WO2019071798A1 - 一种由镍冶炼熔渣生产的方法 - Google Patents

一种由镍冶炼熔渣生产的方法 Download PDF

Info

Publication number
WO2019071798A1
WO2019071798A1 PCT/CN2017/115653 CN2017115653W WO2019071798A1 WO 2019071798 A1 WO2019071798 A1 WO 2019071798A1 CN 2017115653 W CN2017115653 W CN 2017115653W WO 2019071798 A1 WO2019071798 A1 WO 2019071798A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
copper
iron
smelting
nickel
Prior art date
Application number
PCT/CN2017/115653
Other languages
English (en)
French (fr)
Inventor
张力
张武
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2019071798A1 publication Critical patent/WO2019071798A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/06Obtaining bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of slag metallurgy, and particularly relates to a method for metallurgical production by using smelting slag of nickel.
  • the nickel smelting slag includes the nickel smelting slag produced by the “smelting smelting” process, the depleted slag after the “copper ice nickel blowing” process, and the top blowing smelting.
  • Nickel settled slag China Jinchuan Company uses “flash smelting” and “top blowing smelting” to carry out nickel concentrate smelting, which produces 1 million tons of nickel smelting slag per year. The accumulated accumulated storage capacity is over 10 million tons.
  • Nickel smelting slag contains valuable components such as copper, iron, nickel, cobalt, zinc, lead, gold, silver, etc., which are stacked for a long time, which wastes resources and pollutes the environment.
  • the iron content in the nickel smelting slag is as high as 50wt%, far exceeding the current 26wt% recoverable grade, and the copper content is as high as 0.2wt% or more, wherein the iron component is mainly present in the fayalite phase.
  • the main research of nickel smelting slag is direct reduction iron or molten iron. During the reduction process, copper, nickel and cobalt components are reduced into molten iron, which is not conducive to the subsequent steelmaking process.
  • Nickel smelting slag contains not only secondary resources such as copper, iron, nickel, cobalt, zinc, lead, gold, silver, etc., but also contains a large amount of metallurgical fluxes such as SiO 2 , CaO, MgO, etc., which has strong chemical reactivity and is excellent in physical and chemical properties.
  • the slag system is a mature metallurgical slag system.
  • nickel smelting slag there is no nickel smelting slag as the reaction slag system to realize the simultaneous separation technology of copper and iron in nickel smelting slag.
  • the existing copper pyrometallurgical process is suitable for treating copper sulfide ore and is difficult to treat copper oxide ore. How to simultaneously deal with nickel smelting slag, copper oxide minerals, copper sulfide minerals and other copper-containing iron materials on a large scale to achieve copper and iron production is particularly important.
  • the present invention provides a method of producing smelting slag from nickel.
  • the invention realizes large-scale simultaneous processing of nickel smelting slag, copper oxide ore, copper sulfide mineral, nickel oxide mineral, nickel sulfide mineral and containing based on the existing fire method copper smelting process, ironmaking process and slag metallurgy theory.
  • the copper material can effectively reduce the copper content of the slag (the slag contains copper ⁇ 0.1 wt%), and can realize the production and recovery of copper, iron, lead, zinc, nickel, cobalt, gold, silver, indium, antimony, sodium and potassium, and the invention
  • the method provides a new slag metallurgy process and a new copper smelting method and iron making process.
  • the main technical solutions adopted by the present invention include:
  • a method for producing smelting slag from nickel comprising the steps of:
  • S1 slag mixing: adding nickel smelting slag to the smelting reaction device, adding calcium minerals and additives at the same time; stirring, heating the slag to a molten state, adding copper oxide mineral, nickel oxide mineral, copper sulfide mineral, nickel sulfide One or more of minerals and copper-containing materials; uniformly mixed, used as reaction slag, and monitored in real time.
  • the reaction slag By adjusting the reaction slag to satisfy both conditions a and b, the slag after the reaction is obtained, or after the reaction The slag is poured into the heat preservation device;
  • condition a is controlling the reaction slag temperature to be 1100 to 1500 ° C;
  • the slag after the reaction in the step S1 is kept for 5 to 50 minutes to obtain a molten copper-rich nickel phase layer at the bottom, a molten iron-rich phase in the middle and lower portions, and a molten iron-containing silicate in the middle and upper portions.
  • Mineral phase at the same time
  • the zinc-containing component and the lead-containing component are soot, the gold component and the silver component enter the copper-rich nickel phase, and some of the nickel-containing component and the cobalt-containing component enter the iron-rich phase; and the phases are recovered.
  • the method for regulating the condition a is:
  • the heating function of the reaction device itself is used, or fuel or molten nickel smelting slag or copper smelting slag and/or copper containing blowing is added to the reaction slag. Refining the slag so that the temperature of the reaction slag reaches a set temperature of 1100 to 1500 ° C, and when the fuel is injected, the preheated oxidizing gas is simultaneously injected;
  • the upper limit of the set temperature range is 1500 ° C
  • nickel smelting slag copper-containing material, iron-containing material, copper oxide mineral, nickel oxide mineral, copper sulfide mineral, One or more of nickel sulfide minerals, gold-silver-containing materials or fluorine-containing materials, such that the temperature of the reaction slag reaches a set temperature of 1100 to 1500 ° C;
  • the method for regulating the condition b is:
  • an alkaline material an alkaline copper oxide mineral, an alkaline nickel oxide mineral, an alkaline copper sulfide mineral, and an alkaline are added to the reaction slag.
  • nickel sulfide minerals, copper-containing materials, and basic iron-containing materials are added to the reaction slag.
  • the reaction device is a heat preservation device or a rotatable smelting reaction device or a smelting reaction device with slag or iron slag flowing out; wherein the heat preservation device is pourable Smelting reaction slag irrigation or insulation pit;
  • the rotatable smelting reaction device is a converter and a smelting reaction slag tank;
  • the smelting reaction device with slag or iron slag can flow out is a plasma furnace, a direct current arc furnace, an alternating current arc furnace, a submerged arc furnace, a blast furnace, a blast furnace, an induction furnace, a cupola furnace, a side blowing molten pool smelting furnace, Bottom-blow pool smelting furnace, top-blow pool smelting furnace, reverberatory furnace, Osmet furnace, Aisa furnace, Waten Kraft melting pool melting furnace, side blowing rotary furnace, bottom blowing rotary furnace, top blowing rotary furnace .
  • the nickel smelting slag is in a molten state or a cold state, wherein: the molten nickel smelting slag is obtained from a slag opening of a nickel smelting furnace, or the nickel smelting slag is heated to a molten state; the nickel smelting slag is The nickel smelting slag produced by the “smelting smelting” process, the blowing slag after the “copper ice nickel blowing” process, and the depletion of the blowing slag after the “copper ice nickel blowing” process One or more of slag, nickel smelting slag produced by top-blown smelting, and nickel smelting slag produced by top-blowing smelting;
  • the oxide is reduced to metallic copper, metallic nickel, metallic cobalt and FeO, respectively, and the metallic iron content in the slag is ⁇ 3%. It can be regulated by adding one or both of a reducing agent and a carbon-containing iron-containing material, wherein the amount of the reducing agent and/or the carbon-containing iron-containing material is nickel oxide, cobalt oxide, copper in the slag.
  • the oxide and iron oxide are reduced to a theoretical amount of metal nickel, cobalt, copper and FeO of 110 to 140%;
  • the carbonaceous iron-containing material is steel dust and soot, iron concentrate carbon pre-reduction pellet, iron Concentrate carbon-containing metallized pellets, wet zinc smelting kiln slag or coke oven dust and soot.
  • the copper-containing material is blister copper copper fire refining slag, copper tailings, copper slag, zinc smelting slag, zinc smelting soot and dust, lead and zinc tailings, lead smelting slag , lead-copper copper, arsenic-copper-copper, crude lead fire refining slag, lead smelting soot and dust, lead-acid batteries, copper smelting soot and dust, copper, copper-containing garbage, copper-containing circuit boards, tin smelting slag, One or more of tin tailings; wherein the zinc smelting slag is zinc smelting slag produced by wet zinc smelting and pyrometallurgical smelting, including leaching slag, iron slag residue, copper cadmium slag, goethite slag , hematite slag, volatile kiln slag,
  • the calcium-based mineral is one or more of lime, limestone, dolomite, calcium carbide slag, red mud or post-sodium high calcium red mud;
  • the additive is SiO 2 , One or more of MgO, FeO, Fe 2 O 3 , MnO 2 , Al 2 O 3 , TiO 2 , P 2 O 5 , Fe or Na 2 O;
  • the copper oxide mineral includes cuprite, black One or more of copper ore, malachite, azurite, chrysocolla, and cholesterium;
  • the copper sulfide mineral includes chalcopyrite, copper blue, chalcopyrite, porphyrite, sulfur arsenic ore One or more of the bismuth copper ore.
  • the fuel and the reducing agent are one or more of a solid, liquid or gaseous fuel, which is sprayed or fed, and loaded with a gas at 0-1200 ° C
  • the gas is one or more of oxidizing gases
  • the solid fuel and the reducing agent are one or more of pulverized coal, coke breeze, coke, fly ash, bituminous coal or anthracite, and the shape is granular or
  • the powdery, granular material has a particle size of 5 to 25 mm, and the powdery material has a particle size of ⁇ 150 ⁇ m
  • the liquid fuel and the reducing agent are heavy oil
  • the gaseous fuel and the reducing agent are gas and/or natural gas.
  • the alkaline material is one or more of lime powder, red mud, red mud after desoda, calcium carbide slag, dolomite powder or quicklime powder;
  • the basic iron-containing material is CaO/SiO 2 >1
  • an iron-containing material an alkaline sintered ore, an alkaline iron concentrate, an alkaline pre-reduction pellet, an alkali metallized pellet, or a steel slag
  • the acidic material is silica, fly ash, One or more of coal gangue
  • the iron-containing material is CaO/SiO 2 ⁇ 1 iron-containing material, acid sinter, acid iron concentrate, acid pre-reduction pellet, acid metallized pellet, copper slag, One or more of lead smelting slag, zinc smelting slag, nickel smelting slag, tin smelting slag, iron alloy slag, and blast furnace slag.
  • the mixing is uniform or natural mixing or stirring, and the mixing and mixing is performed by argon stirring, nitrogen stirring, nitrogen-argon gas mixture stirring, reducing gas stirring, oxidation.
  • gas agitation electromagnetic agitation or mechanical agitation.
  • the copper-rich nickel phase, the iron-rich phase, and the iron-containing silicate mineral phase may be separately treated, or the two phases may be combined.
  • the separation and recovery in the step S2 is performed by any one of the following methods 1 to 5:
  • Method 1 When the slag can be used to flow out of the smelting reaction device, after the slag separation after the reaction is completed, the following steps are performed:
  • Method A directly used as a cement raw material after water quenching or air cooling;
  • Method B partially or completely returning the molten iron-containing silicate mineral phase to the copper-containing slag
  • Method C the iron-containing silicate mineral phase is used for pouring glass ceramics or as slag wool;
  • Method D blowing a preheated oxidizing gas at a temperature of 0 to 1200 ° C into the iron-containing silicate slag in the smelting reaction device, and ensuring that the silicate slag temperature is >1450 ° C;
  • the iron weight percentage is ⁇ 1%, and the oxidized slag is obtained;
  • the oxidized slag is directly air-cooled or water-quenched, and is used as a slag cement, a cement conditioner, an additive in cement production or a cement clinker;
  • Method E The molten iron-containing silicate mineral phase is used to produce high value-added cement clinker:
  • the slag mixture mixture is blown into an oxidizing gas having a preheating temperature of 0 to 1200 ° C, and the temperature of the slag mixture is controlled to be >1450 ° C; when the weight percentage of ferrous oxide is ⁇ 1%, Oxidized slag;
  • the oxidized slag is subjected to air cooling or water quenching to obtain a high value-added cement clinker;
  • Method F the iron-containing silicate mineral phase and/or the iron-rich phase slag as a blast furnace ironmaking raw material or a direct reduction ironmaking raw material: an iron-containing silicate mineral phase and/or the iron-rich phase
  • the slag is air-cooled, water-quenched or slow-cooled, it is used as a blast furnace ironmaking or direct reduction ironmaking raw material.
  • direct reduction magnetic separation or electric furnace melting is used, and the magnetic separation product is metal iron and tailings, and the electric furnace is melted. The product is molten iron and slag;
  • the iron-silicate-containing mineral phase and/or the iron-rich phase slag into the heat preservation device, separating by the following method: magnetic separation after slag modification: slag into the heat preservation device , blowing a preheated oxidizing gas at 0-1200 ° C, and ensuring that the slag temperature is >1250 ° C, completing the conversion of magnetite in the slag; slowly cooling the oxidized slag to room temperature, crushing, magnetic Selected, the product is magnetite concentrate and tailings, tailings as building materials;
  • Method G The molten iron-containing silicate is subjected to reduction ironmaking, comprising the following steps:
  • the temperature of the reaction slag is 1460-1640 ° C and The alkalinity CaO/SiO 2 ratio of the reaction slag is 0.6 to 2.4, and the slag after completion of the reaction is obtained;
  • the method of controlling the temperature of the reaction slag is:
  • reaction slag When the temperature of the reaction slag is lower than the upper limit of the set temperature range, one or more of a metallurgical flux, an iron-containing material or a fluorine-containing material is added to the reaction slag to bring the temperature of the reaction slag to a set temperature range. ;
  • the method of controlling the alkalinity of the reaction slag is:
  • Method I Pour the mixed slag after reduction into a heat preservation slag tank, and cool to room temperature to obtain slow cooling slag; wherein, the metal iron is settled to the bottom of the reaction device to form iron slag, and the remaining chilled slag contains metal iron layer , crushed to a particle size of 20 to 400 ⁇ m, grinding, magnetic separation to separate the remaining metal iron and tailings;
  • Method II the mixed slag after reduction, cooling and sedimentation, separation of slag-gold, obtaining molten iron and reduced slag; and the slag after reduction is melted according to one or several methods of methods A to E Slag treatment; the molten iron is sent to a converter or an electric furnace for steelmaking;
  • part of the zinc-containing component and the lead-containing component volatilize, and enter the soot as an oxide
  • part of the gold-containing component and the silver-containing component enter the copper-rich nickel phase, and the nickel and cobalt components respectively enter the copper-rich nickel phase and the iron-rich phase;
  • the iron-rich phase layer for water quenching or air cooling or pouring into a heat preservation device for slow cooling or by manual sorting and re-election, as a blast furnace nickel-iron raw material or direct reduction nickel-iron raw material Or smelting reduction of nickel-iron raw materials or flotation of copper-nickel raw materials; flotation products are copper-containing concentrates, nickel concentrates, nickel-iron alloys and iron concentrates, iron concentrates as blast furnace ironmaking raw materials or direct reduction of ironmaking raw materials or The smelting reduction ironmaking raw material; the direct reduction process adopts a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln or an induction furnace, and is reduced by gas or coal, and gas-based reduction adopts natural gas and/or gas.
  • the coal-based reduction adopts one or more of anthracite, bituminous coal, lignite, coking coal, coke powder or coke, and the controlled reduction temperature is 900-1400 ° C, and the control alkalinity CaO/SiO 2 ratio is 0.8-1.5;
  • the gas produced by the reduction is burned on the surface of the slag to provide heat, and the gas flowing out of the furnace can be used as a heat source for the drying furnace material and the heat preservation device.
  • the red mud contains potassium, sodium, dust, and steel soot containing lead, zinc, antimony, and indium silver, when these materials are added, some indium, antimony, potassium, and sodium groups are added. It is volatilized and enters the soot as an oxide.
  • Method 2 When the smelting reaction device through which the slag can flow out is used, the obtained iron-rich phase and the iron-containing silicate mineral phase treatment method are treated by one or more of the methods A to G described in the first method, The molten state is poured into the copper-rich nickel phase after the slow cooling of the heat preservation device, sent to a converter or a rotary furnace or used as a raw material for copper, cobalt and nickel separation.
  • Method 3 using the slag rotatable converter and the reaction slag tank, obtaining the iron-containing silicate mineral phase, and the treatment method is treated by one or several of the methods A to G described in the first method; or The iron-rich phase is treated by S2-1-05 of the first method; the molten copper or the copper-rich nickel phase which is poured into the heat preservation device after being slowly cooled, sent to a converter or a rotary furnace or as a copper-cobalt-nickel separation. raw material.
  • Method 4 using a molten slag rotatable converter and a reaction slag tank, the obtained molten iron-containing silicate mineral phase and the iron-rich phase are obtained, and the treatment method is one or more of the methods A to G described in the first method.
  • the molten copper-rich nickel phase is poured into a heat preservation device and slowly cooled, and then sent to a converter or a rotary furnace or used as a raw material for copper cobalt nickel separation.
