별로 용액 내에 포함되어 있는 단백질의 총량 비율(Relative amount of protein)을 측정한 결과를 나타낸다. 각 단계별 단백질 총량의 비율은 지방줄기세포 배양액 전체에 대한 단백질 총량의 상대적 비율로 나타내었다. 실험 결과는 2개의 서로 다른 배치에서 얻어진 결과를 각각 도시하였다.
도 3은 본 발명의 일 구체예에 따라 얻어진 엑소좀의 생산성(productivity)과 순도(purity)를 측정한 결과를 도시한 것이다. 엑소좀의 생산성은 "지방줄기세포 배양액(CM) 단위 mL 당 얻어진 엑소좀의 입자수"로 계산하였고, 엑소좀의 순도는 "최종 분획물에 포함되어 있는 단백질 단위 μg 당 엑소좀의 입자수"로 계산하였다. 실험 결과는 5개의 서로 다른 배치(batch)에서 얻어진 결과를 도시하였다.
도 4A 내지 도 4E는 본 발명의 일 구체예에 따라 얻어진 엑소좀의 물리적 특성 분석 결과를 도시한 것이다. "도 4A"는 TRPS(tunable resistive pulse sensing) 분석에 의한 입자 크기 분포와 입자수를 나타낸다. "도 4B"는 NTA(nanoparticle tracking analysis) 분석에 의한 입자 크기 분포와 입자수를 나타낸다. "도 4C"는 TEM(transmitted electron microscopy) 분석에 의한 입자 이미지를 배율에 따라 도시하였다. "도 4D"는 본 발명의 일 구체예에 따라 얻어진 엑소좀의 웨스턴 블랏 결과를 나타낸다. "도 4E"는 본 발명의 일 구체예에 따라 얻어진 엑소좀에 대한 마커 분석에 있어서 CD63 및 CD81에 대한 유세포분석 결과를 나타낸다.
도 5A 내지 도 5C는 트레할로오스 첨가에 따라 입자크기 분포가 균일하고 순도가 높은 엑소좀이 수득되는 것을 보여주는 입자 크기 분포에 관한 NTA 분석 결과를 도시한다. 첨가된 트레할로오스의 양이 증가함에 따라 단일한 피크를 갖는 입자 크기 분포 결과를 얻을 수 있다.
도 6A 내지 도 6C는 본 발명의 일 구체예에 따른 엑소좀의 제조과정에서 트레할로오스 첨가 여부에 따른 입자 크기 분포를 나타내는 NTA 분석 결과를 도시한다. "도 6A"는 제조 과정 전과정에서 트레할로오스를 첨가한 경우, "도 6B"는 세포 배양액을 동결 보관하였다가 해동한 후 트레할로오스를 첨가한 경우, "도 6C"는 트레할로오스를 첨가하지 않고 제조한 결과를 나타낸다. "도 6D"에는 도 6A 내지 도 6C 방법에 의하여 분리한 엑소좀의 상대적인 생산성(Relative productivity)과 상대 농도(Relative concentration)를 비교한 결과를 도시하였다. "도 6E"에는 도 6A 내지 도 6C 방법에 의하여 분리한 엑소좀의 평균 입자크기(Mean size)를 도시하였다.
도 7은 인체 피부섬유아세포인 HS68 세포에 본 발명의 일 구체예에 따른 엑소좀을 처리한 후 세포 독성이 없음을 확인한 결과를 도시한다.
도 8은 RAW 264.7 세포에 대해 LPS와 함께 본 발명의 엑소좀을 처리한 경우 LPS에 의해 유도되는 TNF-α 및 IL-6의 mRNA 발현량이 감소한 것을 확인한 리얼타임 PCR 결과를 도시한 그래프이다.
도 9는 시스플라틴에 의해 급성신장손상이 유발된 동물 모델(급성신장손상 동물모델 1)에 본 발명의 일 구체예에 따른 엑소좀을 처리한 결과, 급성신장손상에 의한 개체 사망률이 감소한 것을 나타내는 그래프이다.
도 10은 급성신장손상 동물모델 1에 본 발명의 일 구체예에 따른 엑소좀을 처리한 결과, 급성신장손상에 의해 감소된 체중이 음성 대조군에 비해 빠르게 회복되는 것을 나타내는 그래프이다.
도 11은 급성신장손상 동물모델 1에 본 발명의 일 구체예에 따른 엑소좀을 처리한 결과, 랫트 혈액 내의 혈액요소질소(BUN)와 크레아티닌(CRE) 수준이 음성 대조군에 비해 감소한 결과를 도시한 그래프이다.
도 12는 시스플라틴에 의해 급성신장손상이 유발된 동물 모델(급성신장손상 동물모델 2)에 본 발명의 일 구체예에 따른 엑소좀을 처리한 결과, 엑소좀의 용량 의존적으로, 급성신장손상에 의한 개체 사망률이 감소한 것을 나타내는 그래프이다.
도 13은 급성신장손상 동물모델 2에 본 발명의 일 구체예에 따른 엑소좀을 처리한 결과, 엑소좀의 용량 의존적으로, 급성신장손상에 의해 감소된 체중이 음성 대조군에 비해 빠르게 회복되는 것을 나타내는 그래프이다.
도 14는 급성신장손상 동물모델 2에 본 발명의 일 구체예에 따른 엑소좀을 처리한 결과, 엑소좀의 용량 의존적으로 랫트 혈액 내의 혈액요소질소(BUN)와 크레아티닌(CRE) 수준이 음성 대조군에 비해 감소한 결과를 도시한 그래프이다.
