WO2018221116A1 - Organic electroluminescent light-emitting device - Google Patents

Organic electroluminescent light-emitting device Download PDF

Info

Publication number
WO2018221116A1
WO2018221116A1 PCT/JP2018/017476 JP2018017476W WO2018221116A1 WO 2018221116 A1 WO2018221116 A1 WO 2018221116A1 JP 2018017476 W JP2018017476 W JP 2018017476W WO 2018221116 A1 WO2018221116 A1 WO 2018221116A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
gas barrier
emitting device
light emitting
Prior art date
Application number
PCT/JP2018/017476
Other languages
French (fr)
Japanese (ja)
Inventor
勇也 元村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2018221116A1 publication Critical patent/WO2018221116A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to an organic electroluminescence light emitting device such as an organic electroluminescence display and an organic electroluminescence illumination device.
  • Organic EL light-emitting devices using organic electroluminescence materials are used for organic EL displays, organic EL lighting devices, and the like.
  • the organic EL light emitting device uses a glass plate, a metal plate, or the like as a support.
  • flexibility is also required for organic EL light emitting devices.
  • an organic EL light-emitting device that meets the demand for flexibility an organic EL light-emitting device that uses a flexible resin film as a support film (support) is known.
  • an organic EL light emitting device using a resin film as a support film has an electrode layer, an organic EL light emitting layer, etc. on a resin film substrate such as a polyimide film placed on a glass carrier or the like. After forming necessary layers such as a light emitting element and a passivation film, a sealing layer, an adhesive layer, and a sealing substrate, the film substrate is peeled off from the carrier, and the whole film substrate is replaced with a supporting film. Produced.
  • the organic EL material is very sensitive to moisture. Since a sealing layer, a passivation film, and the like are formed on the side opposite to the support film of the organic EL element, deterioration of the organic EL material due to moisture entering from this side can be prevented.
  • the support film is a polyethylene terephthalate film (PET film) or the like and does not have gas barrier properties. Therefore, in the conventional organic EL light emitting device having flexibility, the organic EL material is protected from moisture entering from the support film side by providing a gas barrier film between the film base and the organic EL light emitting element. Yes.
  • a silicon oxynitride film is formed as a gas barrier layer on both sides of a PET film, an ITO (Indium Tin Oxide) film is formed as a transparent anode on one surface, and an organic layer is formed on the ITO film.
  • An organic EL light emitting device provided with an ITO film and an organic EL light emitting layer is described.
  • a layer having a gas barrier property such as silicon nitride and silicon oxynitride is formed as a first insulating layer on the surface of a film substrate made of a PET film or the like. Describes a light emitting device that forms an element portion including a light emitting element including an EL layer using an organic EL material and a switching element.
  • Patent Documents 1 and 2 provide a gas barrier layer (a layer having gas barrier properties) between the film substrate and the organic EL light-emitting device, thereby preventing deterioration of the organic EL material due to moisture entering from the support film side.
  • a gas barrier layer a layer having gas barrier properties
  • an organic EL light emitting device having durability can be obtained.
  • the conventional organic EL light-emitting device does not yet have sufficient flexibility and durability.
  • An object of the present invention is to solve such problems, and to provide an organic EL light emitting device having high flexibility and high durability.
  • an organic electroluminescence light emitting device of the present invention comprises a resin substrate, a first gas barrier layer, an adhesive layer, a polyimide resin substrate, a second gas barrier layer, and an organic electroluminescence light emitting element.
  • An organic electroluminescence light-emitting device characterized by having the components in this order is provided.
  • the first gas barrier layer preferably has one or more combinations of an inorganic layer and an organic layer serving as a base of the inorganic layer.
  • the inorganic layer is preferably a layer having silicon nitride as a main component and a thickness of 150 nm or less.
  • a heat radiation layer is provided on the surface of the resin base material opposite to the side on which the first gas barrier layer is formed.
  • a thermal radiation layer contains one or more of a carbon material, a metal material, a ceramic material, and a silicone material.
  • the heat dissipation layer has a larger thermal conductivity in the plane direction than that in the thickness direction.
  • the top emission type is preferable.
  • an organic EL light emitting device having high flexibility and high durability can be obtained.
  • organic electroluminescence light emitting device organic EL light emitting device
  • organic EL light emitting device organic EL light emitting device
  • the organic EL light-emitting device of the present invention is suitably used as an example for an organic EL display and an organic EL lighting device.
  • an embodiment of an organic EL light emitting device of the present invention will be described based on the drawings.
  • FIG. 1 conceptually shows an organic EL light emitting device 10 according to the first embodiment of the present invention.
  • the organic EL light-emitting device 10 includes a resin base 12, a first gas barrier layer 14 provided on one main surface of the resin base 12 (upper main surface in FIG. 1) in the following order, and an adhesive layer 16, a polyimide resin substrate 18, a second gas barrier layer 20, and an organic EL light emitting element 24.
  • the main surface is the maximum surface.
  • the upper side indicates the organic EL light emitting element 24 side (upper side in FIG. 1)
  • the lower side indicates the resin base material 12 side (lower side in FIG. 1).
  • the organic EL light-emitting device 10 is a known organic EL light-emitting device (such as an organic EL display and an organic EL lighting device) such as a passivation film, a sealing layer, an adhesive layer, and a sealing substrate, if necessary. You may have various layers (film
  • the resin substrate 12 may be a known resin sheet (film) used as a support in various gas barrier films and various laminated functional films.
  • the material of the resin substrate 12 include polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyacrylonitrile ( PAN), polyimide (PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), acrylonitrile / butadiene / styrene copolymer ( ABS), cyclic olefin copolymer (COC), cycloolefin polymer (COP), and triacetyl cellulose (TAC).
  • PE polyethylene
  • PEN polyethylene naphthalate
  • PA polyamide
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • PVA polyvinyl alcohol
  • PAN polyacrylonitrile
  • PAN polyimide
  • the thickness of the resin base material 12 can be appropriately set according to the use, material, and the like.
  • the thickness of the resin base material 12 ensures a sufficient mechanical strength of the organic EL light-emitting device 10, ensures the flexibility (flexibility) of the organic EL light-emitting device 10, and reduces the weight and thickness. From this viewpoint, the thickness is preferably 5 to 150 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • the resin base material 12 may have a functional layer on the surface.
  • the functional layer include a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, and a stress relaxation layer.
  • the resin base material 12 has high surface smoothness.
  • the first gas barrier layer 14 is provided on the resin base material 12.
  • the organic EL light emitting device 10 basically includes a gas barrier film in which a first gas barrier layer 14 is formed on a resin substrate 12, and a second gas barrier layer 20 and an organic material on a polyimide resin substrate 18 that is a film substrate.
  • the organic EL light-emitting device body on which the EL light-emitting element 24 is formed is prepared by bonding the first gas barrier layer 14 and the polyimide resin base material 18 with the adhesive layer 16. That is, in the organic EL light emitting device 10, the gas barrier film in which the first gas barrier layer 14 is formed on the resin base material 12 serves as a support film in the organic EL light emitting device 10.
  • the first gas barrier layer 14 includes a layer made of an inorganic compound, such as a silicon nitride layer, a silicon oxide layer, a silicon oxynitride layer, and an aluminum oxide layer.
  • an inorganic layer 30 that exhibits gas barrier properties and a base of the inorganic layer 30 are used as a preferable first gas barrier layer 14.
  • An organic / inorganic laminated gas barrier layer having one or more combinations with the organic layer 28 can be used.
  • the organic / inorganic laminated first gas barrier layer 14 is not limited to the one having only one combination of the organic layer 28 and the inorganic layer 30 as a base. That is, the organic / inorganic laminated first gas barrier layer 14 includes two sets of combinations of the organic layer 28 and the inorganic layer 30 serving as a base, such as the organic layer 28, the inorganic layer 30, the organic layer 28, and the inorganic layer 30. 3 sets of combinations of the organic layer 28 and the inorganic layer 30 serving as a base, such as the organic layer 28, the inorganic layer 30, the organic layer 28, the inorganic layer 30, the organic layer 28, and the inorganic layer 30. As described above, it may be included.
  • the number of combinations of the organic layer 28 and the inorganic layer 30 serving as the base increases, a higher gas barrier property can be obtained.
  • Organic layer 28 is a layer made of an organic compound obtained by polymerizing (crosslinking or curing) a monomer or oligomer, for example.
  • the organic layer 28 is a base organic layer that embeds irregularities on the surface of the resin substrate 12 and foreign matters attached to the surface.
  • the inorganic layer 30 that mainly exhibits gas barrier properties.
  • the organic layer 28 also functions as a buffer layer for the inorganic layer 30 when the organic EL light emitting device 10 is bent. Therefore, by having the organic layer 28, damage to the inorganic layer 30 when the organic EL light-emitting device 10 is bent can be prevented, and the organic EL light-emitting device 10 having more flexibility and durability can be obtained.
  • the organic layer 28 is formed, for example, by curing an organic layer forming composition containing an organic compound (monomer, dimer, trimer, oligomer, polymer, etc.).
  • the composition for organic layer formation may contain only 1 type of organic compounds, and may contain 2 or more types.
  • the organic layer 28 contains, for example, a thermoplastic resin and an organosilicon compound.
  • the thermoplastic resin include polyester, (meth) acrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, and polyurethane.
  • Polyether ether ketone polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, and acrylic compounds.
  • organosilicon compound include polysiloxane.
  • the organic layer 28 preferably includes a polymer of a radical curable compound and / or a cationic curable compound having an ether group from the viewpoint of excellent strength and a glass transition temperature. From the viewpoint of lowering the refractive index of the organic layer 28, the organic layer 28 preferably contains a (meth) acrylic resin mainly composed of a (meth) acrylate monomer or oligomer polymer. The organic layer 28 has high transparency and low light transmittance by reducing the refractive index.
  • the organic layer 28 is more preferably bifunctional or more, such as dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), and the like.
  • DPGDA dipropylene glycol di (meth) acrylate
  • TMPTA trimethylolpropane tri (meth) acrylate
  • DPHA dipentaerythritol hexa
  • a (meth) acrylic resin having a (meth) acrylate monomer or oligomer as a main component includes (meth) acrylic resin. A plurality of these (meth) acrylic resins may be used.
  • a main component means a component with the largest containing mass ratio among the components to contain.
  • composition for forming an organic layer preferably contains an organic solvent, a surfactant, a silane coupling agent and the like in addition to the organic compound.
  • the thickness of the organic layer 28 is preferably 0.5 to 5 ⁇ m, and more preferably 1 to 3 ⁇ m.
  • the thickness of the organic layer 28 is preferably 0.5 to 5 ⁇ m, and more preferably 1 to 3 ⁇ m.
  • each organic layer 28 may be the same or different.
  • the organic layer 28 can be formed by a known method corresponding to the material.
  • the organic layer 28 can be formed by a coating method in which a composition for forming an organic layer is applied and the composition for forming an organic layer is dried.
  • the organic compound in the organic layer forming composition is polymerized (crosslinked) by irradiating the dried organic layer forming composition with ultraviolet rays as necessary. .
  • the organic layer 28 can be formed by so-called roll-to-roll.
  • roll-to-roll is also referred to as “RtoR”.
  • RtoR is a roll formed by winding a long film formation target sheet, the film formation target sheet is sent out, the film formation target sheet is conveyed in the longitudinal direction, and film formation is performed in a roll shape. It is a manufacturing method wound around. By using RtoR, high productivity and production efficiency can be obtained.
  • the inorganic layer 30 is a thin film containing an inorganic compound and is provided on the surface of the organic layer 28.
  • the inorganic layer 30 exhibits gas barrier properties.
  • the inorganic layer 30 is appropriately formed by being provided on the surface of the organic layer 28.
  • the resin base material 12 has areas where it is difficult to deposit an inorganic compound, such as surface irregularities and shadows of foreign matter. By providing the organic layer 28 on the resin base material 12, the region where the inorganic compound is difficult to deposit is covered. Therefore, the inorganic layer 30 can be formed on the entire surface of the resin substrate 12 without any gap.
  • the inorganic compound used for the well-known gas barrier layer which consists of an inorganic compound which expresses gas barrier property can be utilized variously.
  • the material of the inorganic layer 30 include metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metals such as aluminum carbide Silicon oxides such as silicon oxide, silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitride such as silicon nitride and silicon nitride carbide; silicon carbide such as silicon carbide; these hydrides; these two kinds Inorganic compounds such as the above mixtures; and hydrogen-containing materials thereof.
  • metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metals such
  • silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, and a mixture of two or more thereof are preferably used in that they have high transparency and can exhibit excellent gas barrier properties.
  • silicon nitride is preferably used because it can exhibit excellent gas barrier properties.
  • the inorganic layer 30 is preferably composed mainly of silicon nitride.
  • the phrase “having silicon nitride as a main component” means that the component having the largest content among the components contained in the inorganic layer is silicon nitride.
  • the thickness which can express the target gas barrier property can be set suitably.
  • the thickness of the inorganic layer 30 is preferably 10 to 150 nm, more preferably 12 to 100 nm, and even more preferably 15 to 75 nm. By setting the thickness of the inorganic layer 30 to 10 nm or more, it is preferable in that the inorganic layer 30 that stably expresses sufficient gas barrier performance can be formed.
  • the inorganic layer 30 is generally brittle, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc.
  • the thickness of the inorganic layer 30 is set to 150 nm or less, cracks may occur. Can be prevented. Further, by setting the thickness of the inorganic layer 30 to 150 nm or less, when the organic EL light-emitting device 10 is bent, the inorganic layer 30 is prevented from cracking and peeling, and the organic EL light-emitting device 10 having high flexibility. It is also preferable in that it can be obtained.
  • the first gas barrier layer 14 is not an organic / inorganic laminated type gas barrier layer but does not have the organic layer 28 serving as a base, and is a layer formed only of the above-described inorganic compound layer, the inorganic layer For the same reason as 30, the thickness of the first gas barrier layer 14 is preferably 10 to 150 nm.
  • each inorganic layer 30 may be the same or different.
  • the inorganic layer 30 can be formed by a known method according to the material. For example, CCP (Capacitively Coupled Plasma) -CVD (Chemical Vapor Deposition) and ICP (Inductively Coupled Plasm) -CVD and other plasma CVD, atomic layer deposition (ALD), magnetron sputtering and reactive sputtering, etc. Various gas phase film forming methods such as sputtering and vacuum deposition are preferable. Note that the inorganic layer 30 is also preferably formed of RtoR.
  • the first gas barrier layer 14 may have a protective organic layer that protects the uppermost inorganic layer 30 on the uppermost inorganic layer 30 as necessary.
  • the protective organic layer By having the protective organic layer, the gas barrier property is prevented from being lowered due to the damage of the inorganic layer 30, and more excellent gas barrier property is obtained.
  • the organic / inorganic laminated first gas barrier layer 14 has one or more combinations of the organic layer 28 and the inorganic layer 30 serving as a base, the structure including the organic layer 28, the inorganic layer 30 and the organic layer, and The organic layer 28, the inorganic layer 30, the organic layer 28, the inorganic layer 30, and the organic layer 28 in addition to the combination of the organic layer 28 and the inorganic layer 30 serving as a base, Configurations having only layers are also available.
  • the protective organic layer the same organic layer as that described above can be used. Further, the thickness of the protective organic layer may be the same as or different from that of the organic layer 28.
  • the protective organic layer may be formed in the same manner as the organic layer 28. With respect to such a protective organic layer, the same applies to the case where the first gas barrier layer 14 is not an organic / inorganic laminated type, but includes only an inorganic layer that does not have the organic layer 28 serving as a base.
  • the surface smoothness of the first gas barrier layer 14 is not limited. However, the inorganic layer 30 preferably has high surface smoothness.
  • the organic EL light emitting device 10 is basically manufactured by bonding the gas barrier film and the organic EL light emitting device main body together with the adhesive layer 16.
  • the organic EL light emitting device main body is obtained by forming the second gas barrier layer 20 on the polyimide resin base material 18 serving as a film base material and forming the organic EL light emitting element 24 thereon.
  • the polyimide resin base material 18 there are various sheet-like materials (films) made of a polyimide resin and a polyimide resin used as a base material for forming the organic EL light emitting element 24 in a known organic EL light emitting device.
  • various sheet materials made of polyimide and polyimide-based resins such as polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide resin can be used.
  • polyimide resin base material 18 commercially available polyimide films, such as Kapton (made by Toray DuPont), Iupilex (made by Ube Industries), and Apical (made by Kaneka), can also be used suitably.
  • the thickness which can support the organic EL light emitting element 24 can be suitably set according to material.
  • the thickness of the polyimide resin substrate 18 is preferably 5 to 100 ⁇ m, more preferably 10 to 75 ⁇ m, and further preferably 15 to 50 ⁇ m. By setting the thickness of the polyimide resin substrate 18 to 5 ⁇ m or more, it is preferable in that sufficient heat resistance and strength can be ensured, and an appropriate organic EL light emitting element 24 can be stably formed.
  • the thickness of the polyimide resin base material 18 is 100 ⁇ m or less because the flexibility of the organic EL light-emitting device 10 can be increased, and the weight and thickness of the organic EL light-emitting device 10 can be reduced.
  • the second gas barrier layer 20 is formed on the polyimide resin base material 18.
  • the second gas barrier layer 20 is for preventing moisture that has passed through the polyimide resin base material 18 from entering the organic EL light emitting element 24 and deteriorating the organic EL material and the like.
  • the 2nd gas barrier layer 20 In a well-known organic electroluminescent light-emitting device, it is between the polyimide resin base material 18 (film base material for forming the organic electroluminescent light emitting element 24), and the organic electroluminescent light emitting element 24.
  • FIG. Various layers that provide gas barrier properties can be used.
  • the 2nd gas barrier layer 20 the layer which consists of various inorganic materials illustrated in the above-mentioned inorganic layer 30 is mentioned, for example. Of these, a layer made of silicon nitride, silicon oxide, or the like is preferably used.
  • the second gas barrier layer 20 may be a single layer film or may be a multilayer film such as a laminated structure of silicon nitride and silicon oxide.
  • the thickness of the second gas barrier layer 20 is preferably 10 to 2000 nm, more preferably 50 to 1000 nm, and further preferably 100 to 750 nm. Setting the thickness of the second gas barrier layer 20 to 10 nm or more is preferable in that good gas barrier properties can be obtained. By setting the thickness of the second gas barrier layer 20 to 2000 nm or less, the flexibility of the organic EL light emitting device 10 can be increased, and the organic EL light emitting device 10 can be reduced in weight and thickness.
  • the second gas barrier layer 20 can be formed by a known method according to the material. Examples of the method include a coating method, a printing method, and various gas phase film forming methods such as plasma CVD and sputtering exemplified for the inorganic layer 30 described above.
  • the second gas barrier layer 20 is also preferably formed of RtoR.
  • the organic EL light emitting element 24 is formed on the second gas barrier layer 20.
  • the organic EL light emitting element 24 includes a transparent electrode layer (TFT (Thin Film Transistor), thin film transistor), a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and a cathode.
  • TFT Thin Film Transistor
  • OLED Organic Light Emitting Diode
  • the organic EL light emitting device 10 of the present invention may have a known passivation film for covering the organic EL light emitting element 24 and protecting the organic EL light emitting element 24, as in the known organic EL light emitting device. . Furthermore, the organic EL light-emitting device 10 of the present invention covers the organic EL light-emitting element 24 or the passivation film that covers the organic EL light-emitting element 24 in the same manner as the known organic EL light-emitting device. You may have a gas barrier film which seals.
