WO2019026748A1 - Display device and head-mounted display - Google Patents

Display device and head-mounted display Download PDF

Info

Publication number
WO2019026748A1
WO2019026748A1 PCT/JP2018/028044 JP2018028044W WO2019026748A1 WO 2019026748 A1 WO2019026748 A1 WO 2019026748A1 JP 2018028044 W JP2018028044 W JP 2018028044W WO 2019026748 A1 WO2019026748 A1 WO 2019026748A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
refractive index
low refractive
light transmitting
film
Prior art date
Application number
PCT/JP2018/028044
Other languages
French (fr)
Japanese (ja)
Inventor
奈留 臼倉
加藤 浩巳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019026748A1 publication Critical patent/WO2019026748A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a display device and a head mounted display.
  • Patent Document 1 includes means for acquiring information on the aberration generated in the display optical system and information on the aberration generated in the optical system for vision correction used by the observer, and the two aberrations The aberration correction is performed on the basis of
  • a lens used for a display optical system has a spectrum such that the transmittance for light of short wavelength in visible light is relatively lower than the transmittance for light of longer wavelength than that. It has transmittance characteristics. Since the lens has a structure in which the thickness changes, the transmitted light may have a specific color depending on where the thickness is different, which may be viewed by the user.
  • the present invention is completed based on the above circumstances, and it is an object of the present invention to suppress color unevenness.
  • the display device is a display unit for displaying an image, and a lens unit for forming an image displayed on the display unit on the eye of the user, and the lens unit having a center side thicker than the end side It is a low refractive index light transmitting film which is provided in at least one of a display unit and the lens unit and has a light transmitting property and a light transmitting property and a refractive index lower than that of the light transmitting section. And a low-refractive-index light-transmitting film which is disposed in contact with the light-transmitting portion and whose center side is thinner than the end side.
  • the lens portion is thicker at the center side than at the end side, so that it is possible to make the image displayed on the display portion visible to the user in an enlarged manner.
  • the light transmitting portion provided in at least one of the display portion and the lens portion is in contact with a low refractive index light transmitting film having a light transmitting property and a refractive index lower than that of the light transmitting portion.
  • the reflection light at the light transmitting portion is reduced by lowering the refractive index of the low refractive index light transmitting film, the anti-reflection effect can be obtained. If the reflected light of the light transmitting part is reduced by the low refractive index light transmitting film, the transmitted light of the light transmitting part will be increased.
  • the lens portion has a spectral transmittance characteristic such that the transmittance for the short wavelength light in visible light is relatively lower than the transmittance for the longer wavelength light. For this reason, in the lens portion, the transmitted light tends to have a specific tint compared to the end side on the relatively thick central side. In that respect, since the low refractive index light transmitting film is thinner at the center side than at the end side, the transmittance of short wavelength light is higher at the center side than at the end side.
  • the thickness of the low refractive index light transmitting film is d
  • the refractive index of the low refractive index light transmitting film is n
  • the wavelength of light passing through the low refractive index light transmitting film is ⁇
  • the value of cos ⁇ in the above equation is relatively large and close to 1 It becomes.
  • the center side of the low refractive index light transmitting film thinner than the end side, d in the above equation becomes smaller, so the value of the wavelength ⁇ becomes smaller. That is, on the center side of the low refractive index light transmitting film, the transmittance of light on the short wavelength side is higher than that on the end side. As described above, the light transmitted through the center side of the lens portion is unlikely to have a specific color.
  • the schematic perspective view which shows the state which the user mounted on the head the head mounted display which concerns on Embodiment 1 of this invention A schematic side view showing an optical relationship between a liquid crystal display unit and a lens unit provided in a head-mounted device constituting a head mounted display, a user's eye, and a virtual display Side view showing liquid crystal display unit, lens unit and eyeball of user
  • the side view which shows the liquid crystal display part which concerns on Embodiment 2 of this invention, a lens part, and a user's eyeball The side view which shows the liquid crystal display part which concerns on Embodiment 3 of this invention, a lens part, and a user's eyeball
  • Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 4.
  • a goggle-type head-mounted display (HMD) HMD and a liquid crystal display device (display device) 10 used therefor are exemplified.
  • the goggle type head mount display HMD is equipped with a head mounted device HMDa mounted so as to surround both eyes in the head HD of the user, as shown in FIG.
  • the liquid crystal display device 10 is incorporated in the head mounted device HMDa.
  • the liquid crystal display device 10 includes a liquid crystal display unit (display unit) 11 for displaying an image, and a lens unit (eyepiece lens unit) 12 for forming an image displayed on the liquid crystal display unit 11 on an eye (eye) EY of a user. And at least.
  • the liquid crystal display unit 11 at least includes a liquid crystal panel (display panel) 13 having a display surface 13 a for displaying an image, and a backlight device (illumination device) 14 for irradiating the liquid crystal panel 13 with light for display.
  • the lens unit 12 is disposed between the liquid crystal display unit 11 and the eye EY of the user, and imparts a refraction function to transmitted light. By adjusting the focal length of the lens unit 12, an image formed on the retina (eye) EYb through the lens EYa of the eye EY is more visible than the actual distance L1 from the eye EY to the liquid crystal display unit 11. The user can be made to recognize as being displayed on the virtual display VD apparently existing at the position of the far distance L2.
  • the user can use a virtual display VD having a screen size (for example, in the range of several tens of inches to several hundreds of inches) much larger than that of the liquid crystal display unit 11 (for example, in the range of It is possible to visually recognize the magnified image (virtual image) displayed on the.
  • a virtual display VD having a screen size (for example, in the range of several tens of inches to several hundreds of inches) much larger than that of the liquid crystal display unit 11 (for example, in the range of It is possible to visually recognize the magnified image (virtual image) displayed on the.
  • the liquid-crystal display unit 11 may be displayed on the head-mounted device HMDa. It is also possible to display two right eye images on one liquid crystal display unit 11 and display left eye images on the other liquid crystal display unit 11.
  • the screen size is, for example, in the range of 5 inches to 7 inches, and when two liquid crystal display units 11 are mounted on the head mounted device HMDa
  • the screen size is, for example, in the range of 2 inches to 3.5 inches.
  • the head-mounted device HMDa also includes an earphone or the like that is addressed to the user's ear and emits a sound.
  • the liquid crystal panel 13 and the backlight device 14 constituting the liquid crystal display unit 11 will be sequentially described.
  • the liquid crystal panel 13 has a substantially rectangular plate shape as a whole, and the plate surface on the lens unit 12 side is a display surface 13a for displaying an image.
  • the liquid crystal panel 13 includes a pair of glass substrates bonded together with a predetermined gap therebetween, a liquid crystal layer containing liquid crystal molecules which is a substance sealed between both glass substrates and whose optical characteristics change with application of an electric field. And at least a pair of polarizing plates attached to the outer surfaces of the two glass substrates.
  • a rectangular region surrounded by switching elements for example, TFTs
  • switching elements for example, TFTs
  • source wiring and gate wiring orthogonal to each other
  • an alignment film and the like are provided.
  • the other glass substrate opposite substrate, CF substrate
  • a color filter in which colored portions such as R (red), G (green), B (blue), etc. are planarly arranged in a matrix in a predetermined arrangement.
  • the backlight device 14 is disposed on the back side (back side) with respect to the liquid crystal panel 13 and imparts an optical action to a light source (for example, an LED) emitting light (white light) or light from the light source. And an optical member for converting light into planar light.
  • a light source for example, an LED
  • an optical member for converting light into planar light for example, an LED
  • the lens unit 12 is a convex lens having a function of converging (condensing) the incident parallel light flux as shown in FIG.
  • the lens unit 12 includes a light incident surface (a surface on the light incident side) 12a facing the liquid crystal display unit 11 and a light emitting surface (a surface on the light emission side) 12b facing the eye EY side of the user.
  • the light incident surface 12a and the light exit surface 12b are both convex, they are biconvex lenses. Therefore, in the lens portion 12, the thickness on the center side is larger than the thickness on the end side.
  • the thickness of the lens portion 12 is maximum at the center position, the thickness is minimum at the outer end position, and the thickness gradually decreases from the center side toward the end side (continuously Gradually decrease).
  • the lens unit 12 is an aspheric lens in which both the light entrance surface 12 a and the light exit surface 12 b are aspheric. As described above, since the lens unit 12 is thicker at the center side than at the end side, the image displayed on the liquid crystal display unit 11 can be viewed in an enlarged form for the user. .
  • the lens portion 12 is made of a material having excellent light transmittance and substantially transparent (for example, acrylic resin (polymethyl methacrylate resin etc.) etc.), and its refractive index is, for example, 1.48 to 1 It is about the range of .75, preferably 1.70. Accordingly, the entire lens portion 12 is a light transmitting portion 15 having a light transmitting property.
  • the lens unit 12 has a relatively small radius of curvature of the light incident surface 12a, but has a relatively large radius of curvature of the light exit surface 12b. Specifically, in the lens portion 12, the radius of curvature of the light incident surface 12a is, for example, in the range of 25 mm to 38 mm, preferably 38 mm.
  • the radius of curvature of the light exit surface 12b is, for example, in the range of 80 mm to 250 mm, preferably 95 mm.
  • both the conic constant K relating to the light entrance surface 12a and the light exit surface 12b are set to “ ⁇ 1”. That is, both the light incident surface 12a and the light exit surface 12b are paraboloidal surfaces, and thereby collimate parallel light without aberration.
  • the lens unit 12 has a transmittance related to light (such as green light and red light) having a longer transmittance related to short wavelength light (such as violet light and blue light) in visible light.
  • a transmittance related to light such as green light and red light
  • short wavelength light such as violet light and blue light
  • the lens unit 12 has a spectral transmittance characteristic that is relatively lower than that of the above, and the wavelength dependency of the refractive index in which the refractive index related to short wavelength light is higher than the refractive index related to long wavelength light.
  • the transmitted light tends to have a specific color (purple, blue, etc.), and color unevenness is visually recognized by the user.
  • the lens unit 12 is a table showing the relationship between the incident angle (unit: “°”) of the lens unit 12 with respect to the incident surface 12 a and the optical path length (unit: “mm”) of light transmitted through the lens unit 12.
  • the light transmitted through the central position of the lens unit 12 has an incident angle of 0 ° with respect to the incident surface 12 a of the lens unit 12 and the longest optical path length of 36.13 mm.
  • the light transmitted through the outer end position of the lens unit 12 has an incident angle of 35 °
  • the shortest optical path length is 10.90 mm
  • the optical path length of the light transmitted through the central position It is less than 1/3 of.
  • the color unevenness may be significantly deteriorated.
  • the refractive index related to the material of the lens unit 12 is increased, there is concern that the above-described color unevenness may be deteriorated due to the wavelength dependency of the refractive index.
  • the low refractive index translucent film 16 which has translucency and has a refractive index lower than that of the translucent portion 15 is used as the lens portion 12 (translucent portion 15). It is arranged to be in contact with each other.
  • the low refractive index light transmitting film 16 is thinner at the center side of the lens portion 12 than at the end side.
  • the low refractive index light transmitting film 16 is made of magnesium fluoride (MgF 2 ), and its refractive index is, for example, about 1.36, which is lower than the refractive index of the material of the lens portion 12 It has become.
  • the refractive index of the low-refractive-index light-transmissive film 16 is lowered, so that the reflected light at the lens portion 12 is reduced, so that an anti-reflection effect can be obtained.
  • the transmitted light of the lens unit 12 is increased.
  • the low refractive index light transmitting film 16 has a film thickness of, for example, about 74 nm at the center position of the lens unit 12, while it has, for example, about 120 nm at the outer end position of the lens unit 12.
  • the film thickness of the low refractive index light transmitting film 16 is minimum at the center position, is maximum at the outer end position, and gradually increases from the center side toward the end side (continuously increases gradually). It is assumed that the thickness change of the lens portion 12 is in an inverse correlation relationship.
  • the boundary position between the center side and the end side of the low refractive index light transmitting film 16 can be defined as follows. First, on the normal to the display surface 13a passing through the center position of the lens unit 12, a position 10 mm away from the light emitting surface 12b of the lens unit 12 (surface opposite to the liquid crystal panel 13) on the opposite side to the liquid crystal panel 11 side As a reference point, it is assumed that light is emitted from the reference point toward the lens unit 12.
  • the position where the straight line forming an angle of 25% of the “view angle” with the reference point and the normal direction of the display surface 13 a intersects the low refractive index light transmitting film 16 is the center of the low refractive index light transmitting film 16 It is the boundary position of the side and the end side.
  • the central portion of the low refractive index light transmitting film 16 is a region irradiated with light at an angle smaller than 25% of the “view angle” with respect to the normal direction of the display surface 13a from the reference point.
  • the end side portion of the refractive index light transmitting film 16 is a region to which light is irradiated at an angle larger than 75% of the “viewing angle” with respect to the normal direction of the display surface 13 a from the reference point.
  • FIG. 3 only the liquid crystal panel 13 is illustrated in the liquid crystal display unit 11. Further, in FIG. 2, the low refractive index light transmitting film 16 in the lens unit 12 is not shown.
  • the transmittance of short wavelength light is higher at the center side than at the end side.
  • the thickness of the low refractive index light transmitting film 16 is d
  • the refractive index of the low refractive index light transmitting film 16 is n
  • the wavelength of light passing through the low refractive index light transmitting film 16 is ⁇
  • the low refractive index Assuming that the incident angle of light transmitted through the light transmitting film 16 is ⁇ , the following equation (1) holds.
  • the value of cos ⁇ in the following formula (1) is relatively large. It becomes a value close to 1.
  • d of the following formula (1) becomes small, so the value of the wavelength ⁇ becomes small. That is, on the center side of the low refractive index light transmitting film 16, the transmittance of light on the short wavelength side is higher than that on the end side. As described above, the light transmitted through the center side of the lens unit 12 is difficult to take on a specific color.
