WO2018199246A1 - Virtual image display device, and display system for moving body - Google Patents

Virtual image display device, and display system for moving body Download PDF

Info

Publication number
WO2018199246A1
WO2018199246A1 PCT/JP2018/017020 JP2018017020W WO2018199246A1 WO 2018199246 A1 WO2018199246 A1 WO 2018199246A1 JP 2018017020 W JP2018017020 W JP 2018017020W WO 2018199246 A1 WO2018199246 A1 WO 2018199246A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
virtual image
image
display device
image display
Prior art date
Application number
PCT/JP2018/017020
Other languages
French (fr)
Japanese (ja)
Inventor
野村英司
山田範秀
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019514628A priority Critical patent/JPWO2018199246A1/en
Publication of WO2018199246A1 publication Critical patent/WO2018199246A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a virtual image display device that displays a virtual image at the end of a line of sight and a display system for a moving body equipped with the virtual image display device.
  • HUD Head-Up Display
  • Conventional head-up display (HUD)) devices generally generate a virtual image at a certain distance from the driver, and the display contents by HUD are vehicle speed, car navigation. It was limited to information.
  • the purpose of installing the HUD in the car is to support the safer driving by minimizing the movement of the driver's line of sight. It is more preferable, for example, to detect a car, a pedestrian, an obstacle, etc. in front of the vehicle with a camera or a sensor, etc., and to let the driver detect the danger in advance through HUD to prevent an accident. .
  • a danger signal or other additional information superimposed on a see-through image (target object) such as a car, a person, or an obstacle.
  • Patent Document 1 there is a method of changing the position of a virtual image by a scanning image forming means such as a MEMS (Micro Electro Mechanical Systems) mirror, a screen, a projection means, and a movable means for changing the position of the screen. It is disclosed.
  • a scanning image forming means such as a MEMS (Micro Electro Mechanical Systems) mirror, a screen, a projection means, and a movable means for changing the position of the screen.
  • MEMS Micro Electro Mechanical Systems
  • the main purpose of Patent Document 1 is to reduce the movement of the driver's line of sight by moving the virtual image position closer to or away from the vehicle according to the speed of the vehicle.
  • the danger signal and the object are superimposed and displayed. It is not intended.
  • the technique described in Patent Document 1 is not based on the above superimposed display, it is not related to the positional deviation between the danger signal and the target object.
  • the present invention has been made in view of the above-described background art, and has a simple configuration and can display a virtual image display device that can superimpose and display additional information as described above on an object to the extent that appropriate recognition is possible.
  • the purpose is to provide.
  • Another object of the present invention is to provide a moving body display system equipped with the virtual image display device.
  • a display device that displays a plurality of virtual images with different projection distances by linking the arrangement changing device that changes the projection distance by moving the drawing device in the optical axis direction, and the drawing device and the arrangement changing device.
  • a control unit the optical axis passes through the center of the drawing device, the center of the eye box, and the image point (virtual image) corresponding to the center of the drawing device created by the virtual image display device.
  • a moving body display system reflecting one aspect of the present invention includes a virtual image display device, an environment monitoring unit that detects a spatial position of an object, and the like. .
  • FIG. 1A is a side cross-sectional view showing a state in which the virtual image display device of the embodiment is mounted on a vehicle body
  • FIG. 1B is a front view from the inside of the vehicle illustrating the virtual image display device. It is a figure explaining the specific optical system which comprises a virtual image display apparatus. It is a notional enlarged side sectional view explaining the example of concrete composition of a virtual image display. It is a figure for demonstrating the relationship between the position of an image formation element, and a virtual image position.
  • 5A and 5B are diagrams illustrating the positional relationship between a virtual image position and an object by the virtual image display device of the embodiment.
  • 6A and 6B are diagrams for explaining the positional relationship between a virtual image position and an object by a virtual image display device of a comparative example. It is a block diagram explaining the display system for moving bodies containing a virtual image display apparatus. It is a flowchart explaining operation
  • FIG. 1A and 1B are a conceptual side sectional view and a front view illustrating a virtual image display device 100 according to the present embodiment and a use state thereof.
  • the virtual image display device 100 is mounted in the vehicle body 2 as a head-up display device, for example, and includes a drawing unit 10 and a display screen 20.
  • the virtual image display device 100 displays image information displayed on an image forming element 11 (to be described later) in the drawing unit 10 for a driver (observer) UN through a display screen 20.
  • the drawing unit 10 of the virtual image display device 100 is installed so as to be embedded in the dashboard 4 of the vehicle body 2, and directs display light HK corresponding to an image including driving-related information and a danger signal toward the display screen 20.
  • the display screen 20 is a half mirror also called a combiner, and is a concave mirror or a plane mirror having a semi-transmission property.
  • the display screen 20 is erected on the dashboard 4 with the lower end supported, and reflects the display light HK from the drawing unit 10 toward the rear of the vehicle body 2. That is, in the illustrated case, the display screen 20 is an independent type that is installed separately from the windshield (windshield) 8.
  • the display light HK reflected by the display screen 20 which is a half mirror is guided to an eye box (not shown) corresponding to the pupil HT of the driver UN sitting in the driver's seat 6 and its peripheral position.
  • the driver UN can observe the display light HK reflected by the display screen 20, that is, the display image IM as a virtual image in front of the vehicle body 2.
  • the driver UN can observe the external light transmitted through the display screen 20 that is a half mirror, that is, a real image of a front view, a car, and the like.
  • the driver UN overlaps the external image behind the display screen 20 and displays a display image (virtual image) IM including driving-related information, a danger signal, and the like formed by reflection of the display light HK on the display screen 20. Can be observed.
  • a display image (virtual image) IM including driving-related information, a danger signal, and the like formed by reflection of the display light HK on the display screen 20.
  • the drawing unit 10 includes a main body optical system 13, a display control unit 18 that operates the main body optical system 13, and a housing 14 that houses the main body optical system 13 and the like.
  • the combination of the main body optical system 13 and the display screen (combiner) 20 constitutes a virtual image display optical system 30.
  • the coordinate axes XYZ have the origin of the center of the eye box corresponding to the position between the pupils HT of a general driver UN, but are displayed with the origin shifted for convenience.
  • the main body optical system (projection optical system) 13 includes an image forming element 11 and a virtual image forming optical system 17 that converts an image formed on the image forming element 11 into a virtual image.
  • the image forming element 11 is a drawing device (display unit) having a two-dimensional display surface 11a.
  • the image formed on the display surface 11a of the image forming element 11 is guided to the virtual image forming optical system 17 and the like.
  • the display image (virtual image) IM can be switched at a relatively high speed by using the image forming element 11 capable of two-dimensional display.
  • the image forming element 11 includes a liquid crystal display panel (or a liquid crystal display (LCD)), a display driving circuit that causes the liquid crystal display panel to perform a display operation, and an LED that emits light for illuminating the liquid crystal display panel ( light emitting diode) Other light sources and a homogenizing optical system for uniformizing the light from such light sources.
  • the apparatus can be miniaturized. Further, since the light distribution angle of the LCD is wide, the viewing angle can be widened.
  • the image forming element 11 operates at a frame rate of, for example, 60 fps or higher, preferably 240 fps, and more preferably 1000 fps. This makes it easy to make it appear as if a plurality of display images IM are simultaneously displayed at different projection distances.
  • the image forming element 11 is driven by the arrangement changing device 62 and moves along the optical axis AX at a constant speed or a periodic motion, for example.
  • the virtual image forming optical system 17 displays the display image IM as a virtual image formed behind the display screen (combiner) 20 and an observer.
  • the distance to the driver UN can be increased or decreased. In this way, the position of the projected display image IM is changed back and forth, and the display content is made to correspond to the position, so that the display image IM is changed while changing the virtual image distance or the projection distance to the display image IM.
  • the display image IM as a series of projection images can be made three-dimensional.
  • the optical axis AX is an image point (corresponding to the center of the image forming element 11 that is a drawing device, the center of the eye box, and the center of the image forming element (drawing device) 11 formed by the virtual image display device 100.
  • Virtual image The amount of movement of the image forming element 11 in the optical axis AX direction is 20 mm or less.
  • the arrangement changing device 62 reciprocates the image forming element 11 at a speed of, for example, 15 Hz or more. In this case, since the speed exceeds the perception of the observer (driver UN), the observer can recognize virtual images with different projection distances almost simultaneously.
  • the image forming element 11 is supported by the support member 62a.
  • the support member 62a is attached to the base 62b of the arrangement changing device 62 so as to be movable within a predetermined range along the optical axis AX direction.
  • the image displayed on the image forming element 11 at this time is a display screen (combiner) 20 that is a half mirror. It is displayed as a virtual image in the farthest behind.
  • the image displayed on the image forming element 11 at this time is closest to the back of the display screen (combiner) 20 that is a half mirror. Displayed as a virtual image.
  • the position (LCD position T1) of the image forming element 11 at the timing when the image forming element 11 is arranged on the most upstream side of the moving range is along the optical axis AX direction when the virtual image distance is 10 m. This is a position having a distance of 8.1 mm in a direction relatively away from the first mirror 17a described later.
  • the position (LCD position T2) of the image forming element 11 at the timing when the image forming element 11 is arranged on the most downstream side of the moving range is the first along the optical axis AX direction when the virtual image distance is 3.5 m. This is a position having a distance of 7.7 mm in a direction relatively approaching the mirror 17a. Further, an LCD position T3 intermediate between the LCD positions T1 and T2 is a case where the virtual image distance is 5 m.
  • the virtual image forming optical system 17 is an enlargement projection optical system that expands an image formed on the image forming element 11 in cooperation with the display screen 20, and forms a display image IM as a virtual image in front of the driver UN.
  • the virtual image forming optical system 17 includes at least one mirror, but in the illustrated example, includes two first and second mirrors 17a and 17b.
  • the first mirror 17a is a first reflector and is disposed on the image forming element 11 side in the preceding stage of the optical path and has optical power.
  • the second mirror 17b is disposed on the display screen (combiner) 20 side in the latter stage of the optical path and has optical power.
  • the first and second mirrors 17a and 17b can be convex surfaces, concave surfaces, or flat surfaces. In the case of curved surfaces, the first and second mirrors 17a and 17b are not limited to spherical surfaces but can be aspherical surfaces, free curved surfaces, or the like.
  • the housing 14 has an opening 14a for allowing the display light HK to pass therethrough, and a film or a thin plate-like light transmitting member 14b can be disposed in the opening 14a.
  • FIG. 5A is a conceptual plan view for explaining display by the virtual image display optical system 30 or the virtual image display device 100 of the embodiment
  • FIG. 5B is a diagram for explaining how the display corresponding to FIG. 5A is seen.
  • a display frame HW that is a display image IM is formed at or near the position of an object (in this case, a car traveling in an oncoming lane) KT that is being observed by the driver UN.
  • Such a display frame HW is a danger warning signal or other virtual image, and shows, for example, a result of identifying a car, a bicycle, a pedestrian, or the like that is close to the front.
  • the display frame HW projects the display frame HW in the vicinity of the object KT as shown in FIG. 5A, not only the driver UN at the standard position P0 but also the head as shown in FIG. 5B. Even for the driver UN whose posture has been changed to the change position P1 that has moved the position of the object KT, the object KT and the display frame HW are substantially overlapped and appear to be substantially free of deviation.
  • FIG. 6A is a conceptual plan view for explaining the display by the virtual image display optical system or the virtual image display device of the comparative example
  • FIG. 6B is a diagram for explaining the appearance of the display corresponding to FIG. 6A.
  • the display frame HW which is the display image IM
  • the display frame HW is projected substantially in front of the object KT. Therefore, as shown in FIG. 6B, for the driver UN at the standard position P0, the object KT and the display frame HW are displayed.
  • the display frame HW appears to be greatly displaced in the lateral direction in which the eyes are aligned with respect to the object KT for the driver UN who has changed his / her posture to the change position P1. This increases the possibility of misidentifying the display frame HW.
  • FIG. 7 is a block diagram illustrating the moving body display system 200.
  • the moving body display system 200 includes the virtual image display device 100 as a part thereof.
  • the virtual image display device 100 has the structure shown in FIG. 3, and a description thereof is omitted here.
  • a moving body display system 200 shown in FIG. 7 is incorporated in an automobile or the like that is a moving body.
  • the moving body display system 200 includes a driver detection unit 71, an environment monitoring unit 72, and a main control device 90 in addition to the virtual image display device 100.
  • the driver detection unit 71 is a part that detects the presence of the driver UN and the viewpoint position, and includes a driver seat camera 71a, a driver seat image processing unit 71b, and a driver seat image determination unit 71c.
  • the driver's seat camera 71a is installed in front of the driver's seat of the dashboard 4 in the vehicle body 2 (see FIG. 1B), and takes an image of the head of the driver UN and its surroundings.
  • the driver seat image processing unit 71b performs various types of image processing such as brightness correction on the image captured by the driver seat camera 71a to facilitate processing in the driver seat image determination unit 71c.
  • the driver seat image determination unit 71c detects the head and eyes of the driver UN by extracting or cutting out an object from the driver seat image that has passed through the driver seat image processing unit 71b, and accompanies the driver seat image.
  • the spatial position of the eyes of the driver UN is calculated along with the presence / absence of the head of the driver UN in the vehicle body 2 from the depth information.
  • the environment monitoring unit 72 is a part for identifying a car, a bicycle, a pedestrian, and the like that are close to the front, and includes an external camera 72a, an external image processing unit 72b, and an external image determination unit 72c.
  • the external camera 72a is installed at appropriate positions inside and outside the vehicle body 2, and captures external images of the driver UN or the front windshield 8, such as the front and sides.
  • the external image processing unit 72b performs various types of image processing such as brightness correction on the image captured by the external camera 72a to facilitate processing by the external image determination unit 72c.
  • the external image determination unit 72c detects the presence or absence of an object KT (for example, see FIG.
  • the spatial position of the object KT in front of the vehicle body 2 is calculated from the depth information attached to the external image.
  • the spatial position of the object KT includes the position in the depth direction in addition to the position in the plane corresponding to the visual field.
  • the driver's seat camera 71a and the external camera 72a are not shown, but are, for example, compound eye type three-dimensional cameras.
  • both cameras 71a and 72a are configured by arranging camera elements, which are a set of imaging lenses, CMOS (Complementary Metal Oxide Semiconductor) and other image sensors, in a matrix, and drive for the image sensors.
  • CMOS Complementary Metal Oxide Semiconductor
  • Each has a circuit.
  • the plurality of camera elements constituting each of the cameras 71a and 72a are adapted to focus at different positions in the depth direction, for example, or to detect relative parallax, and are obtained from each camera element. By analyzing the state of the image (focus state, position of the object, etc.), it is possible to determine the distance to each region or object in the image.
  • Depth direction with respect to each part in the captured screen can be obtained.
  • distance information in the depth direction can be obtained for each part (region or object) in the captured screen by using a stereo camera in which two two-dimensional cameras are separately arranged instead of the compound-eye cameras 71a and 72a.
  • distance information in the depth direction can be obtained for each part in the captured screen by performing imaging while changing the focal length at high speed.
  • the display control unit 18 operates the virtual image display optical system 30 under the control of the main controller 90, and the three-dimensional display in which the virtual image distance or the projection distance changes behind the display screen (combiner) 20 that is a half mirror.
  • the image IM is displayed. That is, the display control unit 18 displays a plurality of display images (virtual images) IM by interlocking the image forming element 11 and the arrangement changing device 62.
  • the display control unit 18 generates a display image IM to be displayed on the virtual image display optical system 30 from display information including the display shape, display distance, or position information received from the environment monitoring unit 72 via the main control device 90.
  • the display image IM is, for example, a display frame HW (FIG.
  • the display control unit 18 receives the position information of the object KT from the environment monitoring unit 72 and displays a display image (virtual image) IM according to the position in the screen of the object KT corresponding to the display screen 20. Accordingly, the position of the display image (virtual image) IM can be made to correspond to the position of the object KT regardless of the viewpoint of the driver UN. Further, the display control unit 18 receives the position information of the object KT from the environment monitoring unit 72 under the control of the main controller 90, and adjusts the projection distance according to the spatial position of the object KT.
  • the display control unit 18 causes the image forming element 11 to display an image in synchronization with the movement of the image forming element 11 by the arrangement changing device 62. Thereby, the display content of each virtual image having a different projection distance can be changed, and an image corresponding to the object KT that may exist at each position can be displayed.
  • the display control unit 18 receives a detection output regarding the presence of the driver UN and the position of the eyes from the driver detection unit 71 via the main control device 90. Thereby, the projection of the display image IM by the virtual image display optical system 30 can be automatically started and stopped. Further, it is possible to perform projection with emphasis such as brightening only the display image IM or blinking according to the spatial position of the eyes of the driver UN.
  • the main controller 90 has a role of coordinating the operations of the virtual image display device 100, the environment monitoring unit 72, and the like, and the virtual image display optics so as to correspond to the spatial position of the object KT detected by the environment monitoring unit 72.
  • the spatial arrangement of the display frame HW projected by the system 30 is adjusted.
  • the operation of the display control unit 18 and the arrangement changing device 62 is started by receiving, for example, a detection output related to the eye position of the driver UN in the driver detection unit 71.
  • the virtual image display device 100 is initialized (step S11). Specifically, the arrangement changing device 62 is operated under the control of the main control device 90 to move the position of the image forming element 11 to the initial position. As already described, the image forming element 11 can move within a predetermined range along the optical axis AX direction, and for example, the most upstream side of the range from the most downstream side to the most upstream side of the moving range. The position is the initial position. In addition, the timing for displaying an image on the image forming element 11 in a certain period with the initial position as a reference is synchronized with the operation timing of the arrangement changing device 62.
  • the object KT is searched (step S12). Specifically, the environment monitoring unit 72 is operated under the control of the main control device 90 to detect the presence or absence of the object KT.
  • step S13 the object KT in the display area (or screen) of the display screen 20 is detected (step S13). Specifically, under the control of the main controller 90, the environment monitoring unit 72 is operated to detect the spatial position (XYZ coordinate position) of the object KT.
  • the timing for displaying an image on the image forming element 11 and the display position of the virtual image are determined from the spatial position of the object KT, particularly the distance from the pupil HT of the driver UN to the object KT (step S14). .
  • the timing for displaying an image and the display position of the virtual image are determined from the position data of object KT calculated by environment monitoring unit 72.
  • the timing is related to the Z direction, and the display position is related to the XY direction. That is, the timing at which an image such as the display frame HW is displayed on the image forming element 11 is determined depending on the distance at which the object KT is present.
  • an image is displayed on the image forming element 11 (step S15).
  • the display control unit 18 is operated under the control of the main controller 90 to display a predetermined image on the image forming element 11 at a predetermined timing.
  • the display control unit 18 causes the image forming element 11 to display an image in synchronization with the movement of the image forming element 11 by the arrangement changing device 62 under the control of the main control device 90.
  • a display frame HW can be displayed as a display image (virtual image) IM corresponding to a plurality of objects KT within the screen corresponding to the display screen 20.
  • Step S15 when the operation of the mobile object display system is continued (Yes in Step S16), the process returns to Step S12.
  • the driver (observer) UN obtains three display images (virtual images) IM by linking the image forming element 11 and the arrangement changing device 62 which are drawing devices.
  • a plurality of display images (virtual images) IM having different projection distances can be displayed so that they can be recognized dimensionally.
  • the display image (virtual image) IM can be superimposed on the object KT including the depth direction.
  • the target object KT exists in the range from a distant place to the vicinity, the deviation between the target object KT and the display image (virtual image) IM due to the position of the eyes of the observer (driver UN) is reduced, so that it is safer.
  • a simple driving support system can be realized. Therefore, even if the driver's viewpoint is deviated, the positional relationship between the display image (virtual image) IM such as a danger signal and the real object (the object KT) is not deviated, and thus misidentification of the driver UN can be prevented.
  • each surface Si is specified by the surface vertex coordinates (x, y, z) and the rotation angle (ADE).
  • the surface vertex coordinates of each surface Si are the local orthogonal coordinate system (X, y, z) in the global orthogonal coordinate system (x, y, z) with the surface vertex as the origin of the local orthogonal coordinate system (X, Y, Z). It is represented by the coordinates (x, y, z) of the origin of Y, Z) (unit: mm).
  • the inclination of each surface Si is represented by an ADE around the X axis around the surface vertex or a rotation angle ( ⁇ rotation).
  • each surface Si is also expressed by a BDE around the Y axis about the surface vertex or a rotation angle ( ⁇ rotation).
  • the unit of the rotation angle is °
  • the clockwise direction when viewed from the positive direction of the X axis is the positive direction of the rotational angle of ⁇ rotation
  • the clockwise direction when viewed from the positive direction of the Y axis is ⁇ rotation.
  • the global orthogonal coordinate system (x, y, z) is an absolute coordinate system that coincides with the local orthogonal coordinate system (X, Y, Z) of the pupil HT or the pupil plane (third surface S3). .
  • the arrangement data of each plane Si is expressed in a global coordinate system with the pupil plane center as the origin.
  • the direction from the display screen 20 toward the pupil HT is the + Z direction or the + z direction
  • the upward direction with respect to the pupil HT is the + Y direction or the + y direction.
  • the left direction when viewed from the direction from 20 toward the pupil HT is the + X direction or the + x direction.
  • the fifth surface S5 and the sixth surface S6 corresponding to the virtual image forming optical system 17 are free-form surfaces, and the free-form surface shape has the vertex of the optical surface as the origin and the Z axis in the optical axis direction.
  • the sag amount Z of the surface parallel to the Z axis is expressed by the following “Equation 1”.
  • k conic constant or conic constant
  • C j X m Y coefficient
  • n R Y radius of curvature
  • Example 1 The basic specifications of the head-up display device of Example 1 are shown in Table 1 below. [Table 1]
  • Table 3 shows surface data of the mirror portion of Example 1. “*” In the table represents a product, and “ ⁇ ” represents a power. [Table 3]
  • the virtual image display device as a specific embodiment has been described above, but the virtual image display device according to the present invention is not limited to the above.
  • the display screen 20 can be disposed on the top of the windshield 8 or at the sun visor position by vertically inverting the arrangement of the virtual image display device 100.
  • the display screen 20 is disposed obliquely downward and forward of the drawing unit 10.
  • the display screen 20 is a flat surface, but it may be a curved surface, a curved surface further inclined, or a free curved surface having no symmetry.
  • the outline of the display screen 20 is not limited to a rectangle, but may be various shapes.
  • the main body optical system 13 shown in FIG. 3 and the like is merely an example, and the optical configuration of the main body optical system 13 can be changed as appropriate.
  • one or more mirrors having no optical power may be disposed in the optical path of the virtual image forming optical system 17. In this case, it may be advantageous for downsizing the drawing unit 10 and the like by folding.
  • the display position of the display image (virtual image) IM can be set discretely, or can be set continuously or intermittently.
  • the LCD is used as the drawing device.
  • other types of display elements such as organic EL may be used.
  • the light distribution angle of the organic EL is wide, the viewing angle can be widened, and the virtual image display device 100 can be reduced in weight.
  • the virtual image forming optical system 17 is provided with two mirrors. However, one or three or more mirrors may be provided. Further, the mirror may be omitted. Further, although the optical surface of the mirror is a free-form curved surface having symmetry, it is not limited to this and may be a free-form surface having no symmetry.
  • the display screen 20 may be attached inside the rectangular reflection area provided in front of the windshield 8 or the windshield driver seat that forms the front window without providing the combiner.
  • the display screen 20 can also be embedded in the windshield 8.
  • the virtual image display device 100 described above is not limited to a projection device mounted on an automobile or other moving body, but can be incorporated in a digital signage or the like, but can also be applied to other uses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

Provided is a virtual image display device which, despite having a simple configuration, is capable of displaying additional information such as a danger signal superimposed on an object such that the additional information can be appropriately recognized. This virtual image display device 100 is provided with: an image forming element 11 which is a rendering device; a main body optical system 13 which is an expansion/projection optical system which expands an image of the image forming element 11; and a display screen 20. The virtual image display device is further provided with: an arrangement changing device 62 which changes the projection distance by moving the image forming element 11 in the optical axis AX direction; and a display control unit 18 which causes a plurality of display images (virtual images) IM having different projection distances to be displayed, by causing the image forming element 11 and the arrangement changing device 62 to operate in conjunction with each other.

Description

虚像表示装置及び移動体用表示システムVirtual image display device and moving body display system
 本発明は、視線の先に虚像を表示する虚像表示装置及び当該虚像表示装置を搭載する移動体用表示システムに関するものである。 The present invention relates to a virtual image display device that displays a virtual image at the end of a line of sight and a display system for a moving body equipped with the virtual image display device.
 従来のヘッドアップディスプレイ(HUD(Head-Up Display))装置は、虚像を運転者からある一定の距離だけ離れた位置に生成するのが一般的であり、HUDによる表示内容は、車速、カーナビゲーション情報等に限られていた。そもそもHUDを車に搭載する目的は、運転者の視線移動を最小限に抑えることで、より安全な運転を支援するものであるが、安全運転支援という意味においては、車速等の表示内容だけでは不十分であり、例えば前方の車、歩行者、障害物等をカメラやセンサー等で検知し、HUDを通して運転者に事前に危険を察知させて事故を未然に防ぐようなシステムの方がより好ましい。こういったシステムを実現するには、例えば車、人、障害物等のシースルー像(対象物)に対して危険信号その他の追加情報を重畳させて表示させることが考えられる。 Conventional head-up display (HUD (Head-Up Display)) devices generally generate a virtual image at a certain distance from the driver, and the display contents by HUD are vehicle speed, car navigation. It was limited to information. In the first place, the purpose of installing the HUD in the car is to support the safer driving by minimizing the movement of the driver's line of sight. It is more preferable, for example, to detect a car, a pedestrian, an obstacle, etc. in front of the vehicle with a camera or a sensor, etc., and to let the driver detect the danger in advance through HUD to prevent an accident. . In order to realize such a system, for example, it is conceivable to display a danger signal or other additional information superimposed on a see-through image (target object) such as a car, a person, or an obstacle.
 上記のような危険信号を重畳させて表示するシステムにおいて、運転者から虚像までの距離が一定だと、運転者の目の位置がずれた場合に実物(対象物)の位置と危険信号(虚像)の位置とがずれてしまい、運転者が危険信号を誤認(つまり、対象物の位置を誤認)してしまうという課題がある。このような問題を解決する手法としては、実物(対象物)に対して虚像を奥行き方向も含めて重畳させることが考えられる。 In the system that displays the danger signal as described above, if the distance from the driver to the virtual image is constant, the position of the real object (object) and the danger signal (virtual image) when the driver's eye position shifts ) Is misaligned, and the driver misidentifies the danger signal (that is, misidentifies the position of the object). As a technique for solving such a problem, it is conceivable to superimpose a virtual image on the real object (object) including the depth direction.
 例えば特許文献1では、MEMS(Micro Electro Mechanical Systems)ミラーのような走査型の像形成手段と、スクリーンと、投影手段と、スクリーンの位置を変える可動手段とにより、虚像の位置を変化させる手法が開示されている。しかしながら、特許文献1の主たる目的は、車の速度に合わせて虚像位置を近づけたり、遠ざけたりして運転者の視線移動を少なくすることであり、危険信号と対象物とを重畳させて表示することを意図したものではない。また、特許文献1に記載の手法は、上記のような重畳表示が前提でないことから、危険信号と対象物との位置ずれに関するものでもない。 For example, in Patent Document 1, there is a method of changing the position of a virtual image by a scanning image forming means such as a MEMS (Micro Electro Mechanical Systems) mirror, a screen, a projection means, and a movable means for changing the position of the screen. It is disclosed. However, the main purpose of Patent Document 1 is to reduce the movement of the driver's line of sight by moving the virtual image position closer to or away from the vehicle according to the speed of the vehicle. The danger signal and the object are superimposed and displayed. It is not intended. Moreover, since the technique described in Patent Document 1 is not based on the above superimposed display, it is not related to the positional deviation between the danger signal and the target object.
特開2009-150947号公報JP 2009-150947 A
 本発明は、上記背景技術に鑑みてなされたものであり、簡素な構成でありながら、上記のような追加情報を適切な認識が可能な程度に対象物に重畳表示させることができる虚像表示装置を提供することを目的とする。 The present invention has been made in view of the above-described background art, and has a simple configuration and can display a virtual image display device that can superimpose and display additional information as described above on an object to the extent that appropriate recognition is possible. The purpose is to provide.
 また、本発明は、上記虚像表示装置を搭載した移動体用表示システムを提供することを目的とする。 Another object of the present invention is to provide a moving body display system equipped with the virtual image display device.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した虚像表示装置は、描画デバイスと、描画デバイスの像を拡大する拡大投影光学系と、表示スクリーンとを備える虚像表示装置であって、描画デバイスを光軸方向に移動させることで投影距離を変化させる配置変更装置と、描画デバイス及び配置変更装置を連動させることにより、投影距離の異なる複数の虚像を表示させる表示制御部と、を備える。ここで、光軸とは、描画デバイスの中心と、アイボックスの中心と、虚像表示装置によって作られる描画デバイスの中心に対応する像点(虚像)とを通るものである。 In order to achieve at least one of the above-described objects, a virtual image display device reflecting one aspect of the present invention includes a drawing device, an enlarged projection optical system that enlarges an image of the drawing device, and a display screen. A display device that displays a plurality of virtual images with different projection distances by linking the arrangement changing device that changes the projection distance by moving the drawing device in the optical axis direction, and the drawing device and the arrangement changing device. A control unit. Here, the optical axis passes through the center of the drawing device, the center of the eye box, and the image point (virtual image) corresponding to the center of the drawing device created by the virtual image display device.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した移動体用表示システムは、上述の虚像表示装置と、対象物の空間的な位置を検出する環境監視部と、を備える。 In order to realize at least one of the above-described objects, a moving body display system reflecting one aspect of the present invention includes a virtual image display device, an environment monitoring unit that detects a spatial position of an object, and the like. .
図1Aは、実施形態の虚像表示装置を車体に搭載した状態を示す側方断面図であり、図1Bは、虚像表示装置を説明する車内側からの正面図である。FIG. 1A is a side cross-sectional view showing a state in which the virtual image display device of the embodiment is mounted on a vehicle body, and FIG. 1B is a front view from the inside of the vehicle illustrating the virtual image display device. 虚像表示装置を構成する具体的な光学系を説明する図である。It is a figure explaining the specific optical system which comprises a virtual image display apparatus. 虚像表示装置の具体的な構成例を説明する概念的な拡大側方断面図である。It is a notional enlarged side sectional view explaining the example of concrete composition of a virtual image display. 像形成素子の位置と虚像位置との関係等を説明するための図である。It is a figure for demonstrating the relationship between the position of an image formation element, and a virtual image position. 図5A及び5Bは、実施形態の虚像表示装置による虚像位置と対象物との配置関係を説明する図である。5A and 5B are diagrams illustrating the positional relationship between a virtual image position and an object by the virtual image display device of the embodiment. 図6A及び6Bは、比較例の虚像表示装置による虚像位置と対象物との配置関係を説明する図である。6A and 6B are diagrams for explaining the positional relationship between a virtual image position and an object by a virtual image display device of a comparative example. 虚像表示装置を含む移動体用表示システムを説明するブロック図である。It is a block diagram explaining the display system for moving bodies containing a virtual image display apparatus. 移動体用表示システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the display system for moving bodies.
 以下、図面を参照しつつ、本発明に係る虚像表示装置移動体用表示システムの一実施形態について説明する。 Hereinafter, an embodiment of a display system for a moving body of a virtual image display device according to the present invention will be described with reference to the drawings.
 図1A及び1Bは、本実施形態の虚像表示装置100及びその使用状態を説明する概念的な側方断面図及び正面図である。この虚像表示装置100は、例えばヘッドアップディスプレイ装置として車体2内に搭載されるものであり、描画ユニット10と表示スクリーン20とを備える。虚像表示装置100は、描画ユニット10中の後述する像形成素子11に表示されている画像情報を、表示スクリーン20を介して運転者(観察者)UN向けに虚像表示するものである。 1A and 1B are a conceptual side sectional view and a front view illustrating a virtual image display device 100 according to the present embodiment and a use state thereof. The virtual image display device 100 is mounted in the vehicle body 2 as a head-up display device, for example, and includes a drawing unit 10 and a display screen 20. The virtual image display device 100 displays image information displayed on an image forming element 11 (to be described later) in the drawing unit 10 for a driver (observer) UN through a display screen 20.
 虚像表示装置100のうち描画ユニット10は、車体2のダッシュボード4内に埋め込むように設置されており、運転関連情報や危険信号等を含む画像に対応する表示光HKを表示スクリーン20に向けて射出する。表示スクリーン20は、コンバイナーとも呼ばれるハーフミラーであり、半透過性を有する凹面鏡又は平面鏡である。表示スクリーン20は、下端の支持によってダッシュボード4上に立設され、描画ユニット10からの表示光HKを車体2の後方に向けて反射する。つまり、図示の場合、表示スクリーン20は、フロントガラス(ウインドシールド)8とは別体で設置される独立型のものとなっている。ハーフミラーである表示スクリーン20で反射された表示光HKは、運転席6に座った運転者UNの瞳HT及びその周辺位置に対応するアイボックス(不図示)に導かれる。図1A及び図2に示すように、運転者UNは、表示スクリーン20で反射された表示光HK、つまり車体2の前方にある虚像としての表示像IMを観察することができる。一方、運転者UNは、ハーフミラーである表示スクリーン20を透過した外界光、つまり前方景色、自動車等の実像を観察することができる。結果的に、運転者UNは、表示スクリーン20の背後の外界像に重ねて、表示スクリーン20での表示光HKの反射によって形成される運転関連情報や危険信号等を含む表示像(虚像)IMを観察することができる。 The drawing unit 10 of the virtual image display device 100 is installed so as to be embedded in the dashboard 4 of the vehicle body 2, and directs display light HK corresponding to an image including driving-related information and a danger signal toward the display screen 20. Eject. The display screen 20 is a half mirror also called a combiner, and is a concave mirror or a plane mirror having a semi-transmission property. The display screen 20 is erected on the dashboard 4 with the lower end supported, and reflects the display light HK from the drawing unit 10 toward the rear of the vehicle body 2. That is, in the illustrated case, the display screen 20 is an independent type that is installed separately from the windshield (windshield) 8. The display light HK reflected by the display screen 20 which is a half mirror is guided to an eye box (not shown) corresponding to the pupil HT of the driver UN sitting in the driver's seat 6 and its peripheral position. As shown in FIGS. 1A and 2, the driver UN can observe the display light HK reflected by the display screen 20, that is, the display image IM as a virtual image in front of the vehicle body 2. On the other hand, the driver UN can observe the external light transmitted through the display screen 20 that is a half mirror, that is, a real image of a front view, a car, and the like. As a result, the driver UN overlaps the external image behind the display screen 20 and displays a display image (virtual image) IM including driving-related information, a danger signal, and the like formed by reflection of the display light HK on the display screen 20. Can be observed.
 図3に示すように、描画ユニット10は、本体光学系13と、本体光学系13を動作させる表示制御部18と、本体光学系13等を収納するハウジング14とを備える。これらのうち本体光学系13と表示スクリーン(コンバイナー)20とを組み合わせたものは、虚像表示光学系30を構成する。なお、図3等において座標軸XYZは、一般的な運転者UNの瞳HT間の位置に対応するアイボックスの中心を原点とするが、便宜上原点をシフトさせた状態で表示されている。 As shown in FIG. 3, the drawing unit 10 includes a main body optical system 13, a display control unit 18 that operates the main body optical system 13, and a housing 14 that houses the main body optical system 13 and the like. Among these, the combination of the main body optical system 13 and the display screen (combiner) 20 constitutes a virtual image display optical system 30. In FIG. 3 and the like, the coordinate axes XYZ have the origin of the center of the eye box corresponding to the position between the pupils HT of a general driver UN, but are displayed with the origin shifted for convenience.
 本体光学系(投影光学系)13は、像形成素子11と、像形成素子11に形成された画像を虚像に変換する虚像形成光学系17とを備える。 The main body optical system (projection optical system) 13 includes an image forming element 11 and a virtual image forming optical system 17 that converts an image formed on the image forming element 11 into a virtual image.
 像形成素子11は、2次元的な表示面11aを有する描画デバイス(表示部)である。像形成素子11の表示面11aに形成された像は、虚像形成光学系17等へ導かれる。この際、2次元表示が可能な像形成素子11を用いることで、表示像(虚像)IMの切換えを比較的高速とできる。像形成素子11は、液晶表示パネル(又は液晶ディスプレイ(LCD(liquid Crystal Display)))、液晶表示パネルに表示動作を行わせる表示駆動回路、液晶表示パネルを照明するための光を射出するLED(light emitting diode)その他の光源、かかる光源からの光を均一化する均一化光学系等を備える。描画デバイスとして液晶ディスプレイを用いることにより、装置を小型化することができる。また、LCDの配光角は広いため、視野角を広くすることができる。なお、像形成素子11は、例えば60fps以上、望ましくは240fps、さらに望ましくは1000fpsのフレームレートで動作する。これにより、異なる投影距離に複数の表示像IMが同時に表示されているように見せることが容易になる。 The image forming element 11 is a drawing device (display unit) having a two-dimensional display surface 11a. The image formed on the display surface 11a of the image forming element 11 is guided to the virtual image forming optical system 17 and the like. At this time, the display image (virtual image) IM can be switched at a relatively high speed by using the image forming element 11 capable of two-dimensional display. The image forming element 11 includes a liquid crystal display panel (or a liquid crystal display (LCD)), a display driving circuit that causes the liquid crystal display panel to perform a display operation, and an LED that emits light for illuminating the liquid crystal display panel ( light emitting diode) Other light sources and a homogenizing optical system for uniformizing the light from such light sources. By using a liquid crystal display as a drawing device, the apparatus can be miniaturized. Further, since the light distribution angle of the LCD is wide, the viewing angle can be widened. The image forming element 11 operates at a frame rate of, for example, 60 fps or higher, preferably 240 fps, and more preferably 1000 fps. This makes it easy to make it appear as if a plurality of display images IM are simultaneously displayed at different projection distances.
 像形成素子11は、配置変更装置62に駆動されて例えば一定速度又は周期的な運動で光軸AXに沿って移動する。配置変更装置62によって像形成素子11を光軸AXに沿って移動させることで、虚像形成光学系17によって表示スクリーン(コンバイナー)20の背後に形成される虚像としての表示像IMと観察者である運転者UNとの距離を長く、又は短くすることができる。このように、投影される表示像IMの位置を前後に変化させるとともに、表示内容をその位置に応じたものとすることで、表示像IMまでの虚像距離又は投影距離を変化させつつ表示像IMを変化させることになり、一連の投影像としての表示像IMを3次元的なものとすることができる。ここで、光軸AXとは、描画デバイスである像形成素子11の中心と、アイボックスの中心と、虚像表示装置100によって作られる像形成素子(描画デバイス)11の中心に対応する像点(虚像)とを通るものである。像形成素子11の光軸AX方向の移動量は、20mm以下となっている。これにより、像形成素子11の移動を効率良く行うことができ、像形成素子11の応答性を向上させることができるとともに、虚像表示装置100の容積を少なくすることができる。また、配置変更装置62は、例えば15Hz以上の速度で像形成素子11を往復移動させる。この場合、観察者(運転者UN)の知覚を超える速さのため、観察者は投影距離の異なる虚像を略同時に認識することができる。 The image forming element 11 is driven by the arrangement changing device 62 and moves along the optical axis AX at a constant speed or a periodic motion, for example. By moving the image forming element 11 along the optical axis AX by the arrangement changing device 62, the virtual image forming optical system 17 displays the display image IM as a virtual image formed behind the display screen (combiner) 20 and an observer. The distance to the driver UN can be increased or decreased. In this way, the position of the projected display image IM is changed back and forth, and the display content is made to correspond to the position, so that the display image IM is changed while changing the virtual image distance or the projection distance to the display image IM. The display image IM as a series of projection images can be made three-dimensional. Here, the optical axis AX is an image point (corresponding to the center of the image forming element 11 that is a drawing device, the center of the eye box, and the center of the image forming element (drawing device) 11 formed by the virtual image display device 100. Virtual image). The amount of movement of the image forming element 11 in the optical axis AX direction is 20 mm or less. Thereby, the image forming element 11 can be moved efficiently, the responsiveness of the image forming element 11 can be improved, and the volume of the virtual image display device 100 can be reduced. Further, the arrangement changing device 62 reciprocates the image forming element 11 at a speed of, for example, 15 Hz or more. In this case, since the speed exceeds the perception of the observer (driver UN), the observer can recognize virtual images with different projection distances almost simultaneously.
 像形成素子11は、支持部材62aに支持されている。支持部材62aは、配置変更装置62の台座62bに光軸AX方向に沿った所定の範囲内で移動可能に取り付けられている。図4に示すように、像形成素子11が移動範囲の最も上流側に配置されたタイミングでは、この時点で像形成素子11に表示されている画像が、ハーフミラーである表示スクリーン(コンバイナー)20の背後の最も遠くに虚像として表示される。また、像形成素子11が移動範囲の最も下流側に配置されたタイミングでは、この時点で像形成素子11に表示されている画像が、ハーフミラーである表示スクリーン(コンバイナー)20の背後の最も近くに虚像として表示される。図4の例では、像形成素子11が移動範囲の最も上流側に配置されたタイミングにおける像形成素子11の位置(LCD位置T1)は、虚像距離が10mの場合、光軸AX方向に沿って後述する第1ミラー17aから相対的に遠ざかる方向に8.1mmの距離を有する位置である。また、像形成素子11が移動範囲の最も下流側に配置されたタイミングにおける像形成素子11の位置(LCD位置T2)は、虚像距離が3.5mの場合、光軸AX方向に沿って第1ミラー17aに相対的に近づく方向に7.7mmの距離を有する位置である。また、LCD位置T1,T2の中間のLCD位置T3は、虚像距離が5mの場合となっている。 The image forming element 11 is supported by the support member 62a. The support member 62a is attached to the base 62b of the arrangement changing device 62 so as to be movable within a predetermined range along the optical axis AX direction. As shown in FIG. 4, at the timing when the image forming element 11 is arranged on the most upstream side of the moving range, the image displayed on the image forming element 11 at this time is a display screen (combiner) 20 that is a half mirror. It is displayed as a virtual image in the farthest behind. Further, at the timing when the image forming element 11 is arranged on the most downstream side of the moving range, the image displayed on the image forming element 11 at this time is closest to the back of the display screen (combiner) 20 that is a half mirror. Displayed as a virtual image. In the example of FIG. 4, the position (LCD position T1) of the image forming element 11 at the timing when the image forming element 11 is arranged on the most upstream side of the moving range is along the optical axis AX direction when the virtual image distance is 10 m. This is a position having a distance of 8.1 mm in a direction relatively away from the first mirror 17a described later. The position (LCD position T2) of the image forming element 11 at the timing when the image forming element 11 is arranged on the most downstream side of the moving range is the first along the optical axis AX direction when the virtual image distance is 3.5 m. This is a position having a distance of 7.7 mm in a direction relatively approaching the mirror 17a. Further, an LCD position T3 intermediate between the LCD positions T1 and T2 is a case where the virtual image distance is 5 m.
 虚像形成光学系17は、像形成素子11に形成された画像を表示スクリーン20と協働して拡大する拡大投影光学系であり、運転者UNの前方に虚像としての表示像IMを形成する。虚像形成光学系17は、少なくとも1枚のミラーで構成されるが、図示の例では2枚の第1及び第2ミラー17a,17bを含む。ここで、第1ミラー17aは、第1の反射体であって、光路前段にある像形成素子11側に配置されており、光学的なパワーを有する。また、第2ミラー17bは、光路後段にある表示スクリーン(コンバイナー)20側に配置されており、光学的なパワーを有する。第1及び第2ミラー17a,17bは、凸面、凹面、又は平面とでき、曲面の場合、球面に限らず、非球面、自由曲面等とすることができる。 The virtual image forming optical system 17 is an enlargement projection optical system that expands an image formed on the image forming element 11 in cooperation with the display screen 20, and forms a display image IM as a virtual image in front of the driver UN. The virtual image forming optical system 17 includes at least one mirror, but in the illustrated example, includes two first and second mirrors 17a and 17b. Here, the first mirror 17a is a first reflector and is disposed on the image forming element 11 side in the preceding stage of the optical path and has optical power. The second mirror 17b is disposed on the display screen (combiner) 20 side in the latter stage of the optical path and has optical power. The first and second mirrors 17a and 17b can be convex surfaces, concave surfaces, or flat surfaces. In the case of curved surfaces, the first and second mirrors 17a and 17b are not limited to spherical surfaces but can be aspherical surfaces, free curved surfaces, or the like.
 ハウジング14は、表示光HKを通過させる開口14aを有し、この開口14aには、フィルム又は薄板状の光透過部材14bを配置することができる。 The housing 14 has an opening 14a for allowing the display light HK to pass therethrough, and a film or a thin plate-like light transmitting member 14b can be disposed in the opening 14a.
 図5Aは、実施形態の虚像表示光学系30又は虚像表示装置100による表示を説明する概念的な平面図であり、図5Bは、図5Aに対応する表示の見え方を説明する図である。図5Aに示すように、運転者UNが観察している対象物(この場合、対向車線を走行する自動車)KTの位置又はその近傍に表示像IMである表示枠HWを形成する場合について説明する。このような表示枠HWは、危険警告信号その他の虚像であり、例えば前方に近接する自動車、自転車、歩行者等を識別した結果を示す。表示枠HWは、この場合、図5Aに示すように対象物KTの近傍に表示枠HWを投影しているので、図5Bに示すように、標準位置P0に居る運転者UNだけでなく、頭の位置を動かした変動位置P1に姿勢を変化させた運転者UNにも、対象物KTと表示枠HWとが略重なって略ずれなく見える。 FIG. 5A is a conceptual plan view for explaining display by the virtual image display optical system 30 or the virtual image display device 100 of the embodiment, and FIG. 5B is a diagram for explaining how the display corresponding to FIG. 5A is seen. As shown in FIG. 5A, a case will be described in which a display frame HW that is a display image IM is formed at or near the position of an object (in this case, a car traveling in an oncoming lane) KT that is being observed by the driver UN. . Such a display frame HW is a danger warning signal or other virtual image, and shows, for example, a result of identifying a car, a bicycle, a pedestrian, or the like that is close to the front. In this case, since the display frame HW projects the display frame HW in the vicinity of the object KT as shown in FIG. 5A, not only the driver UN at the standard position P0 but also the head as shown in FIG. 5B. Even for the driver UN whose posture has been changed to the change position P1 that has moved the position of the object KT, the object KT and the display frame HW are substantially overlapped and appear to be substantially free of deviation.
 図6Aは、比較例の虚像表示光学系又は虚像表示装置による表示を説明する概念的な平面図であり、図6Bは、図6Aに対応する表示の見え方を説明する図である。図6Aに示すように、運転者UNが観察している対象物KTに関係なく、固定位置に表示像IMである表示枠HWを形成する場合について説明する。この場合、図6Aに示すように対象物KTのかなり手前に表示枠HWを投影しているので、図6Bに示すように、標準位置P0に居る運転者UNにとって、対象物KTと表示枠HWとが略重なって略ずれなく見えても、変動位置P1に姿勢を変化させた運転者UNにとって、表示枠HWが対象物KTに対して目の並ぶ横方向に大きく位置ずれして見えてしまい、表示枠HWを誤認する可能性が高まる。 FIG. 6A is a conceptual plan view for explaining the display by the virtual image display optical system or the virtual image display device of the comparative example, and FIG. 6B is a diagram for explaining the appearance of the display corresponding to FIG. 6A. As shown in FIG. 6A, the case where the display frame HW, which is the display image IM, is formed at a fixed position regardless of the object KT that the driver UN is observing will be described. In this case, as shown in FIG. 6A, the display frame HW is projected substantially in front of the object KT. Therefore, as shown in FIG. 6B, for the driver UN at the standard position P0, the object KT and the display frame HW are displayed. The display frame HW appears to be greatly displaced in the lateral direction in which the eyes are aligned with respect to the object KT for the driver UN who has changed his / her posture to the change position P1. This increases the possibility of misidentifying the display frame HW.
 図7は、移動体用表示システム200を説明するブロック図であり、移動体用表示システム200は、その一部として虚像表示装置100を含む。この虚像表示装置100は、図3に示す構造を有するものであり、ここでは説明を省略する。図7に示す移動体用表示システム200は、移動体である自動車等に組み込まれるものである。 FIG. 7 is a block diagram illustrating the moving body display system 200. The moving body display system 200 includes the virtual image display device 100 as a part thereof. The virtual image display device 100 has the structure shown in FIG. 3, and a description thereof is omitted here. A moving body display system 200 shown in FIG. 7 is incorporated in an automobile or the like that is a moving body.
 移動体用表示システム200は、虚像表示装置100のほかに、運転者検出部71と、環境監視部72と、主制御装置90とを備える。 The moving body display system 200 includes a driver detection unit 71, an environment monitoring unit 72, and a main control device 90 in addition to the virtual image display device 100.
 運転者検出部71は、運転者UNの存在や視点位置を検出する部分であり、運転席用カメラ71aと、運転席用画像処理部71bと、運転席画像判断部71cとを備える。運転席用カメラ71aは、車体2内のダッシュボード4の運転席正面に設置されており(図1B参照)、運転者UNの頭部及びその周辺の画像を撮影する。運転席用画像処理部71bは、運転席用カメラ71aで撮影した画像に対して明るさ補正等の各種画像処理を行って運転席画像判断部71cでの処理を容易にする。運転席画像判断部71cは、運転席用画像処理部71bを経た運転席画像から対象物の抽出又は切り出しを行うことによって運転者UNの頭部や目を検出するとともに、運転席画像に付随する奥行情報から車体2内における運転者UNの頭部の存否とともに運転者UNの目の空間的な位置を算出する。 The driver detection unit 71 is a part that detects the presence of the driver UN and the viewpoint position, and includes a driver seat camera 71a, a driver seat image processing unit 71b, and a driver seat image determination unit 71c. The driver's seat camera 71a is installed in front of the driver's seat of the dashboard 4 in the vehicle body 2 (see FIG. 1B), and takes an image of the head of the driver UN and its surroundings. The driver seat image processing unit 71b performs various types of image processing such as brightness correction on the image captured by the driver seat camera 71a to facilitate processing in the driver seat image determination unit 71c. The driver seat image determination unit 71c detects the head and eyes of the driver UN by extracting or cutting out an object from the driver seat image that has passed through the driver seat image processing unit 71b, and accompanies the driver seat image. The spatial position of the eyes of the driver UN is calculated along with the presence / absence of the head of the driver UN in the vehicle body 2 from the depth information.
 環境監視部72は、前方に近接する自動車、自転車、歩行者等を識別する部分であり、外部用カメラ72aと、外部用画像処理部72bと、外部画像判断部72cとを備える。外部用カメラ72aは、車体2内外の適所に設置されており、運転者UN又はフロントガラス8の前方、側方等の外部画像を撮影する。外部用画像処理部72bは、外部用カメラ72aで撮影した画像に対して明るさ補正等の各種画像処理を行って外部画像判断部72cでの処理を容易にする。外部画像判断部72cは、外部用画像処理部72bを経た外部画像から対象物の抽出又は切り出しを行うことによって自動車、自転車、歩行者等の対象物KT(例えば図5A参照)の存否を検出するとともに、外部画像に付随する奥行情報から車体2前方における対象物KTの空間的な位置を算出する。ここで、対象物KTの空間的な位置とは、視野に対応する平面内の位置の他に、奥行き方向の位置を含めるものである。 The environment monitoring unit 72 is a part for identifying a car, a bicycle, a pedestrian, and the like that are close to the front, and includes an external camera 72a, an external image processing unit 72b, and an external image determination unit 72c. The external camera 72a is installed at appropriate positions inside and outside the vehicle body 2, and captures external images of the driver UN or the front windshield 8, such as the front and sides. The external image processing unit 72b performs various types of image processing such as brightness correction on the image captured by the external camera 72a to facilitate processing by the external image determination unit 72c. The external image determination unit 72c detects the presence or absence of an object KT (for example, see FIG. 5A) such as an automobile, a bicycle, or a pedestrian by extracting or cutting out the object from the external image that has passed through the external image processing unit 72b. At the same time, the spatial position of the object KT in front of the vehicle body 2 is calculated from the depth information attached to the external image. Here, the spatial position of the object KT includes the position in the depth direction in addition to the position in the plane corresponding to the visual field.
 なお、運転席用カメラ71aや外部用カメラ72aは、図示を省略しているが、例えば複眼型の3次元カメラである。つまり、両カメラ71a,72aは、結像用のレンズと、CMOS(Complementary Metal Oxide Semiconductor)その他の撮像素子とを一組とするカメラ素子をマトリックス状に配列したものであり、撮像素子用の駆動回路をそれぞれ有する。各カメラ71a,72aを構成する複数のカメラ素子は、例えば奥行方向の異なる位置にピントを合わせるようになっており、或いは相対的な視差を検出できるようになっており、各カメラ素子から得た画像の状態(フォーカス状態、対象物の位置等)を解析することで、画像内の各領域又は対象物までの距離を判定できる。 The driver's seat camera 71a and the external camera 72a are not shown, but are, for example, compound eye type three-dimensional cameras. In other words, both cameras 71a and 72a are configured by arranging camera elements, which are a set of imaging lenses, CMOS (Complementary Metal Oxide Semiconductor) and other image sensors, in a matrix, and drive for the image sensors. Each has a circuit. The plurality of camera elements constituting each of the cameras 71a and 72a are adapted to focus at different positions in the depth direction, for example, or to detect relative parallax, and are obtained from each camera element. By analyzing the state of the image (focus state, position of the object, etc.), it is possible to determine the distance to each region or object in the image.
 上記のような複眼型のカメラ71a,72aに代えて、2次元カメラと赤外距離センサーとを組み合わせたもの、又はレーザーセンサーを用いても、撮影した画面(死角画像)内の各部に関して奥行方向の距離情報を得ることができる。また、複眼型のカメラ71a,72aに代えて、2つの2次元カメラを分離配置したステレオカメラによって、撮影した画面内の各部(領域又は対象物)に関して奥行方向の距離情報を得ることができる。その他、単一の2次元カメラにおいて、焦点距離を高速で変化させながら撮像を行うことによっても、撮影した画面内の各部に関して奥行方向の距離情報を得ることができる。 Depth direction with respect to each part in the captured screen (dead angle image) even if a combination of a two-dimensional camera and an infrared distance sensor or a laser sensor is used instead of the compound- eye cameras 71a and 72a as described above. Distance information can be obtained. In addition, distance information in the depth direction can be obtained for each part (region or object) in the captured screen by using a stereo camera in which two two-dimensional cameras are separately arranged instead of the compound- eye cameras 71a and 72a. In addition, in a single two-dimensional camera, distance information in the depth direction can be obtained for each part in the captured screen by performing imaging while changing the focal length at high speed.
 表示制御部18は、主制御装置90の制御下で虚像表示光学系30を動作させて、ハーフミラーである表示スクリーン(コンバイナー)20の背後に虚像距離又は投影距離が変化する3次元的な表示像IMを表示させる。つまり、表示制御部18は、像形成素子11及び配置変更装置62を連動させることにより、複数の表示像(虚像)IMを表示させる。表示制御部18は、主制御装置90を介して環境監視部72から受信した表示形状や表示距離又は位置情報を含む表示情報から、虚像表示光学系30に表示させる表示像IMを生成する。表示像IMは、例えば表示スクリーン20の背後に存在する自動車、自転車、歩行者その他の対象物KTに対して、その奥行き位置方向及びこれと直交する方向に関して周辺に位置する表示枠HW(図5B参照)のような標識とすることができる。表示制御部18は、環境監視部72から対象物KTの位置情報を受けて、表示スクリーン20に対応する対象物KTの画面内の位置に応じて表示像(虚像)IMを表示させる。これにより、運転者UNの視点にかかわらず、表示像(虚像)IMの位置を対象物KTの位置に対応させることができる。また、表示制御部18は、主制御装置90の制御下で、環境監視部72から対象物KTの位置情報を受けて、対象物KTの空間的な位置に合わせて投影距離を調整している。これにより、運転者UNの視点がずれても、表示像(虚像)IMの位置が変化する対象物KTの位置からずれることを防ぐことができる。また、表示制御部18は、配置変更装置62による像形成素子11の移動に同期して像形成素子11に画像を表示させる。これにより、投影距離の異なる各虚像についてその表示内容を変えることができ、各位置に存在する可能性のある対象物KTに対応する画像の表示が可能になる。 The display control unit 18 operates the virtual image display optical system 30 under the control of the main controller 90, and the three-dimensional display in which the virtual image distance or the projection distance changes behind the display screen (combiner) 20 that is a half mirror. The image IM is displayed. That is, the display control unit 18 displays a plurality of display images (virtual images) IM by interlocking the image forming element 11 and the arrangement changing device 62. The display control unit 18 generates a display image IM to be displayed on the virtual image display optical system 30 from display information including the display shape, display distance, or position information received from the environment monitoring unit 72 via the main control device 90. The display image IM is, for example, a display frame HW (FIG. 5B) located in the periphery with respect to the depth position direction and the direction orthogonal to the object KT such as an automobile, bicycle, pedestrian or the like existing behind the display screen 20. For example). The display control unit 18 receives the position information of the object KT from the environment monitoring unit 72 and displays a display image (virtual image) IM according to the position in the screen of the object KT corresponding to the display screen 20. Accordingly, the position of the display image (virtual image) IM can be made to correspond to the position of the object KT regardless of the viewpoint of the driver UN. Further, the display control unit 18 receives the position information of the object KT from the environment monitoring unit 72 under the control of the main controller 90, and adjusts the projection distance according to the spatial position of the object KT. . Thereby, even if the viewpoint of the driver UN shifts, it can be prevented that the position of the display image (virtual image) IM shifts from the position of the object KT that changes. The display control unit 18 causes the image forming element 11 to display an image in synchronization with the movement of the image forming element 11 by the arrangement changing device 62. Thereby, the display content of each virtual image having a different projection distance can be changed, and an image corresponding to the object KT that may exist at each position can be displayed.
 表示制御部18は、主制御装置90を介して運転者検出部71から運転者UNの存在や目の位置に関する検出出力を受け取る。これにより、虚像表示光学系30による表示像IMの投影の自動的な開始や停止が可能になる。また、運転者UNの目の空間的な位置に応じて表示像IMのみを明るくする、点滅する等の強調を行った投影を行うこともできる。 The display control unit 18 receives a detection output regarding the presence of the driver UN and the position of the eyes from the driver detection unit 71 via the main control device 90. Thereby, the projection of the display image IM by the virtual image display optical system 30 can be automatically started and stopped. Further, it is possible to perform projection with emphasis such as brightening only the display image IM or blinking according to the spatial position of the eyes of the driver UN.
 主制御装置90は、虚像表示装置100、環境監視部72等の動作を調和させる役割を有し、環境監視部72によって検出した対象物KTの空間的な位置に対応するように、虚像表示光学系30によって投影される表示枠HWの空間的な配置を調整する。 The main controller 90 has a role of coordinating the operations of the virtual image display device 100, the environment monitoring unit 72, and the like, and the virtual image display optics so as to correspond to the spatial position of the object KT detected by the environment monitoring unit 72. The spatial arrangement of the display frame HW projected by the system 30 is adjusted.
 以下、図8を参照しつつ、虚像表示装置及び移動体用表示システムの動作について説明する。表示制御部18及び配置変更装置62等は、例えば運転者検出部71における運転者UNの目の位置に関する検出出力等を受け取ることで動作が開始される。 Hereinafter, the operations of the virtual image display device and the moving object display system will be described with reference to FIG. The operation of the display control unit 18 and the arrangement changing device 62 is started by receiving, for example, a detection output related to the eye position of the driver UN in the driver detection unit 71.
 まず、虚像表示装置100を初期化する(ステップS11)。具体的には、主制御装置90の制御下で、配置変更装置62を動作させて、像形成素子11の位置を初期位置に移動させる。既に説明したように、像形成素子11は、光軸AX方向に沿って所定の範囲を移動可能となっており、移動範囲の最も下流側から最も上流側の範囲のうち、例えば最も上流側の位置を初期位置としている。また、初期位置を基準として一定周期における像形成素子11に画像を表示するタイミングと配置変更装置62の動作タイミングとを同期させる。 First, the virtual image display device 100 is initialized (step S11). Specifically, the arrangement changing device 62 is operated under the control of the main control device 90 to move the position of the image forming element 11 to the initial position. As already described, the image forming element 11 can move within a predetermined range along the optical axis AX direction, and for example, the most upstream side of the range from the most downstream side to the most upstream side of the moving range. The position is the initial position. In addition, the timing for displaying an image on the image forming element 11 in a certain period with the initial position as a reference is synchronized with the operation timing of the arrangement changing device 62.
 次に、対象物KTを探索する(ステップS12)。具体的には、主制御装置90の制御下で、環境監視部72を動作させて、対象物KTの存否を検出する。 Next, the object KT is searched (step S12). Specifically, the environment monitoring unit 72 is operated under the control of the main control device 90 to detect the presence or absence of the object KT.
 次に、表示スクリーン20の表示領域(又は画面)内の対象物KTを検出する(ステップS13)。具体的には、主制御装置90の制御下で、環境監視部72を動作させて、対象物KTの空間的な位置(XYZ座標の位置)を検出する。 Next, the object KT in the display area (or screen) of the display screen 20 is detected (step S13). Specifically, under the control of the main controller 90, the environment monitoring unit 72 is operated to detect the spatial position (XYZ coordinate position) of the object KT.
 次に、対象物KTの空間的な位置、特に運転者UNの瞳HTから対象物KTまでの距離から像形成素子11に画像を表示するタイミングと虚像の表示位置とを決定する(ステップS14)。具体的には、主制御装置90において、環境監視部72で算出された対象物KTの位置データ等から画像を表示するタイミングと虚像の表示位置とを決定する。タイミングについては、Z方向に関係するものであり、表示位置については、XY方向に関係するものである。つまり、対象物KTがどの距離にあるかによって像形成素子11に表示枠HW等の画像を表示させるタイミングが決定する。 Next, the timing for displaying an image on the image forming element 11 and the display position of the virtual image are determined from the spatial position of the object KT, particularly the distance from the pupil HT of the driver UN to the object KT (step S14). . Specifically, in main controller 90, the timing for displaying an image and the display position of the virtual image are determined from the position data of object KT calculated by environment monitoring unit 72. The timing is related to the Z direction, and the display position is related to the XY direction. That is, the timing at which an image such as the display frame HW is displayed on the image forming element 11 is determined depending on the distance at which the object KT is present.
 次に、ステップS14で決定したタイミング及び位置の情報に基づいて、画像を像形成素子11に表示させる(ステップS15)。具体的には、主制御装置90の制御下で、表示制御部18を動作させて、像形成素子11に所定のタイミングで所定の画像を表示させる。この際、表示制御部18は、主制御装置90の制御下に基づく配置変更装置62による像形成素子11の移動に同期して像形成素子11に画像を表示させている。表示スクリーン20に対応する画面内であれば、複数の対象物KTに対応する表示像(虚像)IMとして例えば表示枠HWを表示することができる。 Next, based on the timing and position information determined in step S14, an image is displayed on the image forming element 11 (step S15). Specifically, the display control unit 18 is operated under the control of the main controller 90 to display a predetermined image on the image forming element 11 at a predetermined timing. At this time, the display control unit 18 causes the image forming element 11 to display an image in synchronization with the movement of the image forming element 11 by the arrangement changing device 62 under the control of the main control device 90. For example, a display frame HW can be displayed as a display image (virtual image) IM corresponding to a plurality of objects KT within the screen corresponding to the display screen 20.
 ステップS15の後、移動体用表示システムの動作を継続する場合(ステップS16のYes)、ステップS12に戻る。 After Step S15, when the operation of the mobile object display system is continued (Yes in Step S16), the process returns to Step S12.
 以上で説明した虚像表示装置及び移動体用表示システムは、描画デバイスである像形成素子11及び配置変更装置62を連動させることにより、運転者(観察者)UNが表示像(虚像)IMを3次元的に認識できるように、投影距離の異なる複数の表示像(虚像)IMを表示させることができる。像形成素子11を光軸AX方向に移動させることで、その対象物KTに対して表示像(虚像)IMを奥行方向も含めて重畳させることができる。これにより、対象物KTが遠方から近傍までの範囲に存在する場合でも、観察者(運転者UN)の目の位置による対象物KTと表示像(虚像)IMとのずれが低減され、より安全な運転支援システムを実現することができる。したがって、運転者の視点がずれても危険信号等の表示像(虚像)IMと実物(対象物KT)との位置関係がずれないため、運転者UNの誤認を防ぐことができる。 In the virtual image display device and the moving body display system described above, the driver (observer) UN obtains three display images (virtual images) IM by linking the image forming element 11 and the arrangement changing device 62 which are drawing devices. A plurality of display images (virtual images) IM having different projection distances can be displayed so that they can be recognized dimensionally. By moving the image forming element 11 in the direction of the optical axis AX, the display image (virtual image) IM can be superimposed on the object KT including the depth direction. Thereby, even when the target object KT exists in the range from a distant place to the vicinity, the deviation between the target object KT and the display image (virtual image) IM due to the position of the eyes of the observer (driver UN) is reduced, so that it is safer. A simple driving support system can be realized. Therefore, even if the driver's viewpoint is deviated, the positional relationship between the display image (virtual image) IM such as a danger signal and the real object (the object KT) is not deviated, and thus misidentification of the driver UN can be prevented.
〔実施例〕
 以下、本発明に係るヘッドアップディスプレイ装置の具体的な実施例を示す。
 以下に示す実施例のデータにおいて、Si(i=0,1,2,3,…)は、表示像IMを形成する虚像面側から数えてi番目の面(表示像IMの虚像面を第0番目の面とする)を示している。虚像面に対応する第0面S0に続く第1及び第2面S1,S2は、仮想的な面であり、第3面S3は、瞳HTに相当する(図4参照)。
〔Example〕
Hereinafter, specific examples of the head-up display device according to the present invention will be described.
In the data of the examples shown below, Si (i = 0, 1, 2, 3,...) Is the i-th surface (the virtual image plane of the display image IM is counted from the virtual image plane side forming the display image IM. 0 side). The first and second surfaces S1, S2 following the 0th surface S0 corresponding to the virtual image surface are virtual surfaces, and the third surface S3 corresponds to the pupil HT (see FIG. 4).
 各面Siの配置は、面頂点座標(x,y,z)と回転角度(ADE)とでそれぞれ特定される。各面Siの面頂点座標は、その面頂点をローカルな直交座標系(X,Y,Z)の原点として、グローバルな直交座標系(x,y,z)におけるローカルな直交座標系(X,Y,Z)の原点の座標(x,y,z)で表されている(単位はmm)。また、各面Siの傾きは、その面頂点を中心とするX軸回りのADE又は回転角度(α回転)で表されている。また、各面Siの傾きは、その面頂点を中心とするY軸回りのBDE又は回転角度(β回転)でも表されている。なお、回転角度の単位は、°であり、X軸の正方向から見て時計回りの方向がα回転の回転角度の正方向とし、Y軸の正方向から見て時計回りの方向がβ回転の回転角度の正方向とする。また、グローバルな直交座標系(x,y,z)は、瞳HT又は瞳面(第3面S3)のローカルな直交座標系(X,Y,Z)と一致した絶対座標系になっている。すなわち、各面Siの配置データは、瞳面中心を原点としたグローバル座標系で表現される。なお、瞳面(第3面S3)では、表示スクリーン20から瞳HTに向かう方向が+Z方向又は+z方向であり、瞳HTに対して上方向が+Y方向又は+y方向であり、表示スクリーン(コンバイナー)20から瞳HTに向かう方向から見て左方向が+X方向又は+x方向である。 The arrangement of each surface Si is specified by the surface vertex coordinates (x, y, z) and the rotation angle (ADE). The surface vertex coordinates of each surface Si are the local orthogonal coordinate system (X, y, z) in the global orthogonal coordinate system (x, y, z) with the surface vertex as the origin of the local orthogonal coordinate system (X, Y, Z). It is represented by the coordinates (x, y, z) of the origin of Y, Z) (unit: mm). In addition, the inclination of each surface Si is represented by an ADE around the X axis around the surface vertex or a rotation angle (α rotation). Further, the inclination of each surface Si is also expressed by a BDE around the Y axis about the surface vertex or a rotation angle (β rotation). The unit of the rotation angle is °, the clockwise direction when viewed from the positive direction of the X axis is the positive direction of the rotational angle of α rotation, and the clockwise direction when viewed from the positive direction of the Y axis is β rotation. The positive direction of the rotation angle. The global orthogonal coordinate system (x, y, z) is an absolute coordinate system that coincides with the local orthogonal coordinate system (X, Y, Z) of the pupil HT or the pupil plane (third surface S3). . That is, the arrangement data of each plane Si is expressed in a global coordinate system with the pupil plane center as the origin. In the pupil plane (third surface S3), the direction from the display screen 20 toward the pupil HT is the + Z direction or the + z direction, and the upward direction with respect to the pupil HT is the + Y direction or the + y direction. ) The left direction when viewed from the direction from 20 toward the pupil HT is the + X direction or the + x direction.
 各実施例において、虚像形成光学系17に対応する第5面S5及び第6面S6は、自由曲面であり、その自由曲面形状は、光学面の頂点を原点とし、光軸方向にZ軸をとり、Z軸に平行な面のサグ量Zとして以下の「数1」で表す。
〔数1〕
Figure JPOXMLDOC01-appb-I000001
ただし、
Z :Z軸に平行な面のサグ量
c :頂点曲率(c=1/R)
k :円錐定数又はコーニック定数
:Xの係数
R :Y曲率半径
In each embodiment, the fifth surface S5 and the sixth surface S6 corresponding to the virtual image forming optical system 17 are free-form surfaces, and the free-form surface shape has the vertex of the optical surface as the origin and the Z axis in the optical axis direction. The sag amount Z of the surface parallel to the Z axis is expressed by the following “Equation 1”.
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
However,
Z: sag amount of plane parallel to Z axis c: vertex curvature (c = 1 / R)
k: conic constant or conic constant C j: X m Y coefficient n R: Y radius of curvature
 以下、本発明のヘッドアップディスプレイ装置の具体的な実施例を説明する。 Hereinafter, specific examples of the head-up display device of the present invention will be described.
〔実施例1〕
 実施例1のヘッドアップディスプレイ装置の基本的な仕様を以下の表1に示す。
〔表1〕
Figure JPOXMLDOC01-appb-I000002
[Example 1]
The basic specifications of the head-up display device of Example 1 are shown in Table 1 below.
[Table 1]
Figure JPOXMLDOC01-appb-I000002
 実施例1の光学面等のデータを以下の表2に示す。
 〔表2〕
Figure JPOXMLDOC01-appb-I000003
The data of the optical surfaces and the like of Example 1 are shown in Table 2 below.
[Table 2]
Figure JPOXMLDOC01-appb-I000003
 実施例1のミラー部分の面データを以下の表3に示す。表中の「*」は積を表し、「^」はべき乗を表すものとする。
 〔表3〕
Figure JPOXMLDOC01-appb-I000004
Table 3 below shows surface data of the mirror portion of Example 1. “*” In the table represents a product, and “^” represents a power.
[Table 3]
Figure JPOXMLDOC01-appb-I000004
 以上では、具体的な実施形態としての虚像表示装置について説明したが、本発明に係る虚像表示装置は、上記のものには限られない。例えば、上記実施形態において、虚像表示装置100の配置を上下反転させて、フロントガラス8の上部又はサンバイザー位置に表示スクリーン20を配置することもできる。この場合、描画ユニット10の斜め下方前方に表示スクリーン20が配置される。上記実施形態では表示スクリーン20を平面としたが、曲面でも、曲面をさらに傾けたものでも、対称性をもたない自由曲面であってもよい。 The virtual image display device as a specific embodiment has been described above, but the virtual image display device according to the present invention is not limited to the above. For example, in the above-described embodiment, the display screen 20 can be disposed on the top of the windshield 8 or at the sun visor position by vertically inverting the arrangement of the virtual image display device 100. In this case, the display screen 20 is disposed obliquely downward and forward of the drawing unit 10. In the above embodiment, the display screen 20 is a flat surface, but it may be a curved surface, a curved surface further inclined, or a free curved surface having no symmetry.
 上記実施形態において、表示スクリーン20の輪郭は、矩形に限らず、様々な形状とすることができる。 In the above-described embodiment, the outline of the display screen 20 is not limited to a rectangle, but may be various shapes.
 図3等に示す本体光学系13は、単なる例示であり、これら本体光学系13の光学的構成については適宜変更することができる。例えば、虚像形成光学系17の光路中において、光学的なパワーを持たない1つ以上のミラーを配置していてもよい。この場合、折り返しによる描画ユニット10等の小型化に有利になる場合もある。 The main body optical system 13 shown in FIG. 3 and the like is merely an example, and the optical configuration of the main body optical system 13 can be changed as appropriate. For example, one or more mirrors having no optical power may be disposed in the optical path of the virtual image forming optical system 17. In this case, it may be advantageous for downsizing the drawing unit 10 and the like by folding.
 上記実施形態において、表示像(虚像)IMの表示位置は、離散的に設定することができるし、連続的又は断続的に設定することもできる。 In the above embodiment, the display position of the display image (virtual image) IM can be set discretely, or can be set continuously or intermittently.
 また、上記実施形態において、描画デバイスとして、LCDを用いたが、他の種類の表示素子、例えば有機ELを用いてもよい。この場合、有機ELの配光角は広く、視野角を広くすることができ、虚像表示装置100を軽量化することができる。 In the above embodiment, the LCD is used as the drawing device. However, other types of display elements such as organic EL may be used. In this case, the light distribution angle of the organic EL is wide, the viewing angle can be widened, and the virtual image display device 100 can be reduced in weight.
 また、上記実施形態において、虚像形成光学系17には、2枚のミラーを設けたが、1枚又は3枚以上のミラーを設けてもよい。また、ミラーを省略してもよい。また、ミラーの光学面は対称性がある自由曲面としているが、これに限るものではなく、対称性をもたない自由曲面でもよい。 In the above embodiment, the virtual image forming optical system 17 is provided with two mirrors. However, one or three or more mirrors may be provided. Further, the mirror may be omitted. Further, although the optical surface of the mirror is a free-form curved surface having symmetry, it is not limited to this and may be a free-form surface having no symmetry.
 また、上記実施形態において、コンバイナーを設けずに、フロントウインドウを形成するフロントガラス8又はウインドシールドの運転席正面に設けた矩形の反射領域の内側に表示スクリーン20を貼り付けてもよい。なお、表示スクリーン20は、フロントガラス8内に埋め込むこともできる。 Further, in the above-described embodiment, the display screen 20 may be attached inside the rectangular reflection area provided in front of the windshield 8 or the windshield driver seat that forms the front window without providing the combiner. The display screen 20 can also be embedded in the windshield 8.
 以上で説明した虚像表示装置100は、自動車やその他移動体に搭載される投影装置に限らず、デジタルサイネージ等に組み込むことができるが、これら以外の用途に適用することもできる。 The virtual image display device 100 described above is not limited to a projection device mounted on an automobile or other moving body, but can be incorporated in a digital signage or the like, but can also be applied to other uses.

Claims (10)

  1.  描画デバイスと、前記描画デバイスの像を拡大する拡大投影光学系と、表示スクリーンとを備える虚像表示装置であって、
     前記描画デバイスを光軸方向に移動させることで投影距離を変化させる配置変更装置と、
     前記描画デバイス及び前記配置変更装置を連動させることにより、前記投影距離の異なる複数の前記虚像を表示させる表示制御部と、
    を備える虚像表示装置。
    A virtual image display device comprising a drawing device, an enlarged projection optical system for enlarging an image of the drawing device, and a display screen,
    An arrangement changing device for changing a projection distance by moving the drawing device in the optical axis direction;
    A display controller that displays the plurality of virtual images with different projection distances by interlocking the drawing device and the arrangement changing device;
    A virtual image display device.
  2.  前記表示制御部は、前記対象物の位置情報を受けた場合に、前記表示スクリーンに対応する前記対象物の画面内の位置に応じて前記虚像を表示させる、請求項1に記載の虚像表示装置。 2. The virtual image display device according to claim 1, wherein the display control unit displays the virtual image according to a position in a screen of the target object corresponding to the display screen when receiving the position information of the target object. .
  3.  前記表示制御部は、前記対象物の位置情報を受けた場合に、前記対象物の空間的な位置に合わせて前記投影距離を調整する、請求項1及び2のいずれか一項に記載の虚像表示装置。 3. The virtual image according to claim 1, wherein the display control unit adjusts the projection distance according to a spatial position of the object when receiving the position information of the object. Display device.
  4.  前記表示制御部は、前記配置変更装置による前記描画デバイスの移動に同期して前記描画デバイスに画像を表示させる、請求項1から3までのいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 3, wherein the display control unit causes the drawing device to display an image in synchronization with the movement of the drawing device by the arrangement changing device.
  5.  前記描画デバイスは、60fps以上のフレームレートで動作する、請求項1から4までのいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 4, wherein the drawing device operates at a frame rate of 60 fps or more.
  6.  前記描画デバイスの光軸方向の移動量は、20mm以下である、請求項1から5までのいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 5, wherein a movement amount of the drawing device in an optical axis direction is 20 mm or less.
  7.  前記配置変更装置は、15Hz以上の速度で前記描画デバイスを移動させる、請求項1から6までのいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 6, wherein the arrangement changing device moves the drawing device at a speed of 15 Hz or more.
  8.  前記描画デバイスは、液晶ディスプレイである、請求項1から7までのいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 7, wherein the drawing device is a liquid crystal display.
  9.  前記描画デバイスは、有機ELである、請求項1から7までのいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 7, wherein the drawing device is an organic EL.
  10.  請求項1から9までのいずれか一項に記載の虚像表示装置と、
     前記対象物の空間的な位置を検出する環境監視部と、
    を備える移動体用表示システム。
    A virtual image display device according to any one of claims 1 to 9,
    An environment monitoring unit for detecting a spatial position of the object;
    A display system for a moving body comprising:
PCT/JP2018/017020 2017-04-28 2018-04-26 Virtual image display device, and display system for moving body WO2018199246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514628A JPWO2018199246A1 (en) 2017-04-28 2018-04-26 Virtual image display device and display system for moving object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-089349 2017-04-28
JP2017089349 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199246A1 true WO2018199246A1 (en) 2018-11-01

Family

ID=63918947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017020 WO2018199246A1 (en) 2017-04-28 2018-04-26 Virtual image display device, and display system for moving body

Country Status (2)

Country Link
JP (1) JPWO2018199246A1 (en)
WO (1) WO2018199246A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140036374A1 (en) * 2012-08-01 2014-02-06 Microvision Inc. Bifocal Head-up Display System
WO2016208195A1 (en) * 2015-06-26 2016-12-29 パナソニックIpマネジメント株式会社 Head-up display and moving body equipped with head-up display
WO2017002302A1 (en) * 2015-06-30 2017-01-05 パナソニックIpマネジメント株式会社 Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140036374A1 (en) * 2012-08-01 2014-02-06 Microvision Inc. Bifocal Head-up Display System
WO2016208195A1 (en) * 2015-06-26 2016-12-29 パナソニックIpマネジメント株式会社 Head-up display and moving body equipped with head-up display
WO2017002302A1 (en) * 2015-06-30 2017-01-05 パナソニックIpマネジメント株式会社 Display device

Also Published As

Publication number Publication date
JPWO2018199246A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
CN111433067B (en) Head-up display device and display control method thereof
US20180143431A1 (en) Head-up display
JP6741029B2 (en) Information display device
WO2016190135A1 (en) Vehicular display system
US11130404B2 (en) Head-up display apparatus
JP2018077400A (en) Head-up display
WO2018199245A1 (en) Virtual image display device, and display system for moving body
JPWO2018124299A1 (en) Virtual image display apparatus and method
JP2017015805A (en) Virtual image display device
WO2018199246A1 (en) Virtual image display device, and display system for moving body
JP2019191368A (en) Virtual image display device and head-up display device
JPWO2019151314A1 (en) Display device
WO2018180857A1 (en) Head-up display apparatus
JP2020148950A (en) Head-up display device
JPWO2018199244A1 (en) Display system
JPWO2019124323A1 (en) Virtual image display device and head-up display device
JP2020042155A (en) Head-up display device
WO2020189258A1 (en) Display device, head-up display device, and head-mounted display device
WO2019220767A1 (en) Virtual image projection optical system and display device
WO2019177113A1 (en) Virtual image display optical system and display device
WO2019107225A1 (en) Virtual-image display device and head-up display device
JP2019138985A (en) Display unit
JP2020042154A (en) Head-up display device
WO2019093496A1 (en) Virtual image projection optical system and display device
JP2020056901A (en) Virtual image display device and head-up display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790042

Country of ref document: EP

Kind code of ref document: A1