  • the gas barrier film As the gas barrier film, a known gas barrier film obtained by forming a gas barrier layer of a silicon oxide layer, an aluminum oxide layer and a silicon nitride layer on a substrate such as a resin film can be used. Especially, the gas barrier film formed by forming the same organic-inorganic laminated type gas barrier layer as the 1st gas barrier layer 14 in a base material can be used suitably.
  • the organic EL light emitting element 24 may be sealed with a gas barrier film by a known method using an adhesive tape, an adhesive layer, an adhesive layer, or the like.
  • the organic EL light emitting device 10 basically includes the gas barrier film in which the first gas barrier layer 14 is formed on the resin base 12, the second gas barrier layer 20 and the organic on the polyimide resin base 18.
  • the organic EL light-emitting device body on which the EL light-emitting element 24 is formed is prepared by bonding the first gas barrier layer 14 and the polyimide resin base material 18 with the adhesive layer 16.
  • the conventional organic EL light-emitting device having flexibility forms a gas barrier layer (a layer exhibiting gas barrier properties) on a resin base film such as a polyimide film, and then on the gas barrier layer.
  • An organic EL light emitting element is formed, then peeled off from a carrier such as glass, and the base film is transferred to a support film such as a PET film.
  • a passivation film or the like is provided so as to cover the organic EL light emitting element, thereby preventing deterioration of the organic EL material or the like due to intrusion of moisture or the like.
  • the support film does not have gas barrier properties.
  • Such an organic EL light emitting device exhibits sufficient flexibility for applications requiring flexibility that is not so high, such as bending with a large curvature radius, and organic EL for a long period of time. Prevents deterioration of materials, etc., and exhibits sufficient durability.
  • the conventional organic EL light emitting device having flexibility in an application requiring high flexibility, such as an application bent with a small curvature radius, in a short period of time. Luminous performance deteriorates and sufficient durability cannot be exhibited. That is, in the conventional organic EL light-emitting device having flexibility, high flexibility and durability cannot be obtained at the same time. The present inventor has conducted extensive studies on this cause.
  • the gas barrier layer between the film base and the organic EL light-emitting element is thick, so that the gas barrier layer is cracked when bent with a small radius of curvature. It has been found that moisture penetrates from the cracked portion and the organic EL material deteriorates. That is, it has been found that a conventional organic EL light-emitting device having flexibility cannot obtain sufficient durability in applications that require high flexibility, that is, does not have sufficient flexibility.
  • the organic EL light emitting device 10 of the present invention includes an organic EL light emitting device body in which the second gas barrier layer 20 and the organic EL light emitting element 24 are formed on a polyimide resin base material 18 as a film base material, and a resin base material.
  • the gas barrier film having the first gas barrier layer 14 formed on 12 is bonded to the first gas barrier layer 14 and the polyimide resin substrate 18 with the adhesive layer 16 facing each other.
  • the organic EL light emitting device 10 of the present invention having such a configuration can prevent the first gas barrier layer 14 from being damaged because the adhesive layer 16 functions as a buffer layer even when bent with a small radius of curvature.
  • the first gas barrier layer 14 can prevent moisture from entering the organic EL light emitting element 24 and prevent deterioration of the organic EL material. . Therefore, according to the present invention, it is possible to obtain the organic EL light emitting device 10 having both high flexibility and durability with improved durability against bending.
  • the organic EL light emitting device 10 of the present invention preferably uses the organic-inorganic laminated gas barrier layer described above as the first gas barrier layer 14.
  • the organic / inorganic laminated gas barrier layer exhibits a very high gas barrier property even with a thin inorganic layer 30 having a thickness of 150 nm, for example. Therefore, by using an organic-inorganic laminated gas barrier layer, the inorganic layer 30 can be made thin, and damage to the first gas barrier layer 14 due to bending can be more suitably prevented.
  • the inorganic layer 30 is sandwiched between the adhesive layer 16 and the organic layer 28.
  • the buffer effect by the organic layer 28 acts synergistically, and damage to the inorganic layer 30, that is, the first gas barrier layer 14 can be prevented. Therefore, by using the organic / inorganic laminated gas barrier layer, it is possible to obtain the organic EL light-emitting device 10 having higher flexibility and durability with improved durability against bending.
  • adhesion layer 16 There is no restriction
  • pressure-sensitive adhesives and pressure-sensitive adhesive sheets made of (meth) acrylic acid ester resin, polyurethane, (meth) acrylic resin, ethylene-vinyl acetate copolymer (EVA), polyolefin, silicone resin, epoxy resin, rubber-based materials, etc. , Pressure-sensitive adhesive tape, pressure-sensitive adhesive film, and adhesive.
  • a commercially available product can also be used for the adhesive layer 16.
  • the adhesive layer 16 Commercially available products that can be used as the adhesive layer 16 include TEA Tape teas Barrier Transfer Tape 3rdG, Daicel CELVENUS series, Nagase ChemteX XNR5516Z, and 3M various highly transparent adhesives. Agent transfer tape series (such as 8146 series).
  • the adhesion layer 16 may contain the desiccant component which absorbs a water
  • the thickness of the pressure-sensitive adhesive layer 16 is not limited, and the thickness that allows the first gas barrier layer 14 and the polyimide resin base material 18 to be bonded with sufficient adhesive force depending on the type and material of the pressure-sensitive adhesive layer 16. Can be set as appropriate.
  • the thickness of the adhesive layer 16 is preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, and even more preferably 10 to 100 ⁇ m. By setting the thickness of the adhesive layer 16 to 1 ⁇ m or more, the first gas barrier layer 14 and the polyimide resin substrate 18 can be bonded together with sufficient adhesive force, and the first gas barrier layer 14 is prevented from being damaged by the buffer of the adhesive layer 16.
  • the thickness of the adhesive layer 16 is set to 300 ⁇ m or less, the flexibility of the organic EL light emitting device 10 can be increased, and the organic EL light emitting device 10 can be reduced in weight and thickness.
  • the pressure-sensitive adhesive layer 16 can be formed by a known method according to the material and form of the pressure-sensitive adhesive layer 16 such as a coating method and sticking of a sheet material.
  • FIG. 3 shows an organic EL light emitting device 34 according to the second embodiment of the present invention.
  • the organic EL light-emitting device 34 shown in FIG. 3 has the same configuration as that of the organic EL light-emitting device 10 shown in FIG. 1 except that the heat-radiating layer 36 and the second adhesive layer 38 are included. Accordingly, the same members are denoted by the same reference numerals, and the description will mainly be made on different members.
  • the organic EL light-emitting device 34 has a heat dissipation layer 36 provided by a second adhesive layer 38 on the surface of the resin base 12 opposite to the first gas barrier layer 14.
  • a heat dissipation layer 36 heat generated by driving the organic EL light emitting element 24 is suitably released, the organic EL light emitting element 24 is prevented from being heated, and the organic EL light emitting device 34 operates more stably. It becomes possible to make it.
  • thermal radiation layer 36 There is no restriction
  • thermoelectric layer 36 a ceramic sheet made of a compound having a high thermal conductivity, a silicone sheet containing a material having a high thermal conductivity such as metal particles and a metal filler, and the like.
  • heat dissipation layer 36 a commercially available heat dissipation sheet (heat conductive sheet) can also be suitably used.
  • heat radiation sheets include PGS graphite sheets (manufactured by Panasonic), eGRAF (manufactured by Graftech), and heat radiation silicone rubber sheets (manufactured by Shin-Etsu Silicone).
  • the heat dissipation layer 36 preferably has a thermal conductivity in the plane direction that is greater than the thermal conductivity in the thickness direction. That is, it is preferable that the heat dissipation layer 36 has a heat conduction anisotropy with a large heat conduction in the surface direction in the surface direction and the thickness direction.
  • the thermal conductivity in the plane direction is preferably 5 times or more of the thermal conductivity in the thickness direction, more preferably 50 times or more, and even more preferably 100 times or more.
  • the surface direction is the direction of the main surface of the resin base material 12.
  • the thickness direction is, in other words, the stacking direction of the layers in the organic EL light emitting device 34 (10).
  • an organic EL light emitting device such as an organic EL display and an organic EL lighting device, in particular, an organic EL display
  • a battery serving as a power source of the organic EL light emitting device or a driving device is provided on the side opposite to the organic EL light emitting element 24 of the resin base 12
  • a power supply unit is arranged.
  • the battery and the power supply device are vulnerable to heat, and the output becomes unstable due to heating.
  • the heat dissipation layer 36 has thermal conductivity anisotropy with a large thermal conductivity in the plane direction, thereby suppressing the heat dissipation from the heat dissipation layer 36 to the battery, and the battery resulting from the heat dissipation from the organic EL light emitting device 34. Or heating of a power supply device can be prevented and the drive of the organic electroluminescent light-emitting device 34 can be stabilized more.
  • Examples of the heat dissipation layer 36 having such heat conduction anisotropy include a graphite sheet.
  • the thickness of the heat dissipation layer 36 is not limited, and a thickness capable of sufficient heat dissipation can be appropriately set according to the type and material of the heat dissipation layer 36.
  • the thickness of the heat dissipation layer 36 is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and even more preferably 10 to 50 ⁇ m. Setting the thickness of the heat dissipation layer 36 to 1 ⁇ m or more is preferable in that sufficient heat dissipation is possible. By setting the thickness of the heat dissipation layer 36 to 100 ⁇ m or less, the flexibility of the organic EL light emitting device 34 can be increased, and the weight and thickness of the organic EL light emitting device 34 can be reduced.
  • the heat dissipation layer 36 is affixed to the resin base material 12 by the second adhesive layer 38. If the heat dissipation layer 36 can be directly formed (film formation) or affixed to the resin base material 12 according to the material of the heat dissipation layer 36, the second adhesive layer may not be provided. .
  • limiting in the 2nd adhesion layer 38 According to the material of the thermal radiation layer 36 and the resin base material 12, what can bond both with sufficient adhesive force can be utilized variously. As the 2nd adhesion layer 38, what was illustrated by the above-mentioned 1st adhesion layer 16 is mentioned, for example.
  • the thickness of the second adhesive layer 38 is preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, and even more preferably 10 to 100 ⁇ m. By making the thickness of the 2nd adhesion layer 38 1 micrometer or more, it is preferable at points, such as the heat dissipation layer 36 and the resin base material 12 being bonded together with sufficient adhesive force. Setting the thickness of the second adhesive layer 38 to 300 ⁇ m or less is preferable in that the flexibility of the organic EL light emitting device 34 can be increased, and the organic EL light emitting device 34 can be reduced in weight and thickness.
  • the organic EL light emitting device of the present invention may be a so-called top emission type or a so-called bottom emission type.
  • the organic EL light-emitting device of the present invention uses a polyimide resin base material 18 as a base material for forming the organic EL light-emitting element 24.
  • the first resin base material 12 of the gas barrier film is used.
  • a heat dissipation layer 36 is provided on the surface opposite to the gas barrier layer 14.
  • the organic EL light-emitting device of the present invention is preferably a top emission type that emits light to the side opposite to the substrate on which the organic EL light-emitting element 24 is formed.
  • the organic EL light emitting device of the present invention has been described in detail, the present invention is not limited to the above embodiment, and various improvements or modifications may be made without departing from the gist of the present invention.
  • Example 1 ⁇ Production of gas barrier film> A PET film (A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was prepared as the resin substrate 12.
  • TMPTA manufactured by Daicel Celltech
  • silane coupling agent KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.
  • polymerizable acidic compound KARAMER PM-21, manufactured by Nippon Kayaku Co., Ltd.
  • a composition was prepared by mixing at 5: 1.
  • An organic layer forming composition for forming the organic layer 28 by mixing 18.6 g of this composition, 1.4 g of an ultraviolet polymerization initiator (Lamberti, ESACURE KTO46) and 180 g of 2-butanone. was prepared.
  • the prepared composition for forming an organic layer was applied to the surface of a resin substrate 12 (PET film).
  • coating of the coating material was performed so that the coating-film thickness might be set to 10 micrometers using a wire bar.
  • the paint was dried by allowing it to stand at room temperature.
  • the composition of the coating was cured by irradiating with ultraviolet rays from a high-pressure mercury lamp (integrated irradiation amount: about 1 J / cm 2 ) in a chamber in which the oxygen concentration was 0.1% by a nitrogen substitution method. As a result, an organic layer 28 having a thickness of 1 ⁇ m was formed on the surface of the resin substrate 12.
  • a silicon nitride film having a thickness of 35 nm was formed as an inorganic layer 30 on the organic layer 28.
  • the inorganic layer 30 (silicon nitride film) was formed using a general CCP-CVD apparatus.
  • As the source gas silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used.
  • the film forming pressure was 40 Pa.
  • the power supply was a high frequency power supply with a frequency of 13.56 MHz, and the plasma excitation power was 2.5 kW.
  • first gas barrier layer 14 organic layer 28).
  • a polyimide film having a thickness of 25 ⁇ m (manufactured by Toray DuPont, Kapton) was prepared as the polyimide resin substrate 18.
  • a silicon nitride film was formed on one surface of the polyimide resin substrate 18 in the same manner as the inorganic layer 30.
  • a second gas barrier layer 20 having a thickness of 150 nm was formed on the surface of the polyimide resin substrate 18.
  • Aluminum was formed on the surface of the formed second gas barrier layer 20 by vacuum deposition so as to have a film thickness of 60 nm, thereby forming an anode.
  • a molybdenum oxide (MoO 3 ) layer having a thickness of 2 nm was formed as a hole injection layer on the surface of the formed anode by a vacuum deposition apparatus, and a hole transport layer ( ⁇ -NPD: Bis [ N- (1-naphthyl) -N-phenyl] benzidine) is 29 nm, CBP (4,4′-Bis (carbazol-9-yl) biphenyl) is the host material and 5% Ir (ppy) 3 (Tris (2 -phenylpyridinato) iridium) -doped light emitting layer 20 nm, BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminium (III)) layer 10 nm as a
  • lithium fluoride (LiF) is deposited on the surface of the obtained organic light emitting layer to 0.5 nm and aluminum is deposited to 1.5 nm in this order to form a transparent electrode (cathode) to form a second gas barrier layer.
  • the organic EL light-emitting element 24 was formed on the surface of 20 to produce an organic EL light-emitting device body. Further, aluminum oxide (Al 2 O 3 ) was formed as a passivation film on the organic EL light emitting device 24 so as to have a film thickness of 300 nm by sputtering.
  • a 25 ⁇ m-thick adhesive tape manufactured by TESA, 25 ⁇ m barrier tape
  • TESA 25 ⁇ m barrier tape
  • the gas barrier film produced previously was affixed with the inorganic layer 30 facing the adhesive tape, and the organic EL light emitting element 24 was sealed.
  • Example 3 In the production of the gas barrier film, after forming the inorganic layer 30, an organic layer 28 is further formed on the inorganic layer 30, and the inorganic layer 30 is further formed on the organic layer 28 (first gas barrier layer 14 Has an organic layer 28, an inorganic layer 30, an organic layer 28, and an inorganic layer 30 in this order).
  • An organic EL light emitting device 10 was produced in the same manner as in Example 1 except that this gas barrier film was used.
  • the inorganic layer 30 was formed directly on the resin base material 12 without forming the organic layer 28 as a base (the first gas barrier layer 14 is the inorganic layer 30).
  • An organic EL light emitting device 10 was produced in the same manner as in Example 1 except that this gas barrier film was used.
  • Example 5 An organic EL light emitting device 10 similar to that in Example 3 was produced. A 25 ⁇ m thick second adhesive layer 38 (manufactured by 3M, highly transparent adhesive transfer tape 8146) is formed on the surface of the resin base material 12 of the organic EL light emitting device 10 opposite to the surface on which the first gas barrier layer 14 is formed. -1), a graphite sheet (manufactured by Panasonic, PGS graphite sheet) was attached as the heat dissipation layer 36. Thus, an organic EL light emitting device 34 as shown in FIG. 3 was produced. [Example 6] An organic EL light emitting device 34 as shown in FIG.
  • Example 3 was produced in the same manner as in Example 5 except that the heat dissipation layer 36 was changed to an aluminum foil having a thickness of 20 ⁇ m.
  • An organic EL light emitting device 34 as shown in FIG. 3 was produced in the same manner as in Example 5 except that the heat radiation layer 36 was changed to heat radiation silicone rubber (TC-BG, manufactured by Shin-Etsu Silicone Co., Ltd.).
  • the first gas barrier layer 14 is the same as that of Example 3. Accordingly, the first gas barrier layer 14 includes the organic layer 28, the inorganic layer 30, the organic layer 28, and the inorganic layer 30 in this order.
  • the second gas barrier layer 20 was not formed on the surface of the polyimide resin substrate 18. That is, the organic EL light emitting element 24 was directly formed on the surface of the polyimide resin substrate 18.
  • a resin base material 12 (PET film) that does not have the first gas barrier layer 14 is attached to the polyimide resin base material 18 of the organic EL light-emitting element body by the adhesive layer 16 to produce an organic EL light-emitting device (first). 1 gas barrier layer 14 and no second gas barrier layer 20).
  • a resin base material 12 (PET film) that does not have the first gas barrier layer 14 is attached to the polyimide resin base material 18 of the same organic EL light emitting element body as in Example 1 by the adhesive layer 16, and an organic EL light emitting device is thus obtained. It was produced (without the first gas barrier layer 14).
  • ⁇ Element durability> It was stored in an environment at 60 ° C. and a relative humidity of 90% for 100 hours. The occupancy ratio of dark spots with respect to the total light emitting area after storage was calculated, and the durability of the organic EL light emitting element 24 of the organic EL light emitting device was evaluated. The evaluation is as follows. AA: Dark spot occupancy is less than 2% A: Dark spot occupancy is 2% or more and less than 5% B: Dark spot occupancy is 5% or more and less than 20% C: Dark spot occupancy is 20% or more
  • the flexibility of the organic EL light emitting device was evaluated by a mandrel method based on JIS K 5600-5-1. The evaluation is as follows. A: Even if it is bent 100 times using a mandrel having a radius of less than 8 mm, peeling, folding and breakage do not occur. B: When a mandrel having a radius of less than 8 mm is bent 100 times, peeling, bending, or breakage occurs, but even if a mandrel having a radius of 8 mm or more and less than 14 mm is bent 100 times, No peeling, breakage or breakage occurs. C: When a mandrel having a radius of 14 mm or more is bent 100 times, any of peeling, bending, and breakage occurs.
  • the organic EL light emitting device was bent 100 times by a mandrel method in accordance with JIS K 5600-5-1. Thereafter, the organic EL light-emitting device was stored for 100 hours in an environment at 90 ° C. and a relative humidity of 90%, and the occupancy ratio of dark spots with respect to the total light-emitting area after storage was calculated to evaluate the flexible durability of the organic EL light-emitting device.
  • the evaluation is as follows. AA: Dark spot occupancy is less than 2% A: Dark spot occupancy is 2% or more and less than 5% B: Dark spot occupancy is 5% or more and less than 20% C: Dark spot occupancy is 20% or more The results are shown in the table below.
  • each of the organic EL light emitting devices of the present invention has good durability, flexibility, and flexibility durability.
  • Examples 5 and 6 having the heat dissipation layer 36 have particularly excellent element durability.
  • Example 5 using a graphite sheet as the heat dissipation layer 36 has good flexibility even if the heat dissipation layer 36 is provided.
  • Examples 1 to 4 exhibit the same durability as that before the bending test even after the bending test by the mandrel method.
  • Comparative Example 1 that does not have the first gas barrier layer 14 provided on the resin substrate 12 and the second gas barrier layer 20 on the surface of the polyimide resin substrate 18 has poor durability.
  • the comparative example 2 which has the 2nd gas barrier layer 20 but does not have the 1st gas barrier layer 14 provided in the resin base material 12 has the durability of an element, ie, initial durability, it is based on a mandrel method. It was considered that the second gas barrier layer 20 was damaged due to the bending test, and the flexibility durability was low. From the above results, the effects of the present invention are clear.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an organic electroluminescent light-emitting device that has a high degree of flexibility and also has high durability. This organic electroluminescent device comprises, in the following order: a resin substrate; a first gas barrier layer; a bonding layer; a polyimide resin substrate; a second barrier layer; and an organic electroluminescent light-emitting element.