  • the low refractive index light transmitting film 16 is disposed in contact with the surface of the lens portion 12, the liquid crystal display portion 11 is temporarily provided with a light transmitting portion and a low refractive index light transmitting film in contact therewith. Also, the low refractive index light transmitting film 16 can be provided at low cost.
  • the low refractive index light transmitting film 16 has a thickness on the center side as dc, a refractive index of the low refractive index light transmitting film 16 as n, a wavelength of light transmitted through the center side as ⁇ c, and the center side Assuming that the incident angle of light to be transmitted is ⁇ c, the following equations (2) and (3) are satisfied. In this way, the transmittance of light with a wavelength of 380 nm to 480 nm, that is, light belonging to the shortest wavelength side of visible light, is higher at the center side of the low refractive index light transmitting film 16 than at the end side. It becomes a thing.
  • the light transmitted through the center side of the lens unit 12 is more difficult to take on a specific color.
  • the wavelength ⁇ c of light transmitted through the central side is set to 400 nm.
  • the transmittance of light with a wavelength of 400 nm is higher at the center side of the low refractive index light-transmissive film 16 than at the end side.
  • the light with a wavelength of 400 nm is light particularly near a short wavelength in visible light, so that the transmittance of the light is increased, so that the light transmitted through the center side of the lens unit 12 has a specific color. It becomes even more difficult to take.
  • the low refractive index light transmitting film 16 has a thickness on the end side as de, a refractive index of the low refractive index light transmitting film 16 as n, a wavelength of light transmitted through the end side as ⁇ e, and the end side transmits
  • ⁇ e is the incident angle of the incident light.
  • the transmittance of light with a wavelength of 500 nm to 600 nm is higher at the end side of the low refractive index light-transmissive film 16 than at the center side.
  • the light having a wavelength of 500 nm to 600 nm is green light having high visibility as compared to blue light and red light among visible light, and therefore, the transmittance of green light is increased, so that the utilization efficiency of light is good. become.
  • the wavelength ⁇ e of the light transmitted through the end side is set to 550 nm.
  • the transmittance of light having a wavelength of 550 nm is higher at the end side of the low refractive index light-transmissive film 16 than at the center side.
  • the green light having a wavelength of 550 nm is the light having the highest visibility among the visible light, so that the transmittance of the green light is increased, whereby the light utilization efficiency is further improved.
  • a pair of low refractive index translucent films 16 is disposed in contact with the light incident surface 12 a and the light exit surface 12 b of the lens unit 12.
  • the light incident on the light incident surface 12 a of the lens unit 12 and the light emitted from the light exit surface 12 b are transmitted through the low refractive index light transmitting film 16 respectively, so the anti-reflection effect is excellent.
  • the liquid crystal display device (display device) 10 includes the liquid crystal display unit (display unit) 11 for displaying an image, and the image displayed on the liquid crystal display unit 11 as a user's eye (eye)
  • a low refractive index light transmitting film 16 having a light transmitting property and a refractive index lower than that of the light transmitting part 15, the low refractive index being in contact with the light transmitting part 15 and having a center side thinner than an end side And a rate light-transmissive film 16.
  • the image is formed on the eye EY of the user by the lens unit 12. Since the lens unit 12 is thicker at the center side than at the end side, the image displayed on the liquid crystal display unit 11 can be viewed in an enlarged form for the user.
  • the light transmitting portion 15 provided in at least one of the liquid crystal display portion 11 and the lens portion 12 is in contact with a low refractive index light transmitting film 16 having a light transmitting property and a refractive index lower than that of the light transmitting portion 15 Are arranged.
  • the lens unit 12 has a spectral transmittance characteristic such that the transmittance for the short wavelength light in visible light is relatively lower than the transmittance for the longer wavelength light than that. .
  • the lens portion 12 tends to have a specific tint of transmitted light at the relatively thick center side as compared to the end side.
  • the transmittance of short wavelength light is higher at the center side than at the end side.
  • the thickness of the low refractive index light transmitting film 16 is d
  • the refractive index of the low refractive index light transmitting film 16 is n
  • the wavelength of light passing through the low refractive index light transmitting film 16 is ⁇
  • the value of cos ⁇ in the above equation is relatively large and close to 1 It becomes a value.
  • the center side of the low refractive index light transmitting film 16 thinner than the end side, d in the above equation becomes smaller, so the value of the wavelength ⁇ becomes smaller. That is, on the center side of the low refractive index light transmitting film 16, the transmittance of light on the short wavelength side is higher than that on the end side. As described above, the light transmitted through the center side of the lens unit 12 is difficult to take on a specific color.
  • the low refractive index light transmitting film 16 has a thickness on the center side as dc, a refractive index of the low refractive index light transmitting film 16 as n, a wavelength of light transmitted through the center side as ⁇ c, and the center side is transmitted. Assuming that the incident angle of light is ⁇ c, the following equations (6) and (7) are satisfied.
  • the transmittance of light with a wavelength of 380 nm to 480 nm is higher at the center side of the low refractive index light transmitting film 16 than at the end side.
  • the light transmitted through the center side of the lens unit 12 is more difficult to take on a specific color.
  • the low refractive index light transmissive film 16 has ⁇ c of 400 nm.
  • the transmittance of light with a wavelength of 400 nm is higher at the center side of the low refractive index light-transmissive film 16 than at the end side.
  • the light with a wavelength of 400 nm is light particularly near a short wavelength in visible light, so that the transmittance of the light is increased, so that the light transmitted through the center side of the lens unit 12 has a specific color. It becomes even more difficult to take.
  • the low refractive index light transmitting film 16 has a thickness on the end side as de, a refractive index of the low refractive index light transmitting film 16 as n, a wavelength of light transmitting through the end side as ⁇ e, and transmits through the end side.
  • a refractive index of the low refractive index light transmitting film 16 as n
  • a wavelength of light transmitting through the end side as ⁇ e
  • the transmittance of light with a wavelength of 500 nm to 600 nm is higher at the end side of the low refractive index light-transmissive film 16 than at the center side.
  • the light with a wavelength of 500 nm to 560 nm is green light with high visibility, so the transmittance of the green light is increased to improve the light utilization efficiency.
  • the low refractive index light transmissive film 16 has ⁇ e of 550 nm. In this way, the transmittance of light having a wavelength of 550 nm is higher at the end side of the low refractive index light-transmissive film 16 than at the center side.
  • the green light having a wavelength of 550 nm is the light having the highest visibility among the visible light, so that the transmittance of the green light is increased, whereby the light utilization efficiency is further improved.
  • the light transmitting portion 15 is provided in the lens portion 12, and the low refractive index light transmitting film 16 is disposed in contact with the surface of the lens portion 12. In this way, the low refractive index light transmitting film 16 can be provided at low cost, as compared with the case where the liquid crystal display unit 11 is provided with the light transmitting portion.
  • a pair of low refractive index light transmitting films 16 is disposed in contact with the surface on the light entrance side and the surface on the light exit side of the lens unit 12 respectively. In this way, it is possible to use, for example, a dip coating method when providing the low refractive index light transmitting film 16 to the lens portion 12, which is more preferable for cost reduction.
  • the lens unit 12 is a convex lens. This is suitable for reducing the cost of the lens unit 12.
  • the head mounted display HMD includes at least the liquid crystal display device 10 described above, and a head mounted device HMDa having the liquid crystal display device 10 and mounted on the head HD of the user.
  • a head mounted device HMDa having the liquid crystal display device 10 and mounted on the head HD of the user.
  • the head mount display HMD having such a configuration, when the user wears the head mounted device HMDa on the head HD, an image displayed on the liquid crystal display unit 11 constituting the liquid crystal display device 10 is displayed.
  • the lens unit 12 forms an image on the eye EY of the user, which enables the user to visually recognize the image displayed on the liquid crystal display unit 11 in an enlarged form.
  • the display quality is high, and the immersion feeling of the user is higher. Become.
  • Second Embodiment Embodiment 2 of the present invention will be described with reference to FIG.
  • the configuration of the lens unit 112 is changed.
  • action, and an effect is abbreviate
  • the lens part 112 which concerns on this embodiment has the Fresnel lens 17 as shown in FIG. Specifically, the lens unit 112 is provided with the Fresnel lens 17 on the light entrance surface 112 a. On the other hand, the low refractive index light transmissive film 116 is not formed on the light incident surface 112 a of the lens portion 112 on which the Fresnel lens 17 is provided, and is selectively disposed only on the light exit surface 112 b.
  • the Fresnel lens 17 has a partial spherical surface arranged in steps. The curvature of the surface of the Fresnel lens 17 is relatively smaller on the outer peripheral end side than on the center side of the lens portion 112. According to the Fresnel lens 17 having such a configuration, it is possible to remove the component of astigmatism. Thereby, thinning and shortening of the focus of the lens portion 112 can be achieved.
  • the lens unit 112 has the Fresnel lens 17. This configuration is suitable for achieving thinning and shortening of the focus of the lens unit 112.
  • Embodiment 3 Embodiment 3 of the present invention will be described with reference to FIG.
  • the arrangement of the low refractive index light transmissive film 216 is changed from the first embodiment described above.
  • action, and an effect is abbreviate
  • the low refractive index light transmissive film 216 is disposed in contact with the display surface 213a for displaying an image in the liquid crystal display unit 211, as shown in FIG. Therefore, in the present embodiment, the liquid crystal display unit 211 includes the light transmitting unit 215 that transmits light and is in contact with the low refractive index light transmitting film 216.
  • a polarizing plate disposed on the display surface 213a constitutes a light transmitting portion 215.
  • the polarizing plate constituting the light transmitting portion 215 is made of a material having a refractive index (for example, around 1.5) higher than that of the low refractive index light transmitting film 216.
  • the optical performance of the lens portion 212 is lower It is possible to avoid a situation that can be reduced by the light film 216.
  • the light transmitting unit 215 is provided in the liquid crystal display unit 211, and the low refractive index light transmitting film 216 is provided on the display surface 213a for displaying an image in the liquid crystal display unit 211. It is distributed in the form of contact. In this way, it is possible to avoid the situation where the optical performance of the lens portion 212 is reduced by the low refractive index light transmitting film 216, as compared with the case where the light transmitting portion is provided in the lens portion.
  • the present invention is not limited to the embodiments described above with reference to the drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the wavelength ⁇ c of the light transmitted through the center side of the low refractive index light transmitting film is 400 nm
  • the specific numerical value of the wavelength ⁇ c can be appropriately changed is there.
  • the wavelength ⁇ e of the light transmitted through the end side of the low refractive index light transmitting film is 550 nm, but the specific numerical value of the wavelength ⁇ e can be appropriately changed. is there. Even in such a case, it is preferable that the wavelength ⁇ c be within the numerical range with the lower limit of 500 nm and the upper limit of 600 nm, but the range is not necessarily limited thereto.
  • the low refractive index light transmitting film is disposed on each of the light incident surface and the light exit surface of the lens unit. However, any one of the light incident surface and the light exit surface of the lens unit It is also possible to selectively dispose the low refractive index light transmitting film only on one side.
  • the low refractive index light transmitting film is selectively disposed only on the light exit surface of the lens unit provided with the Fresnel lens on the light entrance surface.
  • the Fresnel lens is disposed. It is also possible to selectively dispose a low refractive index light transmitting film on the light incident surface. In addition, it is also possible to dispose a low refractive index light transmitting film on each of the light entrance surface and the light exit surface of the lens unit provided with the Fresnel lens on the light entrance surface.
  • the Fresnel lens is provided on the light incident surface of the lens unit, but it is also possible to provide a linear Fresnel lens, a lenticular lens, or the like on the light incident surface of the lens unit.
  • the low refractive index light transmitting film is disposed in contact with the polarizing plate in the liquid crystal panel of the liquid crystal display portion. However, the form in contact with the glass substrate in the liquid crystal panel of the liquid crystal display portion It is also possible to dispose a low refractive index light transmissive film.
  • the low refractive index light transmitting film is selectively disposed on only one of the lens unit and the liquid crystal display unit.
  • both the lens unit and the liquid crystal display unit are provided. It is also possible to dispose a low refractive index light transmissive film on each of (8)
  • magnesium fluoride is exemplified as the material of the low refractive index light transmitting film, but the specific material used for the low refractive index light transmitting film can be appropriately changed.
  • the refractive index is preferably as close to 1 as possible, and in general, a fluorine-based material having a low refractive index is preferable.
  • the film thickness of the low refractive index light transmitting film changes continuously, the film thickness of the low refractive index light transmitting film changes stepwise. I don't care.
  • the refractive index related to the material of the lens part and the low refractive index light transmitting film, the optical path length related to the transmitted light of the lens part, and the light entrance surface and light exit surface of the lens unit Specific numerical values such as the radius of curvature and the film thickness of the low refractive index light transmitting film can be changed as appropriate.
  • the lens portion is an aspheric lens, but the lens portion may be a spherical lens.
  • the lens unit is a biconvex lens.
  • the lens unit may be a plano-convex lens or the like.
  • the liquid crystal display unit including the liquid crystal panel is illustrated as the display unit, but other types of display panels (PDP (plasma display panel), organic EL panel, EPD (electrophoretic display panel) ), A display unit provided with a MEMS (Micro Electro Mechanical Systems) display panel or the like may be used.
  • the present invention is applicable to, for example, a head-up display or a projector as an apparatus for enlarging and displaying an image displayed on a liquid crystal display unit using a lens unit. Is applicable.
  • the low refractive index light transmitting film is a single layer film, but the low refractive index light transmitting film is a multilayer film formed by laminating a plurality of films. I don't care. In that case, it is possible to use a plurality of materials having different refractive indexes as the material of the plurality of films constituting the low refractive index light transmitting film.
  • SYMBOLS 10 Liquid crystal display device (display device) 11,211 ... Liquid crystal display part (display part) 12,112, 212 ... Lens part, 12a, 112a ... Light incident surface (surface by the side of light incidence), 12b, 112b ... Light exit surface (surface on the light exit side), 13a, 213a: display surface, 15, 215: light transmission part, 16, 116, 216: low refractive index light transmission film, 17: Fresnel lens, EY: eye (eye), EYA ... crystalline lens (eye), EYb ... retina (eye), HD ... head, HMD ... head mounted display, HMDa ... head mounted equipment

