WO2020189258A1 - Display device, head-up display device, and head-mounted display device - Google Patents

Display device, head-up display device, and head-mounted display device Download PDF

Info

Publication number
WO2020189258A1
WO2020189258A1 PCT/JP2020/008872 JP2020008872W WO2020189258A1 WO 2020189258 A1 WO2020189258 A1 WO 2020189258A1 JP 2020008872 W JP2020008872 W JP 2020008872W WO 2020189258 A1 WO2020189258 A1 WO 2020189258A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display
display device
unit
virtual image
Prior art date
Application number
PCT/JP2020/008872
Other languages
French (fr)
Japanese (ja)
Inventor
中村 彰宏
橋村 淳司
山田 範秀
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021507161A priority Critical patent/JPWO2020189258A1/ja
Publication of WO2020189258A1 publication Critical patent/WO2020189258A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/54Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being generated by moving a 2D surface, e.g. by vibrating or rotating the 2D surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a display device, a head-up display device, and a head-mounted display device.
  • a screen which is a projection plane of a two-dimensional image, is moved in a direction perpendicular to the main plane at a speed higher than that of human visual recognition, and is moved to that position.
  • a technique for switching a two-dimensional image is disclosed.
  • the screen moves at high speed to project a two-dimensional image, so that the observer observes the two-dimensional images corresponding to a plurality of positions at almost the same time. As a result, the observer can see the three-dimensional image drawn in the space due to the afterimage effect of the eyes.
  • the timing for displaying the two-dimensional image is generated based on the synchronization signal extracted from the video signal, and the two-dimensional image is displayed. Therefore, when a liquid crystal display or a projector is used to display a two-dimensional image, a small amount of light is projected onto the screen even at a position where no two-dimensional image is displayed. As a result, light is projected onto the screen in a short period of time at each position where no two-dimensional image is displayed, and the screen light is integrated by the afterimage effect of the observer's eyes, so that the screen glows dimly. A visible phenomenon (hereinafter referred to as "background light”) occurs. This causes a problem that the contrast of the three-dimensional image is lowered.
  • background light A visible phenomenon
  • An object of the present invention is to provide a display device, a head-up display device, and a head-mounted display device capable of suppressing background light.
  • a display device that performs three-dimensional display by a volume scanning method, from an acquisition unit that acquires image data, a display unit that displays an image of the image data acquired by the acquisition unit, and the display unit.
  • a plurality of image forming regions are provided at different positions in the optical axis direction of the emitted light, and an image forming portion that sequentially forms an image corresponding to the image in the image forming region and an image on the image forming region are converted.
  • a display device that performs three-dimensional display by a volume scanning method, and is an acquisition unit that acquires image data, a display unit that sequentially displays images of the image data acquired by the acquisition unit, and the display unit.
  • An image forming optical system that converts an image displayed on the display and forms a real image or a virtual image at a projection distance corresponding to each position of the display unit in the optical axis direction of the light emitted from the display unit, and the display unit.
  • a display device having a moving mechanism that moves the image in the optical axis direction, and a control unit that turns off the light source of the display unit when there is no image to be formed on the display unit at each of the positions.
  • the image forming unit has a projection member that forms an image by projecting an image displayed on the display unit, and moves the projection member to a predetermined position different in the optical axis direction.
  • the projection optical system for enlarging the image formed on the display unit is further provided, and the projection member is an intermediate screen for diffusing the imaged light from the projection optical system (3).
  • a head-up display device having a main control unit that causes the display device to form a virtual image at the projected distance corresponding to the distance to the object determined by the detection unit.
  • an object detection unit that detects an object existing in the detection area, and determines the distance to the object, and the object.
  • An eyepiece that guides the image formed by the main control unit and the display device into the user's field of view, which causes the display device to form a real image or a virtual image at the projection distance corresponding to the distance to the object determined by the detection unit.
  • a head-mounted display device having an optical system.
  • the light source of the display unit is turned off in the image forming region where there is no image to be formed, so that the background light can be suppressed. As a result, it is possible to suppress a decrease in the contrast of the three-dimensional image due to the background light.
  • FIG. 10A It is a block diagram which shows the hardware structure of a head-up display device. It is a perspective view which shows the specific display state by a head-up display device. It is a schematic diagram which illustrates the virtual image display device which concerns on 2nd Embodiment, and the head-mounted display device which includes this. It is sectional drawing of the head-mounted display apparatus along line BB of FIG. 10A.
  • the same elements are designated by the same reference numerals, and duplicate description will be omitted.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
  • the vertical direction is the Z direction
  • the direction parallel to the traveling direction of the vehicle is the Y direction
  • the direction orthogonal to these Z and Y directions is the X direction when the virtual image display device is mounted on the vehicle.
  • First Embodiment> 1 and 2 show a usage state in which the virtual image display device 20 according to the first embodiment and the head-up display device (hereinafter, referred to as “HUD device”) 10 including the virtual image display device 20 are mounted in the vehicle body 811 of the vehicle 800. It is a schematic diagram to explain.
  • the user (driver) 900 is sitting in the driver's seat 816 while holding the steering wheel 813.
  • the virtual image display device (display device) 20 of the HUD device 10 transmits the image information displayed on the display unit 21 described later to the user (driver) 900 via the display screen 243. Display as a virtual image toward.
  • the configuration other than the display screen 243 of the virtual image display device 20 is installed so as to be embedded in the dashboard 814 of the vehicle body 811 behind the display 815 of the car navigation system or the like.
  • the virtual image display device 20 emits a display light D1 corresponding to the virtual image including driving-related information and the like toward the display screen 243.
  • the display screen 243 also called a combiner, is a semitransparent concave mirror or a plane mirror.
  • the front window may also serve as a combiner.
  • the display screen 243 is erected on the dashboard 814 by the support at the lower end, and reflects the display light D1 from the virtual image display device 20 toward the rear side (Y direction) of the vehicle body 811. That is, in the case of the illustration, the display screen 243 is a stand-alone type that is installed separately from the front window 812. The display light D1 reflected by the display screen 243 is guided to the pupil 910 of the user 900 sitting in the driver's seat 816 and an eye box (not shown) corresponding to the peripheral position thereof.
  • the user 900 can observe the display light D1 reflected by the display screen 243, that is, the virtual image i2 as a display image separated by a predetermined distance (virtual image distance) as if it were in front of the vehicle body 811.
  • the user 900 can observe the outside light transmitted through the display screen 243, that is, the front view, the real image of the automobile, and the like.
  • the user 900 observes the virtual image i2 including the operation-related information formed by the reflection of the display light D1 on the display screen 243 on the external world image behind the display screen 243, that is, the see-through image. it can.
  • FIG. 3 is a schematic side view showing the configuration of the virtual image display device 20 according to the first embodiment.
  • the virtual image display device 20 includes a display unit 21, a projection optical system 22, a virtual image distance changing unit (image forming unit) 23, a virtual image forming optical system 24, a housing 26, an intermediate screen (projection member) 29, and a display control unit 30. ..
  • Each component of the virtual image display device 20 other than the display screen 243 is housed in the housing 26.
  • the optical axis AX passing through the display unit 21, the projection optical system 22, and the virtual image distance changing unit 23 to reach the mirror 241 of the virtual image forming optical system 24 has the same height in the Z direction. Is set to.
  • the optical axis AX when distinguishing the optical axis AX before and after the virtual image distance changing unit 23, the optical axis on the upstream side is referred to as the optical axis AX0 and the optical axis on the downstream side is referred to as the optical axis AX1. Is simply expressed as the optical axis AX.
  • the display unit 21 has a two-dimensional display surface 21a.
  • the image formed on the display surface 21a is magnified by the projection optical system 22 and projected onto the intermediate screen 29.
  • the projection image on the intermediate screen 29 can be switched at a relatively high speed.
  • FIG. 4 is a block diagram illustrating the configurations of the display unit 21 and the display control unit 30.
  • the display unit 21 includes a display element 211 and a light source unit 212.
  • the display element 211 may be a reflective element such as a DMD (Digital Micromirror Device) or an LCOS (Liquid Crystal On Silicon).
  • the light source unit 212 includes, for example, a plurality of LEDs arranged in a matrix in order to realize RGB display.
  • the LED of the light source unit 212 functions as a light source.
  • the light source unit 212 may use a laser, a lamp, or the like instead of the LED.
  • a transmissive element such as a liquid crystal can be used as the display element 211, and a backlight can be used as the light source of the light source unit 212.
  • a transmissive element such as a liquid crystal
  • a backlight can be used as the light source of the light source unit 212.
  • the display element 211 is a liquid crystal display element
  • the installation of the projection optical system 22 can be omitted because the display element 211 itself has a wide angle of view.
  • the display unit 21 operates at a frame rate of 30 fps or more, preferably 150 fps or more. This makes it easy to make it appear that a plurality of virtual images i2 are displayed at the same time at different virtual image distances.
  • the projection optical system 22 is a fixed-focus lens system, and although not shown, it has a plurality of lenses.
  • the projection optical system 22 magnifies and projects the image formed on the display surface 21a of the display unit 21 as an intermediate image i1 on the intermediate screen 29 at an appropriate magnification (the intermediate image i1 itself is premised on the display operation of the display unit 21). Will be).
  • the projection optical system 22 has an aperture 221 arranged on the most intermediate screen 29 side of the projection optical system 22. By arranging the aperture 221 in this way, it becomes relatively easy to set and adjust the F number on the intermediate screen 29 side of the projection optical system 22.
  • the intermediate screen 29 is a diffusion screen for forming an image of light from the projection optical system 22 and controlling the light distribution angle to a desired angle, and is an imaging position (that is, a planned imaging position of the intermediate image i1 or a position thereof).
  • An intermediate image i1 is formed (within the depth of focus in the vicinity).
  • the intermediate image i1 as a display image is not necessarily formed, but in the following, it is assumed that the intermediate image i1 is formed even if it is not actually formed.
  • the position may also be referred to as the position of the intermediate image.
  • the intermediate screen 29 for example, frosted glass, a lens diffuser, a microlens array, or the like can be used.
  • the virtual image distance changing unit 23 is provided along with the intermediate screen 29, and is for moving the intermediate screen 29 and the intermediate image i1 to a desired position along the optical axis AX.
  • the virtual image distance changing unit 23 includes a guide unit 232 that guides the support frame portion 231 that supports the intermediate screen 29 to move in the optical axis AX direction, and the support frame portion 231 together with the intermediate screen 29 at a desired speed in the optical axis AX direction. It has a drive unit 233 which is reciprocated by
  • the distance between the virtual image i2 as a virtual image formed behind the display screen 243 by the virtual image forming optical system 24 and the observer is increased. Or it can be made smaller.
  • the virtual image i2 as a series of projected images can be made three-dimensional.
  • the moving range of the intermediate screen 29 along the optical axis AX corresponds to the planned imaging position of the intermediate image i1 or its vicinity, but is the range of the depth of focus on the intermediate screen 29 side of the projection optical system 22. It is desirable to keep it inside.
  • both the state of the intermediate image i1 and the imaged state of the virtual image i2 as a virtual image can be brought into a good state in which they are substantially in focus.
  • the moving speed of the intermediate screen 29 is faster than the human visual perception, and it is possible to make it appear as if the virtual image i2 as a virtual image is displayed at a plurality of places or at a plurality of virtual image distances at the same time.
  • the virtual image i2 is sequentially projected in five stages of long distance, medium and long distance, medium distance, medium and short distance, and short distance, when the display unit 21 displays at 150 fps, each distance (for example, long distance) is displayed. ),
  • the display of the virtual image i2 is switched at 30 fps, and the virtual images i2 at medium and long distances, medium distances, medium and short distances, and short distances are displayed in parallel and the switching is continuous. Be recognized.
  • the moving speed of the intermediate screen 29 is set to be synchronized with the display operation of the display unit 21.
  • the virtual image distance changing unit 23 in the present embodiment reciprocates the intermediate screen 29 along the optical axis AX.
  • the reciprocating motion by the motor repeats acceleration and deceleration, which is equivalent to a motor. A load is applied and heat is easily generated. As a result, it is assumed that the expected exercise speed cannot be obtained.
  • a spring into the guide portion 232 and assist acceleration and deceleration by the elastic force thereof.
  • a cam structure, a slider crank mechanism, or the like may be used to make the rotary motion a reciprocating motion.
  • the movement of the intermediate screen 29 along the optical axis AX is not limited to the reciprocating motion of the intermediate screen 29 along the optical axis AX.
  • a rotating body having an eccentric axis and having a plurality of intermediate screens 29 attached to the side surface of a pillar whose cross-sectional shape is polygonal, elliptical, spiral, etc. is defined as a rotation axis orthogonal to the optical axis AX direction.
  • the intermediate screen 29 may be moved along the optical axis AX by rotating it.
  • the intermediate screen 29 may be moved along the optical axis AX by rotating a plurality of intermediate screens 29 installed on the rotating disk so as to be offset in the optical axis AX direction with the axis AX direction as the rotation axis. ..
  • the liquid crystal layers are laminated along the optical axis AX, and the voltage applied to the liquid crystal layer at the position serving as the image forming region is controlled to change the refractive index. It may be configured to do so. This makes it possible to change the distance between the observer and the real or virtual image formed by the image forming optical system.
  • FIG. 5 is a schematic diagram illustrating a configuration having a moving mechanism for moving the display unit in the optical axis direction.
  • the virtual image distance is changed by providing a moving mechanism 234 that moves the display unit 21 in the optical axis AX1 direction according to the instruction of the display control unit 30. It may be configured to be used.
  • the virtual image forming optical system 24 magnifies the intermediate image i1 formed on the intermediate screen 29 in cooperation with the display screen 243, and forms the virtual image i2 in front of the user 900.
  • the virtual image forming optical system 24 is composed of at least one mirror, but includes two mirrors 241 and 242 in the illustrated example.
  • the display control unit 30 controls the display unit 21 and the virtual image distance changing unit 23.
  • the display control unit 30 includes a display element control unit 31, a light source drive unit 32, and a storage unit 33.
  • the display element control unit 31 is a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory) (not shown).
  • the display element control unit 31 functions as an acquisition unit for acquiring image data to be displayed on the display element 211, and controls the display element 211 and the light source drive unit 32.
  • the image data is stored in advance in the storage unit 33, or is stored in advance in the storage unit of the main control unit 60, which will be described later.
  • the order and timing at which the images of the image data are displayed on the display element 211 are managed by the display element control unit 31.
  • the light source driving unit 32 drives the light source of the light source unit 212 according to the instruction of the display element control unit 31.
  • the image data is color, light of each RGB color is emitted from the light source unit 212 in a time-division manner.
  • the display element control unit 31 turns off the light source of the display unit 21 when there is no image to be displayed when the images of the image data are sequentially displayed on the display element 211.
  • the light source of the display unit 21 is turned off.
  • the display element control unit 31 reflects the light Ls from the light source unit 212 for each pixel of the display element 211 according to the acquired image data. By controlling, each pixel is switched on / off. As a result, the reflected light Ld with respect to the light Ls from the light source unit 212 is emitted from the display element 211, and the image is displayed on the display element 211.
  • the display control unit 30 controls the formation timing of the intermediate image i1 on the intermediate screen 29, and displays a three-dimensional virtual image i2 in which the virtual image distance (projection distance) changes behind the display screen 243. Specifically, by moving the position of the intermediate image i1, that is, the position of the intermediate screen 29 to the side closer to the virtual image forming optical system 24 on the optical axis AX1, the virtual image distance to the virtual image i2 is reduced. On the contrary, by moving the position of the intermediate screen 29 to the side farther from the virtual image forming optical system 24 on the optical axis AX1, the virtual image distance to the virtual image i2 is increased.
  • the intermediate screen 29 by arranging the intermediate screen 29 on the optical axis AX1, not only the intermediate image i1 movable in the optical axis AX1 direction can be formed, but also the viewing angle and the eyebox size can be secured. , The light utilization efficiency of the optical system can be increased. If the diffused light distribution angle by the intermediate screen 29 is too narrow, the eyebox size becomes small. On the contrary, if the light distribution angle of diffusion by the intermediate screen 29 is made too large, the F value of the virtual image forming optical system 24 needs to be reduced in order to increase the light utilization efficiency, so that the depth of focus becomes shallow and display is possible. The distance range is narrowed.
  • FIG. 6 is a flowchart for exemplifying the control method of the virtual image display device 20 in the first embodiment.
  • the processing of the flowchart shown in FIG. 6 is realized by the CPU of the display element control unit 31 executing the control program.
  • FIG. 7 is a schematic diagram conceptually showing an image forming region forming the intermediate image i1.
  • the processing when the display element 211 is a reflective element such as DMD or LCOS will be mainly described, but the processing when the display element 211 is a transmissive element such as a liquid crystal is also the same.
  • n corresponds to the number of image forming regions forming the intermediate image i1.
  • the image forming region for forming the intermediate image i1 is set at different positions in the optical axis AX1 direction of the light emitted from the display unit 21 according to the stage where the virtual image i2 is projected.
  • Each image forming region corresponds to the projection surface of the intermediate screen 29 moved to a different position in the optical axis AX1 direction, for example, when the display element 211 is a reflective element such as a DMD or LCOS.
  • the display element 211 is a transmissive element such as a liquid crystal
  • each image forming region corresponds to the display surface 21a of the display unit 21 which has moved to a different position in the optical axis AX1 direction.
  • n (n: 1 to 5) is a variable for indicating any of the first to fifth image forming regions as the nth image forming region, and is initialized to "1".
  • step S102 it is determined whether or not there is an image to be formed in the nth image forming region.
  • step S102 When there is an image to be formed in the nth image forming region (step S102: YES), the display element control unit 31 acquires an image corresponding to the image formed in the nth image forming region (step S103). Subsequently, an image is formed in the nth image forming region (step S104). More specifically, the display control unit 30 controls the virtual image distance changing unit 23 to move the position of the intermediate screen 29 to a position corresponding to the nth image forming region on the optical axis AX1 to the display unit 21. By displaying the image and projecting it on the intermediate screen 29, the intermediate image i1 is formed in the nth image forming region.
  • step S102 when there is no image to be formed in the nth image forming region (step S102: NO), the light source of the display unit 21 is turned off (step S105). As a result, the light from the display unit 21 is not projected onto the intermediate screen 29 in the image forming region where there is no image to be formed, so that the intermediate screen 29 is prevented from emitting light.
  • n is incremented (step S106), and the magnitude of n and a predetermined number N is compared (step S107).
  • step S107: YES the process ends (end).
  • step S107: NO the process proceeds to step S102.
  • the processing of the flowchart shown in FIG. 6 is processing for one frame (number of frames), and the above processing is repeated for each frame. Further, in the example shown in FIG. 7, the intermediate images i1 are formed because there are images 206 to 208 to be formed for the second, fourth, and fifth image forming regions 202, 204, and 205, respectively. On the other hand, since there is no image to be formed in the first and third image forming regions 201 and 203, the light source of the display unit 21 is turned off.
  • the light source of the display unit 21 is turned off in the first and third image forming regions 201 and 203 of the first to fifth image forming regions 201 to 205, so that the background light is suppressed. Has been done.
  • the background light is suppressed by turning off the light source of the display unit 21 in the image forming region where there is no image to be formed, so that the contrast of the virtual image i2 is high. Improve.
  • FIG. 8 is a block diagram illustrating a hardware configuration of the HUD device 10.
  • the HUD device 10 includes a driver detection unit 71, an environment monitoring unit 72, and a main control unit 60.
  • the main control unit 60 By controlling the entire HUD device 10, the main control unit 60 three-dimensionally displays a virtual image corresponding to an object such as an oncoming vehicle or a passerby. An example of displaying a virtual image will be described later.
  • the driver detection unit 71 is a part that detects the existence of the user 900 in the vehicle 800, and includes an internal camera 71a for the driver's seat 816, an image processing unit 71b for the driver's seat 816, and a determination unit 71c. ..
  • the internal camera 71a is installed on the dashboard 814 in the vehicle body 811 facing the driver's seat 816 (see FIG. 2), and captures an image of the head of the user 900 sitting in the driver's seat 816 and its surroundings. To do.
  • the driver's seat image processing unit 71b performs various image processing such as brightness correction on the image captured by the internal camera 71a, and facilitates the processing by the determination unit 71c.
  • the determination unit 71c detects the head and eyes (pupil 910) of the user 900 by extracting or cutting out an object from the driver's seat image processed by the driver's seat image processing unit 71b, and also detects the driver's seat image. It is possible to calculate the spatial position of the user 900's eyes (resulting in the direction of the line of sight) as well as the presence or absence of the user 900's head in the vehicle body 811 from the depth information accompanying the user 900.
  • the environment monitoring unit 72 functions as an object detection unit.
  • the environment monitoring unit 72 identifies objects such as automobiles, bicycles, and pedestrians that are close to the front, and determines the distance to the objects.
  • the environment monitoring unit 72 includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c.
  • the external camera 72a is installed at an appropriate position inside and outside the vehicle body 811 and captures external images such as the front and sides of the user 900 or the vehicle 800.
  • the external image processing unit 72b performs various image processing such as brightness correction on the image captured by the external camera 72a, and facilitates the processing by the determination unit 72c.
  • the determination unit 72c detects the existence or nonexistence of objects such as automobiles, bicycles, and pedestrians by extracting or cutting out objects from the external image processed by the external image processing unit 72b, and depth information accompanying the external image.
  • the spatial position of the object in front of the vehicle 800 is calculated from.
  • the internal camera 71a and the external camera 72a include, for example, a compound eye type three-dimensional camera. That is, both cameras 71a and 72a are a matrix of camera elements in which a lens for imaging, CMOS (Complementary Metal-Oxide Sensor), and other image pickup elements are arranged in a matrix, and are used for the image pickup element. Each has a drive circuit of.
  • the plurality of camera elements constituting the cameras 71a and 72a are, for example, focused on different positions in the depth direction, or can detect relative parallax, and are obtained from each camera element. By analyzing the state of the image (focus state, position of the object, etc.), the distance to each area in the image or the object is determined.
  • a combination of a two-dimensional camera and an infrared distance sensor may be used instead of or together with the compound eye type cameras 71a and 72a as described above. As a result, it is possible to obtain distance information in the depth direction for each part in the captured screen. Further, instead of the compound eye type cameras 71a and 72a, a stereo camera in which two two-dimensional cameras are separately arranged can obtain distance information in the depth direction with respect to each part (area or object) in the captured screen. In addition, with a single two-dimensional camera, distance information in the depth direction may be obtained for each part in the captured screen by performing imaging while changing the focal length at high speed.
  • LIDAR Light Detection And Ringing
  • distance information in the depth direction can be obtained for each part (area or object) in the detection area.
  • LIDAR technology it is possible to measure the scattered light for pulsed laser irradiation, measure the distance and spread to an object at a long distance, and acquire the distance information to the object in the field of view and the information on the spread of the object.
  • a radar sensing technology such as this LIDAR technology
  • a technology for detecting an object's distance or the like from image information it is possible to improve the object detection accuracy.
  • the display control unit 30 operates the virtual image display device 20 under the control of the main control unit 60 to display a three-dimensional virtual image i2 in which the virtual image distance (also referred to as a projection distance) changes behind the display screen 243.
  • the virtual image distance also referred to as a projection distance
  • the light source of the display unit is turned off.
  • the display control unit 30 forms a virtual image i2 to be displayed on the virtual image display device 20 from display information including a display shape and a display distance received from the environment monitoring unit 72 via the main control unit 60.
  • the virtual image i2 is, for example, a frame F (see FIG. 9) located around the car, bicycle, pedestrian, or other object OB (see FIG. 9 described later) existing behind the display screen 243 in the depth position direction thereof. It becomes a sign like.
  • the HUD device 10 can display the virtual image i2 at an appropriate position regardless of the direction of the line of sight of the driver 900 by changing the virtual image distance, but the direction of the line of sight of the user 900 by the driver detection unit 71. It is also possible to apply the function of estimating the above to the display of the virtual image i2.
  • the display control unit 30 receives a detection output regarding the presence of the user 900 and the position of the eyes from the driver detection unit 71 via the main control unit 60. This makes it possible to automatically start and stop the projection of the virtual image i2 by the virtual image display device 20. It is also possible to project the virtual image i2 only in the direction of the line of sight of the user 900. Further, it is also possible to perform projection with emphasis such as brightening or blinking only the virtual image i2 in the direction of the line of sight of the user 900.
  • FIG. 9 is a perspective view illustrating a specific display state by the HUD device 10.
  • the front of the user 900 who is the driver (observer), is a detection area DF corresponding to the observation field of view.
  • the detection area DF that is, in the road and its surroundings, there are objects OB1 and OB3 of a person such as a pedestrian and an object OB2 of a moving body such as an automobile.
  • the main control unit 60 of the HUD device 10 projects a three-dimensional virtual image i2 (i21, i22, i24) by the virtual image display device 20, and serves as a related information image for each object OB1, OB2, OB3.
  • Frames F1, F2, and F3 are added.
  • the environment monitoring unit 72 determines the projection distances to the virtual images i21, i22, and i23 for displaying the frames F (F1, F2, F3). It corresponds to the distance from the user 900 or the vehicle 800 to each object OB1, OB2, OB3.
  • the virtual images i23 and i25 are not actually projected because the intermediate image i1 is not formed.
  • the projected distances of the virtual images i21, i22, and i24 are discrete and may not exactly match the actual distances to the objects OB1, OB2, and OB3. However, if the difference between the projected distances of the virtual images i21, i22, and i23 and the actual distances to the objects OB1, OB2, and OB3 is not large, parallax is unlikely to occur even if the viewpoint of the user 900 moves (in the X direction). The arrangement relationship between the objects OB1, OB2, OB3 and the frames F1, F2, F3 can be substantially maintained.
  • the light source of the display unit is turned off in the image forming region where there is no image to be formed, so that the background light is used. Can be suppressed. As a result, the decrease in contrast of the virtual image i2 due to the background light can be suppressed.
  • HMD device head-mounted display device
  • the virtual image display device of the present embodiment is mounted on the HMD device, it is smaller and lighter than the virtual image display device mounted on the HUD device of the first embodiment, but the virtual image display device of the first embodiment Has the same function as. That is, the virtual image display device of the present embodiment has a function of displaying the image information displayed on the display unit as a virtual image toward the user while changing the virtual image distance.
  • description of the same configuration as in the first embodiment will be omitted.
  • FIG. 10A is a schematic view illustrating the virtual image display device 40 according to the second embodiment and the HMD device 11 including the virtual image display device 40.
  • FIG. 10B is a cross-sectional view of the HMD device 11 along the line BB of FIG. 10A.
  • the HMD device 11 is an image display device worn on the head of a user (observer).
  • the HMD device 11 has a structure that imitates glasses for correcting eyesight. That is, the HMD device 11 has a pair of left and right temples 411 and 412, a bridge 413, a pair of left and right transparent members 414 and 415, a virtual image display device 40, an image pickup device 50, an object detection unit 52, and a control unit 53.
  • Temples 411 and 412 are, for example, long rod-shaped members made of an elastic material.
  • An ear hook portion to be hung on the user's ear is provided at one end of each of the temples 411 and 421, and transparent members 414 and 415 are fixed to the other end.
  • the bridge 413 is a short rod-shaped member for connecting a pair of left and right transparent members 414 and 415 to each other.
  • Transparent members 414 and 415 are fixed to both ends of the bridge 413. As a result, the pair of left and right transparent members 414 and 415 are held at regular intervals.
  • the transparent members 414 and 415 are transparent materials (glass, plastic, film, etc.) capable of transmitting light from the outside world and delivering it to the user's eyes so that the user wearing the HMD device 11 can observe the outside world. Consists of.
  • the main body 41 of the virtual image display device 40 is provided on the upper part of the transparent member 415 corresponding to the right eye of the user, and the prism 42 is provided inside the transparent member 415.
  • An imaging device 50 is provided on the upper portion of the transparent member 414 corresponding to the left eye. Further, an object detection unit 52 and a control unit 53 are arranged on the temple 412.
  • the imaginary image display device 40 displays an image additionally superimposed on the scenery of the outside world.
  • the virtual image display device 40 is based on information about the user's line-of-sight direction detected by a line-of-sight detection device (not shown), and is close to a person existing in the scenery of the outside world, and information about this person (for example, name, residential area, etc. ) Is included in the pop-up image.
  • the virtual image display device 40 may be a binocular type instead of the monocular type as shown in FIG. 10A.
  • the prism 42 is a polyhedron made of a transparent medium such as glass or quartz having a refractive index different from that of the surrounding space for refracting light.
  • the light output from the main body 41 of the virtual image display device 40 for displaying the superimposed image is refracted by the prism 42 and reaches the user's pupil 911 together with the light from the outside world. That is, the prism 42 functions as an eyepiece optical system and guides the image formed by the main body 41 into the user's field of view.
  • the light source of the display unit when there is no image to be formed in the image forming region, that is, when there is no image to be displayed on the display element, the light source of the display unit is turned off.
  • the image pickup apparatus 50 images the outside world of the camera lens 51 in the optical axis direction.
  • the image pickup device 220 is fixedly held with respect to the transparent member 414 so that the optical axis of the camera lens 51 substantially coincides with the line-of-sight direction of the user. This enables the image pickup device 50 to take a picture in the front field of view of the user.
  • the object detection unit 52 identifies an object (for example, a person, a vehicle, etc.) that is close to the front, and determines the distance to the object.
  • the object detection unit 52 performs various image processing such as brightness correction on the external image captured by the image pickup device 50, and extracts or cuts out the object from the external image to determine the existence or nonexistence of an object such as a person or a vehicle. To detect.
  • the object detection unit 52 calculates the spatial position of the object from the depth information accompanying the external image.
  • Control unit 53 operates the virtual image display device 40 to display a three-dimensional virtual image i2 in which the virtual image distance changes behind the prism 42.
  • the effect exerted by the virtual image display device 20 according to the first embodiment and the HUD device 10 provided with the virtual image display device 20 Has the same effect as.
  • the HMD device 11 has a structure imitating glasses for vision correction has been described, but the HMD device 11 may have a goggle type structure.
  • the virtual image display device 20 of the present invention and the HUD device 10 including the virtual image display device 20 have been described.
  • the present invention can be appropriately added, modified, and omitted by those skilled in the art within the scope of the technical idea.
  • the intermediate screen 29 or display 21 is moved along the optical axis AX to be formed behind the display screen 243 or prism 42 by the virtual image forming optics 24.
  • the case of changing the distance between the virtual image i2 and the observer has been described.
  • the display device of the present invention can be applied not only to the case of forming a virtual image but also to the case of forming a real image.
  • the distance between the observer and the real image formed by the image forming optical system by moving the intermediate screen 29 along the optical axis AX while projecting the image generated by the computer as a real image onto the intermediate screen 29. May be configured to change.
  • the real image can be changed while changing the projection distance to the real image.
  • the real image as a projected image can be made three-dimensional.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Instrument Panels (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

[Problem] To provide a display device, a head-up display device, and a head-mounted display device that are able to suppress background light. [Solution] A virtual image display device 20 performs three-dimensional display by a volume scanning method, and comprises an acquisition unit 31, a display unit 21, an image formation unit 23, an image formation optical system 24, and a control unit 31. The acquisition unit 31 acquires image data. The display unit 21 displays an image of the image data acquired by the acquisition unit 31. The image formation unit 23 is provided with a plurality of image formation regions 201-205 at different positions in the optical axis direction of light emitted from the display unit 21, and sequentially forms images corresponding to the image on the image formation regions. The image formation optical system 24 converts the images on the image formation regions, and forms a real image or a virtual image at a projection distance corresponding to each of the positions of the image formation regions in the optical axis direction. The control unit 31 turns off a light source of the display unit 21 when an image to be formed is not present in the image formation region at each of the positions.

Description

表示装置、ヘッドアップディスプレイ装置、およびヘッドマウントディスプレイ装置Display devices, head-up displays, and head-mounted displays
 本発明は、表示装置、ヘッドアップディスプレイ装置、およびヘッドマウントディスプレイ装置に関する。 The present invention relates to a display device, a head-up display device, and a head-mounted display device.
 近年、3次元像を表示できる3次元ディスプレイの開発が盛んである。このうち、観察者が、両眼の視差を利用するための眼鏡を必要とせずに裸眼のままで3次元像を見ることができる手法の1つとして体積走査法を使用した技術が知られている。 In recent years, the development of 3D displays that can display 3D images has been active. Of these, a technique using the volumetric scanning method is known as one of the techniques by which an observer can see a three-dimensional image with the naked eye without the need for glasses for utilizing the binocular parallax. There is.
 例えば、下記特許文献1には、車両用ヘッドアップディスプレイ装置において、2次元像の投影面であるスクリーンを、主面に垂直な方向に、人間の視覚認知よりも高速に移動し、その位置に合わせて2次元像を切り替える技術が開示されている。体積走査法を使用した3次元ディスプレイでは、スクリーンが高速に移動して2次元像を投影するため、観察者は、複数位置に対応する2次元像をほぼ同時に観察する。その結果、観察者は、目の残像効果により、空間に描画された3次元像を見ることができる。 For example, in Patent Document 1 below, in a vehicle head-up display device, a screen, which is a projection plane of a two-dimensional image, is moved in a direction perpendicular to the main plane at a speed higher than that of human visual recognition, and is moved to that position. At the same time, a technique for switching a two-dimensional image is disclosed. In a three-dimensional display using the volumetric scanning method, the screen moves at high speed to project a two-dimensional image, so that the observer observes the two-dimensional images corresponding to a plurality of positions at almost the same time. As a result, the observer can see the three-dimensional image drawn in the space due to the afterimage effect of the eyes.
特開2009-150947号公報Japanese Unexamined Patent Publication No. 2009-150947
 しかしながら、特許文献1の技術では、映像信号から抽出した同期信号に基づいて、2次元像を表示するタイミングを生成し、2次元像を表示している。このため、2次元像の表示において液晶ディスプレイやプロジェクターを用いると、2次元像を何も表示しない位置についても、スクリーンに対してわずかに光が投射される。その結果、2次元像を何も表示しない各位置について、スクリーンに光が短時間の間に投射され、観察者の目の残像効果によってスクリーンの光が積算することにより、スクリーンがぼんやりと光って見える現象(以下、「バックグラウンド光」という)が発生する。これにより、3次元像のコントラストが低下するという問題がある。 However, in the technique of Patent Document 1, the timing for displaying the two-dimensional image is generated based on the synchronization signal extracted from the video signal, and the two-dimensional image is displayed. Therefore, when a liquid crystal display or a projector is used to display a two-dimensional image, a small amount of light is projected onto the screen even at a position where no two-dimensional image is displayed. As a result, light is projected onto the screen in a short period of time at each position where no two-dimensional image is displayed, and the screen light is integrated by the afterimage effect of the observer's eyes, so that the screen glows dimly. A visible phenomenon (hereinafter referred to as "background light") occurs. This causes a problem that the contrast of the three-dimensional image is lowered.
 本発明は、バックグラウンド光を抑制できる表示装置、ヘッドアップディスプレイ装置、およびヘッドマウントディスプレイ装置を提供することを目的とする。 An object of the present invention is to provide a display device, a head-up display device, and a head-mounted display device capable of suppressing background light.
 本発明の上記目的は、下記の手段によって達成される。 The above object of the present invention is achieved by the following means.
 (1)体積走査法によって3次元表示を行う表示装置であって、画像データを取得する取得部と、前記取得部によって取得された前記画像データの画像を表示する表示部と、前記表示部から出射した光の光軸方向の異なる位置に複数の像形成領域を備え、前記画像に対応する像を前記像形成領域に順次形成する像形成部と、前記像形成領域上の像を変換し、前記光軸方向における前記像形成領域の各々の位置に対応した投影距離で、実像または虚像を形成する像形成光学系と、各々の前記位置の前記像形成領域について、形成すべき像がない場合は、前記表示部の光源をオフする制御部と、を有する、表示装置。 (1) A display device that performs three-dimensional display by a volume scanning method, from an acquisition unit that acquires image data, a display unit that displays an image of the image data acquired by the acquisition unit, and the display unit. A plurality of image forming regions are provided at different positions in the optical axis direction of the emitted light, and an image forming portion that sequentially forms an image corresponding to the image in the image forming region and an image on the image forming region are converted. When there is no image to be formed for the image forming optical system that forms a real image or a virtual image and the image forming region at each of the positions at a projection distance corresponding to each position of the image forming region in the optical axis direction. Is a display device including a control unit that turns off the light source of the display unit.
 (2)体積走査法によって3次元表示を行う表示装置であって、画像データを取得する取得部と、前記取得部によって取得された前記画像データの画像を順次表示する表示部と、前記表示部に表示された画像を変換し、前記表示部から出射した光の光軸方向における前記表示部の各々の位置に対応した投影距離で、実像または虚像を形成する像形成光学系と、前記表示部を前記光軸方向に移動する移動機構と、各々の前記位置において、前記表示部に形成すべき像がない場合は、前記表示部の光源をオフする制御部と、を有する、表示装置。 (2) A display device that performs three-dimensional display by a volume scanning method, and is an acquisition unit that acquires image data, a display unit that sequentially displays images of the image data acquired by the acquisition unit, and the display unit. An image forming optical system that converts an image displayed on the display and forms a real image or a virtual image at a projection distance corresponding to each position of the display unit in the optical axis direction of the light emitted from the display unit, and the display unit. A display device having a moving mechanism that moves the image in the optical axis direction, and a control unit that turns off the light source of the display unit when there is no image to be formed on the display unit at each of the positions.
 (3)前記像形成部は、前記表示部に表示された画像が投影されることにより像を形成する投影部材を有し、前記光軸方向の異なる所定の位置に、前記投影部材を移動することで、前記像を前記像形成領域に形成する、上記(1)に記載の表示装置。 (3) The image forming unit has a projection member that forms an image by projecting an image displayed on the display unit, and moves the projection member to a predetermined position different in the optical axis direction. The display device according to (1) above, which forms the image in the image forming region.
 (4)前記表示部に形成された像を拡大する投影光学系をさらに有し、前記投影部材は、前記投影光学系からの結像された光を拡散する中間スクリーンである、上記(3)に記載の表示装置。 (4) The projection optical system for enlarging the image formed on the display unit is further provided, and the projection member is an intermediate screen for diffusing the imaged light from the projection optical system (3). The display device described in.
 (5)上記(1)~(4)のいずれか1つに記載の表示装置と、検出領域内に存在するオブジェクトを検出するとともに、前記オブジェクトまでの距離を判定するオブジェクト検出部と、前記オブジェクト検出部が判定した前記オブジェクトまでの距離に対応した前記投影距離で、前記表示装置に虚像を形成させる、主制御部と、有する、ヘッドアップディスプレイ装置。 (5) The display device according to any one of (1) to (4) above, an object detection unit that detects an object existing in the detection area, and determines the distance to the object, and the object. A head-up display device having a main control unit that causes the display device to form a virtual image at the projected distance corresponding to the distance to the object determined by the detection unit.
 (6)上記(1)~(4)のいずれか1つに記載の表示装置と、検出領域内に存在するオブジェクトを検出するとともに、前記オブジェクトまでの距離を判定するオブジェクト検出部と、前記オブジェクト検出部が判定した前記オブジェクトまでの距離に対応した前記投影距離で、前記表示装置に実像または虚像を形成させる、主制御部と、前記表示装置で形成された像をユーザーの視野内に導く接眼光学系と、を有する、ヘッドマウントディスプレイ装置。 (6) The display device according to any one of (1) to (4) above, an object detection unit that detects an object existing in the detection area, and determines the distance to the object, and the object. An eyepiece that guides the image formed by the main control unit and the display device into the user's field of view, which causes the display device to form a real image or a virtual image at the projection distance corresponding to the distance to the object determined by the detection unit. A head-mounted display device having an optical system.
 本発明に係る表示装置によれば、形成すべき像がない像形成領域について、表示部の光源をオフするので、バックグラウンド光を抑制できる。その結果、バックグラウンド光による3次元像のコントラストの低下を抑制できる。 According to the display device according to the present invention, the light source of the display unit is turned off in the image forming region where there is no image to be formed, so that the background light can be suppressed. As a result, it is possible to suppress a decrease in the contrast of the three-dimensional image due to the background light.
ヘッドアップディスプレイ装置を車両に搭載した状態を示す側方断面図である。It is a side sectional view which shows the state which the head-up display device is mounted on a vehicle. ヘッドアップディスプレイ装置を搭載した車両を内側から見た概略図である。It is a schematic view of the vehicle equipped with a head-up display device as seen from the inside. 第1の実施形態に係る虚像表示装置の構成を示す側面模式図である。It is a side schematic diagram which shows the structure of the virtual image display device which concerns on 1st Embodiment. 表示部および表示制御部の構成を例示するブロック図である。It is a block diagram which illustrates the structure of the display part and display control part. 表示部を光軸方向に移動する移動機構を有する構成を例示する模式図である。It is a schematic diagram which illustrates the structure which has the moving mechanism which moves the display part in the optical axis direction. 第1の実施形態における虚像表示装置の制御方法について例示するためのフローチャートである。It is a flowchart for exemplifying the control method of the virtual image display device in 1st Embodiment. 中間像を形成する像形成領域について概念的に示す模式図である。It is a schematic diagram conceptually showing the image formation region which forms an intermediate image.
 
ヘッドアップディスプレイ装置のハードウェア構成を示すブロック図である。 ヘッドアップディスプレイ装置による具体的な表示状態を示す斜視図である。 第2の実施形態に係る虚像表示装置、およびこれを含むヘッドマウントディスプレイ装置を例示する模式図である。 図10AのB-B線に沿ったヘッドマウントディスプレイ装置の断面図である。

It is a block diagram which shows the hardware structure of a head-up display device. It is a perspective view which shows the specific display state by a head-up display device. It is a schematic diagram which illustrates the virtual image display device which concerns on 2nd Embodiment, and the head-mounted display device which includes this. It is sectional drawing of the head-mounted display apparatus along line BB of FIG. 10A.
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また図面においては、上下方向をZ方向、虚像表示装置を車両に搭載した状態において、車両の進行方向に平行な方向をY方向、これらのZ、Y方向に直交する方向をX方向とする。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios. Further, in the drawing, the vertical direction is the Z direction, the direction parallel to the traveling direction of the vehicle is the Y direction, and the direction orthogonal to these Z and Y directions is the X direction when the virtual image display device is mounted on the vehicle.
 <第1の実施形態>
 図1、図2は、第1の実施形態に係る虚像表示装置20、およびこれを含むヘッドアップディスプレイ装置(以下、「HUD装置」という)10を車両800の車体811内に搭載した使用状態を説明する模式図である。ユーザー(運転者)900は、ハンドル813を握りながら運転席816に座っている。
<First Embodiment>
1 and 2 show a usage state in which the virtual image display device 20 according to the first embodiment and the head-up display device (hereinafter, referred to as “HUD device”) 10 including the virtual image display device 20 are mounted in the vehicle body 811 of the vehicle 800. It is a schematic diagram to explain. The user (driver) 900 is sitting in the driver's seat 816 while holding the steering wheel 813.
 図1、図2に示すように、HUD装置10の虚像表示装置(表示装置)20は、後述する表示部21に表示されている画像情報を、表示スクリーン243を介してユーザー(運転者)900に向けて虚像として表示する。 As shown in FIGS. 1 and 2, the virtual image display device (display device) 20 of the HUD device 10 transmits the image information displayed on the display unit 21 described later to the user (driver) 900 via the display screen 243. Display as a virtual image toward.
 虚像表示装置20の表示スクリーン243以外の構成は、車体811のダッシュボード814内にカーナビゲーション等のディスプレイ815の背後に埋め込むように設置されている。虚像表示装置20は、運転関連情報等を含む虚像に対応する表示光D1を表示スクリーン243に向けて射出する。表示スクリーン243は、コンバイナーとも呼ばれ、半透過性を有する凹面鏡、または平面鏡である。フロントウィンドウがコンバイナーを兼ねる場合もある。 The configuration other than the display screen 243 of the virtual image display device 20 is installed so as to be embedded in the dashboard 814 of the vehicle body 811 behind the display 815 of the car navigation system or the like. The virtual image display device 20 emits a display light D1 corresponding to the virtual image including driving-related information and the like toward the display screen 243. The display screen 243, also called a combiner, is a semitransparent concave mirror or a plane mirror. The front window may also serve as a combiner.
 表示スクリーン243は、下端の支持によってダッシュボード814上に立設され、虚像表示装置20からの表示光D1を車体811の後方側(Y方向)に向けて反射する。すなわち、図示の場合、表示スクリーン243は、フロントウィンドウ812とは別体で設置される独立型のものとなっている。表示スクリーン243で反射された表示光D1は、運転席816に座ったユーザー900の瞳910、およびその周辺位置に対応するアイボックス(不図示)に導かれる。 The display screen 243 is erected on the dashboard 814 by the support at the lower end, and reflects the display light D1 from the virtual image display device 20 toward the rear side (Y direction) of the vehicle body 811. That is, in the case of the illustration, the display screen 243 is a stand-alone type that is installed separately from the front window 812. The display light D1 reflected by the display screen 243 is guided to the pupil 910 of the user 900 sitting in the driver's seat 816 and an eye box (not shown) corresponding to the peripheral position thereof.
 ユーザー900は、表示スクリーン243で反射された表示光D1、つまり、あたかも車体811の前方にあるように、所定距離(虚像距離)離れた表示像としての虚像i2を観察することができる。一方、ユーザー900は、表示スクリーン243を透過した外界光、つまり前方景色、自動車等の実像を観察することができる。結果的に、ユーザー900は、表示スクリーン243を透過した背後の外界像、すなわちシースルー像に重ねて、表示スクリーン243での表示光D1の反射によって形成される運転関連情報等を含む虚像i2を観察できる。 The user 900 can observe the display light D1 reflected by the display screen 243, that is, the virtual image i2 as a display image separated by a predetermined distance (virtual image distance) as if it were in front of the vehicle body 811. On the other hand, the user 900 can observe the outside light transmitted through the display screen 243, that is, the front view, the real image of the automobile, and the like. As a result, the user 900 observes the virtual image i2 including the operation-related information formed by the reflection of the display light D1 on the display screen 243 on the external world image behind the display screen 243, that is, the see-through image. it can.
 図3は、第1の実施形態に係る虚像表示装置20の構成を示す側面模式図である。虚像表示装置20は、表示部21、投影光学系22、虚像距離変更部(像形成部)23、虚像形成光学系24、ハウジング26、中間スクリーン(投影部材)29、および表示制御部30を備える。ハウジング26内には、表示スクリーン243以外の虚像表示装置20の各構成要素が収納される。 FIG. 3 is a schematic side view showing the configuration of the virtual image display device 20 according to the first embodiment. The virtual image display device 20 includes a display unit 21, a projection optical system 22, a virtual image distance changing unit (image forming unit) 23, a virtual image forming optical system 24, a housing 26, an intermediate screen (projection member) 29, and a display control unit 30. .. Each component of the virtual image display device 20 other than the display screen 243 is housed in the housing 26.
 また、図3に示す例では、表示部21、投影光学系22、および虚像距離変更部23を通り、虚像形成光学系24のミラー241に至るまでの光軸AXは、Z方向で同じ高さに設定されている。 Further, in the example shown in FIG. 3, the optical axis AX passing through the display unit 21, the projection optical system 22, and the virtual image distance changing unit 23 to reach the mirror 241 of the virtual image forming optical system 24 has the same height in the Z direction. Is set to.
 なお、以下においては、虚像距離変更部23前後での光軸AXを区別する場合には、上流側の光軸を光軸AX0、下流側を光軸AX1と表記し、これらを総称する場合には単に光軸AXと表記する。 In the following, when distinguishing the optical axis AX before and after the virtual image distance changing unit 23, the optical axis on the upstream side is referred to as the optical axis AX0 and the optical axis on the downstream side is referred to as the optical axis AX1. Is simply expressed as the optical axis AX.
 (表示部21)
 表示部21は、2次元的な表示面21aを有する。表示面21aに形成された像は、投影光学系22で拡大されて中間スクリーン29へ投影される。この際、2次元表示が可能な表示部21を用いることで、中間スクリーン29への投影像の切換えを比較的高速で行える。
(Display unit 21)
The display unit 21 has a two-dimensional display surface 21a. The image formed on the display surface 21a is magnified by the projection optical system 22 and projected onto the intermediate screen 29. At this time, by using the display unit 21 capable of two-dimensional display, the projection image on the intermediate screen 29 can be switched at a relatively high speed.
 図4は、表示部21および表示制御部30の構成を例示するブロック図である。図4に示すように、表示部21は、表示素子211および光源部212を有する。表示素子211は、DMD(Digital Micromirror Device)やLCOS(Liquid Crystal On Silicon)等の反射型の素子でありうる。 FIG. 4 is a block diagram illustrating the configurations of the display unit 21 and the display control unit 30. As shown in FIG. 4, the display unit 21 includes a display element 211 and a light source unit 212. The display element 211 may be a reflective element such as a DMD (Digital Micromirror Device) or an LCOS (Liquid Crystal On Silicon).
 光源部212は、RGB表示を実現するため、例えば、マトリックス状に配置された複数個のLEDを備える。光源部212のLEDは光源として機能する。 The light source unit 212 includes, for example, a plurality of LEDs arranged in a matrix in order to realize RGB display. The LED of the light source unit 212 functions as a light source.
 表示素子211としてDMDを用いると、明るさを維持しつつ画像を高速で切り替えることが容易になり、投影距離(以下、虚像距離という)を変化させる表示に有利である。また、光源部212は、LEDの代わりに、レーザー、ランプ等を使用することもできる。 When DMD is used as the display element 211, it becomes easy to switch images at high speed while maintaining brightness, which is advantageous for a display that changes the projection distance (hereinafter referred to as virtual image distance). Further, the light source unit 212 may use a laser, a lamp, or the like instead of the LED.
 あるいは、表示素子211として液晶等の透過型の素子を使用し、光源部212の光源としてバックライトを使用することもできる。例えば、表示素子211が液晶表示素子である場合、それ自体が広い画角を有しているので、投影光学系22の設置を省略できる。 Alternatively, a transmissive element such as a liquid crystal can be used as the display element 211, and a backlight can be used as the light source of the light source unit 212. For example, when the display element 211 is a liquid crystal display element, the installation of the projection optical system 22 can be omitted because the display element 211 itself has a wide angle of view.
 なお、表示部21は、30fps以上、好ましくは150fpsを越えるフレームレートで動作する。これにより、異なる虚像距離に複数の虚像i2が同時に表示されているように見せることが容易になる。 The display unit 21 operates at a frame rate of 30 fps or more, preferably 150 fps or more. This makes it easy to make it appear that a plurality of virtual images i2 are displayed at the same time at different virtual image distances.
 (投影光学系22)
 投影光学系22は、固定焦点のレンズ系であり、図示を省略するが、複数のレンズを有する。投影光学系22は、表示部21の表示面21aに形成された画像を中間像i1として中間スクリーン29上に適当な倍率で拡大投影する(中間像i1自体は、表示部21の表示動作が前提となる)。なお、投影光学系22は、この投影光学系22の最も中間スクリーン29側に配置された絞り221を有する。このように絞り221を配置することで、投影光学系22の中間スクリーン29側のFナンバーの設定や調整が比較的容易になる。
(Projection optical system 22)
The projection optical system 22 is a fixed-focus lens system, and although not shown, it has a plurality of lenses. The projection optical system 22 magnifies and projects the image formed on the display surface 21a of the display unit 21 as an intermediate image i1 on the intermediate screen 29 at an appropriate magnification (the intermediate image i1 itself is premised on the display operation of the display unit 21). Will be). The projection optical system 22 has an aperture 221 arranged on the most intermediate screen 29 side of the projection optical system 22. By arranging the aperture 221 in this way, it becomes relatively easy to set and adjust the F number on the intermediate screen 29 side of the projection optical system 22.
 (中間スクリーン29)
 中間スクリーン29は、投影光学系22からの光を結像し、配光角を所望の角度に制御するための拡散スクリーンであり、結像位置(つまり中間像i1の結像予定位置、またはその近傍の焦点深度内)において中間像i1を形成する。この結果、中間スクリーン29を光軸AX1方向に移動させることにより、中間像i1の位置も光軸AX1方向に移動させることができる。
(Intermediate screen 29)
The intermediate screen 29 is a diffusion screen for forming an image of light from the projection optical system 22 and controlling the light distribution angle to a desired angle, and is an imaging position (that is, a planned imaging position of the intermediate image i1 or a position thereof). An intermediate image i1 is formed (within the depth of focus in the vicinity). As a result, by moving the intermediate screen 29 in the optical axis AX1 direction, the position of the intermediate image i1 can also be moved in the optical axis AX1 direction.
 なお、表示部21の表示が動作していなければ、必ずしも表示画像としての中間像i1は形成されないが、以下においては、実際に形成されていなくても中間像i1が形成されると想定される位置も中間像の位置と呼ぶ場合がある。中間スクリーン29としては、例えば摺りガラス、レンズ拡散板、マイクロレンズアレイ等を用いることができる。 If the display of the display unit 21 is not operating, the intermediate image i1 as a display image is not necessarily formed, but in the following, it is assumed that the intermediate image i1 is formed even if it is not actually formed. The position may also be referred to as the position of the intermediate image. As the intermediate screen 29, for example, frosted glass, a lens diffuser, a microlens array, or the like can be used.
 (虚像距離変更部23)
 虚像距離変更部23は、中間スクリーン29に付随して設けられ、中間スクリーン29や中間像i1を光軸AXに沿って所望の位置に移動させるためのものである。虚像距離変更部23は、中間スクリーン29を支持する支持枠部231を光軸AX方向への可動を案内するガイド部232と、支持枠部231を中間スクリーン29とともに光軸AX方向に所望の速度で往復移動させる駆動部233とを有する。
(Virtual image distance changing unit 23)
The virtual image distance changing unit 23 is provided along with the intermediate screen 29, and is for moving the intermediate screen 29 and the intermediate image i1 to a desired position along the optical axis AX. The virtual image distance changing unit 23 includes a guide unit 232 that guides the support frame portion 231 that supports the intermediate screen 29 to move in the optical axis AX direction, and the support frame portion 231 together with the intermediate screen 29 at a desired speed in the optical axis AX direction. It has a drive unit 233 which is reciprocated by
 虚像距離変更部23によって中間スクリーン29を光軸AXに沿って移動させることで、虚像形成光学系24によって表示スクリーン243の背後に形成される虚像としての虚像i2と観察者との距離を大きく、または小さくすることができる。 By moving the intermediate screen 29 along the optical axis AX by the virtual image distance changing unit 23, the distance between the virtual image i2 as a virtual image formed behind the display screen 243 by the virtual image forming optical system 24 and the observer is increased. Or it can be made smaller.
 このように、投影される虚像i2の位置を前後に変化させるとともに、表示内容をその位置に応じたものとすることで、虚像i2までの虚像距離を変化させつつ虚像i2を変化させることになり、一連の投影像としての虚像i2を3次元的なものとすることができる。ここで、中間スクリーン29の光軸AXに沿った移動範囲は、中間像i1の結像予定位置またはその近傍に相当するものであるが、投影光学系22の中間スクリーン29側の焦点深度の範囲内とすることが望ましい。これにより、中間像i1の状態と虚像としての虚像i2の結像状態とを、いずれも略ピントが合った良好な状態とすることができる。 In this way, by changing the position of the projected virtual image i2 back and forth and making the display content according to the position, the virtual image i2 is changed while changing the virtual image distance to the virtual image i2. , The virtual image i2 as a series of projected images can be made three-dimensional. Here, the moving range of the intermediate screen 29 along the optical axis AX corresponds to the planned imaging position of the intermediate image i1 or its vicinity, but is the range of the depth of focus on the intermediate screen 29 side of the projection optical system 22. It is desirable to keep it inside. As a result, both the state of the intermediate image i1 and the imaged state of the virtual image i2 as a virtual image can be brought into a good state in which they are substantially in focus.
 中間スクリーン29の移動速度は、人間の視覚認知よりも速く、虚像としての虚像i2が複数個所または複数虚像距離に同時に表示されているかのように見せることができる速度であることが望ましい。例えば、虚像i2が遠距離、中遠距離、中距離、中近距離、および近距離の5段階で順次投影されるものとして、表示部21に150fpsで表示を行わせると、各距離(例えば遠距離)の虚像i2は、30fpsで表示の切り替えが行われることになり、中遠距離、中距離、中近距離、および近距離の虚像i2の表示が並列的に行われかつ切り換えが連続的なものとして認識される。なお、中間スクリーン29の移動速度は、以上から明らかなように、表示部21の表示動作と同期するように設定される。 It is desirable that the moving speed of the intermediate screen 29 is faster than the human visual perception, and it is possible to make it appear as if the virtual image i2 as a virtual image is displayed at a plurality of places or at a plurality of virtual image distances at the same time. For example, assuming that the virtual image i2 is sequentially projected in five stages of long distance, medium and long distance, medium distance, medium and short distance, and short distance, when the display unit 21 displays at 150 fps, each distance (for example, long distance) is displayed. ), The display of the virtual image i2 is switched at 30 fps, and the virtual images i2 at medium and long distances, medium distances, medium and short distances, and short distances are displayed in parallel and the switching is continuous. Be recognized. As is clear from the above, the moving speed of the intermediate screen 29 is set to be synchronized with the display operation of the display unit 21.
 なお、本実施形態における虚像距離変更部23は中間スクリーン29を光軸AXに沿って往復運動させるものであるが、例えばモーターによる往復運動は加速と減速を繰り返すものであるため、モーターに相当な負荷がかかり、熱が発生しやすくなる。結果として想定通りの運動速度が得られなくなることが想定される。この点を解決する手段としてはガイド部232にバネを挿入し、その弾性力によって加速と減速を補助することが考えられる。あるいは、カム構造、スライダークランク機構等を利用し回転運動を往復運動にするように構成してもよい。 The virtual image distance changing unit 23 in the present embodiment reciprocates the intermediate screen 29 along the optical axis AX. For example, the reciprocating motion by the motor repeats acceleration and deceleration, which is equivalent to a motor. A load is applied and heat is easily generated. As a result, it is assumed that the expected exercise speed cannot be obtained. As a means for solving this point, it is conceivable to insert a spring into the guide portion 232 and assist acceleration and deceleration by the elastic force thereof. Alternatively, a cam structure, a slider crank mechanism, or the like may be used to make the rotary motion a reciprocating motion.
 また、中間スクリーン29の光軸AXに沿った移動は、中間スクリーン29を光軸AXに沿って往復運動させるものに限定されない。例えば、偏心軸を有し、複数の中間スクリーン29を、断面形状が多角形、楕円形、螺旋形等の柱体側面に貼り付けた回転体を光軸AX方向と直交する方向を回転軸として回転させることにより、中間スクリーン29を光軸AXに沿って移動させる構成としてもよい。また、回転盤に光軸AX方向にずらして設置された複数の中間スクリーン29を、軸AX方向を回転軸として回転させることにより、中間スクリーン29を光軸AXに沿って移動させる構成としてもよい。 Further, the movement of the intermediate screen 29 along the optical axis AX is not limited to the reciprocating motion of the intermediate screen 29 along the optical axis AX. For example, a rotating body having an eccentric axis and having a plurality of intermediate screens 29 attached to the side surface of a pillar whose cross-sectional shape is polygonal, elliptical, spiral, etc. is defined as a rotation axis orthogonal to the optical axis AX direction. The intermediate screen 29 may be moved along the optical axis AX by rotating it. Further, the intermediate screen 29 may be moved along the optical axis AX by rotating a plurality of intermediate screens 29 installed on the rotating disk so as to be offset in the optical axis AX direction with the axis AX direction as the rotation axis. ..
 また、光軸AXに沿って中間スクリーン29を移動させる代わりに、光軸AXに沿って液晶層を積層し、像形成領域となる位置の液晶層への印加電圧を制御して屈折率を変更するように構成してもよい。これにより、像形成光学系によって形成される実像または虚像と観察者との距離を変更することができる。 Further, instead of moving the intermediate screen 29 along the optical axis AX, the liquid crystal layers are laminated along the optical axis AX, and the voltage applied to the liquid crystal layer at the position serving as the image forming region is controlled to change the refractive index. It may be configured to do so. This makes it possible to change the distance between the observer and the real or virtual image formed by the image forming optical system.
 図5は、表示部を光軸方向に移動する移動機構を有する構成を例示する模式図である。図5に示すように、表示素子211が液晶表示素子である場合、表示制御部30の指示にしたがって、表示部21を光軸AX1方向に移動する移動機構234を備えることで、虚像距離を変更する構成としてもよい。 FIG. 5 is a schematic diagram illustrating a configuration having a moving mechanism for moving the display unit in the optical axis direction. As shown in FIG. 5, when the display element 211 is a liquid crystal display element, the virtual image distance is changed by providing a moving mechanism 234 that moves the display unit 21 in the optical axis AX1 direction according to the instruction of the display control unit 30. It may be configured to be used.
 (虚像形成光学系24)
 虚像形成光学系24は、中間スクリーン29に形成された中間像i1を表示スクリーン243と協働して拡大し、ユーザー900の前方に虚像i2を形成する。虚像形成光学系24は、少なくとも1枚のミラーで構成されるが、図示の例では2枚のミラー241、242を含む。
(Virtual image forming optical system 24)
The virtual image forming optical system 24 magnifies the intermediate image i1 formed on the intermediate screen 29 in cooperation with the display screen 243, and forms the virtual image i2 in front of the user 900. The virtual image forming optical system 24 is composed of at least one mirror, but includes two mirrors 241 and 242 in the illustrated example.
 (表示制御部30)
 表示制御部30は、表示部21および虚像距離変更部23を制御する。図4に示すように、表示制御部30は、表示素子制御部31、光源駆動部32、および記憶部33を有する。表示素子制御部31は、図示しないCPU(Central Processing Unit)、RAM(Random Access Memory)、およびROM(Read Only Memory)を備えるコンピューターである。
(Display control unit 30)
The display control unit 30 controls the display unit 21 and the virtual image distance changing unit 23. As shown in FIG. 4, the display control unit 30 includes a display element control unit 31, a light source drive unit 32, and a storage unit 33. The display element control unit 31 is a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory) (not shown).
 表示素子制御部31は、表示素子211に表示する画像データを取得する取得部として機能し、表示素子211および光源駆動部32を制御する。画像データは、記憶部33に予め記憶されているか、あるいは後述する主制御部60の記憶部に予め記憶されている。画像データの画像が表示素子211で表示される順序およびタイミングは、表示素子制御部31によって管理されている。光源駆動部32は、表示素子制御部31の指示にしたがって、光源部212の光源を駆動する。画像データがカラーである場合、光源部212からはRGB各色の光が時分割で出射される。 The display element control unit 31 functions as an acquisition unit for acquiring image data to be displayed on the display element 211, and controls the display element 211 and the light source drive unit 32. The image data is stored in advance in the storage unit 33, or is stored in advance in the storage unit of the main control unit 60, which will be described later. The order and timing at which the images of the image data are displayed on the display element 211 are managed by the display element control unit 31. The light source driving unit 32 drives the light source of the light source unit 212 according to the instruction of the display element control unit 31. When the image data is color, light of each RGB color is emitted from the light source unit 212 in a time-division manner.
 本実施形態では、詳細は後述するが、表示素子制御部31は、表示素子211に画像データの画像を順次表示する際、表示すべき画像がない場合、表示部21の光源をオフする。これにより、後述する像形成領域に形成すべき像がない場合は、表示部21の光源がオフされる。 In the present embodiment, the details will be described later, but the display element control unit 31 turns off the light source of the display unit 21 when there is no image to be displayed when the images of the image data are sequentially displayed on the display element 211. As a result, when there is no image to be formed in the image forming region described later, the light source of the display unit 21 is turned off.
 表示素子211がDMDやLCOS等の反射型の素子である場合、表示素子制御部31は、取得した画像データに応じて、表示素子211の画素ごとに、光源部212からの光Lsに対する反射を制御することにより、各画素のオン/オフを切り替える。これにより、光源部212からの光Lsに対する反射光Ldが表示素子211から出射され、表示素子211に画像が表示される。 When the display element 211 is a reflection type element such as a DMD or LCOS, the display element control unit 31 reflects the light Ls from the light source unit 212 for each pixel of the display element 211 according to the acquired image data. By controlling, each pixel is switched on / off. As a result, the reflected light Ld with respect to the light Ls from the light source unit 212 is emitted from the display element 211, and the image is displayed on the display element 211.
 表示制御部30は、中間スクリーン29上への中間像i1の形成タイミングを制御し、表示スクリーン243の背後に虚像距離(投影距離)が変化する3次元的な虚像i2を表示させる。具体的には、中間像i1の位置、すなわち中間スクリーン29の位置を光軸AX1上で虚像形成光学系24に近い側に移動させることで、虚像i2までの虚像距離が減少する。また、反対に、中間スクリーン29の位置を光軸AX1上で虚像形成光学系24から遠い側に移動させることで、虚像i2までの虚像距離が増加する。 The display control unit 30 controls the formation timing of the intermediate image i1 on the intermediate screen 29, and displays a three-dimensional virtual image i2 in which the virtual image distance (projection distance) changes behind the display screen 243. Specifically, by moving the position of the intermediate image i1, that is, the position of the intermediate screen 29 to the side closer to the virtual image forming optical system 24 on the optical axis AX1, the virtual image distance to the virtual image i2 is reduced. On the contrary, by moving the position of the intermediate screen 29 to the side farther from the virtual image forming optical system 24 on the optical axis AX1, the virtual image distance to the virtual image i2 is increased.
 以上の虚像表示装置20において、光軸AX1上に中間スクリーン29を配置することにより、光軸AX1方向に移動可能な中間像i1を形成できるだけでなく、視野角とアイボックスサイズとを確保しつつ、光学系の光利用効率を高くすることができる。なお、中間スクリーン29による拡散の配光角が狭すぎると、アイボックスサイズが小さくなってしまう。逆に、中間スクリーン29による拡散の配光角を大きくしすぎると、光利用効率を高くするために虚像形成光学系24のF値を小さくする必要があるため、焦点深度が浅くなり表示可能な距離範囲が狭まってしまう。 In the above virtual image display device 20, by arranging the intermediate screen 29 on the optical axis AX1, not only the intermediate image i1 movable in the optical axis AX1 direction can be formed, but also the viewing angle and the eyebox size can be secured. , The light utilization efficiency of the optical system can be increased. If the diffused light distribution angle by the intermediate screen 29 is too narrow, the eyebox size becomes small. On the contrary, if the light distribution angle of diffusion by the intermediate screen 29 is made too large, the F value of the virtual image forming optical system 24 needs to be reduced in order to increase the light utilization efficiency, so that the depth of focus becomes shallow and display is possible. The distance range is narrowed.
 (虚像表示装置20の制御方法)
 図6は、第1の実施形態における虚像表示装置20の制御方法について例示するためのフローチャートである。図6に示すフローチャートの処理は、表示素子制御部31のCPUが制御プログラムを実行することにより実現される。また、図7は、中間像i1を形成する像形成領域について概念的に示す模式図である。
(Control method of virtual image display device 20)
FIG. 6 is a flowchart for exemplifying the control method of the virtual image display device 20 in the first embodiment. The processing of the flowchart shown in FIG. 6 is realized by the CPU of the display element control unit 31 executing the control program. Further, FIG. 7 is a schematic diagram conceptually showing an image forming region forming the intermediate image i1.
 なお、以下では、表示素子211がDMDやLCOS等の反射型の素子である場合の処理について主に説明するが、液晶等の透過型の素子である場合の処理も同様である。 In the following, the processing when the display element 211 is a reflective element such as DMD or LCOS will be mainly described, but the processing when the display element 211 is a transmissive element such as a liquid crystal is also the same.
 図6に示すように、まず、パラメーターnを初期化する(ステップS101)。ここで、nは、中間像i1を形成する像形成領域の数に対応する。本実施形態では、虚像i2が投影される段階に応じて、中間像i1を形成するための像形成領域を、表示部21から出射した光の光軸AX1方向の異なる位置に設定する。各々の像形成領域は、例えば、表示素子211がDMDやLCOS等の反射型の素子である場合、光軸AX1方向の異なる位置に移動した中間スクリーン29の投影面に対応する。また、表示素子211が液晶等の透過型の素子である場合は、各々の像形成領域は、光軸AX1方向の異なる位置に移動した表示部21の表示面21aに対応する。 As shown in FIG. 6, first, the parameter n is initialized (step S101). Here, n corresponds to the number of image forming regions forming the intermediate image i1. In the present embodiment, the image forming region for forming the intermediate image i1 is set at different positions in the optical axis AX1 direction of the light emitted from the display unit 21 according to the stage where the virtual image i2 is projected. Each image forming region corresponds to the projection surface of the intermediate screen 29 moved to a different position in the optical axis AX1 direction, for example, when the display element 211 is a reflective element such as a DMD or LCOS. When the display element 211 is a transmissive element such as a liquid crystal, each image forming region corresponds to the display surface 21a of the display unit 21 which has moved to a different position in the optical axis AX1 direction.
 例えば、画像データに応じて、虚像i2が遠距離、中遠距離、中距離、中近距離、および近距離の5段階で順次投影されるように構成する場合、第1~第5像形成領域201~205を、光軸AX1方向の異なる位置に設定する(図7を参照)。n(n:1~5)は、第1~第5像形成領域のいずれかを、第n像形成領域として示すための変数であり、「1」に初期化される。 For example, when the virtual image i2 is configured to be sequentially projected in five stages of long distance, medium and long distance, medium distance, medium and short distance, and short distance according to the image data, the first to fifth image forming regions 201 ~ 205 are set at different positions in the optical axis AX1 direction (see FIG. 7). n (n: 1 to 5) is a variable for indicating any of the first to fifth image forming regions as the nth image forming region, and is initialized to "1".
 次に、第n像形成領域に形成すべき像があるか否かを判断する(ステップS102)。表示素子制御部31は、第n像形成領域に形成すべき像がある場合(ステップS102:YES)、第n像形成領域に形成する像に対応する画像を取得する(ステップS103)。続いて、第n像形成領域に像を形成する(ステップS104)。より具体的には、表示制御部30は、虚像距離変更部23を制御して、中間スクリーン29の位置を光軸AX1上で第n像形成領域に対応する位置まで移動し、表示部21に画像を表示して中間スクリーン29に投影することにより、第n像形成領域に中間像i1を形成する。 Next, it is determined whether or not there is an image to be formed in the nth image forming region (step S102). When there is an image to be formed in the nth image forming region (step S102: YES), the display element control unit 31 acquires an image corresponding to the image formed in the nth image forming region (step S103). Subsequently, an image is formed in the nth image forming region (step S104). More specifically, the display control unit 30 controls the virtual image distance changing unit 23 to move the position of the intermediate screen 29 to a position corresponding to the nth image forming region on the optical axis AX1 to the display unit 21. By displaying the image and projecting it on the intermediate screen 29, the intermediate image i1 is formed in the nth image forming region.
 一方、第n像形成領域に形成すべき像がない場合(ステップS102:NO)、表示部21の光源をオフする(ステップS105)。これにより、形成すべき像がない像形成領域について、表示部21からの光が中間スクリーン29に投射されないため、中間スクリーン29が発光することが防止される。 On the other hand, when there is no image to be formed in the nth image forming region (step S102: NO), the light source of the display unit 21 is turned off (step S105). As a result, the light from the display unit 21 is not projected onto the intermediate screen 29 in the image forming region where there is no image to be formed, so that the intermediate screen 29 is prevented from emitting light.
 次に、nをインクリメントし(ステップS106)、nと所定数Nとの大小を比較する(ステップS107)。Nは、像形成領域の個数に対応する。図7に示す例の場合、N=5である。nがNよりも大きい場合(ステップS107:YES)、処理を終了する(エンド)。一方、nがN以下である場合(ステップS107:NO)、ステップS102の処理に移行する。 Next, n is incremented (step S106), and the magnitude of n and a predetermined number N is compared (step S107). N corresponds to the number of image forming regions. In the case of the example shown in FIG. 7, N = 5. When n is larger than N (step S107: YES), the process ends (end). On the other hand, when n is N or less (step S107: NO), the process proceeds to step S102.
 図6に示すフローチャートの処理は、1フレーム(コマ数)についての処理であり、フレームごとに上記の処理が繰り返される。また、図7に示す例では、第2、第4、および第5像形成領域202,204,205について、それぞれ形成すべき像206~208があるので中間像i1を形成している。一方、第1および第3像形成領域201,203については、形成すべき像がないので、表示部21の光源をオフしている。 The processing of the flowchart shown in FIG. 6 is processing for one frame (number of frames), and the above processing is repeated for each frame. Further, in the example shown in FIG. 7, the intermediate images i1 are formed because there are images 206 to 208 to be formed for the second, fourth, and fifth image forming regions 202, 204, and 205, respectively. On the other hand, since there is no image to be formed in the first and third image forming regions 201 and 203, the light source of the display unit 21 is turned off.
 このように、図6に示すフローチャートの処理では、第1~第5像形成領域201~205の各々について、形成すべき像があるか否かを判断し、形成すべき像がある場合は、順次像を形成し、形成すべき像がない場合は、表示部21の光源をオフする。 As described above, in the processing of the flowchart shown in FIG. 6, it is determined whether or not there is an image to be formed for each of the first to fifth image forming regions 201 to 205, and if there is an image to be formed, Images are sequentially formed, and if there is no image to be formed, the light source of the display unit 21 is turned off.
 図6に示す例では、第1~第5像形成領域201~205のうち、第1および第3像形成領域201,203で表示部21の光源がオフされているので、バックグラウンド光が抑制されている。 In the example shown in FIG. 6, the light source of the display unit 21 is turned off in the first and third image forming regions 201 and 203 of the first to fifth image forming regions 201 to 205, so that the background light is suppressed. Has been done.
 従来の表示装置では、形成すべき像がない場合に全面黒画像を表示するが、その間に表示部21の光源は消灯されないので、バックグラウンド光が生じる。その結果、像形成領域に形成された像による光に対してバックグラウンド光の割合が大きくなり、虚像i2のコントラストが低下する。 In the conventional display device, a black image is displayed on the entire surface when there is no image to be formed, but the light source of the display unit 21 is not turned off during that time, so background light is generated. As a result, the ratio of the background light to the light generated by the image formed in the image forming region becomes large, and the contrast of the virtual image i2 decreases.
 これに対して、本実施形態の虚像表示装置20では、形成すべき像がない像形成領域について表示部21の光源をオフすることにより、バックグラウンド光が抑制されるので、虚像i2のコントラストは改善する。 On the other hand, in the virtual image display device 20 of the present embodiment, the background light is suppressed by turning off the light source of the display unit 21 in the image forming region where there is no image to be formed, so that the contrast of the virtual image i2 is high. Improve.
 (HUD装置10)
 図8は、HUD装置10のハードウェア構成を説明するブロック図である。HUD装置10は、上述した虚像表示装置20の他に、運転者検出部71、環境監視部72、および主制御部60を備える。主制御部60は、HUD装置10全体を制御することで、対向車両、通行者等のオブジェクトに対応させた虚像を3次元的に表示する。虚像の表示例については後述する。
(HUD device 10)
FIG. 8 is a block diagram illustrating a hardware configuration of the HUD device 10. In addition to the virtual image display device 20 described above, the HUD device 10 includes a driver detection unit 71, an environment monitoring unit 72, and a main control unit 60. By controlling the entire HUD device 10, the main control unit 60 three-dimensionally displays a virtual image corresponding to an object such as an oncoming vehicle or a passerby. An example of displaying a virtual image will be described later.
 運転者検出部71は、車両800内のユーザー900の存在等を検出する部分であり、運転席816に向けた内部用カメラ71a、運転席816用の画像処理部71b、および判断部71cを備える。内部用カメラ71aは、車体811内のダッシュボード814に、運転席816に対向して設置されており(図2参照)、運転席816に座るユーザー900の頭部、およびその周辺の画像を撮影する。運転席用画像処理部71bは、内部用カメラ71aで撮影した画像に対して明るさ補正等の各種画像処理を行い、判断部71cでの処理を容易にする。判断部71cは、例えば、運転席用画像処理部71bで処理した運転席画像からオブジェクトの抽出、または切り出しを行うことによってユーザー900の頭部や目(瞳910)を検出するとともに、運転席画像に付随する奥行情報から車体811内におけるユーザー900の頭部の存否とともにユーザー900の目の空間的な位置(結果的に視線の方向)を算出することが可能である。 The driver detection unit 71 is a part that detects the existence of the user 900 in the vehicle 800, and includes an internal camera 71a for the driver's seat 816, an image processing unit 71b for the driver's seat 816, and a determination unit 71c. .. The internal camera 71a is installed on the dashboard 814 in the vehicle body 811 facing the driver's seat 816 (see FIG. 2), and captures an image of the head of the user 900 sitting in the driver's seat 816 and its surroundings. To do. The driver's seat image processing unit 71b performs various image processing such as brightness correction on the image captured by the internal camera 71a, and facilitates the processing by the determination unit 71c. The determination unit 71c detects the head and eyes (pupil 910) of the user 900 by extracting or cutting out an object from the driver's seat image processed by the driver's seat image processing unit 71b, and also detects the driver's seat image. It is possible to calculate the spatial position of the user 900's eyes (resulting in the direction of the line of sight) as well as the presence or absence of the user 900's head in the vehicle body 811 from the depth information accompanying the user 900.
 環境監視部72は、オブジェクト検出部として機能する。環境監視部72は、前方に近接する自動車、自転車、歩行者等のオブジェクトを識別するとともに、オブジェクトまでの距離を判定する。環境監視部72は、外部用カメラ72a、外部用画像処理部72b、および判断部72cを備える。外部用カメラ72aは車体811内外の適所に設置されており、ユーザー900または車両800の前方、側方等の外部画像を撮影する。外部用画像処理部72bは、外部用カメラ72aで撮影した画像に対して明るさ補正等の各種画像処理を行い、判断部72cでの処理を容易にする。判断部72cは、外部用画像処理部72bで処理した外部画像からオブジェクトの抽出、または切り出しを行うことによって自動車、自転車、歩行者等のオブジェクトの存否を検出するとともに、外部画像に付随する奥行情報から車両800前方におけるオブジェクトの空間的な位置を算出する。 The environment monitoring unit 72 functions as an object detection unit. The environment monitoring unit 72 identifies objects such as automobiles, bicycles, and pedestrians that are close to the front, and determines the distance to the objects. The environment monitoring unit 72 includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c. The external camera 72a is installed at an appropriate position inside and outside the vehicle body 811 and captures external images such as the front and sides of the user 900 or the vehicle 800. The external image processing unit 72b performs various image processing such as brightness correction on the image captured by the external camera 72a, and facilitates the processing by the determination unit 72c. The determination unit 72c detects the existence or nonexistence of objects such as automobiles, bicycles, and pedestrians by extracting or cutting out objects from the external image processed by the external image processing unit 72b, and depth information accompanying the external image. The spatial position of the object in front of the vehicle 800 is calculated from.
 なお、内部用カメラ71aや外部用カメラ72aは、例えば複眼型の3次元カメラを含む。つまり、両カメラ71a、72aは、結像用のレンズと、CMOS(Complementary Metal-Oxide Semiconductor)、その他の撮像素子とを一組とするカメラ素子をマトリックス状に配列したものであり、撮像素子用の駆動回路をそれぞれ有する。各カメラ71a、72aを構成する複数のカメラ素子は、例えば奥行方向の異なる位置にピントを合わせるようになっており、或いは相対的な視差を検出できるようになっており、各カメラ素子から得た画像の状態(フォーカス状態、オブジェクトの位置等)を解析することで、画像内の各領域、またはオブジェクトまでの距離を判定する。 The internal camera 71a and the external camera 72a include, for example, a compound eye type three-dimensional camera. That is, both cameras 71a and 72a are a matrix of camera elements in which a lens for imaging, CMOS (Complementary Metal-Oxide Sensor), and other image pickup elements are arranged in a matrix, and are used for the image pickup element. Each has a drive circuit of. The plurality of camera elements constituting the cameras 71a and 72a are, for example, focused on different positions in the depth direction, or can detect relative parallax, and are obtained from each camera element. By analyzing the state of the image (focus state, position of the object, etc.), the distance to each area in the image or the object is determined.
 なお、上述したような複眼型のカメラ71a、72aに代えて、またはこれとともに、2次元カメラと赤外距離センサーとを組み合わせたものを用いてもよい。これにより、撮影した画面内の各部に関して奥行方向の距離情報を得ることができる。また、複眼型のカメラ71a、72aに代えて、2つの2次元カメラを分離配置したステレオカメラによって、撮影した画面内の各部(領域、またはオブジェクト)に関して奥行方向の距離情報を得ることができる。その他、単一の2次元カメラにおいて、焦点距離を高速で変化させながら撮像を行うことによっても、撮影した画面内の各部に関して奥行方向の距離情報を得てもよい。 In addition, instead of or together with the compound eye type cameras 71a and 72a as described above, a combination of a two-dimensional camera and an infrared distance sensor may be used. As a result, it is possible to obtain distance information in the depth direction for each part in the captured screen. Further, instead of the compound eye type cameras 71a and 72a, a stereo camera in which two two-dimensional cameras are separately arranged can obtain distance information in the depth direction with respect to each part (area or object) in the captured screen. In addition, with a single two-dimensional camera, distance information in the depth direction may be obtained for each part in the captured screen by performing imaging while changing the focal length at high speed.
 さらに、複眼型の外部用カメラ72aに代えて、LIDAR(Light Detection And Ranging)技術を用いてもよい。これにより検出領域内の各部(領域、またはオブジェクト)に関して奥行方向の距離情報を得ることができる。LIDAR技術により、パルス状のレーザー照射に対する散乱光を測定し、遠距離にあるオブジェクトまでの距離や拡がり計測して視野内のオブジェクトまでの距離情報やオブジェクトの拡がりに関する情報を取得できる。このLIDAR技術のようなレーダーセンシング技術と画像情報からオブジェクトの距離等を検出する技術とを組み合わせることによって、オブジェクトの検出精度を高めることができる。 Further, instead of the compound eye type external camera 72a, LIDAR (Light Detection And Ringing) technology may be used. As a result, distance information in the depth direction can be obtained for each part (area or object) in the detection area. With the LIDAR technology, it is possible to measure the scattered light for pulsed laser irradiation, measure the distance and spread to an object at a long distance, and acquire the distance information to the object in the field of view and the information on the spread of the object. By combining a radar sensing technology such as this LIDAR technology with a technology for detecting an object's distance or the like from image information, it is possible to improve the object detection accuracy.
 表示制御部30は、主制御部60の制御下で虚像表示装置20を動作させて、表示スクリーン243の背後に虚像距離(投影距離ともいう)が変化する3次元的な虚像i2を表示させる。本実施形態では、像形成領域に形成すべき像がない場合、すなわち、表示素子に表示すべき画像がない場合、表示部の光源をオフする。 The display control unit 30 operates the virtual image display device 20 under the control of the main control unit 60 to display a three-dimensional virtual image i2 in which the virtual image distance (also referred to as a projection distance) changes behind the display screen 243. In the present embodiment, when there is no image to be formed in the image forming region, that is, when there is no image to be displayed on the display element, the light source of the display unit is turned off.
 表示制御部30は、主制御部60を介して環境監視部72から受信した表示形状や表示距離を含む表示情報から、虚像表示装置20に表示させる虚像i2を形成する。虚像i2は、例えば表示スクリーン243の背後に存在する自動車、自転車、歩行者その他のオブジェクトOB(後述の図9参照)に対してその奥行き位置方向に関して周辺に位置するフレームF(図9参照)のような標識になる。 The display control unit 30 forms a virtual image i2 to be displayed on the virtual image display device 20 from display information including a display shape and a display distance received from the environment monitoring unit 72 via the main control unit 60. The virtual image i2 is, for example, a frame F (see FIG. 9) located around the car, bicycle, pedestrian, or other object OB (see FIG. 9 described later) existing behind the display screen 243 in the depth position direction thereof. It becomes a sign like.
 このように、HUD装置10は、虚像距離を変更することで、運転者900の視線の方向にかかわらず適切な位置に虚像i2を表示できるが、運転者検出部71によりユーザー900の視線の方向を推定する機能を、虚像i2の表示に適用することも可能である。 In this way, the HUD device 10 can display the virtual image i2 at an appropriate position regardless of the direction of the line of sight of the driver 900 by changing the virtual image distance, but the direction of the line of sight of the user 900 by the driver detection unit 71. It is also possible to apply the function of estimating the above to the display of the virtual image i2.
 例えば、表示制御部30は、主制御部60を介して運転者検出部71からユーザー900の存在や目の位置に関する検出出力を受け取る。これにより、虚像表示装置20による虚像i2の投影の自動的な開始や停止が可能になる。また、ユーザー900の視線の方向のみに虚像i2の投影を行うこともできる。さらに、ユーザー900の視線の方向の虚像i2のみを明るくする、点滅する等の強調を行った投影を行うこともできる。 For example, the display control unit 30 receives a detection output regarding the presence of the user 900 and the position of the eyes from the driver detection unit 71 via the main control unit 60. This makes it possible to automatically start and stop the projection of the virtual image i2 by the virtual image display device 20. It is also possible to project the virtual image i2 only in the direction of the line of sight of the user 900. Further, it is also possible to perform projection with emphasis such as brightening or blinking only the virtual image i2 in the direction of the line of sight of the user 900.
 図9は、HUD装置10による具体的な表示状態を説明する斜視図である。運転者(観察者)であるユーザー900の前方は観察視野に相当する検出領域DFとなっている。検出領域DF内、つまり道路、およびその周辺に、歩行者等である人のオブジェクトOB1、OB3や、自動車等である移動体のオブジェクトOB2が存在する。この場合、HUD装置10の主制御部60は、虚像表示装置20によって3次元的な虚像i2(i21,i22,i24)を投影させ、各オブジェクトOB1、OB2、OB3に対して関連情報像としてのフレームF1、F2、F3を付加する。この際、ユーザー900から各オブジェクトOB1、OB2、OB3までの距離が異なるので、フレームF(F1、F2、F3)を表示させる虚像i21、i22、i23までの投影距離は、環境監視部72が判定したユーザー900または車両800から各オブジェクトOB1、OB2、OB3までの距離に相当させている。なお、虚像i23、i25は、中間像i1が形成されないので、実際には投影されない。 FIG. 9 is a perspective view illustrating a specific display state by the HUD device 10. The front of the user 900, who is the driver (observer), is a detection area DF corresponding to the observation field of view. Within the detection area DF, that is, in the road and its surroundings, there are objects OB1 and OB3 of a person such as a pedestrian and an object OB2 of a moving body such as an automobile. In this case, the main control unit 60 of the HUD device 10 projects a three-dimensional virtual image i2 (i21, i22, i24) by the virtual image display device 20, and serves as a related information image for each object OB1, OB2, OB3. Frames F1, F2, and F3 are added. At this time, since the distances from the user 900 to the objects OB1, OB2, and OB3 are different, the environment monitoring unit 72 determines the projection distances to the virtual images i21, i22, and i23 for displaying the frames F (F1, F2, F3). It corresponds to the distance from the user 900 or the vehicle 800 to each object OB1, OB2, OB3. The virtual images i23 and i25 are not actually projected because the intermediate image i1 is not formed.
 また、虚像i21、i22、i24の投影距離は、離散的であり、オブジェクトOB1、OB2、OB3までの現実の距離に対して正確に一致しない場合がある。しかしながら、虚像i21、i22、i23の投影距離と、オブジェクトOB1、OB2、OB3までの現実の距離との差が大きくなければ、ユーザー900の視点が(X方向で)動いても視差が生じにくく、オブジェクトOB1、OB2、OB3とフレームF1、F2、F3との配置関係を略維持できる。 Further, the projected distances of the virtual images i21, i22, and i24 are discrete and may not exactly match the actual distances to the objects OB1, OB2, and OB3. However, if the difference between the projected distances of the virtual images i21, i22, and i23 and the actual distances to the objects OB1, OB2, and OB3 is not large, parallax is unlikely to occur even if the viewpoint of the user 900 moves (in the X direction). The arrangement relationship between the objects OB1, OB2, OB3 and the frames F1, F2, F3 can be substantially maintained.
 以上で説明した第1実施形態に係る虚像表示装置20、およびこれを備えたHUD装置10によれば、形成すべき像がない像形成領域について、表示部の光源をオフするので、バックグラウンド光を抑制できる。その結果、バックグラウンド光による虚像i2のコントラストの低下を抑制できる。 According to the virtual image display device 20 according to the first embodiment described above and the HUD device 10 provided with the virtual image display device 20, the light source of the display unit is turned off in the image forming region where there is no image to be formed, so that the background light is used. Can be suppressed. As a result, the decrease in contrast of the virtual image i2 due to the background light can be suppressed.
 <第2の実施形態>
 上述の第1の実施形態では、表示装置としての虚像表示装置がHUD装置に搭載される場合について説明した。第2の実施形態では、表示装置としての虚像表示装置がヘッドマウントディスプレイ装置(以下、「HMD装置」という)に搭載される場合について説明する。
<Second embodiment>
In the first embodiment described above, a case where a virtual image display device as a display device is mounted on the HUD device has been described. In the second embodiment, a case where a virtual image display device as a display device is mounted on a head-mounted display device (hereinafter, referred to as “HMD device”) will be described.
 本実施形態の虚像表示装置は、HMD装置に搭載されるため、第1の実施形態のHUD装置に搭載される虚像表示装置よりも小型かつ軽量であるが、第1の実施形態の虚像表示装置と同様の機能を有する。すなわち、本実施形態の虚像表示装置は、表示部に表示されている画像情報を、虚像距離を変化させつつユーザーに向けて虚像として表示する機能を有する。以下では、説明の重複を避けるため、第1の実施形態と同様の構成については説明を省略する。 Since the virtual image display device of the present embodiment is mounted on the HMD device, it is smaller and lighter than the virtual image display device mounted on the HUD device of the first embodiment, but the virtual image display device of the first embodiment Has the same function as. That is, the virtual image display device of the present embodiment has a function of displaying the image information displayed on the display unit as a virtual image toward the user while changing the virtual image distance. In the following, in order to avoid duplication of description, description of the same configuration as in the first embodiment will be omitted.
 図10Aは、第2の実施形態に係る虚像表示装置40、およびこれを含むHMD装置11を例示する模式図である。図10Bは、図10AのB-B線に沿ったHMD装置11の断面図である。 FIG. 10A is a schematic view illustrating the virtual image display device 40 according to the second embodiment and the HMD device 11 including the virtual image display device 40. FIG. 10B is a cross-sectional view of the HMD device 11 along the line BB of FIG. 10A.
 (HMD装置11)
 本実施形態に係るHMD装置11は、ユーザー(観察者)の頭部に装着して使用される画像表示装置である。例えば、HMD装置11は、視力矯正用のメガネを模した構造で構成されている。すなわち、HMD装置11は、左右一対のテンプル411、412、ブリッジ413、左右一対の透明部材414、415、虚像表示装置40、撮像装置50、オブジェクト検出部52、および制御部53を有する。
(HMD device 11)
The HMD device 11 according to the present embodiment is an image display device worn on the head of a user (observer). For example, the HMD device 11 has a structure that imitates glasses for correcting eyesight. That is, the HMD device 11 has a pair of left and right temples 411 and 412, a bridge 413, a pair of left and right transparent members 414 and 415, a virtual image display device 40, an image pickup device 50, an object detection unit 52, and a control unit 53.
 テンプル411、412は、例えば、弾性素材から構成される長尺棒状の部材である。テンプル411、412のそれぞれの一方の端部には、ユーザーの耳に掛けられる耳掛け部分が設けられ、他方端部には、透明部材414、415が固定される。 Temples 411 and 412 are, for example, long rod-shaped members made of an elastic material. An ear hook portion to be hung on the user's ear is provided at one end of each of the temples 411 and 421, and transparent members 414 and 415 are fixed to the other end.
 ブリッジ413は、左右一対の透明部材414、415を互いに連結するための短尺棒状の部材である。ブリッジ413の両端には、透明部材414、415が固定される。これにより、左右一対の透明部材414、415は、一定の間隔を空けて保持される。 The bridge 413 is a short rod-shaped member for connecting a pair of left and right transparent members 414 and 415 to each other. Transparent members 414 and 415 are fixed to both ends of the bridge 413. As a result, the pair of left and right transparent members 414 and 415 are held at regular intervals.
 透明部材414、415は、HMD装置11を装着したユーザーが外界を観察できるように、外界からの光を透過してユーザーの眼に届けることが可能な透明な材料(ガラス、プラスチック、フィルム等)により構成される。 The transparent members 414 and 415 are transparent materials (glass, plastic, film, etc.) capable of transmitting light from the outside world and delivering it to the user's eyes so that the user wearing the HMD device 11 can observe the outside world. Consists of.
 本実施形態では、ユーザーの右眼に対応する透明部材415の上部には、虚像表示装置40の本体部41が設けられ、透明部材415の内部にはプリズム42が設けられている。また、左眼に対応する透明部材414の上部には、撮像装置50が設けられている。さらに、テンプル412には、オブジェクト検出部52および制御部53が配置されている。 In the present embodiment, the main body 41 of the virtual image display device 40 is provided on the upper part of the transparent member 415 corresponding to the right eye of the user, and the prism 42 is provided inside the transparent member 415. An imaging device 50 is provided on the upper portion of the transparent member 414 corresponding to the left eye. Further, an object detection unit 52 and a control unit 53 are arranged on the temple 412.
 (虚像表示装置40)
 虚像表示装置40は、外界の景色に付加的に重畳させる画像を表示する。例えば、虚像表示装置40は、図示しない視線検出装置によって検出されたユーザーの視線方向に関する情報に基づいて、外界の景色に存在する人物の近くに、この人物に関する情報(例えば、名前、居住地域等)を含むポップアップ画像を表示する。なお、虚像表示装置40は、図10Aに示すような単眼式ではなく、双眼式でもよい。
(Virtual image display device 40)
The imaginary image display device 40 displays an image additionally superimposed on the scenery of the outside world. For example, the virtual image display device 40 is based on information about the user's line-of-sight direction detected by a line-of-sight detection device (not shown), and is close to a person existing in the scenery of the outside world, and information about this person (for example, name, residential area, etc. ) Is included in the pop-up image. The virtual image display device 40 may be a binocular type instead of the monocular type as shown in FIG. 10A.
 図10Bに示すように、プリズム42は、光を屈折させるための、周囲の空間とは屈折率の異なるガラス、水晶等の透明な媒質でできた多面体である。虚像表示装置40の本体部41から重畳画像の表示のために出力された光は、プリズム42において屈折し、外界からの光とともにユーザーの瞳911へと届く。すなわち、プリズム42は、接眼光学系として機能し、本体部41で形成された像をユーザーの視野内に導く。 As shown in FIG. 10B, the prism 42 is a polyhedron made of a transparent medium such as glass or quartz having a refractive index different from that of the surrounding space for refracting light. The light output from the main body 41 of the virtual image display device 40 for displaying the superimposed image is refracted by the prism 42 and reaches the user's pupil 911 together with the light from the outside world. That is, the prism 42 functions as an eyepiece optical system and guides the image formed by the main body 41 into the user's field of view.
 本実施形態では、第1の実施形態と同様に、像形成領域に形成すべき像がない場合、すなわち、表示素子に表示すべき画像がない場合、表示部の光源をオフする。 In the present embodiment, as in the first embodiment, when there is no image to be formed in the image forming region, that is, when there is no image to be displayed on the display element, the light source of the display unit is turned off.
 (撮像装置50)
 撮像装置50は、カメラレンズ51の光軸方向の外界を撮像する。撮像装置220は、カメラレンズ51の光軸がユーザーの視線方向に略一致するように、透明部材414に対し固定的に保持されている。これによって撮像装置50は、ユーザーの前方視野内を撮影することが可能となる。
(Imaging device 50)
The image pickup apparatus 50 images the outside world of the camera lens 51 in the optical axis direction. The image pickup device 220 is fixedly held with respect to the transparent member 414 so that the optical axis of the camera lens 51 substantially coincides with the line-of-sight direction of the user. This enables the image pickup device 50 to take a picture in the front field of view of the user.
 (オブジェクト検出部52)
 オブジェクト検出部52は、前方に近接するオブジェクト(例えば、人物や車両等)を識別するとともに、オブジェクトまでの距離を判定する。オブジェクト検出部52は、撮像装置50で撮影した外部画像に対して明るさ補正等の各種画像処理を行い、外部画像からオブジェクトの抽出、または切り出しを行うことによって人物や車両等のオブジェクトの存否を検出する。また、オブジェクト検出部52は、外部画像に付随する奥行情報からオブジェクトの空間的な位置を算出する。
(Object detection unit 52)
The object detection unit 52 identifies an object (for example, a person, a vehicle, etc.) that is close to the front, and determines the distance to the object. The object detection unit 52 performs various image processing such as brightness correction on the external image captured by the image pickup device 50, and extracts or cuts out the object from the external image to determine the existence or nonexistence of an object such as a person or a vehicle. To detect. In addition, the object detection unit 52 calculates the spatial position of the object from the depth information accompanying the external image.
 (制御部53)
 制御部53は、虚像表示装置40を動作させて、プリズム42の背後に虚像距離が変化する3次元的な虚像i2を表示させる。
(Control unit 53)
The control unit 53 operates the virtual image display device 40 to display a three-dimensional virtual image i2 in which the virtual image distance changes behind the prism 42.
 以上で説明した第2実施形態に係る虚像表示装置40、およびこれを備えたHMD装置11によれば、第1の実施形態に係る虚像表示装置20、およびこれを備えたHUD装置10が奏する効果と同等の効果を奏する。 According to the virtual image display device 40 according to the second embodiment described above and the HMD device 11 provided with the virtual image display device 40, the effect exerted by the virtual image display device 20 according to the first embodiment and the HUD device 10 provided with the virtual image display device 20. Has the same effect as.
 なお、図10Aに示す例では、HMD装置11が視力矯正用のメガネを模した構造である場合について説明したが、HMD装置11はゴーグル型の構造であってもよい。 In the example shown in FIG. 10A, the case where the HMD device 11 has a structure imitating glasses for vision correction has been described, but the HMD device 11 may have a goggle type structure.
 以上のように、実施形態において、本発明の虚像表示装置20、およびこれを含むHUD装置10について説明した。しかしながら、本発明は、その技術思想の範囲内において当業者が適宜に追加、変形、および省略することができることはいうまでもない。 As described above, in the embodiment, the virtual image display device 20 of the present invention and the HUD device 10 including the virtual image display device 20 have been described. However, it goes without saying that the present invention can be appropriately added, modified, and omitted by those skilled in the art within the scope of the technical idea.
 例えば、上述の第1および第2の実施形態では、中間スクリーン29または表示部21を光軸AXに沿って移動させることで、虚像形成光学系24によって表示スクリーン243またはプリズム42の背後に形成される虚像i2と観察者との距離を変更する場合について説明した。しかしながら、本発明の表示装置は、虚像を形成する場合に限らず、実像を形成する場合についても適用できる。 For example, in the first and second embodiments described above, the intermediate screen 29 or display 21 is moved along the optical axis AX to be formed behind the display screen 243 or prism 42 by the virtual image forming optics 24. The case of changing the distance between the virtual image i2 and the observer has been described. However, the display device of the present invention can be applied not only to the case of forming a virtual image but also to the case of forming a real image.
 例えば、コンピューターによって生成された画像を実像として、中間スクリーン29に投射しつつ、光軸AXに沿って中間スクリーン29を移動させることで、像形成光学系によって形成される実像と観察者との距離を変更するように構成してもよい。このように、投影される実像の位置を前後に変化させるとともに、表示内容をその位置に応じたものとすることで、実像までの投影距離を変化させつつ実像を変化させることになり、一連の投影像としての実像を3次元的なものとすることができる。 For example, the distance between the observer and the real image formed by the image forming optical system by moving the intermediate screen 29 along the optical axis AX while projecting the image generated by the computer as a real image onto the intermediate screen 29. May be configured to change. In this way, by changing the position of the projected real image back and forth and making the display content according to the position, the real image can be changed while changing the projection distance to the real image. The real image as a projected image can be made three-dimensional.
 本出願は、2019年3月19日に出願された日本国特許出願番号2019-050620号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2019-0506020 filed on March 19, 2019, the disclosure of which is incorporated as a whole by reference.
10 ヘッドアップディスプレイ装置、
11 ヘッドマウントディスプレイ装置、
20 虚像表示装置、
21 表示部、
211 表示素子、
22 投影光学系、
23 虚像距離変更部、
21a 表示面、
24 虚像形成光学系、
241,242 ミラー、
243 表示スクリーン、
26 ハウジング、
29 中間スクリーン、
30 表示制御部、
40 虚像表示装置、
41 虚像表示装置の本体部、
411,412 テンプル、
413 ブリッジ、
414,415 透明部材、
42 プリズム、
50 撮像装置、
51 カメラレンズ、
52 オブジェクト検出部、
53 制御部、
60 主制御部、
71 運転者検出部、
72 環境監視部、
800 車両、
811 車体、
812 フロントウィンドウ、
813 ハンドル、
814 ダッシュボード、
815 ディスプレイ、
816 運転席、
900 ユーザー、
910,911 瞳、
AX,AX0,AX1 光軸、
D1 表示光、
DF 検出領域、
F,F1,F2,F3 フレーム、
OB 対象物、
i1 中間像、
i2,i21,i22,i23 虚像。
10 Head-up display device,
11 Head-mounted display device,
20 Virtual image display device,
21 Display,
211 Display element,
22 Projection optics,
23 Virtual image distance change part,
21a display surface,
24 Virtual image formation optical system,
241,242 mirror,
243 display screen,
26 housing,
29 Intermediate screen,
30 Display control unit,
40 Virtual image display device,
41 The main body of the virtual image display device,
411,412 Temple,
413 bridge,
414,415 Transparent member,
42 prism,
50 Imaging device,
51 camera lens,
52 Object detector,
53 Control unit,
60 Main control unit,
71 Driver detector,
72 Environmental Monitoring Department,
800 vehicles,
811 body,
812 front window,
813 handle,
814 dashboard,
815 display,
816 Driver's seat,
900 users,
910, 911 eyes,
AX, AX0, AX1 optical axis,
D1 display light,
DF detection area,
F, F1, F2, F3 frames,
OB object,
i1 intermediate image,
i2, i21, i22, i23 Virtual image.

Claims (6)

  1.  体積走査法によって3次元表示を行う表示装置であって、
     画像データを取得する取得部と、
     前記取得部によって取得された前記画像データの画像を表示する表示部と、
     前記表示部から出射した光の光軸方向の異なる位置に複数の像形成領域を備え、前記画像に対応する像を前記像形成領域に順次形成する像形成部と、
     前記像形成領域上の像を変換し、前記光軸方向における前記像形成領域の各々の位置に対応した投影距離で、実像または虚像を形成する像形成光学系と、
     各々の前記位置の前記像形成領域について、形成すべき像がない場合は、前記表示部の光源をオフする制御部と、を有する、表示装置。
    A display device that performs three-dimensional display by the volume scanning method.
    The acquisition unit that acquires image data,
    A display unit that displays an image of the image data acquired by the acquisition unit, and
    An image forming unit having a plurality of image forming regions at different positions in the optical axis direction of the light emitted from the display unit and sequentially forming an image corresponding to the image in the image forming region.
    An image forming optical system that transforms an image on the image forming region and forms a real image or a virtual image at a projection distance corresponding to each position of the image forming region in the optical axis direction.
    A display device having a control unit that turns off the light source of the display unit when there is no image to be formed for the image forming region at each of the positions.
  2.  体積走査法によって3次元表示を行う表示装置であって、
     画像データを取得する取得部と、
     前記取得部によって取得された前記画像データの画像を順次表示する表示部と、
     前記表示部に表示された画像を変換し、前記表示部から出射した光の光軸方向における前記表示部の各々の位置に対応した投影距離で、実像または虚像を形成する像形成光学系と、
     前記表示部を前記光軸方向に移動する移動機構と、
     各々の前記位置において、前記表示部に形成すべき像がない場合は、前記表示部の光源をオフする制御部と、を有する、表示装置。
    A display device that performs three-dimensional display by the volume scanning method.
    The acquisition unit that acquires image data and
    A display unit that sequentially displays images of the image data acquired by the acquisition unit, and a display unit.
    An image forming optical system that converts an image displayed on the display unit and forms a real image or a virtual image at a projection distance corresponding to each position of the display unit in the optical axis direction of the light emitted from the display unit.
    A moving mechanism that moves the display unit in the direction of the optical axis,
    A display device having a control unit that turns off the light source of the display unit when there is no image to be formed on the display unit at each of the positions.
  3.  前記像形成部は、
     前記表示部に表示された画像が投影されることにより像を形成する投影部材を有し、
     前記光軸方向の異なる所定の位置に、前記投影部材を移動することで、前記像を前記像形成領域に形成する、請求項1に記載の表示装置。
    The image forming portion is
    It has a projection member that forms an image by projecting the image displayed on the display unit.
    The display device according to claim 1, wherein the image is formed in the image forming region by moving the projection member to a predetermined position different in the optical axis direction.
  4.  前記表示部に形成された像を拡大する投影光学系をさらに有し、
     前記投影部材は、前記投影光学系からの結像された光を拡散する中間スクリーンである、請求項3に記載の表示装置。
    Further having a projection optical system for enlarging the image formed on the display unit,
    The display device according to claim 3, wherein the projection member is an intermediate screen that diffuses the imaged light from the projection optical system.
  5.  請求項1~4のいずれか1項に記載の表示装置と、
     検出領域内に存在するオブジェクトを検出するとともに、前記オブジェクトまでの距離を判定するオブジェクト検出部と、
     前記オブジェクト検出部が判定した前記オブジェクトまでの距離に対応した前記投影距離で、前記表示装置に虚像を形成させる、主制御部と、有する、ヘッドアップディスプレイ装置。
    The display device according to any one of claims 1 to 4,
    An object detection unit that detects an object existing in the detection area and determines the distance to the object,
    A head-up display device having a main control unit that causes the display device to form a virtual image at the projected distance corresponding to the distance to the object determined by the object detection unit.
  6.  請求項1~4のいずれか1項に記載の表示装置と、
     検出領域内に存在するオブジェクトを検出するとともに、前記オブジェクトまでの距離を判定するオブジェクト検出部と、
     前記オブジェクト検出部が判定した前記オブジェクトまでの距離に対応した前記投影距離で、前記表示装置に実像または虚像を形成させる、主制御部と、
     前記表示装置で形成された像をユーザーの視野内に導く接眼光学系と、を有する、ヘッドマウントディスプレイ装置。
    The display device according to any one of claims 1 to 4,
    An object detection unit that detects an object existing in the detection area and determines the distance to the object,
    A main control unit that causes the display device to form a real image or a virtual image at the projection distance corresponding to the distance to the object determined by the object detection unit.
    A head-mounted display device having an eyepiece optical system that guides an image formed by the display device into a user's field of view.
PCT/JP2020/008872 2019-03-19 2020-03-03 Display device, head-up display device, and head-mounted display device WO2020189258A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507161A JPWO2020189258A1 (en) 2019-03-19 2020-03-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-050620 2019-03-19
JP2019050620 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020189258A1 true WO2020189258A1 (en) 2020-09-24

Family

ID=72520240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008872 WO2020189258A1 (en) 2019-03-19 2020-03-03 Display device, head-up display device, and head-mounted display device

Country Status (2)

Country Link
JP (1) JPWO2020189258A1 (en)
WO (1) WO2020189258A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228977A (en) * 2001-02-02 2002-08-14 Kenwood Corp Stereoscopic display device and stereoscopic display method
US20150362744A1 (en) * 2012-02-07 2015-12-17 Samsung Display Co., Ltd. Three-dimensional image display device
WO2017138409A1 (en) * 2016-02-10 2017-08-17 株式会社リコー Information display device
JP2018092005A (en) * 2016-12-02 2018-06-14 パナソニックIpマネジメント株式会社 Display device
JP2018156062A (en) * 2017-03-15 2018-10-04 株式会社リコー Display device, object device, and display method
WO2018199245A1 (en) * 2017-04-28 2018-11-01 コニカミノルタ株式会社 Virtual image display device, and display system for moving body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228977A (en) * 2001-02-02 2002-08-14 Kenwood Corp Stereoscopic display device and stereoscopic display method
US20150362744A1 (en) * 2012-02-07 2015-12-17 Samsung Display Co., Ltd. Three-dimensional image display device
WO2017138409A1 (en) * 2016-02-10 2017-08-17 株式会社リコー Information display device
JP2018092005A (en) * 2016-12-02 2018-06-14 パナソニックIpマネジメント株式会社 Display device
JP2018156062A (en) * 2017-03-15 2018-10-04 株式会社リコー Display device, object device, and display method
WO2018199245A1 (en) * 2017-04-28 2018-11-01 コニカミノルタ株式会社 Virtual image display device, and display system for moving body

Also Published As

Publication number Publication date
JPWO2020189258A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
KR101131983B1 (en) A head-up display device for vehicle moving the projecting position of virtual images by the vehicle velocity
JP7003925B2 (en) Reflectors, information displays and mobiles
JP7189513B2 (en) head-up display device
JP2011107382A (en) Display device for vehicle
JP2018203245A (en) Display system, electronic mirror system, and mobile body
WO2018124299A1 (en) Virtual image display device and method
WO2020189258A1 (en) Display device, head-up display device, and head-mounted display device
WO2018199245A1 (en) Virtual image display device, and display system for moving body
JP2020154027A (en) Display device
WO2019151314A1 (en) Display apparatus
JP2019191368A (en) Virtual image display device and head-up display device
JP2019120891A (en) Virtual display device and head-up display device
WO2018180857A1 (en) Head-up display apparatus
JP2019197102A (en) Virtual image display device and head-up display device
JP7121349B2 (en) Display method and display device
JPWO2019124323A1 (en) Virtual image display device and head-up display device
WO2020184506A1 (en) Head-up display device
WO2019138914A1 (en) Virtual image display device and head-up display device
WO2019107225A1 (en) Virtual-image display device and head-up display device
WO2024090297A1 (en) Head-up display system
JP7111071B2 (en) head-up display device
JP7280557B2 (en) Display device and display method
KR101999425B1 (en) Optical device for virtual image projection display
JP2020065125A (en) Display device
WO2019093496A1 (en) Virtual image projection optical system and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773420

Country of ref document: EP

Kind code of ref document: A1