WO2018180529A1 - Signal processing device and method - Google Patents

Signal processing device and method Download PDF

Info

Publication number
WO2018180529A1
WO2018180529A1 PCT/JP2018/010163 JP2018010163W WO2018180529A1 WO 2018180529 A1 WO2018180529 A1 WO 2018180529A1 JP 2018010163 W JP2018010163 W JP 2018010163W WO 2018180529 A1 WO2018180529 A1 WO 2018180529A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
modulation
antenna power
power
transmission
Prior art date
Application number
PCT/JP2018/010163
Other languages
French (fr)
Japanese (ja)
Inventor
敏宏 藤木
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2019509241A priority Critical patent/JP7187439B2/en
Publication of WO2018180529A1 publication Critical patent/WO2018180529A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/59Responders; Transponders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/14Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms
    • H04L9/16Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms the keys or algorithms being changed during operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present technology relates to a signal processing device and method, and more particularly, to a signal processing device and method that can control a transmission device that performs one-way communication.
  • Patent Literature 1 describes a method for causing another communication device to update an encryption key by transmitting a key update message.
  • the transmission device does not have a function of receiving a signal, so control information is transmitted to the transmission device, etc. It was difficult to control the transmitter from the outside.
  • the present disclosure has been made in view of such a situation, and makes it possible to control a transmission device that performs one-way communication.
  • a signal processing device includes a detection unit that detects modulation of antenna power, a processing unit that performs predetermined processing based on a detection result of the modulation of antenna power by the detection unit, and a signal including a payload. It is a signal processing apparatus provided with the transmission part which transmits.
  • the detection unit can detect the modulation of the antenna power based on the change in the antenna power for each partial section obtained by dividing the antenna power measurement period into a plurality of sections.
  • the detection unit can detect the modulation of the antenna power based on the change in the power value of the antenna power for each partial section.
  • the detection unit can detect the modulation of the antenna power based on the pattern of the change in the power value of the antenna power for each partial section.
  • the detection unit can detect the modulation of the antenna power based on the change in the phase of the antenna power for each partial section.
  • the processing unit sets identification information for identifying whether or not the detection unit has detected an antenna power modulation, and the transmission unit transmits a signal including the payload and the identification information. be able to.
  • the processing unit sets the value of the identification information to a value indicating that the modulation of the antenna power is detected as the processing.
  • the encryption key used for encrypting the payload is updated at a predetermined timing after information transmission, and the transmission unit transmits a signal including the payload and the identification information set by the processing unit. it can.
  • the processing unit can control the transmission unit to stop transmission of the payload as the processing.
  • the processing unit can acquire the encryption key information used for encrypting the payload included in the modulated antenna power as the processing. .
  • the detection unit can detect the modulation of the antenna power based on the antenna power received in the carrier sense for confirming the usage status of the frequency band used for signal transmission by the transmitter.
  • the signal processing method is a signal processing method of detecting a modulation of the antenna power, performing a predetermined process based on the detection result of the antenna power modulation, and transmitting a signal including a payload.
  • a signal processing device is a signal processing device including a power modulation unit that modulates antenna power.
  • the power modulation unit can modulate the antenna power so that the antenna power changes for each partial section obtained by dividing the antenna power measurement period in the transmission apparatus into a plurality of sections.
  • the power modulation unit can change the power value of the antenna power for each partial section.
  • the power modulation unit can change the power value of the antenna power for each partial section with a predetermined pattern.
  • the power modulation unit can change the phase of the antenna power for each partial section.
  • a receiving unit that receives the signal transmitted from the transmitting device and receives identification information that identifies whether the signal includes a payload and whether or not modulation of antenna power is detected by the transmitting device. be able to.
  • the reception unit decrypts a payload encrypted using an encryption key, and when the received identification information value is a value indicating that antenna power modulation is detected by the transmission device, a predetermined timing is obtained.
  • the encryption key can be updated at.
  • the reception unit is transmitted from the transmission device when it has occurred a predetermined number of times that the identification information having a value indicating that modulation of antenna power is detected by the transmission device within a predetermined period of time.
  • the reception of the signal can be stopped.
  • the signal processing method according to another aspect of the present technology is a signal processing method for modulating antenna power.
  • the modulation of the antenna power is detected, a predetermined process is performed based on the detection result of the antenna power modulation, and a signal including the payload is transmitted.
  • the antenna power is modulated.
  • the signal can be processed. According to the present technology, it is possible to control a transmission device that performs one-way communication.
  • FIG. 20 is a block diagram illustrating a main configuration example of a computer.
  • the transmission device does not have a function of receiving signals, and therefore, control is performed by transmitting control information from the outside. I could't.
  • data exchanged between a transmitter and a receiving station is required to be encrypted in order to reduce the possibility of wiretapping or tampering with communication.
  • a transmitter that performs one-way communication cannot receive data (downlink) from a receiving station because the direction of data transmission is one-way (uplink). Therefore, it has been difficult to update the encryption key of such a transmitter through communication.
  • USB Universal Serial Bus
  • bluetooth registered trademark
  • a method for updating the encryption key of the transmitter in one-way communication for example, a method in which the transmitter periodically generates and changes the encryption key using date / time information and the like can be considered.