Abstract

The purpose of the present invention is to suppress color unevenness. According to the present invention, a liquid crystal display device (10) is provided with: a liquid crystal display unit (11) on which an image is displayed; a lens unit (12) which provides the image displayed on the liquid crystal display unit (11) onto an eyeball (EY) of a user, and which is thicker in the central portion than in the edge portion; a light-transmitting unit (15) which is provided to at least one of the liquid crystal display unit (11) and the lens unit (12), and which has light transmission properties; and a low refractive index light-transmitting film (16) which has a lower refractive index than the light-transmitting unit (15), while having light transmission properties, and which is arranged so as to be in contact with the light-transmitting unit (15), while being thinner in the central portion than in the edge portion.

Description

表示装置及びヘッドマウントディスプレイDisplay device and head mounted display
 本発明は、表示装置及びヘッドマウントディスプレイに関する。 The present invention relates to a display device and a head mounted display.
 従来、表示装置の一例として下記特許文献1に記載されたものが知られている。特許文献1に記載された表示装置は、表示光学系で生じる収差に関する情報と観察者が使用する視力矯正用の光学系で生じる収差に関する情報とを、それぞれ取得する手段を備え、その2つの収差に基づいて収差補正を実施するものである。 DESCRIPTION OF RELATED ART Conventionally, what was described in the following patent document 1 as an example of a display apparatus is known. The display device described in Patent Document 1 includes means for acquiring information on the aberration generated in the display optical system and information on the aberration generated in the optical system for vision correction used by the observer, and the two aberrations The aberration correction is performed on the basis of
特開2010-96864号公報JP, 2010-96864, A
(発明が解決しようとする課題)
 上記した特許文献1に記載された表示装置によれば、表示光学系と観察者が使用する視力矯正用の光学系との組み合わせで生じる収差に対して適切な補正を個人ごとに実施することが可能となる。ここで、一般的に、表示光学系に用いられるレンズは、可視光における短波長の光に係る透過率がそれよりも長波長の光に係る透過率に比べると相対的に低くなるような分光透過率特性を有する。レンズは、厚みが変化する構造を有していることから、厚みが異なる箇所によっては透過光が特定の色味を帯びてしまい、それが使用者に視認されるおそれがあった。
(Problems to be solved by the invention)
According to the display device described in Patent Document 1 described above, it is possible to carry out, for each individual, an appropriate correction for the aberration caused by the combination of the display optical system and the optical system for vision correction used by the observer. It becomes possible. Here, in general, a lens used for a display optical system has a spectrum such that the transmittance for light of short wavelength in visible light is relatively lower than the transmittance for light of longer wavelength than that. It has transmittance characteristics. Since the lens has a structure in which the thickness changes, the transmitted light may have a specific color depending on where the thickness is different, which may be viewed by the user.
 本発明は上記のような事情に基づいて完成されたものであって、色ムラを抑制することを目的とする。 The present invention is completed based on the above circumstances, and it is an object of the present invention to suppress color unevenness.
(課題を解決するための手段)
 本発明の表示装置は、画像を表示する表示部と、前記表示部に表示された画像を使用者の眼に結像させるレンズ部であって、中央側が端側よりも厚いレンズ部と、前記表示部及び前記レンズ部の少なくともいずれか一方に備わり、透光性を有する透光部と、透光性を有していて前記透光部よりも屈折率が低い低屈折率透光膜であって、前記透光部に接する形で配されて中央側が端側よりも薄い低屈折率透光膜と、を備える。
(Means to solve the problem)
The display device according to the present invention is a display unit for displaying an image, and a lens unit for forming an image displayed on the display unit on the eye of the user, and the lens unit having a center side thicker than the end side It is a low refractive index light transmitting film which is provided in at least one of a display unit and the lens unit and has a light transmitting property and a light transmitting property and a refractive index lower than that of the light transmitting section. And a low-refractive-index light-transmitting film which is disposed in contact with the light-transmitting portion and whose center side is thinner than the end side.
 このようにすれば、表示部に画像が表示されると、その画像はレンズ部によって使用者の眼に結像させられる。レンズ部は、中央側が端側よりも厚みが大きくされているので、表示部に表示された画像を使用者に対して拡大した形で視認させることが可能とされる。表示部及びレンズ部の少なくともいずれか一方に備わる透光部には、透光性を有していて透光部よりも屈折率が低い低屈折率透光膜が接する形で配されている。ここで、フレネルの式によれば、低屈折率透光膜の屈折率が低くされることで、透光部での反射光が減少するので、反射防止効果が得られる。低屈折率透光膜によって透光部の反射光が減少されれば、透光部の透過光が増加することになる。 In this way, when the image is displayed on the display unit, the image is formed on the eye of the user by the lens unit. The lens portion is thicker at the center side than at the end side, so that it is possible to make the image displayed on the display portion visible to the user in an enlarged manner. The light transmitting portion provided in at least one of the display portion and the lens portion is in contact with a low refractive index light transmitting film having a light transmitting property and a refractive index lower than that of the light transmitting portion. Here, according to the Fresnel equation, since the reflection light at the light transmitting portion is reduced by lowering the refractive index of the low refractive index light transmitting film, the anti-reflection effect can be obtained. If the reflected light of the light transmitting part is reduced by the low refractive index light transmitting film, the transmitted light of the light transmitting part will be increased.
 ところで、一般的に、レンズ部は、可視光における短波長の光に係る透過率がそれよりも長波長の光に係る透過率に比べると相対的に低くなるような分光透過率特性を有する。このため、レンズ部は、相対的に厚い中央側では端側に比べると、透過光が特定の色味を帯び易い傾向にある。その点、低屈折率透光膜は、中央側が端側よりも薄くされているから、端側に比べて中央側では短波長の光の透過率が高いものとなる。詳しくは、低屈折率透光膜の厚みをdとし、低屈折率透光膜の屈折率をnとし、低屈折率透光膜を透過する光の波長をλとし、低屈折率透光膜を透過する光の入射角をθとしたとき、「d=λ/(4n・cosθ)」で表される式が成り立つ。ここで、低屈折率透光膜の中央側を透過する光は、端側を透過する光に比べて入射角θが小さいので、上記式のcosθの値が相対的に大きくて1に近い値となる。それに加えて低屈折率透光膜の中央側が端側よりも薄くされることで、上記式のdが小さくなることから、波長λの値が小さくなる。つまり、低屈折率透光膜の中央側では、端側に比べると短波長側の光の透過率が高いものとなる。以上により、レンズ部の中央側を透過する光が特定の色味を帯び難いものとなる。 By the way, in general, the lens portion has a spectral transmittance characteristic such that the transmittance for the short wavelength light in visible light is relatively lower than the transmittance for the longer wavelength light. For this reason, in the lens portion, the transmitted light tends to have a specific tint compared to the end side on the relatively thick central side. In that respect, since the low refractive index light transmitting film is thinner at the center side than at the end side, the transmittance of short wavelength light is higher at the center side than at the end side. Specifically, the thickness of the low refractive index light transmitting film is d, the refractive index of the low refractive index light transmitting film is n, the wavelength of light passing through the low refractive index light transmitting film is λ, and the low refractive index light transmitting film Assuming that the incident angle of light passing through is θ, the equation represented by “d = λ / (4 n · cos θ)” holds. Here, since the light transmitted through the center side of the low refractive index light transmitting film has a smaller incident angle θ than the light transmitted through the end side, the value of cos θ in the above equation is relatively large and close to 1 It becomes. In addition, by making the center side of the low refractive index light transmitting film thinner than the end side, d in the above equation becomes smaller, so the value of the wavelength λ becomes smaller. That is, on the center side of the low refractive index light transmitting film, the transmittance of light on the short wavelength side is higher than that on the end side. As described above, the light transmitted through the center side of the lens portion is unlikely to have a specific color.
(発明の効果)
 本発明によれば、色ムラを抑制することができる。
(Effect of the invention)
According to the present invention, color unevenness can be suppressed.
本発明の実施形態1に係るヘッドマウントディスプレイを使用者が頭部に装着した状態を示す概略斜視図The schematic perspective view which shows the state which the user mounted on the head the head mounted display which concerns on Embodiment 1 of this invention ヘッドマウントディスプレイを構成する頭部装着器具に備わる液晶表示部及びレンズ部と、使用者の眼球と、仮想ディスプレイと、の光学的関係を示す概略側面図A schematic side view showing an optical relationship between a liquid crystal display unit and a lens unit provided in a head-mounted device constituting a head mounted display, a user's eye, and a virtual display 液晶表示部、レンズ部及び使用者の眼球を示す側面図Side view showing liquid crystal display unit, lens unit and eyeball of user レンズ部の入射面に対する光の入射角と、レンズ部を透過する光の光路長と、の関係を示す表A table showing the relationship between the incident angle of light to the incident surface of the lens unit and the optical path length of light transmitted through the lens unit 本発明の実施形態2に係る液晶表示部、レンズ部及び使用者の眼球を示す側面図The side view which shows the liquid crystal display part which concerns on Embodiment 2 of this invention, a lens part, and a user's eyeball 本発明の実施形態3に係る液晶表示部、レンズ部及び使用者の眼球を示す側面図The side view which shows the liquid crystal display part which concerns on Embodiment 3 of this invention, a lens part, and a user's eyeball
 <実施形態1>
 本発明の実施形態1を図1から図4によって説明する。本実施形態では、ゴーグル型のヘッドマウントディスプレイ(HMD:Head-Mounted Display)HMD及びそれに用いられる液晶表示装置(表示装置)10を例示する。
First Embodiment
Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 4. In the present embodiment, a goggle-type head-mounted display (HMD) HMD and a liquid crystal display device (display device) 10 used therefor are exemplified.
 ゴーグル型のヘッドマウントディスプレイHMDは、図1に示すように、使用者の頭部HDにおいて両方の眼を囲うような形で装着される頭部装着器具HMDaを備えている。頭部装着器具HMDaには、図2に示すように、液晶表示装置10が内蔵されている。液晶表示装置10は、画像を表示する液晶表示部(表示部)11と、液晶表示部11に表示された画像を使用者の眼球(眼)EYに結像させるレンズ部(接眼レンズ部)12と、を少なくとも備える。液晶表示部11は、画像を表示する表示面13aを有する液晶パネル(表示パネル)13と、液晶パネル13に表示のための光を照射するバックライト装置(照明装置)14と、を少なくとも備える。レンズ部12は、液晶表示部11と使用者の眼球EYとの間に介在する形で配されており、透過光に屈折作用を付与するものとされる。このレンズ部12の焦点距離を調整することで、眼球EYの水晶体EYaを介して網膜(眼)EYbに結像される像が、眼球EYから液晶表示部11までの実際の距離L1よりも遙かに遠い距離L2の位置に見かけ上存在する仮想ディスプレイVDに表示されているように、使用者に認識させることができる。これにより、使用者は、液晶表示部11の画面サイズ(例えば2インチ~7インチの範囲程度)よりも遙かに大きな画面サイズ(例えば数十インチ~数百インチの範囲程度)の仮想ディスプレイVDに表示された拡大画像(虚像)を視認することが可能となる。頭部装着器具HMDaに液晶表示部11を1つ搭載し、その液晶表示部11に右目用画像と左目用画像とを表示させることも可能であるが、頭部装着器具HMDaに液晶表示部11を2つ搭載し、一方の液晶表示部11に右目用画像を、他方の液晶表示部11に左目用画像を、それぞれ表示させことも可能である。頭部装着器具HMDaに液晶表示部11を1つ搭載する場合は、その画面サイズは例えば5インチ~7インチの範囲程度とされ、頭部装着器具HMDaに液晶表示部11を2つ搭載する場合は、その画面サイズは例えば2インチ~3.5インチの範囲程度とされる。なお、頭部装着器具HMDaには、図示は省略するが、使用者の耳に宛てがわれて音声を発するイヤフォンなども備えられている。 The goggle type head mount display HMD is equipped with a head mounted device HMDa mounted so as to surround both eyes in the head HD of the user, as shown in FIG. As shown in FIG. 2, the liquid crystal display device 10 is incorporated in the head mounted device HMDa. The liquid crystal display device 10 includes a liquid crystal display unit (display unit) 11 for displaying an image, and a lens unit (eyepiece lens unit) 12 for forming an image displayed on the liquid crystal display unit 11 on an eye (eye) EY of a user. And at least. The liquid crystal display unit 11 at least includes a liquid crystal panel (display panel) 13 having a display surface 13 a for displaying an image, and a backlight device (illumination device) 14 for irradiating the liquid crystal panel 13 with light for display. The lens unit 12 is disposed between the liquid crystal display unit 11 and the eye EY of the user, and imparts a refraction function to transmitted light. By adjusting the focal length of the lens unit 12, an image formed on the retina (eye) EYb through the lens EYa of the eye EY is more visible than the actual distance L1 from the eye EY to the liquid crystal display unit 11. The user can be made to recognize as being displayed on the virtual display VD apparently existing at the position of the far distance L2. Thus, the user can use a virtual display VD having a screen size (for example, in the range of several tens of inches to several hundreds of inches) much larger than that of the liquid crystal display unit 11 (for example, in the range of It is possible to visually recognize the magnified image (virtual image) displayed on the. Although it is possible to mount one liquid crystal display unit 11 on the head-mounted device HMDa and display the right-eye image and the left-eye image on the liquid-crystal display unit 11, the liquid-crystal display unit 11 may be displayed on the head-mounted device HMDa. It is also possible to display two right eye images on one liquid crystal display unit 11 and display left eye images on the other liquid crystal display unit 11. When one liquid crystal display unit 11 is mounted on the head mounted device HMDa, the screen size is, for example, in the range of 5 inches to 7 inches, and when two liquid crystal display units 11 are mounted on the head mounted device HMDa The screen size is, for example, in the range of 2 inches to 3.5 inches. Although not shown, the head-mounted device HMDa also includes an earphone or the like that is addressed to the user's ear and emits a sound.
 次に、液晶表示部11を構成する液晶パネル13及びバックライト装置14について順次に説明する。液晶パネル13は、図2に示すように、全体として略方形の板状をなしており、レンズ部12側の板面が画像を表示する表示面13aとされる。液晶パネル13は、所定のギャップを隔てた状態で貼り合わせられる一対のガラス基板と、両ガラス基板間に封入され電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層と、両ガラス基板の外面に貼り付けられる一対の偏光板と、を少なくとも備える。一方のガラス基板(アレイ基板、アクティブマトリクス基板)には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、ソース配線とゲート配線とに囲まれた方形状の領域に配されてスイッチング素子に接続される画素電極と、がマトリクス状に平面配置される他、配向膜等が設けられている。他方のガラス基板(対向基板、CF基板)には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列でマトリクス状に平面配置されたカラーフィルタが設けられる他、各着色部間に配されて格子状をなす遮光層(ブラックマトリクス)、画素電極と対向状をなすベタ状の対向電極、配向膜等が設けられている。一方、バックライト装置14は、液晶パネル13に対して裏側(背面側)に配置され、白色の光(白色光)を発する光源(例えばLEDなど)や光源からの光に光学作用を付与することで面状の光に変換する光学部材などを有する。 Next, the liquid crystal panel 13 and the backlight device 14 constituting the liquid crystal display unit 11 will be sequentially described. As shown in FIG. 2, the liquid crystal panel 13 has a substantially rectangular plate shape as a whole, and the plate surface on the lens unit 12 side is a display surface 13a for displaying an image. The liquid crystal panel 13 includes a pair of glass substrates bonded together with a predetermined gap therebetween, a liquid crystal layer containing liquid crystal molecules which is a substance sealed between both glass substrates and whose optical characteristics change with application of an electric field. And at least a pair of polarizing plates attached to the outer surfaces of the two glass substrates. In one glass substrate (array substrate, active matrix substrate), a rectangular region surrounded by switching elements (for example, TFTs) connected to source wiring and gate wiring orthogonal to each other, source wiring and gate wiring In addition to the plane arrangement of the pixel electrodes arranged in the matrix and connected to the switching elements, an alignment film and the like are provided. The other glass substrate (opposite substrate, CF substrate) is provided with a color filter in which colored portions such as R (red), G (green), B (blue), etc. are planarly arranged in a matrix in a predetermined arrangement. A grid-like light shielding layer (black matrix) disposed between the colored portions, a solid counter electrode facing the pixel electrode, an alignment film, and the like are provided. On the other hand, the backlight device 14 is disposed on the back side (back side) with respect to the liquid crystal panel 13 and imparts an optical action to a light source (for example, an LED) emitting light (white light) or light from the light source. And an optical member for converting light into planar light.