도 15는 시스플라틴이 급성신부전을 일으키는 다양한 경로와, 이에 관여하는 물질 및 증상을 설명하는 다이어그램이다.
이하 본 발명을 하기 실시예에서 보다 상세하게 기술한다. 다만, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아니다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 통상의 기술자가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다. 본 발명에 인용된 참고문헌들은 본 발명에 참고로서 통합된다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
실시예
실시예 1: 세포의 배양
마우스 대식세포주인 RAW 264.7은 한국세포주은행에서 구입하여 배양하였다. 세포 배양을 위해 10% 우태아 혈청 (fetal bovine serum: ThermoFisher Scientific에서 구입) 및 1% 항생제-항진균제 (antibiotics-antimycotics: ThermoFisher Scientific에서 구입)가 함유된 DMEM (ThermoFisher Scientific에서 구입) 배지에 5% CO2, 37℃ 조건에서 계대 배양하였다.
인체 피부 섬유아세포(human dermal fibroblast)인 HS68 세포는 ATCC에서 구입하여, 10% 우태아 혈청 (fetal bovine serum: ThermoFisher Scientific에서 구입) 및 1% 항생제-항진균제 (antibiotics-antimycotics: ThermoFisher Scientific에서 구입)가 함유된 DMEM (ThermoFisher Scientific에서 구입) 배지에 5% CO2, 37℃ 조건에서 계대 배양하였다.
당해 발명이 속하는 기술분야에 알려진 세포배양 방법에 따라 5% CO2, 37℃ 조건에서 지방 유래 줄기세포를 배양하였다. 그 다음, 인산염 완충용액(phosphate-buffered saline)(ThermoFisher Scientific에서 구입)으로 세척 후, 무혈청, 무페놀레드 배지로 교체하여 1일 내지 10일간 배양하고 그 상층액(이하, 배양액)을 회수하였다.
엑소좀의 분리 과정에서 입자크기 분포가 균일하고 순도가 높은 엑소좀을 수득하기 위하여 배양액에 트레할로오스를 2 중량% 첨가하였다. 트레할로오스를 첨가한 후 배양액을 0.22 μm 필터로 여과하여 세포 잔해물, 노폐물 및 거대 입자 등의 불순물을 제거해 주었다. 여과된 배양액은 즉시 분리 과정을 통해 엑소좀을 분리하였다. 또한, 여과된 배양액은 냉장고(영상 10℃ 이하)에서 보관한 후 엑소좀 분리에 사용하였다. 또한, 여과된 배양액은 -60℃ 이하의 초저온 냉동고에서 동결 보관하였다가 해동시킨 후 엑소좀 분리를 수행하였다. 이후, 배양액으로부터 접선흐름여과장치(Tangential Flow Filtration; TFF)를 이용하여 엑소좀을 분리하였다.
실시예 2: TFF 방법에 의한 엑소좀의 분리 및 정제
실시예 1에서 0.22 μm 필터로 여과된 배양액으로부터 엑소좀을 분리, 농축, 탈염과 버퍼교환(diafiltration)을 위해 TFF(Tangential Flow Filtration) 방법을 사용하였다. TFF 방법을 위한 필터로는 카트리지 필터(cartridge filter, 일명 hollow fiber filter; GE Healthcare에서 구입) 또는 카세트 필터(cassette filter; Pall 또는 Sartorius 또는 Merck Millipore에서 구입)를 사용하였다. TFF 필터는 다양한 분자량 차단(molecular weight cutoff; MWCO)에 의해 선택될 수 있다. 선택된 MWCO에 의해 선별적으로 엑소좀을 분리, 농축하였고, MWCO보다 작은 입자나 단백질, 지질, 핵산, 저분자 화합물 등은 제거하였다.
엑소좀을 분리, 농축하기 위하여 MWCO 100,000 Da(Dalton), 300,000 Da, 또는 500,000 Da의 TFF 필터를 사용하였다. 배양액을 TFF 방법을 이용하여 1/100 내지 1/25 정도의 부피가 될 때까지 농축하면서, MWCO보다 작은 물질들은 제거하여 엑소좀을 분리하였다.