  • the encryption key generation rule must be fixed. In general, since it is difficult to completely prevent the leakage of the encryption key generation rule, if this generation rule is fixed, it becomes difficult to generate a secret encryption key after the leakage. Further, in this method, since the encryption key is periodically updated, the update timing of the encryption key is likely to be leaked. Therefore, if the generation rule is leaked due to observation or the like, it becomes clear to the third party how and when the encryption key is generated, and it becomes difficult to reduce the possibility of wiretapping or tampering with communication. There was a fear.
  • stopping transmission from a transmitter that is no longer necessary is important not only from the viewpoint of security but also from the viewpoint of effective use of frequency bands (resources).
  • a signal from a transmitter that is not managed has a high possibility of being vulnerable, so that the possibility of eavesdropping or tampering is increased.
  • the vulnerability of the communication is analyzed from the signal, and there is a possibility that it is used for wiretapping or tampering with other communication of the wireless communication system.
  • signal transmission from a transmitter that is no longer necessary is naturally unnecessary, there is a possibility that the usage rate of the band may be unnecessarily high due to the signal.
  • the antenna power is modulated in the receiving apparatus. Further, the transmitting device detects the modulation of the antenna power, performs a predetermined process based on the detection result of the antenna power modulation, and transmits a signal including the payload. In this way, information can be supplied from the outside to the transmission device using the antenna power measurement function of the transmission device. In other words, information can be supplied from the outside to the transmission device without the need for signal transmission. Therefore, even when the transmission device does not have a signal reception function, the transmission device can be controlled from the outside.
  • the update of the encryption key may be requested from the outside using the carrier sense function.
  • the carrier sense is a function that determines whether or not there is another radio wave in the frequency band in which the transmitter 1 transmits, and determines that transmission is possible if it is lower than a certain antenna power level. This function is a means for confirming that the communication by other radio is not disturbed, and only the antenna power measurement is performed. That is, data bits cannot be received even if carrier sensing is simply performed.
  • Transmitter 1 is in a carrier sense state and monitors surrounding antenna power.
  • the receiving station 2 applies a weak power modulation to a frequency band where the transmitter 1 performs carrier sense so that it does not become an interference wave of other communications. This power modulation is performed based on specific rules. It is also assumed that the timing for applying power modulation is predetermined.
  • the transmitter 1 and the receiving station 2 share such information in advance.
  • the transmitter 1 performs carrier sense at the predetermined timing, and detects power modulation based on the specific rule.
  • the transmitter 1 receives a predetermined instruction (command) from the receiving station 2 and performs processing corresponding to the instruction.
  • the contents of this instruction are predetermined and are shared by the transmitter 1 and the receiving station 2. That is, the transmitter 1 executes a predetermined process that is determined in advance. By doing in this way, the transmitter 1 which does not have a signal reception function can be controlled from the outside using a carrier sense function.
  • the receiving station 2 may instruct the transmitter 1 to update the encryption key used for encrypting communication data.
  • An example in that case is shown in FIG.
  • the key update command is received with one month as one segment.
  • a predetermined rule (a pseudo-random number sequence for detecting a key update command) and a time (year / month / day / time) are determined in advance between the transmitter 1 and the receiving station 2.
  • the receiving station 2 performs transmission (downlink) for minutely modulating the antenna power at the timing when the transmitter 1 performs carrier sense.
  • the transmitter 1 integrates and detects the antenna power fine modulation for this key update command. When the integrated value exceeds a certain threshold value, the transmitter 1 sets fill-up information prepared in the payload to be transmitted, and notifies the receiving station 2 of it (uplink).
  • the fill-up information may be any information as long as it indicates that the integrated value has reached the threshold value (an instruction from the receiving station 2 has been accepted).
  • the fill-up information may include a fill-up flag (fill-up flag) that indicates whether or not the integrated value has reached a threshold value.
  • the bits constituting the fill-up flag are also referred to as fill-up bits.
  • the fill-up flag takes a value “0” when the integrated value has not reached the threshold value, and a fill-up flag composed of 1-bit fill-up bit that has the value “1” when the integrated value has reached the threshold value. It may be configured by.
  • the receiving station 2 determines that the key update command has reached the transmitter 1 when the fill-up information is set in the payload. After this state is reached, the encryption key is updated simultaneously at both the transmitter 1 and the receiving station 2 at a predetermined time.
  • the transmitter 1 integrates the antenna power minute modulation from the first day of the month to the last day in the calendar, and compares the accumulated value with a threshold value.
  • the transmitter 1 transmits fill-up information having a value corresponding to the comparison result to the receiving station 2. That is, when the integrated value reaches the threshold during the one month, the transmitter 1 updates the value of the fill-up information and transmits it to the receiving station 2.
  • the receiving station 2 updates the encryption key at the time when the month changes. At the same time, the transmitter 1 also updates the encryption key.
  • the encryption key used for payload encryption can be updated using the carrier sense function.
  • FIG. 3 shows a modulation rule for transmission antenna power at the receiving station 2.
  • a random value obtained from a predetermined pseudo-random number sequence generator is represented as prbs.
  • prbs '0'
  • the receiving station 2 is in the latter half of the first half of the antenna power measurement period (also referred to as a carrier sense period).
  • the receiving station 2 does not transmit the modulation signal that slightly increases the antenna power around the transmitter 1 in the first half of the carrier sense interval, and transmits the modulation signal in the second half of the carrier sense interval. . In this way, the receiving station 2 can modulate the antenna power around the transmitter 1 into a waveform as shown on the left side of FIG.
  • FIG. 3B shows the relationship between the random value prbs and the modulated antenna power. It is assumed that the difference between the power value in the first half and the power value in the second half of this carrier sense section is sufficiently small so as not to affect other communications.
  • FIG. 4 shows the antenna power in the transmitter 1.
  • FIG. 4B and 4C show the state of this integration.
  • the integrated value increases every time the number of power measurements increases.
  • FIG. 4C when the determination value ⁇ and the predetermined pseudo-random number sequence are related, a large integrated value can be obtained.
  • the antenna power difference ⁇ which is the basis of the determination value, is small and is not always correct because it is affected by the environment (weather, ionosphere, etc.), and other radios affect the antenna power.
  • the calculation example of C in FIG. 4 is a table showing that the integration can be performed without error. In practice, the integration process is often disturbed as shown in B of FIG.
  • a fill-up bit field (flag) indicating whether a preset threshold value has been exceeded is prepared.
  • the transmitter 1 sets a fill-up flag when the integrated value exceeds the threshold value, clears this after integrating a predetermined period, and resets the integrator. If a plurality of integration trials fails, the transmitter 1 stops transmission and disables the transmission function. When the integration trial is successful even once, the key update in the transmitter 1 and the receiving station 2 is simultaneously performed at a predetermined timing as described above.
  • the fill-up flag from the transmitter 1 side is not raised, so the encryption key of the receiving station 2 is not updated (of course, the encryption key of the transmitter 1 is not updated). Accordingly, since both the transmitter 1 and the receiving station 2 remain the old encryption key information, data communication between the transmitter 1 and the receiving station 2 can be continued.
  • FIG. 5 is a diagram illustrating a main configuration example of a position notification system which is an embodiment of a signal transmission / reception system to which the present technology is applied.
  • the position notification system 100 shown in FIG. 5 is a system in which the transmission apparatus 101 notifies its own position. This system is used, for example, for monitoring and managing a target position.
  • the position notification system 100 includes devices such as a transmission device 101, a high sensitivity reception device 102, a server 104, and a terminal device 105.
  • the number of the transmission device 101, the high sensitivity receiving device 102, the server 104, and the terminal device 105 is arbitrary, and may be plural.
  • the transmission apparatus 101 is an embodiment of a transmission apparatus to which the present technology is applied, and transmits, for example, identification information for identifying itself, position information indicating its own position, and the like as a radio signal.
  • the high-sensitivity receiving apparatus 102 is an embodiment of a receiving apparatus to which the present technology is applied.
  • the high-sensitivity receiving apparatus 102 receives the wireless signal, acquires identification information, position information, and the like of the transmitting apparatus 101, and transmits them through the network 103.
  • To the server 104 That is, the high sensitivity receiving apparatus 102 functions as a relay station that relays the information transmitted from the transmitting apparatus 101 and transmits it to the server 104.
  • the server 104 manages the position of each transmission apparatus 101 by managing the position information associated with the identification information.
  • a terminal device 105 operated by a user who wants to know the position of the transmission apparatus 101 accesses the server 104 via the network 103, supplies identification information of the desired transmission apparatus 101, and requests the position information.
  • the server 104 supplies position information corresponding to the requested identification information to the terminal device 105.
  • the terminal device 105 acquires the position information and notifies the user of the position of the transmission device 101 by displaying the position information together with map data, for example.
  • the server 104 can indirectly manage the position of the position monitoring (management) target by carrying (including carrying or wearing) such a transmission apparatus 101 by a target whose position is to be monitored (managed). Can do.
  • the user targets the elderly person 111 for position monitoring, and the elderly person 111 carries the transmission device 101.
  • the position of the transmission device 101 is managed by the server 104 and provided to the terminal device 105. Therefore, the user can grasp the position of the elderly person 111 who is carrying the transmission device 101 by operating the terminal device 105.
  • the position monitoring target is arbitrary. For example, it may be a child, an animal such as a dog or a cat, or a company employee.
  • the transmission device 101 may be configured as a dedicated device, but may be incorporated in a portable information processing device such as a mobile phone or a smartphone, for example.
  • the position information of the transmission apparatus 101 may be any information as long as it indicates the position of the transmission apparatus 101, and may be generated in any manner.
  • the transmission apparatus 101 may receive a GNSS signal from a GNSS (Global Navigation Satellite System) satellite, and obtain its position information (for example, latitude and longitude) based on the GNSS signal. Further, for example, the transmitting apparatus 101 may specify its own position using a dedicated position specifying system other than GNSS.
  • GNSS Global Navigation Satellite System
  • the position information is generated in a device other than the transmission device 101, such as the high-sensitivity reception device 102, the server 104, or a dedicated information processing device (such as a server) provided separately.
  • a device other than the transmission device 101 such as the high-sensitivity reception device 102, the server 104, or a dedicated information processing device (such as a server) provided separately.
  • the GNSS signal received by the transmission apparatus 101 may be supplied to another apparatus, and the other apparatus may obtain the position information of the transmission apparatus 101 from the GNSS signal.
  • the transmission apparatus 101 supplies information obtained using a dedicated position specifying system other than GNSS to another apparatus, and the other apparatus obtains position information of the transmission apparatus 101 based on the information. May be.
  • another device may obtain the position information of the transmission device 101 based on the communication status between the transmission device 101 and the high sensitivity reception device 102. For example, by specifying the high sensitivity receiving device 102 that has received the signal from the transmitting device 101, it may be specified that the transmitting device 101 is located within the communicable range of the high sensitivity receiving device 102. Further, more detailed position information of the transmission apparatus 101 may be obtained based on the signal strength, delay time, and the like of the received signal received by the high sensitivity receiving apparatus 102. Further, for example, the position information of the transmission apparatus 101 may be obtained by trigonometry or the like using the position information of a plurality of high sensitivity reception apparatuses 102 that have received signals from the transmission apparatus 101.
  • the installation position of the high sensitivity receiver 102 is arbitrary.
  • the roof or the roof of a building 112 such as a building, apartment, or house may be used.
  • a position monitoring target for example, an elderly person 111 carrying the transmission device 101 is active, and it is preferable because the buildings 112 are easy to install.
  • the position monitoring target is a person
  • the home of the position monitoring target is more preferable because the position monitoring target is more likely to be located in the vicinity thereof.
  • the high-sensitive receiving device 102 may be installed on a movable object (also referred to as a moving body) such as an automobile, a motorcycle, or a bicycle. That is, the position of the high sensitivity receiving apparatus 102 may be variable.
  • a movable object also referred to as a moving body
  • the position of the high sensitivity receiving apparatus 102 may be variable.
  • the network 103 is an arbitrary communication network, may be a wired communication network, a wireless communication network, or may be configured by both of them. Further, the network 103 may be configured by a single communication network or may be configured by a plurality of communication networks. For example, communication conforming to the Internet, public telephone network, so-called 3G and 4G wireless mobile wide area networks, WAN (Wide Area Network), LAN (Local Area Network), Bluetooth (registered trademark) standards , Wireless communication network for near field communication such as NFC (Near Field Communication), infrared communication path, HDMI (High-Definition Multimedia Interface) and USB (Universal Serial Bus) standards
  • the network 103 may include a communication network or a communication path of an arbitrary communication standard such as a wired communication network complying with the standard.
  • the server 104 and the terminal device 105 are information processing devices that process information.
  • the server 104 and the terminal device 105 are communicably connected to the network 103, and can communicate with other communication devices connected to the network 103 via the network 103 to exchange information.
  • the server 104 manages the position of the transmission device 101.
  • the server 104 can also manage users who are permitted to provide location information of the transmission apparatus 101.
  • the server 104 can provide the position information of each transmission apparatus 101 only to users who are permitted to acquire the position information of the transmission apparatus 101.
  • the server 104 manages the position of the transmission apparatus 101. That is, the server 104 can manage the position of the transmission device 101 in a state where the transmission device 101 is located within the communicable range of any of the high sensitivity reception devices 102. In other words, if the position of the transmission apparatus 101 is out of the communicable range of any of the high sensitivity receiving apparatuses 102, the server 104 cannot manage the position. Therefore, the server 104 can manage the position of the transmission apparatus 101 more accurately as the communication range network of the high sensitivity reception apparatus 102 with the transmission apparatus 101 becomes wider.
  • more accurate management means that the position of the transmitting apparatus 101 is managed in a wider range (that is, the area where the position of the transmitting apparatus 101 cannot be managed is reduced).
  • the transmission apparatus 101 and the high-sensitivity reception apparatus 102 can transmit and receive radio signals farther (for each high-sensitivity reception apparatus 102).
  • a wider communication range is preferable.
  • the method of transmitting and receiving the radio signal between the transmitting apparatus 101 and the high sensitivity receiving apparatus 102 is arbitrary, and may conform to any communication standard. For example, a frequency band including 925 MHz (both 920 MHz band) May be used in a method that enables long-distance communication.
  • the high sensitivity reception apparatus 102 detects the radio signal at the known time and frequency. Detection is easier because it only has to be done. Therefore, reception sensitivity can be improved. That is, the communicable range of the high sensitivity receiving apparatus 102 can be further expanded.
  • FIG. 6 is a block diagram illustrating a main configuration example of the high-sensitivity receiving apparatus 102 which is an embodiment of the signal processing apparatus to which the present technology is applied.
  • the high sensitivity receiving apparatus 102 includes an antenna 151, an amplification unit 152, a demodulation unit 153, an error correction unit 154 (FEC (Forward Error Correction)), and a CPU (Central Processing Unit) 155.
  • FEC Forward Error Correction
  • CPU Central Processing Unit
  • the antenna 151 is used for receiving a signal transmitted from the transmission apparatus 101.
  • the amplification unit 152 amplifies the reception signal received via the antenna 151 and supplies the amplified signal to the demodulation unit 153.
  • the amplifying unit 152 can be realized by an arbitrary configuration.
  • the amplification unit 152 may be configured by a circuit, LSI (Large Scale Integration), system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the amplification unit 152 may be configured by an operational amplifier or the like.
  • the demodulation unit 153 performs processing related to demodulation of the received signal. For example, the demodulation unit 153 demodulates the signal supplied from the amplification unit 152 by a predetermined method corresponding to the modulation performed on the transmission side, and errors the obtained data (data transmitted from the transmission apparatus 101). This is supplied to the correction unit 154.
  • the demodulator 153 can be realized by an arbitrary configuration.
  • the demodulation unit 153 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined.
  • the demodulation unit 153 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the error correction unit 154 performs processing related to error correction (FEC). For example, the error correction unit 154 performs error correction on the data supplied from the demodulation unit 153, detects and corrects an error, and supplies the error-corrected data to the CPU 155.
  • the error correction unit 154 can be realized by an arbitrary configuration.
  • the error correction unit 154 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the error correction unit 154 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the CPU 155 performs arbitrary processing. For example, the CPU 155 performs processing on the data supplied from the error correction unit 154. That is, the CPU 155 functions as a receiving unit that receives signals via the antenna 151 to the error correction unit 154. For example, the CPU 155 receives the signal transmitted from the transmission apparatus 101, and is identification information that identifies whether the payload included in the signal and the antenna power modulation is detected by the transmission apparatus 101. Receive fill-up information.
  • the CPU 155 Stop receiving the received signal.
  • the CPU 155 decrypts the encrypted payload using the encryption key.
  • This encryption key corresponds to the encryption key used when the transmission apparatus 101 encrypts the payload.
  • this encryption key is the same encryption key (common key) as the encryption key of the transmission apparatus 101.
  • the CPU 155 can update this encryption key. For example, when the value of the fill-up information is a value (for example, “1”) indicating that the antenna power modulation is detected by the transmission apparatus 101, the CPU 155 updates the encryption key at a predetermined timing.
  • the CPU 155 can correctly decrypt the encrypted payload by using such an encryption key.
  • the encryption key of the transmitting apparatus 101 and the encryption key of the high sensitivity receiving apparatus 102 must correspond correctly. Therefore, when the encryption key of the transmission apparatus 101 is updated, the encryption key of the high sensitivity receiving apparatus 102 must be updated at the same time. And of course, even after updating, both encryption keys need to correspond correctly. That is, both encryption keys need to be updated by the same method at the same timing. That is, it is necessary to generate a new encryption key with the same method at the same timing in both the transmitting apparatus 101 and the high sensitivity receiving apparatus 102 and replace the old encryption key.
  • the possibility of eavesdropping or tampering with communication can be reduced if the encryption key update timing is irregular.
  • Various methods can be considered in order to make the update timings of both encryption keys uniform and irregular, but at least the update can be performed between the transmission device 101 and the high-sensitivity reception device 102. There is a need to be able to notify each other. For example, when the high sensitivity receiving apparatus 102 requests (instructions) to update the encryption key to the transmitting apparatus 101, and the transmitting apparatus 101 responds to the request (instruction), the transmitting apparatus 101 receives the request (instruction). ) Based on the response, the high-sensitivity receiving apparatus 102 can confirm that the encryption key can be updated, and the high-sensitivity receiving apparatus 102 can update the encryption key based on the response. Can be confirmed.
  • the encryption key is transferred from the high sensitivity reception device 102 to the transmission device 101 by communication. Cannot request (instruct) update. Therefore, the high sensitivity receiving apparatus 102 requests (instructs) to update the encryption key by modulating the antenna power.
  • the high sensitivity receiving apparatus 102 includes a power modulation unit 156-1, a power modulation unit 156-2, and a power modulation unit 156-3.
  • the power modulation unit 156-1, the power modulation unit 156-2, and the power modulation unit 156-3 are processing units that have the same configuration and perform the same processing. When these do not need to be distinguished from each other, they are referred to as a power modulation unit 156.
  • the power modulation unit 156 modulates the antenna power in a frequency band in which the high sensitivity receiving apparatus 102 receives a signal. Each power modulation unit 156 modulates the antenna power in different channels of the frequency band. For example, the power modulation unit 156 modulates the antenna power so that the antenna power changes for each partial section obtained by dividing the antenna power measurement period in the transmission apparatus 101 into a plurality of sections. For example, the power modulation unit 156 changes the power value of the antenna power for each partial section. For example, the power modulation unit 156 changes the power value of the antenna power for each partial section with a predetermined pattern. For example, the power modulation unit 156 changes the polarity of the difference value of the power value of the antenna power between successive partial sections with a predetermined pattern.
  • the power modulation unit 156 modulates the antenna power for a period including the measurement period twice or more. For example, the power modulation unit 156 modulates the antenna power so that the power value of the antenna power around the transmission device 101 changes during the measurement period of the antenna power in the transmission device 101.
  • power modulation unit 156 power modulation unit 156-1, power modulation unit 156-2, and power modulation unit 156-3
  • the number of power modulation units 156 is shown. Is optional.
  • one power modulation unit 156 may be provided for every channel in the frequency band where signal reception is performed.
  • the power modulation unit 156 can be realized by an arbitrary configuration.
  • the power modulation unit 156 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the power modulation unit 156 includes a GNSS reception unit 161, a pseudo random number generation unit 162, a single carrier modulation unit 163, a switch 164, an amplification unit 165, and an antenna 166.
  • the GNSS receiver 161 receives the GNSS signal transmitted from the GNSS satellite, extracts the time information generated in the GNSS satellite included in the GNSS signal, and supplies it to the pseudo-random number generator 162.
  • the GNSS receiving unit 161 can be realized by an arbitrary configuration.
  • the GNSS receiving unit 161 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the GNSS receiving unit 161 may be configured by an antenna, a receiving circuit, a signal processing circuit, and the like.
  • the pseudorandom number generator 162 generates a 1-bit pseudorandom number based on the time information supplied from the GNSS receiver 161 and supplies the pseudorandom number to the switch 164.
  • the pseudo random number generation unit 162 can be realized by an arbitrary configuration.
  • the pseudo random number generation unit 162 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the pseudo random number generation unit 162 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • Single carrier modulation section 163 generates a modulation signal for modulating antenna power. That is, the single carrier modulation unit 163 generates a modulation signal that slightly increases the antenna power around the transmission apparatus 101.
  • the single carrier modulation unit 163 supplies the generated modulation signal to the switch 164.
  • the single carrier modulation unit 163 can be realized by an arbitrary configuration.
  • the single carrier modulation unit 163 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined.
  • the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the single carrier modulation unit 163 may be configured by a modulation circuit or the like that generates a modulation signal as described above.
  • the switch 164 controls the supply of the modulation signal supplied from the single carrier modulation unit 163 to the amplification unit 165 (that is, transmission of the modulation signal) based on the pseudo random number supplied from the pseudo random number generation unit 162. Then, a modulation pattern as shown in FIG. 3 is generated. For example, when the pseudo random number (prbs) is “0”, the switch 164 does not transmit the modulation signal by disconnecting between the input and output in the first half of the carrier sense interval, as shown on the left side of FIG. In the second half of the carrier sense period, the input and output are connected to transmit the modulation signal.
  • the switch 164 transmits the modulation signal by connecting the input and output in the first half of the carrier sense period, as shown on the right side of FIG. 3A. In the second half of the carrier sense interval, the input / output is disconnected to prevent the modulation signal from being transmitted.
  • the modulation pattern is determined by the switch 164, and the polarity of the difference value between the first half power value and the second half power value of the carrier sense section is set.
  • the switch 164 can be realized by an arbitrary configuration.
  • the switch 164 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the amplifying unit 165 amplifies the modulated signal supplied from the switch 164 and transmits the amplified modulated signal to the air as a radio signal via the antenna 166. That is, the amplification unit 165 functions as a transmission unit that transmits a modulated signal. Thereby, the antenna power around the transmission apparatus 101 is modulated as in the example of FIG.
  • the amplification unit 165 can be realized by an arbitrary configuration.
  • the amplification unit 165 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined.
  • the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the amplification unit 165 may be configured by an operational amplifier or the like.
  • the high-sensitivity receiving apparatus 102 modulates the antenna power for all the channels in the frequency band used for signal reception, using the power modulation unit 156 configured as described above.
  • This modulation means an instruction to update the encryption key to the transmission apparatus 101, and that fact is shared in advance between the transmission apparatus 101 and the high sensitivity receiving apparatus 102 (known). That is, the transmission apparatus 101 receives an instruction from the high sensitivity receiving apparatus 102, that is, an encryption key update instruction by detecting this modulation.
  • the high sensitivity receiving apparatus 102 can instruct the transmitting apparatus 101 not having the signal receiving function to update the encryption key.
  • FIG. 7 is a block diagram illustrating a main configuration example of the transmission apparatus 101 which is an embodiment of the signal processing apparatus to which the present technology is applied.
  • the transmission apparatus 101 includes a transmission data generation unit 210, a CPU 211, a memory 212, an encoding unit 213, a modulation unit 214, a transmission unit 215, an amplification unit 216, an antenna 217, a modulation detection unit 218, and An oscillation unit 219 is included.
  • the transmission data generation unit 210 performs processing related to generation of transmission data.
  • the content of the transmission data is arbitrary.
  • the transmission data generation unit 210 may generate transmission data to be transmitted to the high sensitivity receiving apparatus 102 using sensor data obtained from a sensor or the like.
  • the transmission data generation unit 210 may generate transmission data using the received GNSS signal.
  • the transmission data generation unit 210 supplies the generated transmission data to the CPU 211.
  • the transmission data generation unit 210 can be realized by an arbitrary configuration.
  • the transmission data generation unit 210 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the transmission data generation unit 210 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the CPU 211 performs processing related to transmission data. For example, the CPU 211 performs processing related to transmission data, such as transmission control based on a carrier sense result, generation of a payload using transmission data, and encryption of the payload. For example, the CPU 211 generates a payload including transmission data, encrypts the payload, sets fill-up information, adds the payload to the payload, and supplies the payload to the memory 212. Further, the CPU 211 performs predetermined processing based on the detection result of the antenna power modulation. For example, the CPU 211 performs predetermined processing such as generation / update of an encryption key used for payload encryption, setting of fill-up information, addition to the payload, stop of signal transmission, and the like.
  • predetermined processing such as generation / update of an encryption key used for payload encryption, setting of fill-up information, addition to the payload, stop of signal transmission, and the like.
  • the memory 212 stores a payload supplied from the CPU 211. Further, the memory 212 supplies the stored payload to the encoding unit 213 at a predetermined timing or based on a request from the encoding unit 213.
  • the encoding unit 213 encodes the payload by a predetermined method and supplies the encoded payload to the modulation unit 214.
  • the encoding unit 213 can be realized by an arbitrary configuration.
  • the encoding unit 213 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the encoding unit 213 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the modulation unit 214 modulates the encoded payload by a predetermined method and supplies the modulated payload to the transmission unit 215.
  • the modulation unit 214 can be realized by an arbitrary configuration.
  • the modulation unit 214 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the modulation unit 214 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the transmission unit 215 generates a transmission signal by multiplying the carrier signal rejected by the oscillation unit 219 by the signal (payload) supplied from the modulation unit 214.
  • the transmission unit 215 can be realized by an arbitrary configuration.
  • the transmission unit 215 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the transmission unit 215 may be configured by a signal processing circuit, a transmission circuit, or the like.
  • the amplification unit 216 amplifies the transmission signal.
  • the amplification unit 216 can be realized by an arbitrary configuration.
  • the amplification unit 216 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the amplification unit 216 may be configured by an operational amplifier or the like.
  • the antenna 217 is used for transmitting a transmission signal.
  • the transmission unit 215 transmits the generated transmission signal as a radio signal via the amplification unit 216 and the antenna 217.
  • the modulation detector 218 performs carrier sense for all channels in the frequency band used for signal transmission. Also, the modulation detector 218 detects the modulation of the antenna power around the transmission apparatus 101 from the received power received at the time of the carrier sense. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the change in the antenna power for each of the partial sections obtained by dividing the carrier sense section (aerial power measurement period). For example, the modulation detection unit 218 detects the modulation of the antenna power based on the change in the power value of the antenna power for each partial section. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the pattern of the change in the power value of the antenna power for each partial section.
  • the modulation detection unit 218 detects the modulation of the antenna power based on the polarity pattern of the difference value of the power value of the antenna power between successive partial sections. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the magnitude of the integrated value of the polarity. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the magnitude of the integrated value of the difference value between the first half power value and the second half power value of the carrier sense section (antenna power measurement period). To do.
  • the modulation detection unit 218 can be realized by an arbitrary configuration.
  • the modulation detection unit 218 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the oscillation unit 219 oscillates at a predetermined frequency and supplies the oscillation signal as a carrier signal to the transmission unit 215 and the modulation detection unit 218 (reception unit 232).
  • the oscillation unit 219 can be realized by an arbitrary configuration.
  • the oscillating unit 219 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the oscillation unit 219 may be configured by an oscillation circuit or the like. Note that the oscillation method of the oscillation unit 219 is arbitrary.
  • the modulation detection unit 218 includes an amplification unit 231, a reception unit 232, a filter 233, a switch 234, an A / D conversion unit 235, an A / D conversion unit 236, an addition unit 237, a subtraction unit 238, A code comparison unit 239, an amplification unit 240, an amplification unit 241, an integration unit 243, a threshold comparison unit 244, a GNSS reception unit 251, and a pseudo-random number generation unit 252 are included.
  • the GNSS receiving unit 251 receives a GNSS signal transmitted from a GNSS satellite and extracts time information generated by the GNSS satellite.
  • the GNSS receiver 251 supplies the time information (GNSS time information) to the CPU 211.
  • the CPU 211 can perform arbitrary processing using the GNSS time information.
  • the CPU 211 supplies the GNSS time information to the pseudo random number generation unit 252.
  • the GNSS receiving unit 251 supplies the time information (GNSS information) to an arbitrary processing unit in the transmitting apparatus 101 such as an encoding unit 213, a modulation unit 214, a transmission unit 215, an oscillation unit 219, and the like. it can.
  • Each processing unit in the transmission apparatus 101 can perform processing at timing based on the GNSS information, for example. Thereby, each processing unit can perform processing at a more accurate timing.
  • the GNSS receiving unit 251 can be realized by an arbitrary configuration.
  • the GNSS receiver 251 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the GNSS receiving unit 251 may be configured with an antenna, a receiving circuit, a signal processing circuit, and the like.
  • the pseudo random number generator 252 Based on the GNSS time information supplied from the CPU 211, the pseudo random number generator 252 generates a 1-bit pseudo random number (prbs) having the same value as the pseudo random number generated by the high sensitivity receiver 102 (pseudo random number generator 162). Generate.
  • the pseudo random number generation unit 252 supplies the generated pseudo random number to the switch 234.
  • the pseudo random number generation unit 252 can be realized by an arbitrary configuration.
  • the pseudo random number generation unit 252 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined.
  • the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the pseudo random number generation unit 252 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the amplifying unit 231 amplifies the received power received via the antenna 217 during carrier sense and supplies the amplified received power to the receiving unit 232.
  • the amplification unit 231 can be realized by an arbitrary configuration.
  • the amplification unit 231 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the amplification unit 231 may be configured by an operational amplifier or the like.
  • the receiving unit 232 receives the antenna power around the transmitting apparatus 101 via the antenna 217 and the amplifying unit 231 during carrier sense.
  • the receiving unit 232 receives the antenna power for each channel in the frequency band used for signal transmission, using the carrier signal supplied from the oscillating unit 219.
  • the receiving unit 232 supplies the received power to the filter 233.
  • the receiving unit 232 can be realized by an arbitrary configuration.
  • the receiving unit 232 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined.
  • the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the receiving unit 232 may be configured by a signal processing circuit, a receiving circuit, or the like.
  • the filter 233 extracts a component of a desired frequency band included in the supplied reception power and supplies it to the switch 234.
  • the filter 233 can be realized by an arbitrary configuration.
  • the filter 233 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the filter 233 may be configured by a predetermined filter circuit such as a bypass filter, a low-pass filter, or a high-pass filter.