 レンズ部12は、図2に示すように、入射した平行光束を収束(集光)させる働きを持つ凸レンズとされる。詳しくは、レンズ部12は、液晶表示部11側を向いた入光面(入光側の面)12aと、使用者の眼球EY側と向いた出光面(出光側の面)12bと、を有しているが、これら入光面12a及び出光面12bが共に凸型をなす両凸レンズとされる。従って、レンズ部12は、中央側の厚みが端側の厚みよりも大きくなっている。具体的には、レンズ部12は、中央位置にて厚みが最大となり、外端位置にて厚みが最小となっており、中央側から端側に向かうのに従って厚みが次第に小さくなる(連続的に漸次減少する)ものとされる。レンズ部12は、入光面12a及び出光面12bが共に非球面とされる非球面レンズとされる。このように、レンズ部12は、中央側が端側よりも厚みが大きくされているので、液晶表示部11に表示された画像を使用者に対して拡大した形で視認させることが可能とされる。 The lens unit 12 is a convex lens having a function of converging (condensing) the incident parallel light flux as shown in FIG. Specifically, the lens unit 12 includes a light incident surface (a surface on the light incident side) 12a facing the liquid crystal display unit 11 and a light emitting surface (a surface on the light emission side) 12b facing the eye EY side of the user. Although the light incident surface 12a and the light exit surface 12b are both convex, they are biconvex lenses. Therefore, in the lens portion 12, the thickness on the center side is larger than the thickness on the end side. Specifically, the thickness of the lens portion 12 is maximum at the center position, the thickness is minimum at the outer end position, and the thickness gradually decreases from the center side toward the end side (continuously Gradually decrease). The lens unit 12 is an aspheric lens in which both the light entrance surface 12 a and the light exit surface 12 b are aspheric. As described above, since the lens unit 12 is thicker at the center side than at the end side, the image displayed on the liquid crystal display unit 11 can be viewed in an enlarged form for the user. .
 レンズ部12は、図2に示すように、透光性に優れていてほぼ透明な材料(例えばアクリル樹脂(ポリメタクリル酸メチル樹脂など)など)からなり、その屈折率が例えば1.48~1.75の範囲程度とされ、好ましくは1.70とされる。従って、レンズ部12は、その全体が透光性を有する透光部15となっている。レンズ部12は、入光面12aの曲率半径が相対的に小さいのに対し、出光面12bの曲率半径が相対的に大きい。具体的には、レンズ部12は、入光面12aの曲率半径が例えば25mm~38mmの範囲程度とされ、好ましくは38mmとされる。これに対し、レンズ部12は、出光面12bの曲率半径が例えば80mm~250mmの範囲程度とされ、好ましくは95mmとされる。レンズ部12は、入光面12a及び出光面12bに係るコーニック定数Kが共に「-1」とされる。つまり、入光面12a及び出光面12bは、共に放物面とされており、それにより平行光を無収差で集光するものとされる。 As shown in FIG. 2, the lens portion 12 is made of a material having excellent light transmittance and substantially transparent (for example, acrylic resin (polymethyl methacrylate resin etc.) etc.), and its refractive index is, for example, 1.48 to 1 It is about the range of .75, preferably 1.70. Accordingly, the entire lens portion 12 is a light transmitting portion 15 having a light transmitting property. The lens unit 12 has a relatively small radius of curvature of the light incident surface 12a, but has a relatively large radius of curvature of the light exit surface 12b. Specifically, in the lens portion 12, the radius of curvature of the light incident surface 12a is, for example, in the range of 25 mm to 38 mm, preferably 38 mm. On the other hand, in the lens unit 12, the radius of curvature of the light exit surface 12b is, for example, in the range of 80 mm to 250 mm, preferably 95 mm. In the lens unit 12, both the conic constant K relating to the light entrance surface 12a and the light exit surface 12b are set to “−1”. That is, both the light incident surface 12a and the light exit surface 12b are paraboloidal surfaces, and thereby collimate parallel light without aberration.
 ところで、一般的に、レンズ部12は、可視光における短波長の光(紫色光や青色光など)に係る透過率がそれよりも長波長の光(緑色光や赤色光など)に係る透過率に比べると相対的に低くなるような分光透過率特性や短波長の光に係る屈折率が長波長の光に係る屈折率よりも高くなる屈折率の波長依存性を有する。このため、レンズ部12は、相対的に厚い中央側では端側に比べると、透過光が特定の色味(紫色味や青色味など)を帯び易い傾向にあり、使用者に色ムラが視認されるおそれがあった。特に、ヘッドマウントディスプレイHMDの広視野角化を図るには、レンズ部12の短焦点化が求められる傾向にあり、そのため、レンズ部12における入光面12aの曲率半径を小さくしたり、レンズ部12の材料に係る屈折率を高いものとしたりする場合がある。ところが、レンズ部12の入光面12aの曲率半径を小さくすると、レンズ部12の厚みの差が中央側と端側とでより大きくなることから、上記した色ムラが悪化することが懸念され、以下では図4を用いて詳しく説明する。図4は、レンズ部12の入射面12aに対する入射角(単位は「°」)と、レンズ部12を透過する光の光路長(単位は「mm」)と、の関係を示す表である。詳しくは、図4に示すように、レンズ部12の中央位置を透過する光は、レンズ部12の入射面12aに対する入射角が0°になっていて、その光路長が最長の36.13mmとなる。これに対し、レンズ部12の外端位置を透過する光は、入射角が35°となっていて、その光路長が最短の10.90mmとなっており、中央位置を透過する光の光路長の1/3以下となっている。レンズ部12の中央側と端側とで光路長にこれだけの差が生じると、上記した色ムラが著しく悪化するおそれがある。また、レンズ部12の材料に係る屈折率を高くすると、屈折率の波長依存性によってやはり上記した色ムラが悪化することが懸念される。 By the way, in general, the lens unit 12 has a transmittance related to light (such as green light and red light) having a longer transmittance related to short wavelength light (such as violet light and blue light) in visible light. As compared with the above, it has a spectral transmittance characteristic that is relatively lower than that of the above, and the wavelength dependency of the refractive index in which the refractive index related to short wavelength light is higher than the refractive index related to long wavelength light. For this reason, compared with the end side on the relatively thick central side of the lens portion 12, the transmitted light tends to have a specific color (purple, blue, etc.), and color unevenness is visually recognized by the user. There was a risk of In particular, in order to widen the viewing angle of the head mounted display HMD, it tends to be required to make the focal point of the lens unit 12 short. Therefore, the radius of curvature of the light entrance surface 12a in the lens unit 12 is reduced. In some cases, the refractive index of the 12 materials may be made high. However, if the curvature radius of the light entrance surface 12a of the lens unit 12 is reduced, the difference in thickness of the lens unit 12 becomes larger at the center side and at the end side, so there is a concern that the above-mentioned color unevenness may deteriorate. Details will be described below with reference to FIG. FIG. 4 is a table showing the relationship between the incident angle (unit: “°”) of the lens unit 12 with respect to the incident surface 12 a and the optical path length (unit: “mm”) of light transmitted through the lens unit 12. Specifically, as shown in FIG. 4, the light transmitted through the central position of the lens unit 12 has an incident angle of 0 ° with respect to the incident surface 12 a of the lens unit 12 and the longest optical path length of 36.13 mm. Become. On the other hand, the light transmitted through the outer end position of the lens unit 12 has an incident angle of 35 °, the shortest optical path length is 10.90 mm, and the optical path length of the light transmitted through the central position It is less than 1/3 of. When the difference in the optical path length between the center side and the end side of the lens unit 12 is generated, the color unevenness may be significantly deteriorated. In addition, when the refractive index related to the material of the lens unit 12 is increased, there is concern that the above-described color unevenness may be deteriorated due to the wavelength dependency of the refractive index.
 そこで、本実施形態では、図3に示すように、透光性を有していて透光部15よりも屈折率が低い低屈折率透光膜16をレンズ部12(透光部15)に接する形で配するようにしている。この低屈折率透光膜16は、レンズ部12における中央側が端側よりも薄くなっている。具体的には、低屈折率透光膜16は、フッ化マグネシウム(MgF)からなり、その屈折率が例えば1.36程度とされており、レンズ部12の材料に係る屈折率よりも低くなっている。フレネルの式によれば、低屈折率透光膜16の屈折率が低くされることで、レンズ部12での反射光が減少するので、反射防止効果を得ることができる。低屈折率透光膜16によってレンズ部12の反射光が減少されれば、レンズ部12の透過光が増加することになる。低屈折率透光膜16は、その膜厚がレンズ部12の中央位置では例えば74nm程度とされるのに対し、レンズ部12の外端位置では例えば120nm程度とされている。低屈折率透光膜16の膜厚は、中央位置にて最小となり、外端位置にて最大となっており、中央側から端側に向かうのに従って次第に大きくなる(連続的に漸次増加する)ものとされ、レンズ部12の厚み変化とは逆相関の関係となっている。ここで、低屈折率透光膜16の中央側と端側との境界位置を次のように定義することが可能である。まず、レンズ部12の中央位置を通る表示面13aの法線上においてレンズ部12の出光面12b(液晶パネル13とは反対側の面)から液晶パネル11側とは反対側に10mm離れた位置を基準点とし、その基準点からレンズ部12に向けて光を照射した場合を想定する。基準点からレンズ部12の最外周端を通って液晶パネル13側へ向かう光のうち、基準点からレンズ部12の最外周端へ向かう光が表示面13aの法線方向となす角度と、基準点からレンズ部12を通って液晶パネル13の最外周端に達する光のうち、基準点からレンズ部12へ向かう光が表示面13aの法線方向となす角度と、を比較したとき、相対的に小さい角度を「視野角」と定義する。そして、基準点を通り表示面13aの法線方向に対して「視野角」の25%の角度をなす直線が低屈折率透光膜16と交わる位置が、低屈折率透光膜16の中央側と端側との境界位置である。低屈折率透光膜16の中央側部分は、基準点から表示面13aの法線方向に対して「視野角」の25%の角度より小さい角度となる光が照射される領域であり、低屈折率透光膜16の端側部分は、基準点から表示面13aの法線方向に対して「視野角」の75%の角度より大きい角度となる光が照射される領域である。なお、図3では、液晶表示部11に関しては液晶パネル13のみを図示している。また、図2では、レンズ部12における低屈折率透光膜16の図示を省略している。 So, in this embodiment, as shown in FIG. 3, the low refractive index translucent film 16 which has translucency and has a refractive index lower than that of the translucent portion 15 is used as the lens portion 12 (translucent portion 15). It is arranged to be in contact with each other. The low refractive index light transmitting film 16 is thinner at the center side of the lens portion 12 than at the end side. Specifically, the low refractive index light transmitting film 16 is made of magnesium fluoride (MgF 2 ), and its refractive index is, for example, about 1.36, which is lower than the refractive index of the material of the lens portion 12 It has become. According to Fresnel's equation, the refractive index of the low-refractive-index light-transmissive film 16 is lowered, so that the reflected light at the lens portion 12 is reduced, so that an anti-reflection effect can be obtained. When the reflected light of the lens unit 12 is reduced by the low refractive index light transmitting film 16, the transmitted light of the lens unit 12 is increased. The low refractive index light transmitting film 16 has a film thickness of, for example, about 74 nm at the center position of the lens unit 12, while it has, for example, about 120 nm at the outer end position of the lens unit 12. The film thickness of the low refractive index light transmitting film 16 is minimum at the center position, is maximum at the outer end position, and gradually increases from the center side toward the end side (continuously increases gradually). It is assumed that the thickness change of the lens portion 12 is in an inverse correlation relationship. Here, the boundary position between the center side and the end side of the low refractive index light transmitting film 16 can be defined as follows. First, on the normal to the display surface 13a passing through the center position of the lens unit 12, a position 10 mm away from the light emitting surface 12b of the lens unit 12 (surface opposite to the liquid crystal panel 13) on the opposite side to the liquid crystal panel 11 side As a reference point, it is assumed that light is emitted from the reference point toward the lens unit 12. Of the light traveling from the reference point to the liquid crystal panel 13 through the outermost peripheral end of the lens unit 12, the angle between the light traveling from the reference point to the outermost peripheral end of the lens unit 12 and the normal direction of the display surface 13a Among light reaching from the point to the outermost peripheral end of the liquid crystal panel 13 through the lens portion 12, relative angle between light traveling from the reference point to the lens portion 12 and the normal direction of the display surface 13 a is relative A small angle is defined as "viewing angle". Then, the position where the straight line forming an angle of 25% of the “view angle” with the reference point and the normal direction of the display surface 13 a intersects the low refractive index light transmitting film 16 is the center of the low refractive index light transmitting film 16 It is the boundary position of the side and the end side. The central portion of the low refractive index light transmitting film 16 is a region irradiated with light at an angle smaller than 25% of the “view angle” with respect to the normal direction of the display surface 13a from the reference point. The end side portion of the refractive index light transmitting film 16 is a region to which light is irradiated at an angle larger than 75% of the “viewing angle” with respect to the normal direction of the display surface 13 a from the reference point. In FIG. 3, only the liquid crystal panel 13 is illustrated in the liquid crystal display unit 11. Further, in FIG. 2, the low refractive index light transmitting film 16 in the lens unit 12 is not shown.
 このように、低屈折率透光膜16は、中央側が端側よりも薄くされているから、端側に比べて中央側では短波長の光の透過率が高いものとなる。詳しくは、低屈折率透光膜16の厚みをdとし、低屈折率透光膜16の屈折率をnとし、低屈折率透光膜16を透過する光の波長をλとし、低屈折率透光膜16を透過する光の入射角をθとしたとき、下記の式(1)が成り立つ。ここで、低屈折率透光膜16の中央側を透過する光は、端側を透過する光に比べて入射角θが小さいので、下記式(1)のcosθの値が相対的に大きくて1に近い値となる。それに加えて低屈折率透光膜16の中央側が端側よりも薄くされることで、下記式(1)のdが小さくなることから、波長λの値が小さくなる。つまり、低屈折率透光膜16の中央側では、端側に比べると短波長側の光の透過率が高いものとなる。以上により、レンズ部12の中央側を透過する光が特定の色味を帯び難いものとなる。また、低屈折率透光膜16がレンズ部12の表面に接する形で配されていることから、仮に液晶表示部11に透光部及びそれに接する低屈折率透光膜が備えられる場合に比べると、低屈折率透光膜16を低コストでもって設けることができる。 As described above, since the low refractive index light transmissive film 16 is thinner at the center side than at the end side, the transmittance of short wavelength light is higher at the center side than at the end side. Specifically, the thickness of the low refractive index light transmitting film 16 is d, the refractive index of the low refractive index light transmitting film 16 is n, the wavelength of light passing through the low refractive index light transmitting film 16 is λ, and the low refractive index Assuming that the incident angle of light transmitted through the light transmitting film 16 is θ, the following equation (1) holds. Here, since the light transmitted through the center side of the low refractive index light transmitting film 16 has a smaller incident angle θ than the light transmitted through the end side, the value of cos θ in the following formula (1) is relatively large. It becomes a value close to 1. In addition, by making the center side of the low refractive index light transmitting film 16 thinner than the end side, d of the following formula (1) becomes small, so the value of the wavelength λ becomes small. That is, on the center side of the low refractive index light transmitting film 16, the transmittance of light on the short wavelength side is higher than that on the end side. As described above, the light transmitted through the center side of the lens unit 12 is difficult to take on a specific color. In addition, since the low refractive index light transmitting film 16 is disposed in contact with the surface of the lens portion 12, the liquid crystal display portion 11 is temporarily provided with a light transmitting portion and a low refractive index light transmitting film in contact therewith. Also, the low refractive index light transmitting film 16 can be provided at low cost.