Description

有機エレクトロルミネッセンス発光装置Organic electroluminescence light emitting device
 本発明は、有機エレクトロルミネッセンスディスプレイおよび有機エレクトロルミネッセンス照明装置等の有機エレクトロルミネッセンス発光装置に関する。 The present invention relates to an organic electroluminescence light emitting device such as an organic electroluminescence display and an organic electroluminescence illumination device.
 有機エレクトロルミネッセンス材料(有機EL(Electro Luminescence)材料)を用いた有機EL発光装置が、有機ELディスプレイおよび有機EL照明装置等に利用されている。 Organic EL light-emitting devices using organic electroluminescence materials (organic EL (Electro Luminescence) materials) are used for organic EL displays, organic EL lighting devices, and the like.
 有機EL発光装置は、支持体としてガラス板および金属板等を用いている。しかしながら、近年では、有機EL発光装置にも、可撓性(フレキシブル性)が要求されている。
 可撓性の要求に対応する有機EL発光装置として、支持フィルム(支持体)として、可撓性を有する樹脂フィルムを用いる有機EL発光装置が知られている。
The organic EL light emitting device uses a glass plate, a metal plate, or the like as a support. However, in recent years, flexibility (flexibility) is also required for organic EL light emitting devices.
As an organic EL light-emitting device that meets the demand for flexibility, an organic EL light-emitting device that uses a flexible resin film as a support film (support) is known.
 樹脂フィルムを支持フィルムとして用いる有機EL発光装置は、一例として、ガラス製のキャリア等に載置されたポリイミドフィルム等の樹脂製のフィルム基材に、電極層および有機EL発光層等を有する有機EL発光素子、ならびに、パッシベーション膜、封止層、粘着層および封止基材等の必要な層を形成した後、フィルム基材をキャリアから剥離して、フィルム基材ごと支持フィルムに載せ換えることで作製される。 As an example, an organic EL light emitting device using a resin film as a support film has an electrode layer, an organic EL light emitting layer, etc. on a resin film substrate such as a polyimide film placed on a glass carrier or the like. After forming necessary layers such as a light emitting element and a passivation film, a sealing layer, an adhesive layer, and a sealing substrate, the film substrate is peeled off from the carrier, and the whole film substrate is replaced with a supporting film. Produced.
 ここで、有機EL材料は、非常に水分に弱い。
 有機EL素子の支持フィルムとは逆側には、封止層およびパッシベーション膜等が形成されるため、こちら側から侵入する水分による有機EL材料の劣化は防止できる。
 しかしながら、支持フィルムは、ポリエチレンテレフタレートフィルム(PETフィルム)等であり、ガスバリア性を有さない。そのため、従来の可撓性を有する有機EL発光装置では、フィルム基材と有機EL発光素子との間に、ガスバリア膜を設けることで、支持フィルム側から侵入する水分から有機EL材料を保護している。
Here, the organic EL material is very sensitive to moisture.
Since a sealing layer, a passivation film, and the like are formed on the side opposite to the support film of the organic EL element, deterioration of the organic EL material due to moisture entering from this side can be prevented.
However, the support film is a polyethylene terephthalate film (PET film) or the like and does not have gas barrier properties. Therefore, in the conventional organic EL light emitting device having flexibility, the organic EL material is protected from moisture entering from the support film side by providing a gas barrier film between the film base and the organic EL light emitting element. Yes.
 例えば、特許文献1には、PETフィルムの両面に、ガスバリア層として酸化窒化ケイ素膜を形成し、その一方の面に透明陽極としてITO(Indium Tin Oxide)膜を形成し、ITO膜の上に有機EL発光層を設けた有機EL発光装置、および、PETフィルムの一面に酸化窒化ケイ素膜を形成した透明バリアフィルムシートを、2枚、貼り合わせたものを基材として用い、この基材の一面に、ITO膜および有機EL発光層を設けた有機EL発光装置が記載されている。 For example, in Patent Document 1, a silicon oxynitride film is formed as a gas barrier layer on both sides of a PET film, an ITO (Indium Tin Oxide) film is formed as a transparent anode on one surface, and an organic layer is formed on the ITO film. An organic EL light-emitting device provided with an EL light-emitting layer, and a transparent barrier film sheet having a silicon oxynitride film formed on one surface of a PET film, bonded to each other as a base material. An organic EL light emitting device provided with an ITO film and an organic EL light emitting layer is described.
 また、特許文献2には、PETフィルム等からなるフィルム基材の表面に、第1の絶縁層として窒化ケイ素および酸化窒化ケイ素等のガスバリア性を有する層を形成し、第1の絶縁層の上に、有機EL材料を用いるEL層を含む発光素子とスイッチング素子とを含む素子部を形成する発光装置が記載されている。 In Patent Document 2, a layer having a gas barrier property such as silicon nitride and silicon oxynitride is formed as a first insulating layer on the surface of a film substrate made of a PET film or the like. Describes a light emitting device that forms an element portion including a light emitting element including an EL layer using an organic EL material and a switching element.
特開2015-166075号公報Japanese Patent Laying-Open No. 2015-166075 特開2015-233015号公報JP2015-233301A
 特許文献1および2には、フィルム基材と有機EL発光素子との間に、ガスバリア層(ガスバリア性を有する層)を設けることで、支持フィルム側から侵入する水分による有機EL材料の劣化を防止し、耐久性を有する有機EL発光装置が得られると記載されている。
 しかしながら、本発明者の検討によれば、従来の有機EL発光装置は、未だ十分な可撓性および耐久性を有してはいない。
Patent Documents 1 and 2 provide a gas barrier layer (a layer having gas barrier properties) between the film substrate and the organic EL light-emitting device, thereby preventing deterioration of the organic EL material due to moisture entering from the support film side. In addition, it is described that an organic EL light emitting device having durability can be obtained.
However, according to the study of the present inventor, the conventional organic EL light-emitting device does not yet have sufficient flexibility and durability.
 本発明の目的は、このような問題点を解決することにあり、可撓性が高くかつその耐久性も高い有機EL発光装置を提供することにある。 An object of the present invention is to solve such problems, and to provide an organic EL light emitting device having high flexibility and high durability.
 この目的を達成するために、本発明の有機エレクトロルミネッセンス発光装置は、樹脂基材、第1のガスバリア層、粘着層、ポリイミド樹脂基材、第2のガスバリア層、および、有機エレクトロルミネッセンス発光素子を、この順番で有することを特徴とする有機エレクトロルミネッセンス発光装置を提供する。 In order to achieve this object, an organic electroluminescence light emitting device of the present invention comprises a resin substrate, a first gas barrier layer, an adhesive layer, a polyimide resin substrate, a second gas barrier layer, and an organic electroluminescence light emitting element. An organic electroluminescence light-emitting device characterized by having the components in this order is provided.
 このような本発明の有機エレクトロルミネッセンス発光装置において、第1のガスバリア層は、無機層と、無機層の下地となる有機層との組み合わせを、1組以上有するのが好ましい。
 また、無機層が、窒化ケイ素を主成分とする、厚さが150nm以下の層であるのが好ましい。
 また、樹脂基材の第1のガスバリア層が形成される側とは逆側の面に放熱層が設けられるのが好ましい。
 また、放熱層が、炭素材料、金属材料、セラミック材料、および、シリコーン材料の1以上を含むのが好ましい。
 また、放熱層は、面方向の熱伝導率が厚さ方向の熱伝導率よりも大きいのが好ましい。
 さらに、トップエミッション型であるのが好ましい。
In such an organic electroluminescence light emitting device of the present invention, the first gas barrier layer preferably has one or more combinations of an inorganic layer and an organic layer serving as a base of the inorganic layer.
The inorganic layer is preferably a layer having silicon nitride as a main component and a thickness of 150 nm or less.
Moreover, it is preferable that a heat radiation layer is provided on the surface of the resin base material opposite to the side on which the first gas barrier layer is formed.
Moreover, it is preferable that a thermal radiation layer contains one or more of a carbon material, a metal material, a ceramic material, and a silicone material.
Moreover, it is preferable that the heat dissipation layer has a larger thermal conductivity in the plane direction than that in the thickness direction.
Furthermore, the top emission type is preferable.
 本発明によれば、可撓性が高くかつその耐久性も高い有機EL発光装置を得ることができる。 According to the present invention, an organic EL light emitting device having high flexibility and high durability can be obtained.
本発明の有機EL発光装置の一例を概念的に示す図である。It is a figure which shows notionally an example of the organic electroluminescent light emitting device of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 本発明の有機EL発光装置の別の例を概念的に示す図である。It is a figure which shows notionally another example of the organic electroluminescent light-emitting device of this invention.
 以下、本発明の有機エレクトロルミネッセンス発光装置(有機EL発光装置)を詳細に説明する。
 本発明の有機EL発光装置は、一例として、有機ELディスプレイおよび有機EL照明装置等に好適に利用されるものである。以下、本発明の有機EL発光装置の実施形態について、図面に基づいて説明する。
Hereinafter, the organic electroluminescence light emitting device (organic EL light emitting device) of the present invention will be described in detail.
The organic EL light-emitting device of the present invention is suitably used as an example for an organic EL display and an organic EL lighting device. Hereinafter, an embodiment of an organic EL light emitting device of the present invention will be described based on the drawings.
 図1に、本発明の第1の実施形態である有機EL発光装置10を概念的に示す。
 有機EL発光装置10は、樹脂基材12と、樹脂基材12の一方の主面(図1において上方の主面)に、以下の順番で設けられた、第1ガスバリア層14と、粘着層16と、ポリイミド樹脂基材18と、第2ガスバリア層20と、有機EL発光素子24とを有する。
 主面とは、最大面である。また、以下の説明において、上とは、有機EL発光素子24側(図1中上側)を示し、下とは、樹脂基材12側(図1中下側)を示す。
FIG. 1 conceptually shows an organic EL light emitting device 10 according to the first embodiment of the present invention.
The organic EL light-emitting device 10 includes a resin base 12, a first gas barrier layer 14 provided on one main surface of the resin base 12 (upper main surface in FIG. 1) in the following order, and an adhesive layer 16, a polyimide resin substrate 18, a second gas barrier layer 20, and an organic EL light emitting element 24.
The main surface is the maximum surface. Moreover, in the following description, the upper side indicates the organic EL light emitting element 24 side (upper side in FIG. 1), and the lower side indicates the resin base material 12 side (lower side in FIG. 1).
 なお、有機EL発光装置10は、必要に応じて、パッシベーション膜、封止層、粘着層、および、封止基材等の、公知の有機EL発光装置(有機ELディスプレイおよび有機EL照明装置等)が有する各種の層(膜)を有してもよい。
 この点に関しては、後述する本発明の第2の実施形態である有機EL発光装置34も同様である。
The organic EL light-emitting device 10 is a known organic EL light-emitting device (such as an organic EL display and an organic EL lighting device) such as a passivation film, a sealing layer, an adhesive layer, and a sealing substrate, if necessary. You may have various layers (film | membrane) which has.
In this regard, the same applies to the organic EL light emitting device 34 according to a second embodiment of the present invention described later.
 以下、第1の実施形態である有機EL発光装置について、各構成要素の詳細について説明する。 Hereinafter, details of each component of the organic EL light emitting device according to the first embodiment will be described.
(樹脂基材12)
 樹脂基材12は、各種のガスバリアフィルムおよび各種の積層型の機能性フィルム等において支持体として利用される、公知の樹脂製のシート状物(フィルム)を用いることができる。
(Resin substrate 12)
The resin substrate 12 may be a known resin sheet (film) used as a support in various gas barrier films and various laminated functional films.
 樹脂基材12の材料には、制限はなく、第1ガスバリア層14を形成可能であれば、各種の樹脂材料が利用できる。
 樹脂基材12の材料としては、例えば、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、環状オレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)等が挙げられる。
There is no restriction | limiting in the material of the resin base material 12, if the 1st gas barrier layer 14 can be formed, various resin materials can be utilized.
Examples of the material of the resin substrate 12 include polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyacrylonitrile ( PAN), polyimide (PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), acrylonitrile / butadiene / styrene copolymer ( ABS), cyclic olefin copolymer (COC), cycloolefin polymer (COP), and triacetyl cellulose (TAC).
 樹脂基材12の厚さは、用途や材料等に応じて、適宜、設定できる。
 樹脂基材12の厚さは、有機EL発光装置10の機械的強度を十分に確保する観点と、有機EL発光装置10の可撓性(フレキシブル性)を確保し、かつ、軽量化および薄手化する観点とから、5~150μmが好ましく、10~100μmがより好ましい。
The thickness of the resin base material 12 can be appropriately set according to the use, material, and the like.
The thickness of the resin base material 12 ensures a sufficient mechanical strength of the organic EL light-emitting device 10, ensures the flexibility (flexibility) of the organic EL light-emitting device 10, and reduces the weight and thickness. From this viewpoint, the thickness is preferably 5 to 150 μm, and more preferably 10 to 100 μm.
 樹脂基材12は、その表面に、機能層を有していてもよい。機能層としては、例えば、保護層、接着層、光反射層、反射防止層、遮光層、平坦化層、緩衝層、および、応力緩和層が挙げられる。
 また、樹脂基材12は、表面平滑性が高いのが好ましい。
The resin base material 12 may have a functional layer on the surface. Examples of the functional layer include a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, and a stress relaxation layer.
Moreover, it is preferable that the resin base material 12 has high surface smoothness.
(第1ガスバリア層14)
 第1ガスバリア層14は、樹脂基材12の上に設けられる。
 有機EL発光装置10は、基本的に、樹脂基材12の上に第1ガスバリア層14を形成したガスバリアフィルムと、フィルム基材であるポリイミド樹脂基材18の上に第2ガスバリア層20および有機EL発光素子24を形成した有機EL発光装置本体とを、第1ガスバリア層14とポリイミド樹脂基材18とを対面して、粘着層16によって貼り合わせて作製する。すなわち、有機EL発光装置10では、樹脂基材12の上に第1ガスバリア層14を形成したガスバリアフィルムが、有機EL発光装置10における支持フィルムとなる。
(First gas barrier layer 14)
The first gas barrier layer 14 is provided on the resin base material 12.
The organic EL light emitting device 10 basically includes a gas barrier film in which a first gas barrier layer 14 is formed on a resin substrate 12, and a second gas barrier layer 20 and an organic material on a polyimide resin substrate 18 that is a film substrate. The organic EL light-emitting device body on which the EL light-emitting element 24 is formed is prepared by bonding the first gas barrier layer 14 and the polyimide resin base material 18 with the adhesive layer 16. That is, in the organic EL light emitting device 10, the gas barrier film in which the first gas barrier layer 14 is formed on the resin base material 12 serves as a support film in the organic EL light emitting device 10.
 第1ガスバリア層14には、制限はなく、公知のガスバリアフィルムにおいてガスバリア層として利用されている層(膜)が、各種、利用可能である。第1ガスバリア層14としては、無機化合物からなる層、例えば、窒化ケイ素層、酸化ケイ素層、酸化窒化ケイ素層、および、酸化アルミニウム層等が挙げられる。
 ここで、本発明においては、好ましい第1ガスバリア層14として、図2に図1の拡大図で概念的に示すように、ガスバリア性を発現する無機層30と、この無機層30の下地となる有機層28との組み合わせを、1組以上を有する、有機無機積層型のガスバリア層が挙げられる。
There is no restriction | limiting in the 1st gas barrier layer 14, Various layers (film | membrane) utilized as a gas barrier layer in a well-known gas barrier film can be utilized. Examples of the first gas barrier layer 14 include a layer made of an inorganic compound, such as a silicon nitride layer, a silicon oxide layer, a silicon oxynitride layer, and an aluminum oxide layer.
Here, in the present invention, as a preferable first gas barrier layer 14, as conceptually shown in FIG. 2 in an enlarged view of FIG. 1, an inorganic layer 30 that exhibits gas barrier properties and a base of the inorganic layer 30 are used. An organic / inorganic laminated gas barrier layer having one or more combinations with the organic layer 28 can be used.
 なお、有機無機積層型の第1ガスバリア層14は、図2に示すように、下地となる有機層28と無機層30との組み合わせを、1組のみ有するものに限定はされない。
 すなわち、有機無機積層型の第1ガスバリア層14は、有機層28・無機層30・有機層28・無機層30のように、下地となる有機層28と無機層30との組み合わせを、2組、有するものでもよく、有機層28・無機層30・有機層28・無機層30・有機層28・無機層30のように、下地となる有機層28と無機層30との組み合わせを、3組以上、有するものでもよい。
 下地となる有機層28と無機層30との組み合わせの数が多いほど、高いガスバリア性を得ることができる。下地となる有機層28と無機層30との組み合わせの数が少ないほど、有機EL発光装置10の薄手化、軽量化および可撓性の点で有利になる。
As shown in FIG. 2, the organic / inorganic laminated first gas barrier layer 14 is not limited to the one having only one combination of the organic layer 28 and the inorganic layer 30 as a base.
That is, the organic / inorganic laminated first gas barrier layer 14 includes two sets of combinations of the organic layer 28 and the inorganic layer 30 serving as a base, such as the organic layer 28, the inorganic layer 30, the organic layer 28, and the inorganic layer 30. 3 sets of combinations of the organic layer 28 and the inorganic layer 30 serving as a base, such as the organic layer 28, the inorganic layer 30, the organic layer 28, the inorganic layer 30, the organic layer 28, and the inorganic layer 30. As described above, it may be included.
As the number of combinations of the organic layer 28 and the inorganic layer 30 serving as the base increases, a higher gas barrier property can be obtained. The smaller the number of combinations of the organic layer 28 and the inorganic layer 30 as the base, the more advantageous in terms of thinning, lightening, and flexibility of the organic EL light emitting device 10.
 <有機層28:下地有機層>
 有機層28は、例えば、モノマーやオリゴマーを重合(架橋、硬化)した有機化合物からなる層である。
 有機層28は、樹脂基材12の表面の凹凸および表面に付着する異物等を包埋する下地有機層である。このような有機層28を有することによって、主にガスバリア性を発現する無機層30を、適正に成膜することが可能になる。
 また、有機層28を有することによって、無機層30は、有機層28と後述する粘着層16とに挟持された状態となる。そのため、有機層28は、有機EL発光装置10を折り曲げられた場合における無機層30の緩衝層としても作用する。従って、有機層28を有することにより、有機EL発光装置10を折り曲げられた際の無機層30の損傷を防止して、より可撓性および耐久性に優れた有機EL発光装置10を得られる。
<Organic layer 28: base organic layer>
The organic layer 28 is a layer made of an organic compound obtained by polymerizing (crosslinking or curing) a monomer or oligomer, for example.
The organic layer 28 is a base organic layer that embeds irregularities on the surface of the resin substrate 12 and foreign matters attached to the surface. By having such an organic layer 28, it is possible to appropriately form the inorganic layer 30 that mainly exhibits gas barrier properties.
Moreover, by having the organic layer 28, the inorganic layer 30 will be in the state pinched | interposed into the organic layer 28 and the adhesion layer 16 mentioned later. Therefore, the organic layer 28 also functions as a buffer layer for the inorganic layer 30 when the organic EL light emitting device 10 is bent. Therefore, by having the organic layer 28, damage to the inorganic layer 30 when the organic EL light-emitting device 10 is bent can be prevented, and the organic EL light-emitting device 10 having more flexibility and durability can be obtained.
 有機層28は、例えば、有機化合物(モノマー、ダイマー、トリマー、オリゴマー、および、ポリマー等)を含有する、有機層形成用組成物を硬化して形成される。有機層形成用組成物は、有機化合物を1種のみ含んでもよく、2種以上含んでもよい。
 有機層28は、例えば、熱可塑性樹脂および有機ケイ素化合物等を含有する。熱可塑性樹脂は、例えば、ポリエステル、(メタ)アクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、および、アクリル化合物等が挙げられる。有機ケイ素化合物は、例えば、ポリシロキサンが挙げられる。
The organic layer 28 is formed, for example, by curing an organic layer forming composition containing an organic compound (monomer, dimer, trimer, oligomer, polymer, etc.). The composition for organic layer formation may contain only 1 type of organic compounds, and may contain 2 or more types.
The organic layer 28 contains, for example, a thermoplastic resin and an organosilicon compound. Examples of the thermoplastic resin include polyester, (meth) acrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, and polyurethane. , Polyether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, and acrylic compounds. Examples of the organosilicon compound include polysiloxane.
 有機層28は、強度が優れる観点と、ガラス転移温度の観点とから、好ましくは、ラジカル硬化性化合物および/またはエーテル基を有するカチオン硬化性化合物の重合物を含む。
 有機層28は、有機層28の屈折率を低くする観点から、好ましくは、(メタ)アクリレートのモノマーやオリゴマーの重合体を主成分とする(メタ)アクリル樹脂を含む。有機層28は、屈折率を低くすることにより、透明性が高くなり、光透過性が向上する。
The organic layer 28 preferably includes a polymer of a radical curable compound and / or a cationic curable compound having an ether group from the viewpoint of excellent strength and a glass transition temperature.
From the viewpoint of lowering the refractive index of the organic layer 28, the organic layer 28 preferably contains a (meth) acrylic resin mainly composed of a (meth) acrylate monomer or oligomer polymer. The organic layer 28 has high transparency and low light transmittance by reducing the refractive index.
 有機層28は、より好ましくは、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上の(メタ)アクリレートのモノマーやオリゴマーの重合体を主成分とする(メタ)アクリル樹脂を含み、さらに好ましくは、3官能以上の(メタ)アクリレートのモノマーやオリゴマーの重合体を主成分とする(メタ)アクリル樹脂を含む。また、これらの(メタ)アクリル樹脂を、複数用いてもよい。主成分とは、含有する成分のうち、最も含有質量比が大きい成分をいう。 The organic layer 28 is more preferably bifunctional or more, such as dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), and the like. A (meth) acrylic resin having a (meth) acrylate monomer or oligomer as a main component, and more preferably a trifunctional or higher functional (meth) acrylate monomer or oligomer polymer as a main component ( Includes (meth) acrylic resin. A plurality of these (meth) acrylic resins may be used. A main component means a component with the largest containing mass ratio among the components to contain.