  • Method 5 When using a heat preservation device, or using a smelting reaction device through which slag can flow out, when pouring the slag into the heat preservation device, perform the following steps:
  • the slag is slowly cooled to room temperature to obtain slow cooling slag; the copper-rich nickel phase settles to the bottom of the reaction device to form copper-rich nickel ruthenium; the iron-containing silicate mineral phase floats;
  • the cold slag is an iron-rich phase, and at the same time, a zinc-containing component and a lead-containing component are formed; wherein the gold and silver components migrate to the copper-rich nickel phase, and the nickel and cobalt components migrate to the copper-rich nickel phase and the iron-rich phase, respectively;
  • the oxidizing gas is one of preheated air, oxygen, oxygen-enriched air, nitrogen-air, argon-air, oxygen-nitrogen, oxygen-argon, as described above.
  • the heat temperature is 0 to 1200 ° C;
  • the sedimentation is natural sedimentation or spin sedimentation or centrifugal sedimentation;
  • the cooling mode when cooling sedimentation is natural cooling or rotary cooling or centrifugal cooling, and the gravity sorting method is a shaker. Sorting, chute sorting or a combination of the two.
  • the method for producing smelting slag of nickel can treat both hot slag and cold slag, and fully utilizes the physical heat resources of molten smelting slag and the hot metallurgical flux to realize that it can be processed.
  • Copper-containing slag which can also treat copper sulfide minerals, copper oxide minerals, nickel oxide minerals and nickel sulfide minerals, is a new copper-nickel smelting process, which realizes slag metallurgy, pyrometallurgy and iron making;
  • Iron-rich phase includes metal iron, FeO phase, and fayalite phase.
  • the copper component, nickel-cobalt component and gold-silver component in the slag migrate and enrich in the copper-rich nickel phase, respectively, and achieve growth and sedimentation; wherein the copper-rich nickel phase includes copper and white ice a plurality of copper, copper ice nickel, copper-rich nickel-cobalt phase or iron-containing components, or a portion of the copper component entering the iron-rich phase;
  • the zinc component, the lead component, the nickel component, the cobalt component, the strontium component, the sodium component, the potassium component, and the ash component in the slag can be recovered;
  • the slag can be tempered and can be used as cement raw materials or building materials or instead of crushed stone as aggregate and road material;
  • the method of the invention adds an additive, one is used for reducing the viscosity, the other is for lowering the melting point, and the copper-rich nickel phase is precipitated at a certain temperature (1100-1500 ° C), and the iron is obtained after the sedimentation is separated.
  • the phase is a low copper iron-rich phase and an iron-containing silicate phase, wherein the iron-rich phase and the iron-containing silicate phase have a copper content of less than 0.1%, and can be used as a raw material for blast furnace ironmaking or direct reduction or smelting reduction ironmaking. Get metal iron and molten iron.
  • the method of the invention can be carried out continuously or intermittently, has a short process flow, is clean and environmentally friendly, and has high metal recovery rate.
  • the invention consists of a nickel smelting furnace slag or slag, which constitutes a mature slag system.
  • slag metallurgy not only the copper component, the nickel component, the cobalt component, the gold component, the silver component, but also the slag can be realized.
  • the comprehensive utilization of the valuable components of the strontium component, the sodium component, the potassium component, the iron component, the zinc component and the lead component solves the problem of a large accumulation of nickel smelting furnace slag, and can treat the copper oxide mineral on a large scale. Simultaneous production of copper and iron has solved two major problems in the refractory treatment of copper oxide minerals and nickel oxide minerals and the difficulty in recycling iron-containing components.
  • the nickel-containing slag of the present invention may be a liquid molten nickel smelting slag ( ⁇ 1200 ° C) flowing out of the slag outlet, which contains abundant thermal energy resources, has the characteristics of high temperature and high heat, and fully utilizes the physical heat of the slag. Resources, high efficiency and energy conservation; liquid molten copper slag contains a large amount of hot metallurgical flux, is a slag system with excellent physical and chemical properties, and realizes slag metallurgy.
  • the invention adopts slag metallurgy and simultaneously adds calcium minerals to release iron oxides in the olivine phase, enriched in the iron-rich phase, and realizes aggregation, growth and sedimentation, and the iron-rich phase includes metallic iron and FeO phase.
  • the iron-rich phase includes metallic iron and FeO phase.
  • fayalite phases as a raw material for blast furnace smelting of nickel iron or direct reduction or smelting reduction of ferronickel; zinc component, lead component, indium component, strontium component, sodium component, potassium group in slag Volatile, into the dust to recover;
  • the cold material and the molten copper slag are added to avoid the slag temperature being too high, and the life of the heat preservation device is increased; adding the cold material and the molten copper slag improves the processing amount of the raw material, and can not only treat the liquid slag
  • the raw material adaptability is strong; the addition of the cold material realizes the efficient use of the chemical heat released by the slag oxidation reaction and the physical heat of the slag.
  • the copper component, the nickel-cobalt component, the gold and the silver component in the slag are respectively migrated and enriched in the copper-rich nickel phase, and aggregate, growth and sedimentation are achieved, and the copper-rich nickel phase includes There are copper, white copper, copper ice nickel, a variety of iron-containing components, or part of the copper component enters the iron-rich phase; the iron component in the slag migrates, is enriched in the iron-rich phase, and achieves aggregation and growth.
  • the slag-containing heat preservation device is rotated on the rotating platform to accelerate the accumulation, growth and settlement of the copper-rich nickel phase and the iron-rich phase, thereby improving the production efficiency; the addition of the fluorine-containing material accelerates the copper-rich nickel phase, The accumulation, growth and settlement of the iron-rich phase.
  • the method of the invention separates the silicate mineral phase, the iron-rich phase and the copper-rich nickel phase distributed in the upper, middle and bottom portions by manual sorting, magnetic separation, re-election or slag-gold separation.
  • To achieve efficient recovery of copper and iron components in the slag since the copper-rich nickel phase and the iron-rich phase settle in the middle and lower parts, the amount of slag to be sorted is small, the slag is tempered, and the mineral grindability is increased. Low production cost; subsequent separation process using magnetic separation or re-election There is no environmental pollution during the process.
  • the whole slag treatment process has the characteristics of short process, simple operation, high recovery rate, high efficiency, cleanliness and environmental protection. Tailings are used as cement raw materials, building materials, instead of gravel as aggregates. Road material is used.
  • the present invention precipitates by the copper-rich nickel phase, and the iron-containing silicate phase and the iron-rich component have a copper content of less than 0.1%, and are used as a raw material for blast furnace ironmaking or direct reduction or smelting reduction to obtain metallic iron and molten iron.
  • the invention utilizes nickel smelting slag to form a mature slag system, and utilizes slag metallurgy to realize not only efficient recovery of valuable components in the slag, but also large-scale production of copper oxide minerals, and simultaneous production of copper and Iron is a new copper-nickel smelting process.
  • the method has the advantages of short process flow, high metal recovery rate, low production cost, strong adaptability of raw materials, large processing capacity, environmental friendliness and high economic benefit, and can effectively solve the problem of efficient recycling of metallurgical resources and thermal energy.
  • the invention provides a method for producing smelting slag from nickel, which comprises the following steps:
  • Step S1 slag mixing:
  • the nickel smelting slag is added to the smelting reaction device in which the slag can flow out, and the calcium-based minerals and additives are added, and the slag is heated to a molten state to form a reaction slag containing copper and iron, and copper oxide is added at the same time.
  • One or more of minerals, copper sulfide minerals, nickel sulfide minerals, nickel oxide minerals, and copper-containing materials uniformly form a nickel-containing reaction slag, and monitor the reaction slag in real time, while ensuring the following by regulation (a And (b) two parameters, obtaining the slag after the completion of the reaction, or pouring the slag after the completion of the reaction into the heat preservation device;
  • the temperature of the nickel-containing reaction slag is 1100 to 1500 ° C;
  • the control method is:
  • the method for controlling the temperature of the reaction slag in the set temperature range is:
  • the temperature of the nickel-containing reaction slag ⁇ the lower limit of the set temperature range is 1100 ° C
  • the heating function of the reaction device itself, or the addition of fuel or molten nickel smelting slag or copper-containing smelting slag or copper-containing blowing to the nickel-containing reaction slag Refining slag so that the temperature of the reaction slag reaches 1100-1500 ° C, and when the fuel is injected, the preheated oxidizing gas is simultaneously injected;
  • the copper-containing material, the iron-containing material, the copper oxide mineral, the copper sulfide mineral, the nickel sulfide mineral, the nickel oxide are added to the copper-containing reaction slag.
  • an alkaline material, an alkaline copper oxide mineral, a basic nickel oxide mineral, an alkaline copper sulfide mineral, and a base are added to the reaction slag.
  • the slag is kept for 5 to 50 minutes, settled, and slag-gold is separated to obtain a molten copper-rich nickel phase layer at the bottom, a molten iron-rich phase in the middle and lower portions, and a molten iron-containing silicate mineral in the upper middle portion.
  • the phase simultaneously generates the soot containing the zinc component and the lead-containing component, the gold-silver component migrates to the copper-rich nickel phase, and the nickel-containing component and the cobalt-containing component enter the iron-rich phase; the phases are recovered.
  • the separation and recovery are carried out by any one of the following methods:
  • the iron-rich phase is obtained by water quenching or air cooling or pouring into a heat preservation device, or by manual sorting and re-election, as a raw material for blast furnace ironmaking or direct reduction of nickel-iron raw materials or smelting reduction of nickel-iron raw materials or float Selecting copper and nickel raw materials; flotation products are copper concentrate, nickel concentrate, nickel-containing alloy and iron concentrate, iron concentrate as blast furnace ironmaking raw material or direct reduction ironmaking raw material or smelting reduction ironmaking raw material;
  • the reduction process uses a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln or an induction furnace as a reduction device, using gas-based or coal-based reduction technology, gas-based reduction using natural gas and/or gas, and coal-based reduction using anthracite
  • One or more of bituminous coal, lignite, coking coal, coke breeze or coke, the controlled reduction temperature is 900-1400 ° C, and the control al
  • the iron-containing silicate mineral phase in the step (1) is subjected to slag treatment, and one of the methods A to G is adopted:
  • Iron-containing silicate mineral phase as cement raw material Iron-containing silicate mineral phase as cement raw material
  • the iron-containing silicate mineral phase is directly quenched or air-cooled as a cement raw material or further processed into a high value-added cement raw material;
  • Method B Part or all of the iron-containing silicate mineral phase is returned to the copper-containing reaction slag:
  • Part or all of the iron-containing silicate mineral phase is returned to the copper-containing reaction slag, as a hot metallurgical flux, the copper-containing reaction slag component is adjusted, and the copper-containing reaction slag temperature is controlled;
  • Method C pouring a glass ceramic with a silicate mineral phase or as a slag wool
  • Method D Air-cooling or water quenching after oxidation of iron-containing silicate slag:
  • the preheated fuel and the preheated oxidizing gas are injected, the heat is burned, the heat is supplemented, or the device is heated by itself, so that the silicate slag temperature is >1450 ° C;
  • Method E Treatment of high value-added cement clinker by treatment with iron silicate slag:
  • Method F Iron-containing silicate slag as raw material for blast furnace ironmaking or direct reduction of ironmaking raw materials:
  • iron-containing silicate slag After the iron-containing silicate slag is air-cooled, water-quenched or slowly cooled,
  • Magnetic separation products Used as blast furnace ironmaking or direct reduction ironmaking raw materials, after direct reduction, magnetic separation or electric furnace melting, magnetic separation products are metal iron and tailings, electric furnace melting, products are molten iron and slag;
  • the separation is performed by the following method: magnetic separation after slag modification: slag flowing into the heat preservation device, blowing 0-1200 ° C Preheated oxidizing gas, And ensure that the slag temperature is >1250 °C, complete the transformation of magnetite in the slag; slowly cool the slag after oxidation to room temperature, crushing, magnetic separation, the product is magnetite concentrate and tailings, tailings As a building material;
  • the zinc-containing component and the lead-containing component are volatilized, and enter the soot as an oxide
  • G-1 smelting silicate slag in the reaction device, or adding iron-containing material, adding reducing agent to the slag, performing smelting reduction, monitoring reaction slag in real time, and ensuring the following (a1) and (b1) ) two parameters to obtain the slag after the completion of the reaction;
  • the control method is:
  • the method for controlling the temperature of the reaction slag in the set temperature range is:
  • the heating function of the reaction device itself is added, or the fuel and the preheated oxidizing gas are added to the slag to make the temperature of the reaction slag reach the set temperature range;
  • reaction slag When the temperature of the reaction slag is lower than the upper limit of the set temperature range, one or more of a metallurgical flux, an iron-containing material or a fluorine-containing material is added to the reaction slag to bring the temperature of the reaction slag to a set temperature range. ;
  • G-2 smelting and reducing the oxidizing gas after preheating into the slag to form reduced slag, wherein: the oxidizing gas is preheated at a temperature of 0 to 1200 ° C, and is passed during the blowing process.
  • Regulation also guarantees two parameters (a1) and (b1):
  • the temperature range and the alkalinity control method are the same as the method G step (1);
  • Method I Perform the following steps:
  • I-1 cooling the reduced mixed slag is poured into the thermal insulation slag tank, cooled to room temperature to obtain slow cooling slag;
  • I-2 separation metal iron is settled to the bottom of the reaction device to form iron shovel, and the iron shovel is manually taken out;
  • the metal-containing iron layer in the remaining slow-cooling slag is crushed to a particle size of 20-400 ⁇ m, and the remaining metal iron and tailings are separated by magnetic separation.
  • the recycling of I-3 tailings is used as a cement raw material, building material, and replacement. Use as stone aggregate, road material or phosphate fertilizer;
  • Method II Perform the following steps:
  • the mixed slag after reduction of II-1 is cooled and settled, and the slag-gold is separated to obtain molten iron and reduced slag;
  • the slag after reduction of II-2 is subjected to slag treatment outside the furnace, and the specific method is as follows: one or more of methods A to E in the separation and recovery method 1 of step 2 are used for slag treatment;
  • the zinc-containing component of II-4 is volatilized with the lead-containing component, and is recycled into the dust as an oxide
  • Part II-5 gold and silver components, indium components, antimony components, sodium components, and potassium components are volatilized into the soot;
  • the gas produced by the reduction of II-6 is burned on the surface of the slag to provide heat, and the gas flowing out of the furnace can be used as a heat source for the drying furnace material and the heat preservation device.
  • the molten iron-containing silicate mineral phase is subjected to slag treatment by a slag treatment by one or more of the methods A to G in the separation and recovery method 1 of the step 2;
  • the step of containing the iron-rich phase is carried out by the step (4) in the first method;
  • the molten iron-containing silicate mineral phase and the iron-rich phase are subjected to slag treatment in a specific manner: one or more of the methods A to G in the separation and recovery method 1 of the step 2 are used;
  • Method 5 When using a heat preservation device, or using a smelting reaction device through which slag can flow out, when the slag is poured into the heat preservation device, the slag after the reaction is completed is as follows:
  • the nickel smelting slag is in a molten state or a cold state, wherein: the molten nickel smelting slag is obtained from a slag opening of a nickel smelting furnace, or the nickel smelting slag is heated to a molten state; the nickel smelting slag is a smashing slag
  • the copper material is crude copper fire refining slag, copper tailings, copper slag, zinc smelting slag, zinc smelting soot and dust, lead and zinc tailings, lead smelting slag, lead copper, Arsenic matte, coarse lead fire refining slag, lead smelting soot and dust, lead acid battery, copper smelting soot and dust, copper, copper-containing garbage, copper-containing circuit board, tin smelting slag, tin tailings One or more; wherein the zinc smelting slag is zinc smelting slag produced by wet zinc smelting and pyrometallurgical smelting, including leaching slag, iron slag slag, copper cadmium slag, goethite slag, hematite slag , volatile kiln slag, vertical tank zinc slag, smelting furnace slag, blast
  • the heat preservation device can adopt a pourable smelting reaction slag irrigation and heat preservation pit;
  • the rotatable smelting reaction device can adopt a converter and a smelting reaction slag tank.
  • the smelting reaction device with the slag port or the iron slag flowing out may be a plasma furnace, a direct current arc furnace, an alternating current arc furnace, a submerged arc furnace, a blast furnace, a blast furnace, an induction furnace, a cupola, and a side blowing.
  • the calcium-based mineral is specifically one or more of lime, limestone, dolomite, calcium carbide slag, red mud or high-calcium red mud after de-sodium;
  • the additive is SiO 2 One or more of MgO, FeO, Fe 2 O 3 , MnO 2 , Al 2 O 3 , TiO 2 , P 2 O 5 , Fe or Na 2 O;
  • the copper oxide mineral is one or more of cuprite, chert, malachite, azurite, chrysocolla, cholesterium; copper sulfide ore
  • the substance is one or more of chalcopyrite, copper blue, chalcopyrite, porphyrite, sulphide arsenic ore;
  • step S1 As a preferred solution, in step S1,
  • the two parameters (a) and (b) are ensured at the same time, and the copper oxide, nickel oxide, cobalt oxide and iron oxide in the slag are respectively reduced to metal copper and metal.
  • Nickel, metallic cobalt and FeO, the metal iron content in the slag is ⁇ 3%. It can be regulated by adding one or both of a reducing agent and a carbon-containing iron-containing material, wherein the amount of the reducing agent and/or the carbon-containing iron-containing material is nickel oxide, cobalt oxide, copper in the slag.