 [数1]
 d=λ/(4n・cosθ)     (1)
[Equation 1]
d = λ / (4 n · cos θ) (1)
 より詳しくは、低屈折率透光膜16は、中央側の厚みをdcとし、低屈折率透光膜16の屈折率をnとし、中央側を透過する光の波長をλcとし、中央側を透過する光の入射角をθcとしたとき、下記式(2),(3)を満たすよう構成される。このようにすれば、低屈折率透光膜16の中央側では、端側に比べると波長が380nm~480nmの光、つまり可視光の中でも最も短波長側の領域に属する光の透過率が高いものとなる。これにより、レンズ部12の中央側を透過する光が特定の色味をより帯び難いものとなる。特に好ましくは、低屈折率透光膜16は、下記式(2),(3)において、中央側を透過する光の波長λcが400nmとされている。このようにすれば、低屈折率透光膜16の中央側では、端側に比べると波長が400nmの光の透過率が高いものとなる。波長が400nmの光は、可視光の中で特に短波長寄りの光であることから、その光の透過率が高くされることで、レンズ部12の中央側を透過する光が特定の色味を一層帯び難いものとなる。 More specifically, the low refractive index light transmitting film 16 has a thickness on the center side as dc, a refractive index of the low refractive index light transmitting film 16 as n, a wavelength of light transmitted through the center side as λc, and the center side Assuming that the incident angle of light to be transmitted is θc, the following equations (2) and (3) are satisfied. In this way, the transmittance of light with a wavelength of 380 nm to 480 nm, that is, light belonging to the shortest wavelength side of visible light, is higher at the center side of the low refractive index light transmitting film 16 than at the end side. It becomes a thing. As a result, the light transmitted through the center side of the lens unit 12 is more difficult to take on a specific color. Particularly preferably, in the low refractive index light transmitting film 16, in the following formulas (2) and (3), the wavelength λc of light transmitted through the central side is set to 400 nm. In this way, the transmittance of light with a wavelength of 400 nm is higher at the center side of the low refractive index light-transmissive film 16 than at the end side. The light with a wavelength of 400 nm is light particularly near a short wavelength in visible light, so that the transmittance of the light is increased, so that the light transmitted through the center side of the lens unit 12 has a specific color. It becomes even more difficult to take.
 [数2]
 dc=λc/(4n・cosθc)     (2)
[Equation 2]
dc = λ c / (4 n · cos θ c) (2)
 [数3]
 380nm≦λc≦480nm     (3)
[Equation 3]
380 nm ≦ λ c ≦ 480 nm (3)
 さらには、低屈折率透光膜16は、端側の厚みをdeとし、低屈折率透光膜16の屈折率をnとし、端側を透過する光の波長をλeとし、端側を透過する光の入射角をθeとしたとき、下記式(4),(5)を満たす。このようにすれば、低屈折率透光膜16の端側では、中央側に比べると波長が500nm~600nmの光の透過率が高いものとなる。波長が500nm~600nmの光は、可視光の中でも青色光や赤色光に比べて視感度の高い緑色光であることから、当該緑色光の透過率が高くされることで、光の利用効率が良好になる。特に好ましくは、低屈折率透光膜16は、下記式(4),(5)において、端側を透過する光の波長λeが550nmとされる。このようにすれば、低屈折率透光膜16の端側では、中央側に比べると波長が550nmの光の透過率が高いものとなる。波長が550nmの緑色光は、可視光の中で視感度が最も高い光であることから、当該緑色光の透過率が高くされることで、光の利用効率がより良好になる。 Furthermore, the low refractive index light transmitting film 16 has a thickness on the end side as de, a refractive index of the low refractive index light transmitting film 16 as n, a wavelength of light transmitted through the end side as λe, and the end side transmits The following equations (4) and (5) are satisfied, where θe is the incident angle of the incident light. In this way, the transmittance of light with a wavelength of 500 nm to 600 nm is higher at the end side of the low refractive index light-transmissive film 16 than at the center side. The light having a wavelength of 500 nm to 600 nm is green light having high visibility as compared to blue light and red light among visible light, and therefore, the transmittance of green light is increased, so that the utilization efficiency of light is good. become. Particularly preferably, in the low refractive index light transmitting film 16, in the following formulas (4) and (5), the wavelength λe of the light transmitted through the end side is set to 550 nm. In this way, the transmittance of light having a wavelength of 550 nm is higher at the end side of the low refractive index light-transmissive film 16 than at the center side. The green light having a wavelength of 550 nm is the light having the highest visibility among the visible light, so that the transmittance of the green light is increased, whereby the light utilization efficiency is further improved.
 [数4]
 de=λe/(4n・cosθe)     (4)
[Equation 4]
de = λ e / (4 n · cos θ e) (4)
 [数5]
 500nm≦λe≦600nm     (5)
[Equation 5]
500 nm ≦ λe ≦ 600 nm (5)
 さらには、低屈折率透光膜16は、図3に示すように、レンズ部12の入光面12aと出光面12bとにそれぞれ接する形で一対が配されている。このようにすれば、レンズ部12の入光面12aに対する入射光と、出光面12bからの出射光と、がそれぞれ低屈折率透光膜16を透過することになるので、反射防止効果に優れるとともに、色ムラ抑制効果に優れる。その上で、低屈折率透光膜16をレンズ部12に設けるに際して、例えばディップコーティング法を用いることが可能となるので、低屈折率透光膜16の設置に係るコストを低減させる上でより好適とされる。 Furthermore, as shown in FIG. 3, a pair of low refractive index translucent films 16 is disposed in contact with the light incident surface 12 a and the light exit surface 12 b of the lens unit 12. In this way, the light incident on the light incident surface 12 a of the lens unit 12 and the light emitted from the light exit surface 12 b are transmitted through the low refractive index light transmitting film 16 respectively, so the anti-reflection effect is excellent. In addition, it is excellent in the color nonuniformity suppression effect. Moreover, when providing the low refractive index light transmitting film 16 to the lens portion 12, it is possible to use, for example, a dip coating method, so that the cost for installing the low refractive index light transmitting film 16 can be reduced. It is considered suitable.
 以上説明したように本実施形態の液晶表示装置(表示装置)10は、画像を表示する液晶表示部(表示部)11と、液晶表示部11に表示された画像を使用者の眼球(眼)EYに結像させるレンズ部12であって、中央側が端側よりも厚いレンズ部12と、液晶表示部11及びレンズ部12の少なくともいずれか一方に備わり、透光性を有する透光部15と、透光性を有していて透光部15よりも屈折率が低い低屈折率透光膜16であって、透光部15に接する形で配されて中央側が端側よりも薄い低屈折率透光膜16と、を備える。 As described above, the liquid crystal display device (display device) 10 according to the present embodiment includes the liquid crystal display unit (display unit) 11 for displaying an image, and the image displayed on the liquid crystal display unit 11 as a user's eye (eye) A lens unit 12 for forming an image on EY, wherein the center side is thicker than the end side, and provided on at least one of the liquid crystal display unit 11 and the lens unit 12 and a light transmitting unit 15 having a light transmitting property A low refractive index light transmitting film 16 having a light transmitting property and a refractive index lower than that of the light transmitting part 15, the low refractive index being in contact with the light transmitting part 15 and having a center side thinner than an end side And a rate light-transmissive film 16.
 このようにすれば、液晶表示部11に画像が表示されると、その画像はレンズ部12によって使用者の眼球EYに結像させられる。レンズ部12は、中央側が端側よりも厚みが大きくされているので、液晶表示部11に表示された画像を使用者に対して拡大した形で視認させることが可能とされる。液晶表示部11及びレンズ部12の少なくともいずれか一方に備わる透光部15には、透光性を有していて透光部15よりも屈折率が低い低屈折率透光膜16が接する形で配されている。ここで、フレネルの式によれば、低屈折率透光膜16の屈折率が低くされることで、透光部15での反射光が減少するので、反射防止効果が得られる。低屈折率透光膜16によって透光部15の反射光が減少されれば、透光部15の透過光が増加することになる。 In this way, when an image is displayed on the liquid crystal display unit 11, the image is formed on the eye EY of the user by the lens unit 12. Since the lens unit 12 is thicker at the center side than at the end side, the image displayed on the liquid crystal display unit 11 can be viewed in an enlarged form for the user. The light transmitting portion 15 provided in at least one of the liquid crystal display portion 11 and the lens portion 12 is in contact with a low refractive index light transmitting film 16 having a light transmitting property and a refractive index lower than that of the light transmitting portion 15 Are arranged. Here, according to the Fresnel equation, since the reflection light at the light transmitting portion 15 is reduced by lowering the refractive index of the low refractive index light transmitting film 16, an anti-reflection effect can be obtained. When the reflected light of the light transmitting portion 15 is reduced by the low refractive index light transmitting film 16, the transmitted light of the light transmitting portion 15 is increased.
 ところで、一般的に、レンズ部12は、可視光における短波長の光に係る透過率がそれよりも長波長の光に係る透過率に比べると相対的に低くなるような分光透過率特性を有する。このため、レンズ部12は、相対的に厚い中央側では端側に比べると、透過光が特定の色味を帯び易い傾向にある。その点、低屈折率透光膜16は、中央側が端側よりも薄くされているから、端側に比べて中央側では短波長の光の透過率が高いものとなる。詳しくは、低屈折率透光膜16の厚みをdとし、低屈折率透光膜16の屈折率をnとし、低屈折率透光膜16を透過する光の波長をλとし、低屈折率透光膜16を透過する光の入射角をθとしたとき、「d=λ/(4n・cosθ)」で表される式が成り立つ。ここで、低屈折率透光膜16の中央側を透過する光は、端側を透過する光に比べて入射角θが小さいので、上記式のcosθの値が相対的に大きくて1に近い値となる。それに加えて低屈折率透光膜16の中央側が端側よりも薄くされることで、上記式のdが小さくなることから、波長λの値が小さくなる。つまり、低屈折率透光膜16の中央側では、端側に比べると短波長側の光の透過率が高いものとなる。以上により、レンズ部12の中央側を透過する光が特定の色味を帯び難いものとなる。 By the way, in general, the lens unit 12 has a spectral transmittance characteristic such that the transmittance for the short wavelength light in visible light is relatively lower than the transmittance for the longer wavelength light than that. . For this reason, the lens portion 12 tends to have a specific tint of transmitted light at the relatively thick center side as compared to the end side. In that respect, since the low refractive index light transmitting film 16 is thinner at the center side than at the end side, the transmittance of short wavelength light is higher at the center side than at the end side. Specifically, the thickness of the low refractive index light transmitting film 16 is d, the refractive index of the low refractive index light transmitting film 16 is n, the wavelength of light passing through the low refractive index light transmitting film 16 is λ, and the low refractive index Assuming that the incident angle of light transmitted through the light transmitting film 16 is θ, an expression represented by “d = λ / (4n · cos θ)” holds. Here, since the light transmitted through the center side of the low refractive index light transmitting film 16 has a smaller incident angle θ than the light transmitted through the end side, the value of cos θ in the above equation is relatively large and close to 1 It becomes a value. In addition, by making the center side of the low refractive index light transmitting film 16 thinner than the end side, d in the above equation becomes smaller, so the value of the wavelength λ becomes smaller. That is, on the center side of the low refractive index light transmitting film 16, the transmittance of light on the short wavelength side is higher than that on the end side. As described above, the light transmitted through the center side of the lens unit 12 is difficult to take on a specific color.
 また、低屈折率透光膜16は、中央側の厚みをdcとし、低屈折率透光膜16の屈折率をnとし、中央側を透過する光の波長をλcとし、中央側を透過する光の入射角をθcとしたとき、下記式(6),(7)を満たす。 Further, the low refractive index light transmitting film 16 has a thickness on the center side as dc, a refractive index of the low refractive index light transmitting film 16 as n, a wavelength of light transmitted through the center side as λ c, and the center side is transmitted. Assuming that the incident angle of light is θc, the following equations (6) and (7) are satisfied.
 [数6]
 dc=λc/(4n・cosθc)     (6)
[Equation 6]
dc = λ c / (4 n · cos θ c) (6)
 [数7]
 380nm≦λc≦480nm     (7)
[Equation 7]
380 nm ≦ λ c ≦ 480 nm (7)
 このようにすれば、低屈折率透光膜16の中央側では、端側に比べると波長が380nm~480nmの光の透過率が高いものとなる。これにより、レンズ部12の中央側を透過する光が特定の色味をより帯び難いものとなる。 In this way, the transmittance of light with a wavelength of 380 nm to 480 nm is higher at the center side of the low refractive index light transmitting film 16 than at the end side. As a result, the light transmitted through the center side of the lens unit 12 is more difficult to take on a specific color.
 また、低屈折率透光膜16は、λcが400nmとされる。このようにすれば、低屈折率透光膜16の中央側では、端側に比べると波長が400nmの光の透過率が高いものとなる。波長が400nmの光は、可視光の中で特に短波長寄りの光であることから、その光の透過率が高くされることで、レンズ部12の中央側を透過する光が特定の色味を一層帯び難いものとなる。 The low refractive index light transmissive film 16 has λc of 400 nm. In this way, the transmittance of light with a wavelength of 400 nm is higher at the center side of the low refractive index light-transmissive film 16 than at the end side. The light with a wavelength of 400 nm is light particularly near a short wavelength in visible light, so that the transmittance of the light is increased, so that the light transmitted through the center side of the lens unit 12 has a specific color. It becomes even more difficult to take.
 また、低屈折率透光膜16は、端側の厚みをdeとし、低屈折率透光膜16の屈折率をnとし、端側を透過する光の波長をλeとし、端側を透過する光の入射角をθeとしたとき、下記式(8),(9)を満たす。 The low refractive index light transmitting film 16 has a thickness on the end side as de, a refractive index of the low refractive index light transmitting film 16 as n, a wavelength of light transmitting through the end side as λe, and transmits through the end side. When the incident angle of light is θe, the following formulas (8) and (9) are satisfied.
 [数8]
 de=λe/(4n・cosθe)     (8)
[Equation 8]
de = λ e / (4 n · cos θ e) (8)
 [数9]
 500nm≦λe≦600nm     (9)
[Equation 9]
500 nm ≦ λe ≦ 600 nm (9)
 このようにすれば、低屈折率透光膜16の端側では、中央側に比べると波長が500nm~600nmの光の透過率が高いものとなる。波長が500nm~560nmの光は、視感度の高い緑色光であることから、当該緑色光の透過率が高くされることで、光の利用効率が良好になる。 In this way, the transmittance of light with a wavelength of 500 nm to 600 nm is higher at the end side of the low refractive index light-transmissive film 16 than at the center side. The light with a wavelength of 500 nm to 560 nm is green light with high visibility, so the transmittance of the green light is increased to improve the light utilization efficiency.
 また、低屈折率透光膜16は、λeが550nmとされる。このようにすれば、低屈折率透光膜16の端側では、中央側に比べると波長が550nmの光の透過率が高いものとなる。波長が550nmの緑色光は、可視光の中で視感度が最も高い光であることから、当該緑色光の透過率が高くされることで、光の利用効率がより良好になる。 The low refractive index light transmissive film 16 has λe of 550 nm. In this way, the transmittance of light having a wavelength of 550 nm is higher at the end side of the low refractive index light-transmissive film 16 than at the center side. The green light having a wavelength of 550 nm is the light having the highest visibility among the visible light, so that the transmittance of the green light is increased, whereby the light utilization efficiency is further improved.
 また、透光部15は、レンズ部12に備えられており、低屈折率透光膜16は、レンズ部12の表面に接する形で配される。このようにすれば、仮に液晶表示部11に透光部が備えられる場合に比べると、低屈折率透光膜16を低コストでもって設けることができる。 In addition, the light transmitting portion 15 is provided in the lens portion 12, and the low refractive index light transmitting film 16 is disposed in contact with the surface of the lens portion 12. In this way, the low refractive index light transmitting film 16 can be provided at low cost, as compared with the case where the liquid crystal display unit 11 is provided with the light transmitting portion.
 また、低屈折率透光膜16は、レンズ部12の入光側の面と出光側の面とにそれぞれ接する形で一対が配される。このようにすれば、低屈折率透光膜16をレンズ部12に設けるに際して、例えばディップコーティング法を用いることが可能となるので、低コスト化を図る上でより好適とされる。 Further, a pair of low refractive index light transmitting films 16 is disposed in contact with the surface on the light entrance side and the surface on the light exit side of the lens unit 12 respectively. In this way, it is possible to use, for example, a dip coating method when providing the low refractive index light transmitting film 16 to the lens portion 12, which is more preferable for cost reduction.