 有機層形成用組成物は、有機化合物に加え、好ましくは、有機溶剤、界面活性剤、および、シランカップリング剤などを含む。 The composition for forming an organic layer preferably contains an organic solvent, a surfactant, a silane coupling agent and the like in addition to the organic compound.
 有機層28の厚さには、制限はなく、有機層形成用組成物に含まれる成分や用いられる樹脂基材12に応じて、適宜、設定できる。
 有機層28の厚さは、0.5~5μmが好ましく、1~3μmがより好ましい。有機層28の厚さを0.5μm以上とすることにより、樹脂基材12の表面の凹凸および表面に付着した異物等を包埋して、有機層28の表面を平坦化できる等の点で好ましい。有機層28の厚さを5μm以下とすることにより、有機層28のクラックを防止できる、有機EL発光装置10の可撓性を高くできる、有機EL発光装置10の薄手化および軽量化を図れる等の点で好ましい。
There is no restriction | limiting in the thickness of the organic layer 28, According to the component contained in the composition for organic layer formation, and the resin base material 12 used, it can set suitably.
The thickness of the organic layer 28 is preferably 0.5 to 5 μm, and more preferably 1 to 3 μm. By setting the thickness of the organic layer 28 to 0.5 μm or more, the surface of the organic layer 28 can be flattened by embedding irregularities on the surface of the resin base material 12 and foreign matters attached to the surface. preferable. By setting the thickness of the organic layer 28 to 5 μm or less, cracks in the organic layer 28 can be prevented, the flexibility of the organic EL light-emitting device 10 can be increased, and the organic EL light-emitting device 10 can be made thinner and lighter. This is preferable.
 有機層28が複数設けられる場合、すなわち、有機層28と無機層30との組み合わせを複数組有する場合には、各有機層28の厚さは、同じでも異なってもよい。 When a plurality of organic layers 28 are provided, that is, when a plurality of combinations of the organic layers 28 and the inorganic layers 30 are provided, the thickness of each organic layer 28 may be the same or different.
 有機層28は、材料に応じた公知の方法で形成できる。
 例えば、有機層28は、有機層形成用組成物を塗布して、有機層形成用組成物を乾燥させる、塗布法で形成できる。塗布法による有機層28の形成では、必要に応じて、さらに、乾燥した有機層形成用組成物に、紫外線を照射することにより、有機層形成用組成物中の有機化合物を重合(架橋)させる。
The organic layer 28 can be formed by a known method corresponding to the material.
For example, the organic layer 28 can be formed by a coating method in which a composition for forming an organic layer is applied and the composition for forming an organic layer is dried. In the formation of the organic layer 28 by a coating method, the organic compound in the organic layer forming composition is polymerized (crosslinked) by irradiating the dried organic layer forming composition with ultraviolet rays as necessary. .
 有機層28は、いわゆるロール・トゥ・ロールによって形成できる。以下、「ロール・トゥ・ロール」を「RtoR」ともいう。RtoRとは、長尺な成膜対象シートを巻回してなるロールから、成膜対象シートを送り出し、成膜対象シートを長手方向に搬送しつつ成膜を行い、成膜済のシートをロール状に巻回する製造方法である。RtoRを利用することで、高い生産性と生産効率が得られる。 The organic layer 28 can be formed by so-called roll-to-roll. Hereinafter, “roll-to-roll” is also referred to as “RtoR”. RtoR is a roll formed by winding a long film formation target sheet, the film formation target sheet is sent out, the film formation target sheet is conveyed in the longitudinal direction, and film formation is performed in a roll shape. It is a manufacturing method wound around. By using RtoR, high productivity and production efficiency can be obtained.
 <無機層30>
 無機層30は、無機化合物を含む薄膜であり、有機層28の表面に設けられる。無機層30は、ガスバリア性を発現する。
 無機層30は、有機層28の表面に設けられることにより、適正に成膜される。樹脂基材12には表面の凹凸や異物の影のような、無機化合物が着膜し難い領域がある。樹脂基材12上に有機層28を設けることにより、無機化合物が着膜し難い領域が覆われる。そのため、無機層30を樹脂基材12の表面全面に、隙間無く形成することが可能になる。
<Inorganic layer 30>
The inorganic layer 30 is a thin film containing an inorganic compound and is provided on the surface of the organic layer 28. The inorganic layer 30 exhibits gas barrier properties.
The inorganic layer 30 is appropriately formed by being provided on the surface of the organic layer 28. The resin base material 12 has areas where it is difficult to deposit an inorganic compound, such as surface irregularities and shadows of foreign matter. By providing the organic layer 28 on the resin base material 12, the region where the inorganic compound is difficult to deposit is covered. Therefore, the inorganic layer 30 can be formed on the entire surface of the resin substrate 12 without any gap.
 無機層30の材料には、制限はなく、ガスバリア性を発現する無機化合物からなる、公知のガスバリア層に用いられる無機化合物が、各種、利用可能である。
 無機層30の材料としては、例えば、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化ケイ素、酸化窒化ケイ素、酸炭化ケイ素、酸化窒化炭化ケイ素などのケイ素酸化物; 窒化ケイ素、窒化炭化ケイ素などのケイ素窒化物; 炭化ケイ素等のケイ素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等、の無機化合物が挙げられる。また、これらの2種以上の混合物も、利用可能である。
 特に、窒化ケイ素、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、および、これらの2種以上の混合物は、透明性が高く、かつ、優れたガスバリア性を発現できる点で、好適に利用される。中でも特に、優れたガスバリア性を発現できる点で、窒化ケイ素は、好適に利用される。ここで、無機層30は、窒化ケイ素を主成分とすることが好ましい。尚、窒化ケイ素を主成分とするとは、無機層中に含有される成分のうち、最も含有量が大きい成分が窒化ケイ素であることをいう。無機層30に対する窒化ケイ素の含有量としては、80質量%以上が好ましく、90質量%以上がより好ましい。
There is no restriction | limiting in the material of the inorganic layer 30, The inorganic compound used for the well-known gas barrier layer which consists of an inorganic compound which expresses gas barrier property can be utilized variously.
Examples of the material of the inorganic layer 30 include metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metals such as aluminum carbide Silicon oxides such as silicon oxide, silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitride such as silicon nitride and silicon nitride carbide; silicon carbide such as silicon carbide; these hydrides; these two kinds Inorganic compounds such as the above mixtures; and hydrogen-containing materials thereof. A mixture of two or more of these can also be used.
In particular, silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, and a mixture of two or more thereof are preferably used in that they have high transparency and can exhibit excellent gas barrier properties. Among these, silicon nitride is preferably used because it can exhibit excellent gas barrier properties. Here, the inorganic layer 30 is preferably composed mainly of silicon nitride. The phrase “having silicon nitride as a main component” means that the component having the largest content among the components contained in the inorganic layer is silicon nitride. As content of the silicon nitride with respect to the inorganic layer 30, 80 mass% or more is preferable, and 90 mass% or more is more preferable.
 無機層30の厚さには、制限はなく、材料に応じて、目的とするガスバリア性を発現できる厚さを、適宜、設定できる。
 無機層30の厚さは、10~150nmが好ましく、12~100nmがより好ましく、15~75nmがさらに好ましい。
 無機層30の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する無機層30が形成できる点で好ましい。また、無機層30は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層30の厚さを150nm以下とすることにより、割れが発生することを防止できる。さらに、無機層30の厚さを150nm以下とすることにより、有機EL発光装置10を折り曲げた際に、無機層30の割れおよび剥がれ等を防止して、可撓性の高い有機EL発光装置10を得られる点でも好ましい。
 なお、第1ガスバリア層14が有機無機積層型のガスバリア層ではなく、下地となる有機層28を有さず、前述の無機化合物からなる層のみで形成される層である場合には、無機層30と同様の理由で、第1ガスバリア層14の厚さは、10~150nmであるのが好ましい。
There is no restriction | limiting in the thickness of the inorganic layer 30, According to material, the thickness which can express the target gas barrier property can be set suitably.
The thickness of the inorganic layer 30 is preferably 10 to 150 nm, more preferably 12 to 100 nm, and even more preferably 15 to 75 nm.
By setting the thickness of the inorganic layer 30 to 10 nm or more, it is preferable in that the inorganic layer 30 that stably expresses sufficient gas barrier performance can be formed. In addition, the inorganic layer 30 is generally brittle, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. However, if the thickness of the inorganic layer 30 is set to 150 nm or less, cracks may occur. Can be prevented. Further, by setting the thickness of the inorganic layer 30 to 150 nm or less, when the organic EL light-emitting device 10 is bent, the inorganic layer 30 is prevented from cracking and peeling, and the organic EL light-emitting device 10 having high flexibility. It is also preferable in that it can be obtained.
In the case where the first gas barrier layer 14 is not an organic / inorganic laminated type gas barrier layer but does not have the organic layer 28 serving as a base, and is a layer formed only of the above-described inorganic compound layer, the inorganic layer For the same reason as 30, the thickness of the first gas barrier layer 14 is preferably 10 to 150 nm.
 無機層30が複数設けられる場合、すなわち、有機層28と無機層30との組み合わせを複数組有する場合には、各無機層30の厚さは、同じでも異なってもよい。 When a plurality of inorganic layers 30 are provided, that is, when a plurality of combinations of the organic layer 28 and the inorganic layer 30 are provided, the thickness of each inorganic layer 30 may be the same or different.
 無機層30は、材料に応じた公知の方法で形成できる。
 例えば、CCP(Capacitively Coupled Plasma)-CVD(Chemical Vapor Deposition)およびICP(Inductively Coupled Plasm)-CVD等のプラズマCVD、原子層堆積法(ALD(Atomic Layer Deposition))、マグネトロンスパッタリングおよび反応性スパッタリング等のスパッタリング、ならびに、真空蒸着などの各種の気相成膜法が好適に挙げられる。
 なお、無機層30も、RtoRで形成するのが好ましい。
The inorganic layer 30 can be formed by a known method according to the material.
For example, CCP (Capacitively Coupled Plasma) -CVD (Chemical Vapor Deposition) and ICP (Inductively Coupled Plasm) -CVD and other plasma CVD, atomic layer deposition (ALD), magnetron sputtering and reactive sputtering, etc. Various gas phase film forming methods such as sputtering and vacuum deposition are preferable.
Note that the inorganic layer 30 is also preferably formed of RtoR.
(保護有機層)
 有機EL発光装置10において、第1ガスバリア層14は、必要に応じて、最上層の無機層30の上に、最上層の無機層30を保護する保護有機層を有してもよい。保護有機層を有することにより、無機層30の損傷に起因するガスバリア性の低下を防止して、より優れたガスバリア性が得られる。
 すなわち、有機無機積層型の第1ガスバリア層14は、下地となる有機層28と無機層30との組み合わせを1組以上有すれば、有機層28・無機層30・有機層を有する構成、および、有機層28・無機層30・有機層28・無機層30・有機層を有する構成等のように、下地となる有機層28と無機層30との組み合わせに加え、無機層30の上の有機層のみを有する構成も利用可能である。
 保護有機層は、前述の有機層28と同様の物が利用可能である。また、保護有機層の厚さは、有機層28と同じでも、異なってもよい。
 保護有機層は、有機層28と同様に形成すればよい。
 このような保護有機層に関しては、第1ガスバリア層14が、有機無機積層型ではなく、下地となる有機層28を有さない無機層のみで構成される場合も、同様である。
(Protective organic layer)
In the organic EL light emitting device 10, the first gas barrier layer 14 may have a protective organic layer that protects the uppermost inorganic layer 30 on the uppermost inorganic layer 30 as necessary. By having the protective organic layer, the gas barrier property is prevented from being lowered due to the damage of the inorganic layer 30, and more excellent gas barrier property is obtained.
That is, if the organic / inorganic laminated first gas barrier layer 14 has one or more combinations of the organic layer 28 and the inorganic layer 30 serving as a base, the structure including the organic layer 28, the inorganic layer 30 and the organic layer, and The organic layer 28, the inorganic layer 30, the organic layer 28, the inorganic layer 30, and the organic layer 28 in addition to the combination of the organic layer 28 and the inorganic layer 30 serving as a base, Configurations having only layers are also available.
As the protective organic layer, the same organic layer as that described above can be used. Further, the thickness of the protective organic layer may be the same as or different from that of the organic layer 28.
The protective organic layer may be formed in the same manner as the organic layer 28.
With respect to such a protective organic layer, the same applies to the case where the first gas barrier layer 14 is not an organic / inorganic laminated type, but includes only an inorganic layer that does not have the organic layer 28 serving as a base.
 第1ガスバリア層14の表面平滑性には、制限は無い。しかしながら、無機層30は表面平滑性が高いのが好ましい。 The surface smoothness of the first gas barrier layer 14 is not limited. However, the inorganic layer 30 preferably has high surface smoothness.
(ポリイミド樹脂基材18)
 前述のように、有機EL発光装置10は、基本的に、ガスバリアフィルムと、有機EL発光装置本体とを、粘着層16によって貼り合わせて作製する。
 有機EL発光装置本体は、フィルム基材となるポリイミド樹脂基材18の上に第2ガスバリア層20を形成し、その上に、有機EL発光素子24を形成したものである。
(Polyimide resin substrate 18)
As described above, the organic EL light emitting device 10 is basically manufactured by bonding the gas barrier film and the organic EL light emitting device main body together with the adhesive layer 16.
The organic EL light emitting device main body is obtained by forming the second gas barrier layer 20 on the polyimide resin base material 18 serving as a film base material and forming the organic EL light emitting element 24 thereon.
 ポリイミド樹脂基材18としては、公知の有機EL発光装置において、有機EL発光素子24を形成するための基材として用いられているポリイミド樹脂およびポリイミド系樹脂からなるシート状物(フィルム)が、各種、利用可能である。例えば、ポリイミド、弗素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、および、ポリエーテルイミド樹脂等の、ポリイミド、ならびに、ポリイミド系樹脂からなるシート状物が、各種、利用可能である。
 また、ポリイミド樹脂基材18としては、カプトン(東レ・デュポン社製)、ユーピレックス(宇部興産社製)、および、アピカル(カネカ社製)等の市販のポリイミドフィルムも、好適に利用可能である。
As the polyimide resin base material 18, there are various sheet-like materials (films) made of a polyimide resin and a polyimide resin used as a base material for forming the organic EL light emitting element 24 in a known organic EL light emitting device. Is available. For example, various sheet materials made of polyimide and polyimide-based resins such as polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide resin can be used.
Moreover, as polyimide resin base material 18, commercially available polyimide films, such as Kapton (made by Toray DuPont), Iupilex (made by Ube Industries), and Apical (made by Kaneka), can also be used suitably.
 ポリイミド樹脂基材18の厚さには、制限はなく、材料に応じて、有機EL発光素子24を支持できる厚さを、適宜、設定できる。
 ポリイミド樹脂基材18の厚さは、5~100μmが好ましく、10~75μmがより好ましく、15~50μmがさらに好ましい。
 ポリイミド樹脂基材18の厚さを5μm以上とすることにより、十分な耐熱性および強度を確保して、適正な有機EL発光素子24を安定して形成できる等の点で好ましい。また、ポリイミド樹脂基材18の厚さを100μm以下とすることにより、有機EL発光装置10の可撓性を高くできる、有機EL発光装置10の軽量化および薄手化を図れる等の点で好ましい。
There is no restriction | limiting in the thickness of the polyimide resin base material 18, The thickness which can support the organic EL light emitting element 24 can be suitably set according to material.
The thickness of the polyimide resin substrate 18 is preferably 5 to 100 μm, more preferably 10 to 75 μm, and further preferably 15 to 50 μm.
By setting the thickness of the polyimide resin substrate 18 to 5 μm or more, it is preferable in that sufficient heat resistance and strength can be ensured, and an appropriate organic EL light emitting element 24 can be stably formed. In addition, it is preferable that the thickness of the polyimide resin base material 18 is 100 μm or less because the flexibility of the organic EL light-emitting device 10 can be increased, and the weight and thickness of the organic EL light-emitting device 10 can be reduced.
(第2ガスバリア層20)
 第2ガスバリア層20は、ポリイミド樹脂基材18の上に形成される。
 第2ガスバリア層20は、ポリイミド樹脂基材18を透過した水分が有機EL発光素子24に侵入して、有機EL材料等が劣化することを防止するためのものである。
(Second gas barrier layer 20)
The second gas barrier layer 20 is formed on the polyimide resin base material 18.
The second gas barrier layer 20 is for preventing moisture that has passed through the polyimide resin base material 18 from entering the organic EL light emitting element 24 and deteriorating the organic EL material and the like.
 第2ガスバリア層20には、制限はなく、公知の有機EL発光装置において、ポリイミド樹脂基材18(有機EL発光素子24を形成するためのフィルム基材)と有機EL発光素子24との間に設けられるガスバリア性を発現する層が、各種、利用可能である。
 第2ガスバリア層20としては、例えば、前述の無機層30において例示した、各種の無機材料からなる層が挙げられる。中でも、窒化ケイ素、および、酸化ケイ素等からなる層は、好適に挙げられる。
 第2ガスバリア層20は、単層膜でもよく、あるいは、窒化ケイ素と酸化ケイ素との積層構造のような多層膜でもよい。
There is no restriction | limiting in the 2nd gas barrier layer 20, In a well-known organic electroluminescent light-emitting device, it is between the polyimide resin base material 18 (film base material for forming the organic electroluminescent light emitting element 24), and the organic electroluminescent light emitting element 24. FIG. Various layers that provide gas barrier properties can be used.
As the 2nd gas barrier layer 20, the layer which consists of various inorganic materials illustrated in the above-mentioned inorganic layer 30 is mentioned, for example. Of these, a layer made of silicon nitride, silicon oxide, or the like is preferably used.
The second gas barrier layer 20 may be a single layer film or may be a multilayer film such as a laminated structure of silicon nitride and silicon oxide.
 第2ガスバリア層20の厚さには、制限はなく、第2ガスバリア層20の材料に応じて、要求されるガスバリア性を満たす厚さを、適宜、設定できる。
 第2ガスバリア層20の厚さは、10~2000nmが好ましく、50~1000nmがより好ましく、100~750nmがさらに好ましい。
 第2ガスバリア層20の厚さを10nm以上とすることにより、良好なガスバリア性を得られる等の点で好ましい。第2ガスバリア層20の厚さを2000nm以下とすることにより、有機EL発光装置10の可撓性を高くできる、有機EL発光装置10の軽量化および薄手化を図れる等の点で好ましい。
There is no restriction | limiting in the thickness of the 2nd gas barrier layer 20, According to the material of the 2nd gas barrier layer 20, the thickness which satisfy | fills the required gas barrier property can be set suitably.
The thickness of the second gas barrier layer 20 is preferably 10 to 2000 nm, more preferably 50 to 1000 nm, and further preferably 100 to 750 nm.
Setting the thickness of the second gas barrier layer 20 to 10 nm or more is preferable in that good gas barrier properties can be obtained. By setting the thickness of the second gas barrier layer 20 to 2000 nm or less, the flexibility of the organic EL light emitting device 10 can be increased, and the organic EL light emitting device 10 can be reduced in weight and thickness.
 第2ガスバリア層20は、材料に応じた公知の方法で形成できる。
 例えば、塗布法、印刷法、ならびに、前述の無機層30で例示したプラズマCVDおよびスパッタリング等の各種の気相成膜法などが挙げられる。
 第2ガスバリア層20も、RtoRで形成するのが好ましい。
The second gas barrier layer 20 can be formed by a known method according to the material.
Examples of the method include a coating method, a printing method, and various gas phase film forming methods such as plasma CVD and sputtering exemplified for the inorganic layer 30 described above.
The second gas barrier layer 20 is also preferably formed of RtoR.
(有機EL発光素子24)
 有機EL発光素子24は、第2ガスバリア層20の上に形成される。
 有機EL発光素子24は、透明電極層(TFT(Thin Film Transistor)、薄膜トランジスタ)、ホール注入層、ホール輸送層、発光層、正孔阻止層、電子輸送層、電子注入層、および、陰極等を有する、有機ELディスプレイおよび有機EL照明装置等の有機EL発光装置(OLED(Organic Light Emitting Diode))を構成する、公知の有機EL発光素子(有機EL素子、有機ELデバイス)である。
(Organic EL light emitting device 24)
The organic EL light emitting element 24 is formed on the second gas barrier layer 20.
The organic EL light emitting element 24 includes a transparent electrode layer (TFT (Thin Film Transistor), thin film transistor), a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and a cathode. It is a well-known organic EL light emitting element (organic EL element, organic EL device) that constitutes an organic EL light emitting device (OLED (Organic Light Emitting Diode)) such as an organic EL display and an organic EL lighting device.
 なお、本発明の有機EL発光装置10は、公知の有機EL発光装置と同様、有機EL発光素子24を覆って、有機EL発光素子24を保護するための公知のパッシベーション膜を有してもよい。
 さらに、本発明の有機EL発光装置10は、公知の有機EL発光装置と同様、有機EL発光素子24を覆って、または、有機EL発光素子24を覆うパッシベーション膜を覆って、有機EL発光素子24を封止するガスバリアフィルムを有してもよい。ガスバリアフィルムは、樹脂フィルム等の基材に、酸化ケイ素層、酸化アルミニウム層および窒化ケイ素層のガスバリア層を形成してなる、公知のガスバリアフィルムが利用可能である。中でも、基材に、第1ガスバリア層14と同様の有機無機積層型のガスバリア層を形成してなるガスバリアフィルムは、好適に利用可能である。ガスバリアフィルムによる有機EL発光素子24の封止は、粘着テープ、粘着層、および、接着層等を用いる公知の方法で行えばよい。
Note that the organic EL light emitting device 10 of the present invention may have a known passivation film for covering the organic EL light emitting element 24 and protecting the organic EL light emitting element 24, as in the known organic EL light emitting device. .
Furthermore, the organic EL light-emitting device 10 of the present invention covers the organic EL light-emitting element 24 or the passivation film that covers the organic EL light-emitting element 24 in the same manner as the known organic EL light-emitting device. You may have a gas barrier film which seals. As the gas barrier film, a known gas barrier film obtained by forming a gas barrier layer of a silicon oxide layer, an aluminum oxide layer and a silicon nitride layer on a substrate such as a resin film can be used. Especially, the gas barrier film formed by forming the same organic-inorganic laminated type gas barrier layer as the 1st gas barrier layer 14 in a base material can be used suitably. The organic EL light emitting element 24 may be sealed with a gas barrier film by a known method using an adhesive tape, an adhesive layer, an adhesive layer, or the like.
(粘着層16)
 前述のように、有機EL発光装置10は、基本的に、樹脂基材12の上に第1ガスバリア層14を形成したガスバリアフィルムと、ポリイミド樹脂基材18の上に第2ガスバリア層20および有機EL発光素子24を形成した有機EL発光装置本体とを、第1ガスバリア層14とポリイミド樹脂基材18とを対面して、粘着層16によって貼り合わせて作製する。
 本発明は、このような構成を有することにより、優れた可撓性と耐久性とを両立した有機EL発光装置10を実現できる。
(Adhesive layer 16)
As described above, the organic EL light emitting device 10 basically includes the gas barrier film in which the first gas barrier layer 14 is formed on the resin base 12, the second gas barrier layer 20 and the organic on the polyimide resin base 18. The organic EL light-emitting device body on which the EL light-emitting element 24 is formed is prepared by bonding the first gas barrier layer 14 and the polyimide resin base material 18 with the adhesive layer 16.
By having such a configuration, the present invention can realize the organic EL light-emitting device 10 that achieves both excellent flexibility and durability.
 前述のように、従来の可撓性を有する有機EL発光装置は、ポリイミドフィルムなどの樹脂製の基材フィルムの上にガスバリア層(ガスバリア性を発現する層)を形成し、ガスバリア層の上に有機EL発光素子を形成し、その後、ガラス等のキャリアから剥離し、基材フィルムごとPETフィルム等の支持フィルムに乗せ換えて、作製される。
 有機EL発光装置は、有機EL発光素子を覆ってパッシベーション膜等を設けることで、水分の侵入等に起因する有機EL材料等の劣化を防止している。
 ここで、支持フィルムはガスバリア性を有さない。しかしながら、可撓性を有する有機EL発光素子では、フィルム基材と有機EL発光素子との間にガスバリア層を有することで、樹脂基材側から侵入する水分による有機EL材料等の劣化を防止している。
As described above, the conventional organic EL light-emitting device having flexibility forms a gas barrier layer (a layer exhibiting gas barrier properties) on a resin base film such as a polyimide film, and then on the gas barrier layer. An organic EL light emitting element is formed, then peeled off from a carrier such as glass, and the base film is transferred to a support film such as a PET film.
In the organic EL light emitting device, a passivation film or the like is provided so as to cover the organic EL light emitting element, thereby preventing deterioration of the organic EL material or the like due to intrusion of moisture or the like.
Here, the support film does not have gas barrier properties. However, in a flexible organic EL light-emitting element, by having a gas barrier layer between the film substrate and the organic EL light-emitting element, deterioration of the organic EL material and the like due to moisture entering from the resin substrate side is prevented. ing.
 このような有機EL発光装置は、曲率半径の大きな屈曲のように、それほど高くない可撓性を要求される用途であれば、十分な可撓性を発現し、かつ、長期に渡って有機EL材料等の劣化を防止して、十分な耐久性を発現する。
 ところが、本発明者の検討によれば、従来の可撓性を有する有機EL発光装置では、小さな曲率半径で屈曲される用途のように、高い可撓性を要求される用途では、短期間で発光性能が低下してしまい、十分な耐久性を発現できない。すなわち、従来の可撓性を有する有機EL発光装置では、高い可撓性と耐久性とを、両立して得ることが出来ていない。
 本発明者は、この原因について、鋭意検討を重ねた。その結果、従来の可撓性を有する有機EL発光装置では、フィルム基材と有機EL発光素子との間のガスバリア層が厚いため、小さい曲率半径の屈曲では、ガスバリア層が割れてしまい、その結果、割れた部分から水分が侵入して、有機EL材料が劣化してしまうことを見出した。すなわち、従来の撓性を有する有機EL発光装置では、高い可撓性を要求される用途では、十分な耐久性を得られず、すなわち、十分な可撓性を有さないことを見出した。
Such an organic EL light emitting device exhibits sufficient flexibility for applications requiring flexibility that is not so high, such as bending with a large curvature radius, and organic EL for a long period of time. Prevents deterioration of materials, etc., and exhibits sufficient durability.
However, according to the study of the present inventor, in the conventional organic EL light emitting device having flexibility, in an application requiring high flexibility, such as an application bent with a small curvature radius, in a short period of time. Luminous performance deteriorates and sufficient durability cannot be exhibited. That is, in the conventional organic EL light-emitting device having flexibility, high flexibility and durability cannot be obtained at the same time.
The present inventor has conducted extensive studies on this cause. As a result, in the conventional organic EL light-emitting device having flexibility, the gas barrier layer between the film base and the organic EL light-emitting element is thick, so that the gas barrier layer is cracked when bent with a small radius of curvature. It has been found that moisture penetrates from the cracked portion and the organic EL material deteriorates. That is, it has been found that a conventional organic EL light-emitting device having flexibility cannot obtain sufficient durability in applications that require high flexibility, that is, does not have sufficient flexibility.
 これに対して、本発明の有機EL発光装置10は、フィルム基材としてのポリイミド樹脂基材18に第2ガスバリア層20および有機EL発光素子24を形成した有機EL発光装置本体と、樹脂基材12に第1ガスバリア層14を形成したガスバリアフィルムとを、第1ガスバリア層14とポリイミド樹脂基材18とを対面して、粘着層16によって貼り合わせた構成を有する。
 このような構成を有する本発明の有機EL発光装置10は、小さい曲率半径で屈曲されても、粘着層16が緩衝層として作用するので、第1ガスバリア層14の損傷を防止できる。そのため、小さい曲率半径での屈曲によって第2ガスバリア層20が割れても、第1ガスバリア層14によって、水分が有機EL発光素子24に侵入することを防止して、有機EL材料の劣化を防止できる。従って、本発明によれば、屈曲に対する耐久性を向上した、高い可撓性および耐久性を両立して有する有機EL発光装置10を得られる。
On the other hand, the organic EL light emitting device 10 of the present invention includes an organic EL light emitting device body in which the second gas barrier layer 20 and the organic EL light emitting element 24 are formed on a polyimide resin base material 18 as a film base material, and a resin base material. The gas barrier film having the first gas barrier layer 14 formed on 12 is bonded to the first gas barrier layer 14 and the polyimide resin substrate 18 with the adhesive layer 16 facing each other.
The organic EL light emitting device 10 of the present invention having such a configuration can prevent the first gas barrier layer 14 from being damaged because the adhesive layer 16 functions as a buffer layer even when bent with a small radius of curvature. Therefore, even if the second gas barrier layer 20 is cracked due to bending with a small radius of curvature, the first gas barrier layer 14 can prevent moisture from entering the organic EL light emitting element 24 and prevent deterioration of the organic EL material. . Therefore, according to the present invention, it is possible to obtain the organic EL light emitting device 10 having both high flexibility and durability with improved durability against bending.
 さらに、本発明の有機EL発光装置10は、好ましくは、第1ガスバリア層14として、前述の有機無機積層型のガスバリア層を用いる。
 有機無機積層型のガスバリア層は、例えば、厚さが150nmのような薄い無機層30でも、非常に高いガスバリア性を発現する。そのため、有機無機積層型のガスバリア層を用いることにより、無機層30を薄くすることができ、より好適に屈曲による第1ガスバリア層14の損傷を防止できる。しかも、有機無機積層型のガスバリア層では、無機層30は、粘着層16と有機層28との間に挟持された状態となる。その結果、粘着層16による緩衝効果に加え、有機層28による緩衝効果が相乗的に作用して、無機層30すなわち第1ガスバリア層14の損傷を防止できる。
 従って、有機無機積層型のガスバリア層を用いることにより、より屈曲に対する耐久性を向上した、高い可撓性および耐久性を有する有機EL発光装置10を得られる。
Furthermore, the organic EL light emitting device 10 of the present invention preferably uses the organic-inorganic laminated gas barrier layer described above as the first gas barrier layer 14.
The organic / inorganic laminated gas barrier layer exhibits a very high gas barrier property even with a thin inorganic layer 30 having a thickness of 150 nm, for example. Therefore, by using an organic-inorganic laminated gas barrier layer, the inorganic layer 30 can be made thin, and damage to the first gas barrier layer 14 due to bending can be more suitably prevented. Moreover, in the organic / inorganic laminated gas barrier layer, the inorganic layer 30 is sandwiched between the adhesive layer 16 and the organic layer 28. As a result, in addition to the buffer effect by the adhesive layer 16, the buffer effect by the organic layer 28 acts synergistically, and damage to the inorganic layer 30, that is, the first gas barrier layer 14 can be prevented.
Therefore, by using the organic / inorganic laminated gas barrier layer, it is possible to obtain the organic EL light-emitting device 10 having higher flexibility and durability with improved durability against bending.
 粘着層16には、制限はなく、第1ガスバリア層14およびポリイミド樹脂基材18の材料に応じて、両者を十分な粘着力(接着力)で貼り合わせられるものが、各種、利用可能である。
 例えば、(メタ)アクリル酸エステル樹脂、ポリウレタン、(メタ)アクリル樹脂、エチレン-酢酸ビニル共重合体(EVA)、ポリオレフィン、シリコーン樹脂、エポキシ樹脂、および、ゴム系材料等からなる粘着剤、粘着シート、粘着テープ、粘着フィルム、および、接着剤等が挙げられる。
 また、粘着層16は、市販品も利用可能である。粘着層16として利用可能な市販品としては、TESAテープ社製のteas Barrier Transfer Tape 3rdG、ダイセル社製のCELVENUSシリーズ、ナガセケムテックス社製のXNR5516Z、および、3M社製の各種の高透明性接着剤転写テープシリーズ(8146シリーズなど)等が挙げられる。
 なお、粘着層16は、必要に応じて、水分を吸収する乾燥剤成分を含んでいてもよい。
There is no restriction | limiting in the adhesion layer 16, According to the material of the 1st gas barrier layer 14 and the polyimide resin base material 18, what can bond both with sufficient adhesive force (adhesive force) can use variously. .
For example, pressure-sensitive adhesives and pressure-sensitive adhesive sheets made of (meth) acrylic acid ester resin, polyurethane, (meth) acrylic resin, ethylene-vinyl acetate copolymer (EVA), polyolefin, silicone resin, epoxy resin, rubber-based materials, etc. , Pressure-sensitive adhesive tape, pressure-sensitive adhesive film, and adhesive.
A commercially available product can also be used for the adhesive layer 16. Commercially available products that can be used as the adhesive layer 16 include TEA Tape teas Barrier Transfer Tape 3rdG, Daicel CELVENUS series, Nagase ChemteX XNR5516Z, and 3M various highly transparent adhesives. Agent transfer tape series (such as 8146 series).
In addition, the adhesion layer 16 may contain the desiccant component which absorbs a water | moisture content as needed.
 粘着層16の厚さには、制限はなく、粘着層16の種類および材料等に応じて、第1ガスバリア層14とポリイミド樹脂基材18とを十分な粘着力で貼り合わせ可能な厚さを、適宜、設定できる。
 粘着層16の厚さは、1~300μmが好ましく、5~200μmがより好ましく、10~100μmがさらに好ましい。
 粘着層16の厚さを1μm以上とすることにより、第1ガスバリア層14とポリイミド樹脂基材18とを十分な粘着力で貼り合わせられる、粘着層16の緩衝による第1ガスバリア層14の損傷防止効果を好適に得られる、TFTおよび画素等の凹凸に好適に追従できる等の点で好ましい。粘着層16の厚さを300μm以下とすることにより、有機EL発光装置10の可撓性を高くできる、有機EL発光装置10の軽量化および薄手化を図れる等の点で好ましい。
The thickness of the pressure-sensitive adhesive layer 16 is not limited, and the thickness that allows the first gas barrier layer 14 and the polyimide resin base material 18 to be bonded with sufficient adhesive force depending on the type and material of the pressure-sensitive adhesive layer 16. Can be set as appropriate.
The thickness of the adhesive layer 16 is preferably 1 to 300 μm, more preferably 5 to 200 μm, and even more preferably 10 to 100 μm.
By setting the thickness of the adhesive layer 16 to 1 μm or more, the first gas barrier layer 14 and the polyimide resin substrate 18 can be bonded together with sufficient adhesive force, and the first gas barrier layer 14 is prevented from being damaged by the buffer of the adhesive layer 16. This is preferable in that the effect can be suitably obtained, and it is possible to suitably follow the unevenness of the TFT and the pixel. By setting the thickness of the adhesive layer 16 to 300 μm or less, the flexibility of the organic EL light emitting device 10 can be increased, and the organic EL light emitting device 10 can be reduced in weight and thickness.
 粘着層16は、塗布法およびシート材の貼着等、粘着層16の材料や形態に応じた公知の方法で形成できる。 The pressure-sensitive adhesive layer 16 can be formed by a known method according to the material and form of the pressure-sensitive adhesive layer 16 such as a coating method and sticking of a sheet material.
 図3に、本発明の第2の実施形態である有機EL発光装置34を示す。
 なお、図3に示す有機EL発光装置34は、放熱層36および第2粘着層38を有する以外は、前述の図1に示す有機EL発光装置10と同様の構成を有するものである。従って、同じ部材には同じ符号を付し、説明は、異なる部材について主に行う。
FIG. 3 shows an organic EL light emitting device 34 according to the second embodiment of the present invention.
The organic EL light-emitting device 34 shown in FIG. 3 has the same configuration as that of the organic EL light-emitting device 10 shown in FIG. 1 except that the heat-radiating layer 36 and the second adhesive layer 38 are included. Accordingly, the same members are denoted by the same reference numerals, and the description will mainly be made on different members.
 図3に示すように、有機EL発光装置34は、樹脂基材12の第1ガスバリア層14とは逆側の面に、第2粘着層38によって放熱層36を設けたものである。
 このような放熱層36を有することにより、有機EL発光素子24の駆動による熱を好適に放出して、有機EL発光素子24の加熱を防止し、有機EL発光装置34を、より安定して作動させることが可能になる。
As shown in FIG. 3, the organic EL light-emitting device 34 has a heat dissipation layer 36 provided by a second adhesive layer 38 on the surface of the resin base 12 opposite to the first gas barrier layer 14.
By having such a heat dissipation layer 36, heat generated by driving the organic EL light emitting element 24 is suitably released, the organic EL light emitting element 24 is prevented from being heated, and the organic EL light emitting device 34 operates more stably. It becomes possible to make it.
(放熱層36)
 放熱層36には、制限はなく、ディスプレイおよび照明装置等の各種の装置(デバイス)で用いられている公知の放熱層(熱伝導層)が、各種、利用可能である。
 例えば、グラファイトシート、カーボンナノチューブを用いる放熱シートおよびカーボンブラックを分散してなる放熱シートなどの炭素材料を用いる放熱層、アルミニウムシートおよび銅シート等の金属シート(金属箔)、酸化アルミニウムおよび窒化アルミニウム等の熱伝導性の高い化合物からなるセラミックシート、ならびに、金属粒子および金属フィラー等の熱伝導性の高い材料を配合したシリコーンシート等が挙げられる。
 放熱層36としては、市販されている放熱シート(熱伝導シート)も好適に利用可能である。市販されている放熱シートとしては、PGSグラファイトシート(パナソニック社製)、eGRAF(Graftech社製)、および、放熱シリコーンゴムシート(信越シリコーン社製)等が挙げられる。
(Heat dissipation layer 36)
There is no restriction | limiting in the thermal radiation layer 36, Various well-known thermal radiation layers (thermal conduction layer) used with various apparatuses (devices), such as a display and an illuminating device, can be utilized.
For example, graphite sheets, heat-dissipating sheets using carbon nanotubes and heat-dissipating layers using carbon materials such as heat-dissipating sheets in which carbon black is dispersed, metal sheets (metal foil) such as aluminum sheets and copper sheets, aluminum oxide and aluminum nitride, etc. And a ceramic sheet made of a compound having a high thermal conductivity, a silicone sheet containing a material having a high thermal conductivity such as metal particles and a metal filler, and the like.
As the heat dissipation layer 36, a commercially available heat dissipation sheet (heat conductive sheet) can also be suitably used. Examples of commercially available heat radiation sheets include PGS graphite sheets (manufactured by Panasonic), eGRAF (manufactured by Graftech), and heat radiation silicone rubber sheets (manufactured by Shin-Etsu Silicone).
 放熱層36は、面方向の熱伝導率が、厚さ方向の熱伝導率よりも大きいのが好ましい。すなわち、放熱層36は、面方向と厚さ方向とで、面方向の熱伝導が大きい熱伝導異方性を有するのが好ましい。具体的には、面方向の熱伝導率が、厚さ方向の熱伝導率の5倍以上であるのが好ましく、50倍以上であるのがより好ましく、100倍以上であるのが、さらに好ましい。
 なお、面方向とは、樹脂基材12の主面の方向である。また、厚さ方向とは、言い換えれば、有機EL発光装置34(10)における各層の積層方向である。
The heat dissipation layer 36 preferably has a thermal conductivity in the plane direction that is greater than the thermal conductivity in the thickness direction. That is, it is preferable that the heat dissipation layer 36 has a heat conduction anisotropy with a large heat conduction in the surface direction in the surface direction and the thickness direction. Specifically, the thermal conductivity in the plane direction is preferably 5 times or more of the thermal conductivity in the thickness direction, more preferably 50 times or more, and even more preferably 100 times or more. .
The surface direction is the direction of the main surface of the resin base material 12. The thickness direction is, in other words, the stacking direction of the layers in the organic EL light emitting device 34 (10).
 有機ELディスプレイおよび有機EL照明装置等の有機EL発光装置、特に有機ELディスプレイでは、樹脂基材12の有機EL発光素子24とは逆側に、有機EL発光装置の電源となるバッテリーあるいは駆動用の電源装置が配置される可能性が高い。
 周知のとおり、バッテリーおよび電源装置は熱に弱く、加熱によって出力が不安定になる。従って、放熱層36が、面方向の熱伝導率が大きい熱伝導異方性を有することにより、放熱層36からバッテリーへの放熱を抑制して、有機EL発光装置34からの放熱に起因するバッテリーあるいは電源装置の加熱を防止して、有機EL発光装置34の駆動を、より安定させることができる。
 このような熱伝導異方性を有する放熱層36としては、グラファイトシート等が挙げられる。
In an organic EL light emitting device such as an organic EL display and an organic EL lighting device, in particular, an organic EL display, a battery serving as a power source of the organic EL light emitting device or a driving device is provided on the side opposite to the organic EL light emitting element 24 of the resin base 12 There is a high possibility that a power supply unit is arranged.
As is well known, the battery and the power supply device are vulnerable to heat, and the output becomes unstable due to heating. Therefore, the heat dissipation layer 36 has thermal conductivity anisotropy with a large thermal conductivity in the plane direction, thereby suppressing the heat dissipation from the heat dissipation layer 36 to the battery, and the battery resulting from the heat dissipation from the organic EL light emitting device 34. Or heating of a power supply device can be prevented and the drive of the organic electroluminescent light-emitting device 34 can be stabilized more.
Examples of the heat dissipation layer 36 having such heat conduction anisotropy include a graphite sheet.
 放熱層36の厚さには、制限はなく、放熱層36の種類および材料等に応じて、十分な放熱ができる厚さを、適宜、設定できる。
 放熱層36の厚さは、1~100μmが好ましく、5~75μmがより好ましく、10~50μmがさらに好ましい。
 放熱層36の厚さを1μm以上とすることにより、十分な放熱が可能になる等の点で好ましい。放熱層36の厚さを100μm以下とすることにより、有機EL発光装置34の可撓性を高くできる、有機EL発光装置34の軽量化および薄手化を図れる等の点で好ましい。
The thickness of the heat dissipation layer 36 is not limited, and a thickness capable of sufficient heat dissipation can be appropriately set according to the type and material of the heat dissipation layer 36.
The thickness of the heat dissipation layer 36 is preferably 1 to 100 μm, more preferably 5 to 75 μm, and even more preferably 10 to 50 μm.
Setting the thickness of the heat dissipation layer 36 to 1 μm or more is preferable in that sufficient heat dissipation is possible. By setting the thickness of the heat dissipation layer 36 to 100 μm or less, the flexibility of the organic EL light emitting device 34 can be increased, and the weight and thickness of the organic EL light emitting device 34 can be reduced.
(第2粘着層38)
 放熱層36は、第2粘着層38によって、樹脂基材12に貼り付けられる。
 なお、放熱層36の材料等に応じて、放熱層36を樹脂基材12に、直接的に形成(成膜)あるいは貼り付け可能である場合には、第2粘着層は設けなくてもよい。
 第2粘着層38には、制限はなく、放熱層36および樹脂基材12の材料に応じて、両者を十分な粘着力で貼り合わせられるものが、各種、利用可能である。第2粘着層38としては、例えば、前述の第1粘着層16で例示したものが挙げられる。
(Second adhesive layer 38)
The heat dissipation layer 36 is affixed to the resin base material 12 by the second adhesive layer 38.
If the heat dissipation layer 36 can be directly formed (film formation) or affixed to the resin base material 12 according to the material of the heat dissipation layer 36, the second adhesive layer may not be provided. .
There is no restriction | limiting in the 2nd adhesion layer 38, According to the material of the thermal radiation layer 36 and the resin base material 12, what can bond both with sufficient adhesive force can be utilized variously. As the 2nd adhesion layer 38, what was illustrated by the above-mentioned 1st adhesion layer 16 is mentioned, for example.
 第2粘着層38の厚さには、制限はなく、放熱層36および樹脂基材12の材料に応じて、両者を十分な粘着力で貼り合わせ可能な厚さを、適宜、設定できる。
 第2粘着層38の厚さは、1~300μmが好ましく、5~200μmがより好ましく、10~100μmがさらに好ましい。
 第2粘着層38の厚さを1μm以上とすることにより、放熱層36と樹脂基材12とを十分な粘着力で貼り合わせられる等の点で好ましい。第2粘着層38の厚さを300μm以下とすることにより、有機EL発光装置34の可撓性を高くできる、有機EL発光装置34の軽量化および薄手化を図れる等の点で好ましい。
There is no restriction | limiting in the thickness of the 2nd adhesion layer 38, According to the material of the thermal radiation layer 36 and the resin base material 12, the thickness which can bond both with sufficient adhesive force can be set suitably.
The thickness of the second adhesive layer 38 is preferably 1 to 300 μm, more preferably 5 to 200 μm, and even more preferably 10 to 100 μm.
By making the thickness of the 2nd adhesion layer 38 1 micrometer or more, it is preferable at points, such as the heat dissipation layer 36 and the resin base material 12 being bonded together with sufficient adhesive force. Setting the thickness of the second adhesive layer 38 to 300 μm or less is preferable in that the flexibility of the organic EL light emitting device 34 can be increased, and the organic EL light emitting device 34 can be reduced in weight and thickness.
(本発明の有機EL発光装置について)
 本発明の有機EL発光装置は、いわゆるトップエミッション型でも、いわゆるボトムエミッション型でもよい。
 ここで、本発明の有機EL発光装置は、有機EL発光素子24を形成するための基材として、ポリイミド樹脂基材18を用い、さらに、好ましい態様として、ガスバリアフィルムの樹脂基材12の第1ガスバリア層14とは逆側の面に、放熱層36を設ける。
 この点を考慮すると、本発明の有機EL発光装置は、有機EL発光素子24の形成基材とは逆側に光を放射する、トップエミッション型であるのが好ましい。
(About the organic EL light emitting device of the present invention)
The organic EL light emitting device of the present invention may be a so-called top emission type or a so-called bottom emission type.
Here, the organic EL light-emitting device of the present invention uses a polyimide resin base material 18 as a base material for forming the organic EL light-emitting element 24. Further, as a preferable aspect, the first resin base material 12 of the gas barrier film is used. A heat dissipation layer 36 is provided on the surface opposite to the gas barrier layer 14.
Considering this point, the organic EL light-emitting device of the present invention is preferably a top emission type that emits light to the side opposite to the substrate on which the organic EL light-emitting element 24 is formed.
 以上、本発明の有機EL発光装置について詳細に説明したが、本発明は上記の態様に限定はされず、本発明の要旨を逸脱しない範囲において、種々、改良または変更を行ってもよい。 As mentioned above, although the organic EL light emitting device of the present invention has been described in detail, the present invention is not limited to the above embodiment, and various improvements or modifications may be made without departing from the gist of the present invention.
 以下に実施例を挙げて本発明を具体的に説明する。本発明は、以下に示す具体例に限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to the specific examples shown below.
 [実施例1]
 <ガスバリアフィルムの作製>
 樹脂基材12として厚さ100μmのPETフィルム(A4300、東洋紡社製)を用意した。
[Example 1]
<Production of gas barrier film>
A PET film (A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was prepared as the resin substrate 12.
 TMPTA(ダイセルセルテック社製)、シランカップリング剤(KBM-5103、信越化学社製)および重合性酸性化合物(KARAMER PM-21、日本化薬社製)を、質量比で14.1:3.5:1で混合してなる組成物を調製した。
 この組成物18.6gと、紫外線重合開始剤(ランベルティ社製、ESACURE KTO46)1.4gと、2-ブタノン180gとを混合して、有機層28を形成するための有機層形成用組成物を調製した。
TMPTA (manufactured by Daicel Celltech), silane coupling agent (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) and polymerizable acidic compound (KARAMER PM-21, manufactured by Nippon Kayaku Co., Ltd.) in a mass ratio of 14.1: 3. A composition was prepared by mixing at 5: 1.
An organic layer forming composition for forming the organic layer 28 by mixing 18.6 g of this composition, 1.4 g of an ultraviolet polymerization initiator (Lamberti, ESACURE KTO46) and 180 g of 2-butanone. Was prepared.
 調製した有機層形成用組成物を、樹脂基材12(PETフィルム)の表面に塗布した。塗料の塗布は、ワイヤーバーを用い、塗膜厚が10μmとなるように行った。
 塗料を塗布した後、室温で放置することにより、塗料を乾燥した。
 次いで、窒素置換法により酸素濃度を0.1%としたチャンバー内で高圧水銀ランプの紫外線を照射(積算照射量約1J/cm2)することで、塗料の組成物を硬化させた。これにより、樹脂基材12の表面に厚さ1μmの有機層28を形成した。
The prepared composition for forming an organic layer was applied to the surface of a resin substrate 12 (PET film). Application | coating of the coating material was performed so that the coating-film thickness might be set to 10 micrometers using a wire bar.
After applying the paint, the paint was dried by allowing it to stand at room temperature.
Next, the composition of the coating was cured by irradiating with ultraviolet rays from a high-pressure mercury lamp (integrated irradiation amount: about 1 J / cm 2 ) in a chamber in which the oxygen concentration was 0.1% by a nitrogen substitution method. As a result, an organic layer 28 having a thickness of 1 μm was formed on the surface of the resin substrate 12.
 この有機層28の上に、無機層30として、厚さ35nmの窒化ケイ素膜を形成した。
 無機層30(窒化ケイ素膜)の形成は、一般的なCCP-CVD装置を用いて行った。原料ガスは、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および、窒素ガス(流量240sccm)を用いた。成膜圧力は40Paとした。電源は周波数13.56MHzの高周波電源を用い、プラズマ励起電力を2.5kWとした。
 これにより、図2に示すような、樹脂基材12の上に、有機層28と無機層30とからなる第1ガスバリア層14を有するガスバリアフィルムを作製した(第1ガスバリア層14=有機層28・無機層30)。
A silicon nitride film having a thickness of 35 nm was formed as an inorganic layer 30 on the organic layer 28.
The inorganic layer 30 (silicon nitride film) was formed using a general CCP-CVD apparatus. As the source gas, silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used. The film forming pressure was 40 Pa. The power supply was a high frequency power supply with a frequency of 13.56 MHz, and the plasma excitation power was 2.5 kW.
As a result, a gas barrier film having the first gas barrier layer 14 composed of the organic layer 28 and the inorganic layer 30 on the resin substrate 12 as shown in FIG. 2 was produced (first gas barrier layer 14 = organic layer 28). -Inorganic layer 30).
 <有機EL発光装置本体の作成>
 ポリイミド樹脂基材18として、厚さ25μmのポリイミドフィルム(東レ・デュポン社製、カプトン)を用意した。
<Creation of organic EL light emitting device body>
A polyimide film having a thickness of 25 μm (manufactured by Toray DuPont, Kapton) was prepared as the polyimide resin substrate 18.
 このポリイミド樹脂基材18の一面に、無機層30と同様にして窒化ケイ素膜を形成した。
 これにより、ポリイミド樹脂基材18の表面に厚さ150nmの第2ガスバリア層20を形成した。
A silicon nitride film was formed on one surface of the polyimide resin substrate 18 in the same manner as the inorganic layer 30.
As a result, a second gas barrier layer 20 having a thickness of 150 nm was formed on the surface of the polyimide resin substrate 18.
 形成した第2ガスバリア層20表面に、60nmの膜厚になるようにアルミニウムを真空蒸着によって成膜して、陽極を形成した。
 形成した陽極の表面に、真空蒸着装置により、正孔注入層として酸化モリブデン(MoO3)層を2nm、形成し、さらに、酸化モリブデン層の表面に順に正孔輸送層(α-NPD:Bis[N-(1-naphthyl)-N-phenyl]benzidine)を29nm、CBP(4,4'-Bis(carbazol-9-yl)biphenyl)をホスト材料として5%のIr(ppy)3(Tris(2-phenylpyridinato)iridium)をドープした発光層を20nm、正孔ブロック層としてBAlq(Bis-(2-methyl-8- quinolinolato)-4-(phenyl-phenolate)-aluminium(III))層を10nm、および、電子輸送層としてAlq3(Tris(8-hydroxy-quinolinato)aluminium)層を20nm、それぞれ蒸着して、有機電界発光層を形成した。
 続けて、得られた有機発光層の表面にフッ化リチウム(LiF)を0.5nm、アルミニウムを1.5nm、この順に蒸着して、透明電極(陰極)を成膜して、第2ガスバリア層20の表面に有機EL発光素子24を形成し、有機EL発光装置本体を作製した。
 さらに、有機EL発光装置24の上に、パッシベーション膜として酸化アルミニウム(Al23)をスパッタリングによって300nmの膜厚となるように、形成した。
Aluminum was formed on the surface of the formed second gas barrier layer 20 by vacuum deposition so as to have a film thickness of 60 nm, thereby forming an anode.
A molybdenum oxide (MoO 3 ) layer having a thickness of 2 nm was formed as a hole injection layer on the surface of the formed anode by a vacuum deposition apparatus, and a hole transport layer (α-NPD: Bis [ N- (1-naphthyl) -N-phenyl] benzidine) is 29 nm, CBP (4,4′-Bis (carbazol-9-yl) biphenyl) is the host material and 5% Ir (ppy) 3 (Tris (2 -phenylpyridinato) iridium) -doped light emitting layer 20 nm, BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminium (III)) layer 10 nm as a hole blocking layer, and As an electron transport layer, an Alq3 (Tris (8-hydroxy-quinolinato) aluminum) layer of 20 nm was deposited to form an organic electroluminescent layer.
Subsequently, lithium fluoride (LiF) is deposited on the surface of the obtained organic light emitting layer to 0.5 nm and aluminum is deposited to 1.5 nm in this order to form a transparent electrode (cathode) to form a second gas barrier layer. The organic EL light-emitting element 24 was formed on the surface of 20 to produce an organic EL light-emitting device body.
Further, aluminum oxide (Al 2 O 3 ) was formed as a passivation film on the organic EL light emitting device 24 so as to have a film thickness of 300 nm by sputtering.
 さらに、形成した有機EL発光素子24を全面的に覆うように、厚さ25μmの粘着テープ(TESA社製、25μmバリアテープ)を貼り付けた。
 さらに、先に作製したガスバリアフィルムを、無機層30を粘着テープに向けて貼り付けて、有機EL発光素子24を封止した。
Furthermore, a 25 μm-thick adhesive tape (manufactured by TESA, 25 μm barrier tape) was attached so as to cover the formed organic EL light emitting element 24 entirely.
Furthermore, the gas barrier film produced previously was affixed with the inorganic layer 30 facing the adhesive tape, and the organic EL light emitting element 24 was sealed.
 <有機EL発光装置10の作製>
 無機層30とポリイミド樹脂基材18とを対面して、先に作製したガスバリアフィルムと有機EL発光装置本体とを、厚さ25μmの粘着層16(3M社製、高透明性接着剤転写テープ8146-1)によって貼り付け、図1に示すような有機EL発光装置10を作製した。
<Preparation of organic EL light emitting device 10>
The inorganic layer 30 and the polyimide resin substrate 18 face each other, and the previously prepared gas barrier film and the organic EL light emitting device main body are bonded to a 25 μm thick adhesive layer 16 (manufactured by 3M, highly transparent adhesive transfer tape 8146). The organic EL light emitting device 10 as shown in FIG.
 [実施例2]
 ガスバリアフィルムの作製において、無機層30を形成した後に、無機層30の上に、さらに有機層(保護有機層)を形成した(第1ガスバリア層14=有機層28・無機層30・保護有機層)。
 このガスバリアフィルムを用いた以外は、実施例1と同様に有機EL発光装置10を作製した。
 [実施例3]
 ガスバリアフィルムの作製において、無機層30を形成した後に、無機層30の上に、さらに有機層28を形成し、この有機層28の上に、さらに無機層30を形成した(第1ガスバリア層14は、有機層28、無機層30、有機層28及び無機層30をこの順に有する)。
 このガスバリアフィルムを用いた以外は、実施例1と同様に有機EL発光装置10を作製した。
 [実施例4]
 ガスバリアフィルムの作製において、下地となる有機層28を形成しないで、樹脂基材12に、直接、無機層30を形成した(第1ガスバリア層14は、無機層30である)。
 このガスバリアフィルムを用いた以外は、実施例1と同様に有機EL発光装置10を作製した。
[Example 2]
In the production of the gas barrier film, after forming the inorganic layer 30, an organic layer (protective organic layer) was further formed on the inorganic layer 30 (first gas barrier layer 14 = organic layer 28 / inorganic layer 30 / protective organic layer). ).
An organic EL light emitting device 10 was produced in the same manner as in Example 1 except that this gas barrier film was used.
[Example 3]
In the production of the gas barrier film, after forming the inorganic layer 30, an organic layer 28 is further formed on the inorganic layer 30, and the inorganic layer 30 is further formed on the organic layer 28 (first gas barrier layer 14 Has an organic layer 28, an inorganic layer 30, an organic layer 28, and an inorganic layer 30 in this order).
An organic EL light emitting device 10 was produced in the same manner as in Example 1 except that this gas barrier film was used.
[Example 4]
In the production of the gas barrier film, the inorganic layer 30 was formed directly on the resin base material 12 without forming the organic layer 28 as a base (the first gas barrier layer 14 is the inorganic layer 30).
An organic EL light emitting device 10 was produced in the same manner as in Example 1 except that this gas barrier film was used.
 [実施例5]
 実施例3と同様の有機EL発光装置10を作製した。
 この有機EL発光装置10の樹脂基材12の第1ガスバリア層14の形成面とは逆側の面に、厚さ25μmの第2粘着層38(3M社製、高透明性接着剤転写テープ8146-1)によって、放熱層36としてグラファイトシート(パナソニック社製、PGSグラファイトシート)を貼り付けた。
 これにより、図3に示すような有機EL発光装置34を作製した。
 [実施例6]
 放熱層36を、厚さ20μmのアルミニウム箔に変更した以外は、実施例5と同様にして、図3に示すような有機EL発光装置34を作製した。
 [実施例7]
 放熱層36を、放熱シリコーンゴム(信越シリコーン社製、TC-BG)に変更した以外は、実施例5と同様にして、図3に示すような有機EL発光装置34を作製した。
 実施例5~6においては、第1ガスバリア層14は、実施例3と同じである。従って、第1ガスバリア層14は、有機層28、無機層30、有機層28及び無機層30をこの順に有する。
[Example 5]
An organic EL light emitting device 10 similar to that in Example 3 was produced.
A 25 μm thick second adhesive layer 38 (manufactured by 3M, highly transparent adhesive transfer tape 8146) is formed on the surface of the resin base material 12 of the organic EL light emitting device 10 opposite to the surface on which the first gas barrier layer 14 is formed. -1), a graphite sheet (manufactured by Panasonic, PGS graphite sheet) was attached as the heat dissipation layer 36.
Thus, an organic EL light emitting device 34 as shown in FIG. 3 was produced.
[Example 6]
An organic EL light emitting device 34 as shown in FIG. 3 was produced in the same manner as in Example 5 except that the heat dissipation layer 36 was changed to an aluminum foil having a thickness of 20 μm.
[Example 7]
An organic EL light emitting device 34 as shown in FIG. 3 was produced in the same manner as in Example 5 except that the heat radiation layer 36 was changed to heat radiation silicone rubber (TC-BG, manufactured by Shin-Etsu Silicone Co., Ltd.).
In Examples 5 to 6, the first gas barrier layer 14 is the same as that of Example 3. Accordingly, the first gas barrier layer 14 includes the organic layer 28, the inorganic layer 30, the organic layer 28, and the inorganic layer 30 in this order.
 [比較例1]
 有機EL発光素子本体の作製において、ポリイミド樹脂基材18の表面に第2ガスバリア層20を形成しなかった。すなわち、ポリイミド樹脂基材18の表面に、直接、有機EL発光素子24を形成した。
 この有機EL発光素子本体のポリイミド樹脂基材18に、粘着層16によって、第1ガスバリア層14を有さない樹脂基材12(PETフィルム)を貼り付けて、有機EL発光装置を作製した(第1ガスバリア層14および第2ガスバリア層20無し)。
[Comparative Example 1]
In the production of the organic EL light emitting device main body, the second gas barrier layer 20 was not formed on the surface of the polyimide resin substrate 18. That is, the organic EL light emitting element 24 was directly formed on the surface of the polyimide resin substrate 18.
A resin base material 12 (PET film) that does not have the first gas barrier layer 14 is attached to the polyimide resin base material 18 of the organic EL light-emitting element body by the adhesive layer 16 to produce an organic EL light-emitting device (first). 1 gas barrier layer 14 and no second gas barrier layer 20).
 [比較例2]
 実施例1と同じ有機EL発光素子本体のポリイミド樹脂基材18に、粘着層16によって、第1ガスバリア層14を有さない樹脂基材12(PETフィルム)を貼り付けて、有機EL発光装置を作製した(第1ガスバリア層14無し)。
[Comparative Example 2]
A resin base material 12 (PET film) that does not have the first gas barrier layer 14 is attached to the polyimide resin base material 18 of the same organic EL light emitting element body as in Example 1 by the adhesive layer 16, and an organic EL light emitting device is thus obtained. It was produced (without the first gas barrier layer 14).
 [評価]
 このようにして作製した実施例1~7および比較例1~2の有機EL発光装置について、素子の耐久性、可撓性、および、可撓耐久性について、評価した。
[Evaluation]
With respect to the organic EL light emitting devices of Examples 1 to 7 and Comparative Examples 1 and 2 thus manufactured, the durability, flexibility, and flexibility durability of the elements were evaluated.
 <素子の耐久性>
 60℃で相対湿度90%の環境に100時間保管した。保管後の全発光面積に対するダークスポットの占有率を算出して、有機EL発光装置の有機EL発光素子24の耐久性を評価した。
 評価は、以下のとおりである。
 AA: ダークスポットの占有率が2%未満
  A: ダークスポットの占有率が2%以上5%未満
  B: ダークスポットの占有率が5%以上20%未満
  C: ダークスポットの占有率が20%以上
<Element durability>
It was stored in an environment at 60 ° C. and a relative humidity of 90% for 100 hours. The occupancy ratio of dark spots with respect to the total light emitting area after storage was calculated, and the durability of the organic EL light emitting element 24 of the organic EL light emitting device was evaluated.
The evaluation is as follows.
AA: Dark spot occupancy is less than 2% A: Dark spot occupancy is 2% or more and less than 5% B: Dark spot occupancy is 5% or more and less than 20% C: Dark spot occupancy is 20% or more
 <可撓性>
 JIS K 5600-5-1に準拠したマンドレル法によって、有機EL発光装置の可撓性を評価した。
 評価は、以下のとおりである。
 A: 半径が8mm未満のマンドレルを用いて100回曲げても、剥離、折れ、および、破損が生じない。
 B: 半径が8mm未満のマンドレルを用いて100回曲げた場合には、剥離、折れ、および、破損のいずれかが生じるが、半径が8mm以上14mm未満のマンドレルを用いて100回曲げても、剥離、折れ、および、破損が生じない。
 C: 半径が14mm以上のマンドレルを用いて100回曲げると、剥離、折れ、および、破損のいずれかが生じる。
<Flexibility>
The flexibility of the organic EL light emitting device was evaluated by a mandrel method based on JIS K 5600-5-1.
The evaluation is as follows.
A: Even if it is bent 100 times using a mandrel having a radius of less than 8 mm, peeling, folding and breakage do not occur.
B: When a mandrel having a radius of less than 8 mm is bent 100 times, peeling, bending, or breakage occurs, but even if a mandrel having a radius of 8 mm or more and less than 14 mm is bent 100 times, No peeling, breakage or breakage occurs.
C: When a mandrel having a radius of 14 mm or more is bent 100 times, any of peeling, bending, and breakage occurs.
 <可撓耐久性>
 半径が20mmのマンドレルを用い、JIS K 5600-5-1に準拠したマンドレル法によって、有機EL発光装置を100回曲げた。
 その後、60℃で相対湿度90%の環境に100時間保管して、保管後の全発光面積に対するダークスポットの占有率を算出して、有機EL発光装置の可撓耐久性を評価した。
 評価は以下のとおりである。
 AA: ダークスポットの占有率が2%未満
  A: ダークスポットの占有率が2%以上5%未満
  B: ダークスポットの占有率が5%以上20%未満
  C: ダークスポットの占有率が20%以上
 結果を下記の表に示す。
<Flexible durability>
Using a mandrel having a radius of 20 mm, the organic EL light emitting device was bent 100 times by a mandrel method in accordance with JIS K 5600-5-1.
Thereafter, the organic EL light-emitting device was stored for 100 hours in an environment at 90 ° C. and a relative humidity of 90%, and the occupancy ratio of dark spots with respect to the total light-emitting area after storage was calculated to evaluate the flexible durability of the organic EL light-emitting device.
The evaluation is as follows.
AA: Dark spot occupancy is less than 2% A: Dark spot occupancy is 2% or more and less than 5% B: Dark spot occupancy is 5% or more and less than 20% C: Dark spot occupancy is 20% or more The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、本発明の有機EL発光装置は、いずれも、良好な耐久性、可撓性、および、可撓耐久性を有している。放熱層36を有する実施例5および6は、特に優れた素子の耐久性を有している。放熱層36としてグラファイトシートを用いる実施例5は、放熱層36を有しても、良好な可撓性を有する。さらに、実施例1~4は、マンドレル法による曲げ試験を行った後でも、曲げ試験前と同等の耐久性を発揮している。
 これに対し、樹脂基材12に設けられる第1ガスバリア層14およびポリイミド樹脂基材18の表面の第2ガスバリア層20を有さない比較例1は、耐久性が悪い。また、第2ガスバリア層20を有するが、樹脂基材12に設けられる第1ガスバリア層14を有さない比較例2は、素子の耐久性すなわち当初の耐久性は良好であるが、マンドレル法による曲げ試験を行ったことにより、第2ガスバリア層20が損傷したと考えられ、可撓耐久性が低い。
 以上の結果より、本発明の効果は明らかである。
As shown in Table 1, each of the organic EL light emitting devices of the present invention has good durability, flexibility, and flexibility durability. Examples 5 and 6 having the heat dissipation layer 36 have particularly excellent element durability. Example 5 using a graphite sheet as the heat dissipation layer 36 has good flexibility even if the heat dissipation layer 36 is provided. Further, Examples 1 to 4 exhibit the same durability as that before the bending test even after the bending test by the mandrel method.
In contrast, Comparative Example 1 that does not have the first gas barrier layer 14 provided on the resin substrate 12 and the second gas barrier layer 20 on the surface of the polyimide resin substrate 18 has poor durability. Moreover, although the comparative example 2 which has the 2nd gas barrier layer 20 but does not have the 1st gas barrier layer 14 provided in the resin base material 12 has the durability of an element, ie, initial durability, it is based on a mandrel method. It was considered that the second gas barrier layer 20 was damaged due to the bending test, and the flexibility durability was low.
From the above results, the effects of the present invention are clear.
 有機ELディスプレイや有機EL照明装置などに、好適に利用可能である。 It can be suitably used for an organic EL display or an organic EL lighting device.
 10、34 有機EL発光装置
 12 樹脂基材
 14 第1ガスバリア層
 16 粘着層
 18 ポリイミド樹脂基材
 20 第2ガスバリア層
 24 有機EL発光素子
 28 有機層
 30 無機層
 36 放熱層
 38 第2粘着層
DESCRIPTION OF SYMBOLS 10, 34 Organic EL light-emitting device 12 Resin base material 14 1st gas barrier layer 16 Adhesion layer 18 Polyimide resin base material 20 2nd gas barrier layer 24 Organic EL light emitting element 28 Organic layer 30 Inorganic layer 36 Heat radiation layer 38 2nd adhesion layer

Claims (7)

  1.  樹脂基材、第1のガスバリア層、粘着層、ポリイミド樹脂基材、第2のガスバリア層、および、有機エレクトロルミネッセンス発光素子を、この順番で有することを特徴とする有機エレクトロルミネッセンス発光装置。 An organic electroluminescent light emitting device comprising a resin base material, a first gas barrier layer, an adhesive layer, a polyimide resin base material, a second gas barrier layer, and an organic electroluminescent light emitting element in this order.
  2.  前記第1のガスバリア層は、無機層と、前記無機層の下地となる有機層との組み合わせを、1組以上有する、請求項1に記載の有機エレクトロルミネッセンス発光装置。 The organic electroluminescence light-emitting device according to claim 1, wherein the first gas barrier layer has one or more combinations of an inorganic layer and an organic layer serving as a base of the inorganic layer.
  3.  前記無機層が、窒化ケイ素を主成分とする、厚さが150nm以下の層である、請求項2に記載の有機エレクトロルミネッセンス発光装置。 The organic electroluminescence light-emitting device according to claim 2, wherein the inorganic layer is a layer having silicon nitride as a main component and a thickness of 150 nm or less.
  4.  前記樹脂基材の前記第1のガスバリア層が形成される側とは逆側の面に放熱層が設けられる、請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス発光装置。 The organic electroluminescence light-emitting device according to any one of claims 1 to 3, wherein a heat dissipation layer is provided on a surface of the resin substrate opposite to a side on which the first gas barrier layer is formed.
  5.  前記放熱層が、炭素材料、金属材料、セラミック材料、および、シリコーン材料の1以上を含む、請求項4に記載の有機エレクトロルミネッセンス発光装置。 The organic electroluminescence light-emitting device according to claim 4, wherein the heat dissipation layer includes one or more of a carbon material, a metal material, a ceramic material, and a silicone material.
  6.  前記放熱層は、面方向の熱伝導率が厚さ方向の熱伝導率よりも大きい、請求項4または5に記載の有機エレクトロルミネッセンス発光装置。 The organic electroluminescence light-emitting device according to claim 4 or 5, wherein the heat dissipation layer has a thermal conductivity in a plane direction larger than a thermal conductivity in a thickness direction.
  7.  トップエミッション型である、請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス発光装置。 The organic electroluminescence light-emitting device according to any one of claims 1 to 6, which is a top emission type.
PCT/JP2018/017476 2017-05-30 2018-05-02 Organic electroluminescent light-emitting device WO2018221116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-106510 2017-05-30
JP2017106510A JP2020129429A (en) 2017-05-30 2017-05-30 Organic electroluminescent light-emitting device

Publications (1)

Publication Number Publication Date
WO2018221116A1 true WO2018221116A1 (en) 2018-12-06

Family

ID=64454520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017476 WO2018221116A1 (en) 2017-05-30 2018-05-02 Organic electroluminescent light-emitting device

Country Status (2)

Country Link
JP (1) JP2020129429A (en)
WO (1) WO2018221116A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023126055A (en) * 2022-02-28 2023-09-07 日東電工株式会社 Optical laminate for oled display device, and oled display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113548A1 (en) * 2001-02-16 2002-08-22 Silvernail Jeffrey Alan Barrier region for optoelectronic devices
JP2013022920A (en) * 2011-07-25 2013-02-04 Lintec Corp Gas barrier film laminate and electronic component
JP2013054985A (en) * 2011-09-06 2013-03-21 Toppan Printing Co Ltd Electroluminescent element sealing film
JP2016051569A (en) * 2014-08-29 2016-04-11 住友化学株式会社 Organic electroluminescent element
JP2016177878A (en) * 2015-03-18 2016-10-06 株式会社ジャパンディスプレイ Display device and manufacturing method for the same
WO2017010329A1 (en) * 2015-07-10 2017-01-19 シャープ株式会社 Electroluminescence device
JP2017077668A (en) * 2015-10-20 2017-04-27 コニカミノルタ株式会社 Gas barrier laminate and organic electroluminescent element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113548A1 (en) * 2001-02-16 2002-08-22 Silvernail Jeffrey Alan Barrier region for optoelectronic devices
JP2013022920A (en) * 2011-07-25 2013-02-04 Lintec Corp Gas barrier film laminate and electronic component
JP2013054985A (en) * 2011-09-06 2013-03-21 Toppan Printing Co Ltd Electroluminescent element sealing film
JP2016051569A (en) * 2014-08-29 2016-04-11 住友化学株式会社 Organic electroluminescent element
JP2016177878A (en) * 2015-03-18 2016-10-06 株式会社ジャパンディスプレイ Display device and manufacturing method for the same
WO2017010329A1 (en) * 2015-07-10 2017-01-19 シャープ株式会社 Electroluminescence device
JP2017077668A (en) * 2015-10-20 2017-04-27 コニカミノルタ株式会社 Gas barrier laminate and organic electroluminescent element

Also Published As

Publication number Publication date
JP2020129429A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
TWI637542B (en) Organic electroluminescence laminate
JP5532557B2 (en) Gas barrier sheet, gas barrier sheet manufacturing method, sealing body, and organic EL display
US8350470B2 (en) Encapsulation structures of organic electroluminescence devices
TW200414791A (en) Protected organic electronic devices and methods for making the same
KR101894168B1 (en) Sealed laminate and organic electronic device
TW200522786A (en) Flexible electroluminescent devices
WO2014148300A1 (en) Functional film
US20170100926A1 (en) Method of manufacturing electronic device and composite film
JP2016134307A (en) Method of manufacturing flexible device and flexible device laminate
TW200531588A (en) Composite articles having diffusion barriers and devices incorporating the same
WO2017033823A1 (en) Electronic device
JPWO2016031877A1 (en) Organic electroluminescence device
JP6383682B2 (en) Organic electroluminescence device
WO2018221116A1 (en) Organic electroluminescent light-emitting device
JP6026331B2 (en) Organic EL laminate
JP2007194212A (en) Display device and its manufacturing method
WO2019021616A1 (en) Gas barrier laminate and electronic device
WO2016009778A1 (en) Composite film
JP6196944B2 (en) SEALING MEMBER AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP7112505B2 (en) Electronic device laminate manufacturing method and electronic device laminate
KR102345984B1 (en) Barrier film structure and organic electronic device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP