WO2019059379A1 - Biological body examination device and biological body examination method - Google Patents

Biological body examination device and biological body examination method Download PDF

Info

Publication number
WO2019059379A1
WO2019059379A1 PCT/JP2018/035198 JP2018035198W WO2019059379A1 WO 2019059379 A1 WO2019059379 A1 WO 2019059379A1 JP 2018035198 W JP2018035198 W JP 2018035198W WO 2019059379 A1 WO2019059379 A1 WO 2019059379A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fluorescence
time
living body
excitation
Prior art date
Application number
PCT/JP2018/035198
Other languages
French (fr)
Japanese (ja)
Inventor
吾朗 西村
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2019543744A priority Critical patent/JPWO2019059379A1/en
Publication of WO2019059379A1 publication Critical patent/WO2019059379A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a biopsy apparatus and a biopsy method.
  • the lymph node detection device described in Patent Document 1 is one example thereof, in which excitation light is irradiated to a living body including a lymph node in the vicinity of a tumor in which a fluorescent dye has been injected in advance, and fluorescence from the living body is thereby obtained. An image for detecting a lymph node is acquired.
  • An object of the present invention is to provide a living body inspection apparatus and a living body inspection method capable of grasping the intensity of fluorescence from a fluorescent dye embedded in a living body with high sensitivity.
  • the present inventors focused on the following points in order to effectively improve the sensitivity for detecting fluorescence from a fluorescent dye. That is, the fluorescence from the fluorescent dye from deep to the tissue surface tends to diffuse, and the intensity per unit area decreases. Then, background light due to fluorescence or the like from the tissue itself becomes relatively larger than the fluorescence from the fluorescent dye. This makes fluorescence indistinguishable from background light.
  • the present inventors focused on the fact that even if the background light is relatively large relative to fluorescence, the difference in the time change mode (waveform) of these intensities tends to appear in the measurement results.
  • the temporal change mode of the background light intensity can be obtained, for example, by measurement in advance using a sample, measurement at a position sufficiently away from the position where the fluorescent dye is embedded, or the like.
  • the living body inspection apparatus of the present invention obtained by focusing on the above points comprises: a light source for irradiating excitation light for exciting the fluorescent dye to the living body in which the fluorescent dye is embedded; and light emitted from the living body
  • the light detection means for detecting the intensity, the time change aspect of the intensity of the emitted light including the fluorescence generated by the fluorescent dye due to the irradiation of the excitation light to the living body by the light source, and the background for the fluorescence
  • a fluorescence evaluation means for evaluating the degree of difference between light and at least one of the intensities of light with time change mode of the intensity at a wavelength of the fluorescence, and an evaluation result for perceptually outputting the degree evaluated by the fluorescence evaluation means And output means.
  • the present inventor decided to provide a means for evaluating the degree of difference between the time change aspect of the intensity of the light emitted from the living body and the time change aspect of the intensity of the background light as one means for evaluating the fluorescence. . Then, the degree of the difference is perceptually output.
  • the above difference in the time change mode is caused by the generation of fluorescence from the fluorescent dye.
  • the extent of the difference serves as an index showing the intensity of fluorescence from the fluorescent dye. Therefore, the user can recognize the intensity of the fluorescence from the fluorescent dye based on the output result according to the degree of the difference.
  • the present invention includes, as another means related to the fluorescence evaluation means, a means for evaluating the degree of difference between the time change aspect of the intensity of the light emitted from the living body and the time change aspect of the intensity of the fluorescence from the fluorescent dye. It may be This means corresponds to the above-described means for evaluating the degree of difference between the time change aspect of the intensity of the light emitted from the living body and the time change aspect of the intensity of the background light.
  • the difference between the temporal change of the intensity of the light emitted from the living body and the temporal change of the intensity of the background light is the time change of the intensity of the emitted light from the living and the intensity of the fluorescence from the fluorescent dye.
  • the difference with the time change aspect of is small (the similarity between the two is high).
  • standard of evaluation can be acquired by prior measurement, for example.
  • “evaluating at the wavelength of fluorescence” corresponds to evaluating the component of the fluorescence wavelength in the light to be evaluated.
  • the component of the fluorescence wavelength is physically extracted from the light to be evaluated using, for example, an optical filter.
  • the component of the fluorescence wavelength may be extracted by calculation from the time response function of the light to be evaluated.
  • the background light decays faster than the fluorescence decay, and the fluorescence evaluation means generates the fluorescence during a period after the background light becomes maximum. It is preferable to evaluate the degree based on the emitted light within a predetermined period which is a period.
  • the predetermined period is set to a period after the timing when the background light is maximum. Background light decays faster than fluorescence, so the period after the timing when the background light is maximum tends to be a period where the difference between the waveform of the fluorescence and the waveform of the background light is large. Therefore, based on the emitted light from the living body during this period, the intensity of the fluorescence from the fluorescent dye is likely to be appropriately evaluated.
  • the predetermined period includes a timing at which the ratio of the intensity of the emitted light including the fluorescence to the intensity of the background light is maximum. According to this, based on the emitted light from the living body in this period, the intensity of the fluorescence from the fluorescent dye can be more appropriately evaluated.
  • the light detection means can detect the incidence of photons, and the fluorescence evaluation means is based on the timing at which the light source irradiates the living body with the excitation light as a reference.
  • the excitation / detection probe has a contact surface in contact with the surface of the living body, and the irradiation portion of the excitation light and the light receiving portion of the emission light from the living body are formed on the surface of the contact surface. It is preferable to further comprise According to this, while being able to irradiate excitation light appropriately towards a living body, it is possible to appropriately receive light emitted from a range irradiated with excitation light in the living body.
  • the contact surface is curved so as to protrude toward the living body. According to this, the adhesion of the excitation / detection probe to the living body is improved. Therefore, it is difficult for the excitation light emitted from the irradiation unit to leak to the light receiving unit.
  • a switch is provided on the excitation / detection probe, and switching between a state in which the excitation light is emitted and a state in which the excitation light is not emitted from the irradiation portion of the excitation light Is preferred. According to this, it is easy to switch on / off of the irradiation of the excitation light by the operation.
  • a contact surface is in contact with the surface of the living body, the irradiation portion of the excitation light and the light receiving portion of the emission light from the living body are formed on the surface of the contact surface, and a switch is provided. It is preferable to further include an excitation / detection probe, and to change the predetermined period based on the operation status of the switch.
  • the setting of the predetermined period affects the fluctuation (contrast) of change with respect to the measurement position in the photon counting result. For this reason, when grasping the position of the fluorescent dye based on the relationship between the measurement position and the photon counting result, it is possible to adjust the ease of the grasping by the switch operation.
  • a switch for changing conditions other than a predetermined period may be provided instead of or in addition to the above switch.
  • the evaluation result output means outputs at least one of a character, an image and a sound expressing the degree. According to this, the evaluation result is perceptible to the user by at least one of characters, images and sounds.
  • the fluorescence evaluation unit evaluates the degree based on the correlation between the time change aspect of the intensity of the emitted light and the time change aspect serving as a reference.
  • the time change aspect of background light is used as a reference time change aspect
  • the time change aspect of the fluorescence from a fluorescent dye is used as a time change aspect used as a reference
  • standard it turns out that the fluorescence from a fluorescent dye is strongly appeared by the emitted light from a biological body, so that correlation is high.
  • the correlation is used to obtain an appropriate evaluation result.
  • a living body inspection method is a method of inspecting a living body by evaluating light emitted from a living body in which a fluorescent dye is embedded, which is caused by irradiating the living body with excitation light.
  • the degree of difference between the time change aspect of the intensity of the emitted light including the fluorescence generated by the fluorescent dye and the time change aspect of the intensity of at least one of the background light and the fluorescence with respect to the fluorescence is the fluorescence Evaluate at the wavelength of
  • the degree of difference between the time variation aspect of the intensity of the emitted light from the living body and the time variation aspect of the fluorescence from the fluorescent dye and / or the background light is evaluated. did.
  • the above difference in the time change mode is caused by the generation of fluorescence from the fluorescent dye.
  • the extent of the difference serves as an index showing the intensity of fluorescence from the fluorescent dye. Therefore, based on the degree of the difference, the intensity of the fluorescence from the fluorescent dye can be appropriately evaluated.
  • the intensity of fluorescence from a fluorescent dye can be properly grasped.
  • FIG. 6 (a) is an image showing the change with respect to the position of the total numerical value of photons during the measurement period of 90 seconds.
  • FIG. 6 (b) is an image showing the change with respect to the position of the photon count value limited within the period corresponding to the time gate in the measurement period of 90 seconds.
  • FIG. 8A is a graph showing the result of counting the number of times of detection of photons by the photon detector with respect to the elapsed time from the incident timing of the excitation light (pulsed light).
  • FIG. 8 (b) is a graph showing the background ratio. It is a graph which shows the change of the count value with respect to a measurement position at the time of changing a time gate variously based on the simulation result of FIG. FIG.
  • FIGS. 14 (a) and 14 (b) is a front view of a modification of the excitation / detection probe according to the first to third embodiments.
  • the detection principle of the fluorescent dye that is the basis of each embodiment according to the present invention will be described, and then the specific configuration of the present embodiment based on the principle will be described.
  • the basic idea for improving the detection sensitivity of the fluorescence from the fluorescent dye in each embodiment according to the present invention is the time response (light of light) emitted from the living body after the excitation light for the fluorescent dye is incident on the living body
  • the time-varying aspect of the intensity is to utilize the difference between the fluorescence from the fluorescent dye and the background light.
  • the waveform means a waveform showing a time response (for example, a waveform showing a time change of the number of detected photons). 1) Quantitatively measure the difference between the shape of the time response of the background light and the shape of the time response of the light emitted from the subject.
  • fmeas (ti) is a function of the measurement value of the number of photons emitted from the subject after the excitation light for the fluorescent dye is incident on the subject.
  • the waveform indicated by fmeas (ti) is taken as a measurement waveform.
  • fref (ti) is a function of the reference waveform value.
  • w (ti) is a weighting function and ⁇ is a scaling factor. [Equation 1]
  • is a coefficient value for causing D to be small (ideally to be 0) when the waveform shapes match even if the values themselves differ between the measured value and the reference waveform value. .
  • the absolute value may vary.
  • is determined so as to minimize D.
  • the value of D ⁇ 2 increases as the measured waveform differs from the shape of the reference waveform.
  • fback indicating the waveform shape of background light is used as fref.
  • D 2 According to the distance of the measurement position from the fluorescent dye, it is understood by D 2 that fmeas deviates from fback.
  • the method using D ⁇ 2 can be said to be a method of effectively subtracting the background light contribution from the measurement value.
  • the method based on D2 satisfies the above requirements 1) and 3) simultaneously.
  • w (ti) used in the determination of ⁇ different from w (ti) used in the final evaluation of D of the measured values In this case, D ⁇ 2 in the final evaluation of the measured values is not minimized, but it is effective to determine w (ti) so that background light can be efficiently suppressed.
  • Equation 2 In the detection using Equation 1, one of the simplest methods is to set fref to 0, and set w to the following weight w0 for extracting the time domain [tmin, tmax] where the difference in waveform appears most It is. [Equation 2]
  • this D is used to detect fluorescence by comparing the difference between the measured value and the background light value.
  • the fmeas natural sum may be used. That is, a value obtained by adding fmeas from tmin to tmax may be used. That is, the time gating method itself may be used. Also, in these cases, instead of using fmeas respectively, the ratio fmeas / fback of the measurement value to the value of the background light may be used.
  • D ⁇ 2 represents a squared deviation from the reference waveform
  • D represents an average difference in intensity.
  • D approaches 0 as the shape of the measurement waveform approaches the background light waveform shape.
  • the background light waveform needs to be known in advance, but in general, the time to the incidence of the excitation light to the subject before administering the fluorescent dye to the subject and the tissue opposite to the affected area to be measured It is possible to know by measuring the response.
  • D can not be used as it is because the similarity is seen.
  • a correlation coefficient may be used as an evaluation criterion different from Equation 1.
  • similarities or differences can be assessed. Since the value of the correlation coefficient is limited to [-1, 1], using the correlation coefficient only satisfies the above requirements 1) or 2). In order to satisfy the above requirement 3), it is necessary to combine the correlation coefficient with Equation 1.
  • ⁇ 0 is an upper limit value or an ideal upper limit value 1 estimated from data substantially matching background light.
  • rho fmeas, ffluo
  • L changes the rho 0-rho of the right side of equation 4 to rho-rho 0 and then It can be used for evaluation as well.
  • L may be rephrased to be the intensity of the average difference between the waveform of background light or fluorescence from fluorescent dye and the measured waveform in consideration of the waveform shape of background light or fluorescence from fluorescent dye.
  • the first embodiment relates to a method using the time gating method described above.
  • the biological inspection apparatus 1 includes a fluorescent probe 2, a light source 3, a photon detector 4 (light detection means), an excitation / detection probe 10, a time-resolved measurement unit 20 (detection time acquisition means), an analysis unit 30 (counting means), control A unit 40, a sound generation unit 7, and a display unit 8 (evaluation result output means) are provided.
  • the function of the fluorescence evaluation means in the present invention is realized by the functions of both the time-resolved measurement unit 20 and the analysis unit 30 in the present embodiment.
  • fluorescent dye of the fluorescent probe 2 for example, indocyanine green is used. Indocyanine green is used for fluorescence angiography of sentinel lymph nodes.
  • the fluorescent probe 2 is embedded in the human body of a subject (subject to be examined).
  • the light source 3 is an emitter of pulse laser light having a pulse width of picosecond or femtosecond scale.
  • the pulsed laser light includes a light pulse having an excitation wavelength of the fluorescent dye of the fluorescent probe 2.
  • the pulsed laser light is composed of an optical pulse train in which light pulses are continuously arranged at predetermined pulse intervals. For example, a fiber laser is used as the light source 3 and the light source 3 is caused to generate picosecond pulse light with a wavelength of 785 nm continuous at a pulse interval corresponding to 10 MHz.
  • the pulse interval is sufficiently longer than the fluorescence lifetime of the fluorescent dye (indocyanine green).
  • a timing signal indicating the timing of emitting each light pulse is output from the light source 3 to the time-resolved measurement unit 20.
  • an optical fiber 14 is connected to the light source 3 via an optical filter 5.
  • the other end of the optical fiber 14 is connected to the excitation and detection probe 10.
  • the pulse laser light emitted from the light source 3 enters the optical fiber 14 through the optical filter 5.
  • the optical filter 5 transmits light having the excitation wavelength of the fluorescent dye of the fluorescent probe 2 while blocking light of wavelengths other than the excitation wavelength. Thus, only excitation light for exciting the fluorescent dye of the fluorescent probe 2 is transmitted to the excitation / detection probe 10 through the optical fiber 14.
  • indocyanine green When indocyanine green is used as a fluorescent dye, its excitation light is light having a near infrared wavelength around 700 nm.
  • the excitation / detection probe 10 has a cylindrical holder 11 having an outer diameter of about 1 cm, and an irradiating unit 12 and a light receiving unit 13 provided on the tip surface 11 a (contact surface) of the holder 11. , Switches 17 and 18.
  • the excitation / detection probe 10 is used in contact with human tissue and in a state where the tip surface 11a is in close contact with the tissue.
  • the holder 11 has a shape suitable for holding the entire probe by hand to scan a subject.
  • the irradiation unit 12 emits the excitation light transmitted from the light source 3 through the optical fiber 14. When the emitted excitation light is irradiated to the fluorescent probe 2 embedded in the human body, the fluorescent dye of the fluorescent probe 2 generates fluorescence.
  • the light receiving unit 13 receives outgoing light emitted from the subject.
  • the light received by the light receiving unit 13 is the fluorescence generated by the fluorescent dye of the fluorescent probe 2 and the background serving as the background for the fluorescence It will contain the light.
  • Background light is component light having a fluorescence wavelength of a fluorescent dye that is derived from other than the fluorescent dye of the fluorescent probe 2. Background light includes, for example, fluorescence from the subject's tissue itself. In the following, “fluorescence” means fluorescence generated by the fluorescent dye of the fluorescent probe 2 unless otherwise noted.
  • optical fiber 16 One end of an optical fiber 16 is connected to the excitation / detection probe 10.
  • the other end of the optical fiber 16 is connected to the photon detector 4 via an optical filter 6 (see FIG. 1).
  • the optical filter 6 transmits light having the fluorescence wavelength of the fluorescent dye of the fluorescent probe 2 while blocking light having a wavelength other than the fluorescence wavelength. Of the light received by the light receiving unit 13, only component light having a fluorescence wavelength reaches the photon detector 4 through the optical fiber 16.
  • the switch 17 is a switch that switches on / off of the function of generating pulse laser light in the light source 3.
  • a signal indicating the state of the switch 17 is output to the light source 3.
  • the light source 3 generates pulse laser light or stops the generation based on a signal indicating the state of the switch 17. Since the switch 17 can be operated by the user, it is easy to perform the on / off switching operation of the pulse laser beam.
  • the switch 18 is a switch for adjusting a time gate, which will be described later.
  • a signal indicating the state of the switch 18 is output to the control unit 40.
  • the control unit 40 controls the analysis unit 30 based on a signal indicating the state of the switch 18 as described later.
  • the photon detector 4 is a photon counting detector that detects the incidence of photons from the optical fiber 16 on a photon basis. The detection result of the incidence of photons is output to the time-resolved measurement unit 20 for each detection of one photon.
  • the time-resolved measurement unit 20 is a time-digital converter.
  • the timing signal from the light source 3 is input to the time-resolved measurement unit 20.
  • the time-resolved measurement unit 20 generates a digital value indicating the time when the detection result is output from the photon detector 4 (the elapsed time from the latest reference timing), using each timing indicated by the timing signal as a reference timing.
  • the digital value is output to the analysis unit 30. This digital value is output from the photon detector 4 as the detection result indicating the incidence of photons from the timing when the light pulse is emitted from the light source 3, that is, the timing when the excitation light is irradiated to the human body from the excitation / detection probe 10. Timing, that is, the time until the photon is detected in the photon detector 4.
  • the analysis unit 30 includes digital comparators 32 and 33, a gate circuit 34, a counter 35, and a time reference generator 36, as shown in FIG.
  • Digital values from the time-resolved measurement unit 20 are input to digital comparators 32 and 33 respectively.
  • the digital comparator 32 outputs to the gate circuit 34 a signal indicating the result of comparing the digital value from the time-resolved measurement unit 20 with the upper limit value.
  • the digital comparator 33 outputs to the gate circuit 34 a signal indicating the result of comparing the digital value from the time-resolved measurement unit 20 with the lower limit value.
  • the upper limit value and the lower limit value are input from the control unit 40 as described later.
  • the gate circuit 34 outputs a signal indicating the logical product of the signal from the digital comparator 32 and the signal from the digital comparator 33 to the counter 35. This logical product indicates whether the digital value from the time-resolved measurement unit 20 is in the range from the lower limit value to the upper limit value.
  • the time reference generator 36 generates a reference signal every unit time (for example, 100 milliseconds) and outputs the reference signal to the counter 35.
  • the counter 35 counts the number of times the digital value from the time-resolved measurement unit 20 falls within the range from the lower limit value to the upper limit value based on the signal from the gate circuit 34.
  • the counting is performed for each period having the length of the unit time based on the reference signal from the time reference generator 36.
  • the counting result is output to the control unit 40 each time a unit time passes. Each counting result indicates the number of times per unit time that the digital value from the time-resolved measurement unit 20 is in the range from the lower limit value to the upper limit value.
  • the control unit 40 is constructed by a combination of a computer and software.
  • the computer is recorded in a memory device such as hardware including a memory device such as a central processing unit (CPU), a read-only memory (ROM) and a random access memory (RAM), and various interfaces such as an input / output interface.
  • a memory device such as a central processing unit (CPU), a read-only memory (ROM) and a random access memory (RAM), and various interfaces such as an input / output interface.
  • software comprising program data and the like.
  • hardware executes various information processing such as arithmetic processing and input / output processing according to software, thereby realizing various functions in the control unit 40 described below.
  • the control unit 40 outputs the upper limit value and the lower limit value to the digital comparators 32 and 33 of the analysis unit 30.
  • the lower limit corresponds to the start timing of the time gate
  • the upper limit corresponds to the end timing of the time gate.
  • This time gate is set to a period in which the difference between the waveform of fluorescence and the waveform of background light is large, as shown in the first experimental example described later.
  • the time gate is set at a wavelength of fluorescence, which is a period after the timing at which background light is maximized and in which fluorescence is generated.
  • the time gate is a period including the timing at which the incident light to the photon detector 4 is maximized relative to the background light (the timing at which the ratio to the background described later is maximized), and the background light is It is preferable to set to the period which does not include the timing which becomes the maximum. Alternatively, the time gate may be set to a period in which the fluorescence is maximum but not including the timing in which the background light is maximum. Further, the control unit 40 adjusts the time gate according to the state of the switch 18 based on the signal output from the excitation / detection probe 10. For example, the control unit 40 changes the start timing (that is, the lower limit value) of the time gate according to the state of the switch 18.
  • control unit 40 records the counting result output from the counter 35 of the analyzing unit 30 in a recording device such as a hard disk, and controls the sound generating unit 7 and the display unit 8 according to the counting result. Specifically, the control unit 40 causes the sound generation unit 7 to generate a sound having a size corresponding to the counting result, and causes the display unit 8 to perform display corresponding to the counting result.
  • the sound generation unit 7 generates a sound of the size and timbre according to the instruction of the control unit 40, and outputs the sound from the speaker. For example, the control unit 40 instructs the sound generation unit 7 to output a larger sound as the counting result from the counter 35 is larger.
  • the display unit 8 displays the counting result from the counter 35 on the display using various expressions such as numerical values and graph images according to the instruction of the control unit 40.
  • the counting result from the counter 35 indicates the number of times per unit time that the digital value from the time-resolved measurement unit 20 is in the range from the lower limit value to the upper limit value. That is, the counting result indicates the number of times per unit time that the photon detector 4 has detected photons in the time gate.
  • the time gate is a period in which the difference between the waveform of the fluorescence and the waveform of the background light is largely generated. Therefore, the counting result from the counter 35 strongly reflects the intensity of the fluorescence.
  • the user can recognize the intensity of the fluorescence by perceiving the size and timbre of the sound generated by the sound generation unit 7.
  • the user can search for the position of the fluorescent probe 2 by following the change of the sound from the sound generator 7 while moving the excitation / detection probe 10. For example, when the sound from the sound generation unit 7 is getting louder, it is known that the excitation / detection probe 10 is approaching the fluorescent probe 2. In addition, when the sound from the sound generation unit 7 becomes smaller, it is understood that the excitation / detection probe 10 is moved away from the fluorescent probe 2. Note that, instead of or in addition to the sound from the sound generation unit 7, the display content of the display unit 8 may be used for searching for the position of the fluorescent probe 2.
  • the user can change the time gate by operating the switch 18 of the excitation and detection probe 10.
  • the setting of the time gate affects the behavior for the measurement position in the photon counting result as shown in the first experimental example described later.
  • the variation degree of the counting result with respect to the change of the measurement position changes due to the difference of the time gate. Therefore, when the position of the fluorescent probe 2 is grasped by following the change of the sound from the sound generation unit 7 while moving the excitation / detection probe 10, the ease of the grasping is adjusted by the operation of the switch 18. It is possible.
  • the voice or the like is output based on the result of counting the number of times the photon incident is detected in the time gate by the photon detector 4.
  • the time gate is set as a period in which the difference between the waveform of fluorescence and the waveform of background light is large, as shown in a first experimental example described later. Therefore, the intensity of fluorescence is likely to be reflected in the above-mentioned counting result.
  • the emitted light from the subject and the background light are evaluated by evaluating the intensity of the emitted light from the subject during the gate period, which is a period during which the difference between the waveforms of the fluorescence and the background light is large.
  • the user can recognize the intensity of the fluorescence generated from the fluorescent probe 2 in the subject's body from the output result. If the intensities of fluorescence at a plurality of positions in the subject are known, as described above, the relationship between those positions and the position of the fluorescent probe 2 can be grasped. Thus, according to the present embodiment, it is possible to detect fluorescence from a relatively deep position from the tissue surface and to allow the user to recognize the position of the fluorescent probe 2 from the intensity.
  • the probe P1 shown in FIG. 4 was used for irradiation of excitation light and detection of fluorescence.
  • the probe P1 has outlets A and B for emitting laser light, and inlets CH1 and CH2 for receiving light from a sample. The distance between these exit and entrance is 10 mm.
  • laser light to be excitation light for a fluorescent target picosecond pulse light generated at a pulse interval corresponding to 10 MHz and a wavelength of 785 nm generated from a fiber laser was used. This laser beam is transmitted to the emission ports A and B formed in the probe P1 through an optical fiber.
  • Excitation light was irradiated to the sample by emitting laser light from the emission ports A and B while bringing the emission ports A and B into contact with the sample.
  • One end of a bundle fiber of 3 mm in diameter was connected to the entrances CH1 and CH2.
  • the other end of the bundle fiber was connected to the photon detector 4 via the optical filter 6.
  • the light incident on the entrances CH 1 and CH 2 is transmitted through the bundle fiber, passes through the optical filter 6, and is incident on the photon detector 4.
  • emitted from a sample and a fluorescence target was measured using the time correlation single photon detection system. This was repeated while changing the measurement position with respect to the sample. Specifically, the measurement was repeated while translating the probe P1 in parallel by 5 mm in each of the x direction and the y direction of the xy plane set for the sample. The measurement at each measurement position was performed by holding the probe P1 at that position for 90 seconds.
  • Each graph in FIG. 5 counts the number of times a photon is detected by the photon detector 4 with respect to the elapsed time from the incident timing of each pulse for all the pulses of the laser light irradiated to the sample during the 90 second period. The results are shown.
  • the horizontal axis in FIG. 5 indicates the elapsed time from the incident timing of each pulse, and the vertical axis in FIG. 5 indicates the number of photons per bin.
  • the graph g1 shows the counting result of the background light (counting result at the measurement position farthest from the fluorescent target).
  • Graphs g2 to g4 show three counting results at different measurement positions closer to the fluorescent target than graph g1.
  • the graph g0 shows the time response function of the measuring device itself. As shown in FIG.
  • the graph g1 showing the time response of background light has a faster decay than the graphs g2 to g4 showing the time response of light containing fluorescence. That is, background light decays faster than fluorescence.
  • “Fast decay” indicates, for example, that the time from the timing when the intensity peaks to the time when the intensity becomes half or an appropriate ratio with respect to the peak time is short.
  • 6 (a) and 6 (b) are gray scale images showing the counting results for each position in the xy plane. Gray scale indicates that the higher the tonal value, the larger the photon count.
  • FIG. 6 (a) corresponds to the total numerical value of photons during the entire 90 seconds
  • FIG. 6 (b) shows the time gate indicated by the line segment G in FIG.
  • the tone values are relatively large over the entire range of the gray scale image of FIG. 6 (a). That is, even at the measurement position away from the target, the counting result does not decrease much as compared with the measurement position close to the target. Thus, the total number of photons during the entire 90 second period results in low contrast.
  • FIGS. 7 (a) and 7 (b) The results of determining the background ratio in this manner are shown in FIGS. 7 (a) and 7 (b).
  • the square points are the ratio of background to background obtained from the total number of photons during the entire period of 90 seconds at every 5 mm position.
  • the round dots correspond to the contrast obtained from the photon counts limited within the time gate G during the 90 second period.
  • Graphs g5 and g7 are the results of fitting square points.
  • Graphs g6 and g8 are results of fitting round points. As shown in FIGS.
  • the use of the time gate G increased the ratio to background by about six times. This indicates that when a time gate is used, the presence of a fluorescent target can be clearly distinguished from background light when the measurement position is brought close to the target while scanning the tissue surface.
  • the time gate G is set to be a period after the timing when the background light is maximum at the wavelength of fluorescence and a period in which fluorescence is generated. More specifically, time gate G is a period including the timing at which light incident on photon detector 4 is at a maximum relative to background light, and includes the timing at which background light is at a maximum. There is no period set.
  • the other gray solid lines show three time responses at different measurement locations. Also, based on these time response function data, the result of similarly obtaining the background ratio at each measurement position is shown in FIG. 8 (b).
  • the horizontal axis of FIG. 8 (b) shows the elapsed time from the incident timing of each pulse in the laser light, and the vertical axis of FIG. 8 (b) shows the ratio to background.
  • the background ratio here is the time response function at each side fixed position divided by the time response function of background light.
  • the graph which used the measurement data of measurement time 90 second as it is is displayed on the upper right of each of FIG. 8 (a) and FIG.8 (b) for comparison.
  • the ratio to the background is maximum around 2 nanoseconds.
  • the 100 ms data lacks statistical properties around 2 nanoseconds, and the ratio to background is maximum at a position slightly faster than 2 nanoseconds. From this, it is considered that a section having a relatively large ratio to the background may be set as the time gate, including around 2 nanoseconds where the ratio to the background is maximum.
  • candidate segments of the time gate are shown in FIG. 8 G1: [0.797 nanoseconds: 3.2972 nanoseconds] (2.5 nanoseconds wide), G2: [1.497 nanoseconds: 2.497 nanoseconds] (1 nanosecond width), G3: [1.747 nanoseconds: 2.247 nanoseconds] (0.5 nanosecond width).
  • FIG. 9 (a) and 9 (b) show the change to the position of the photon counts limited within these time gates and the change to the position of the photon counts without time gates.
  • Inverted triangle points, circle points, square points and triangle points correspond to no gate, gate G1, gate G2 and gate G3, respectively.
  • Each solid line is the result of fitting these by Formula 5, respectively. It can be seen that the number of photons is maximized when the gate is not used and becomes smaller as the gate width becomes narrower. Therefore, the statistical variation of the signal becomes larger as the gate width becomes narrower.
  • FIG. 10 (a) and 10 (b) show the change to the position in the background to background ratio based on the count of photons limited within the time gates G1 to G3 and the back to the count of photons not using the time gate.
  • the change to the position in the ground ratio is shown.
  • the triangle point, the inverted triangle point, the round point and the square point in FIG. 10A correspond to the gate G3, the gate G2, the gate G1 and no gate, respectively.
  • the triangle points, the square points, the round points, and the inverse triangle points in FIG. 10B correspond to the gate G3, the gate G2, the gate G1, and no gate, respectively. Contrary to the case of FIG. 9, higher contrast was obtained when the time gate was applied. In addition, even if the gate width is 0.5 nanosecond wide, the contrast is not improved as compared with the 1.0 nanosecond width. From the above results, it is concluded that the width of the time gate may be greater than 1.0 nanosecond. Furthermore, in practice, it is preferable to use the time gate determined as described above as an initial setting value and to optimize the time gate in clinical settings such that the change in contrast with position is the largest.
  • the second embodiment relates to a method of using the Euclidean distance D shown in Formula 1 instead of using the time gate of the first embodiment.
  • the biological examination apparatus according to the second embodiment is mainly different from the biological examination apparatus according to the first embodiment in the configuration of the analysis unit 30.
  • the analysis unit according to the second embodiment will be mainly described.
  • the analysis unit of the second embodiment calculates D in accordance with Equation 1 based on the digital value from the time-resolved measurement unit 20.
  • Fmeas in Equation 1 indicates the result of counting (counting) the number of times of photon detection by the photon detector 4 during a predetermined period and the elapsed time from the timing when each light pulse is emitted by the light source 3.
  • fmeas corresponds to, for example, the graphs g2 to g4 in FIG. 5 and the gray solid line graph in FIG. 8 (a).
  • fref, w and ⁇ have values determined according to the method described above in the description of the principle.
  • the analysis unit outputs the calculated D to the control unit 40.
  • the control unit 40 causes the sound generation unit 7 to generate a sound corresponding to the size of D, and causes the display unit 8 to perform display corresponding to the size of D.
  • the waveform data fmeas used for the evaluation is data on a waveform (waveform shown in FIG. 8A) corresponding to the measurement time of 100 milliseconds generated from the measurement data in the first experimental example.
  • the evaluation section was a time section covering the entire range of the waveform.
  • the measurement result at the position farthest from the fluorescent target was used for the waveform fback of the background light which is the reference fref.
  • w is a constant 1 / N (N is the number of time data).
  • was decided to minimize D ⁇ 2.
  • FIG. 11 shows the change with respect to the position at D calculated in this manner.
  • the result in FIG. 11 shows the fluorescent target position with a little contrast as compared with the steady light, that is, the simple integral value of the time response function (the value indicated by the square point in FIG. 10). This situation will be further improved if the measurement time is longer than 100 milliseconds.
  • the method using Equation 1 and the method using a time gate may be used in combination.
  • the third embodiment relates to a method using a correlation function shown in Formula 4 in place of the time gate of the first embodiment.
  • the analysis unit according to the third embodiment calculates L in accordance with Equation 4 based on the digital value from the time-resolved measurement unit 20 and outputs the calculated value to the control unit 40.
  • the calculation of D is based on the same method as the calculation method in the second embodiment.
  • the control unit 40 causes the sound generation unit 7 to generate a sound corresponding to the size of L and causes the display unit 8 to display according to the size of L as in the first embodiment.
  • the waveform data fmeas used for the evaluation is data on a waveform (waveform shown in FIG. 8A) corresponding to the measurement time of 100 milliseconds created from the measurement data in the first experimental example.
  • the evaluation section was a time section covering the entire range of the waveform.
  • the measurement result at the position farthest from the fluorescent target was used for the waveform fback of the background light which is the reference fref.
  • w is a constant 1 / N (N is the number of time data).
  • 1.
  • the correlation ⁇ in Equation 4 was calculated using Pearson's correlation coefficient.
  • FIG. 12 shows the change with respect to the position at L calculated in this manner.
  • the result in FIG. 12 shows the position of the fluorescent target with good contrast, as in the first experimental example using a time gate.
  • the value of the position where the measurement waveform is close to the background light waveform is almost 0, and the contrast is very good.
  • the distribution width of L is narrow. Therefore, the method using Equation 4 is considered to be effective for detection of a fluorescent probe.
  • the similarity of the time response function between human tissue and the sample used in the first experiment was confirmed as follows.
  • the graph g10 of FIG. 13 shows the time response function obtained by measuring the time response in the same manner as the first experimental example without embedding the fluorescent dye in the human upper arm.
  • Graph g11 is the result of using beef.
  • the graphs g10 and g11 are normalized so that the waveforms match each other near the peaks. It can be seen that although the decay of the time response function was somewhat faster in humans compared to beef, both show approximately the same decay. As shown in FIG. 13, it is convenient in terms of separating background light and fluorescence that the background light decays in the case of humans faster than in the case of beef.
  • the fluorescence time response decays more slowly than the background light time response.
  • the excitation / detection probe 110 shown in FIG. 14A or the excitation / detection probe 120 shown in FIG. 14B may be used instead of the excitation / detection probe 10 in the above-described embodiment.
  • the excitation / detection probe 110 has a holder 111 from which a tip surface 111 a protrudes.
  • the tip surface 111a is smoothly curved.
  • the irradiation unit 12 and the light receiving unit 13 are provided on the front end surface 111 a.
  • optical filters 5 and 6 are provided on the tip surface 111 a of the excitation / detection probe 110.
  • the laser light emitted from the irradiation unit 12 is irradiated onto the living body through the optical filter 5.
  • the optical filters 5 and 6 are provided on the tip surface 121 a of the holder 121.
  • a laser diode 103 and a photon detector 104 are provided in the holder 121. If the source of excitation light and the photon detector can be miniaturized, they may be thus provided in the excitation / detection probe.
  • the laser light emitted from the laser diode 103 is irradiated to the subject through the irradiation unit 12 and the optical filter 5.
  • Light emitted from the living body enters the photon detector 104 through the optical filter 6 and the light receiving unit 13.
  • the analysis unit 30 is constructed using a digital circuit such as the digital comparator 32 or the like.
  • the analysis unit may be constructed by a combination of computer and software.
  • the software may cause the computer to function so as to play the same role as the analysis unit 30.
  • the result of counting by the counter 35 that is, the output of voice or numerical value corresponding to the number of times of detection of photons per unit time is performed.
  • output may be made according to the background ratio.
  • the control unit 40 calculates the to-background ratio based on the counting result of the counter 35.
  • the sound generation unit 7 generates a sound having a magnitude corresponding to the calculated background ratio.
  • the ratio to the background is calculated by dividing the counting result of the counter 35 by the background level b.
  • a value calculated in advance using Equation 5 is used based on the measurement value measured in advance according to the time gate.
  • G G1 to G3 Time gate 1 Biological examination device 2 Fluorescent probe 3 Light source 4 Photon detector 5, 6 Optical filter 7 Audio generation unit 8 Display unit 10, 110, 120 Excitation / detection probe 12 Irradiation unit 13 Light receiving unit 17 , 18 switches 20 time-resolved measurement unit 30 analysis unit 40 control unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

An objective of the present invention is to ascertain, at a high sensitivity, the intensity of fluorescent light from a fluorochrome embedded in a biological body. A light source 3 emits, via an optical filter 5 and an excitation/detection probe 10, excitation light at a subject embedded with a fluorescent probe 2. Outgoing light from the subject enters a photon detector 4 via the excitation/detection probe 10 and an optical filter 6. When a photon is detected by the photon detector 4, a time-resolved measurement unit 20 outputs the timing of the detection to an analysis unit 30. The analysis unit 30 tallies the number of photon detections by the photon detector 4 during a period equivalent to a prescribed time gate, on the basis of the output from the time-resolved measurement unit 20. A control unit 40 causes a sound generation unit 7 to output a sound at a volume that accords with the tally by the analysis unit 30.

Description

生体検査装置及び生体検査方法Biopsy apparatus and biopsy method
 本発明は、生体検査装置及び生体検査方法に関する。 The present invention relates to a biopsy apparatus and a biopsy method.
 従来、蛍光色素を用いて患部の位置を特定する方法がある。特許文献1に記載のリンパ節検出装置はその一例であり、蛍光色素があらかじめ注入された腫瘍近傍におけるリンパ節を含む生体に対して励起光を照射し、それによって生体から発生される蛍光から、リンパ節を検出する画像を取得するものである。 Conventionally, there is a method of specifying the position of an affected area using a fluorescent dye. The lymph node detection device described in Patent Document 1 is one example thereof, in which excitation light is irradiated to a living body including a lymph node in the vicinity of a tumor in which a fluorescent dye has been injected in advance, and fluorescence from the living body is thereby obtained. An image for detecting a lymph node is acquired.
国際公開第2005/048826号WO 2005 / 048,826
 特許文献1のように蛍光色素を用いて患部を特定する従来方法においては、組織の表面近傍からの蛍光は検出できるが、蛍光色素の位置が組織表面から少しでも深くなると蛍光を検出することが難しい。従来、蛍光色素を用いた生体検査の分野においては、組織表面から深いところからの蛍光を検出することが難しい原因として、単に蛍光色素からの蛍光の強度を十分に確保できないことのみが取り上げられてきた。このため、検出の感度を向上するための従来の手段は、励起光を強める等の単純な手段に留まっていた。しかしながら、本発明者は、蛍光色素からの蛍光の強度を適切に把握するには、かかる単純な手段では限界があることに気づいた。 In the conventional method of identifying an affected area using a fluorescent dye as in Patent Document 1, although the fluorescence from the vicinity of the surface of the tissue can be detected, the fluorescence may be detected when the position of the fluorescent dye is a little deeper from the tissue surface. difficult. Heretofore, in the field of biological tests using fluorescent dyes, it has been merely described that the intensity of fluorescence from fluorescent dyes can not be sufficiently secured as a cause for which it is difficult to detect fluorescence from a deep place from the tissue surface. The For this reason, the conventional means for improving the detection sensitivity has been a simple means such as enhancing the excitation light. However, the inventor has found that such simple means have limitations in properly grasping the intensity of fluorescence from a fluorescent dye.
 本発明の目的は、生体内に埋め込まれた蛍光色素からの蛍光の強度を高感度に把握可能な生体検査装置及び生体検査方法を提供することにある。 An object of the present invention is to provide a living body inspection apparatus and a living body inspection method capable of grasping the intensity of fluorescence from a fluorescent dye embedded in a living body with high sensitivity.
 本発明者は、蛍光色素からの蛍光を検出する感度を効果的に向上するために、以下の点に着目した。すなわち、組織表面から深いところからの蛍光色素からの蛍光は拡散しやすく、その単位面積当たりの強度が下がる。そして、組織自体からの蛍光等によるバックグラウンド光が蛍光色素からの蛍光に対して比較的大きくなる。このため、蛍光がバックグラウンド光と区別できなくなる。一方、本発明者は、バックグラウンド光が蛍光に対して比較的大きい場合であっても、これらの強度の時間変化態様(波形)の違いは測定結果に表れやすいことに着目した。バックグラウンド光の強度の時間変化態様は、例えば、試料を用いた事前の測定や蛍光色素が埋め込まれた位置から十分離れた位置における測定等により取得可能である。 The present inventors focused on the following points in order to effectively improve the sensitivity for detecting fluorescence from a fluorescent dye. That is, the fluorescence from the fluorescent dye from deep to the tissue surface tends to diffuse, and the intensity per unit area decreases. Then, background light due to fluorescence or the like from the tissue itself becomes relatively larger than the fluorescence from the fluorescent dye. This makes fluorescence indistinguishable from background light. On the other hand, the present inventors focused on the fact that even if the background light is relatively large relative to fluorescence, the difference in the time change mode (waveform) of these intensities tends to appear in the measurement results. The temporal change mode of the background light intensity can be obtained, for example, by measurement in advance using a sample, measurement at a position sufficiently away from the position where the fluorescent dye is embedded, or the like.
 以上の点に着目することで得られた本発明の生体検査装置は、蛍光色素が埋め込まれた生体に対して前記蛍光色素を励起する励起光を照射する光源と、前記生体からの出射光の強度を検出する光検出手段と、前記光源による前記生体への前記励起光の照射に起因して前記蛍光色素が発生させる蛍光を含む前記出射光の強度の時間変化態様と、前記蛍光に対するバックグラウンド光及び前記蛍光の少なくともいずれかの強度の時間変化態様との違いの程度を、前記蛍光の波長において評価する蛍光評価手段と、前記蛍光評価手段が評価した前記程度を知覚可能に出力する評価結果出力手段と、を備えている。 The living body inspection apparatus of the present invention obtained by focusing on the above points comprises: a light source for irradiating excitation light for exciting the fluorescent dye to the living body in which the fluorescent dye is embedded; and light emitted from the living body The light detection means for detecting the intensity, the time change aspect of the intensity of the emitted light including the fluorescence generated by the fluorescent dye due to the irradiation of the excitation light to the living body by the light source, and the background for the fluorescence A fluorescence evaluation means for evaluating the degree of difference between light and at least one of the intensities of light with time change mode of the intensity at a wavelength of the fluorescence, and an evaluation result for perceptually outputting the degree evaluated by the fluorescence evaluation means And output means.
 本発明者は、蛍光を評価するための一手段として、生体からの出射光の強度の時間変化態様とバックグラウンド光の強度の時間変化態様との違いの程度を評価する手段を設けることとした。そして、その違いの程度を知覚可能に出力させることとした。時間変化態様における上記違いは蛍光色素からの蛍光の発生によって生じる。そして、その違いの程度は蛍光色素からの蛍光の強度を表す指標となる。したがって、ユーザーは、その違いの程度に応じた出力結果に基づき、蛍光色素からの蛍光の強度を認識できる。このように、本発明によると、バックグラウンド光が蛍光に対して比較的大きい場合であっても蛍光の強度をユーザーに認識させやすい。つまり、蛍光色素からの蛍光の強度を高感度に把握できる。 The present inventor decided to provide a means for evaluating the degree of difference between the time change aspect of the intensity of the light emitted from the living body and the time change aspect of the intensity of the background light as one means for evaluating the fluorescence. . Then, the degree of the difference is perceptually output. The above difference in the time change mode is caused by the generation of fluorescence from the fluorescent dye. And the extent of the difference serves as an index showing the intensity of fluorescence from the fluorescent dye. Therefore, the user can recognize the intensity of the fluorescence from the fluorescent dye based on the output result according to the degree of the difference. Thus, according to the present invention, it is easy for the user to recognize the intensity of fluorescence even if the background light is relatively large with respect to the fluorescence. That is, the intensity of the fluorescence from the fluorescent dye can be grasped with high sensitivity.
 なお、本発明は、蛍光評価手段に関する他の手段として、生体からの出射光の強度の時間変化態様と蛍光色素からの蛍光の強度の時間変化態様との違いの程度を評価する手段を含むものであってもよい。この手段は、生体からの出射光の強度の時間変化態様とバックグラウンド光の強度の時間変化態様との違いの程度を評価する上記手段と対応している。例えば、生体からの出射光の強度の時間変化態様とバックグラウンド光の強度の時間変化態様との違いが大きいことは、生体からの出射光の強度の時間変化態様と蛍光色素からの蛍光の強度の時間変化態様との違いが小さい(両者の類似性が高い)ことに対応する。なお、評価の基準となる蛍光色素からの蛍光の時間変化態様は、例えば、事前の測定によって取得できる。 The present invention includes, as another means related to the fluorescence evaluation means, a means for evaluating the degree of difference between the time change aspect of the intensity of the light emitted from the living body and the time change aspect of the intensity of the fluorescence from the fluorescent dye. It may be This means corresponds to the above-described means for evaluating the degree of difference between the time change aspect of the intensity of the light emitted from the living body and the time change aspect of the intensity of the background light. For example, the difference between the temporal change of the intensity of the light emitted from the living body and the temporal change of the intensity of the background light is the time change of the intensity of the emitted light from the living and the intensity of the fluorescence from the fluorescent dye. The difference with the time change aspect of is small (the similarity between the two is high). In addition, the time change aspect of the fluorescence from the fluorescent dye used as the reference | standard of evaluation can be acquired by prior measurement, for example.
 本発明において、「蛍光の波長において評価すること」とは、評価対象となる光における蛍光波長の成分を評価することに対応する。蛍光波長の成分は、例えば、光学フィルタを用いて評価対象の光から物理的に取り出される。また、評価対象の光の時間応答関数から演算によって蛍光波長の成分が抽出されてもよい。 In the present invention, “evaluating at the wavelength of fluorescence” corresponds to evaluating the component of the fluorescence wavelength in the light to be evaluated. The component of the fluorescence wavelength is physically extracted from the light to be evaluated using, for example, an optical filter. Alternatively, the component of the fluorescence wavelength may be extracted by calculation from the time response function of the light to be evaluated.
 また、本発明においては、前記バックグラウンド光の減衰が前記蛍光の減衰より速く、前記蛍光評価手段が、前記バックグラウンド光が最大となるタイミングより後の期間であって前記蛍光が発生している期間である所定期間内における前記出射光に基づいて前記程度を評価することが好ましい。これによると、所定期間が、バックグラウンド光が最大となるタイミングより後の期間に設定されている。バックグラウンド光は蛍光より速く減衰するため、バックグラウンド光が最大となるタイミングより後の期間は、蛍光の波形とバックグラウンド光の波形との違いが大きい期間となりやすい。したがって、この期間における生体からの出射光に基づくことで、蛍光色素からの蛍光の強度が適切に評価されやすい。また、本発明においては、前記所定期間が、前記蛍光を含む前記出射光の強度における前記バックグラウンド光の強度に対する比が最大となるタイミングを含んだ期間であることが好ましい。これによると、この期間における生体からの出射光に基づくことで、蛍光色素からの蛍光の強度がより適切に評価されやすい。 Further, in the present invention, the background light decays faster than the fluorescence decay, and the fluorescence evaluation means generates the fluorescence during a period after the background light becomes maximum. It is preferable to evaluate the degree based on the emitted light within a predetermined period which is a period. According to this, the predetermined period is set to a period after the timing when the background light is maximum. Background light decays faster than fluorescence, so the period after the timing when the background light is maximum tends to be a period where the difference between the waveform of the fluorescence and the waveform of the background light is large. Therefore, based on the emitted light from the living body during this period, the intensity of the fluorescence from the fluorescent dye is likely to be appropriately evaluated. Further, in the present invention, it is preferable that the predetermined period includes a timing at which the ratio of the intensity of the emitted light including the fluorescence to the intensity of the background light is maximum. According to this, based on the emitted light from the living body in this period, the intensity of the fluorescence from the fluorescent dye can be more appropriately evaluated.
 また、本発明においては、前記光検出手段が光子の入射を検出可能であり、前記蛍光評価手段が、前記光源が前記励起光を前記生体に照射したタイミングを基準として前記光検出手段による光子の入射の検出タイミングを取得する検出時刻取得手段と、前記検出時刻取得手段が取得したタイミングに基づいて、前記光検出手段による前記所定期間内における前記光子の入射の検出回数を計数する計数手段と、を有していてもよい。これによると、所定期間における光子の入射の検出回数を適切に計数することができる。よって、所定期間における生体からの出射光の検出結果に基づく適切な評価が可能となる。 In the present invention, the light detection means can detect the incidence of photons, and the fluorescence evaluation means is based on the timing at which the light source irradiates the living body with the excitation light as a reference. A detection time acquiring means for acquiring an incident detection timing, and a counting means for counting the number of times of detection of the photon incident in the predetermined period by the light detection means based on the timing acquired by the detection time acquiring means; May be included. According to this, it is possible to appropriately count the number of times of detection of the incidence of photons in a predetermined period. Therefore, appropriate evaluation based on the detection result of the emitted light from the living body in the predetermined period can be performed.
 また、本発明においては、前記生体の表面と接触する接触面を有し、前記励起光の照射部及び前記生体からの出射光の受光部が前記接触面の表面に形成された励起・検出プローブをさらに備えていることが好ましい。これによると、生体に向けて適切に励起光を照射できると共に、生体における励起光を照射した範囲からの出射光を適切に受け取ることができる。 In the present invention, the excitation / detection probe has a contact surface in contact with the surface of the living body, and the irradiation portion of the excitation light and the light receiving portion of the emission light from the living body are formed on the surface of the contact surface. It is preferable to further comprise According to this, while being able to irradiate excitation light appropriately towards a living body, it is possible to appropriately receive light emitted from a range irradiated with excitation light in the living body.
 また、本発明においては、前記接触面が前記生体に向かって突出するように湾曲していることが好ましい。これによると、励起・検出プローブの生体への密着性が向上する。よって、照射部から出射される励起光が受光部へと漏れ出したりしにくい。 Further, in the present invention, it is preferable that the contact surface is curved so as to protrude toward the living body. According to this, the adhesion of the excitation / detection probe to the living body is improved. Therefore, it is difficult for the excitation light emitted from the irradiation unit to leak to the light receiving unit.
 また、本発明においては、前記励起・検出プローブにスイッチが設けられており、前記スイッチの操作状況に基づいて、前記励起光の照射部から前記励起光を出射する状態と出射しない状態とを切り替えることが好ましい。これによると、励起光の照射のオン・オフを操作によって切り替えやすい。 Further, in the present invention, a switch is provided on the excitation / detection probe, and switching between a state in which the excitation light is emitted and a state in which the excitation light is not emitted from the irradiation portion of the excitation light Is preferred. According to this, it is easy to switch on / off of the irradiation of the excitation light by the operation.
 また、本発明においては、前記生体の表面と接触する接触面を有し、前記励起光の照射部及び前記生体からの出射光の受光部が前記接触面の表面に形成され、スイッチが設けられた励起・検出プローブをさらに備えており、前記スイッチの操作状況に基づいて前記所定期間を変更することが好ましい。所定期間の設定は、光子の計数結果における計測位置に対する変化の振れ幅(コントラスト)に影響を及ぼす。このため、計測位置と光子の計数結果との関係に基づいて蛍光色素の位置を把握する際、その把握のしやすさをスイッチ操作によって調整することが可能である。なお、上記スイッチの代わりに、又は、これに加えて、所定期間以外の条件を変更するためのスイッチが設けられてもよい。 Further, in the present invention, a contact surface is in contact with the surface of the living body, the irradiation portion of the excitation light and the light receiving portion of the emission light from the living body are formed on the surface of the contact surface, and a switch is provided. It is preferable to further include an excitation / detection probe, and to change the predetermined period based on the operation status of the switch. The setting of the predetermined period affects the fluctuation (contrast) of change with respect to the measurement position in the photon counting result. For this reason, when grasping the position of the fluorescent dye based on the relationship between the measurement position and the photon counting result, it is possible to adjust the ease of the grasping by the switch operation. A switch for changing conditions other than a predetermined period may be provided instead of or in addition to the above switch.
 また、本発明においては、前記評価結果出力手段が、前記程度を表現した文字、画像及び音声の少なくともいずれかを出力することが好ましい。これによると、文字、画像及び音声の少なくともいずれかによって評価結果がユーザーに知覚可能である。 Further, in the present invention, it is preferable that the evaluation result output means outputs at least one of a character, an image and a sound expressing the degree. According to this, the evaluation result is perceptible to the user by at least one of characters, images and sounds.
 また、本発明においては、前記蛍光評価手段が、前記出射光の強度の時間変化態様と基準となる時間変化態様との相関に基づいて前記程度を評価することが好ましい。これによると、例えば、基準となる時間変化態様としてバックグラウンド光の時間変化態様を用いた場合、相関が低いほど蛍光色素からの蛍光が生体からの出射光に強く表れていることが分かる。また、基準となる時間変化態様として蛍光色素からの蛍光の時間変化態様を用いた場合、相関が高いほど蛍光色素からの蛍光が生体からの出射光に強く表れていることが分かる。このように、相関を用いて適切な評価結果が取得される。 Further, in the present invention, it is preferable that the fluorescence evaluation unit evaluates the degree based on the correlation between the time change aspect of the intensity of the emitted light and the time change aspect serving as a reference. According to this, for example, when the time change aspect of background light is used as a reference time change aspect, it is understood that as the correlation is lower, the fluorescence from the fluorescent dye appears more strongly in the emitted light from the living body. Moreover, when the time change aspect of the fluorescence from a fluorescent dye is used as a time change aspect used as a reference | standard, it turns out that the fluorescence from a fluorescent dye is strongly appeared by the emitted light from a biological body, so that correlation is high. Thus, the correlation is used to obtain an appropriate evaluation result.
 また、本発明の別の観点における生体検査方法は、蛍光色素が埋め込まれた生体からの出射光を評価することによって生体を検査する方法であって、前記生体に励起光を照射したことに起因して前記蛍光色素が発生させる蛍光を含む前記出射光の強度の時間変化態様と、前記蛍光に対するバックグラウンド光及び前記蛍光の少なくともいずれかの強度の時間変化態様との違いの程度を、前記蛍光の波長において評価する。 A living body inspection method according to another aspect of the present invention is a method of inspecting a living body by evaluating light emitted from a living body in which a fluorescent dye is embedded, which is caused by irradiating the living body with excitation light. The degree of difference between the time change aspect of the intensity of the emitted light including the fluorescence generated by the fluorescent dye and the time change aspect of the intensity of at least one of the background light and the fluorescence with respect to the fluorescence is the fluorescence Evaluate at the wavelength of
 本発明の生体検査方法によると、生体からの出射光の強度の時間変化態様と蛍光色素からの蛍光及びバックグラウンド光の少なくともいずれかの強度の時間変化態様との違いの程度を評価することとした。時間変化態様における上記違いは蛍光色素からの蛍光の発生によって生じる。そして、その違いの程度は蛍光色素からの蛍光の強度を表す指標となる。したがって、その違いの程度に基づくことで、蛍光色素からの蛍光の強度を適切に評価できる。このように、本発明によると、蛍光色素からの蛍光の強度を適切に把握できる。 According to the living body examination method of the present invention, the degree of difference between the time variation aspect of the intensity of the emitted light from the living body and the time variation aspect of the fluorescence from the fluorescent dye and / or the background light is evaluated. did. The above difference in the time change mode is caused by the generation of fluorescence from the fluorescent dye. And the extent of the difference serves as an index showing the intensity of fluorescence from the fluorescent dye. Therefore, based on the degree of the difference, the intensity of the fluorescence from the fluorescent dye can be appropriately evaluated. Thus, according to the present invention, the intensity of fluorescence from a fluorescent dye can be properly grasped.
本発明の一実施形態である第1実施形態に係る生体検査装置の概略構成を示す機能ブロック図である。It is a functional block diagram showing a schematic structure of a living body inspection device concerning a 1st embodiment which is one embodiment of the present invention. 図1の励起・検出プローブの正面図である。It is a front view of the excitation * detection probe of FIG. 図1の解析部の詳細な構成を示した解析部周辺の機能ブロック図である。It is a functional block diagram of the analysis part periphery which showed the detailed structure of the analysis part of FIG. 第1実施形態に係る第1実験例において励起光の照射及び蛍光の検出に用いられたプローブにおける励起光の照射面の正面図である。It is a front view of the irradiation surface of the excitation light in the probe used for irradiation of excitation light and detection of fluorescence in the 1st experiment example which concerns on 1st Embodiment. 第1実験例において90秒の計測期間中に光子検出器によって光子が検出される回数を励起光(パルス光)の入射タイミングからの経過時間に関して集計した結果を示すグラフである。It is a graph which shows the result of having totaled the number of times that a photon detector detects a photon during a measurement period of 90 seconds in the 1st experiment example about the lapsed time from the incidence timing of excitation light (pulse light). 図6(a)は90秒の計測期間中における光子の総計数値の位置に対する変化を示す画像である。図6(b)は90秒の計測期間のうち時間ゲートに対応する期間内に限った光子の計数値の位置に対する変化を示す画像である。FIG. 6 (a) is an image showing the change with respect to the position of the total numerical value of photons during the measurement period of 90 seconds. FIG. 6 (b) is an image showing the change with respect to the position of the photon count value limited within the period corresponding to the time gate in the measurement period of 90 seconds. 図7(a)はy=10mmにおけるxに対する対バックグラウンド比の変化を示すグラフである。図7(b)はx=0mmにおけるxに対する対バックグラウンド比の変化を示すグラフである。FIG. 7 (a) is a graph showing the change of the background ratio to x at y = 10 mm. FIG. 7 (b) is a graph showing the change of the background ratio to x at x = 0 mm. 90秒の計測時間における計測結果に基づいて計測時間を100ミリ秒とした場合に取得される計数値の測定結果を推定したシミュレーション結果を示すグラフである。図8(a)は、光子検出器によって光子が検出される回数を励起光(パルス光)の入射タイミングからの経過時間に関して集計した結果を示すグラフである。図8(b)は対バックグラウンド比を示すグラフである。It is a graph which shows the simulation result which estimated the measurement result of the count value acquired when measurement time is made into 100 milliseconds based on the measurement result in measurement time of 90 seconds. FIG. 8A is a graph showing the result of counting the number of times of detection of photons by the photon detector with respect to the elapsed time from the incident timing of the excitation light (pulsed light). FIG. 8 (b) is a graph showing the background ratio. 図8のシミュレーション結果に基づく、時間ゲートをさまざまに変更した場合の計測位置に対する計数値の変化を示すグラフである。図9(a)はy=10mmにおけるxに対する変化に、図9(b)はx=0mmにおけるyに対する変化に対応する。It is a graph which shows the change of the count value with respect to a measurement position at the time of changing a time gate variously based on the simulation result of FIG. FIG. 9 (a) corresponds to the change to x at y = 10 mm, and FIG. 9 (b) corresponds to the change to y at x = 0 mm. 図8のシミュレーション結果に基づく、時間ゲートをさまざまに変更した場合の計測位置に対する対バックグラウンド比の変化を示すグラフである。図10(a)はy=10mmにおけるxに対する変化に、図10(b)はx=0mmにおけるyに対する変化に対応する。It is a graph which shows the change of the ratio to background with respect to the measurement position at the time of changing a time gate variously based on the simulation result of FIG. FIG. 10 (a) corresponds to the change for x at y = 10 mm, and FIG. 10 (b) corresponds to the change for y at x = 0 mm. 第2実施形態の解析部における方法を評価するための第2実験例の結果である計測位置に対するユークリッド距離Dの変化を示すグラフである。図11(a)はy=10mmにおけるxに対する変化に、図11(b)はx=0mmにおけるyに対する変化に対応する。It is a graph which shows the change of the Euclidean distance D with respect to the measurement position which is a result of the 2nd experiment example for evaluating the method in the analysis part of 2nd Embodiment. FIG. 11 (a) corresponds to the change to x at y = 10 mm, and FIG. 11 (b) corresponds to the change to y at x = 0 mm. 第3実施形態の解析部における方法を評価するための第3実験例の結果である計測位置に対する相関Lの変化を示すグラフである。図12(a)はy=10mmにおけるxに対する変化に、図12(b)はx=0mmにおけるyに対する変化に対応する。It is a graph which shows change of correlation L to a measurement position which is a result of the 3rd example of an experiment in order to evaluate a method in an analysis part of a 3rd embodiment. FIG. 12 (a) corresponds to the change to x at y = 10 mm, and FIG. 12 (b) corresponds to the change to y at x = 0 mm. 励起光の照射に対して生体から出射される光の時間応答に関し、ヒトにおいて測定した結果と牛肉において測定した結果とを比較した結果を示すグラフである。It is a graph which shows the result of having compared the result measured in humans with the result measured in beef regarding the time response of light emitted from a living body to irradiation of excitation light. 図14(a)及び図14(b)のそれぞれは、第1実施形態~第3実施形態に係る励起・検出プローブの変形例の正面図である。Each of FIGS. 14 (a) and 14 (b) is a front view of a modification of the excitation / detection probe according to the first to third embodiments.
[原理]
 以下、本発明に係る各実施形態の基礎となる蛍光色素の検出原理について説明し、その後、その原理に基づいた本実施形態の具体的な構成について説明する。本発明に係る各実施形態において蛍光色素からの蛍光の検出感度を向上するための基本的な考え方は、蛍光色素に対する励起光を生体に入射した後に生体から放射される光における時間応答(光の強度の時間変化態様)が、蛍光色素からの蛍光とバックグラウンド光とで異なることを利用するというものである。このためには、上記時間応答の波形を計測し、その波形の違いの程度(大小)を評価し、それにより蛍光色素の存在とそれが検出位置にどの程度近いのかを半定量的に判断することが必要となる。そのため、本実施形態に係る装置には、下記1)~3)の要件が求められる。1)2)に関してはどちらか一方あるいは両方が要求されるとともに、さらに3)の要件も充足する必要がある。なお、以下において波形とは、時間応答を示す波形(例えば、検出される光子数の時間変化を示す波形)を意味する。1)バックグラウンド光の時間応答の波形と被験者からの出射光の時間応答の波形との形状の違いを定量的に測る。2)蛍光色素からの蛍光の時間応答の波形と被験者からの出射光の時間応答の波形との形状の類似性を定量的に測る。3)被験者からの出射光の時間応答の波形から、蛍光色素からの蛍光の強度に応じた信号の大小を示す指標を得る。
[principle]
Hereinafter, the detection principle of the fluorescent dye that is the basis of each embodiment according to the present invention will be described, and then the specific configuration of the present embodiment based on the principle will be described. The basic idea for improving the detection sensitivity of the fluorescence from the fluorescent dye in each embodiment according to the present invention is the time response (light of light) emitted from the living body after the excitation light for the fluorescent dye is incident on the living body The time-varying aspect of the intensity is to utilize the difference between the fluorescence from the fluorescent dye and the background light. To do this, measure the waveform of the above-mentioned time response, evaluate the degree (large or small) of the difference in the waveform, and thereby semiquantitatively judge the presence of the fluorescent dye and how close it is to the detection position. It will be necessary. Therefore, the following requirements 1) to 3) are required for the apparatus according to the present embodiment. 1) One or both are required for 2), and the requirements for 3) also need to be satisfied. In the following, the waveform means a waveform showing a time response (for example, a waveform showing a time change of the number of detected photons). 1) Quantitatively measure the difference between the shape of the time response of the background light and the shape of the time response of the light emitted from the subject. 2) Quantitatively measure the similarity in shape between the time response waveform of the fluorescence from the fluorescent dye and the time response waveform of the light emitted from the subject. 3) From the waveform of the time response of the light emitted from the subject, obtain an index indicating the magnitude of the signal according to the intensity of the fluorescence from the fluorescent dye.
 1)2)に係る方法の一例として、以下の通り、波形形状を表す関数のユークリッド距離を数値化することが考えられる。すなわち、下記のD^2(Dの平方)の平方根を用いることが考えられる。ここで、fmeas(ti)は、蛍光色素に対する励起光を被験者に入射した後に被験者から出射される光子数の計測値の関数である。以下、fmeas(ti)が示す波形を測定波形とする。tiはN個の測定時間(N:計測値の数、i=1、2、…、N)を示し、任意のi(1≦i≦N-1)に関してti<tj(j=i+1)である。fref(ti)は基準波形値の関数である。w(ti)は重み関数であり、αはスケーリングの係数である。
[数式1]
Figure JPOXMLDOC01-appb-I000001
1) As an example of the method according to 2), it is conceivable to digitize the Euclidean distance of the function representing the waveform shape as follows. That is, it is conceivable to use the square root of D 2 (square of D) described below. Here, fmeas (ti) is a function of the measurement value of the number of photons emitted from the subject after the excitation light for the fluorescent dye is incident on the subject. Hereinafter, the waveform indicated by fmeas (ti) is taken as a measurement waveform. ti represents N measurement times (N: number of measurement values, i = 1, 2,..., N), and ti <tj (j = i + 1) for any i (1 ≦ i ≦ N−1) is there. fref (ti) is a function of the reference waveform value. w (ti) is a weighting function and α is a scaling factor.
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
 αは、計測値と基準波形値との間で値自体が異なっても波形の形状が一致する場合にはDが小さくなる(理想的には0になる)ようにするための係数値である。実際のデータでは、計測波形が基準波形と同じ形状であるとみなされる場合であっても、その絶対値がばらつくことがあるためである。αはDが最小になるように決定される。D^2の値は、計測波形が基準波形の形状と異なるほど大きくなる。しかし、αをD^2の値が最小になるように決めた場合、波形形状の差が大きいところでは、Dの変化は実際の形状の差異に比べ緩やかになると考えられる。通常は、frefとしてはバックグラウンド光の波形形状を示すfbackを用いる。したがって、蛍光色素からの測定位置の距離に応じてfmeasがfbackからずれるのをD^2によって把握することになる。D^2を用いる方法は、バックグラウンド光の寄与を計測値から効果的に差し引く方法ということもできる。αは、実際のデータに基づいてD^2を最小化する値として∂(D^2)/∂α=0を満たす値となるように算出される。frefとしてfbackを用いる場合、D^2に基づく方法は上記要件1)及び3)を同時に満たす。αの決定において用いるw(ti)を、測定値の最終的なDの評価において用いるw(ti)と異なるものとすることも考えられる。この場合は、測定値の最終的な評価におけるD^2は最小化されないが、バックグラウンド光を効率的に抑制可能となるようにw(ti)を決定することが効果的である。 α is a coefficient value for causing D to be small (ideally to be 0) when the waveform shapes match even if the values themselves differ between the measured value and the reference waveform value. . In actual data, even if it is considered that the measurement waveform has the same shape as the reference waveform, the absolute value may vary. α is determined so as to minimize D. The value of D ^ 2 increases as the measured waveform differs from the shape of the reference waveform. However, when α is determined so as to minimize the value of D ^, it is considered that the change in D becomes gentler than the difference in actual shape where the difference in waveform shape is large. Usually, fback indicating the waveform shape of background light is used as fref. Therefore, according to the distance of the measurement position from the fluorescent dye, it is understood by D 2 that fmeas deviates from fback. The method using D ^ 2 can be said to be a method of effectively subtracting the background light contribution from the measurement value. α is calculated based on actual data so as to minimize D ^ 2 so as to satisfy ∂ (D ^ 2) / ∂α = 0. When fback is used as fref, the method based on D2 satisfies the above requirements 1) and 3) simultaneously. It is also conceivable to make w (ti) used in the determination of α different from w (ti) used in the final evaluation of D of the measured values. In this case, D ^ 2 in the final evaluation of the measured values is not minimized, but it is effective to determine w (ti) so that background light can be efficiently suppressed.
 数式1を使用した検出において、最も簡単な方法の一つは、frefを0とし、wを、波形の違いが最も大きく表れる時間領域[tmin,tmax]を取り出すような以下の重みw0とすることである。
[数式2]
Figure JPOXMLDOC01-appb-I000002
In the detection using Equation 1, one of the simplest methods is to set fref to 0, and set w to the following weight w0 for extracting the time domain [tmin, tmax] where the difference in waveform appears most It is.
[Equation 2]
Figure JPOXMLDOC01-appb-I000002
 数式2を数式1に適用した方法は、以下の数式3に示すように、時間領域を抜き出して強度を測定するいわゆる時間ゲート法と類似の方法になる。
[数式3]
Figure JPOXMLDOC01-appb-I000003
The method in which the equation 2 is applied to the equation 1 becomes a method similar to a so-called time gating method in which the time domain is extracted and the intensity is measured as shown in the following equation 3.
[Equation 3]
Figure JPOXMLDOC01-appb-I000003
 最終的には、このDを用いて、計測値とバックグラウンド光の値との違いを比較することにより、蛍光を検出する。さらに単純化し、距離Dの代わりに、fmeasそのままの和を用いてもよい。つまり、tminからtmaxまでfmeasをそのまま足し合わせた値を用いてもよい。すなわち、時間ゲート法そのものが用いられてもよい。また、これらにおいて、fmeasをそれぞれ用いるのではなく、計測値とバックグラウンド光の値との比fmeas/fbackを用いてもよい。 Finally, this D is used to detect fluorescence by comparing the difference between the measured value and the background light value. To simplify further, instead of the distance D, the fmeas natural sum may be used. That is, a value obtained by adding fmeas from tmin to tmax may be used. That is, the time gating method itself may be used. Also, in these cases, instead of using fmeas respectively, the ratio fmeas / fback of the measurement value to the value of the background light may be used.
 例えば、fref=fbackとし、すなわち、基準波形としてバックグラウンド光の波形を用い、重みとして定数(例えばw=1/N)を用いることも可能である。この場合D^2は基準波形との2乗偏差を表し、Dは強度の平均的な差を示すことになる。計測波形の形状がバックグラウンド光の波形形状に近づくにつれてDは0に近づく。この方法の場合、バックグラウンド光の波形はあらかじめ知る必要があるが、一般的には計測したい患部と反対側の組織や、蛍光色素を被験者に投与する前に被験者への励起光の入射に対する時間応答を測定することにより知ることが可能である。 For example, it is also possible to set fref = fback, that is, to use the waveform of background light as a reference waveform and to use a constant (for example, w = 1 / N) as a weight. In this case, D ^ 2 represents a squared deviation from the reference waveform, and D represents an average difference in intensity. D approaches 0 as the shape of the measurement waveform approaches the background light waveform shape. In this method, the background light waveform needs to be known in advance, but in general, the time to the incidence of the excitation light to the subject before administering the fluorescent dye to the subject and the tissue opposite to the affected area to be measured It is possible to know by measuring the response.
 さらにこれに加え、蛍光色素からの蛍光の波形と測定波形との違いに基づいてDを算出して検出に用いることも可能である。この場合は類似性を見ることになるため、Dをそのまま用いることはできない。例えば、Dの逆数を用いることなどにより相違として評価することなどが考えられる。 Furthermore, it is also possible to calculate D based on the difference between the waveform of the fluorescence from the fluorescent dye and the measured waveform and use it for detection. In this case, D can not be used as it is because the similarity is seen. For example, it is conceivable to evaluate as a difference by using the inverse number of D or the like.
 数式1とは別の評価基準として、数式1の代わりに、例えば相関係数(Pearsonの相関係数)などを用いてもよい。相関係数を用いる場合、類似性又は相違を評価することができる。相関係数の値は[-1,1]に限定されるため、相関係数を使用するだけでは上記要件1)又は2)を満たすのみである。上記要件3)を満たすためには、相関係数を数式1と組み合わせる必要がある。この場合において最も単純な方法は、バックグラウンド光の時間応答関数に対する相関係数ρ(fmeas,fback)を用い、数式1のDとして、w=1,α=1(場合によっては、もっと単純にα=0)とすることである。測定波形がバックグラウンド光の波形形状と高い相関を持つ場合、ρは1に近づく一方、測定波形がバックグラウンド光の波形形状から外れるとρは小さくなる。測定波形もバックグラウンド光も、その時間応答関数は、最初に立ち上がりそれから減衰するという点で共通する。このため、測定波形とバックグラウンド光の波形との相関が0あるいは負になることはなく、常に正の値を持つ。このことを考慮し、相関係数ρを数式1と組み合わせた下記Lは上記要件1)3)を満たす。
[数式4]
Figure JPOXMLDOC01-appb-I000004
Instead of Equation 1, for example, a correlation coefficient (Pearson's correlation coefficient) may be used as an evaluation criterion different from Equation 1. When using correlation coefficients, similarities or differences can be assessed. Since the value of the correlation coefficient is limited to [-1, 1], using the correlation coefficient only satisfies the above requirements 1) or 2). In order to satisfy the above requirement 3), it is necessary to combine the correlation coefficient with Equation 1. In this case, the simplest method uses the correlation coefficient ((fmeas, fback) with respect to the time response function of background light, and w = 1, α = 1 (in some cases, more simply That is, α = 0). When the measured waveform has a high correlation with the waveform shape of the background light, ρ approaches 1 while ρ decreases as the measured waveform deviates from the waveform shape of the background light. Both the measured waveform and the background light have in common that their time response functions first rise and then decay. Therefore, the correlation between the measured waveform and the background light waveform does not become 0 or negative, and always has a positive value. Taking this into consideration, the following L in which the correlation coefficient ρ is combined with the equation 1 satisfies the above requirement 1) 3).
[Equation 4]
Figure JPOXMLDOC01-appb-I000004
 ここでρ0は、バックグラウンド光とほぼ一致するデータから推測した上限値又は理想的な上限値1である。ρ0-ρが負になる場合は、L=0として扱えばよい。fbackの代わりに蛍光色素からの蛍光の波形形状ffluoを基準として用いる場合には、ρ(fmeas,ffluo)は、数式4の右辺のρ0-ρをρ-ρ0に変更したうえで、数式4と同様に評価に用いることができる。Lは、バックグラウンド光又は蛍光色素からの蛍光の波形形状を考慮したバックグラウンド光又は蛍光色素からの蛍光の波形と測定波形との平均的な差の強度であると言い換えてもよい。 Here, ρ 0 is an upper limit value or an ideal upper limit value 1 estimated from data substantially matching background light. When ρ0-ρ becomes negative, it may be treated as L = 0. When using the waveform shape ffluo of fluorescence from a fluorescent dye as a reference instead of fback, rho (fmeas, ffluo) changes the rho 0-rho of the right side of equation 4 to rho-rho 0 and then It can be used for evaluation as well. L may be rephrased to be the intensity of the average difference between the waveform of background light or fluorescence from fluorescent dye and the measured waveform in consideration of the waveform shape of background light or fluorescence from fluorescent dye.
 相関関数を用いた場合でも、重み関数wを定数に設定するのではなくtiに応じて変化するものとすることも可能である。さらに、相関関数の代わりに、関数間の違い又は相似性を表すその他の測度、例えば、Kullback-Leibler divergenceなどを用いてもよい。 Even when the correlation function is used, it is possible to change according to ti instead of setting the weighting function w to a constant. Furthermore, instead of the correlation function, other measures indicating differences or similarities between functions may be used, such as Kullback-Leibler divergence.
[第1実施形態]
 以下、第1実施形態に係る生体検査装置1の構成について図1~図3を参照しつつ説明する。第1実施形態は、上述の時間ゲート法を用いた方法に関する。生体検査装置1は、蛍光プローブ2、光源3、光子検出器4(光検出手段)、励起・検出プローブ10、時間分解計測ユニット20(検出時刻取得手段)、解析部30(計数手段)、制御部40、音生成部7及び表示部8(評価結果出力手段)を備えている。なお、本発明における蛍光評価手段の機能は、本実施形態において時間分解計測ユニット20及び解析部30の両方の機能によって実現されている。蛍光プローブ2の蛍光色素には、例えば、インドシアニングリーンが用いられる。インドシアニングリーンは、センチネルリンパ節の蛍光アンジオグラフィに用いられている。蛍光プローブ2は被験者(検査対象者)の人体内に埋め込まれている。
First Embodiment
Hereinafter, the configuration of the living body inspection apparatus 1 according to the first embodiment will be described with reference to FIGS. 1 to 3. The first embodiment relates to a method using the time gating method described above. The biological inspection apparatus 1 includes a fluorescent probe 2, a light source 3, a photon detector 4 (light detection means), an excitation / detection probe 10, a time-resolved measurement unit 20 (detection time acquisition means), an analysis unit 30 (counting means), control A unit 40, a sound generation unit 7, and a display unit 8 (evaluation result output means) are provided. The function of the fluorescence evaluation means in the present invention is realized by the functions of both the time-resolved measurement unit 20 and the analysis unit 30 in the present embodiment. For the fluorescent dye of the fluorescent probe 2, for example, indocyanine green is used. Indocyanine green is used for fluorescence angiography of sentinel lymph nodes. The fluorescent probe 2 is embedded in the human body of a subject (subject to be examined).
 光源3は、ピコ秒あるいはフェムト秒スケールのパルス幅を有するパルスレーザー光の出射器である。パルスレーザー光は、蛍光プローブ2の蛍光色素の励起波長を有する光パルスを含んでいる。パルスレーザー光は、光パルスが所定のパルス間隔で連続的に並んだ光パルス列からなる。例えば、光源3としてファイバーレーザーを用い、10MHzに対応するパルス間隔で連続する波長785nmのピコ秒パルス光を光源3に生成させる。このパルス間隔は、上記蛍光色素(インドシアニングリーン)の蛍光寿命より十分長い。光源3から時間分解計測ユニット20に対しては、各光パルスを出射するタイミングを示すタイミング信号が出力される。 The light source 3 is an emitter of pulse laser light having a pulse width of picosecond or femtosecond scale. The pulsed laser light includes a light pulse having an excitation wavelength of the fluorescent dye of the fluorescent probe 2. The pulsed laser light is composed of an optical pulse train in which light pulses are continuously arranged at predetermined pulse intervals. For example, a fiber laser is used as the light source 3 and the light source 3 is caused to generate picosecond pulse light with a wavelength of 785 nm continuous at a pulse interval corresponding to 10 MHz. The pulse interval is sufficiently longer than the fluorescence lifetime of the fluorescent dye (indocyanine green). A timing signal indicating the timing of emitting each light pulse is output from the light source 3 to the time-resolved measurement unit 20.
 光源3には光学フィルタ5を介して光ファイバ14の一端が接続されている。光ファイバ14の他端は、励起・検出プローブ10に接続されている。光源3が出射したパルスレーザー光は、光学フィルタ5を介して光ファイバ14に入射する。光学フィルタ5は、蛍光プローブ2の蛍光色素の励起波長を有する光を通す一方、励起波長以外の波長の光を遮断する。これにより、励起・検出プローブ10には、光ファイバ14を通じ、蛍光プローブ2の蛍光色素を励起させる励起光のみが伝達される。蛍光色素としてインドシアニングリーンが用いられている場合には、その励起光は、700nm台付近の近赤外波長を有する光である。 One end of an optical fiber 14 is connected to the light source 3 via an optical filter 5. The other end of the optical fiber 14 is connected to the excitation and detection probe 10. The pulse laser light emitted from the light source 3 enters the optical fiber 14 through the optical filter 5. The optical filter 5 transmits light having the excitation wavelength of the fluorescent dye of the fluorescent probe 2 while blocking light of wavelengths other than the excitation wavelength. Thus, only excitation light for exciting the fluorescent dye of the fluorescent probe 2 is transmitted to the excitation / detection probe 10 through the optical fiber 14. When indocyanine green is used as a fluorescent dye, its excitation light is light having a near infrared wavelength around 700 nm.
 励起・検出プローブ10は、図2に示すように、1cm程度の外径を有する円筒状のホルダ11と、ホルダ11の先端表面11a(接触面)に設けられた照射部12及び受光部13と、スイッチ17及び18とを備えている。励起・検出プローブ10は、人体組織に接触し、先端表面11aが組織に密着した状態で使用される。ホルダ11は、プローブ全体を手で持って被験者をスキャンするために適した形状を有している。照射部12は、光ファイバ14を通じて光源3から伝達された励起光を出射する。出射された励起光が人体内に埋め込まれた蛍光プローブ2に照射されると、蛍光プローブ2の蛍光色素が蛍光を発生させる。受光部13は、被験者から出射される出射光を受け取る。蛍光プローブ2からの蛍光が受光部13に到達する場合には、受光部13が受け取る光は、蛍光プローブ2の蛍光色素が発生させた蛍光と、その蛍光に対するバックグラウンドとなる光であるバックグラウンド光とを含むこととなる。バックグラウンド光は、蛍光プローブ2の蛍光色素以外に由来する、蛍光色素の蛍光波長を有する成分光である。バックグラウンド光には、例えば、被験者の組織自体からの蛍光が含まれる。以下、「蛍光」は、特に断りのない限り、蛍光プローブ2の蛍光色素が発生させた蛍光を意味する。 As shown in FIG. 2, the excitation / detection probe 10 has a cylindrical holder 11 having an outer diameter of about 1 cm, and an irradiating unit 12 and a light receiving unit 13 provided on the tip surface 11 a (contact surface) of the holder 11. , Switches 17 and 18. The excitation / detection probe 10 is used in contact with human tissue and in a state where the tip surface 11a is in close contact with the tissue. The holder 11 has a shape suitable for holding the entire probe by hand to scan a subject. The irradiation unit 12 emits the excitation light transmitted from the light source 3 through the optical fiber 14. When the emitted excitation light is irradiated to the fluorescent probe 2 embedded in the human body, the fluorescent dye of the fluorescent probe 2 generates fluorescence. The light receiving unit 13 receives outgoing light emitted from the subject. When the fluorescence from the fluorescent probe 2 reaches the light receiving unit 13, the light received by the light receiving unit 13 is the fluorescence generated by the fluorescent dye of the fluorescent probe 2 and the background serving as the background for the fluorescence It will contain the light. Background light is component light having a fluorescence wavelength of a fluorescent dye that is derived from other than the fluorescent dye of the fluorescent probe 2. Background light includes, for example, fluorescence from the subject's tissue itself. In the following, “fluorescence” means fluorescence generated by the fluorescent dye of the fluorescent probe 2 unless otherwise noted.
 励起・検出プローブ10には光ファイバ16の一端が接続されている。光ファイバ16の他端は光学フィルタ6を介して光子検出器4に接続されている(図1参照)。光学フィルタ6は、蛍光プローブ2の蛍光色素の蛍光波長を有する光を通す一方、その蛍光波長以外の波長を有する光を遮断する。光子検出器4には、光ファイバ16を通じ、受光部13が受け取った光のうち、蛍光波長を有する成分光のみが到達する。 One end of an optical fiber 16 is connected to the excitation / detection probe 10. The other end of the optical fiber 16 is connected to the photon detector 4 via an optical filter 6 (see FIG. 1). The optical filter 6 transmits light having the fluorescence wavelength of the fluorescent dye of the fluorescent probe 2 while blocking light having a wavelength other than the fluorescence wavelength. Of the light received by the light receiving unit 13, only component light having a fluorescence wavelength reaches the photon detector 4 through the optical fiber 16.
 スイッチ17は、光源3においてパルスレーザー光を発生させる機能のオン・オフを切り替えるスイッチである。スイッチ17の状態を示す信号は光源3に出力される。光源3は、スイッチ17の状態を示す信号に基づいてパルスレーザー光を発生させたりその発生を停止させたりする。ユーザーの手元でスイッチ17を操作できるので、パルスレーザー光のオン・オフ切り替えの操作を行いやすい。スイッチ18は、後述の時間ゲートの調整などを行うためのスイッチである。スイッチ18の状態を示す信号は制御部40に出力される。制御部40は、後述の通り、スイッチ18の状態を示す信号に基づいて解析部30を制御する。 The switch 17 is a switch that switches on / off of the function of generating pulse laser light in the light source 3. A signal indicating the state of the switch 17 is output to the light source 3. The light source 3 generates pulse laser light or stops the generation based on a signal indicating the state of the switch 17. Since the switch 17 can be operated by the user, it is easy to perform the on / off switching operation of the pulse laser beam. The switch 18 is a switch for adjusting a time gate, which will be described later. A signal indicating the state of the switch 18 is output to the control unit 40. The control unit 40 controls the analysis unit 30 based on a signal indicating the state of the switch 18 as described later.
 光子検出器4は、光ファイバ16から光子が入射するのを光子1個単位で検出する光子計数型の検出器である。光子の入射の検出結果は、光子1個の検出ごとに時間分解計測ユニット20に出力される。 The photon detector 4 is a photon counting detector that detects the incidence of photons from the optical fiber 16 on a photon basis. The detection result of the incidence of photons is output to the time-resolved measurement unit 20 for each detection of one photon.
 時間分解計測ユニット20は時間・デジタル変換器である。時間分解計測ユニット20には光源3からのタイミング信号が入力される。時間分解計測ユニット20は、タイミング信号が示す各タイミングを基準タイミングとして、光子検出器4から検出結果が出力された時間(直近の基準タイミングからの経過時間)を示すデジタル値を生成する。デジタル値は解析部30に出力される。このデジタル値は、光源3から光パルスが出射されたタイミング、つまり、励起・検出プローブ10から人体に励起光が照射されたタイミングから、光子の入射を示す検出結果が光子検出器4から出力されたタイミング、つまり、光子検出器4において光子が検出されたタイミングまでの時間を示している。 The time-resolved measurement unit 20 is a time-digital converter. The timing signal from the light source 3 is input to the time-resolved measurement unit 20. The time-resolved measurement unit 20 generates a digital value indicating the time when the detection result is output from the photon detector 4 (the elapsed time from the latest reference timing), using each timing indicated by the timing signal as a reference timing. The digital value is output to the analysis unit 30. This digital value is output from the photon detector 4 as the detection result indicating the incidence of photons from the timing when the light pulse is emitted from the light source 3, that is, the timing when the excitation light is irradiated to the human body from the excitation / detection probe 10. Timing, that is, the time until the photon is detected in the photon detector 4.
 解析部30は、図3に示すように、デジタル比較器32及び33、ゲート回路34、計数器35及び時間基準生成器36を有している。時間分解計測ユニット20からのデジタル値はデジタル比較器32及び33のそれぞれに入力される。デジタル比較器32は、時間分解計測ユニット20からのデジタル値を上限値と比較した結果を示す信号をゲート回路34に出力する。デジタル比較器33は、時間分解計測ユニット20からのデジタル値を下限値と比較した結果を示す信号をゲート回路34に出力する。上限値及び下限値は、後述の通り、制御部40から入力される。ゲート回路34は、デジタル比較器32からの信号とデジタル比較器33からの信号との論理積を示す信号を計数器35に出力する。この論理積は、時間分解計測ユニット20からのデジタル値が下限値から上限値までの範囲内であるか否かを示すこととなる。時間基準生成器36は、単位時間(例えば、100ミリ秒)ごとに基準信号を生成し、計数器35に出力する。計数器35は、ゲート回路34からの信号に基づき、時間分解計測ユニット20からのデジタル値が下限値から上限値までの範囲内となった回数を計数する。計数は、時間基準生成器36からの基準信号に基づいて、上記単位時間の長さを有する期間ごとに行われる。計数結果は、単位時間が経過するごとに制御部40に出力される。各計数結果は、時間分解計測ユニット20からのデジタル値が下限値から上限値までの範囲内となった単位時間当たりの回数を示すこととなる。 The analysis unit 30 includes digital comparators 32 and 33, a gate circuit 34, a counter 35, and a time reference generator 36, as shown in FIG. Digital values from the time-resolved measurement unit 20 are input to digital comparators 32 and 33 respectively. The digital comparator 32 outputs to the gate circuit 34 a signal indicating the result of comparing the digital value from the time-resolved measurement unit 20 with the upper limit value. The digital comparator 33 outputs to the gate circuit 34 a signal indicating the result of comparing the digital value from the time-resolved measurement unit 20 with the lower limit value. The upper limit value and the lower limit value are input from the control unit 40 as described later. The gate circuit 34 outputs a signal indicating the logical product of the signal from the digital comparator 32 and the signal from the digital comparator 33 to the counter 35. This logical product indicates whether the digital value from the time-resolved measurement unit 20 is in the range from the lower limit value to the upper limit value. The time reference generator 36 generates a reference signal every unit time (for example, 100 milliseconds) and outputs the reference signal to the counter 35. The counter 35 counts the number of times the digital value from the time-resolved measurement unit 20 falls within the range from the lower limit value to the upper limit value based on the signal from the gate circuit 34. The counting is performed for each period having the length of the unit time based on the reference signal from the time reference generator 36. The counting result is output to the control unit 40 each time a unit time passes. Each counting result indicates the number of times per unit time that the digital value from the time-resolved measurement unit 20 is in the range from the lower limit value to the upper limit value.
 制御部40は、コンピュータ及びソフトウェアの組み合わせによって構築されている。コンピュータは、CPU(Central Processing Unit)、ROM(Read-Only Memory)及びRAM(Random Access Memory)等のメモリ装置、並びに、入出力インタフェース等の各種インタフェース等からなるハードウェアと、メモリ装置に記録されたプログラムデータ等からなるソフトウェアとを備えている。コンピュータにおいてハードウェアがソフトウェアに従って演算処理、入出力処理等の各種の情報処理を実行することにより、以下に示す制御部40における各種の機能が実現される。 The control unit 40 is constructed by a combination of a computer and software. The computer is recorded in a memory device such as hardware including a memory device such as a central processing unit (CPU), a read-only memory (ROM) and a random access memory (RAM), and various interfaces such as an input / output interface. And software comprising program data and the like. In the computer, hardware executes various information processing such as arithmetic processing and input / output processing according to software, thereby realizing various functions in the control unit 40 described below.
 制御部40は、解析部30のデジタル比較器32及び33へと上限値及び下限値を出力する。下限値は時間ゲートの開始タイミングに対応し、上限値は時間ゲートの終了タイミングに対応する。この時間ゲートは、後述の第1実験例に示す通り、蛍光の波形においてバックグラウンド光の波形との違いが大きい期間に設定されている。例えば、時間ゲートは、蛍光の波長において、バッググラウンド光が最大となるタイミングより後の期間であって蛍光が発生している期間に設定されている。時間ゲートは、光子検出器4への入射光がバックグラウンド光に対して相対的に最大となるタイミング(後述の対バックグラウンド比が最大となるタイミング)を含む期間であって、バックグラウンド光が最大となるタイミングを含まない期間に設定されることが好ましい。あるいは、時間ゲートが、蛍光が最大となる期間であって、バックグラウンド光が最大となるタイミングを含まない期間に設定されてもよい。また、制御部40は、励起・検出プローブ10から出力された信号に基づき、スイッチ18の状態に応じて時間ゲートを調整する。例えば、制御部40は、スイッチ18の状態に応じて時間ゲートの開始タイミング(つまり、上記下限値)を変更する。 The control unit 40 outputs the upper limit value and the lower limit value to the digital comparators 32 and 33 of the analysis unit 30. The lower limit corresponds to the start timing of the time gate, and the upper limit corresponds to the end timing of the time gate. This time gate is set to a period in which the difference between the waveform of fluorescence and the waveform of background light is large, as shown in the first experimental example described later. For example, the time gate is set at a wavelength of fluorescence, which is a period after the timing at which background light is maximized and in which fluorescence is generated. The time gate is a period including the timing at which the incident light to the photon detector 4 is maximized relative to the background light (the timing at which the ratio to the background described later is maximized), and the background light is It is preferable to set to the period which does not include the timing which becomes the maximum. Alternatively, the time gate may be set to a period in which the fluorescence is maximum but not including the timing in which the background light is maximum. Further, the control unit 40 adjusts the time gate according to the state of the switch 18 based on the signal output from the excitation / detection probe 10. For example, the control unit 40 changes the start timing (that is, the lower limit value) of the time gate according to the state of the switch 18.
 また、制御部40は、解析部30の計数器35から出力された計数結果をハードディスク等の記録装置に記録すると共に、計数結果に応じて音生成部7及び表示部8を制御する。具体的には、制御部40は、計数結果に応じた大きさの音声を音生成部7に発生させると共に、計数結果に応じた表示を表示部8に行わせる。音生成部7は、制御部40の指示に従った大きさや音色の音を生成し、スピーカから出力する。制御部40は、例えば、計数器35からの計数結果が大きいほど大きい音を出力するように音生成部7に指示する。表示部8は、制御部40の指示に従って、計数器35からの計数結果を、数値やグラフ画像等の各種表現を用いてディスプレイに表示させる。上記の通り、計数器35からの計数結果は、時間分解計測ユニット20からのデジタル値が下限値から上限値までの範囲内となった単位時間当たりの回数を示す。つまり、かかる計数結果は、時間ゲート内に光子検出器4が光子を検出した単位時間当たりの回数を示す。時間ゲートは、蛍光の波形とバックグラウンド光の波形との違いが大きく発生する期間である。このため、計数器35からの計数結果は、蛍光の強度を強く反映したものとなる。 Further, the control unit 40 records the counting result output from the counter 35 of the analyzing unit 30 in a recording device such as a hard disk, and controls the sound generating unit 7 and the display unit 8 according to the counting result. Specifically, the control unit 40 causes the sound generation unit 7 to generate a sound having a size corresponding to the counting result, and causes the display unit 8 to perform display corresponding to the counting result. The sound generation unit 7 generates a sound of the size and timbre according to the instruction of the control unit 40, and outputs the sound from the speaker. For example, the control unit 40 instructs the sound generation unit 7 to output a larger sound as the counting result from the counter 35 is larger. The display unit 8 displays the counting result from the counter 35 on the display using various expressions such as numerical values and graph images according to the instruction of the control unit 40. As described above, the counting result from the counter 35 indicates the number of times per unit time that the digital value from the time-resolved measurement unit 20 is in the range from the lower limit value to the upper limit value. That is, the counting result indicates the number of times per unit time that the photon detector 4 has detected photons in the time gate. The time gate is a period in which the difference between the waveform of the fluorescence and the waveform of the background light is largely generated. Therefore, the counting result from the counter 35 strongly reflects the intensity of the fluorescence.
 例えば、音生成部7が発生させた音の大きさや音色を知覚することにより、ユーザーは、蛍光の強度を認識することができる。ユーザーは、励起・検出プローブ10を移動させつつ音生成部7からの音の変化を追うことで蛍光プローブ2の位置を探索できる。例えば、音生成部7からの音が大きくなっていく場合には、励起・検出プローブ10が蛍光プローブ2に近づいていることが分かる。また、音生成部7からの音が小さくなっていく場合には、励起・検出プローブ10が蛍光プローブ2から遠ざかっていることが分かる。なお、音生成部7からの音の代わりに、又はこれに加えて、表示部8の表示内容が蛍光プローブ2の位置の探索に用いられてもよい。 For example, the user can recognize the intensity of the fluorescence by perceiving the size and timbre of the sound generated by the sound generation unit 7. The user can search for the position of the fluorescent probe 2 by following the change of the sound from the sound generator 7 while moving the excitation / detection probe 10. For example, when the sound from the sound generation unit 7 is getting louder, it is known that the excitation / detection probe 10 is approaching the fluorescent probe 2. In addition, when the sound from the sound generation unit 7 becomes smaller, it is understood that the excitation / detection probe 10 is moved away from the fluorescent probe 2. Note that, instead of or in addition to the sound from the sound generation unit 7, the display content of the display unit 8 may be used for searching for the position of the fluorescent probe 2.
 また、ユーザーは、励起・検出プローブ10のスイッチ18を操作することで時間ゲートを変更することができる。時間ゲートの設定は、後述の第1実験例に示す通り、光子の計数結果における計測位置に対する挙動に影響を及ぼす。例えば、計測位置の変化に対する計数結果の変動度合が時間ゲートの違いによって変化する。このため、励起・検出プローブ10を移動させつつ音生成部7からの音の変化を追うことで蛍光プロ―ブ2の位置を把握する際、その把握のしやすさをスイッチ18の操作によって調整することが可能である。 Also, the user can change the time gate by operating the switch 18 of the excitation and detection probe 10. The setting of the time gate affects the behavior for the measurement position in the photon counting result as shown in the first experimental example described later. For example, the variation degree of the counting result with respect to the change of the measurement position changes due to the difference of the time gate. Therefore, when the position of the fluorescent probe 2 is grasped by following the change of the sound from the sound generation unit 7 while moving the excitation / detection probe 10, the ease of the grasping is adjusted by the operation of the switch 18. It is possible.
 以上説明した本実施形態によると、光子検出器4によって時間ゲート内に光子の入射が検出された回数が計数された結果に基づき、音声等が出力される。時間ゲートは、後述の第1実験例に示す通り、蛍光の波形におけるバックグラウンド光の波形との違いが大きい期間として設定されている。したがって、上記の計数結果には蛍光の強度が反映されやすい。このように、本実施形態は、蛍光及びバックグラウンド光の波形間の違いが大きい期間であるゲート期間において被験者からの出射光の強度を評価することにより、被験者からの出射光とバックグラウンド光とにおける時間応答(時間変化態様)の違いを評価している。そして、その違いの程度を音声等の出力に反映させている。したがって、ユーザーは、その出力結果から、被験者の体内の蛍光プローブ2から発生した蛍光の強度を認識できる。被験者における複数の位置での蛍光の強度が分かれば、上記の通り、それらの位置と蛍光プロ―ブ2の位置との関係を把握できる。このように、本実施形態によると、組織表面から比較的深いところからでも蛍光を検出できると共に、その強度から蛍光プローブ2の位置をユーザーに認識させることが可能となる。 According to the present embodiment described above, the voice or the like is output based on the result of counting the number of times the photon incident is detected in the time gate by the photon detector 4. The time gate is set as a period in which the difference between the waveform of fluorescence and the waveform of background light is large, as shown in a first experimental example described later. Therefore, the intensity of fluorescence is likely to be reflected in the above-mentioned counting result. Thus, according to the present embodiment, the emitted light from the subject and the background light are evaluated by evaluating the intensity of the emitted light from the subject during the gate period, which is a period during which the difference between the waveforms of the fluorescence and the background light is large. The difference in time response (time change mode) in Then, the degree of the difference is reflected in the output of voice and the like. Therefore, the user can recognize the intensity of the fluorescence generated from the fluorescent probe 2 in the subject's body from the output result. If the intensities of fluorescence at a plurality of positions in the subject are known, as described above, the relationship between those positions and the position of the fluorescent probe 2 can be grasped. Thus, according to the present embodiment, it is possible to detect fluorescence from a relatively deep position from the tissue surface and to allow the user to recognize the position of the fluorescent probe 2 from the intensity.
[第1実験例]
 以下、第1実施形態に採用された時間ゲートの有効性及び時間ゲートの設定方法に関して行われた第1実験例について説明する。第1実験例では、蛍光ターゲットを埋め込んだ試料に励起光を照射し、それにより試料及び蛍光ターゲットから発生する光の時間応答を計測した。試料としては、人体の代用物として牛肉の塊を用いることとした。牛肉を用いたのは、牛肉の組織が吸収係数及び散乱係数のいずれについてもヒトの組織に近いためである。なお、ヒトも含めた様々な動物体に関して測定してもよい。蛍光ターゲットには、インドシアニングリーン(1μM)とイントラリピッド溶液の混合液を容器に入れたものを使用した。容器には、センチネルリンパ節に近い大きさである直径2mm、長さ10mmの光透過性を有するプラスチックストローを使用した。この蛍光ターゲットを、牛肉中における表面から深さ約11mmの位置に設置した。
[First experimental example]
Hereinafter, a first experimental example performed regarding the effectiveness of the time gate and the method of setting the time gate adopted in the first embodiment will be described. In the first experimental example, a sample in which a fluorescent target was embedded was irradiated with excitation light, whereby the time response of light generated from the sample and the fluorescent target was measured. As a sample, it was decided to use a chunk of beef as a substitute for the human body. Beef was used because beef tissue is similar to human tissue in terms of both absorption coefficient and scattering coefficient. In addition, you may measure regarding various animal bodies also including a human. The fluorescent target used was a mixture of indocyanine green (1 μM) and an intralipid solution in a container. For the container, a plastic straw having a light transmission of 2 mm in diameter and 10 mm in length, which is close to a sentinel lymph node, was used. This fluorescent target was placed at a depth of about 11 mm from the surface in beef.
 励起光の照射と蛍光の検出には図4に示すプローブP1を用いた。プローブP1は、レーザー光を出射する出射口A及びB並びに試料からの光を入射させる入射口CH1及びCH2を有している。これらの出射口及び入射口同士の間隔は10mmである。蛍光ターゲットに対する励起光となるレーザー光には、ファイバーレーザーから生成する波長785nm、10MHzに対応するパルス間隔で連続するピコ秒パルス光を用いた。このレーザー光を、光ファイバを通じてプローブP1に形成された出射口A及びBまで伝達させる。出射口A及びBをサンプルに接触させつつ、出射口A及びBからレーザー光を出射させることにより、励起光を試料に照射した。入射口CH1及びCH2には径3mmのバンドルファイバの一端を接続した。バンドルファイバの他端は光学フィルタ6を介して光子検出器4に接続した。入射口CH1及びCH2に入射した光は、バンドルファイバ中を伝達し、光学フィルタ6を通過して光子検出器4に入射する。これによって、試料から出射する光から蛍光波長の光のみを取り出し、その光を光子検出器4に導入した。そして、光子検出器4による光子の検出結果に基づき、時間相関単一光子検出システムを用いて、試料及び蛍光ターゲットから出射される光の時間応答を計測した。これを、試料に対する計測位置を変えながら繰り返した。具体的には、試料に対して設定したxy平面のx方向及びy方向それぞれに関してプローブP1を5mmずつ平行移動させながら計測を繰り返した。各計測位置における計測は、プローブP1をその位置に90秒間留めて行った。 The probe P1 shown in FIG. 4 was used for irradiation of excitation light and detection of fluorescence. The probe P1 has outlets A and B for emitting laser light, and inlets CH1 and CH2 for receiving light from a sample. The distance between these exit and entrance is 10 mm. As laser light to be excitation light for a fluorescent target, picosecond pulse light generated at a pulse interval corresponding to 10 MHz and a wavelength of 785 nm generated from a fiber laser was used. This laser beam is transmitted to the emission ports A and B formed in the probe P1 through an optical fiber. Excitation light was irradiated to the sample by emitting laser light from the emission ports A and B while bringing the emission ports A and B into contact with the sample. One end of a bundle fiber of 3 mm in diameter was connected to the entrances CH1 and CH2. The other end of the bundle fiber was connected to the photon detector 4 via the optical filter 6. The light incident on the entrances CH 1 and CH 2 is transmitted through the bundle fiber, passes through the optical filter 6, and is incident on the photon detector 4. By this, only the light of the fluorescence wavelength was extracted from the light emitted from the sample, and the light was introduced into the photon detector 4. And based on the detection result of the photon by the photon detector 4, the time response of the light radiate | emitted from a sample and a fluorescence target was measured using the time correlation single photon detection system. This was repeated while changing the measurement position with respect to the sample. Specifically, the measurement was repeated while translating the probe P1 in parallel by 5 mm in each of the x direction and the y direction of the xy plane set for the sample. The measurement at each measurement position was performed by holding the probe P1 at that position for 90 seconds.
 図5の各グラフは、90秒の期間中に試料に照射されるレーザー光の全パルスに対して、光子検出器4によって光子が検出される回数を各パルスの入射タイミングからの経過時間に関して計数(集計)した結果を示している。図5の横軸は各パルスの入射タイミングからの経過時間を示し、図5の縦軸は1ビン(bin)当たりの光子数を示す。グラフg1はバックグラウンド光の計数結果(蛍光ターゲットから最も離れた計測位置における計数結果)を示す。グラフg2~g4は、グラフg1よりも蛍光ターゲットに近い互いに異なる計測位置における3つの計数結果を示す。グラフg0は計測装置自体の時間応答関数を示す。図5に示すように、バックグラウンド光の時間応答を示すグラフg1は、蛍光を含んだ光の時間応答を示すグラフg2~g4より減衰が速い。つまり、バックグラウンド光は、蛍光と比べて速く減衰する。なお、「減衰が速い」とは、例えば、強度がピークを取るタイミングから強度がピーク時に対して半分あるいは適当な割合となるタイミングまでの時間が短いことを示す。図6(a)及び図6(b)は、xy平面における各位置に関して計数結果を示したグレースケール画像である。グレースケールは、階調値が高いほど光子の計数値が大きいことを示す。図6(a)は90秒の全期間中における光子の総計数値に対応し、図6(b)は90秒の期間のうち図5中の線分Gが示す時間ゲート(以下、時間ゲートGとする)に対応する期間内に限った光子の計数値に対応する。本実験例の条件下では、図6(a)に示す通り、90秒の全期間中における光子の総計数値によっても階調値の大きい領域(x=0mm、y=10mm付近)に蛍光ターゲットの存在を確認できる。しかしながら、図6(a)のグレースケール画像の全範囲にわたって階調値が比較的大きい。つまり、ターゲットから離れた計測位置においてもターゲットに近い計測位置と比べて計数結果があまり低下しない。このように、90秒の全期間中における光子の総計数結果は、コントラストが低いものとなる。これに対し、図6(b)のグレースケール画像では、階調値の大きい領域(x=0mm、y=10mm付近)から離れると、図6(a)に比べて階調値が小さくなりやすい。つまり、時間ゲートG内に限った光子の計数結果は、コントラストが高いものとなる。 Each graph in FIG. 5 counts the number of times a photon is detected by the photon detector 4 with respect to the elapsed time from the incident timing of each pulse for all the pulses of the laser light irradiated to the sample during the 90 second period. The results are shown. The horizontal axis in FIG. 5 indicates the elapsed time from the incident timing of each pulse, and the vertical axis in FIG. 5 indicates the number of photons per bin. The graph g1 shows the counting result of the background light (counting result at the measurement position farthest from the fluorescent target). Graphs g2 to g4 show three counting results at different measurement positions closer to the fluorescent target than graph g1. The graph g0 shows the time response function of the measuring device itself. As shown in FIG. 5, the graph g1 showing the time response of background light has a faster decay than the graphs g2 to g4 showing the time response of light containing fluorescence. That is, background light decays faster than fluorescence. "Fast decay" indicates, for example, that the time from the timing when the intensity peaks to the time when the intensity becomes half or an appropriate ratio with respect to the peak time is short. 6 (a) and 6 (b) are gray scale images showing the counting results for each position in the xy plane. Gray scale indicates that the higher the tonal value, the larger the photon count. FIG. 6 (a) corresponds to the total numerical value of photons during the entire 90 seconds, and FIG. 6 (b) shows the time gate indicated by the line segment G in FIG. Corresponding to the photon count value limited within the period corresponding to. Under the conditions of the present experimental example, as shown in FIG. 6A, the total number of photons during the entire period of 90 seconds also causes the fluorescent target to be in the region where the gradation value is large (x = 0 mm, y = 10 mm). You can confirm the existence. However, the tone values are relatively large over the entire range of the gray scale image of FIG. 6 (a). That is, even at the measurement position away from the target, the counting result does not decrease much as compared with the measurement position close to the target. Thus, the total number of photons during the entire 90 second period results in low contrast. On the other hand, in the gray scale image of FIG. 6 (b), the gradation value tends to be smaller as compared to FIG. 6 (a) when it is separated from the area with large gradation value (near x = 0 mm, y = 10 mm). . That is, the counting result of photons limited within the time gate G has high contrast.
 コントラストをより定量的に示すために、図6(a)及び図6(b)において階調値の最も大きい位置付近(x=0mm、y=10mm)を選んだ。そして、y=10mmにおけるxに対する計数値の変化を以下のガウス型関数でフィットした。数式5を用いたフィッティングの結果に基づき、バックグランド光のレベルとしてbを取得した。y=10mm及びx=0mmにおけるフィッティング結果をそれぞれbで割ることでコントラストを示す値(以下、対バックグラウンド比とする)を得た。
[数式5]
Figure JPOXMLDOC01-appb-I000005
In order to show the contrast more quantitatively, the vicinity (x = 0 mm, y = 10 mm) of the position where the gradation value is largest is selected in FIGS. 6 (a) and 6 (b). And the change of the count value with respect to x in y = 10 mm was fitted by the following Gaussian function. Based on the result of fitting using Equation 5, b was obtained as the background light level. The fitting result at y = 10 mm and x = 0 mm was divided by b to obtain a value indicating the contrast (hereinafter referred to as a background ratio).
[Equation 5]
Figure JPOXMLDOC01-appb-I000005
 このようにして対バックグラウンド比を求めた結果が図7(a)及び図7(b)に示されている。図7(a)はy=10mmにおけるxに対する対バックグラウンド比の変化を、図7(b)はx=0mmにおけるyに対する対バックグラウンド比の変化を示す。四角点は、5mmごとの位置における、90秒の全期間中における光子の総計数値から得られた対バックグラウンド比である。丸点は、90秒の期間のうち時間ゲートG内に限った光子の計数値から得られたコントラストに対応する。グラフg5及びg7は四角点をフィットした結果である。グラフg6及びg8は丸点をフィットした結果である。図7(a)及び図7(b)に示されている通り、時間ゲートGを用いることによって対バックグラウンド比は6倍程度上昇した。このことは、時間ゲートを用いた場合、組織表面をスキャンしつつ測定位置をターゲットに近づけると、蛍光ターゲットの存在をバックグラウンド光に対して明瞭に区別できることを示している。時間ゲートGは、図5に示すように、蛍光の波長において、バッググラウンド光が最大となるタイミングより後の期間であって蛍光が発生している期間に設定されている。より具体的には、時間ゲートGは、光子検出器4への入射光がバックグラウンド光に対して相対的に最大となるタイミングを含む期間であって、バックグラウンド光が最大となるタイミングを含まない期間に設定されている。 The results of determining the background ratio in this manner are shown in FIGS. 7 (a) and 7 (b). FIG. 7 (a) shows the change of the background ratio to x at y = 10 mm, and FIG. 7 (b) shows the change of the background ratio to y at x = 0 mm. The square points are the ratio of background to background obtained from the total number of photons during the entire period of 90 seconds at every 5 mm position. The round dots correspond to the contrast obtained from the photon counts limited within the time gate G during the 90 second period. Graphs g5 and g7 are the results of fitting square points. Graphs g6 and g8 are results of fitting round points. As shown in FIGS. 7 (a) and 7 (b), the use of the time gate G increased the ratio to background by about six times. This indicates that when a time gate is used, the presence of a fluorescent target can be clearly distinguished from background light when the measurement position is brought close to the target while scanning the tissue surface. As shown in FIG. 5, the time gate G is set to be a period after the timing when the background light is maximum at the wavelength of fluorescence and a period in which fluorescence is generated. More specifically, time gate G is a period including the timing at which light incident on photon detector 4 is at a maximum relative to background light, and includes the timing at which background light is at a maximum. There is no period set.
 以下、リアルタイム計測用に時間ゲートを決定する方法について説明する。本実験例における以上の結果は、それぞれの測定位置において、90秒という十分な時間を掛けて光子を計数し、時間ゲートの有効性を確かめたものである。これに対し、リアルタイムで蛍光ターゲットをスキャンする場合、1回の計測に掛けられる時間は短く、例えば、100ミリ秒以下である。そこで、計測時間100ミリ秒においても有効な時間ゲートを決定する方法を、計測時間90秒の計測データに基づいて以下のようにシミュレートした。 Hereinafter, a method of determining a time gate for real time measurement will be described. The above results in the present experimental example were obtained by multiplying photons for a sufficient time of 90 seconds at each measurement position and counting the photons to confirm the effectiveness of the time gate. On the other hand, when scanning a fluorescent target in real time, the time taken for one measurement is short, for example, 100 milliseconds or less. Therefore, a method of determining an effective time gate even at a measurement time of 100 milliseconds was simulated as follows based on measurement data of a measurement time of 90 seconds.
 まず、計測時間90秒の計測データに基づいて計測時間100ミリ秒に対応するデータを以下のように取得した。検出される光子数は計測時間に比例するため、90秒の全期間中における光子の計数値を1/900にした。さらに、その値にポアソンノイズを加えることにより、図8(a)に示す計測時間100ミリ秒の時間応答関数データを得た。図8(a)の横軸はレーザー光における各パルスの入射タイミングからの経過時間を示し、図8(a)の縦軸は1ビン(bin)当たりの光子数を示す。グラフg9は計測装置自体の時間応答関数を示す。その他のグラフのうち、黒い実線のグラフはバックグラウンド光における時間応答(蛍光ターゲットから最も離れた位置における時間応答)を示す。その他の灰色の実線のグラフは、測定位置が異なる3つの時間応答を示す。また、これらの時間応答関数データに基づいて、各計測位置における対バックグラウンド比を、同様に求めた結果が、図8(b)に示されている。図8(b)の横軸はレーザー光における各パルスの入射タイミングからの経過時間を示し、図8(b)の縦軸は対バックグラウンド比を示す。ここでのバックグラウンド比は、各側定位置における時間応答関数を、バックグラウンド光の時間応答関数で割ったものである。なお、比較のため、図8(a)及び図8(b)のそれぞれの右上に計測時間90秒の計測データをそのまま用いたグラフを表示している。 First, based on measurement data of measurement time 90 seconds, data corresponding to measurement time 100 ms was acquired as follows. Since the number of photons detected is proportional to the measurement time, the photon count value during the entire 90 seconds was 1/900. Furthermore, Poisson noise was added to the value to obtain time response function data of 100 milliseconds in measurement time shown in FIG. The horizontal axis in FIG. 8A indicates the elapsed time from the incident timing of each pulse in the laser light, and the vertical axis in FIG. 8A indicates the number of photons per bin. The graph g9 shows the time response function of the measuring device itself. Among the other graphs, the black solid line shows the time response in background light (time response at the position farthest from the fluorescent target). The other gray solid lines show three time responses at different measurement locations. Also, based on these time response function data, the result of similarly obtaining the background ratio at each measurement position is shown in FIG. 8 (b). The horizontal axis of FIG. 8 (b) shows the elapsed time from the incident timing of each pulse in the laser light, and the vertical axis of FIG. 8 (b) shows the ratio to background. The background ratio here is the time response function at each side fixed position divided by the time response function of background light. In addition, the graph which used the measurement data of measurement time 90 second as it is is displayed on the upper right of each of FIG. 8 (a) and FIG.8 (b) for comparison.
 図8(b)に示すように、2ナノ秒付近において対バックグラウンド比が最大となることがわかる。100ミリ秒のデータでは2ナノ秒付近での統計性が不足し、2ナノ秒よりやや速い位置で対バックグラウンド比が最大になっている。このことから、対バックグラウンド比が最大となる2ナノ秒付近を含み、対バックグラウンド比が比較的大きい区間を時間ゲートに設定すればよいと考えられる。例えば、時間ゲートの候補区間を図8に示すG1:[0.797ナノ秒:3.2972ナノ秒](2.5ナノ秒幅)、G2:[1.497ナノ秒:2.497ナノ秒](1ナノ秒 幅)、G3:[1.747ナノ秒:2.247 ナノ秒](0.5ナノ秒幅)と設定した。図9(a)及び図9(b)は、これらの時間ゲート内に限った光子の計数値の位置に対する変化及び時間ゲートを用いない光子の計数値の位置に対する変化を示す。図9(a)はy=10mmにおけるxに対する変化に、図9(b)はx=0mmにおけるyに対する変化に対応する。逆三角点、丸点、四角点及び三角点は、それぞれ、ゲートなし、ゲートG1、ゲートG2及びゲートG3に対応する。各実線は、これらをそれぞれ数式5でフィットした結果である。光子数は、ゲートを用いない場合に最大となり、ゲート幅が狭くなるに連れて小さくなることがわかる。そのため、信号の統計的なばらつきはゲート幅が狭くなると大きくなる。 As shown in FIG. 8 (b), it can be seen that the ratio to the background is maximum around 2 nanoseconds. The 100 ms data lacks statistical properties around 2 nanoseconds, and the ratio to background is maximum at a position slightly faster than 2 nanoseconds. From this, it is considered that a section having a relatively large ratio to the background may be set as the time gate, including around 2 nanoseconds where the ratio to the background is maximum. For example, candidate segments of the time gate are shown in FIG. 8 G1: [0.797 nanoseconds: 3.2972 nanoseconds] (2.5 nanoseconds wide), G2: [1.497 nanoseconds: 2.497 nanoseconds] (1 nanosecond width), G3: [1.747 nanoseconds: 2.247 nanoseconds] (0.5 nanosecond width). FIGS. 9 (a) and 9 (b) show the change to the position of the photon counts limited within these time gates and the change to the position of the photon counts without time gates. FIG. 9 (a) corresponds to the change to x at y = 10 mm, and FIG. 9 (b) corresponds to the change to y at x = 0 mm. Inverted triangle points, circle points, square points and triangle points correspond to no gate, gate G1, gate G2 and gate G3, respectively. Each solid line is the result of fitting these by Formula 5, respectively. It can be seen that the number of photons is maximized when the gate is not used and becomes smaller as the gate width becomes narrower. Therefore, the statistical variation of the signal becomes larger as the gate width becomes narrower.
 図10(a)及び図10(b)は、時間ゲートG1~G3内に限った光子の計数値に基づく対バックグラウンド比における位置に対する変化及び時間ゲートを用いない光子の計数値に基づく対バックグラウンド比における位置に対する変化を示す。対バックグラウンド比は図7に示す対バックグラウンド比と同様に導出された。図10(a)はy=10mmにおけるxに対する変化に、図10(b)はx=0mmにおけるyに対する変化に対応する。図10(a)の三角点、逆三角点、丸点及び四角点は、それぞれ、ゲートG3、ゲートG2、ゲートG1及びゲートなしに対応する。図10(b)の三角点、四角点、丸点及び逆三角点は、それぞれ、ゲートG3、ゲートG2、ゲートG1及びゲートなしに対応する。図9の場合とは逆に、時間ゲートを掛けた方が、高いコントラストが得られた。また、ゲート幅を0.5ナノ秒幅としても、1.0ナノ秒幅と比べてコントラストが改善しなかった。以上の結果から、時間ゲートの幅としては1.0ナノ秒より大きくてよいと結論される。さらに、実際には、以上のように決定された時間ゲートを初期設定値とし、臨床にて、位置に対するコントラストの変化が最も大きくなるような時間ゲートに最適化することが好ましい。 10 (a) and 10 (b) show the change to the position in the background to background ratio based on the count of photons limited within the time gates G1 to G3 and the back to the count of photons not using the time gate. The change to the position in the ground ratio is shown. The to background ratio was derived similarly to the to background ratio shown in FIG. FIG. 10 (a) corresponds to the change for x at y = 10 mm, and FIG. 10 (b) corresponds to the change for y at x = 0 mm. The triangle point, the inverted triangle point, the round point and the square point in FIG. 10A correspond to the gate G3, the gate G2, the gate G1 and no gate, respectively. The triangle points, the square points, the round points, and the inverse triangle points in FIG. 10B correspond to the gate G3, the gate G2, the gate G1, and no gate, respectively. Contrary to the case of FIG. 9, higher contrast was obtained when the time gate was applied. In addition, even if the gate width is 0.5 nanosecond wide, the contrast is not improved as compared with the 1.0 nanosecond width. From the above results, it is concluded that the width of the time gate may be greater than 1.0 nanosecond. Furthermore, in practice, it is preferable to use the time gate determined as described above as an initial setting value and to optimize the time gate in clinical settings such that the change in contrast with position is the largest.
[第2実施形態]
 第2実施形態は、第1実施形態の時間ゲートを用いず、その代わりに数式1に示すユークリッド距離Dを用いる方法に関する。第2実施形態に係る生体検査装置は、第1実施形態に係る生体検査装置とは、解析部30の構成が主に異なる。以下においては、第2実施形態に係る解析部について主に説明する。第2実施形態の解析部は、時間分解計測ユニット20からのデジタル値に基づき、数式1に従ってDを算出する。数式1におけるfmeasは、所定期間中に光子検出器4によって光子が検出される回数を、光源3において各光パルスが出射されたタイミングからの経過時間に関して計数(集計)した結果を示している。fmeasは、例えば、図5のグラフg2~g4や図8(a)の灰色の実線グラフに対応する。fref、w及びαは、原理の説明における上述の方法に従って決定された値を有している。解析部は、算出したDを制御部40へと出力する。制御部40は、第1実施形態と同様、Dの大きさに応じた音声を音生成部7に発生させると共に、Dの大きさに応じた表示を表示部8に行わせる。
Second Embodiment
The second embodiment relates to a method of using the Euclidean distance D shown in Formula 1 instead of using the time gate of the first embodiment. The biological examination apparatus according to the second embodiment is mainly different from the biological examination apparatus according to the first embodiment in the configuration of the analysis unit 30. In the following, the analysis unit according to the second embodiment will be mainly described. The analysis unit of the second embodiment calculates D in accordance with Equation 1 based on the digital value from the time-resolved measurement unit 20. Fmeas in Equation 1 indicates the result of counting (counting) the number of times of photon detection by the photon detector 4 during a predetermined period and the elapsed time from the timing when each light pulse is emitted by the light source 3. fmeas corresponds to, for example, the graphs g2 to g4 in FIG. 5 and the gray solid line graph in FIG. 8 (a). fref, w and α have values determined according to the method described above in the description of the principle. The analysis unit outputs the calculated D to the control unit 40. As in the first embodiment, the control unit 40 causes the sound generation unit 7 to generate a sound corresponding to the size of D, and causes the display unit 8 to perform display corresponding to the size of D.
[第2実験例]
 第2実験例として、第1実験例での実験結果を用い、第2実施形態の解析部における方法について評価した。評価に用いた波形データfmeasは、第1実験例での計測データから生成した計測時間100ミリ秒に対応する波形(図8(a)に示す波形)に関するデータである。評価区間は波形の全範囲をカバーする時間区間とした。基準frefとなるバックグラウンド光の波形fbackには、蛍光ターゲットから最も遠い位置での計測結果を用いた。数式1のwは定数1/N(Nは時間データの数)とした。またαは、D^2を最小化するように決めた。図11は、このようにして算出したDにおける位置に対する変化を示す。図11(a)はy=10mmにおけるxに対する変化に、図11(b)はx=0mmにおけるyに対する変化に対応する。図11の結果は、定常光すなわち、時間応答関数の単純な積分値(図10の四角点が示す値)と比べ、蛍光ターゲット位置をややコントラスト良く示している。なお、計測時間が100ミリ秒より長ければこの状況はさらに改善する。また、数式1を用いる方法と時間ゲートを用いた方法とが併用されてもよい。
[Second experimental example]
As a second experimental example, the method of the analysis unit of the second embodiment was evaluated using the experimental results of the first experimental example. The waveform data fmeas used for the evaluation is data on a waveform (waveform shown in FIG. 8A) corresponding to the measurement time of 100 milliseconds generated from the measurement data in the first experimental example. The evaluation section was a time section covering the entire range of the waveform. The measurement result at the position farthest from the fluorescent target was used for the waveform fback of the background light which is the reference fref. In Equation 1, w is a constant 1 / N (N is the number of time data). Also, α was decided to minimize D ^ 2. FIG. 11 shows the change with respect to the position at D calculated in this manner. FIG. 11 (a) corresponds to the change to x at y = 10 mm, and FIG. 11 (b) corresponds to the change to y at x = 0 mm. The result in FIG. 11 shows the fluorescent target position with a little contrast as compared with the steady light, that is, the simple integral value of the time response function (the value indicated by the square point in FIG. 10). This situation will be further improved if the measurement time is longer than 100 milliseconds. Also, the method using Equation 1 and the method using a time gate may be used in combination.
[第3実施形態]
 第3実施形態は、第1実施形態の時間ゲートの代わりに、数式4に示す相関関数を用いた方法に関する。第3実施形態の解析部は、時間分解計測ユニット20からのデジタル値に基づき、数式4に従ってLを算出して制御部40へと出力する。数式4のうち、Dの算出については、第2実施形態における算出方法と同様の方法に基づく。制御部40は、第1実施形態と同様、Lの大きさに応じた音声を音生成部7に生成させると共に、Lの大きさに応じた表示を表示部8に行わせる。
Third Embodiment
The third embodiment relates to a method using a correlation function shown in Formula 4 in place of the time gate of the first embodiment. The analysis unit according to the third embodiment calculates L in accordance with Equation 4 based on the digital value from the time-resolved measurement unit 20 and outputs the calculated value to the control unit 40. In Equation 4, the calculation of D is based on the same method as the calculation method in the second embodiment. The control unit 40 causes the sound generation unit 7 to generate a sound corresponding to the size of L and causes the display unit 8 to display according to the size of L as in the first embodiment.
[第3実験例]
 第3実験例として、第1実験例での実験結果を用い、第3実施形態の解析部における方法について評価した。評価に用いた波形データfmeasは、第1実験例での計測データから作成した計測時間100ミリ秒に対応する波形(図8(a)に示す波形)に関するデータである。評価区間は波形の全範囲をカバーする時間区間とした。基準frefとなるバックグラウンド光の波形fbackには、蛍光ターゲットから最も遠い位置での計測結果を用いた。数式1のwは定数1/N(Nは時間データの数)とした。また、α=1とした。数式4の相関ρはPearsonの相関係数を用いて算出した。ρ0は、計測データから0.96とした。図12は、このようにして算出したLにおける位置に対する変化を示す。図12(a)はy=10mmにおけるxに対する変化に、図12(b)はx=0mmにおけるyに対する変化に対応する。図12の結果は、時間ゲートを用いた第1実験例と同様に、蛍光ターゲットの位置をコントラスト良く示している。この方法の場合、計測波形がバックグラウンド光の波形に近い位置の値はほぼ0になっており、コントラストが非常に良くなっている。また、Lの分布幅も狭くなっている。よって、数式4を用いる方法は、蛍光プローブの検出に有効であると考えられる。
[Third experimental example]
As a third experimental example, using the experimental result in the first experimental example, the method in the analysis unit of the third embodiment was evaluated. The waveform data fmeas used for the evaluation is data on a waveform (waveform shown in FIG. 8A) corresponding to the measurement time of 100 milliseconds created from the measurement data in the first experimental example. The evaluation section was a time section covering the entire range of the waveform. The measurement result at the position farthest from the fluorescent target was used for the waveform fback of the background light which is the reference fref. In Equation 1, w is a constant 1 / N (N is the number of time data). Also, α = 1. The correlation ρ in Equation 4 was calculated using Pearson's correlation coefficient. ρ 0 was 0.96 from the measurement data. FIG. 12 shows the change with respect to the position at L calculated in this manner. FIG. 12 (a) corresponds to the change to x at y = 10 mm, and FIG. 12 (b) corresponds to the change to y at x = 0 mm. The result in FIG. 12 shows the position of the fluorescent target with good contrast, as in the first experimental example using a time gate. In the case of this method, the value of the position where the measurement waveform is close to the background light waveform is almost 0, and the contrast is very good. Also, the distribution width of L is narrow. Therefore, the method using Equation 4 is considered to be effective for detection of a fluorescent probe.
[参考実験例]
 ヒト組織と第1実験例で用いた試料との時間応答関数の類似性を以下のように確かめた。図13のグラフg10は、ヒト上腕に関して蛍光色素を埋め込まずに第1実験例と同じ方法で時間応答を計測して求めた時間応答関数を示す。グラフg11は牛肉を用いた結果である。グラフg10及びg11は、ピーク付近で波形が互いに一致するように正規化されている。ヒトの方が牛肉と比べ、時間応答関数の減衰が若干速かったが、両方がほぼ同様の減衰を示すことがわかる。図13に示すようにヒトの場合のバックグラウンド光の減衰が牛肉の場合より速いことは、バックグラウンド光と蛍光とを分離する観点では都合が良い。蛍光の時間応答はバックグラウンド光の時間応答よりさらに減衰が遅いためである。したがって、ヒトに対する検査における本実施形態の有効性が示される。
[Reference experiment example]
The similarity of the time response function between human tissue and the sample used in the first experiment was confirmed as follows. The graph g10 of FIG. 13 shows the time response function obtained by measuring the time response in the same manner as the first experimental example without embedding the fluorescent dye in the human upper arm. Graph g11 is the result of using beef. The graphs g10 and g11 are normalized so that the waveforms match each other near the peaks. It can be seen that although the decay of the time response function was somewhat faster in humans compared to beef, both show approximately the same decay. As shown in FIG. 13, it is convenient in terms of separating background light and fluorescence that the background light decays in the case of humans faster than in the case of beef. The fluorescence time response decays more slowly than the background light time response. Thus, the effectiveness of the present embodiment in testing on humans is demonstrated.
<変形例>
 以上は、本発明の好適な実施形態についての説明であるが、本発明は上述の実施形態に限られるものではなく、課題を解決するための手段に記載された範囲の限りにおいて様々な変更が可能なものである。
<Modification>
The above is the description of the preferred embodiment of the present invention, but the present invention is not limited to the above-described embodiment, and various modifications may be made within the scope described in the means for solving the problems. It is possible.
 例えば、上述の実施形態における励起・検出プローブ10の代わりに、図14(a)に示す励起・検出プローブ110又は図14(b)に示す励起・検出プローブ120が用いられてもよい。励起・検出プローブ110は、先端表面111aが突出したホルダ111を有している。先端表面111aは滑らかに湾曲している。先端表面111aには照射部12及び受光部13が設けられている。この変形例では、光学フィルタ5及び6が励起・検出プローブ110の先端表面111aに設けられている。照射部12から出射されたレーザー光は光学フィルタ5を通じて生体へと照射される。生体からの光は光学フィルタ6を通じて受光部13へと入射する。先端表面111aが滑らかに湾曲しているため、先端表面111aを被験者に押し当てた際に先端表面111aとその組織との密着性が向上する。よって、照射部12から出射される励起光が受光部13へと漏れ出したりしにくい。 For example, the excitation / detection probe 110 shown in FIG. 14A or the excitation / detection probe 120 shown in FIG. 14B may be used instead of the excitation / detection probe 10 in the above-described embodiment. The excitation / detection probe 110 has a holder 111 from which a tip surface 111 a protrudes. The tip surface 111a is smoothly curved. The irradiation unit 12 and the light receiving unit 13 are provided on the front end surface 111 a. In this modification, optical filters 5 and 6 are provided on the tip surface 111 a of the excitation / detection probe 110. The laser light emitted from the irradiation unit 12 is irradiated onto the living body through the optical filter 5. Light from the living body enters the light receiving unit 13 through the optical filter 6. Since the tip surface 111a is smoothly curved, the adhesion between the tip surface 111a and the tissue thereof is improved when the tip surface 111a is pressed against the subject. Therefore, it is difficult for the excitation light emitted from the irradiation unit 12 to leak to the light receiving unit 13.
 励起・検出プローブ120においても、ホルダ121の先端表面121aに光学フィルタ5及び6が設けられている。ホルダ121内にはレーザーダイオード103及び光子検出器104が設けられている。励起光の光源と光子検出器の小型化が可能であれば、このようにこれらが励起・検出プローブ内に設けられてもよい。レーザーダイオード103から出射されたレーザー光は、照射部12及び光学フィルタ5を通じて被験者へと照射される。生体からの出射光は光学フィルタ6及び受光部13を通じて光子検出器104へと入射する。 Also in the excitation / detection probe 120, the optical filters 5 and 6 are provided on the tip surface 121 a of the holder 121. In the holder 121, a laser diode 103 and a photon detector 104 are provided. If the source of excitation light and the photon detector can be miniaturized, they may be thus provided in the excitation / detection probe. The laser light emitted from the laser diode 103 is irradiated to the subject through the irradiation unit 12 and the optical filter 5. Light emitted from the living body enters the photon detector 104 through the optical filter 6 and the light receiving unit 13.
 また、上述の第1実施形態では、解析部30がデジタル比較器32等のデジタル回路を用いて構築されている。しかし、コンピュータ及びソフトウェアの組み合わせによって解析部が構築されてもよい。この場合、解析部30と同様の役割を担うようにソフトウェアがコンピュータを機能させればよい。 Further, in the first embodiment described above, the analysis unit 30 is constructed using a digital circuit such as the digital comparator 32 or the like. However, the analysis unit may be constructed by a combination of computer and software. In this case, the software may cause the computer to function so as to play the same role as the analysis unit 30.
 また、上述の実施形態では、計数器35による計数結果、すなわち、単位時間当たりの光子の検出回数に応じた音声や数値等の出力がなされる。その代わりに、対バックグラウンド比に応じた出力がなされてもよい。例えば、制御部40が、計数器35の計数結果に基づいて対バックグラウンド比を算出する。そして、算出された対バックグランド比に応じた大きさの音声が音生成部7において生成される。対バックグラウンド比は、計数器35の計数結果をバックグラウンドレベルbで割ることで算出される。バックグラウンドレベルbは、時間ゲートに応じて事前測定された測定値に基づき、数式5を用いてあらかじめ算出された値が用いられる。 Further, in the above-described embodiment, the result of counting by the counter 35, that is, the output of voice or numerical value corresponding to the number of times of detection of photons per unit time is performed. Alternatively, output may be made according to the background ratio. For example, the control unit 40 calculates the to-background ratio based on the counting result of the counter 35. Then, the sound generation unit 7 generates a sound having a magnitude corresponding to the calculated background ratio. The ratio to the background is calculated by dividing the counting result of the counter 35 by the background level b. As the background level b, a value calculated in advance using Equation 5 is used based on the measurement value measured in advance according to the time gate.
G、G1~G3 時間ゲート
1 生体検査装置
2 蛍光プロ―ブ
3 光源
4 光子検出器
5、6 光学フィルタ
7 音声生成部
8 表示部
10、110、120 励起・検出プローブ
12 照射部
13 受光部
17、18 スイッチ
20 時間分解計測ユニット
30 解析部
40 制御部
G, G1 to G3 Time gate 1 Biological examination device 2 Fluorescent probe 3 Light source 4 Photon detector 5, 6 Optical filter 7 Audio generation unit 8 Display unit 10, 110, 120 Excitation / detection probe 12 Irradiation unit 13 Light receiving unit 17 , 18 switches 20 time-resolved measurement unit 30 analysis unit 40 control unit

Claims (11)

  1.  蛍光色素が埋め込まれた生体に対して前記蛍光色素を励起する励起光を照射する光源と、
     前記生体からの出射光の強度を検出する光検出手段と、
     前記光源による前記生体への前記励起光の照射に起因して前記蛍光色素が発生させる蛍光を含む前記出射光の強度の時間変化態様と、前記蛍光に対するバックグラウンド光及び前記蛍光の少なくともいずれかの強度の時間変化態様との違いの程度を、前記蛍光の波長において評価する蛍光評価手段と、
     前記蛍光評価手段が評価した前記程度を知覚可能に出力する評価結果出力手段と、を備えていることを特徴とする生体検査装置。
    A light source which emits excitation light for exciting the fluorescent dye to a living body in which the fluorescent dye is embedded;
    Light detection means for detecting the intensity of light emitted from the living body;
    Temporal change of the intensity of the emitted light including the fluorescence generated by the fluorescent dye due to the irradiation of the excitation light to the living body by the light source, and at least one of the background light for the fluorescence and the fluorescence Fluorescence evaluation means for evaluating the degree of difference with the time change aspect of the intensity at the wavelength of the fluorescence;
    An evaluation result output unit that perceptually outputs the degree evaluated by the fluorescence evaluation unit.
  2.  前記バックグラウンド光の減衰が前記蛍光の減衰より速く、
     前記蛍光評価手段が、前記バックグラウンド光が最大となるタイミングより後の期間であって前記蛍光が発生している期間である所定期間内における前記出射光に基づいて前記程度を評価することを特徴とする請求項1に記載の生体検査装置。
    The decay of the background light is faster than the decay of the fluorescence,
    The fluorescence evaluation means is characterized in that the degree is evaluated based on the emitted light in a predetermined period which is a period after the timing when the background light is maximum and in which the fluorescence is generated. The biopsy apparatus according to claim 1, wherein
  3.  前記所定期間が、前記蛍光を含む前記出射光の強度における前記バックグラウンド光の強度に対する比が最大となるタイミングを含んだ期間であることを特徴とする請求項2に記載の生体検査装置。 The living body inspection apparatus according to claim 2, wherein the predetermined period includes a timing at which a ratio of the intensity of the emitted light including the fluorescence to the intensity of the background light is maximized.
  4.  前記光検出手段が光子の入射を検出可能であり、
     前記蛍光評価手段が、
     前記光源が前記励起光を前記生体に照射したタイミングを基準として前記光検出手段による光子の入射の検出タイミングを取得する検出時刻取得手段と、
     前記検出時刻取得手段が取得したタイミングに基づいて、前記光検出手段による前記所定期間内における前記光子の入射の検出回数を計数する計数手段と、を有していることを特徴する請求項2又は3に記載の生体検査装置。
    The light detection means can detect the incidence of photons,
    The fluorescence evaluation means
    Detection time acquisition means for acquiring detection timing of incidence of photons by the light detection means on the basis of timing when the light source irradiates the living body with the excitation light;
    3. The apparatus according to claim 2, further comprising: counting means for counting the number of times of detection of the incident of the photon within the predetermined period by the light detection means based on the timing acquired by the detection time acquisition means. The biopsy apparatus according to 3.
  5.  前記生体の表面と接触する接触面を有し、前記励起光の照射部及び前記生体からの出射光の受光部が前記接触面の表面に形成された励起・検出プローブをさらに備えていることを特徴とする請求項1~4のいずれか1項に記載の生体検査装置。 It has a contact surface in contact with the surface of the living body, and the irradiation portion of the excitation light and the light receiving portion of the emission light from the living body further include an excitation / detection probe formed on the surface of the contact surface. The biopsy apparatus according to any one of claims 1 to 4, characterized in that
  6.  前記接触面が前記生体に向かって突出するように湾曲していることを特徴とする請求項5に記載の生体検査装置。 The biopsy apparatus according to claim 5, wherein the contact surface is curved so as to protrude toward the living body.
  7.  前記励起・検出プローブにスイッチが設けられており、
     前記スイッチの操作状況に基づいて、前記励起光の照射部から前記励起光を出射する状態と出射しない状態とを切り替えることを特徴とする請求項5又は6に記載の生体検査装置。
    The excitation / detection probe is provided with a switch,
    The living body inspection apparatus according to claim 5 or 6, wherein a state in which the excitation light is emitted from the irradiation portion of the excitation light and a state in which the excitation light is not emitted are switched based on an operation state of the switch.
  8.  前記生体の表面と接触する接触面を有し、前記励起光の照射部及び前記生体からの出射光の受光部が前記接触面の表面に形成され、スイッチが設けられた励起・検出プローブをさらに備えており、
     前記スイッチの操作状況に基づいて前記所定期間を変更することを特徴とする請求項2~4のいずれか1項に記載の生体検査装置。
    The excitation / detection probe further has a contact surface in contact with the surface of the living body, the irradiation portion of the excitation light and the light reception portion of the emission light from the living body are formed on the surface of the contact surface. Have
    The biopsy apparatus according to any one of claims 2 to 4, wherein the predetermined period is changed based on an operation situation of the switch.
  9.  前記評価結果出力手段が、前記程度を表現した文字、画像及び音声の少なくともいずれかを出力することを特徴とする請求項1~8のいずれか1項に記載の生体検査装置。 The biological examination apparatus according to any one of claims 1 to 8, wherein the evaluation result output means outputs at least one of a character, an image and a voice expressing the degree.
  10.  前記蛍光評価手段が、前記出射光の強度の時間変化態様と基準となる時間変化態様との相関に基づいて前記程度を評価することを特徴とする請求項1~9のいずれか1項に記載の生体検査装置。 The said fluorescence evaluation means evaluates the said degree based on the correlation with the time change aspect of the intensity | strength of the said emitted light, and the time change aspect used as a reference, The said any one of the Claims 1-9 characterized by the above-mentioned. Biometric device.
  11.  蛍光色素が埋め込まれた生体からの出射光を評価することによって生体を検査する方法であって、
     前記生体に励起光を照射したことに起因して前記蛍光色素が発生させる蛍光を含む前記出射光の強度の時間変化態様と、前記蛍光に対するバックグラウンド光及び前記蛍光の少なくともいずれかの強度の時間変化態様との違いの程度を、前記蛍光の波長において評価することを特徴とする生体検査方法。
    A method of inspecting a living body by evaluating light emitted from a living body in which a fluorescent dye is embedded,
    A time change mode of the intensity of the emitted light including the fluorescence generated by the fluorescent dye due to the irradiation of the excitation light to the living body, the time of the intensity of at least one of the background light and the fluorescence with respect to the fluorescence A biological test method characterized in that the degree of difference from the change mode is evaluated at the wavelength of the fluorescence.
PCT/JP2018/035198 2017-09-21 2018-09-21 Biological body examination device and biological body examination method WO2019059379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019543744A JPWO2019059379A1 (en) 2017-09-21 2018-09-21 Biopsy device, biopsy method and condition determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017181583 2017-09-21
JP2017-181583 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019059379A1 true WO2019059379A1 (en) 2019-03-28

Family

ID=65810406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035198 WO2019059379A1 (en) 2017-09-21 2018-09-21 Biological body examination device and biological body examination method

Country Status (2)

Country Link
JP (1) JPWO2019059379A1 (en)
WO (1) WO2019059379A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005504561A (en) * 2001-03-01 2005-02-17 トラスティーズ・オブ・ダートマウス・カレッジ Fluorescence lifetime spectrometer (FLS) and detection method of diseased tissue
JP2010068925A (en) * 2008-09-17 2010-04-02 Fujinon Corp Method and apparatus for image acquisition
JP2011521247A (en) * 2008-05-19 2011-07-21 ヒカリ バイオ エービー Cumulative time-resolved luminescence two-dimensional gel electrophoresis
WO2011114578A1 (en) * 2010-03-19 2011-09-22 シャープ株式会社 Measurement device, measurement method, measurement result processing device, measurement system, measurement result processing method, control program, and recording medium
JP2014025774A (en) * 2012-07-26 2014-02-06 Sony Corp Photodynamic diagnosis apparatus, photodynamic diagnosis method, and device
JP2014519361A (en) * 2011-04-28 2014-08-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Time-gated fluorescence imaging using Si-containing particles
JP2016516729A (en) * 2013-03-15 2016-06-09 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ Multimodal silica nanoparticles
WO2016127158A1 (en) * 2015-02-06 2016-08-11 Board Of Regents, The University Of Texas System Systems and methods for high-resolution imaging

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005504561A (en) * 2001-03-01 2005-02-17 トラスティーズ・オブ・ダートマウス・カレッジ Fluorescence lifetime spectrometer (FLS) and detection method of diseased tissue
JP2011521247A (en) * 2008-05-19 2011-07-21 ヒカリ バイオ エービー Cumulative time-resolved luminescence two-dimensional gel electrophoresis
JP2010068925A (en) * 2008-09-17 2010-04-02 Fujinon Corp Method and apparatus for image acquisition
WO2011114578A1 (en) * 2010-03-19 2011-09-22 シャープ株式会社 Measurement device, measurement method, measurement result processing device, measurement system, measurement result processing method, control program, and recording medium
JP2014519361A (en) * 2011-04-28 2014-08-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Time-gated fluorescence imaging using Si-containing particles
JP2014025774A (en) * 2012-07-26 2014-02-06 Sony Corp Photodynamic diagnosis apparatus, photodynamic diagnosis method, and device
JP2016516729A (en) * 2013-03-15 2016-06-09 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ Multimodal silica nanoparticles
WO2016127158A1 (en) * 2015-02-06 2016-08-11 Board Of Regents, The University Of Texas System Systems and methods for high-resolution imaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISHIMURA, GORO ET AL.: "Fluorescence lifetime measurements in heterogeneous scattering medium", JOURNAL OF BIOMEDICAL OPTICS, vol. 21, no. 7, 25 July 2016 (2016-07-25), XP060072075, DOI: doi:10.1117/1.JBO.21.7.075013 *

Also Published As

Publication number Publication date
JPWO2019059379A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US9032800B2 (en) Photoacoustic imaging apparatus and photoacoustic imaging method
CN105636479B (en) Equipment for bacterial plaque detection
KR102375159B1 (en) Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same
RU2727242C2 (en) Method and device for non-invasive optical in vivo determination of glucose concentration in leaking blood
EP2826417B1 (en) Object information acquiring apparatus and method for controlling object information acquiring apparatus
US20060243911A1 (en) Measuring Technique
JP2008307372A (en) Biological information imaging apparatus, biological information analyzing method, and biological information imaging method
US20100102210A1 (en) Method and device for measuring optical characteristics fo an object
RU2703894C2 (en) Method for non-invasive optical measurement of flowing blood properties
CN110361357B (en) Single-array-element photoacoustic spectrum signal acquisition system and method for skin detection
JP2011212254A (en) Imaging device and method of the same
JP6564402B2 (en) Blood vessel recognition device
JPH0961359A (en) Concentration measuring device
CN107427246A (en) Measuring of blood flow method is used in blood vessel identification
JP2019055293A (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
US10034611B2 (en) Subject information obtaining apparatus and subject information obtaining method
JP2018510674A (en) Method and system for non-invasively monitoring the condition of a subject
JP2004212088A (en) Measuring instrument for glossiness of hair
JP5924658B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
WO2019059379A1 (en) Biological body examination device and biological body examination method
JP2007085775A (en) Sample analyzer
JPH09292326A (en) Capillary-type light detecting sensor, light measuring device using sensor thereof and method for measuring fine grains in suspension
JP2010183929A (en) Measuring apparatus and measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859820

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019543744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859820

Country of ref document: EP

Kind code of ref document: A1