 また、レンズ部12は、凸レンズとされる。このようにすれば、レンズ部12に係るコストを低下させる上で好適となる。 In addition, the lens unit 12 is a convex lens. This is suitable for reducing the cost of the lens unit 12.
 また、本実施形態に係るヘッドマウントディスプレイHMDは、上記記載の液晶表示装置10と、液晶表示装置10を有していて使用者の頭部HDに装着される頭部装着器具HMDaと、を少なくとも備える。このような構成のヘッドマウントディスプレイHMDによれば、使用者が頭部装着器具HMDaを頭部HDに装着した状態で使用すると、液晶表示装置10を構成する液晶表示部11に表示された画像がレンズ部12によって使用者の眼球EYに結像し、もって使用者は液晶表示部11に表示された画像を拡大した形で視認することが可能となる。上記した液晶表示装置10は、レンズ部12の中央側を透過する光が特定の色味を帯び難いものとなっているので、表示品位が高いものとなり、使用者の没入感がより高いものとなる。 Further, the head mounted display HMD according to the present embodiment includes at least the liquid crystal display device 10 described above, and a head mounted device HMDa having the liquid crystal display device 10 and mounted on the head HD of the user. Prepare. According to the head mount display HMD having such a configuration, when the user wears the head mounted device HMDa on the head HD, an image displayed on the liquid crystal display unit 11 constituting the liquid crystal display device 10 is displayed. The lens unit 12 forms an image on the eye EY of the user, which enables the user to visually recognize the image displayed on the liquid crystal display unit 11 in an enlarged form. In the liquid crystal display device 10 described above, since the light transmitted through the center side of the lens portion 12 is difficult to take on a specific color, the display quality is high, and the immersion feeling of the user is higher. Become.
 <実施形態2>
 本発明の実施形態2を図5によって説明する。この実施形態2では、レンズ部112の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
Second Embodiment
Embodiment 2 of the present invention will be described with reference to FIG. In the second embodiment, the configuration of the lens unit 112 is changed. In addition, the description which overlaps about the structure similar to Embodiment 1 mentioned above, an effect | action, and an effect is abbreviate | omitted.
 本実施形態に係るレンズ部112は、図5に示すように、フレネルレンズ17を有する。詳しくは、レンズ部112は、入光面112aにフレネルレンズ17が設けられている。一方、低屈折率透光膜116は、レンズ部112のうちフレネルレンズ17が設けられた入光面112aには非形成とされ、出光面112bのみに選択的に配されている。フレネルレンズ17は、表面が部分的な球面を段差状に配置してなる。フレネルレンズ17は、その表面における曲率がレンズ部112の中心側よりも外周端側の方が相対的に小さなものとなっている。このような構成のフレネルレンズ17によれば、非点収差の成分を除去することが可能である。これにより、レンズ部112の薄型化や短焦点化を図ることができる。 The lens part 112 which concerns on this embodiment has the Fresnel lens 17 as shown in FIG. Specifically, the lens unit 112 is provided with the Fresnel lens 17 on the light entrance surface 112 a. On the other hand, the low refractive index light transmissive film 116 is not formed on the light incident surface 112 a of the lens portion 112 on which the Fresnel lens 17 is provided, and is selectively disposed only on the light exit surface 112 b. The Fresnel lens 17 has a partial spherical surface arranged in steps. The curvature of the surface of the Fresnel lens 17 is relatively smaller on the outer peripheral end side than on the center side of the lens portion 112. According to the Fresnel lens 17 having such a configuration, it is possible to remove the component of astigmatism. Thereby, thinning and shortening of the focus of the lens portion 112 can be achieved.
 以上説明したように本実施形態によれば、レンズ部112は、フレネルレンズ17を有する。このようにすれば、レンズ部112の薄型化や短焦点化を図る上で好適となる。 As described above, according to the present embodiment, the lens unit 112 has the Fresnel lens 17. This configuration is suitable for achieving thinning and shortening of the focus of the lens unit 112.
 <実施形態3>
 本発明の実施形態3を図6によって説明する。この実施形態3では、上記した実施形態1から低屈折率透光膜216の配置を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
Embodiment 3
Embodiment 3 of the present invention will be described with reference to FIG. In the third embodiment, the arrangement of the low refractive index light transmissive film 216 is changed from the first embodiment described above. In addition, the description which overlaps about the structure similar to Embodiment 1 mentioned above, an effect | action, and an effect is abbreviate | omitted.
 本実施形態に係る低屈折率透光膜216は、図6に示すように、液晶表示部211において画像を表示する表示面213aに接する形で配される。従って、本実施形態では、液晶表示部211が光を透過して低屈折率透光膜216に接する透光部215を有する。具体的には、液晶表示部211を構成する液晶パネル213において表示面213aに配される偏光板が透光部215を構成している。透光部215を構成する偏光板は、低屈折率透光膜216よりも高い屈折率(例えば1.5前後)の材料からなる。このようにすれば、上記した実施形態1,2のようにレンズ部に透光部及びそれに接する低屈折率透光膜が備えられる場合に比べると、レンズ部212の光学性能が低屈折率透光膜216によって低下させられる事態を回避することができる。 The low refractive index light transmissive film 216 according to the present embodiment is disposed in contact with the display surface 213a for displaying an image in the liquid crystal display unit 211, as shown in FIG. Therefore, in the present embodiment, the liquid crystal display unit 211 includes the light transmitting unit 215 that transmits light and is in contact with the low refractive index light transmitting film 216. Specifically, in the liquid crystal panel 213 constituting the liquid crystal display portion 211, a polarizing plate disposed on the display surface 213a constitutes a light transmitting portion 215. The polarizing plate constituting the light transmitting portion 215 is made of a material having a refractive index (for example, around 1.5) higher than that of the low refractive index light transmitting film 216. In this way, as compared with the case where the lens portion is provided with the light transmitting portion and the low refractive index light transmitting film in contact therewith as in the first and second embodiments described above, the optical performance of the lens portion 212 is lower It is possible to avoid a situation that can be reduced by the light film 216.
 以上説明したように本実施形態によれば、透光部215は、液晶表示部211に備えられており、低屈折率透光膜216は、液晶表示部211において画像を表示する表示面213aに接する形で配される。このようにすれば、仮にレンズ部に透光部が備えられる場合に比べると、レンズ部212の光学性能が低屈折率透光膜216によって低下させられる事態を回避することができる。 As described above, according to the present embodiment, the light transmitting unit 215 is provided in the liquid crystal display unit 211, and the low refractive index light transmitting film 216 is provided on the display surface 213a for displaying an image in the liquid crystal display unit 211. It is distributed in the form of contact. In this way, it is possible to avoid the situation where the optical performance of the lens portion 212 is reduced by the low refractive index light transmitting film 216, as compared with the case where the light transmitting portion is provided in the lens portion.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態では、低屈折率透光膜の中央側を透過する光の波長λcが400nmとされる場合を例示したが、波長λcの具体的な数値は適宜に変更可能である。その場合であっても、波長λcは、380nmを下限とし、480nmを上限とする数値範囲内とされるのが好ましいが、必ずしもその限りではない。
 (2)上記した各実施形態では、低屈折率透光膜の端側を透過する光の波長λeが550nmとされる場合を例示したが、波長λeの具体的な数値は適宜に変更可能である。その場合であっても、波長λcは、500nmを下限とし、600nmを上限とする数値範囲内とされるのが好ましいが、必ずしもその限りではない。
 (3)上記した実施形態1では、レンズ部の入光面及び出光面にそれぞれ低屈折率透光膜を配した場合を示したが、レンズ部の入光面及び出光面のうちのいずれか一方のみに低屈折率透光膜を選択的に配することも可能である。
 (4)上記した実施形態2では、入光面にフレネルレンズを備えたレンズ部の出光面のみに低屈折率透光膜を選択的に配した場合を示したが、フレネルレンズが配された入光面に低屈折率透光膜を選択的に配することも可能である。また、入光面にフレネルレンズを備えたレンズ部の入光面及び出光面にそれぞれ低屈折率透光膜を配することも可能である。
 (5)上記した実施形態2では、レンズ部の入光面にフレネルレンズを設けた場合を示したが、レンズ部の入光面にリニアフレネルレンズやレンチキュラーレンズなどを設けることも可能である。
 (6)上記した実施形態3では、液晶表示部の液晶パネルにおける偏光板に接する形で低屈折率透光膜を配した場合を示したが、液晶表示部の液晶パネルにおけるガラス基板に接する形で低屈折率透光膜を配することも可能である。
 (7)上記した各実施形態では、レンズ部及び液晶表示部のうちのいずれか一方のみに低屈折率透光膜を選択的に配した場合を示したが、レンズ部及び液晶表示部の両方にそれぞれ低屈折率透光膜を配することも可能である。
 (8)上記した各実施形態では、低屈折率透光膜の材料としてフッ化マグネシウムを例示したが、低屈折率透光膜に用いる具体的な材料は適宜に変更可能である。その場合、低屈折率透光膜に用いる材料は、屈折率が1に近いほど好ましく、一般的に低屈折率となるフッ素系材料が好ましい。
 (9)上記した各実施形態では、低屈折率透光膜の膜厚が連続的に変化する場合を示したが、低屈折率透光膜の膜厚が段階的に変化する構成であっても構わない。
 (10)上記した各実施形態以外にも、レンズ部や低屈折率透光膜の材料に係る屈折率、レンズ部の透過光に係る光路長、レンズ部の入光面及び出光面に係る各曲率半径、低屈折率透光膜の膜厚などの具体的な数値は、適宜に変更可能である。
 (11)上記した各実施形態では、レンズ部が非球面レンズとされる場合を示したが、レンズ部が球面レンズとされていても構わない。
 (12)上記した各実施形態では、レンズ部が両凸レンズとされる場合を示したが、レンズ部が平凸レンズなどとされていても構わない。
 (13)上記した各実施形態では、表示部として液晶パネルを備えた液晶表示部を例示したが、他の種類の表示パネル(PDP(プラズマディスプレイパネル)、有機ELパネル、EPD(電気泳動ディスプレイパネル)、MEMS(Micro Electro Mechanical Systems)表示パネルなど)を備えた表示部が用いられていても構わない。
 (14)上記した各実施形態では、ヘッドマウントディスプレイを示したが、液晶表示部に表示された画像を、レンズ部を用いて拡大表示する機器として、例えばヘッドアップディスプレイやプロジェクターなどにも本発明は適用可能である。
 (15)上記した各実施形態では、低屈折率透光膜が単層膜とされる場合を示したが、低屈折率透光膜が複数の膜を積層してなる多層膜とされていても構わない。その場合、低屈折率透光膜を構成する複数の膜に係る材料として屈折率が異なるものを複数用いることが可能である。
Other Embodiments
The present invention is not limited to the embodiments described above with reference to the drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In each embodiment described above, the case where the wavelength λc of the light transmitted through the center side of the low refractive index light transmitting film is 400 nm is exemplified, but the specific numerical value of the wavelength λc can be appropriately changed is there. Even in such a case, it is preferable that the wavelength λc be in the numerical range with the lower limit of 380 nm and the upper limit of 480 nm, but the range is not necessarily limited to that.
(2) In each embodiment described above, the wavelength λe of the light transmitted through the end side of the low refractive index light transmitting film is 550 nm, but the specific numerical value of the wavelength λe can be appropriately changed. is there. Even in such a case, it is preferable that the wavelength λc be within the numerical range with the lower limit of 500 nm and the upper limit of 600 nm, but the range is not necessarily limited thereto.
(3) In the first embodiment described above, the low refractive index light transmitting film is disposed on each of the light incident surface and the light exit surface of the lens unit. However, any one of the light incident surface and the light exit surface of the lens unit It is also possible to selectively dispose the low refractive index light transmitting film only on one side.
(4) In the second embodiment described above, the low refractive index light transmitting film is selectively disposed only on the light exit surface of the lens unit provided with the Fresnel lens on the light entrance surface. However, the Fresnel lens is disposed. It is also possible to selectively dispose a low refractive index light transmitting film on the light incident surface. In addition, it is also possible to dispose a low refractive index light transmitting film on each of the light entrance surface and the light exit surface of the lens unit provided with the Fresnel lens on the light entrance surface.
(5) In the second embodiment described above, the Fresnel lens is provided on the light incident surface of the lens unit, but it is also possible to provide a linear Fresnel lens, a lenticular lens, or the like on the light incident surface of the lens unit.
(6) In the third embodiment described above, the low refractive index light transmitting film is disposed in contact with the polarizing plate in the liquid crystal panel of the liquid crystal display portion. However, the form in contact with the glass substrate in the liquid crystal panel of the liquid crystal display portion It is also possible to dispose a low refractive index light transmissive film.
(7) In each of the above-described embodiments, the low refractive index light transmitting film is selectively disposed on only one of the lens unit and the liquid crystal display unit. However, both the lens unit and the liquid crystal display unit are provided. It is also possible to dispose a low refractive index light transmissive film on each of
(8) In each embodiment described above, magnesium fluoride is exemplified as the material of the low refractive index light transmitting film, but the specific material used for the low refractive index light transmitting film can be appropriately changed. In that case, as the material used for the low refractive index light transmitting film, the refractive index is preferably as close to 1 as possible, and in general, a fluorine-based material having a low refractive index is preferable.
(9) In each embodiment described above, although the case where the film thickness of the low refractive index light transmitting film changes continuously, the film thickness of the low refractive index light transmitting film changes stepwise. I don't care.
(10) In addition to the embodiments described above, the refractive index related to the material of the lens part and the low refractive index light transmitting film, the optical path length related to the transmitted light of the lens part, and the light entrance surface and light exit surface of the lens unit Specific numerical values such as the radius of curvature and the film thickness of the low refractive index light transmitting film can be changed as appropriate.
(11) In each embodiment described above, the lens portion is an aspheric lens, but the lens portion may be a spherical lens.
(12) In the above-described embodiments, the lens unit is a biconvex lens. However, the lens unit may be a plano-convex lens or the like.
(13) In each of the above-described embodiments, the liquid crystal display unit including the liquid crystal panel is illustrated as the display unit, but other types of display panels (PDP (plasma display panel), organic EL panel, EPD (electrophoretic display panel) ), A display unit provided with a MEMS (Micro Electro Mechanical Systems) display panel or the like may be used.
(14) Although the head mounted display is shown in each of the above-described embodiments, the present invention is applicable to, for example, a head-up display or a projector as an apparatus for enlarging and displaying an image displayed on a liquid crystal display unit using a lens unit. Is applicable.
(15) In the above embodiments, the low refractive index light transmitting film is a single layer film, but the low refractive index light transmitting film is a multilayer film formed by laminating a plurality of films. I don't care. In that case, it is possible to use a plurality of materials having different refractive indexes as the material of the plurality of films constituting the low refractive index light transmitting film.
 10…液晶表示装置(表示装置)、11,211…液晶表示部(表示部)、12,112,212…レンズ部、12a,112a…入光面(入光側の面)、12b,112b…出光面(出光側の面)、13a,213a…表示面、15,215…透光部、16,116,216…低屈折率透光膜、17…フレネルレンズ、EY…眼球(眼)、EYa…水晶体(眼)、EYb…網膜(眼)、HD…頭部、HMD…ヘッドマウントディスプレイ、HMDa…頭部装着器具 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device) 11,211 ... Liquid crystal display part (display part) 12,112, 212 ... Lens part, 12a, 112a ... Light incident surface (surface by the side of light incidence), 12b, 112b ... Light exit surface (surface on the light exit side), 13a, 213a: display surface, 15, 215: light transmission part, 16, 116, 216: low refractive index light transmission film, 17: Fresnel lens, EY: eye (eye), EYA ... crystalline lens (eye), EYb ... retina (eye), HD ... head, HMD ... head mounted display, HMDa ... head mounted equipment

Claims (9)

  1.  画像を表示する表示部と、
     前記表示部に表示された画像を使用者の眼に結像させるレンズ部であって、中央側が端側よりも厚いレンズ部と、
     前記表示部及び前記レンズ部の少なくともいずれか一方に備わり、透光性を有する透光部と、
     透光性を有していて前記透光部よりも屈折率が低い低屈折率透光膜であって、前記透光部に接する形で配されて中央側が端側よりも薄い低屈折率透光膜と、を備える表示装置。
    A display unit for displaying an image;
    A lens unit for forming an image displayed on the display unit on a user's eye, wherein the lens unit is thicker at the center side than at the end side;
    A translucent portion provided on at least one of the display portion and the lens portion;
    A low refractive index light transmitting film having a light transmitting property and a refractive index lower than that of the light transmitting portion, the low refractive index light transmitting member being in contact with the light transmitting portion and having a center side thinner than an end side. And a light film.
  2.  前記低屈折率透光膜は、前記中央側の厚みをdcとし、前記低屈折率透光膜の屈折率をnとし、前記中央側を透過する光の波長をλcとし、前記中央側を透過する光の入射角をθcとしたとき、下記式(1),(2)を満たす請求項1記載の表示装置。
     [数1]
     dc=λc/(4n・cosθc)     (1)
     [数2]
     380nm≦λc≦480nm     (2)
    In the low refractive index light transmitting film, the thickness on the central side is dc, the refractive index of the low refractive index light transmitting film is n, the wavelength of light transmitted through the central side is λc, and the central light is transmitted The display device according to claim 1, wherein the following formulas (1) and (2) are satisfied, where θc is an incident angle of the incident light.
    [Equation 1]
    dc = λ c / (4 n · cos θ c) (1)
    [Equation 2]
    380 nm ≦ λ c ≦ 480 nm (2)
  3.  前記低屈折率透光膜は、前記λcが400nmとされる請求項2記載の表示装置。 The display device according to claim 2, wherein the λc of the low refractive index light transmissive film is 400 nm.
  4.  前記低屈折率透光膜は、前記端側の厚みをdeとし、前記低屈折率透光膜の屈折率をnとし、前記端側を透過する光の波長をλeとし、前記端側を透過する光の入射角をθeとしたとき、下記式(3),(4)を満たす請求項1から請求項3のいずれか1項に記載の表示装置。
     [数3]
     de=λe/(4n・cosθe)     (3)
     [数4]
     500nm≦λe≦600nm     (4)
    In the low refractive index light transmitting film, the thickness on the end side is de, the refractive index of the low refractive index light transmitting film is n, the wavelength of light transmitted through the end side is λe, and the light is transmitted through the end side The display device according to any one of claims 1 to 3, wherein the following equations (3) and (4) are satisfied, where θe is an incident angle of the incident light.
    [Equation 3]
    de = λ e / (4 n · cos θ e) (3)
    [Equation 4]
    500 nm ≦ λe ≦ 600 nm (4)
  5.  前記低屈折率透光膜は、前記λeが550nmとされる請求項4記載の表示装置。 The display device according to claim 4, wherein the λe of the low refractive index light transmissive film is 550 nm.
  6.  前記透光部は、前記レンズ部に備えられており、
     前記低屈折率透光膜は、前記レンズ部の表面に接する形で配される請求項1から請求項5のいずれか1項に記載の表示装置。
    The light transmitting unit is provided in the lens unit,
    The display device according to any one of claims 1 to 5, wherein the low refractive index light transmissive film is disposed in contact with a surface of the lens unit.
  7.  前記低屈折率透光膜は、前記レンズ部の入光側の面と出光側の面とにそれぞれ接する形で一対が配される請求項6記載の表示装置。 The display device according to claim 6, wherein the low refractive index light transmitting film is disposed in a pair so as to be in contact with the surface on the light entrance side and the surface on the light exit side of the lens unit.
  8.  前記透光部は、前記表示部に備えられており、
     前記低屈折率透光膜は、前記表示部において画像を表示する表示面に接する形で配される請求項1から請求項5のいずれか1項に記載の表示装置。
    The light transmitting unit is provided in the display unit.
    The display device according to any one of claims 1 to 5, wherein the low refractive index light transmissive film is disposed in contact with a display surface on which an image is displayed in the display unit.
  9.  請求項1から請求項8のいずれか1項に記載の表示装置と、
     前記表示装置を有していて前記使用者の頭部に装着される頭部装着器具と、を少なくとも備えるヘッドマウントディスプレイ。
    A display device according to any one of claims 1 to 8;
    A head mounted display comprising at least a head mounted device having the display device and mounted on a head of the user.
PCT/JP2018/028044 2017-08-02 2018-07-26 Display device and head-mounted display WO2019026748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-149771 2017-08-02
JP2017149771 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019026748A1 true WO2019026748A1 (en) 2019-02-07

Family

ID=65232667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028044 WO2019026748A1 (en) 2017-08-02 2018-07-26 Display device and head-mounted display

Country Status (1)

Country Link
WO (1) WO2019026748A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333908A (en) * 2003-05-08 2004-11-25 Pentax Corp Optic element having antireflection film
JP2007264337A (en) * 2006-03-29 2007-10-11 Hitachi Ltd Optical component and projection type image display device using the same
JP2013205749A (en) * 2012-03-29 2013-10-07 Fujitsu Ltd Stereoscopic image display device and method
US20160210782A1 (en) * 2015-01-21 2016-07-21 Oculus Vr, Llc Compressible eyecup assemblies in a virtual reality headset
WO2016203946A1 (en) * 2015-06-16 2016-12-22 ソニー株式会社 Display device, method for manufacturing display device, and electronic device
JP2017161903A (en) * 2016-03-09 2017-09-14 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Head mount display device
JP2018081166A (en) * 2016-11-15 2018-05-24 大日本印刷株式会社 Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333908A (en) * 2003-05-08 2004-11-25 Pentax Corp Optic element having antireflection film
JP2007264337A (en) * 2006-03-29 2007-10-11 Hitachi Ltd Optical component and projection type image display device using the same
JP2013205749A (en) * 2012-03-29 2013-10-07 Fujitsu Ltd Stereoscopic image display device and method
US20160210782A1 (en) * 2015-01-21 2016-07-21 Oculus Vr, Llc Compressible eyecup assemblies in a virtual reality headset
WO2016203946A1 (en) * 2015-06-16 2016-12-22 ソニー株式会社 Display device, method for manufacturing display device, and electronic device
JP2017161903A (en) * 2016-03-09 2017-09-14 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Head mount display device
JP2018081166A (en) * 2016-11-15 2018-05-24 大日本印刷株式会社 Display device

Similar Documents

Publication Publication Date Title
JP6641987B2 (en) Virtual image display
JP6641974B2 (en) Virtual image display
EP2930552B1 (en) Display apparatus and optical apparatus
US11061231B2 (en) Optical device and display device
US9933621B2 (en) Light guide unit for an image display
US20180211449A1 (en) Display instrument and image display method
CN110537136B (en) Optical device, image display device, and display device
WO2018221026A1 (en) Optical device, image display device, and display device
JP6545359B2 (en) Optical module, optical device, and wearable display device
WO2017038350A1 (en) Optical device and method for producing same, and display device
JP6848865B2 (en) Optical device, image display device and display device
JP2015184561A (en) Light guide device, image display device, and display device
US10649131B2 (en) Display device and head-mounted display
CN109254402B (en) Light guide plate and image display device
JP2016126134A (en) Display device and wearable device
CN217982020U (en) AR glasses with adjustable illuminance
WO2017223167A1 (en) Optics of wearable display devices
JP2016145956A (en) Optical device, head-mounted type image display apparatus including the same and imaging apparatus
WO2019026748A1 (en) Display device and head-mounted display
WO2020241103A1 (en) Image display device and display device
US11747616B2 (en) Display device and head mounted display
WO2019044501A1 (en) Head-mounted display
US11513357B2 (en) Image display device for providing uniform brightness in virtual image
TW202411734A (en) Display integration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP