WO2019044501A1 - Head-mounted display - Google Patents

Head-mounted display Download PDF

Info

Publication number
WO2019044501A1
WO2019044501A1 PCT/JP2018/030314 JP2018030314W WO2019044501A1 WO 2019044501 A1 WO2019044501 A1 WO 2019044501A1 JP 2018030314 W JP2018030314 W JP 2018030314W WO 2019044501 A1 WO2019044501 A1 WO 2019044501A1
Authority
WO
WIPO (PCT)
Prior art keywords
concave
display panel
display
mla
image
Prior art date
Application number
PCT/JP2018/030314
Other languages
French (fr)
Japanese (ja)
Inventor
朋一 梅澤
隆 薬師寺
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019539339A priority Critical patent/JPWO2019044501A1/en
Publication of WO2019044501A1 publication Critical patent/WO2019044501A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a head mounted display.
  • the head mounted display is a display that displays an image at a close distance to the eye of the user.
  • the head mounted display there are a goggle type as disclosed in Patent Document 1, a glasses type as disclosed in Patent Document 2, and the like.
  • an optical lens with high curvature is employed to display an image with a wide viewing angle in front of the user's eye.
  • the pixels of the display panel appear to be enlarged, so the black matrix (pixel grid) between the pixels is noticeable As a result, there is a problem that pixels are visually recognized as a line of dots and the image quality is degraded.
  • Patent Document 3 proposes that an optical element such as a microlens array is provided between the display panel and the eyepiece to act as an optical low pass filter.
  • JP 2011-145607 A Japanese Patent Laid-Open No. 11-346336 JP, 2016-139112, A
  • FIG. 8 is a view showing an internal configuration of the head mounted display of Patent Document 3, and is provided with a microlens array 230 in an optical path from the display panel 200 to the eyepiece lens 210.
  • Patent Document 3 discloses that the low-pass filter effect of the microlens array 230, that is, the effect of diffusing light blurs the image, so that the black matrix of the display panel can be made inconspicuous.
  • a red pixel 212R, a green pixel 212G, and a blue pixel 212B are arranged in the display panel 200.
  • pixel 212 there is a black matrix 214.
  • a general convex microlens array 230 as shown in FIG. 8 is arranged such that the convex surface is on the eyepiece side, in order to obtain the diffusion effect, as shown in FIG. It is necessary to use a light beam which spreads once it is made to converge. However, such rays are likely to be diffused to adjacent pixels and even diffused beyond the adjacent pixels.
  • the light ray 240 which is incident on the microlens array 230 from the red pixel 212R and is output and refracted from the convex surface 232 thereof travels to the adjacent green pixel 212G side.
  • the green pixel 212G enters the microlens array 230, and the light ray 242 output and refracted from the convex surface 232 travels to the adjacent red pixel 212R side.
  • the light output from each pixel 212 is largely refracted by the convex surface 232 and travels beyond the black matrix 214 and leaks to the adjacent pixel side, so that the effect of making the black matrix inconspicuous can be obtained.
  • the sharpness of the image is reduced and the entire image is blurred.
  • An object of the present invention is to provide a head mounted display which realizes sharp image display while reducing the visibility of the black matrix.
  • the head mounted display of the present invention comprises a display panel; Magnifying optical system that magnifies the image displayed on the display panel, And a microlens array disposed in the optical path between the display panel and the magnifying optical system; A plurality of microlens arrays are arranged such that a plurality of concave lenses are arranged, and the concave surface of the concave lens is directed to the magnifying optical system.
  • the microlens array is disposed in contact with the image display surface of the display panel.
  • the head mounted display of the present invention has an anti-reflection function on the concave surface.
  • the anti-reflection function can be realized by a moth-eye structure or a dielectric multilayer film provided on a concave surface.
  • the head mount display of the present invention comprises a microlens array in the optical path between the display panel and the magnifying optical system for magnifying the image displayed on the display panel, and the microlens array is arranged with a plurality of concave lenses. And the concave surface of the concave lens is directed to the magnifying optical system. According to such a configuration, the visibility of the black matrix can be reduced and sharp image display can be realized.
  • FIG. 1 is a schematic configuration view of the head mount display (HMD) 1 of the first embodiment as viewed from above.
  • FIG. 1 shows the goggle-like main body 2 and its internal configuration, but in addition, various contacts such as a front contact portion and a temporal contact portion (not shown) for enhancing the mountability to be worn by the wearer on the head. It has a department.
  • the HMD 1 includes a display panel 10 provided in front of the eye, an eyepiece lens 20 disposed at an assumed position of the left and right pupils, and a microlens array disposed in the light path from the display panel 10 to the eyepiece lens 20 (MLA: Micro Lens Allay) and 30 are provided.
  • the eyepiece 20 constitutes a magnifying optical system that magnifies the image of the display panel 10.
  • the MLA 30 is formed by arranging a plurality of concave lenses. In the following, it is referred to as a concave MLA 30.
  • the concave MLA 30 is disposed such that the concave surface 32 of the concave lens is on the eyepiece 20 side.
  • FIG. 2 is a diagram for explaining an internal configuration of the HMD 1.
  • the display panel 10 is preferably a lightweight and high-definition display panel such as a liquid crystal panel or an organic EL panel.
  • the concave MLA 30 is disposed such that the concave surface 32 is on the eyepiece 20 side, and the light from the display panel 10 passes through the concave MLA 30 and is emitted from the concave surface 32 to the eyepiece 20 side.
  • the concave MLA 30 may be provided in the light path between the display panel 10 and the magnifying optical system (here, the eyepiece lens 20), but from the viewpoint of suppressing color mixing with adjacent pixels, the concave MLA 30 is close to the display panel 10 or It is preferable to arrange
  • the image display surface of the display panel 10 is preferably disposed on the eyepiece 20 side of the display panel 10, and the concave MLA 30 is preferably disposed in contact with the image display surface of the display panel 10.
  • the concave MLA 30 may be attached to the image display surface via the adhesive layer, or the adhesive layer is not provided in a state of contact. It may be held.
  • the concave MLA 30 may be incorporated into the display panel at the manufacturing stage of the display panel, and the display panel and the microlens array may be integrated.
  • the HMD 1 is configured to observe an image displayed on the display panel 10 through the eyepiece lens 20 and the concave MLA 30 of the user's eye 220.
  • the display panel 10 of the HMD is compact, since it is magnified and observed by the eyepiece lens 20, it looks to the user as if there is a large display in front of the eyes.
  • the concave MLA 30 is not provided, the black matrix between the pixels of the display panel 10 becomes noticeable by the magnifying action by the eyepiece lens 20, and the arrangement of dots is emphasized and visually recognized.
  • the HMD 1 of the present embodiment includes the concave MLA 30, and the black matrix of the display panel 10 becomes inconspicuous due to the light diffusion effect of the concave MLA 30.
  • FIG. 3 is a figure for demonstrating the light-diffusion effect by concave MLA30.
  • the display panel 10 is provided with a red pixel 12R, a green pixel 12G, and a blue pixel 12B.
  • pixels 12 when the pixels are generically referred to without distinction of color, they are simply referred to as "pixels 12".
  • a black matrix 14 exists between the pixels 12 of the display panel 10.
  • the concave MLA 30 when the concave MLA 30 is provided, the light beam 40 from each pixel 12 spreads by the action of the concave lens (see FIG. 3), and light between adjacent pixels is mixed between the boundaries of the pixels, and black matrix Blur and become unnoticeable. Further, since the bending in the diffusion direction is gentler than that of a convex lens, the color mixture with adjacent pixels can be reduced. Thereby, the sharpness of the image can be maintained. In addition, since the concave lens essentially has a light diffusing function, the function for reducing the black matrix between the pixels can be easily obtained.
  • the concave MLA even if it is a curved surface with a small concave surface, the effect of reducing a black matrix can fully be acquired.
  • the curvature is small (that is, the curvature radius is large)
  • the height of the unevenness of the lens surface that is, the height difference between the concave and the convex becomes small.
  • the concave MLA is manufactured by transferring the shape from the mold, but when the height of the concavo-convex is small, it is easy to transfer and the merit that the lens accuracy can be improved is obtained.
  • concave MLA is more advantageous in design freedom than convex MLA when manufacturing MLA, and when designing an optical path in an HMD combined with other optical members.
  • FIG. 3 shows the concave MLA 30 in which the pitch of the pixels 12 and the pitch of the concave surface 32 are approximately 1: 1, the pitch of the concave surface 32 in the concave MLA 30 does not necessarily coincide with the pixel 12 pitch. It is also good.
  • the pitch of the concave surfaces 32 may be smaller than the pixel pitch so that the plurality of concave surfaces 32 correspond to one pixel.
  • the pitch, size, etc. of the concave surface may be appropriately determined in accordance with the pixel pitch.
  • the pitch and curvature of the concave surface may be appropriately set so that the effects of black matrix removal and color mixture suppression (realization of a sharp image) by the concave MLA 30 become optimal.
  • the curvature radius of the concave lens is preferably 1.5 times or more of the lens pitch, more preferably 2 times or more, and 2.5 times or more. More preferable.
  • the lens pitch of the concave MLA is preferably about 20 ⁇ m
  • the curvature radius of the concave surface of the concave lens is preferably 50 ⁇ m or more.
  • the R / G / B pitch is the pitch of the pixel 12 described above.
  • the concave surface 32 of the concave MLA 30 be provided with a reflection preventing function (reflection preventing layer).
  • a reflection preventing function antireflection layer
  • the output light from a certain pixel may be emitted from an adjacent pixel or an area of a pixel separated from the adjacent pixel by repeating multiple reflection in the concave MLA 30, and color mixing may occur. That is, by suppressing multiple reflection, it is possible to effectively suppress the occurrence of color mixing, and it is possible to display a sharper image.
  • FIGS. 4 and 5 are cross-sectional views of a concave MLA 30 provided with a reflection preventing function (reflection preventing layer) on the concave surface 32.
  • a moth-eye structure 34 is formed on the concave surface 32.
  • the moth-eye structure 34 is a fine uneven structure as shown in FIG. 4 and is a structure having an antireflection function.
  • the moth-eye structure 34 may be formed by processing the concave surface 32 itself, or may be made of a separate material on the surface of the concave surface 32.
  • a fine uneven structure made of boehmite can be formed.
  • the fine concavo-convex structure made of this boehmite can be provided on the concave surface 32 as the moth-eye structure 34.
  • the surface of the concave surface 32 is etched by performing reactive ion etching from the surface of the boehmite to form a fine concavo-convex structure corresponding to the fine concavo-convex structure of the boehmite.
  • the anti-reflection film 36 is formed on the concave surface 32.
  • the antireflective film 36 can be composed of a low refractive index layer having a refractive index smaller than that of the concave MLA 30.
  • the antireflection film 36 is formed by alternately laminating a plurality of low refractive index layers having a relatively low refractive index and high refractive index layers having a relatively high refractive index, each having a higher antireflection function.
  • a dielectric multilayer film is provided.
  • the configuration provided with the anti-reflection function provided on the concave surface 32 of the MLA 30 may be either a moth-eye structure or an anti-reflection film.
  • the use of the method of producing boehmite as described above is preferable because it can be very simply configured to provide uniform antireflection performance.
  • the head mounted display of the present invention is not limited to the goggle type as shown in FIG. 1, but may be a glasses type.
  • FIG. 6 is a perspective view showing the appearance of a head mounted display according to a second embodiment of the present invention.
  • FIG. 7 is a view showing an internal configuration of the head mounted display shown in FIG.
  • the head mounted display 101 of the second embodiment shown in FIG. 6 is a glasses-type head mounted display.
  • the HMD 101 of the present embodiment has the display image 140 superimposed on the image of the outside world on a part of the field of view on the eyeglasses provided with the eyeglass frame 102 and the eyelid 104 of eyeglasses connected to the eyeglass frame 102 Display unit 108 is incorporated.
  • a control signal of a moving image or a still image taken out as the display image 140 is separately provided image information through an optical fiber 109 drawn to the outside from the rear end of the eyelid 104 of the glasses. It is supplied from the transmitting means.
  • the display unit 108 includes a display panel 110, a refractive lens 120, and a flat half mirror 122.
  • the display panel 110 displays an image (original image) sent via the optical fiber 109.
  • the refractive lens 120 has a function of enlarging the original image on the screen of the display panel 110 and throwing it to the eye 220 of the wearer.
  • the refractive lens 120 constitutes a magnifying optical system.
  • the flat plate half mirror 122 has a function of reflecting the image light from the refractive lens 120 toward the eye 220 and transmitting the light from the image of the external world in the middle of the optical path from the refractive lens 120 to the eye. .
  • a concave MLA 30 is provided between the display panel 110 of the display unit 108 and the refractive lens 120 which is a magnifying optical system.
  • the image of the outside world is displayed as if the virtual image (display image) 140 of the original image displayed on the display panel 110 enlarged by the dioptric lens 120 is part of the field of view from the glasses in the wearer's eye 220 It will be projected again.
  • the concave MLA 30 By providing the concave MLA 30, the visibility of the black matrix of the display panel 110 can be reduced, and the wearer can visually recognize a sharp image as the virtual image 140 with almost no visual recognition of the black matrix.
  • the effects and advantages of the concave MLA 30 are the same as those of the HMD 1 of the first embodiment.
  • the concave MLA 30 is the same as that of the first embodiment in that it is more preferable to use one having the concave surface 32 with the radiation preventing function, as shown and described in FIG. 4 or FIG. 5.
  • the configuration and arrangement of the display panel and the magnifying optical system are not limited to the configurations of the above embodiments.
  • a configuration provided with a reflecting mirror such as a concave mirror may be used.
  • the magnifying optical system may be configured of one component, it may be configured by combining a plurality of optical components.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Provided is a head-mounted display in which sharp image display is realized while visibility of a black matrix is reduced. The head-mounted display according to the present invention is provided with a display panel, an enlarging optical system for enlarging an image displayed in the display panel, and a microlens array disposed in an optical path between the display panel and the enlarging optical system. In the microlens array, a plurality of concave lenses are arranged, and concave surfaces of the concave lenses are disposed facing toward the enlarging optical system.

Description

ヘッドマウントディスプレイHead mounted display
 本発明は、ヘッドマウントディスプレイに関する。 The present invention relates to a head mounted display.
 ヘッドマウントディスプレイは、ユーザの眼球の至近距離に映像を表示するディスプレイである。ヘッドマウントディスプレイとしては、特許文献1に開示されるようなゴーグル型および特許文献2に開示されるような眼鏡型などがある。いずれの場合もヘッドマウントディスプレイにおいては、ユーザの眼前に視野角の広い映像を表示させるために曲率の高い光学レンズを採用している。 The head mounted display is a display that displays an image at a close distance to the eye of the user. As the head mounted display, there are a goggle type as disclosed in Patent Document 1, a glasses type as disclosed in Patent Document 2, and the like. In any case, in the head mounted display, an optical lens with high curvature is employed to display an image with a wide viewing angle in front of the user's eye.
 このように眼前に視野角の広い映像を表示させるために曲率の高い光学レンズを用いるヘッドマウントディスプレイでは、ディスプレイパネルの画素が拡大して見えるため、画素間のブラックマトリクス(画素格子)が目立ってしまい、画素がドットの並びとして視認されて画質が低下するという問題がある。 As described above, in a head mounted display using an optical lens with a high curvature to display an image with a wide viewing angle in front of the eyes, the pixels of the display panel appear to be enlarged, so the black matrix (pixel grid) between the pixels is noticeable As a result, there is a problem that pixels are visually recognized as a line of dots and the image quality is degraded.
 この画質の低下を抑制する手法として、ディスプレイパネルと接眼レンズとの間に光学ローパスフィルタとして作用する、マイクロレンズアレイなどの光学素子を備えることが特許文献3に提案されている。 As a method of suppressing the deterioration of the image quality, Patent Document 3 proposes that an optical element such as a microlens array is provided between the display panel and the eyepiece to act as an optical low pass filter.
特開2011-145607号公報JP 2011-145607 A 特開平11-346336号公報Japanese Patent Laid-Open No. 11-346336 特開2016-139112号公報JP, 2016-139112, A
 図8は、特許文献3のヘッドマウントディスプレイの内部構成を示す図であり、ディスプレイパネル200から接眼レンズ210への光路にマイクロレンズアレイ230を備えている。特許文献3には、このマイクロレンズアレイ230のローパスフィルタ効果、すなわち光を拡散させる効果により、画像がぼけるため、ディスプレイパネルのブラックマトリクスを目立たなくすることができる旨開示されている。 FIG. 8 is a view showing an internal configuration of the head mounted display of Patent Document 3, and is provided with a microlens array 230 in an optical path from the display panel 200 to the eyepiece lens 210. Patent Document 3 discloses that the low-pass filter effect of the microlens array 230, that is, the effect of diffusing light blurs the image, so that the black matrix of the display panel can be made inconspicuous.
 図9に示すように、ディスプレイパネル200には赤画素212R、緑画素212G、青画素212B(これらを総称するときは「画素212」と呼ぶ)が配置されており、それらの画素212の間にはブラックマトリクス214が存在する。図8に示されるような、一般的な凸型のマイクロレンズアレイ230を、凸面が接眼レンズ側となるように配置した場合、拡散効果を得るためには、図9に示すように、凸レンズで一旦収束させた後に広がる光線を用いる必要がある。しかしながら、このような光線は、隣接画素に拡散され、さらに隣接画素を超えて拡散される可能性が高い。具体的には、赤画素212Rからマイクロレンズアレイ230に入射してその凸面232から出力されて屈折された光線240は隣接する緑画素212G側に進行する。また、緑画素212Gからマイクロレンズアレイ230に入射してその凸面232から出力されて屈折された光線242は隣接する赤画素212R側に進行する。このように各画素212を出力した光が凸面232で大きく屈折されて進行することによって、ブラックマトリクス214を超えて隣接画素側に漏れるため、ブラックマトリクスを目立たなくする効果が得られるが、画像全体のシャープネスが低下して、画像が全体的にぼけてしまうという問題がある。 As shown in FIG. 9, in the display panel 200, a red pixel 212R, a green pixel 212G, and a blue pixel 212B (referred to collectively as “pixel 212” when these are collectively referred to) are arranged. There is a black matrix 214. When a general convex microlens array 230 as shown in FIG. 8 is arranged such that the convex surface is on the eyepiece side, in order to obtain the diffusion effect, as shown in FIG. It is necessary to use a light beam which spreads once it is made to converge. However, such rays are likely to be diffused to adjacent pixels and even diffused beyond the adjacent pixels. Specifically, the light ray 240 which is incident on the microlens array 230 from the red pixel 212R and is output and refracted from the convex surface 232 thereof travels to the adjacent green pixel 212G side. In addition, the green pixel 212G enters the microlens array 230, and the light ray 242 output and refracted from the convex surface 232 travels to the adjacent red pixel 212R side. In this manner, the light output from each pixel 212 is largely refracted by the convex surface 232 and travels beyond the black matrix 214 and leaks to the adjacent pixel side, so that the effect of making the black matrix inconspicuous can be obtained. There is a problem that the sharpness of the image is reduced and the entire image is blurred.
 本発明は上記事情に鑑み、ブラックマトリクスの視認性を低下させつつ、シャープな画像表示を実現するヘッドマウントディスプレイを提供することを目的とする。 An object of the present invention is to provide a head mounted display which realizes sharp image display while reducing the visibility of the black matrix.
 本発明のヘッドマウントディスプレイは、ディスプレイパネルと、
 ディスプレイパネルに表示された画像を拡大する拡大光学系と、
 ディスプレイパネルと拡大光学系との間の光路に配置されたマイクロレンズアレイとを備え、
 マイクロレンズアレイが、凹レンズが複数配列されてなり、凹レンズの凹面を拡大光学系に向けて配置されている。
The head mounted display of the present invention comprises a display panel;
Magnifying optical system that magnifies the image displayed on the display panel,
And a microlens array disposed in the optical path between the display panel and the magnifying optical system;
A plurality of microlens arrays are arranged such that a plurality of concave lenses are arranged, and the concave surface of the concave lens is directed to the magnifying optical system.
 本発明のヘッドマウントディスプレイは、マイクロレンズアレイがディスプレイパネルの画像表示面に接して配置されていることが好ましい。 Preferably, in the head mounted display of the present invention, the microlens array is disposed in contact with the image display surface of the display panel.
 本発明のヘッドマウントディスプレイは、凹面に反射防止機能を備えていることが好ましい。 It is preferable that the head mounted display of the present invention has an anti-reflection function on the concave surface.
 反射防止機能は、凹面に備えられたモスアイ構造もしくは誘電多層膜により実現することができる。 The anti-reflection function can be realized by a moth-eye structure or a dielectric multilayer film provided on a concave surface.
 本発明のヘッドマウントディスプレイは、ディスプレイパネルと、ディスプレイパネルに表示された画像を拡大する拡大光学系との間の光路にマイクロレンズアレイを備えており、そのマイクロレンズアレイが複数の凹レンズが配列されてなり、凹レンズの凹面を拡大光学系に向けて配置されている。係る構成により、ブラックマトリックスの視認性を低下させ、かつ、シャープな画像表示を実現することができる。 The head mount display of the present invention comprises a microlens array in the optical path between the display panel and the magnifying optical system for magnifying the image displayed on the display panel, and the microlens array is arranged with a plurality of concave lenses. And the concave surface of the concave lens is directed to the magnifying optical system. According to such a configuration, the visibility of the black matrix can be reduced and sharp image display can be realized.
第1の実施形態のヘッドマウントディスプレイの構成を上方から見た図である。It is the figure which looked at the structure of the head mounted display of 1st Embodiment from upper direction. 図1のヘッドマウントディスプレイの内部構成を説明するための図である。It is a figure for demonstrating the internal structure of the head mounted display of FIG. 凹マイクロレンズアレイによる効果を説明するための図である。It is a figure for demonstrating the effect by a concave micro lens array. 凹マイクロレンズアレイの断面図である。It is a sectional view of a concave micro lens array. 凹マイクロレンズアレイの断面図である。It is a sectional view of a concave micro lens array. 第2の実施形態のヘッドマウントディスプレイの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the head mounted display of 2nd Embodiment. 図6のヘッドマウントディスプレイの内部構成を説明するための図である。It is a figure for demonstrating the internal structure of the head mounted display of FIG. 従来技術のヘッドマウントディスプレイの内部構成を説明するための図である。It is a figure for demonstrating the internal structure of the head mounted display of a prior art. 凸レンズからなるマイクロレンズアレイによる光拡散を説明するための図である。It is a figure for demonstrating the light diffusion by the micro lens array which consists of convex lenses.
 以下、本発明のヘッドマウントディスプレイの実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the head mounted display of the present invention will be described with reference to the drawings.
 図1は、第1の実施形態のヘッドマウントディスプレイ(HMD:Head Mount Display)1を上方から見た概略構成図である。図1において、ゴーグル状の本体部2およびその内部構成を示すが、そのほかに、装着者が頭に装着する装着性を高めるための図示しない先頭部接触部、側頭部接触部などの各種接触部を備えている。 FIG. 1 is a schematic configuration view of the head mount display (HMD) 1 of the first embodiment as viewed from above. FIG. 1 shows the goggle-like main body 2 and its internal configuration, but in addition, various contacts such as a front contact portion and a temporal contact portion (not shown) for enhancing the mountability to be worn by the wearer on the head. It has a department.
 HMD1は、眼前正面に備えられたディスプレイパネル10と、左右の瞳の想定位置にそれぞれ配置された接眼レンズ20と、ディスプレイパネル10から接眼レンズ20の光路に配置されたマイクロレンズアレイ(MLA:Micro Lens Allay)30とを備えている。本実施形態においては、接眼レンズ20が、ディスプレイパネル10の画像を拡大する拡大光学系を構成する。MLA30は、凹レンズが複数配列されてなる。以下において、凹MLA30、と称する。そして、凹MLA30は、凹レンズの凹面32が接眼レンズ20側となるように配置されている。 The HMD 1 includes a display panel 10 provided in front of the eye, an eyepiece lens 20 disposed at an assumed position of the left and right pupils, and a microlens array disposed in the light path from the display panel 10 to the eyepiece lens 20 (MLA: Micro Lens Allay) and 30 are provided. In the present embodiment, the eyepiece 20 constitutes a magnifying optical system that magnifies the image of the display panel 10. The MLA 30 is formed by arranging a plurality of concave lenses. In the following, it is referred to as a concave MLA 30. The concave MLA 30 is disposed such that the concave surface 32 of the concave lens is on the eyepiece 20 side.
 図2は、HMD1の内部構成を説明するための図である。
 ディスプレイパネル10は、液晶パネルあるいは有機ELパネルなど軽量かつ高精細なものが望ましい。凹MLA30は、凹面32が接眼レンズ20側となるように配置されており、ディスプレイパネル10からの光は、凹MLA30を通過して凹面32から接眼レンズ20側に出射される。
FIG. 2 is a diagram for explaining an internal configuration of the HMD 1.
The display panel 10 is preferably a lightweight and high-definition display panel such as a liquid crystal panel or an organic EL panel. The concave MLA 30 is disposed such that the concave surface 32 is on the eyepiece 20 side, and the light from the display panel 10 passes through the concave MLA 30 and is emitted from the concave surface 32 to the eyepiece 20 side.
 凹MLA30は、ディスプレイパネル10と拡大光学系(ここでは接眼レンズ20)との間の光路に備えられていればよいが、隣接画素との混色を抑制する観点から、ディスプレイパネル10に近接、もしくは接して配置されていることが好ましい。ここでディスプレイパネル10の画像表示面は、ディスプレイパネル10の接眼レンズ20側に配置され、凹MLA30が、ディスプレイパネル10の画像表示面に接して配置されていることが好ましい。ディスプレイパネル10の画像表示面に接して凹MLA30が配置された構成としては、凹MLA30が画像表示面に粘着層を介して貼付されていてもよいし、接触させた状態で粘着層を備えず保持されていてもよい。また、ディスプレイパネルの製造段階で凹MLA30をディスプレイパネルに組み込んで、ディスプレイパネルとマイクロレンズアレイとが一体化されていてもよい。 The concave MLA 30 may be provided in the light path between the display panel 10 and the magnifying optical system (here, the eyepiece lens 20), but from the viewpoint of suppressing color mixing with adjacent pixels, the concave MLA 30 is close to the display panel 10 or It is preferable to arrange | position in contact. Here, the image display surface of the display panel 10 is preferably disposed on the eyepiece 20 side of the display panel 10, and the concave MLA 30 is preferably disposed in contact with the image display surface of the display panel 10. In the configuration in which the concave MLA 30 is disposed in contact with the image display surface of the display panel 10, the concave MLA 30 may be attached to the image display surface via the adhesive layer, or the adhesive layer is not provided in a state of contact. It may be held. In addition, the concave MLA 30 may be incorporated into the display panel at the manufacturing stage of the display panel, and the display panel and the microlens array may be integrated.
 HMD1は、ユーザの眼220が接眼レンズ20および凹MLA30を介してディスプレイパネル10に表示された画像を観察する構成である。HMDのディスプレイパネル10は小型であるが、接眼レンズ20により拡大されて観察されるため、ユーザには、あたかも眼前に大型ディスプレイがあるかのように見える。凹MLA30を備えていない状態では、接眼レンズ20による拡大作用により、ディスプレイパネル10の画素間のブラックマトリクスが目立つようになりドットの並びが強調されて視認される。しかし、本実施形態のHMD1は、凹MLA30を備えており、凹MLA30の光拡散効果により、ディスプレイパネル10のブラックマトリクスは目立たなくなる。 The HMD 1 is configured to observe an image displayed on the display panel 10 through the eyepiece lens 20 and the concave MLA 30 of the user's eye 220. Although the display panel 10 of the HMD is compact, since it is magnified and observed by the eyepiece lens 20, it looks to the user as if there is a large display in front of the eyes. In the state where the concave MLA 30 is not provided, the black matrix between the pixels of the display panel 10 becomes noticeable by the magnifying action by the eyepiece lens 20, and the arrangement of dots is emphasized and visually recognized. However, the HMD 1 of the present embodiment includes the concave MLA 30, and the black matrix of the display panel 10 becomes inconspicuous due to the light diffusion effect of the concave MLA 30.
 図3は、凹MLA30による光拡散効果を説明するための図である。
 図3に示すように、ディスプレイパネル10には、赤画素12R、緑画素12G、青画素12Bが備えられている。なお、以下において、色の区別なく画素を総称する場合には、単に「画素12」という。ディスプレイパネル10の画素12の間にはブラックマトリクス14が存在する。既述の通り、凹MLA30が備えられていない状態では、接眼レンズ20によって拡大して画素12の並びを観察すると、ブラックマトリクス14が目立つため、画素12がドットの並びとして視認される。
FIG. 3 is a figure for demonstrating the light-diffusion effect by concave MLA30.
As shown in FIG. 3, the display panel 10 is provided with a red pixel 12R, a green pixel 12G, and a blue pixel 12B. In the following, when the pixels are generically referred to without distinction of color, they are simply referred to as "pixels 12". A black matrix 14 exists between the pixels 12 of the display panel 10. As described above, in the state where the concave MLA 30 is not provided, when the line of the pixels 12 is observed by enlarging the eyepiece lens 20, the black matrix 14 is noticeable, so the pixels 12 are visually recognized as a line of dots.
 一方、凹MLA30を備えた場合、その凹レンズの作用(図3参照)により、各画素12からの光線40が広がり、画素の境界間では隣接画素間の光が混ざり、隣接画素間のブラックマトリクス14がぼけて目立たなくなる。また、凸レンズと比較して拡散方向への屈曲が緩やかであるため、隣接画素との混色を小さくすることができる。これにより、画像のシャープネスを維持することができる。なお、凹レンズは本質的に光拡散機能を備えているため画素間のブラックマトリクス低減のための作用を容易に得ることができる。したがって、凹MLAであれば、凹面が小さい曲率の曲面であってもブラックマトリクスを低減する効果を十分に得ることができる。曲率が小さい(すなわち曲率半径が大きい)場合には、レンズ面の凹凸高さ、すなわち、凹部と凸部の高低差が小さくなる。凹MLAは金型から形状を転写して作製されるが、凹凸高さが小さい場合は転写が容易でレンズ精度を高められるメリットが得られる。
 また、光線を凸レンズを用いて拡散させる場合には、光線は、既述の通り、一旦収束したのちに拡散する光路を取らねばならないため、光学設計に制約が生じ易い。他方、凹レンズであれば本来的に光が拡散するので光学設計に制約が生じにくい。したがって、MLAを作製する際、および他の光学部材と組み合わせたHMDにおける光路設計などを行う際に、凹MLAは凸MLAよりも設計の自由度が高く有利である。
On the other hand, when the concave MLA 30 is provided, the light beam 40 from each pixel 12 spreads by the action of the concave lens (see FIG. 3), and light between adjacent pixels is mixed between the boundaries of the pixels, and black matrix Blur and become unnoticeable. Further, since the bending in the diffusion direction is gentler than that of a convex lens, the color mixture with adjacent pixels can be reduced. Thereby, the sharpness of the image can be maintained. In addition, since the concave lens essentially has a light diffusing function, the function for reducing the black matrix between the pixels can be easily obtained. Therefore, if it is concave MLA, even if it is a curved surface with a small concave surface, the effect of reducing a black matrix can fully be acquired. When the curvature is small (that is, the curvature radius is large), the height of the unevenness of the lens surface, that is, the height difference between the concave and the convex becomes small. The concave MLA is manufactured by transferring the shape from the mold, but when the height of the concavo-convex is small, it is easy to transfer and the merit that the lens accuracy can be improved is obtained.
Further, in the case of diffusing a light beam using a convex lens, as described above, the light beam has to take an optical path which once diffused and then diffused, which tends to restrict the optical design. On the other hand, in the case of a concave lens, light is inherently diffused, so that limitation in optical design is less likely to occur. Therefore, concave MLA is more advantageous in design freedom than convex MLA when manufacturing MLA, and when designing an optical path in an HMD combined with other optical members.
 なお、図3においては、画素12のピッチと凹面32のピッチとがほぼ1:1となる凹MLA30を示しているが、凹MLA30における凹面32のピッチは画素12ピッチと必ずしも一致していなくてもよい。1つの画素に対して複数の凹面32が対応するように凹面32のピッチが画素ピッチよりも小さくてもよい。凹面のピッチ、大きさ等は画素のピッチに応じて適宜定めればよい。
 凹MLA30によるブラックマトリクスの除去、混色抑制(シャープな画像の実現)の効果が最適となるように、凹面のピッチおよび曲率を適宜設定すればよい。
Although FIG. 3 shows the concave MLA 30 in which the pitch of the pixels 12 and the pitch of the concave surface 32 are approximately 1: 1, the pitch of the concave surface 32 in the concave MLA 30 does not necessarily coincide with the pixel 12 pitch. It is also good. The pitch of the concave surfaces 32 may be smaller than the pixel pitch so that the plurality of concave surfaces 32 correspond to one pixel. The pitch, size, etc. of the concave surface may be appropriately determined in accordance with the pixel pitch.
The pitch and curvature of the concave surface may be appropriately set so that the effects of black matrix removal and color mixture suppression (realization of a sharp image) by the concave MLA 30 become optimal.
 凹MLA30における凹レンズの凹面の形状としては、凹レンズの曲率半径が、レンズピッチの1.5倍以上であることが好ましく、2倍以上であることがより好ましく、2.5倍以上であることがさらに好ましい。例えば、1ピクセル60μm×60μmの場合(R/G/Bピッチ20μmの場合)には、凹MLAのレンズピッチは20μm程度が好ましく、凹レンズの凹面の曲率半径は50μm以上が好ましい。ここで、R/G/Bピッチとは、上述の画素12のピッチである。 As for the shape of the concave surface of the concave lens in the concave MLA 30, the curvature radius of the concave lens is preferably 1.5 times or more of the lens pitch, more preferably 2 times or more, and 2.5 times or more. More preferable. For example, in the case of one pixel 60 μm × 60 μm (in the case of R / G / B pitch 20 μm), the lens pitch of the concave MLA is preferably about 20 μm, and the curvature radius of the concave surface of the concave lens is preferably 50 μm or more. Here, the R / G / B pitch is the pitch of the pixel 12 described above.
 なお、凹MLA30の凹面32には反射防止機能(反射防止層)を備えていることが好ましい。凹面32に反射防止機能(反射防止層)を備えることにより、ディスプレイパネルから凹MLA30に入射した光の凹面32での反射を抑制し、結果として凹MLA30内で多重反射を抑制できる。ある画素からの出力光が凹MLA30内で多重反射を繰り返すことにより、隣接画素あるいは隣接画素より離れた画素の領域から出射され、混色が生じる場合がある。すなわち多重反射を抑制することにより、混色が生じるのを効果的に抑制することができ、よりシャープな画像の表示が可能となる。 In addition, it is preferable that the concave surface 32 of the concave MLA 30 be provided with a reflection preventing function (reflection preventing layer). By providing the concave surface 32 with the anti-reflection function (antireflection layer), it is possible to suppress the reflection on the concave surface 32 of the light entering the concave MLA 30 from the display panel, and as a result, the multiple reflection in the concave MLA 30. The output light from a certain pixel may be emitted from an adjacent pixel or an area of a pixel separated from the adjacent pixel by repeating multiple reflection in the concave MLA 30, and color mixing may occur. That is, by suppressing multiple reflection, it is possible to effectively suppress the occurrence of color mixing, and it is possible to display a sharper image.
 図4および図5は、反射防止機能(反射防止層)を凹面32に備えた凹MLA30の断面図である。
 図4に示す凹MLA30は、凹面32にモスアイ構造34が形成されている。モスアイ構造34とは、図4に示すような微細な凹凸構造であり、反射防止機能を奏する構造である。モスアイ構造34は、凹面32自体が加工されて形成されていてもよいし、凹面32の表面に別途の材料により構成されていてもよい。凹面32の表面にアルミニウム、アルミナあるいは窒化アルミニウムなどアルミニウム含む薄膜を形成し、温水(例えば、80℃以上)中に浸漬させることにより、ベーマイトからなる微細凹凸構造を形成することができる。このベーマイトからなる微細凹凸構造をモスアイ構造34として凹面32に備えることができる。あるいは、このベーマイトをエッチングマスクとして用い、ベーマイト表面側から反応性イオンエッチング処理を行うことにより凹面32の表面をエッチングすることによりベーマイトの微細凹凸構造に応じた微細凹凸構造を凹面32に形成することができる。このように凹面32を微細凹凸加工することによって、ベーマイトよりも耐久性の高い微細凹凸構造を得ることができる。
FIGS. 4 and 5 are cross-sectional views of a concave MLA 30 provided with a reflection preventing function (reflection preventing layer) on the concave surface 32. FIG.
In the concave MLA 30 shown in FIG. 4, a moth-eye structure 34 is formed on the concave surface 32. The moth-eye structure 34 is a fine uneven structure as shown in FIG. 4 and is a structure having an antireflection function. The moth-eye structure 34 may be formed by processing the concave surface 32 itself, or may be made of a separate material on the surface of the concave surface 32. By forming a thin film containing aluminum such as aluminum, alumina or aluminum nitride on the surface of the concave surface 32 and immersing it in warm water (for example, 80 ° C. or more), a fine uneven structure made of boehmite can be formed. The fine concavo-convex structure made of this boehmite can be provided on the concave surface 32 as the moth-eye structure 34. Alternatively, using the boehmite as an etching mask, the surface of the concave surface 32 is etched by performing reactive ion etching from the surface of the boehmite to form a fine concavo-convex structure corresponding to the fine concavo-convex structure of the boehmite. Can. As described above, by processing the concave surface 32 by fine asperity, it is possible to obtain a fine asperity structure having higher durability than boehmite.
 図5に示す凹MLA30は、凹面32に反射防止膜36が形成されている。反射防止膜36は、凹MLA30の屈折率よりも小さい屈折率を有する低屈折率層から構成することができる。反射防止膜36としては、より高い反射防止機能を奏する、相対的に低い屈折率を有する低屈折率層と相対的に高い屈折率を有する高屈折率層とが交互に複数層積層されてなる誘電体多層膜を備えることが好ましい。 In the concave MLA 30 shown in FIG. 5, the anti-reflection film 36 is formed on the concave surface 32. The antireflective film 36 can be composed of a low refractive index layer having a refractive index smaller than that of the concave MLA 30. The antireflection film 36 is formed by alternately laminating a plurality of low refractive index layers having a relatively low refractive index and high refractive index layers having a relatively high refractive index, each having a higher antireflection function. Preferably, a dielectric multilayer film is provided.
 上記の通り、MLA30の凹面32に備えられる反射防止機能を奏する構成としては、モスアイ構造または反射防止膜いずれであってもよい。上記のようにベーマイトを作製する方法を用いると、非常に簡易に均一な反射防止性能を奏する構成とすることができ、好ましい。 As described above, the configuration provided with the anti-reflection function provided on the concave surface 32 of the MLA 30 may be either a moth-eye structure or an anti-reflection film. The use of the method of producing boehmite as described above is preferable because it can be very simply configured to provide uniform antireflection performance.
 本発明のヘッドマウントディスプレイは、図1に示すようなゴーグル型に限るものではなく、眼鏡型であってもよい。図6は、本発明の第2の実施形態のヘッドマウントディスプレイの外観を示す斜視図である。また、図7は図6に示すヘッドマウントディスプレイの内部構成を示す図である。 The head mounted display of the present invention is not limited to the goggle type as shown in FIG. 1, but may be a glasses type. FIG. 6 is a perspective view showing the appearance of a head mounted display according to a second embodiment of the present invention. FIG. 7 is a view showing an internal configuration of the head mounted display shown in FIG.
 図6に示す第2の実施形態のヘッドマウントディスプレイ101は眼鏡型のヘッドマウントディスプレイである。本実施形態のHMD101は、眼鏡フレーム102および眼鏡フレーム102に連なる眼鏡の蔓104、眼鏡フレームに嵌め込まれたメガネレンズ106を備えた眼鏡に、視野の一部に表示映像140を外界の像に重ねて表示するディスプレイユニット108が組み込まれた構成を有する。本実施形態のヘッドマウントディスプレイ101において、表示映像140として写し出される動画もしくは静止画の制御信号は、眼鏡の蔓104の後端から外部に引き出された光ファイバ109を通して、別途に備えられた映像情報送信手段から供給される。 The head mounted display 101 of the second embodiment shown in FIG. 6 is a glasses-type head mounted display. The HMD 101 of the present embodiment has the display image 140 superimposed on the image of the outside world on a part of the field of view on the eyeglasses provided with the eyeglass frame 102 and the eyelid 104 of eyeglasses connected to the eyeglass frame 102 Display unit 108 is incorporated. In the head mounted display 101 of the present embodiment, a control signal of a moving image or a still image taken out as the display image 140 is separately provided image information through an optical fiber 109 drawn to the outside from the rear end of the eyelid 104 of the glasses. It is supplied from the transmitting means.
 図7に示すように、ディスプレイユニット108は、ディスプレイパネル110、屈折レンズ120、平板ハーフミラー122を備えている。
 ディスプレイパネル110には光ファイバ109を介して送られてきた画像(原画像)が表示される。屈折レンズ120はディスプレイパネル110の画面上の原画像を拡大して装着者の眼220に投ずる機能を有する。この屈折レンズ120が拡大光学系を構成する。平板ハーフミラー122は、屈折レンズ120から眼に至る光路の途中にあって、屈折レンズ120からの画像光を眼220に向けて反射させ、かつ、外界の像からの光を透過させる機能を有する。
As shown in FIG. 7, the display unit 108 includes a display panel 110, a refractive lens 120, and a flat half mirror 122.
The display panel 110 displays an image (original image) sent via the optical fiber 109. The refractive lens 120 has a function of enlarging the original image on the screen of the display panel 110 and throwing it to the eye 220 of the wearer. The refractive lens 120 constitutes a magnifying optical system. The flat plate half mirror 122 has a function of reflecting the image light from the refractive lens 120 toward the eye 220 and transmitting the light from the image of the external world in the middle of the optical path from the refractive lens 120 to the eye. .
 そして、ディスプレイユニット108のディスプレイパネル110と拡大光学系である屈折レンズ120との間に凹MLA30が備えられている。 A concave MLA 30 is provided between the display panel 110 of the display unit 108 and the refractive lens 120 which is a magnifying optical system.
 装着者の眼220には眼鏡からの視界の一部に、屈折レンズ120により拡大されたディスプレイパネル110に表示された原画像の虚像(表示映像)140があたかも前方にあるように、外界の像と重ねて映し出される。凹MLA30を備えたことにより、ディスプレイパネル110のブラックマトリクスの視認性を低下させることができ、装着者はブラックマトリクスをほとんど視認することなく、かつシャープな映像を虚像140として視認することができる。凹MLA30の作用効果は上記第1の実施形態のHMD1の場合と同様である。凹MLA30としては、図4または図5に示して説明した、凹面32に射防止機能を備えたものを用いることがより好ましい点でも第1の実施形態の場合と同様である。 The image of the outside world is displayed as if the virtual image (display image) 140 of the original image displayed on the display panel 110 enlarged by the dioptric lens 120 is part of the field of view from the glasses in the wearer's eye 220 It will be projected again. By providing the concave MLA 30, the visibility of the black matrix of the display panel 110 can be reduced, and the wearer can visually recognize a sharp image as the virtual image 140 with almost no visual recognition of the black matrix. The effects and advantages of the concave MLA 30 are the same as those of the HMD 1 of the first embodiment. The concave MLA 30 is the same as that of the first embodiment in that it is more preferable to use one having the concave surface 32 with the radiation preventing function, as shown and described in FIG. 4 or FIG. 5.
 以上の通り、第1および第2の実施形態のヘッドマウントディスプレイではいずれの場合にも、ディスプレイパネルのブラックマトリクスの視認性を低下させつつ、シャープな画像表示を実現することができる。
 なお、本発明のヘッドマウントディスプレイにおいて、ディスプレイパネル、拡大光学系の構成および配置は上記実施形態の構成に限るものではない。拡大光学系としては、例えば、凹面ミラーなどの反射鏡を備えた構成であってもよい。また、拡大光学系は1つの部品から構成されていてもよいが、複数の光学部品を組み合わせて構成されていてもよい。
As described above, in any of the head mounted displays of the first and second embodiments, it is possible to realize sharp image display while reducing the visibility of the black matrix of the display panel.
In the head mounted display of the present invention, the configuration and arrangement of the display panel and the magnifying optical system are not limited to the configurations of the above embodiments. As an expansion optical system, for example, a configuration provided with a reflecting mirror such as a concave mirror may be used. In addition, although the magnifying optical system may be configured of one component, it may be configured by combining a plurality of optical components.
 1,101  ヘッドマウントディスプレイ
 2  本体部
 7  屈折レンズ
 10  ディスプレイパネル
 12  画素
 12B  青画素
 12G  緑画素
 12R  赤画素
 14  ブラックマトリクス
 20  接眼レンズ
 30  凹レンズのマイクロレンズアレイ
 32  凹面
 34  モスアイ構造
 36  反射防止膜
 40  光線
 102  眼鏡フレーム
 104  蔓
 106  メガネレンズ
 108  ディスプレイユニット
 109  光ファイバ
 110  ディスプレイパネル
 120  屈折レンズ
 122  平板ハーフミラー
 140  表示映像(虚像)
 200  ディスプレイパネル
 210  接眼レンズ
 212  画素
 212B  青画素
 212G  緑画素
 212R  赤画素
 214  ブラックマトリクス
 220  眼
 230  凸レンズのマイクロレンズアレイ
 232  凸面
 240,242  光線
 
1,101 head mounted display 2 main body 7 refractive lens 10 display panel 12 pixel 12B blue pixel 12G green pixel 12R red pixel 14 black matrix 20 eyepiece lens 30 concave lens microlens array 32 concave 34 moth eye structure 36 antireflective film 40 light ray 102 Eyeglass frame 104 106 106 Eyeglass lens 108 Display unit 109 Optical fiber 110 Display panel 120 Refractive lens 122 Flat plate half mirror 140 Displayed image (virtual image)
Reference Signs List 200 display panel 210 eyepiece 212 pixel 212B blue pixel 212G green pixel 212R red pixel 214 black matrix 220 eye 230 convex lens micro lens array 232 convex surface 240, 242 rays

Claims (5)

  1.  ディスプレイパネルと、
     該ディスプレイパネルに表示された画像を拡大する拡大光学系と、
     前記ディスプレイパネルと前記拡大光学系との間の光路に配置されたマイクロレンズアレイとを備え、
     前記マイクロレンズアレイが、凹レンズが複数配列されてなり、該凹レンズの凹面を前記拡大光学系に向けて配置されているヘッドマウントディスプレイ。
    Display panel,
    An enlargement optical system for enlarging an image displayed on the display panel;
    A microlens array disposed in a light path between the display panel and the magnifying optical system;
    A head mount display, wherein the microlens array is formed by arranging a plurality of concave lenses, and the concave surface of the concave lens is directed to the magnifying optical system.
  2.  前記マイクロレンズアレイが前記ディスプレイパネルの画像表示面に接して配置されている請求項1に記載のヘッドマウントディスプレイ。 The head mounted display according to claim 1, wherein the microlens array is disposed in contact with an image display surface of the display panel.
  3.  前記凹面に反射防止機能を備えている請求項1または2に記載のヘッドマウントディスプレイ。 The head mounted display according to claim 1, wherein the concave surface is provided with an anti-reflection function.
  4.  前記凹面に、モスアイ構造が備えられている請求項3に記載のヘッドマウントディスプレイ。 The head mounted display according to claim 3, wherein a moth-eye structure is provided on the concave surface.
  5.  前記凹面に、反射防止膜が備えられている請求項3に記載のヘッドマウントディスプレイ。
     
    The head mounted display according to claim 3, wherein an antireflective film is provided on the concave surface.
PCT/JP2018/030314 2017-09-04 2018-08-14 Head-mounted display WO2019044501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539339A JPWO2019044501A1 (en) 2017-09-04 2018-08-14 Head mounted display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-169668 2017-09-04
JP2017169668 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019044501A1 true WO2019044501A1 (en) 2019-03-07

Family

ID=65525406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030314 WO2019044501A1 (en) 2017-09-04 2018-08-14 Head-mounted display

Country Status (2)

Country Link
JP (1) JPWO2019044501A1 (en)
WO (1) WO2019044501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163185A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical member and ar glasses and head-mounted display using said optical member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221703A (en) * 1995-03-14 2002-08-09 Matsushita Electric Ind Co Ltd Liquid crystal display device and viewfinder using the same
JP2002328331A (en) * 2002-01-23 2002-11-15 Sharp Corp Display device
JP2005172969A (en) * 2003-12-09 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional display device
JP2007086500A (en) * 2005-09-22 2007-04-05 Sony Corp Display device
JP2014102311A (en) * 2012-11-19 2014-06-05 Seiko Epson Corp Microlens array substrate, method for manufacturing microlens array substrate, electro-optic device, and electronic equipment
US20150362734A1 (en) * 2013-01-28 2015-12-17 Ecole Polytechnique Federale De Lausanne (Epfl) Transflective holographic film for head worn display
JP2016139112A (en) * 2015-01-21 2016-08-04 ソニー株式会社 Wearable display device and image display method
WO2017073251A1 (en) * 2015-10-29 2017-05-04 デクセリアルズ株式会社 Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221703A (en) * 1995-03-14 2002-08-09 Matsushita Electric Ind Co Ltd Liquid crystal display device and viewfinder using the same
JP2002328331A (en) * 2002-01-23 2002-11-15 Sharp Corp Display device
JP2005172969A (en) * 2003-12-09 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional display device
JP2007086500A (en) * 2005-09-22 2007-04-05 Sony Corp Display device
JP2014102311A (en) * 2012-11-19 2014-06-05 Seiko Epson Corp Microlens array substrate, method for manufacturing microlens array substrate, electro-optic device, and electronic equipment
US20150362734A1 (en) * 2013-01-28 2015-12-17 Ecole Polytechnique Federale De Lausanne (Epfl) Transflective holographic film for head worn display
JP2016139112A (en) * 2015-01-21 2016-08-04 ソニー株式会社 Wearable display device and image display method
WO2017073251A1 (en) * 2015-10-29 2017-05-04 デクセリアルズ株式会社 Diffuser, method for designing diffuser, method for manufacturing diffuser, display device, projection device, and illumination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163185A1 (en) * 2022-02-28 2023-08-31 日東電工株式会社 Optical member and ar glasses and head-mounted display using said optical member

Also Published As

Publication number Publication date
JPWO2019044501A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US11726325B2 (en) Near-eye optical imaging system, near-eye display device and head-mounted display device
CN106896501B (en) Virtual image display device
US8508830B1 (en) Quantum dot near-to-eye display
CN108375840B (en) Light field display unit based on small array image source and three-dimensional near-to-eye display device using light field display unit
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
EP3104215A1 (en) Apparatus and method for near eye display
US20130021226A1 (en) Wearable display devices
WO2011043188A1 (en) Display method, display device, optical unit, method for manufacturing display device, and electronic apparatus
CN112654902A (en) Head Mounted Display (HMD) with spatially varying phase shifter optics
JPH03113412A (en) Head-up display device
EP1846797A1 (en) Substrate-guided optical device utilizing polarization beam splitters
US20170357092A1 (en) Display system
US20230044063A1 (en) Ar headset with an improved displa
CN116699854B (en) Perspective optical system and equipment capable of realizing display shielding
WO2019044501A1 (en) Head-mounted display
US10509230B2 (en) Virtual display apparatus
CN216848346U (en) Augmented reality device
JP6955388B2 (en) Image display device
KR101875293B1 (en) Optical device for virtual image projection display
WO2019077975A1 (en) Video display device and optical see-through display
KR102412293B1 (en) Optical System of Near to Eye Display
WO2022133751A1 (en) Display apparatus and preparation method therefor
US11747616B2 (en) Display device and head mounted display
JP2004163840A (en) Microlens type display
WO2019026748A1 (en) Display device and head-mounted display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850163

Country of ref document: EP

Kind code of ref document: A1