분리, 농축된 엑소좀 용액은 TFF 방법을 이용하여 추가로 탈염과 버퍼교환(diafiltration)을 수행하였다. 이때, 탈염과 버퍼교환은 연속적으로 수행(continuous diafiltration)하거나 단속적으로 수행(discontinuous diafiltration)하였으며, 시작 부피(starting volume)에 대하여 적어도 4배, 바람직하게는 6배 내지는 10배 이상, 보다 바람직하게는 12배 이상의 부피를 갖는 완충용액을 이용하여 수행하였다. 완충용액에는 입자크기 분포가 균일하고 순도가 높은 엑소좀을 수득하기 위하여 PBS에 녹인 2 중량%의 트레할로오스를 첨가하였다. 트레할로오스 처리에 따라 고순도이면서 입자크기 분포가 균일한 엑소좀을 높은 수율로 수득할 수 있는 효과를 확인한 결과는 도 6A 내지 도 6E에 도시하였다.
실시예 3: 분리된 엑소좀의 특성 분석
분리된 엑소좀, 배양액, 및 TFF 분리과정의 분획물에서 단백질의 양은 BCA 발색법(ThermoFisher Scientific에서 구입) 또는 플루오로프로파일(FluoroProfile) 형광법(Sigma에서 구입)을 이용하여 측정하였다. 본 발명의 일 구체예의 TFF 방법에 의해 엑소좀이 분리, 농축되고 단백질, 지질, 핵산, 저분자 화합물 등이 제거되는 정도는 단백질 정량법에 의하여 모니터링하여 그 결과를 도 2에 도시하였다. 그 결과 본 발명의 일 구체예의 TFF 방법에 의하여 매우 효과적으로 배양액에 존재하는 단백질이 제거됨을 알 수 있었다.
본 발명의 일 구체예의 TFF 방법에 의해 엑소좀을 분리하는 경우 생산성과 순도를 독립적인 다섯 배치에서 비교한 결과를 도 3에 도시하였다. 독립적인 다섯 배치로부터 얻어진 결과를 분석한 결과, 본 발명의 일 구체예의 TFF 방법에 의하여 매우 안정적으로 엑소좀을 분리할 수 있음을 확인하였다.
분리된 엑소좀은 나노입자 트랙킹 분석(nanoparticle tracking analysis: NTA; Malvern에서 구입) 또는 가변 저항펄스 감지(tunable resistive pulse sensing: TRPS; Izon Science에서 구입)에 의해 입자의 크기와 농도를 측정하였다. 분리된 엑소좀의 균일도와 크기는 투과전자현미경(transmitted electron microscopy: TEM)을 이용하여 분석하였다. 본 발명의 일 구체예에 따라 분리된 엑소좀의 TRPS, NTA, TEM 분석 결과는 도 4A 내지 도 4C에 도시하였다.
TFF 방법으로 엑소좀을 분리한 후, 트레할로오스의 첨가 여부에 따른 엑소좀의 크기 분포를 NTA 분석한 결과를 도 5A 내지 도 5C에 도시하였다. 트레할로오스 농도를 0 중량%, 1 중량% 및 2 중량%로 증가시켰고(도 5A 내지 도 5C의 위에서부터 아래), 3회 반복하여 실험하였다. 트레할로오스가 존재하지 않은 경우 300 nm 이상의 크기를 갖는 입자가 확인되는 반면, 트레할로오스의 첨가량을 늘려주면 300 nm 이상의 크기를 갖는 입자가 줄어들고 엑소좀의 크기 분포가 균일해지는 것을 확인하였다.
TFF 방법으로 엑소좀을 분리하는 과정에 트레할로오스의 첨가에 따른 효과를 추가로 조사하였다. 도 6A 내지 도 6C에서 보는 바와 같이 엑소좀의 제조과정 전과정에 PBS에 녹인 2 중량%의 트레할로오스를 첨가한 경우, 균일한 크기 분포를 갖는 엑소좀을 얻을 수 있었다(도 6A). 반면 트레할로오스를 첨가하지 않고 동결 보관하였던 배양액을 사용하되, 탈염과 버퍼교환 과정에서만 트레할로오스를 첨가하여 TFF 과정을 진행한 경우나, 트레할로오스를 전혀 첨가하지 않고 TFF 과정을 진행한 경우, 크기가 큰 입자가 많이 포함된 불균일한 엑소좀을 얻었다(도 6B 및 도 6C).
분리된 엑소좀의 상대적인 생산성과 농도를 비교한 결과, 엑소좀의 제조과정 전과정에 트레할로오스를 첨가한 경우 매우 높은 생산성으로 엑소좀을 얻을 수 있었으며, 얻어진 엑소좀의 농도도 5배 이상 높았다(도 6D). NTA 분석 결과에서 나타난 바와 같이, 분리된 엑소좀의 평균 크기도 엑소좀의 제조과정 전과정에 트레할로오스를 첨가한 경우 200 nm로 균일하게 확인되었다(도 6E).
도 4D는 본 발명의 일 구체예의 방법에 따라 분리된 엑소좀에 대해 웨스턴 블랏을 수행한 결과로서, CD9, CD63, CD81 및 TSG101 마커의 존재를 확인하였다. 각 마커에 대한 항체로는 각각 항-CD9 (Abcam에서 구입), 항-CD63 (System Biosciences에서 구입), 항-CD81 (System Biosciences에서 구입), 및 항-TSG101 (Abcam에서 구입)을 사용하였다.
도 4E는 본 발명의 일 구체예의 방법에 따라 분리된 엑소좀에 대해 유세포분석기를 이용하여 분석한 결과로서 CD63 및 CD81 마커의 존재를 확인하였다. CD63에 대해 양성(positive)인 엑소좀을 분리하기 위하여 엑소좀-휴먼 CD63 분리/검출 키트(ThermoFisher Scientific에서 구입)를 제조사의 방법에 따라 사용하였고, PE-마우스 항-인간 CD63 (PE-Mouse anti-human CD63)(BD에서 구입) 및 PE-마우스 항-인간 CD81 (PE-mouse anti-human CD81)(BD에서 구입)을 사용하여 마커를 염색한 후, 유세포분석기 (ACEA Biosciences)를 이용하여 분석하였다.
상기 결과들을 종합하면, 본 발명은 접선흐름여과를 이용한 제조과정에서 트레할로오스를 첨가하여 고순도이면서 입자크기 분포가 균일한 엑소좀을 높은 수율로 경제적이면서 효율적으로 분리 및 정제할 수 있음을 확인할 수 있었다. 또한, 본 발명의 일 구체예의 분리방법의 공정들은 스케일-업이 가능하고 GMP에도 적합함을 알 수 있었다.
실시예 4: 엑소좀 처리에 따른 세포 독성 측정
인체 피부 섬유아세포인 HS68 세포에서 본 발명의 일 구체예의 분리 방법에 따라 수득된 엑소좀의 독성을 평가하기 위해 세포에 농도별로 엑소좀을 처리하고 세포의 증식률을 확인하였다. HS68 세포를 10% FBS를 포함한 DMEM에 현탁시킨 후 80 내지 90%의 밀집도(confluency)를 갖도록 분주하고 37℃, 5% CO2 인큐베이터에서 24시간 배양하였다. 24시간 후, 배양액을 제거하고 실시예 2에서 준비된 엑소좀을 농도 별로 처리하여 24 내지 72시간 동안 배양하면서 세포 생존율을 평가하였다. 세포 생존율을 WST-1 시약(WST-1 reagent)(Takara에서 구입), MTT 시약(Sigma에서 구입), 셀타이터-글로 시약(CellTiter-Glo reagent)(Promega에서 구입), 또는 아라마르 블루 시약(alamarBlue reagent)(ThermoFisher Scientific에서 구입)과 마이크로플레이트 리더(microplate reader)(Molecular Devices에서 구입)를 이용하여 측정하였다.
비교군은 엑소좀이 처리되지 않은 일반 세포배양배지에서 배양된 세포수를 기준으로 하였고, 시험된 농도 범위 내에서 본 발명의 엑소좀에 의한 세포 독성이 나타나지 않음을 확인하였다(도 7).
실시예 5: 마크로파지 세포주를 이용한 염증 반응 측정
RAW 264.7 세포를 10% FBS를 포함한 DMEM 배지에 현탁시키고 이를 멀티웰 플레이트(multiwell plate)의 각 웰에 80 내지 90%의 밀집도(confluency)를 갖도록 분주하였다. 다음 날 LPS가 포함된 새로운 무혈청 배지에 희석한 본 발명의 엑소좀 (실시예 2에서 준비된 엑소좀)을 적정 농도로 1~24시간 동안 처리하여 배양하였다. 위와 같이 처리된 RAW 264.7 세포로부터 얻은 총 RNA로부터 cDNA를 제조하였고 리얼타임 PCR 방법을 이용하여 TNF-α 및 IL-6의 mRNA 변화량을 측정하였다. 상기 유전자들을 정량하기 위한 표준 유전자로서 GAPDH 유전자를 사용하였다. 리얼타임 PCR에 사용한 프라이머의 종류와 서열은 하기의 표 1과 같다.
리얼타임 PCR에 사용된 프라이머 종류 및 염기서열
유전자 서열
정방향 프라이머 (5' → 3') 역방향 프라이머 (5' → 3')
TNF-α TCT CAT CAG TTC TAT GGC CCA GAC (서열번호 1) GGC ACC ACT AGT TGG TTG TCT TTG (서열번호 2)
IL-6 GCC AGA GTC CTT CAG AGA GAT ACA (서열번호 3) ATT GGA TGG TCT TGG TCC TTA GCC (서열번호 4)
GAPDH GAC ATC AAG AAG GTG GTG AAG CAG (서열번호 5) CCC TGT TGC TGT AGC CGT ATT CAT (서열번호 6)
급성 신부전 환자에서 친염증성 사이토카인(TNF-α 및 IL-6 등)과 항염증성 사이토카인(IL-10)의 수치가 모두 증가하는 것으로 알려져 있으며, 백혈구, 케모카인, 사이토카인, 다양한 면역반응 인자 및 세포 등은 급성 신부전의 발병에 있어서 중요한 역할을 하는 것으로 알려져 있다(Kidney International, Vol. 66, Supplement 91 (2004), pp. S56-S61). 따라서, 염증반응에 관여하는 대식세포에서 TNF-α 및 IL-6의 생성량이나 발현량 변화를 분석하면 본 발명의 엑소좀이 급성 신부전이나 이에 관여하는 염증 반응을 억제, 감소 또는 완화시키는 시험관내 효능을 평가할 수 있다.
이와 관련하여, 도 8에 도시된 바와 같이, 생쥐의 대식세포인 RAW 264.7 세포에 대해 LPS와 함께 본 발명의 엑소좀을 처리한 경우 친염증성 사이토카인으로서 급성 신부전 및 이에 관여하는 염증 반응과 밀접한 관련이 있는 TNF-α 및 IL-6의 mRNA 발현량이 감소한 것을 확인할 수 있었다.
실시예 6: 시스플라틴에 의해 급성신장손상이 유발된 동물모델(급성신장손상 동물모델 1)
수컷 SD 랫트(Sprague-Dawley rat)(6주령, 체중 250g 내외, (주)오리엔트바이오에서 구입)를 구매하여 5~7일 동안의 적응기간을 거친 후 본 실험에 사용하였다. 적응기간을 거친 랫트는 아래와 같이 4군으로 분류하였다. 적응기간 중 건강한 것으로 판정된 랫트들의 체중을 측정하고 순위화한 체중에 따라 각 군의 평균체중이 최대한 균일하게 분포하도록 무작위법으로 분배하였다. 하기 (2)~(4)의 실험군의 경우 시스플라틴(Sigma에서 구입)을 멸균생리식염수에 용해시킨 후 10 mg/kg의 용량으로 복강 주사하여 급성신장손상을 유발하였다.
(1) Vehicle: 급성신장손상을 나타내지 않는 정상 대조군;
(2) Cisplatin (급성신장손상 유발 대조군): 랫트에 시스플라틴을 복강 투여하여 급성신장손상을 유발한 음성 대조군;
(3) "Cisplatin + Exosome 1회 투여" (본 발명의 엑소좀 처리군 1): 시스플라틴 투여 후 8시간째에 실시예 2에서 준비된 엑소좀을 개체 당 73.3 μg의 용량으로 혈관 내 투여(IV: intravenous injection)한 실험군;
(4) "Cisplatin + Exosome 2회 투여" (본 발명의 엑소좀 처리군 2): 시스플라틴 투여 후 8시간째에 실시예 2에서 준비된 엑소좀을 개체 당 73.3 μg의 용량으로 혈관 내 투여하고, 상기 엑소좀 투여 후 48시간째에 동일한 양의 엑소좀을 반복 투여한 실험군.
도 9에는 급성신장손상 동물모델 1에서의 랫트의 일자별 생존율이 도시되어 있다. 시스플라틴 만을 투여한 음성 대조군에서는 급성신장독성 유발 개시일로부터 8일째 부터 생존율이 60%로 급격히 감소한 반면에, 시스플라틴 투여 후 본 발명의 엑소좀을 투여한 (3)~(4)의 실험군에서는 생존율이 거의 100%임을 알 수 있었다. 또한, 급성신장손상 동물모델 1에 본 발명의 엑소좀을 투여한 경우 급성신장손상에 의해 감소된 체중이 음성 대조군에 비해 빠르게 회복되는 것을 확인할 수 있었다(도 10).
도 11에는 급성신장손상 동물모델 1의 랫트로부터 채혈한 혈액 내의 혈액요소질소(BUN)와 크레아티닌(CRE) 수치를 확인한 결과가 도시되어 있다. 혈액의 채취는 시스플라틴 투여 후 6일째에 수행하였다. 시스플라틴 투여 후 본 발명의 엑소좀을 투여한 (3)~(4)의 실험군에서는 혈액요소질소 및 크레아티닌 수치가 음성대조군에 비해 현저히 감소하였음을 알 수 있었다.
상기와 같은 결과들로부터, 본 발명의 엑소좀은 급성신장손상 동물모델 1에서 급성신장손상에 의한 개체 사망률을 감소시키고, 급성신장손상에 의해 감소된 체중을 빠르게 회복시키는 것을 알 수 있었다. 또한, 본 발명의 엑소좀은 신독성과 관련한 지표들을 유의적으로 개선시키는 것을 확인할 수 있었다. 따라서, 본 발명의 엑소좀을 유효성분으로 포함하는 조성물은 신독성 관련 지표들 및 신장 기능을 효과적으로 개선하여 각종 신장 질환을 예방, 완화, 개선, 또는 치료할 수 있다.
실시예 7: 시스플라틴에 의해 급성신장손상이 유발된 동물모델(급성신장손상 동물모델 2)
수컷 SD 랫트(Sprague-Dawley rat)(6주령, 체중 250g 내외, (주)오리엔트바이오에서 구입)를 구매하여 7일 동안의 적응기간을 거친 후 본 실험에 사용하였다. 적응기간을 거친 랫트는 아래와 같이 6군으로 분류하였다. 적응기간 중 건강한 것으로 판정된 랫트들의 체중을 측정하고 순위화한 체중에 따라 각 군의 평균체중이 최대한 균일하게 분포하도록 무작위법으로 분배하였다. 하기 (2)~(6)의 실험군의 경우 시스플라틴(Sigma에서 구입)을 멸균생리식염수에 용해시킨 후 10 mg/kg의 용량으로 복강 주사하여 급성신장손상을 유발하였다.
(1) Vehicle: 급성신장손상을 나타내지 않는 정상 대조군;
(2) Cisplatin (급성신장손상 유발 대조군): 랫트에 시스플라틴을 복강 투여하여 급성신장손상을 유발한 음성 대조군;
(3) "Low" (본 발명의 엑소좀 처리군 1): 시스플라틴 투여 후 8시간째에 실시예 2에서 준비된 엑소좀을 개체 당 7μg의 용량으로 혈관 내 투여한 실험군;
(4) "Mid" (본 발명의 엑소좀 처리군 2): 시스플라틴 투여 후 8시간째에 실시예 2에서 준비된 엑소좀을 개체 당 21μg의 용량으로 혈관 내 투여한 실험군;
(5) "High" (본 발명의 엑소좀 처리군 3): 시스플라틴 투여 후 8시간째에 실시예 2에서 준비된 엑소좀을 개체 당 70 μg의 용량으로 혈관 내 투여한 실험군;
(6) "High×2" (본 발명의 엑소좀 처리군 4): 시스플라틴 투여 후 8시간째에 실시예 2에서 준비된 엑소좀을 개체 당 70 μg의 용량으로 혈관 내 투여하고, 상기 엑소좀 투여 후 48시간째에 동일한 양의 엑소좀을 반복 투여한 실험군.
도 12에는 급성신장손상 동물모델 2에서의 랫트의 일자별 생존율이 도시되어 있다. 시스플라틴 만을 투여한 음성 대조군에서는 급성신장손상 유발 개시일로부터 8일째 부터 생존율이 20%로 급격히 감소한 반면에, 시스플라틴 투여 후 본 발명의 엑소좀을 투여한 (4)~(6)의 실험군에서는 급성신부전에 의한 개체 사망률이 감소하고 개체 사망을 지연하는 효과가 있음을 알 수 있었다.
또한, 급성신장손상 동물모델 2에 본 발명의 엑소좀을 투여한 (4)~(6)의 실험군에서는, 엑소좀의 용량 의존적으로, 급성신장손상에 의해 감소된 체중이 음성 대조군에 비해 빠르게 회복되는 것을 확인할 수 있었다(도 13).
도 14에는 급성신장손상 동물모델 2에서 랫트로부터 채혈한 혈액 내의 혈액요소질소(BUN)와 크레아티닌(CRE) 수치를 확인한 결과가 도시되어 있다. 혈액의 채취는 시스플라틴에 의한 급성신장손상 유발 개시일(0일째), 급성신장손상 유발 개시일로부터 2일째 및 4일째에 각각 수행하였다. 혈액이 채취된 각 일자별로 각 실험군의 혈액 내 혈액요소질소(BUN)와 크레아티닌(CRE) 수치를 측정하였다. 그 결과, 시스플라틴 투여 후 4일째에 음성대조군에서는 혈액요소질소(BUN)와 크레아티닌(CRE) 수치가 급격히 증가하였다. 이와 대조적으로, 시스플라틴 투여 후 본 발명의 엑소좀을 투여한 (3)~(6)의 실험군에서는, 엑소좀의 용량 의존적으로 혈액요소질소 및 크레아티닌 수치가 음성대조군에 비해 현저히 감소하였다.
상기와 같은 결과들로부터, 본 발명의 엑소좀은 급성신장손상 동물모델 2에서 용량 의존적으로 급성신장손상에 의한 개체 사망률을 감소시키고, 급성신장손상에 의해 감소된 체중을 빠르게 회복시키는 것을 알 수 있었다. 또한, 본 발명의 엑소좀은 용량 의존적으로 신독성과 관련한 지표들을 유의적으로 개선시키는 것을 확인할 수 있었다. 따라서, 본 발명의 엑소좀을 유효성분으로 포함하는 조성물은, 엑소좀의 용량 의존적으로 신독성 관련 지표들 및 신장 기능을 효과적으로 개선하여 각종 신장 질환을 예방, 완화, 개선, 또는 치료할 수 있다.
한편, 도 15에 도시된 바와 같이 시스플라틴은 다양한 경로에 의해 급성신부전을 발생시키고, 급성신부전 발생 경로에는 다양한 물질과 증상이 관여되어 있다. 예를 들어, 도 15의 다이어그램에서의 혈관 손상(vascular injury), 허혈(ischemia), 염증(inflammation), 신세뇨관세포사(renal tubular cell death) 등과 이와 관련된 물질은 급성신부전 외에 다양한 신장질환과 신장 기능 장애에 관여할 수 있다. 따라서, 본 발명의 엑소좀을 유효성분으로 포함하는 조성물이 시스플라틴에 의한 급성신독성을 개선, 감소 내지는 완화시킬 수 있다는 실험결과는 본 발명의 조성물이 단순히 급성 신독성을 개선, 감소 내지는 완화한다는 의미 뿐만 아니라 급성 신부전을 일으키는 메카니즘과 관련된 다양한 증상 및 물질과도 상호작용하여 앞서 언급한 다양한 신장질환과 신장 기능 장애를 치료, 완화 내지 개선할 수 있음을 강력히 시사한다.
따라서, 본 발명의 엑소좀을 유효성분으로 포함하는 조성물은 다양한 원인에 기인하여 저하된 신장 기능 개선 및/또는 신장 질환의 예방, 완화, 개선 또는 치료에 있어서 유의적인 효능을 나타낼 수 있다.
이상, 본 발명을 상기 실시예를 들어 설명하였으나, 본 발명은 이에 제한되는 것이 아니다. 당업자라면 본 발명의 취지 및 범위를 벗어나지 않고 수정, 변경을 할 수 있으며 이러한 수정과 변경 또한 본 발명에 속하는 것임을 알 수 있을 것이다.

Claims (15)

  1. 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는, 신장 기능 개선 또는 신장 질환의 예방, 완화, 개선 또는 치료용 약학 조성물.
  2. 제1항에 있어서,
    혈액요소질소(BUN)와 크레아티닌(CRE) 수치를 감소시키는 것을 특징으로 하는, 약학 조성물.
  3. 제2항에 있어서,
    상기 엑소좀의 용량 의존적으로 혈액요소질소(BUN)와 크레아티닌(CRE) 수치를 감소시키는 것을 특징으로 하는, 약학 조성물.
  4. 제3항에 있어서,
    급성신장손상에 의해 감소된 개체 체중의 회복, 급성신장손상에 의한 개체 사망률 감소, 또는 급성신장손상에 의한 개체 사망의 지연 중 적어도 하나의 효능을 나타내는, 약학 조성물.
  5. 제4항에 있어서,
    상기 효능은 상기 엑소좀의 용량 의존적인 것을 특징으로 하는, 약학 조성물.
  6. 제5항에 있어서,
    상기 엑소좀은 시험관내 분석에서 TNF-α 및 IL-6의 발현량을 감소시키는 것을 특징으로 하는, 약학 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 신장 질환은 신부전, 신병증(nephropathy), 신염(nephritis), 네프로제 증후군(nephrotic syndrome), 신섬유화증(renal fibrosis), 신경화증(nephrosclerosis), 혈뇨증, 요로감염증, 신우염 또는 신경색인, 약학 조성물.
  8. 제7항에 있어서,
    상기 신부전은 항암제, 항생제, 항균제, 조영제, 화학요법제, 금속, 유기용매 또는 화학약품 중 적어도 1종의 사용 또는 노출에 의해 발병되는 급성 또는 만성 신부전인 것을 특징으로 하는, 약학 조성물.
  9. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 신장 기능 개선은, 사구체 과다 여과와 관련된 신장 기능 장애 개선, 당뇨병에 의해 발병한 신장 기능 장애 개선, 비신장성 고혈압에 의해 발병한 신장 기능 장애 개선, 사구체신염에 의해 발병한 신장 기능 장애 개선, 상행성 요로 감염증에 의해 발병한 신장 기능 장애 개선, 겸상 적혈구 빈혈증에 의해 발병한 신장 기능 장애 개선, 신장 절제 후의 보상성 비대증에 의해 발병한 신장 기능 장애 개선, 또는 혈관간세포 기능 장애에 의해 발병한 신장 기능 장애 개선인, 약학 조성물.
  10. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 엑소좀은 하기의 단계들을 수행하여 수득되는, 약학 조성물:
    (a) 지방줄기세포 배양액에 트레할로오스를 첨가하는 단계, (b) 상기 트레할로오스가 첨가된 지방줄기세포 배양액을 여과하는 단계, (c) 상기 여과된 지방줄기세포 배양액으로부터, TFF(Tangential Flow Filtration)를 이용하여 엑소좀을 분리하는 단계, 및 (d) 탈염과 버퍼교환(diafiltration)에 사용되는 완충용액에 트레할로오스를 첨가하고, 상기 트레할로오스가 첨가된 완충용액을 이용한 TFF(Tangential Flow Filtration)를 이용하여, 상기 분리된 엑소좀에 대한 탈염과 버퍼교환(diafiltration)을 수행하는 단계.
  11. 제10항에 있어서,
    상기 탈염과 버퍼교환은 연속적으로 수행하거나 단속적으로 수행하는 것을 특징으로 하는, 약학 조성물.
  12. 제10항에 있어서,
    시작 부피(starting volume)에 대하여 적어도 4배의 부피를 갖는 완충용액을 이용하여 탈염과 버퍼교환을 수행하는 것을 특징으로 하는, 약학 조성물.
  13. 제10항에 있어서,
    TFF(Tangential Flow Filtration)를 위해 MWCO(molecular weight cutoff) 100,000 Da, 300,000 Da, 500,000 Da 또는 750,000 Da의 TFF 필터, 또는 0.05 μm TFF 필터를 사용하는 것을 특징으로 하는, 약학 조성물.
  14. 제10항에 있어서,
    상기 (c) 단계는 TFF(Tangential Flow Filtration)를 이용하여 1/100 내지 1/25의 부피까지 농축하는 과정을 더 포함하는, 약학 조성물.
  15. 제1항 내지 제6항 중 어느 한 항에 기재된 약학 조성물의 치료학적으로 유효한 양을 포유동물에게 투여하는 단계를 포함하는, 신장 기능을 개선하거나 신장질환을 예방, 완화, 개선 또는 치료하는 방법.
PCT/KR2018/011983 2017-10-24 2018-10-11 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 용도 WO2019083201A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0138114 2017-10-24
KR20170138114 2017-10-24

Publications (2)

Publication Number Publication Date
WO2019083201A2 true WO2019083201A2 (ko) 2019-05-02
WO2019083201A3 WO2019083201A3 (ko) 2019-08-08

Family

ID=66247215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011983 WO2019083201A2 (ko) 2017-10-24 2018-10-11 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 용도

Country Status (1)

Country Link
WO (1) WO2019083201A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112472722A (zh) * 2020-12-08 2021-03-12 南开大学 一种利用胚胎干细胞外泌体促进机体损伤修复的技术手段
CN115135328A (zh) * 2020-03-20 2022-09-30 台湾粒线体应用技术股份有限公司 线粒体萃取物用于治疗或/及预防肾脏损伤相关疾病的用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003008A1 (en) * 2008-02-22 2011-01-06 Agency For Science, Technology And Research (A*Star) Mesenchymal stem cell particles
US9927427B2 (en) * 2013-10-24 2018-03-27 Agency For Science, Technology And Research Exosome recovery methods with low molecular weight organic zwitterions
WO2015131153A1 (en) * 2014-02-27 2015-09-03 Board Of Regents, The University Of Texas System Methods and compositions for isolating exosomes
CA2949083C (en) * 2014-05-18 2023-10-10 Children's Medical Center Corporation Methods and compositions relating to exosomes
KR101762833B1 (ko) * 2014-06-20 2017-07-28 (주)프로스테믹스 지방 조직으로부터 지방유래 줄기세포와 엑소좀을 분리하는 방법
JP2017526388A (ja) * 2014-09-05 2017-09-14 エクサーカイン コーポレイションExerkine Corporation エキソソームの単離

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115135328A (zh) * 2020-03-20 2022-09-30 台湾粒线体应用技术股份有限公司 线粒体萃取物用于治疗或/及预防肾脏损伤相关疾病的用途
CN115135328B (zh) * 2020-03-20 2024-01-02 台湾粒线体应用技术股份有限公司 线粒体萃取物用于治疗或/及预防肾脏损伤相关疾病的用途
CN112472722A (zh) * 2020-12-08 2021-03-12 南开大学 一种利用胚胎干细胞外泌体促进机体损伤修复的技术手段

Also Published As

Publication number Publication date
WO2019083201A3 (ko) 2019-08-08

Similar Documents

Publication Publication Date Title
CN109562129B (zh) 含有从脂肪来源的干细胞分离的外排体作为活性成分的用于预防或治疗肺纤维化的组合物
WO2019088656A1 (ko) 안정화된 엑소좀의 필러 조성물
WO2020027466A1 (ko) 엑소좀의 동결건조 방법
KR101895916B1 (ko) 엑소좀 및/또는 세포외 소포체 및 이를 포함하는 조성물의 제조 방법
KR102035273B1 (ko) 줄기세포로부터 추출된 엑소좀을 유효성분으로 포함하는 골다공증 예방 또는 치료용 조성물
WO2019004757A9 (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 가려움증 억제 또는 개선 용도
JP6934207B2 (ja) 新生児hie治療用組成物
US20170119847A1 (en) Short beta-defensin-derived peptides
KR20190093141A (ko) 성체줄기세포 유래의 나노베시클 및 이의 표적 치료용 용도
WO2021206459A1 (ko) 통증조절인자를 함유한 줄기세포유래 엑소좀 및 그 용도
WO2017131352A1 (ko) 줄기세포로부터 추출된 엑소좀을 함유하는 베이지 지방세포 분화 유도용 조성물
WO2019083201A2 (ko) 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 용도
KR20190069277A (ko) 줄기세포 유래의 엑소좀 및/또는 세포외 소포체를 유효성분으로 포함하는 조성물의 민감성 피부 예방, 억제, 완화 또는 개선 용도
WO2019031729A2 (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 비알콜성 단순 지방간 또는 비알콜성 지방간염의 개선 용도
JP2019528789A (ja) 極性化マクロファージを用いた組織再生の細胞治療
WO2020171407A1 (ko) 데커시놀을 유효성분으로 포함하는 혈소판 감소증 또는 림프구 감소증 예방 또는 치료용 조성물
KR20190060646A (ko) 줄기세포 유래의 엑소좀 및/또는 세포외 소포체를 유효성분으로 포함하는 조성물의 피부장벽 강화 내지 기능 개선 용도
WO2019151744A1 (ko) 성체줄기세포 유래의 나노베시클 및 이의 표적 치료용 용도
WO2019004738A2 (ko) 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 피부염 개선 용도
KR20190028281A (ko) 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 신장 기능 개선 용도
KR20190015106A (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 비알콜성 단순 지방간 또는 비알콜성 지방간염의 개선 용도
KR20190098052A (ko) 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 궤양성 대장염의 개선 용도
WO2018093233A1 (ko) 지방줄기세포유래 엑소좀을 유효성분으로 포함하는 간 섬유증 예방 또는 치료용 조성물
WO2020022541A1 (ko) 엑소좀을 유효성분으로 포함하는 급성 간부전의 예방 또는 치료용 조성물
WO2022183539A1 (zh) 一种用于治疗脓毒症的药物组合物及其应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871275

Country of ref document: EP

Kind code of ref document: A2