  • the oxide and iron oxide are reduced to a theoretical amount of metal nickel, cobalt, copper and FeO of 110 to 140%;
  • the carbonaceous iron-containing material is steel dust and soot, iron concentrate carbon pre-reduction pellet, iron Concentrate carbon-containing metallized pellets, wet zinc smelting kiln slag or coke oven dust and soot.
  • the fuel and the reducing agent used in the regulation are one or more of a solid, a liquid or a gaseous fuel, which are sprayed or fed in a preheated gas.
  • the loading gas is one or more of oxidizing gas, argon gas and nitrogen gas, and the preheating temperature is 0 to 1200 ° C;
  • the solid fuel and the reducing agent are coal powder, coke powder, coke, fly ash, bituminous coal.
  • the shape is granular or powder, the granular material has a particle size of 5 to 25 mm, the granular material has a particle size of ⁇ 150 ⁇ m;
  • the liquid fuel is heavy oil, and the gaseous fuel is gas and/or natural gas;
  • the metallurgical flux is a mineral containing CaO or SiO 2 , specifically one or more of quartz sand, gold-silver-silver quartz sand, red mud, red mud after desoda, calcium carbide slag, dolomite or limestone;
  • the iron-containing material is ordinary iron concentrate, ordinary iron concentrate direct reduced iron, ordinary iron concentrate sintered ore, ordinary iron concentrate pellet, ordinary iron concentrate metallized pellet, ordinary iron concentrate carbon-bearing pre- Reducing pellets, steel slag, zinc smelting slag, coke smelting soot and dust, steel soot and dust, nickel smelting slag, copper slag, lead smelting slag, copper slag, tin smelting slag, red mud, high calcium after desodium One or more of red mud, coal dust ash, sulfuric acid slag; the steel dust and dust including blast furnace gas mud, converter dust mud, electric furnace dust, hot (cold) rolling sludge, sintering dust, ball Group dust, iron collection plant dust, blast furnace gas ash, electric furnace dust ash, steel oxide scale; wet zinc slag and dust need to be dehydrated and dried.
  • the fluorine-containing material is one or more of fluorite, CaF 2 or fluorine-containing blast furnace slag.
  • zinc smelting slag and soot, lead smelting slag and soot contain indium and antimony, lead, silver, zinc and antimony; red mud contains sodium and potassium, and steel soot and dust contain indium, antimony and silver.
  • Sodium and potassium all of the above materials
  • Iron, lead smelting slag and zinc smelting slag contain copper, copper soot and dust contain indium and antimony, so in the method of the invention, indium, antimony, sodium, potassium, gold, silver, zinc, lead will be oxide The form enters the soot and is recycled.
  • the copper-containing material, the iron-containing material and the fluorine-containing material may be pelletized or powdered or granulated; wherein, the granular material has a particle size of ⁇ 150 ⁇ m, the granular material has a particle size of 5 to 25 mm, and is powdered.
  • the material is sprayed by spraying, and the granular material is added by spraying or feeding.
  • the loading gas is one or more of argon gas, nitrogen gas or reducing gas (gas and/or natural gas) and oxidizing gas.
  • the preheating temperature of the loaded gas is 0 to 1200 ° C; wherein the copper-containing material and the iron-containing material are in a hot state or a cold state, wherein the hot material is directly obtained from the metallurgical furnace outlet or the slag outlet.
  • the blowing method is one or several types in which a refractory lance is inserted into the slag or placed in the upper portion or the side or bottom of the reaction slag.
  • the copper component, the nickel component, the cobalt component, the gold and silver component in the slag are enriched in the copper-rich nickel phase, and aggregate, growth and sedimentation are achieved, and the iron component is enriched in The iron-rich phase realizes aggregation, growth and sedimentation, and the zinc component and lead component in the slag enter the soot respectively, wherein the soot is recovered in the form of zinc oxide and lead oxide, and the copper-rich nickel phase contains copper and white copper.
  • the iron-rich phase includes a plurality of metal iron, FeO phase, and fayalite phase.
  • step S1 the method of controlling the temperature of the mixed slag in the set temperature range is as follows:
  • the temperature of the mixed slag is > the upper limit of the set temperature
  • one or more of nickel smelting slag, copper-containing material, iron-containing material, copper oxide mineral, gold-silver-containing material or fluorine-containing material are added, in order to avoid The temperature is too high to protect the refractory material; another function of adding the fluorine-containing material is to lower the viscosity, accelerate the accumulation, growth and sedimentation of the copper-rich nickel phase, the ice-rich copper phase, and the iron-rich phase in the slag.
  • the alkaline material used is one or more of lime powder, red mud, red mud after desoda, calcium carbide slag, dolomite powder or quicklime powder;
  • alkaline iron-containing material is CaO/SiO 2 > One or more of 1 iron-containing material, alkaline sintered ore, alkaline iron concentrate, alkaline pre-reduced pellet, alkaline metallized pellet, steel slag or blast furnace slag.
  • the acidic material that can be used is one or more of silica, fly ash and coal gangue;
  • the iron-containing material with acidic iron-containing material is CaO/SiO 2 ⁇ 1, acid sintered ore, acid iron
  • the two parameters of (a) and (b) are ensured, and the slag is thoroughly mixed, and the mixing mode is natural mixing or stirring mixing, and the stirring mode is one of the following modes: argon stirring, nitrogen gas.
  • argon stirring nitrogen gas.
  • One or more of stirring, nitrogen-argon mixed gas stirring, reducing gas stirring, oxidizing gas stirring, electromagnetic stirring, mechanical stirring, gas preheating temperature is 0 to 1200 ° C;
  • the copper-rich nickel phase, the ice-rich copper phase, the iron-rich phase accumulate, grow up and settle in the slag, which is beneficial to the silicate floating.
  • the oxidizing gas when the preheated oxidizing gas is sprayed, the oxidizing gas may be one of air, oxygen, oxygen-enriched air, nitrogen-oxygen, argon-oxygen, and the oxidizing gas preheating temperature is 0. ⁇ 1200°C, the blowing method is one or several types in which a refractory spray gun is inserted into the slag or placed in the upper part or the side or bottom of the reaction slag.
  • the direct reduction process uses a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln or an induction furnace as a reduction device, and the gas-based or coal-based reduction technology is used to reduce the gas base to natural gas and/or
  • the gas and coal are reduced to one or more of anthracite, bituminous coal, lignite, coking coal, coke breeze or coke, the reduction temperature is 900-1400 ° C, and the alkalinity CaO/SiO 2 ratio is 0.8-1.5.
  • the copper-containing material and the iron-containing material may be in a hot state or a cold state, and the hot material is a hot material directly produced from a metallurgical furnace, and the heat is hot.
  • State material temperature is 200 ⁇ 1750 ° C.
  • the cooling mode is natural cooling or rotary cooling or centrifugal cooling
  • the sedimentation mode is natural sedimentation or rotary sedimentation or centrifugal sedimentation
  • the specific operation of the rotation and the centrifugation is: the device containing the slag after the reaction is completed is placed on the rotating platform, and is rotated according to a certain speed, and the rotation speed is determined according to the quality of the slag and the height or depth of the heat preservation device, and the rotation time depends on The quality of the slag and the solidification of the slag are determined; the device containing the slag after the completion of the reaction is placed on a rotating platform for the purpose of accelerating the copper-rich nickel phase, the ice-rich copper phase, the iron-rich phase, and growing up Settling is conducive to the floating of iron-containing silicate.
  • the copper component, the nickel component, the cobalt component, and the gold and silver component in the slag after the reaction is completed are continuously enriched in the copper-rich nickel phase to achieve growth and sedimentation; the iron component in the slag Continue to enrich in the iron-rich phase and achieve growth and settlement.
  • the separation may be performed by a gravity sorting method, and specifically, a shaker sorting, a chute sorting, or a combination of the two may be used.
  • the nickel smelting slag is treated by the method of the invention, and the slag of the iron-rich phase and the iron-containing silicate phase obtained finally contains ⁇ 0.1% of copper, the recovery of iron is ⁇ 90%, and the recovery of zinc is ⁇ 92%.
  • the lead recovery rate is ⁇ 92%
  • the nickel enrichment rate is ⁇ 91%
  • the cobalt enrichment rate is ⁇ 91%
  • the gold enrichment rate is ⁇ 94%
  • the silver enrichment rate is ⁇ 94%.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing:
  • the molten nickel smelting slag obtained from the slag smelting process of the smelting process is added to the DC arc furnace, and lime, SiO 2 , MgO, Al 2 O 3 are added to form mixed slag, and copper sulfide concentrate is added at the same time.
  • the slag is corresponding to (a): the temperature of the reaction slag is 1,660 ° C, and the refractory spray gun is inserted into the reaction slag, and the nitrogen gas is used as the loading gas, and the copper slag having a powder particle size of ⁇ 150 ⁇ m at normal temperature is sprayed, including Copper soot, copper and copper-containing garbage and copper-containing circuit boards, adding blast furnace gas mud, electric furnace dust, converter dust, ordinary iron concentrate direct reduced iron and blast furnace gas ash, so that the temperature is reduced to 1380 ° C; (b ): the ratio of alkalinity CaO/SiO 2 of the copper-containing reaction slag is 2.6, and a mixture of silica, fly ash and coal gangue is added to the reaction slag to reduce the alkalinity ratio of the copper-containing reaction slag to 0.7;
  • the metal iron content is 2.8%;
  • Step 2 separation and recovery method 1:
  • the following steps are carried out: (1) molten iron-containing silicate mineral phase, subjected to slag treatment outside the furnace, using method E, silicate slag is air-cooled, and used as direct reduction ironmaking raw material
  • the rotary kiln is used as the reduction equipment, the gas reducing agent is natural gas and gas, the reduction temperature is 950 ° C, the alkalinity CaO / SiO 2 ratio is 0.8, and the electric furnace melting temperature is 1550 ° C after reduction, the product is Metal molten iron and molten slag; (2) molten copper-rich nickel phase as nickel-raising raw material; (3) iron-rich phase poured into heat
  • the iron recovery rate is 92%, the indium recovery rate is 92%, and the ruthenium recovery rate is 94%.
  • the sodium recovery rate is 95%
  • the potassium recovery rate is 96%
  • the iron recovery rate is 96%
  • the nickel enrichment rate is 93%
  • the cobalt enrichment rate is 95%
  • the gold enrichment rate was 96%.
  • the enrichment rate was 94%.
  • the copper content of the slag refers to the slag phase after the phase separation of the copper-rich nickel phase, specifically the copper content in the iron-rich phase and the silicate mineral phase, and the enrichment ratio of nickel and cobalt.
  • the enrichment ratio of gold and silver means that the content of gold and silver in the copper-rich nickel phase and soot accounts for gold in the raw material. The percentage of total silver.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing:
  • the molten nickel smelting slag obtained from the slag outlet of the "copper ice nickel blowing" process is added to the pourable smelting reaction slag, and limestone, dolomite, red mud and FeO and Fe 2 O 3 are added to form a mixed melting.
  • Slag simultaneously adding copper oxide concentrate and nickel sulfide concentrate; using oxygen-enriched air, blowing natural gas, particle size of 20mm anthracite and coke particles, heating the mixed slag to a molten state, forming a copper-containing reaction slag; real-time monitoring reaction
  • the slag is obtained by controlling and simultaneously ensuring two parameters (a) and (b), and obtaining the slag after completion of the reaction;
  • copper-containing reaction slag temperature is 1660 ° C, using a refractory spray gun inserted into the reaction slag, with argon gas preheating at 600 ° C as carrier gas, sprayed into normal temperature powder particle size ⁇ 150 ⁇ m copper slag, nickel smelting Slag, copper-containing soot, copper, steel sintered dust, sintered pellet dust, iron ore fine iron concentrate direct reduced iron, the temperature is reduced to 1580 ° C;
  • copper-containing reaction slag basicity CaO / SiO 2 ratio is 2.4, adding acid iron concentrate, acidic pre-reduction pellets, lead-containing smelting slag, lead-containing smelting furnace slag mixture to the reaction slag, so that the copper-containing reaction slag alkalinity ratio is reduced to 1.1; slag Medium metal iron content is 3%;
  • Step 2 separation and recovery method 2:
  • the slag is spin-settled after the reaction is completed, and the slag-gold separation, the molten copper-rich nickel phase layer, the iron-rich phase and the iron-containing silicate mineral phase are obtained, and the zinc component, the lead component and the indium group are simultaneously formed.
  • the fraction is recovered as an oxide and the following steps are carried out:
  • the molten iron-containing silicate mineral phase and the molten iron-rich ice-rich copper phase are treated by the method G for the slag slag treatment, and the slag is smelted and reduced to smelt the ferronickel.
  • the specific steps are as follows:
  • the temperature of the reaction slag is 1480, in the temperature range;
  • the finally obtained slag contains copper ⁇ 0.1%, zinc recovery rate is 92%, lead recovery rate is 92%, iron recovery rate is 91%, indium recovery rate is 96%, hydrazine recovery rate is 95%, and sodium recovery rate is 96. %, the potassium recovery rate is 98%, the nickel enrichment rate is 93%, the cobalt enrichment rate is 96%, the gold enrichment rate is 94%, and the silver enrichment rate is 95%.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing: the molten nickel smelting slag obtained by blowing the slag by the "copper ice nickel blowing" process through the slag outlet of the depleting furnace, adding to the alternating current electric arc furnace, adding limestone and decalcifying high calcium red mud, forming Mixing slag, adding copper oxide concentrate and copper sulfide concentrate at the same time; spraying oxygen with a particle size of 20mm anthracite, coke and coal powder with preheating temperature of 600 ° C, heating the mixed slag to a molten state, forming a Copper reaction slag, mechanically stirred and mixed; real-time monitoring of reaction slag, through control and simultaneous assurance of two parameters (a) and (b), obtaining slag after completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1685 ° C, adding acid metallized pellets and copper slag to the reaction slag, and adding copper-containing soot, lead smelting slag, ordinary iron concentrate pellets, and rolling steel Iron oxide scales and ordinary iron concentrates contain carbon pre-reduction pellets to lower the temperature to 1420 ° C;
  • alkalinity CaO / SiO 2 ratio of copper-containing reaction slag 2.3, adding quartz sand to the reaction slag The mixture of red mud and zinc smelting slag reduces the alkalinity ratio of the copper-containing reaction slag to 1.3; the metal iron content in the slag is 2.2%;
  • Step 2 separation and recovery method 2:
  • the soot is recovered as an oxide and the following steps are performed:
  • the zinc-containing component, the indium component, the antimony component and the lead-containing component volatilize and enter the soot recovery.
  • the finally obtained slag contains copper ⁇ 0.1%, the iron recovery rate is 89%, and the zinc recovery rate is 93. %, lead recovery rate is 92%, indium recovery rate is 93%, hydrazine recovery rate is 95%; nickel enrichment rate is 94%, cobalt enrichment rate is 95%, sodium recovery rate is 95%, potassium The recovery rate was 97%, the gold enrichment rate was 96%, and the silver enrichment rate was 95%.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing: adding the molten nickel smelting slag obtained from the slag outlet of the top blowing molten pool to the plasma furnace, simultaneously adding dolomite, MgO, Al 2 O 3 , and Fe to form mixed slag and simultaneously adding copper oxide.
  • Concentrate, nickel sulfide concentrate and copper-containing material (wet zinc leaching slag, wet zinc smelting kiln slag); heating the molten slag to a molten state, forming a copper-containing reaction slag, and making the reaction slag electromagnetic Stirring to achieve mixing; monitoring the reaction slag in real time, and simultaneously controlling the two parameters (a) and (b) to obtain the slag after completion of the reaction;
  • Step 2 separation and recovery method 4:
  • the slag naturally settles and settles after the reaction is completed, and the slag-gold separation, obtaining a molten copper-rich nickel phase, an iron-rich phase and a ferrosilicate-containing mineral phase, and simultaneously forming a zinc-containing component and a lead-containing component, Enter the soot and recycle it as an oxide.
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 91%, zinc recovery rate is 92%, lead recovery rate is 92%, indium recovery rate is 93%, hydrazine recovery rate is 94%, sodium recovery The rate was 96%, the potassium recovery was 97%, the nickel enrichment rate was 93%, the cobalt enrichment rate was 94%, the gold enrichment rate was 95%, and the silver enrichment rate was 97%.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing: the molten nickel smelting slag obtained by melting the smelting slag from the top blowing molten pool through the sedimentation electric furnace slag opening is added to the thermal insulation pit, and limestone and Fe are added simultaneously to form mixed slag, and copper oxide concentrate is added at the same time.
  • Copper-containing materials including lead smelting slag, smelting furnace slag, lead slag copper and arsenic matte); using oxygen-enriched air with a preheating temperature of 900 ° C, blowing bituminous coal with a particle size of ⁇ 150 ⁇ m, heating the mixed slag to a molten state, Forming a copper-containing reaction slag and mixing the reaction slag; monitoring the reaction slag in real time, and simultaneously controlling the two parameters (a) and (b) to obtain the slag after completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1430 ° C;
  • the alkalinity CaO / SiO 2 ratio of the copper-containing reaction slag is 1.5, both within the required range; the metal iron content in the slag is 1.6 %;
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 90%, zinc recovery rate is 92%, lead recovery rate is 92%, indium recovery rate is 94%, hydrazine recovery rate is 95%, nickel The enrichment rate was 94%, the cobalt enrichment rate was 95%, the gold enrichment rate was 97%, and the silver enrichment rate was 96%.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing: molten nickel smelting slag obtained from the slag smelting process of the smelting process, and molten smelting slag obtained from the slag outlet of the "copper ice nickel blowing" process blowing furnace are added to the alternating current arc furnace At the same time, adding lime, MgO, Al 2 O 3 , Fe 2 O 3 to form mixed slag, and adding copper sulfide concentrate and copper-containing material (including copper smelting slag, copper-containing blowing slag and copper fire refining slag)
  • the mixed slag is heated to a molten state to form a copper-containing reaction slag, sprayed into an argon gas having a preheating temperature of 1000 ° C, and the slag is mixed; the reaction slag is monitored in real time, and the (a) and (b) two parameters to obtain the slag after completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1080 ° C, and the temperature is raised to 1330 ° C by heating in an electric arc furnace;
  • the alkalinity CaO / SiO 2 ratio of the copper-containing reaction slag is 0.1, the reaction Adding alkaline iron concentrate, converter sludge, alkaline pre-reduction pellets, and high-calcium red mud after de-sodium to the slag, so that the alkalinity ratio of the copper-containing reaction slag is raised to 0.4; sprayed into the gas, slag
  • the metal iron content is 1.1%;
  • Step 2 separation and recovery method 1:
  • the zinc-containing component, the lead-containing component, the indium-containing component and the cerium-containing component are volatilized, and are collected into the soot.
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 91%, zinc recovery rate is 92%, lead recovery rate is 92%, indium recovery rate is 94%, hydrazine recovery rate is 95%, sodium recovery The rate was 95%, the potassium recovery was 95%, the nickel enrichment rate was 94%, the cobalt enrichment rate was 93%, the gold enrichment rate was 96%, and the silver enrichment rate was 95%.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing: the cold nickel smelting slag obtained by the "osmosis process” process, the cold nickel smelting slag obtained by the “copper ice nickel blowing process” blowing slag through the depleting furnace is added to the submerged arc furnace, Adding limestone, SiO 2 , FeO and MgO to form mixed slag, adding copper oxide concentrate (copper fire depleted waste, copper slag flotation tailings, copper tailings); heating the molten slag to melt State, forming a copper-containing reaction slag, spraying an argon-nitrogen mixture gas having a preheating temperature of 800 ° C, and mixing the slag; monitoring the slag in real time, and simultaneously ensuring (a) and (b) through regulation Parameters, obtaining slag after completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1320 ° C;
  • the alkalinity CaO / SiO 2 ratio of the copper-containing reaction slag is 0.8, both within the required range;
  • the preheating temperature is 600 °C oxygen-enriched air, adding pulverized coal with a particle size of ⁇ 150 ⁇ m, sprayed into natural gas, the content of metallic iron in the slag is 1.6%;
  • Step 2 separation and recovery method 4:
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing: molten nickel smelting slag obtained from the slag smelting slag exiting process of the smelting process, and molten smelting slag obtained by the "copper ice nickel blowing" process slag slag passing through the slag outlet of the lean furnace Adding blast furnace, adding dolomite, red mud, MgO, forming mixed slag, adding copper sulfide concentrate and copper-containing material (including copper soot, copper-containing garbage and copper), using air with preheating temperature of 600 °C Coke powder with a particle size of ⁇ 150 ⁇ m and sprayed into the gas, The mixed slag is heated to a molten state to form a copper-containing reaction slag, and the reaction slag is mixed; the reaction slag is monitored in real time, and two parameters (a) and (b) are simultaneously controlled to obtain the reaction. slag;
  • the temperature of the copper-containing reaction slag is 1330 ° C;
  • the alkalinity CaO / SiO 2 ratio of the copper-containing reaction slag is 1.0, both within the required range;
  • the metal iron content in the slag is 0.8 %;
  • reaction slag as a hot metallurgical flux, adjusting the composition of the copper-containing reaction slag to control the temperature of the copper-containing reaction slag;
  • the slag contains copper ⁇ 0.1%, the iron recovery rate is 90%, the zinc recovery rate is 92%, the lead recovery rate is 92%, the sodium recovery rate is 95%, the potassium recovery rate is 96%, and the nickel is rich.
  • the collection rate was 92%, the cobalt enrichment rate was 97%, the gold enrichment rate was 98%, and the silver enrichment rate was 96%.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 slag mixing: molten nickel obtained by melting the smelting slag from the top blowing molten pool through the slag outlet of the settling electric furnace and molten nickel obtained by the "copper ice nickel blowing" process blowing slag through the slag outlet of the depleted furnace
  • the smelting slag is added to the side blowing furnace, and at the same time, limestone is added to form mixed slag, and copper sulfide and copper-containing material (copper-refined copper slag) are added at the same time; the air of ⁇ 150 ⁇ m is sprayed with air having a preheating temperature of 800 ° C, and the mixture is melted.
  • the slag is heated to a molten state to form a copper-containing reaction slag, and the reaction slag is mixed; the reaction slag is monitored in real time, and two parameters (a) and (b) are simultaneously controlled to obtain the slag after completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1340 ° C;
  • the alkalinity CaO / SiO 2 ratio of the copper-containing reaction slag is 1.2, both within the required range;
  • the metal iron content in the slag is 01.9 %;
  • the slag after the completion of the reaction is naturally settled, and the slag-gold is separated to obtain a copper-rich nickel phase and a middle-upper iron-containing silicate mineral phase, and at the same time, a zinc-containing component and a lead-containing component are formed, and the smoke is entered.
  • the following steps are carried out: (1) the upper middle slag is poured into the smelting device, and the middle and upper slag is poured into the glass ceramics by the method C in the separation and recovery method 1 of the step 2;
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 90%, zinc recovery rate is 92%, lead recovery rate is 92%, nickel enrichment rate is 97%, and cobalt enrichment rate is 94. %, the gold enrichment rate is 95%, and the silver enrichment rate is 95%.
  • a method for producing smelting slag from nickel comprising the steps of:
  • Step 1 Slag mixing: molten nickel obtained by melting the smelting slag from the top-blown molten pool to obtain the molten nickel slag obtained by the slag discharge port of the sedimentation electric furnace, and the molten nickel obtained by the "copper ice nickel blowing" process blowing slag through the slag outlet of the depleted furnace
  • the smelting slag and the molten nickel smelting slag obtained by melting the smelting slag from the top blowing molten pool through the sedimentation electric furnace slag inlet are added to the thermal insulation pit, and at the same time, limestone and Fe are added to form mixed slag, and copper oxide concentrate is added at the same time; Oxygen-enriched air at a temperature of 700 ° C, blowing bituminous coal with a particle size of ⁇ 150 ⁇ m, heating the mixed slag to a molten state to form a copper-containing reaction slag, and The reaction slag is mixed; the reaction
  • the temperature of the copper-containing reaction slag is 1430 ° C;
  • the alkalinity CaO / SiO 2 ratio of the copper-containing reaction slag is 1.5, both within the required range;
  • the metal iron content in the slag is 1.3 %;
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 90%, zinc recovery rate is 92%, lead recovery rate is 92%, nickel enrichment rate is 96%, and cobalt enrichment rate is 97. %, the gold enrichment rate is 95%, and the silver enrichment rate is 96%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种由镍冶炼熔渣生产的方法,包括如下步骤:S1、炉渣混合:将镍冶炼渣加入熔炼反应装置中,加入钙系矿物与添加剂;搅拌,将熔渣加热至熔融状态,加入氧化铜矿物、氧化镍矿物、硫化铜矿物、硫化镍矿物、含铜物料中的一种或几种;混合均匀,作为反应熔渣,并实时监测,同时通过调控使混合后的含铜熔渣同时满足条件a 和条件b,获得反应后的熔渣;S2、分离回收。本方法既可以处理热态熔渣,又可以处理冷态炉渣,充分利用熔融镍冶炼渣物理热资源和热态冶金熔剂,实现了既可以处理含铜炉渣,又可以处理氧化铜矿物和/或硫化镍矿物,实现铜与铁的同时生产。

Description

一种由镍冶炼熔渣生产的方法 技术领域
本发明属于熔渣冶金技术领域,具体涉及一种利用镍冶炼熔渣进行冶金生产的方法。
背景技术
镍的火法冶炼过程中,产生大量镍冶炼渣,镍冶炼渣包括“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的贫化炉渣、顶吹熔炼产生的镍沉降炉渣。我国金川公司采用“闪速熔炼”与“顶吹熔炼”进行镍精矿冶炼,每年产生100万吨镍冶炼渣,目前累计堆积储存量超过1000万吨。镍冶炼渣中含有铜、铁、镍、钴、锌、铅、金、银等有价组分,长期堆放,既浪费资源,又污染环境。
镍冶炼渣中铁含量高达50wt%,远超目前26wt%可采品位,铜含量高达0.2wt%以上,其中铁组分主要以铁橄榄石相存在。目前,镍冶炼渣的主要研究为直接还原提铁或熔融炼铁,在还原过程中,铜、镍、钴组分还原进入铁水,不利于后续的炼钢过程。
镍冶炼渣中不仅含有铜、铁、镍、钴、锌、铅、金、银等二次资源等,而且含有大量SiO2、CaO、MgO等冶金熔剂,化学反应活性强,是物理化学性质优良的熔渣体系,是成熟的冶金渣系。但目前,还没有一种以镍冶炼熔渣为反应渣系,实现镍冶炼熔渣中铜、铁同步分离技术。
现有铜的火法冶金工艺适于处理硫化铜矿,难以处理氧化铜矿。如何大规模同时处理镍冶炼渣、氧化铜矿物、硫化铜矿物及其它含铜铁物料,实现铜、铁的生产就显得尤为重要。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种由镍冶炼熔渣生产的方法。本发明以现有火法炼铜工艺、炼铁工艺与熔渣冶金理论为基础,实现了大规模同时处理镍冶炼渣、氧化铜矿、硫化铜矿物、氧化镍矿物、硫化镍矿物与含铜物料,有效降低渣含铜(渣含铜<0.1wt%),可实现铜、铁、铅、锌、镍、钴、金、银、铟、铋、钠、钾的生产与回收,本发明方法提供的是一种新的熔渣冶金工艺,也是一种新的炼铜方法与炼铁工艺。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种由镍冶炼熔渣生产的方法,其包括如下步骤:
S1、炉渣混合:将镍冶炼渣加入熔炼反应装置中,同时加入钙系矿物与添加剂;搅拌,将熔渣加热至熔融状态,加入氧化铜矿物、氧化镍矿物、硫化铜矿物、硫化镍矿物、含铜物料中的一种或几种;混合均匀,作为反应熔渣,并实时监测,通过调控使反应熔渣同时满足条件a和条件b,获得反应后的熔渣,或将反应后的熔渣倒入保温装置;
其中,所述条件a为控制反应熔渣温度为1100~1500℃;
所述条件b为控制反应熔渣的碱度CaO/SiO2比值=0.15~1.5;
S2、分离回收:所述步骤S1反应后的熔渣,保温5~50min,获得底部的熔融态富铜镍相层、中下部的熔融态富铁相与中上部的熔融态含铁硅酸盐矿物相,同时生 成含锌组分与含铅组分的烟尘,金组分、银组分进入富铜镍相,部分含镍组分、含钴组分进入富铁相;对各相进行回收处理。
如上所述的方法,优选地,在所述步骤S1中,对于所述条件a调控的方法为:
当所述反应熔渣的温度<设定温度范围下限1100℃时,利用反应装置自身的加热功能,或向反应熔渣中加入燃料或熔融镍冶炼渣或含铜熔炼渣和/或含铜吹炼渣,使反应熔渣的温度达到设定温度1100~1500℃范围内,喷入燃料时,同时喷入预热的氧化性气体;
当所述反应熔渣的温度>设定温度范围上限1500℃时,向反应熔渣中加入镍冶炼渣、含铜物料、含铁物料、氧化铜矿物、氧化镍矿物、硫化铜矿物、硫化镍矿物、含金银物料或含氟物料中的一种或几种,使反应熔渣的温度达到设定温度1100~1500℃范围内;
对于所述条件b调控的方法为:
当所述反应熔渣中碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料、碱性氧化铜矿物、碱性氧化镍矿物、碱性硫化铜矿物、碱性硫化镍矿物、含铜物料、碱性含铁物料中的一种或几种;
当所述反应熔渣中碱度CaO/SiO2比值>1.5时,向反应熔渣中加入酸性物料、酸性氧化铜矿物、酸性氧化镍矿物、酸性硫化镍矿物、酸性硫化铜矿物、酸性含铁物料或酸性含金银物料中的一种或几种。
如上所述的方法,优选地,所述反应装置为保温装置或可转动的熔炼反应装置或带有渣口或铁口熔渣可流出的熔炼反应装置;其中,所述保温装置为可倾倒的熔炼反应渣灌或保温地坑;
所述可转动的熔炼反应装置为转炉、熔炼反应渣罐;
所述带有渣口或铁口熔渣可流出的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉。如上所述的方法,优选地,所述镍冶炼渣为熔融态或冷态,其中:熔融镍冶炼渣由镍冶炼炉出渣口获得,或将镍冶炼渣加热至熔融状态;镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的吹炼渣、“铜冰镍吹炼”工艺吹炼后的吹炼渣经贫化产生的贫化炉渣、顶吹熔炼产生的镍熔炼渣、顶吹熔炼产生的镍熔炼渣经电炉沉降产生的沉降渣中一种或多种;
如上所述的方法,优选地,在所述步骤S1中,满足所述条件a和b的同时,应同时满足,控制所述反应熔渣中铜氧化物、镍氧化物、钴氧化物和铁氧化物分别还原为金属铜、金属镍、金属钴和FeO,熔渣中金属铁含量<3%。可通过加入还原剂、含碳的含铁物料中的一种或两种进行调控,其中,还原剂和/或含碳的含铁物料的用量为熔渣中镍氧化物、钴氧化物、铜氧化物和铁氧化物还原为金属镍、钴、铜和FeO的理论量110~140%;所述含碳的含铁物料为钢铁尘泥与烟灰、铁精矿含碳预还原球团、铁精矿含碳金属化球团、湿法炼锌挥发窑渣或焦炭炉尘泥与烟灰。
如上所述的方法,优选地,所述含铜物料为粗铜铜火法精炼渣、选铜尾矿、铜渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾矿、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、锡尾矿中的一种或几种;其中,所述锌冶炼渣为湿法炼锌与火法炼锌产生的锌冶炼渣,包括浸出渣、铁矾渣、铜镉渣、针铁矿渣、赤铁矿渣、挥发窑渣、竖罐炼锌渣、烟化炉渣、鼓风炉渣、旋涡炉渣、电炉炼锌渣;含铅冶炼 渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;所述铜渣是含铜熔炼渣、含铜吹炼渣、贫化弃渣、浮选尾渣、湿法炼铜渣中的一种或多种,含铜熔炼渣产生于铜的火法冶炼工艺的“造锍熔炼”过程;所述含铜吹炼渣产生于铜的火法冶炼工艺的“铜锍吹炼”过程;贫化弃渣为含铜熔炼渣与含铜吹炼渣贫化后弃渣,浮选尾渣为含铜熔炼渣与含铜吹炼渣选矿后尾渣,湿法炼铜渣为湿法炼铜弃渣。
如上所述的方法,优选地,所述钙系矿物为石灰、石灰石、白云石、电石渣、赤泥或脱钠后高钙赤泥中的一种或几种;所述添加剂为SiO2、MgO、FeO、Fe2O3、MnO2、Al2O3、TiO2、P2O5、Fe或Na2O中的一种或几种;所述氧化铜矿物包括赤铜矿、黑铜矿、孔雀石、蓝铜矿、硅孔雀石、胆矾中的一种或多种;所述硫化铜矿物包括辉铜矿、铜蓝、黄铜矿、斑铜矿、硫砷铜矿、黝铜矿的一种或多种。
如上所述的方法,优选地,所述燃料与还原剂为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,用0-1200℃的气体载入,所述气体是氧化性气体中的一种或多种;所述固体燃料与还原剂为煤粉、焦粉、焦炭、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm;所述液体燃料与还原剂为重油,所述气体燃料与还原剂为煤气和/或天然气。
所述的碱性物料为石灰粉、赤泥、脱钠后赤泥、电石渣、白云石粉或生石灰粉中的一种或几种;所述的碱性含铁物料为CaO/SiO2>1的含铁物料、碱性烧结矿、碱性铁精矿、碱性预还原球团、碱性金属化球团或钢渣中的一种或几种;所述酸性物料为硅石、粉煤灰、煤矸石中的一种或多种,酸性含铁物料为CaO/SiO2≤1的含铁物料、酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、高炉渣中的一种或几种。
优选地,在所述步骤S1中,所述混合均匀为自然混合或搅拌混合,所述搅拌混合的方式为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌或机械搅拌中的一种或几种。
如上所述的方法,优选地,在所述步骤S2中分离回收中,对所述富铜镍相、富铁相与含铁硅酸盐矿物相可分别进行处理,或将两相结合处理。
具体地,所述步骤S2中的分离回收,采用如下方法一到方法五中任一方法处理:
方法一、采用熔渣可流出熔炼反应装置时,反应完成后的熔渣分离后进行如下步骤:
S2-1-01、所述熔融态含铁硅酸盐矿物相,进行如下方法A-G中的任一种处理;
方法A:水淬或空冷后直接作为水泥原料;
方法B:部分或全部所述熔融态含铁硅酸盐矿物相返回到含铜熔渣;
方法C:所述含铁硅酸盐矿物相用于浇筑微晶玻璃或作为矿渣棉;
方法D:向熔炼反应装置内的含铁硅酸盐熔渣中,吹入温度为0~1200℃的预热氧化性气体,并保证硅酸盐熔渣温度>1450℃;当熔渣氧化亚铁重量百分比含量<1%,获得氧化后的熔渣;所述氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
方法E:所述熔融态含铁硅酸盐矿物相用于生产高附加值的水泥熟料:
E-1、向所述熔融态含铁硅酸盐矿物相的熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后赤泥或电 石渣中的一种或几种,充分混合,获得熔渣混合物料;
E-2、向上熔渣混合物料中吹入预热温度为0~1200℃的氧化性气体,并保证熔渣混合物料温度>1450℃;当氧化亚铁的重量百分含量<1%,获得氧化后的熔渣;
E-3、所述氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
方法F:所述含铁硅酸盐矿物相和/或所述富铁相熔渣作为高炉炼铁原料或直接还原炼铁原料:将含铁硅酸盐矿物相和/或所述富铁相的熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
或将所述含铁硅酸盐矿物相和/或所述富铁相的熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入0~1200℃的预热的氧化性气体,并保证其熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将上述氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;
方法G:所述熔融态含铁硅酸盐进行还原炼铁,包括如下步骤:
G-1、向熔融态含铁硅酸盐熔渣中加入含铁物料、还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时满足条件:反应熔渣的温度为1460~1640℃和反应熔渣的碱度CaO/SiO2比值=0.6~2.4,获得反应完成后的熔渣;
其中,控制反应熔渣的温度的方法为:
当反应熔渣的温度<设定温度范围下限时,通过反应装置自身的加热,或向熔渣中加入燃料与预热的氧化性气体,使反应熔渣的温度达到设定温度范围内;
当反应熔渣的温度>设定温度范围上限时,向反应熔渣中加入冶金熔剂、含铁物料或含氟物料中的一种或几种,使反应熔渣的温度达到设定温度范围内;
控制反应熔渣的碱度的方法为:
当反应熔渣中碱度CaO/SiO2比值<0.6时,向熔渣中加入碱性物料和/或碱性含铁物料;
当反应熔渣中碱度CaO/SiO2比值>2.4时,向熔渣中加入酸性物料和/或酸性含铁物料;
G-2、所述G-1中熔融还原时还需向熔渣中喷吹0~1200℃预热后的氧化性气体进行熔融还原,形成还原后的熔渣;
G-3、分离回收:采用以下方法中的一种:
方法Ⅰ:将还原后的混合熔渣倒入保温渣罐,冷却至室温,获得缓冷渣;其中,金属铁沉降到反应装置的底部,形成铁坨,将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
方法Ⅱ:还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;所述还原后的熔渣,按照方法A~E中的一种或几种方法进行熔渣处理;所述铁水,送往转炉或电炉炼钢;
S2-1-02、所述富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
S2-1-03、部分所述含锌组分与含铅组分挥发,以氧化物形式进入烟尘;
S2-1-04、部分含金组分与含银组分进入富铜镍相,镍、钴组分分别进入富铜镍相与富铁相;
S2-1-05、或含有所述富铁相层进行水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼镍铁原料或直接还原炼镍铁原料或熔融还原炼镍铁原料或浮选提铜镍原料;浮选产物为含铜精矿、镍精矿、镍铁合金与铁精矿,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;所述直接还原过程 采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉,利用气基或煤基还原,气基还原采用天然气和/或煤气,煤基还原采用无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,控制还原温度为900~1400℃,控制碱度CaO/SiO2比值=0.8~1.5;
还原产生的煤气在熔渣表面二次燃烧,提供了热量,而且由炉内流出的煤气可以作为烘干炉料与保温装置的热源。
此外,因赤泥中含有钾、钠,尘泥与钢铁烟灰中含有铅、锌、铋、铟银,所以添加这些原料时,部分铟组分、铋组分、含钾组分、含钠组分挥发,以氧化物形式进入烟尘。
方法二、采用熔渣可流出的熔炼反应装置时,获得的所述富铁相和含铁硅酸盐矿物相处理方法用方法一中所述方法A~G中一种或几种进行处理,所述熔融态倒入保温装置缓冷后的富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料。
方法三、采用熔渣可转动的转炉与反应渣罐时,获得所述含铁硅酸盐矿物相,处理方法用方法一中所述方法A~G中一种或几种进行处理;或含有所述富铁相采用方法一的S2-1-05进行处理;所述熔融态或倒入保温装置缓冷后的富铜镍相,送往转炉或吹炼炉炼或作为铜钴镍分离的原料。
方法四、采用熔渣可转动的转炉与反应渣罐时,获得的熔融态含铁硅酸盐矿物相与富铁相,处理方法用方法一中所述方法A~G中一种或几种进行处理;所述熔融态富铜镍相或倒入保温装置缓冷后,送往转炉或吹炼炉或作为铜钴镍分离的原料。
方法五:采用保温装置时,或采用熔渣可流出的熔炼反应装置,将熔渣倒入保温装置时,进行如下步骤:
S201、沉降冷却:熔渣缓慢冷却至室温,获得缓冷渣;所述富铜镍相沉降到反应装置的底部,形成富铜镍坨;所述含铁硅酸盐矿物相上浮;中间为缓冷渣为富铁相,同时生成含锌组分与含铅组分;其中,金、银组分迁移到富铜镍相,镍、钴组分分别迁移到富铜镍相与富铁相;
S202、分离:人工取出沉降在底部的富铜镍坨,或富铜镍坨送往转炉或吹炼炉或作为铜、钴、镍分离的原料;含有所述富铁相采用方法一的S2-1-05进行处理;
S203、人工取出上部的含铁硅酸盐矿物相,获得硅酸盐相作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或水泥原料;
S204、部分锌组分与铅组分挥发,以氧化物形式进入烟尘回收;
S205、添加有赤泥中或尘泥与钢铁烟灰这些原料时,部分铟组分、铋组分、含钾组分、含钠组分挥发,进入烟尘回收。
如上所述方法,优选地,所述氧化性气体为预热的空气、氧气、富氧空气、氮气-空气、氩气-空气、氧气-氮气、氧气-氩气中的一种,所述预热的温度为0~1200℃;
在所述步骤S2中,所述沉降为自然沉降或旋转沉降或离心沉降;进行冷却沉降时的冷却方式为自然冷却或旋转冷却或离心冷却,所述分离时,用重力分选法是摇床分选、溜槽分选或者二者相结合。
与现有技术相比,本发明的特点是:
(1)本发明的由镍冶炼熔渣生产的方法,既可以处理热态熔渣,又可以处理冷态炉渣,充分利用熔融镍冶炼渣物理热资源和热态冶金熔剂,实现了既可以处理含铜炉渣,又可以处理硫化铜矿物、氧化铜矿物、氧化镍矿物、硫化镍矿物,是一种新的铜镍冶炼工艺,实现了熔渣冶金、火法炼铜与炼铁;
(2)熔渣中的熔渣冶金反应,铁橄榄石解体,铁氧化物充分释放出来,富集于富铁相,实现长大与沉降,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为 高炉炼镍铁或直接还原或熔融还原炼镍铁的原料;
(3)熔渣中的铜组分、镍钴组分、金银组分分别迁移、富集于富铜镍相,并实现长大与沉降;其中,富铜镍相包括有铜、白冰铜、铜冰镍、富铜镍钴相或含铁组分中的多种,或部分铜组分进入富铁相;
(4)熔渣中的锌组分、铅组分、镍组分、钴组分、铋组分、钠组分、钾组分、富集于烟灰,可加以回收;
(6)采用人工分拣、磁选、重选或渣-金分离的方法,分离沉降在不同部位的富铜镍相、铁氧化物,实现熔渣中铜组分、铁组分的高效回收;
(7)熔渣实现调质,可作为水泥原料或建筑材料或代替碎石作骨料和路材;
(8)本发明方法加入添加剂,一是用于减小粘度,二是用于降低熔点,在一定温度(1100-1500℃)下有助于富铜镍相沉降,使沉降分离后获得富铁相为低铜富铁相与含铁硅酸盐相,其中富铁相与含铁硅酸盐相的含铜量小于0.1%,可以作为高炉炼铁或直接还原或熔融还原炼铁的原料,获得金属铁与铁水。
(9)本发明方法可连续或间断的进行,工艺流程短,清洁环保,金属回收率高。
(三)有益效果
本发明的有益效果是:
(1)本发明由镍冶炼炉渣或熔渣,组成成熟的熔渣体系,通过熔渣冶金,不仅可以实现炉渣中铜组分、镍组分、钴组分、金组分、银组分、铋组分、钠组分、钾组分、铁组分、锌组分、铅组分有价组分的综合利用,解决目前镍冶炼炉渣大量堆积问题,而且可以大规模处理氧化铜矿物,实现同时生产铜与铁,解决了氧化铜矿物与氧化镍矿物难处理与含铁组分不易回收两大世界性难题。
(2)本发明的含镍炉渣可以是出渣口中流出的液态熔融镍冶炼渣(≥1200℃),蕴含着丰富的热能资源,具有高温度、高热量的特点,充分利用了熔渣物理热资源,高效节约能源;液态熔融铜渣含有大量的热态冶金熔剂,是物理化学性质优良的熔渣体系,实现了熔渣冶金。
(3)本发明通过熔渣冶金,同时加入钙系矿物,使橄榄石相中铁氧化物释放出来,富集于富铁相,实现聚集、长大与沉降,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为高炉炼镍铁或直接还原或熔融还原炼镍铁的原料;熔渣中锌组分、铅组分、铟组分、铋组分、钠组分、钾组分挥发,进入烟尘加以回收;。
(4)本发明方法中,加入冷态物料与熔融铜渣避免了熔渣温度过高,提高保温装置的寿命;加入冷态物料与熔融铜渣提高了原料处理量,不仅可以处理液态熔渣,原料适应性强;加入冷态物料实现了熔渣氧化反应释放的化学热与熔渣物理热的高效利用。
(5)本发明方法中,熔渣中铜组分、镍钴组分、金、银组分分别迁移、富集于富铜镍相,并实现聚集、长大与沉降,富铜镍相包括有铜、白冰铜、铜冰镍、含铁组分中的多种,或部分铜组分进入富铁相;熔渣中铁组分迁移、富集于富铁相,并实现聚集、长大与沉降,装有熔渣的保温装置置于旋转平台上旋转,加速富铜镍相、富铁相的聚集、长大与沉降,提高生产效率;含氟物料的加入,加速富铜镍相、富铁相的聚集、长大与沉降。
(6)本发明方法采用人工分拣、磁选、重选或渣-金分离的方法,分别对分布在上部、中部与底部的硅酸盐矿物相、富铁相、富铜镍相进行分离,实现熔渣中铜组分、铁组分的高效回收;由于富铜镍相、富铁相沉降在中、下部,需分选炉渣量小,熔渣实现调质,矿物可磨性增加,生产成本低;后续的分离过程采用磁选或重选,分 离过程中不会产生环境污染,整个熔渣处理工艺具有流程短、操作简单、回收率高,具有高效、清洁、环保的特点;尾矿作为水泥原料、建筑材料、代替碎石作骨料、路材使用。
(8)本发明通过富铜镍相沉降,含铁硅酸盐相与富铁组分的含铜量小于0.1%,作为高炉炼铁或直接还原或熔融还原的原料,获得金属铁与铁水。
(9)本发明利用镍冶炼熔渣组成成熟的熔渣体系,利用熔渣冶金,不仅实现熔渣中有价组分的高效回收,而且实现氧化铜矿物的大规模生产,同时生产铜与铁,是一种新的铜镍冶炼工艺。该方法工艺流程短、金属回收率高、生产成本低、原料适应性强、处理量大、环境友好、经济收益高、可有效解决冶金资源与热能高效回收利用问题。
具体实施方式
本发明提供一种由镍冶炼熔渣生产的方法,具体包括以下步骤:
步骤S1,炉渣混合:
将镍冶炼渣,加入保温转置中或熔渣可流出的熔炼反应装置中并加入钙系矿物与添加剂,将熔渣加热至熔融状态,形成含铜与铁的反应熔渣,同时加入氧化铜矿物、硫化铜矿物、硫化镍矿物、氧化镍矿物、含铜物料中的一种或几种;混合均匀形成含镍反应熔渣,并实时监测反应熔渣,通过调控同时保证如下(a)和(b)两个参数,获得反应完成后的熔渣,或将反应完成后的熔渣倒入保温装置;
(a)含镍反应熔渣的温度为1100~1500℃;
(b)含镍反应熔渣的碱度CaO/SiO2比值=0.15~1.5;
调控方法为:
对应(a):
控制反应熔渣的温度在设定温度范围的方法为:
当含镍反应熔渣的温度<设定温度范围下限1100℃时,通过反应装置自身的加热功能,或向含镍反应熔渣中加入燃料或熔融镍冶炼渣或含铜熔炼渣或含铜吹炼渣),使反应熔渣的温度达到1100~1500℃,喷入燃料时,同时喷入预热的氧化性气体;
当含镍反应熔渣的温度>设定温度范围上限1500℃时,向含铜反应熔渣中加入含铜物料、含铁物料、氧化铜矿物、硫化铜矿物、硫化镍矿物、氧化镍矿物、含金银物料、或含氟物料中的一种或几种,使混合熔渣的温度达到1100~1500;
对应(b):
当含镍反应熔渣中碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料、碱性氧化铜矿物、碱性性氧化镍矿物、碱性硫化铜矿物、碱性硫化镍矿物、含铜物料、碱性含铁物料中的一种或几种;
当含镍反应熔渣中碱度CaO/SiO2比值>1.5时,向反应熔渣中加入酸性物料、酸性氧化铜矿物、酸性硫化铜矿物、酸性氧化镍矿物、酸性硫化镍矿物、酸性含铁物料或酸性含金银物料中的一种或几种;
步骤S2,分离回收:
反应完成后的熔渣,保温5~50min,沉降,渣-金分离,获得底部的熔融态富铜镍相层、中下部的熔融态富铁相与中上部的熔融态含铁硅酸盐矿物相,同时生成含锌组分与含铅组分的烟尘,金银组分迁移到富铜镍相,部分含镍组分、含钴组分进入富铁相;对各相进行回收处理。
具体地,分离回收采用以下方法中的任一种进行处理:
方法一:采用熔渣可流出熔炼反应装置时,反应完成后的熔渣进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,进行熔渣处理;
(2)熔融态富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
(3)部分铅锌组分、铟组分、铋组分、钠组分、钾组分挥发,以氧化物进入烟尘;
(4)富铁相进行水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼铁原料或直接还原炼镍铁原料或熔融还原炼镍铁原料或浮选提铜镍原料;浮选产物为铜精矿、镍精矿、含镍合金与铁精矿,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;所述直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原采用天然气和/或煤气,煤基还原采用无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,控制还原温度为900~1400℃,控制碱度CaO/SiO2比值=0.8~1.5。
其中,步骤(1)中的含铁硅酸盐矿物相,进行熔渣处理,采用方法A~G中的一种:
方法A:含铁硅酸盐矿物相作为水泥原料:
含铁硅酸盐矿物相水淬或空冷直接作为水泥原料或进一步处理成高附加值的水泥原料;
方法B:部分或全部含铁硅酸盐矿物相返回到含铜反应熔渣:
部分或全部含铁硅酸盐矿物相返回到含铜反应熔渣,作为热态冶金熔剂,调整含铜反应熔渣成分,控制含铜反应熔渣温度;
方法C:含铁硅酸盐矿物相浇筑微晶玻璃或作为矿渣棉;
方法D:含铁硅酸盐熔渣氧化后空冷或水淬:
(1)向熔炼反应装置内的含铁硅酸盐熔渣中,吹入预热的氧化性气体,当熔渣氧化亚铁重量百分比含量<1%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;并在整个过程中,保证(c)硅酸盐熔渣温度>1450℃;
对应(c)采用的控制方法:
当含铁硅酸盐熔渣温度<1450℃,喷入预热燃料与预热的氧化性气体,燃烧放热、补充热量,或装置自身加热,使硅酸盐熔渣温度>1450℃;
(2)氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
方法E:含铁硅酸盐熔渣处理生产高附加值的水泥熟料:
(1)向熔炼反应装置内的含铁硅酸盐熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
(2)向熔渣混合物料中吹入预热的氧化性气体,当氧化亚铁重量百分比含量<1%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;并在整个过程中,保证(d)熔渣混合物料温度>1450℃;温度控制方法同方法D步骤(1)中的硅酸盐熔渣温度控制方法;
(3)氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
方法F:含铁硅酸盐熔渣作为高炉炼铁原料或直接还原炼铁原料:
含铁硅酸盐熔渣空冷、水淬或缓冷后,
用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
或将所述含铁硅酸盐矿物相的熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入0~1200℃的预热的氧化性气体, 并保证其熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将上述氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;
还原过程中,含锌组分与含铅组分挥发,以氧化物形式进入烟尘;
方法G:含铁硅酸盐熔渣熔融还原炼铁:
G-1熔炼反应装置内的含铁硅酸盐熔渣,或加入含铁物料,熔渣中加入还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时保证如下(a1)和(b1)两个参数,获得反应完成后的熔渣;
(a1)反应熔渣的温度为1460~1640℃;
(b1)反应熔渣的碱度CaO/SiO2比值=0.6~2.4;
调控方法为:
对应(a1):
控制反应熔渣的温度在设定温度范围的方法为:
当反应熔渣的温度<设定温度范围下限时,通过反应装置自身的加热功能,或向熔渣中加入燃料与预热的氧化性气体,使反应熔渣的温度达到设定温度范围内;
当反应熔渣的温度>设定温度范围上限时,向反应熔渣中加入冶金熔剂、含铁物料或含氟物料中的一种或几种,使反应熔渣的温度达到设定温度范围内;
对应(b1):
当反应熔渣中碱度CaO/SiO2比值<0.6时,向熔渣中加入碱性物料和/或碱性含铁物料;
当反应熔渣中碱度CaO/SiO2比值>2.4时,向熔渣中加入酸性物料和/或酸性含铁物料;
G-2向熔渣中喷吹预热后的氧化性气体进行熔融还原,形成还原后的熔渣,其中:氧化性气体的预热温度为0~1200℃,并在喷吹过程中,通过调控同时保证(a1)和(b1)两个参数:
(a1)反应完成后的熔渣的温度为1460~1640℃;
(b1)反应完成后的熔渣的碱度CaO/SiO2比值=0.6~2.4;
其中,设定温度范围和碱度调控方法同方法G步骤(1);
G-3分离回收:
采用以下方法中的一种:
方法Ⅰ:进行如下步骤:
Ⅰ-1冷却:将还原后的混合熔渣倒入保温渣罐,冷却至室温,获得缓冷渣;Ⅰ-2分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;Ⅰ-3尾矿的回收利用,作为水泥原料、建筑材料、代替碎石作骨料、路材或磷肥使用;
方法Ⅱ:进行如下步骤:
Ⅱ-1还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;
Ⅱ-2还原后的熔渣,进行炉外熔渣处理,具体方式为:采用步骤2的分离回收方法一中的方法A~E中的一种或几种,进行熔渣处理;
Ⅱ-3铁水,送往转炉或电炉炼钢;
Ⅱ-4含锌组分与含铅组分挥发,以氧化物形式进入烟尘回收;
Ⅱ-5部分金银组分、铟组分、铋组分、钠组分、钾组分挥发进入烟尘;
Ⅱ-6还原产生的煤气在熔渣表面二次燃烧,提供了热量,而且由炉内流出的煤气可以作为烘干炉料与保温装置的热源。
方法二:采用熔渣可流出的熔炼反应装置时,反应完成后的熔渣进行如下步骤:
(1)熔融态富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
(2)熔融态富铁相层与含铁硅酸盐矿物相采用处理方法用方法一中所述方法A~G中一种或几种进行处理;
(3)部分含锌组分与含铅组分挥发,以氧化物形式进入烟尘回收;
(4)部分铟组分、铋组分、钠组分、钾组分挥发进入烟尘。
方法三:采用熔渣可转动的转炉与反应渣罐时,反应完成后的熔渣进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,进行熔渣处理,具体处理方式为:采用步骤2的分离回收方法一中的方法A~G中的一种或几种进行熔渣处理;或含有所述富铁相采用方法一中的步骤(4)进行处理;
(2)熔融态富铜镍相或倒入保温装置缓冷后,送往转炉或吹炼炉或作为铜钴镍分离的原料;
(3)部分铅锌组分、铟组分、铋组分、钠组分、钾组分挥发进入烟尘;
方法四:采用熔渣可转动的转炉与反应渣罐时,反应完成后的熔渣进行如下步骤:
(1)熔融态含铁硅酸盐矿物相与富铁相,进行熔渣处理,具体方式为:采用步骤2的分离回收方法一中的方法A~G中的一种或几种进行处理;
(2)熔融态富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
(3)部分铅锌组分、铟组分、铋组分、钠组分、钾组分挥发进入烟尘;
方法五:采用保温装置时,或采用熔渣可流出的熔炼反应装置,将熔渣倒入保温装置时,反应完成后的熔渣进行如下步骤:
(1)沉降冷却:反应完成后的熔渣缓慢冷却至室温,获得缓冷渣;富铜镍相沉降到反应装置的底部,形成富铜镍坨;含铁硅酸盐矿物相上浮;富铜镍相和含铁硅酸盐矿物中间的缓冷渣为富铁相,同时生成含锌组分与含铅组分;金银组分迁移到富铜镍相;
(2)分离:人工取出沉降在底部的富铜镍坨,送往转炉或吹炼炉或作为铜钴镍分离的原料;中部的富铁相层采用方法一中的步骤(4)进行处理;
(4)部分铅锌组分、铟组分、铋组分、钠组分、钾组分挥发进入烟尘。
作为一种优选方案,所述镍冶炼渣为熔融态或冷态,其中:熔融镍冶炼渣由镍冶炼炉出渣口获得,或将镍冶炼渣加热至熔融状态;镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、铜冰镍吹炼”工艺吹炼后的吹炼渣、“铜冰镍吹炼”工艺吹炼后的吹炼渣经贫化产生的贫化炉渣、顶吹熔炼产生的镍熔炼渣、顶吹熔炼产生的镍熔炼渣经电炉沉降产生的沉降渣中一种或多种;
作为一种优选方案,所述铜物料是粗铜火法精炼渣、选铜尾矿、铜渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾矿、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、锡尾矿中的一种或几种;其中,所述锌冶炼渣为湿法炼锌与火法炼锌产生的锌冶炼渣,包括浸出渣、铁矾渣、铜镉渣、针铁矿渣、赤铁矿渣、挥发窑渣、竖罐炼锌渣、烟化炉渣、鼓风炉渣、旋涡炉渣、电炉炼锌渣;含铅冶炼渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;所述铜渣是含铜熔炼渣、含铜吹炼渣、贫化弃渣、浮选尾渣、 湿法炼铜渣中的一种或多种,含铜熔炼渣产生于铜的火法冶炼工艺的“造锍熔炼”过程;所述含铜吹炼渣产生于铜的火法冶炼工艺的“铜锍吹炼”过程;贫化弃渣为含铜熔炼渣与含铜吹炼渣贫化后弃渣,浮选尾渣为含铜熔炼渣与含铜吹炼渣选矿后尾渣。作为一种优选方案,所述熔渣可流出的熔炼反应装置为可转动的熔炼反应装置或带有渣口或铁口的熔炼反应装置;其中:
所述保温装置可采用可倾倒的熔炼反应渣灌、保温地坑;
所述可转动的熔炼反应装置可采用转炉、熔炼反应渣罐。
进一步地,所述的带有渣口或铁口熔渣可流出的熔炼反应装置可采用等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉或顶吹回转炉。
作为一种优选方案,在步骤S1中,所述钙系矿物具体采用石灰、石灰石、白云石、电石渣、赤泥或脱钠后高钙赤泥中的一种或几种;添加剂采用SiO2、MgO、FeO、Fe2O3、MnO2、Al2O3、TiO2、P2O5、Fe或Na2O中的一种或几种;
作为一种优选方案,在步骤S1中,所述氧化铜矿物为赤铜矿、黑铜矿、孔雀石、蓝铜矿、硅孔雀石、胆矾中的一种或多种;硫化铜矿物为辉铜矿、铜蓝、黄铜矿、斑铜矿、硫砷铜矿、黝铜矿的一种或多种;
作为一种优选方案,在步骤S1中,
所述的步骤1中,通过调控同时保证如下(a)和(b)两个参数,同时保证熔渣中铜氧化物、镍氧化物、钴氧化物和铁氧化物分别还原为金属铜、金属镍、金属钴和FeO,熔渣中金属铁含量<3%。可通过加入还原剂、含碳的含铁物料中的一种或两种进行调控,其中,还原剂和/或含碳的含铁物料的用量为熔渣中镍氧化物、钴氧化物、铜氧化物和铁氧化物还原为金属镍、钴、铜和FeO的理论量110~140%;所述含碳的含铁物料为钢铁尘泥与烟灰、铁精矿含碳预还原球团、铁精矿含碳金属化球团、湿法炼锌挥发窑渣或焦炭炉尘泥与烟灰。
作为一种优选方案,在步骤S1中,调控时采用的燃料与还原剂为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,用预热的气体载入,载入气体是氧化性气体、氩气、氮气中的一种或多种,预热温度为0~1200℃;固体燃料与还原剂为煤粉、焦粉、焦炭、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm;液体燃料为重油,气体燃料为煤气和/或天然气;
冶金熔剂为含CaO或SiO2的矿物,具体为石英砂、含金银石英砂、赤泥、脱钠后赤泥、电石渣、白云石或石灰石中的一种或几种;
所述含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、含镍冶炼渣、铜渣、铅冶炼渣、铜渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种;所述钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热(冷)轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮;湿法的炼锌渣与尘泥需脱水、干燥。
进一步地,含氟物料是萤石、CaF2或含氟高炉渣中的一种或几种。
在上述的原料中,锌冶炼渣与烟灰、铅冶炼渣与烟灰含有铟与铋、铅、银、锌、铋;赤泥中含有钠与钾,钢铁烟尘与尘泥含有铟、铋、银、钠与钾,以上物料都有 铁,铅冶炼渣与锌冶炼渣都含有铜,铜烟灰与尘泥含有铟与铋,因此在发明的方法中,铟、铋、钠、钾、金、银、锌、铅会以氧化物的形式进入烟尘,从而进行回收。
作为一种优选方案,含铜物料、含铁物料和含氟物料均可采用球团或粉状物料或制粒;其中,粉状物料的粒度≤150μm,粒状物料粒度为5~25mm,粉状物料以喷吹的方式喷入,粒状物料以喷吹或投料的方式加入,载入气体是氩气、氮气或还原性气体(煤气和/或天然气)、氧化性气体中的一种或多种,载入气体预热温度是0~1200℃;其中,含铜物料与含铁物料为热态或冷态,其中热态物料由冶金炉出料口或出渣口直接获得。
所述的喷吹方式为采用耐火喷枪插入熔渣或置于反应熔渣上部或侧面或底部吹入中的一种或几种。
在上述熔渣反应过程中,熔渣中铜组分、镍组分、钴组分、金银组分富集于富铜镍相,并实现聚集、长大与沉降,铁组分富集于富铁相,实现聚集、长大与沉降,熔渣中锌组分、铅组分分别进入烟尘,其中烟灰中以氧化锌与氧化铅形式回收,富铜镍相中包含有铜、白冰铜、铜冰镍、铜冰镍、含铁组分中的多种,或部分富集于富铁相,富铁相包括金属铁、FeO相、铁橄榄石相中的多种。
所述的步骤S1中控制混合熔渣的温度在设定温度范围的方法中:
当混合熔渣的温度>设定温度上限时,加入镍冶炼渣、含铜物料、含铁物料、氧化铜矿物、含金银物料或含氟物料中的一种或几种,目的是避免温度过高,保护耐火材料;加入含氟物料的另一个作用是降低粘度,加速熔渣中富铜镍相、富冰铜相、富铁相的聚集、长大与沉降。
调整碱度时,所用的碱性物料为石灰粉、赤泥、脱钠后赤泥、电石渣、白云石粉或生石灰粉中的一种或几种;碱性含铁物料为CaO/SiO2>1的含铁物料、碱性烧结矿、碱性铁精矿、碱性预还原球团、碱性金属化球团、钢渣或高炉渣中的一种或几种。
调整碱度时,可采用的酸性物料为硅石、粉煤灰、煤矸石中的一种或多种;采用酸性含铁物料为CaO/SiO2≤1的含铁物料、酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、高炉渣中的一种或几种;
作为一种优选方案,保证(a)和(b)两个参数的同时,使熔渣充分混合,混合方式为自然混合或搅拌混合,搅拌方式为以下方式中的一种:氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌、机械搅拌中的一种或几种,气体预热温度是0~1200℃;
熔渣中富铜镍相、富冰铜相、富铁相聚集、长大与沉降,有利于硅酸盐上浮。
作为一种优选方案,喷入预热的氧化性气体时,氧化性气体可为空气、氧气、富氧空气、氮气-氧气、氩气-氧气中的一种,氧化性气体预热温度为0~1200℃,喷吹方式为采用耐火喷枪插入熔渣或置于反应熔渣上部或侧面或底部吹入中的一种或几种。
作为一种优选方案,直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5。
作为一种优选方案,所述的步骤S1与S2中,含铜物料与含铁物料可为热态或冷态,所述的热态物料是从冶金炉中直接产出的热态物料,热态物料温度为 200~1750℃。
作为一种优选方案,所述的步骤S2中,冷却方式为自然冷却或旋转冷却或离心冷却,沉降方式为自然沉降或旋转沉降或离心沉降;
进一步,旋转与离心的具体操作为:装有反应完成后的熔渣的装置置于旋转平台上,按照一定速度进行旋转,旋转速度依熔渣质量与保温装置高度或深度而定,旋转时间依熔渣质量与熔渣凝固情况而定;将装有反应完成后的熔渣的装置置于旋转平台上旋转,目的是加速富铜镍相、富冰铜相、富铁相聚集、长大与沉降,有利于含铁硅酸盐上浮。
反应完成后的熔渣在沉降过程中,由于密度不同与矿物大小不同,大部分富铜镍相沉降到反应装置的底部,中间为富铁相,含铁硅酸盐矿物相上浮在上层。
所述的步骤S2中,反应完成后的熔渣中铜组分、镍组分、钴组分、金银组分继续富集于富铜镍相,实现长大与沉降;熔渣中铁组分继续富集于富铁相,并实现长大与沉降。
所述的步骤S2中,分离可采用重力分选法,具体可用摇床分选、溜槽分选或者二者相结合。
采用本发明方法处理镍冶炼熔渣,最后获得的富铁相及含铁硅酸盐相的渣中含铜≤0.1%,铁的回收率为≥90%,锌的回收率为≥92%,铅的回收率为≥92%,镍的富集率为≥91%,钴的富集率为≥91%,金的富集率为≥94%,银的富集率为≥94%。比现有技术中处理后的渣中含铜量低,同时实现了可同时回收铁与铜。
为了更好的解释本发明,以便于理解,通过具体实施方式,对本发明作详细描述。其中,以下实施例中所用检测方法与原料未明确指出的,均可采用本领域常规技术,除非另有说明,本发明中所用的百分数均为重量百分数。
实施例1
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:
将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣加入直流电弧炉,同时加入石灰,以及SiO2、MgO、Al2O3,形成混合熔渣,同时加入硫化铜精矿与氧化镍精矿;将混合熔渣加热至熔融状态,形成反应熔渣,并使反应熔渣实现自然混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):反应熔渣的温度为1660℃,采用耐火喷枪插入反应熔渣中,以氮气为载入气,喷入常温粉状粒度≤150μm的铜渣、含铜烟灰、杂铜和含铜垃圾和含铜电路板,同时加入高炉瓦斯泥、电炉尘泥、转炉尘泥、普通铁精矿直接还原铁和高炉瓦斯灰,使温度降至1380℃;(b):含铜反应熔渣的碱度CaO/SiO2比值=2.6,向反应熔渣中加入硅石、粉煤灰和煤矸石混合物,使含铜反应熔渣碱度比值降至0.7;熔渣中金属铁含量为2.8%;
步骤2,分离回收采用方法一:
保温48min,反应完成后的熔渣自然沉降,渣-金分离,获得熔融态富铜镍相层、富铁相与含铁硅酸盐矿物相,同时生成锌组分与铅组分,进入烟尘,以氧化物形式回收,进行如下步骤:(1)熔融态含铁硅酸盐矿物相,进行炉外熔渣处理,采用方法E,硅酸盐熔渣空冷后,用作直接还原炼铁原料,直接还原过程中,采用回转窑作为还原设备,气体还原剂为天然气和煤气,还原温度为950℃,碱度CaO/SiO2比值为0.8,还原后采用电炉熔分温度为1550℃,产物为金属铁水与熔渣;(2)熔融态富铜镍相,作为提镍原料;(3)富铁相倒入保温装置,空冷后作为高炉炼镍铁原料;(4)锌组分铟 组分、铅组分、铋组分、钾组分、钠组分挥发,以氧化物形式进入烟尘回收;最后获得的渣含铜<0.1%,锌回收率为92%,铅回收率为92%,铁回收率为92%,铟回收率为92%,铋回收率为94%,钠回收率为95%,钾回收率为96%,铁回收率为96%,镍的富集率为93%,钴的富集率为95%,金的富集率为96%,银的富集率为94%。其中,在本发明的所有实施例中,渣含铜是指富铜镍相分离后的渣相,具体为富铁相与硅酸盐矿物相中的含铜量,镍、钴的富集率是指在富铜镍相中镍、钴的含量占原料中对应镍、钴总量的百分比,金、银的富集率是指富铜镍相与烟灰中金、银的含量占原料中金、银总量的百分比。
实施例2
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:
将由“铜冰镍吹炼”工艺吹炼炉出渣口获得的熔融镍冶炼渣加入可倾倒的熔炼反应渣灌,同时加入石灰石、白云石、赤泥以及FeO和Fe2O3,形成混合熔渣,同时加入氧化铜精矿与硫化镍精矿;用富氧空气,喷吹天然气、粒度为20mm无烟煤与焦粒,将混合熔渣加热至熔融状态,形成含铜反应熔渣;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a)含铜反应熔渣温度为1660℃,采用耐火喷枪插入反应熔渣中,以预热温度为600℃的氩气为载气,喷入常温粉状粒度≤150μm铜渣、镍冶炼渣、含铜烟灰、杂铜、钢铁烧结粉尘、烧结球团粉尘、出铁厂粉尘普通铁精矿直接还原铁,使温度降至1580℃;(b)含铜反应熔渣碱度CaO/SiO2比值为2.4,向反应熔渣中加入酸性铁精矿、酸性预还原球团、含铅熔炼渣、含铅烟化炉渣的混合物,使含铜反应熔渣碱度比值降至1.1;熔渣中金属铁含量为3%;
步骤2,分离回收采用方法二:
保温5min,反应完成后的熔渣旋转沉降,渣-金分离,获得熔融态富铜镍相层、富铁相与含铁硅酸盐矿物相,同时生成锌组分、铅组分与铟组分,以氧化物形式加以回收,进行如下步骤:
(1)熔融态含铁硅酸盐矿物相与熔融态富铁-富冰铜相,采用方法G进行炉外熔渣处理,熔渣熔融还原炼镍铁,具体步骤如下:
(1-1)熔渣倒入可倾倒的转炉中,向熔渣中加入粒度为20mm无烟煤与烟煤,进行熔融还原,实时监测反应熔渣,通过调控同时保证如下(a)反应熔渣的温度为1460~1640℃,和(b)反应熔渣的碱度CaO/SiO2比值=0.6~2.4两个参数,获得反应完成后的熔渣;
对应(a):反应熔渣的温度为1480,在温度范围内;
对应(b):反应熔渣中碱度CaO/SiO2比值为0.8时,在碱度范围内;
(1-2)向熔渣中喷吹预热200℃的氧化性气体(富氧空气)进行熔融还原,形成还原后的混合熔渣,并在喷吹过程中,通过调控同时保证(a)反应熔渣的温度为1460~1640℃,和(b)反应熔渣的碱度CaO/SiO2比值=0.6~2.4两个参数,
(1-3)分离回收:
(a)还原后的混合熔渣,自然冷却沉降,渣-金分离,获得含镍铁水与还原后的熔渣;
(b)还原后的熔渣,采用步骤2方法一中方法A处理做成高附加值水泥原料;
(c)铁水,送往转炉或电炉炼钢;
(d)含锌组分、含铅组分、铋组分与铟组分挥发,以ZnO、PbO、Bi2O3与Ln2O3 形式进入烟尘回收;
(e)含钠组分、含钾组分挥发,进入烟尘回收;
(2)熔融态富铜镍相,送往转炉;
(3)锌组分与铅组分挥发,以氧化物形式进入烟尘回收。
最后获得的渣含铜<0.1%,锌回收率为92%,铅回收率为92%,铁回收率为91%,铟回收率为96%,铋回收率为95%,钠回收率为96%,钾回收率为98%,镍的富集率为93%,钴的富集率为96%,金的富集率为94%,银的富集率为95%。
实施例3
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:将由“铜冰镍吹炼”工艺吹炼渣经贫化炉出渣口获得的熔融镍冶炼渣,加入交流电弧炉,同时加入石灰石与脱钠后高钙赤泥,形成混合熔渣,同时加入氧化铜精矿与硫化铜精矿;用预热温度为600℃的氧气,喷吹粒度为20mm无烟煤、焦粒与煤粉,将混合熔渣加热至熔融状态,形成含铜反应熔渣,机械搅拌混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1685℃,向反应熔渣中加入酸性金属化球团、铜渣,同时加入含铜烟灰、铅冶炼渣、普通铁精矿球团矿、轧钢氧化铁鳞和普通铁精矿含碳预还原球团,使温度降至1420℃;(b):含铜反应熔渣的碱度CaO/SiO2比值=2.3,向反应熔渣中加入石英砂、赤泥、锌冶炼渣的混合物,使含铜反应熔渣的碱度比值降至1.3;熔渣中金属铁含量为2.2%;
步骤2,分离回收采用方法二:
保温40min,反应完成后的熔渣自然沉降,渣-金分离,获得熔融态富铜镍相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分与含铅组分,进入烟尘,以氧化物形式回收,进行如下步骤:
(1)熔融态富铜镍相,送往转炉;
(2)熔融态富铁相与硅酸盐矿物相冷却后,作为直接还原炼铁原料;还原过程中,锌组分、铅组分、铋组分与铟组分挥发,进入烟尘;直接还原过程中,采用转底炉,还原温度为1200℃,碱度CaO/SiO2比值=1.0,粒度为≤150μm的无烟煤与煤粉;
(3)含锌组分、铟组分、铋组分与含铅组分挥发,进入烟尘回收,最后获得的渣含铜<0.1%,铁的回收率为89%,锌的回收率为93%,铅的回收率为92%,铟回收率为93%,铋回收率为95%;镍的富集率为94%,钴的富集率为95%,钠回收率为95%,钾回收率为97%,金的富集率为96%,银的富集率为95%。
实施例4
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:将顶吹熔池熔炼炉出渣口获得的熔融镍冶炼渣加入等离子炉,同时加入白云石、MgO、Al2O3、以及Fe,形成混合熔渣,同时加入氧化铜精矿、硫化镍精矿与含铜物料(湿法炼锌浸出渣、湿法炼锌挥发窑渣);将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣电磁搅拌,实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a)含铜反应熔渣的温度为1670℃,向反应熔渣中加入赤泥、硫酸烧渣、萤石、铅冰铜、含铅烟灰、含锌烟灰、砷冰铜和湿法炼锌渣,使温度降至1640℃;(b)含铜反应熔渣的碱度CaO/SiO2比值为1.4,向反应熔渣中加入铜渣,使含铜反应熔渣碱度比值降至1.7;用空气,喷吹天然气、粒度为20mm的焦粒,熔渣中金属铁含量 为2.7%;
步骤2,分离回收采用方法四:
保温43min,反应完成后的熔渣自然沉降沉降,渣-金分离,获得熔融态富铜镍相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分与含铅组分,进入烟尘,以氧化物形式回收,进行如下步骤:
(1)熔融态富铜镍相,作为铜镍钴分离的原料;
(2)熔融态富铁相与含铁硅酸盐矿物相步骤S2分离回收方法一中方法H,氧化改性磁选分离:①将熔渣倒入保温渣罐,向熔渣中喷入预热温度为900℃的富氧空气,实现磁铁矿的转化;②缓冷至室温,磁选分离,获得铁精矿与尾矿;
(3)部分含锌组分、铋组分、铟组分与含铅组分挥发,进入烟尘回收。最后获得的渣含铜<0.1%,铁的回收率为91%,锌的回收率为92%,铅的回收率为92%,铟回收率为93%,铋回收率为94%,钠回收率为96%,钾回收率为97%,;镍的富集率为93%,钴的富集率为94%,金的富集率为95%,银的富集率为97%。
实施例5
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:将由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣加入保温地坑,同时加入石灰石以及Fe,形成混合熔渣,同时加入氧化铜精矿与含铜物料(含铅熔炼渣、烟化炉渣、铅冰铜与砷冰铜);用预热温度为900℃的富氧空气,喷吹粒度≤150μm烟煤,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1430℃;(b):含铜反应熔渣的碱度CaO/SiO2比值为1.5,均在要求范围内;熔渣中金属铁含量为1.6%;
步骤2,分离回收采用方法五:
将反应完成后的熔渣进行如下步骤:
(1)沉降冷却:保温44min,反应完成后的熔渣自然冷却至室温,获得缓冷渣;富铜镍相沉降到反应装置的底部,形成富铜镍坨;硅酸盐矿物相上浮;富铜镍相金属坨和硅酸盐矿物中间缓冷渣为富铁相,同时生成含锌组分与含铅组分;
(2)分离:人工取出沉降在底部的富铜镍坨,磁选分离铁后,作为铜镍钴分离的原料;中部的富铁相浮选获得镍精矿、铁精矿、镍合金与铜精矿;
(3)人工取出上部的含铁硅酸盐矿物相,获得硅酸盐尾矿,作为水泥原料使用;
(4)部分锌组分与铅组分挥发,以氧化物形式进入烟尘回收。最后获得的渣含铜<0.1%,铁的回收率为90%,锌的回收率为92%,铅的回收率为92%,铟回收率为94%,铋回收率为95%,镍的富集率为94%,钴的富集率为95%,金的富集率为97%,银的富集率为96%。
实施例6
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣、由“铜冰镍吹炼”工艺吹炼炉出渣口获得的熔融镍冶炼渣加入交流电弧炉,同时加入石灰、MgO、Al2O3、Fe2O3,形成混合熔渣,同时加入硫化铜精矿与含铜物料(含铜熔炼渣、含铜吹炼渣与铜火法精炼渣);将混合熔渣加热至熔融状态,形成含铜反应熔渣,喷入预热温度为1000℃的氩气,并使熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1080℃,通过电弧炉加热,使温度升至1330℃;(b):含铜反应熔渣的碱度CaO/SiO2比值为0.1,向反应熔渣中加入碱性铁精矿、转炉污泥、碱性预还原球团、脱钠后高钙赤泥,使含铜反应熔渣的碱度比值升至0.4;喷入煤气,熔渣中金属铁含量为1.1%;
步骤2,分离回收采用方法一:
保温25min,将反应完成后的熔渣自然沉降,渣-金分离,获得熔融态富铜镍相、富铁相和含铁硅酸盐矿物相,同时生成含锌组分与含铅组分,进入烟尘,以氧化物形式加以回收,进行如下步骤:
(1)熔融态含铁硅酸盐矿物相采用步骤2分离回收方法一中方法A,水淬作为水泥原料;
(2)熔融态富铜镍相,作为铜镍钴分离的原料;
(3)熔融态富铁相倒入保温装置冷却后直接还原炼镍铁;
(4)含锌组分、含铅组分、含铟组分与含铋组分挥发,进入烟尘回收。最后获得的渣含铜<0.1%,铁的回收率为91%,锌的回收率为92%,铅的回收率为92%,铟回收率为94%,铋回收率为95%,钠回收率为95%,钾回收率为95%,镍的富集率为94%,钴的富集率为93%,金的富集率为96%,银的富集率为95%。
实施例7
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺获得的冷态镍冶炼渣、由“铜冰镍吹炼”工艺吹炼渣经贫化炉获得的冷态镍冶炼渣加入矿热炉,同时加入石灰石、SiO2、FeO以及MgO,形成混合熔渣,同时加入氧化铜精矿(铜火法贫化弃渣、铜渣浮选尾矿、含铜尾矿);将混合熔渣加热至熔融状态,形成含铜反应熔渣,喷吹预热温度为800℃的氩气-氮气混合气,并使熔渣实现混合;实时监测熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
其中,对应(a):含铜反应熔渣的温度为1320℃;(b):含铜反应熔渣的碱度CaO/SiO2比值为0.8,均在要求范围内;用预热温度为600℃的富氧空气,加入粒度≤150μm煤粉,喷入天然气,熔渣中金属铁含量为1.6%;
步骤2,分离回收采用方法四:
保温34min,将反应完成后的熔渣自然沉降,渣-金分离,获得熔融态富铜镍相、富铁相与含铁硅酸盐矿物相,同时生成锌组分与铅组分,进入烟尘,以氧化物形式回收,进行如下步骤:
(1)熔融态富铜镍相,作为铜镍钴分离的原料;
(2)熔融态富铁相与含铁硅酸盐矿物具体采用方法F,水淬后,作为直接还原炼镍铁的原料;
(3)部分含锌组分与含铅组分挥发,以氧化物形式进入烟尘回收。最后获得的渣含铜<0.1%,铁的回收率为91%,镍的富集率为93%,钴的富集率为95%,金的富集率为95%,银的富集率为97%。
实施例8
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣、由“铜冰镍吹炼”工艺吹炼渣经贫化炉出渣口获得的熔融镍冶炼渣加入鼓风炉,同时加入白云石、赤泥、MgO,组成混合熔渣,同时加入硫化铜精矿与含铜物料(含铜烟灰、含铜垃圾与杂铜),采用预热温度为600℃的空气粒度≤150μm的焦粉,并喷入煤气, 将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1330℃;(b):含铜反应熔渣的碱度CaO/SiO2比值为1.0,均在要求范围内;熔渣中金属铁含量为0.8%;
步骤2,分离回收采用方法三:
保温37min,将反应完成后的熔渣自然沉降,渣-金分离,获得富镍铜相与中上部的含铁硅酸盐矿物相,同时生成含锌组分与含铅组分,进入烟尘,以氧化物形式加以回收,进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,倒入熔炼装置,进行炉外熔渣处理,具体采用步骤S2的分离回收方法一中的方法B,将中上部的熔渣全部返回到含铜反应熔渣,作为热态冶金熔剂,调整含铜反应熔渣成分,控制含铜反应熔渣温度;
(2)熔融态富铜镍相,送往转炉或吹炼炉;
(3)部分含锌组分与含铅组分挥发,以氧化物形式进入烟尘回收。最后获得渣含铜<0.1%,铁的回收率为90%,锌的回收率为92%,铅的回收率为92%,钠回收率为95%,钾回收率为96%,镍的富集率为92%,钴的富集率为97%,金的富集率为98%,银的富集率为96%。
实施例9
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣与“铜冰镍吹炼”工艺吹炼渣经贫化炉出渣口获得的熔融镍冶炼渣加入侧吹炉,同时加入石灰石,形成混合熔渣,同时加入硫化铜与含铜物料(铜精炼铜渣);采用预热温度为800℃的空气喷入≤150μm焦粉,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1340℃;(b):含铜反应熔渣的碱度CaO/SiO2比值为1.2,均在要求范围内;熔渣中金属铁含量为01.9%;
步骤2,分离回收采用方法三:
保温29min,将反应完成后的熔渣自然沉降,渣-金分离,获得富铜镍相与中上部的含铁硅酸盐矿物相,同时生成含锌组分与含铅组分,进入烟尘,以氧化物形式回收,进行如下步骤:(1)中上部的熔渣倒入熔炼装置,采用步骤2的分离回收方法一中的方法C,将中上部熔渣浇筑微晶玻璃;
(2)熔融态富铜镍相缓冷到室温后,送往转炉,富铁相进行熔融还原炼镍铁;
(3)部分含锌组分与含铅组分,以氧化物形式进入烟尘;
最后获得的渣含铜<0.1%,铁的回收率为90%,锌的回收率为92%,铅的回收率为92%,镍的富集率为97%,钴的富集率为94%,金的富集率为95%,银的富集率为95%。
实施例10
一种由镍冶炼熔渣生产的方法,包括以下步骤:
步骤1,炉渣混合:将由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣、“铜冰镍吹炼”工艺吹炼渣经贫化炉出渣口获得的熔融镍冶炼渣与由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣加入保温地坑,同时加入石灰石以及Fe,形成混合熔渣,同时加入氧化铜精矿;用预热温度为700℃的富氧空气,喷吹粒度≤150μm烟煤,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并 使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1430℃;(b):含铜反应熔渣的碱度CaO/SiO2比值为1.5,均在要求范围内;熔渣中金属铁含量为1.3%;
步骤2,分离回收采用方法五:
将反应完成后的熔渣进行如下步骤:
(1)沉降冷却:保温48min,反应完成后的熔渣自然冷却至室温,获得缓冷渣;富铜镍相沉降到反应装置的底部,形成富铜镍坨;含铁硅酸盐矿物相上浮;富铜镍相金属坨和硅酸盐矿物中间缓冷渣为富铁相,同时生成含锌组分与含铅组分;
(2)分离:人工取出沉降在底部的富铜镍坨;中部的富铁相直接还原,获得镍铁与尾矿;
(3)人工取出上部的含铁硅酸盐矿物相,获得硅酸盐尾矿,作为水泥原料使用;
(4)部分锌组分与铅组分挥发,以氧化物形式进入烟尘回收。最后获得的渣含铜<0.1%,铁的回收率为90%,锌的回收率为92%,铅的回收率为92%,镍的富集率为96%,钴的富集率为97%,金的富集率为95%,银的富集率为96%。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种由镍冶炼熔渣生产的方法,其特征在于,其包括如下步骤:
    S1、炉渣混合:将镍冶炼渣加入熔炼反应装置中,加入钙系矿物与添加剂;搅拌,将熔渣加热至熔融状态,加入氧化铜矿物、硫化镍矿物、硫化铜矿物、氧化镍矿物、含铜物料中的一种或几种;混合均匀,作为反应熔渣,并实时监测,同时通过调控使混合后的反应熔渣同时满足条件a和条件b,获得反应后的熔渣,或将反应后的熔渣倒入保温装置;
    其中,所述条件a为控制反应熔渣的温度为1100~1500℃;
    所述条件b为控制反应熔渣的碱度CaO/SiO2比值=0.15~1.5;
    S2、分离回收:所述步骤S1反应后的熔渣,保温5~50min,分离获得底部的富铜镍相、中下部的富铁相与中上部的含铁硅酸盐矿物相,同时生成含锌组分与含铅组分的烟尘;其中,金银组分迁移、富集进入富铜镍相;部分含镍组分、含钴组分迁移进入富铁相。
  2. 如权利要求1所述的方法,其特征在于,在所述步骤S1中,所述条件a调控的方法为:
    当所述反应熔渣的温度<1100℃,利用反应装置自身的加热,或向反应熔渣中加入燃料、熔融镍冶炼渣、含铜熔炼渣、含铜吹炼渣中的一种或多种,使反应熔渣的温度达到1100~1500℃,喷入燃料,同时喷入预热的氧化性气体;
    当所述反应熔渣的温度>1500℃,向反应熔渣中加入镍冶炼渣、含铜物料、含铁物料、氧化铜矿物、氧化镍矿物、硫化铜矿物、硫化镍矿物、含金银物料或含氟物料中的一种或几种,使混合熔渣的温度达到1100~1500℃;
    所述条件b调控的方法为:
    当所述反应熔渣熔渣中碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料、碱性氧化铜矿物、碱性氧化镍矿物、碱性硫化铜矿物、碱性氧化镍矿物、含铜物料、碱性含铁物料中的一种或几种;
    当所述反应熔渣中碱度CaO/SiO2比值>1.5时,向反应熔渣中加入酸性物料、酸性氧化铜矿物、酸性氧化镍矿物、酸性硫化镍矿物、酸性硫化铜矿物、酸性含铁物料或酸性含金银物料中的一种或几种。
  3. 如权利要求1所述的方法,其特征在于,所述反应装置为保温装置或可转动的熔炼反应装置或带有渣口或铁口熔渣可流出的熔炼反应装置;其中,所述保温装置为可倾倒的熔炼反应渣灌或保温地坑;
    所述可转动的熔炼反应装置为转炉、熔炼反应渣罐;
    所述带有渣口或铁口熔渣可流出的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉。
  4. 如权利要求1所述的方法,其特征在于,在所述步骤S1中,满足所述条件a和b的同时,应同时满足,控制所述反应熔渣中铜氧化物、镍氧化物、钴氧化物和铁氧化物分别还原为金属铜、金属镍、金属钴和FeO,熔渣中金属铁含量<3%。
  5. 如权利要求1所述的方法,其特征在于,所述镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的吹炼渣、“铜冰镍吹炼”工艺吹炼后的吹炼渣经贫化产生的贫化炉渣、顶吹熔炼产生的镍熔炼渣、顶吹熔炼产生的镍熔炼渣经电炉沉降产生的沉降渣中一种或多种;所述镍冶炼渣为熔融态或冷态,其中:熔融镍冶炼渣由镍冶炼炉出渣口获得,或将镍冶炼渣加热至熔融状态;
    所述含铜物料为粗铜火法精炼渣、选铜尾矿、铜渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾矿、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、锡尾矿中的一种或几种;其中,所述锌冶炼渣为湿法炼锌与火法炼锌产生的锌冶炼渣,包括浸出渣、铁矾渣、铜镉渣、针铁矿渣、赤铁矿渣、挥发窑渣、竖罐炼锌渣、烟化炉渣、鼓风炉渣、旋涡炉渣、电炉炼锌渣;含铅冶炼渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;所述铜渣是含铜熔炼渣、含铜吹炼渣、贫化弃渣、浮选尾渣、湿法炼铜渣中的一种或多种,含铜熔炼渣产生于铜的火法冶炼工艺的“造锍熔炼”过程;所述含铜吹炼渣产生于铜的火法冶炼工艺的“铜锍吹炼”过程;贫化弃渣为含铜熔炼渣与含铜吹炼渣贫化后弃渣,浮选尾渣为含铜熔炼渣与含铜吹炼渣选矿后尾渣。
  6. 如权利要求1所述的方法,其特征在于,所述钙系矿物为石灰、石灰石、白云石、电石渣、赤泥或脱钠后高钙赤泥中的一种或几种;所述添加剂为SiO2、MgO、FeO、Fe2O3、MnO2、Al2O3、TiO2、P2O5、Fe或Na2O中的一种或几种;所述氧化铜矿物包括赤铜矿、黑铜矿、孔雀石、蓝铜矿、硅孔雀石、胆矾中的一种或多种;所述硫化铜矿物包括辉铜矿、铜蓝、黄铜矿、斑铜矿、硫砷铜矿、黝铜矿的一种或多种。
  7. 如权利要求2所述的方法,其特征在于,所述燃料为固体、液体或气体燃料中的一种或多种;
    所述的碱性物料为石灰粉、赤泥、脱钠后赤泥、电石渣、白云石粉或生石灰粉中的一种或几种;所述的碱性含铁物料为CaO/SiO2>1的含铁物料、碱性烧结矿、碱性铁精矿、碱性预还原球团、碱性金属化球团或钢渣中的一种或几种;
    所述酸性物料为硅石、粉煤灰、煤矸石中的一种或多种,酸性含铁物料为CaO/SiO2≤1的含铁物料、酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、高炉渣中的一种或几种。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述步骤S2中分离回收,进行如下处理:
    含有热态或冷态所述富铜镍相,送往转炉或吹炼炉吹炼或作为铜钴镍分离的原料;
    所述含锌组分与含铅组分挥发,以氧化物形式进入烟尘;氧化物进入烟尘,镍、钴组分分别进入富铜镍相与富铁相;含有所述含铁硅酸盐矿物相和/或所述富铁相,进行如下方法A-G中的任一种处理;
    方法A:水淬或空冷后,直接用于水泥原料;
    方法B:部分或全部所述熔融态含铁硅酸盐矿物相和/或所述富铁相返回到含铜熔渣;
    方法C:所述含铁硅酸盐矿物相和/或所述富铁相用于浇筑微晶玻璃或作为矿渣棉;
    方法D:向熔炼反应装置内的含铁硅酸盐熔渣中,吹入温度为0~1200℃的预热氧化性气体,并保证硅酸盐熔渣温度>1450℃;当熔渣氧化亚铁重量百分比含量<1%,获得氧化后的熔渣;所述氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
    方法E:所述熔融态含铁硅酸盐矿物相和/或所述富铁相用于生产高附加值的水泥熟料,包括如下步骤:
    E-1、向所述熔融态含铁硅酸盐矿物相和/或所述富铁相的熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
    E-2、向上熔渣混合物料中吹入预热温度为0~1200℃的氧化性气体,并保证熔渣混合物料温度>1450℃;当氧化亚铁重量百分比含量<1%,获得氧化后的熔渣;
    E-3、对所述氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
    方法F:所述含铁硅酸盐矿物相和/或所述富铁相熔渣作为高炉炼铁原料或直接还原炼铁原料:将含铁硅酸盐矿物相和/或所述富铁相的熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
    或将所述含铁硅酸盐矿物相和/或所述富铁相的熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入0~1200℃的预热的氧化性气体,并保证其熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将上述氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;方法G:所述熔融态含铁硅酸盐进行还原炼铁,包括如下步骤:
    G-1、向熔融态含铁硅酸盐盐矿物相和/或所述富铁相熔渣中加入含铁物料、还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时满足条件:反应熔渣的温度为1460~1640℃和反应熔渣的碱度CaO/SiO2比值=0.6~2.4,获得反应完成后的熔渣;
    其中,控制反应熔渣的温度的方法为:
    当反应熔渣的温度<1460℃时,通过反应装置自身的加热,或向熔渣中加入燃料与预热的氧化性气体,使反应熔渣的温度达到1460~1640℃;
    当反应熔渣的温度>1640℃时,向反应熔渣中加入冶金熔剂、含铁物料或含氟物料中的一种或几种,使反应熔渣的温度达到1460~1640℃;其中,所述冶金熔剂为含CaO或SiO2的矿物;
    控制反应熔渣的碱度的方法为:
    当反应熔渣中碱度CaO/SiO2比值<0.6时,向熔渣中加入碱性物料和/或碱性含铁物料;
    当反应熔渣中碱度CaO/SiO2比值>2.4时,向熔渣中加入酸性物料和/或酸性含铁物料;
    G-2、所述G-1中熔融还原时还需向熔渣中喷吹0~1200℃预热后的氧化性气体进行熔融还原,形成还原后的熔渣;
    G-3、分离回收:采用以下方法中的一种:
    方法Ⅰ:将还原后的混合熔渣倒入保温渣罐,冷却至室温,获得缓冷渣;其中,金属铁沉降到反应装置的底部,形成铁坨,将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
    方法Ⅱ:还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;所述还原后的熔渣,按照方法A~E中的一种或几种方法进行熔渣处理;所述铁水,送往转炉或电炉炼钢;
    或含有所述富铁相层进行水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼镍铁原料或直接还原炼镍铁原料或熔融还原炼镍铁原料或浮选提铜镍原料;浮选产物为含铜精矿、镍精矿、镍铁合金与铁精矿,铁精矿作为高 炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;所述直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉,利用气基或煤基还原,气基还原采用天然气和/或煤气,煤基还原采用无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,控制还原温度为900~1400℃,控制碱度CaO/SiO2比值=0.8~1.5。
  9. 如权利要求8所述的方法,其特征在于,所述氧化性气体为预热的空气、氧气、富氧空气、氮气-空气、氩气-空气、氧气-氮气、氧气-氩气中的一种,所述预热的温度为0~1200℃;所述燃料与还原剂为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,所述喷吹载入气体为预热的氧化性气体、氮气或氩气中的一种或多种,所述预热的温度为0~1200℃;所述固体燃料与还原剂为煤粉、焦粉、焦炭、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm,所述液体燃料与还原剂为重油,所述气体燃料与还原剂为煤气和/或天然气。
  10. 如权利要求1所述的方法,其特征在于,在所述步骤S1中,所述混合均匀为自然混合或搅拌混合,所述搅拌混合的方式为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌或机械搅拌中的一种或几种;
    在所述步骤S2中,所述沉降为自然沉降或旋转沉降或离心沉降;进行冷却沉降时的冷却方式为自然冷却或旋转冷却或离心冷却,所述分离时,用重力分选法是摇床分选、溜槽分选或者二者相结合。
PCT/CN2017/115653 2017-10-10 2017-12-12 一种由镍冶炼熔渣生产的方法 WO2019071798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710936820.5A CN107699703A (zh) 2017-10-10 2017-10-10 一种由镍冶炼熔渣生产的方法
CN201710936820.5 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019071798A1 true WO2019071798A1 (zh) 2019-04-18

Family

ID=61183503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115653 WO2019071798A1 (zh) 2017-10-10 2017-12-12 一种由镍冶炼熔渣生产的方法

Country Status (2)

Country Link
CN (1) CN107699703A (zh)
WO (1) WO2019071798A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728659B (zh) * 2018-06-20 2020-08-11 中国恩菲工程技术有限公司 镍渣贫化方法
CN111778407A (zh) * 2020-05-22 2020-10-16 金川集团股份有限公司 一种卡尔多炉吹炼含硫粗铜炉渣的处理方法
CN111778408A (zh) * 2020-05-22 2020-10-16 金川集团股份有限公司 一种用直流电弧炉处理自热炉炉渣生产合金的方法
CN115141934A (zh) * 2021-03-29 2022-10-04 东北大学 一种镍钴吹炼熔渣与熔炼熔渣混合熔融贫化的方法
CN115141937A (zh) * 2021-03-29 2022-10-04 东北大学 一种铜镍冶炼熔渣混合贫化及铁组分长大的方法
CN115141936A (zh) * 2021-03-29 2022-10-04 东北大学 一种铜镍熔炼熔渣和/或吹炼熔渣的贫化药剂及方法
CN113695071A (zh) * 2021-08-24 2021-11-26 六盘水中联工贸实业有限公司 一种含铁物料回转窑渣磁选回收铁精矿的方法
CN114480745A (zh) * 2022-01-29 2022-05-13 北京工业大学 一种利用煤气化渣回收钢渣中铁的方法
CN114480863B (zh) * 2022-04-18 2022-07-22 中国恩菲工程技术有限公司 金属镍渣的资源化利用方法
CN114804671A (zh) * 2022-04-28 2022-07-29 中国恩菲工程技术有限公司 富铁镍渣制备球墨铸铁磨球协同制备胶凝材料的方法
CN114937552B (zh) * 2022-05-19 2023-07-04 兰州理工大学 一种基于镍渣的磁性材料及其制备方法
CN115386736B (zh) * 2022-08-04 2024-03-12 广东邦普循环科技有限公司 一种富氧侧吹炉处理红土镍矿的方法
CN115386738B (zh) * 2022-08-10 2023-12-12 广东邦普循环科技有限公司 还原硫化冶炼红土镍矿生产高冰镍的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865872A (en) * 1995-06-26 1999-02-02 Fenicem Minerals Inc. Method of recovering metals and producing a secondary slag from base metal smelter slag
CN102851513A (zh) * 2012-09-14 2013-01-02 金川集团股份有限公司 一种镍铜熔融渣中选择还原回收有价金属的方法
CN106119447A (zh) * 2016-07-18 2016-11-16 东北大学 一种含稀土与铌混合熔渣熔融还原生产和调质处理的方法
CN106755653A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土或铌熔渣冶金熔融还原生产的方法
CN106755651A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土和/或铌熔渣冶金一步法回收的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337873A4 (en) * 2008-02-12 2015-04-15 Bhp Billiton Innovation Pty MANUFACTURE OF NICKEL
CN106755654A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金熔融还原生产的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865872A (en) * 1995-06-26 1999-02-02 Fenicem Minerals Inc. Method of recovering metals and producing a secondary slag from base metal smelter slag
CN102851513A (zh) * 2012-09-14 2013-01-02 金川集团股份有限公司 一种镍铜熔融渣中选择还原回收有价金属的方法
CN106119447A (zh) * 2016-07-18 2016-11-16 东北大学 一种含稀土与铌混合熔渣熔融还原生产和调质处理的方法
CN106755653A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土或铌熔渣冶金熔融还原生产的方法
CN106755651A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土和/或铌熔渣冶金一步法回收的方法

Also Published As

Publication number Publication date
CN107699703A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN107653381B (zh) 含锌与铁的熔渣熔融还原生产的方法
WO2019071798A1 (zh) 一种由镍冶炼熔渣生产的方法
WO2019071793A1 (zh) 一种由含铜熔渣回收有价组分的方法
WO2019071791A1 (zh) 锌冶炼炉渣熔融还原生产的方法
WO2019071788A1 (zh) 一种由含铜与铁的混合熔渣生产的方法
WO2019071796A1 (zh) 一种由含镍与铁的混合熔渣回收有价组分的方法
WO2019071794A1 (zh) 一种由含铜与铁的混合熔渣回收有价组分的方法
WO2019071797A1 (zh) 一种由含镍与铁的混合熔渣生产的方法
WO2019071795A1 (zh) 一种由含铜熔渣生产的方法
WO2019071790A1 (zh) 由含锌与铁的混合熔渣回收有价组分的方法
WO2019071789A1 (zh) 由锌冶炼熔渣回收有价组分的方法
WO2019071787A1 (zh) 一种由含镍冶炼熔渣回收有价组分的方法
CN109971967B (zh) 一种从铜冶炼吹炼炉渣中回收有价金属的方法
CN101871050B (zh) 消除硫化铜精矿火法冶炼过程产生磁性氧化铁炉结的方法
CN110106433B (zh) 一种熔融贫化铜渣和锌渣的综合利用方法
US8133295B2 (en) Method and apparatus for lead smelting
CN114686699A (zh) 一种红土镍矿的冶炼工艺
CN110453079B (zh) 一种熔化-烟化法高效回收铅银渣中银的方法
CN110184476B (zh) 一种消除沉降电炉里炉结的方法
US4304595A (en) Method of manufacturing crude iron from sulphidic iron-containing material
Liao et al. Study on recovering iron from smelting slag by carbothermic reduction
CN110205432B (zh) 一种生产铁硫合金的方法
AU2006299743C1 (en) Method and apparatus for lead smelting
CN116574907A (zh) 一种含砷危废协同处理的方法及应用
CN1045995A (zh) 用硫化铅矿直接提炼金属铅的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928520

Country of ref document: EP

Kind code of ref document: A1