  • the filter 233 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the switch 234 switches the supply destination of the supplied received power according to the value of the pseudo random number supplied from the pseudo random number generator 252. For example, when the value of the pseudo random number is “0”, the switch 234 supplies the reception power in the first half of the carrier sense interval to the A / D conversion unit 236 and converts the reception power in the second half of the carrier sense interval to A / D conversion. The supply destination of the received power is switched so as to be supplied to the unit 235. For example, when the value of the pseudo random number is “1”, the switch 234 supplies the reception power in the first half of the carrier sense interval to the A / D conversion unit 235, and the reception power in the second half of the carrier sense interval is A / D. The supply destination of the received power is switched so as to be supplied to the D conversion unit 236.
  • the switch 234 can be realized by an arbitrary configuration.
  • the switch 234 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the A / D conversion unit 235 and the A / D conversion unit 236 respectively A / D convert the supplied received power into digital data.
  • the A / D conversion unit 235 and the A / D conversion unit 236 supply digital data of received power to the addition unit 237 and the subtraction unit 238, respectively.
  • Each of the A / D conversion unit 235 and the A / D conversion unit 236 can be realized by an arbitrary configuration.
  • the A / D conversion unit 235 and the A / D conversion unit 236 may be configured by circuits, LSIs, system LSIs, processors, modules, units, sets, devices, apparatuses, systems, or the like, respectively. . A plurality of them may be combined.
  • each of the A / D conversion unit 235 and the A / D conversion unit 236 may be configured by a predetermined A / D conversion circuit, or may have a CPU and a memory, and the CPU uses the memory. The above process may be performed by executing a program.
  • the addition unit 237 adds the reception power supplied from the A / D conversion unit 235 and the reception power supplied from the A / D conversion unit 236. That is, the adding unit 237 adds the reception power in the first half and the reception power in the second half of the carrier sense interval, and obtains the power measurement result of the entire carrier sense interval.
  • the adding unit 237 supplies the power measurement result of the entire carrier sense section to the CPU 211.
  • the adding unit 237 can be realized by an arbitrary configuration.
  • the adding unit 237 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined.
  • the adding unit 237 may include a CPU and a memory, and the CPU may execute the above-described calculation by executing a program using the memory.
  • the CPU 211 determines whether or not the frequency band to be used is vacant based on the power measurement result (carrier sense result) of each channel supplied from the adding unit 237 in this way, Controls each processing unit to start transmission. Further, when it is determined that the frequency band is not free, the CPU 211 controls each processing unit so as not to transmit a signal.
  • the subtraction unit 238 calculates a difference value between the power value of the reception power supplied from the A / D conversion unit 235 and the power value of the reception power supplied from the A / D conversion unit 236.
  • the direction of subtraction by the subtraction unit 238 changes according to the value of the pseudo random number. For example, when the value of the pseudo random number is “0”, the subtraction unit 238 subtracts the power value of the reception power in the first half of the carrier sense interval from the power value of the reception power in the second half of the carrier sense interval. For example, when the value of the pseudo random number is “1”, the subtraction unit 238 subtracts the power value of the received power in the second half of the carrier sense section from the power value of the first half of the carrier sense section.
  • the subtracting unit 238 calculates a value obtained by multiplying the difference value obtained by subtracting the power value of the reception power in the first half of the carrier sense section from the power value of the reception power in the second half of the carrier sense section by the code corresponding to the pseudorandom number. .
  • the value of the pseudo random number is “0”
  • the difference value obtained by subtracting the power value of the reception power in the first half of the carrier sense section from the power value of the reception power in the second half of the carrier sense section is multiplied by “ ⁇ 1”. The obtained value is obtained.
  • the subtraction unit 238 supplies the calculated difference value to the code comparison unit 239.
  • the subtraction unit 238 can be realized by an arbitrary configuration.
  • the subtraction unit 238 may be configured by a circuit, an LSI, a system LSI, a processor, a module, a unit, a set, a device, an apparatus, a system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the subtraction unit 238 may include a CPU and a memory, and the CPU may execute the above-described calculation by executing a program using the memory.
  • the sign comparison unit 239 determines the sign of the difference value (whether positive or negative).
  • the code comparison unit 239 notifies the amplification unit 240 or the amplification unit 241 of the determination result. For example, when it is determined that the sign of the difference value is positive, the sign comparison unit 239 notifies the amplification unit 240 accordingly. For example, when it is determined that the sign of the difference value is negative, the sign comparison unit 239 notifies the amplification unit 241 to that effect.
  • the code comparison unit 239 can be realized by an arbitrary configuration.
  • the code comparison unit 239 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the code comparison unit 239 may include a CPU and a memory, and the CPU may execute the above process by executing a program using the memory.
  • the amplification unit 240 supplies the value “+1” to the integration unit 243 in accordance with the notification from the code comparison unit 239.
  • the amplifying unit 241 supplies the value “ ⁇ 1” to the accumulating unit 243 according to the notification from the code comparing unit 239.
  • the amplifying unit 240 can be realized by an arbitrary configuration.
  • the amplification unit 240 may be configured by a circuit, an LSI, a system LSI, a processor, a module, a unit, a set, a device, an apparatus, or a system. A plurality of them may be combined.
  • the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the amplification unit 240 may be configured by an operational amplifier or the like.
  • the integrating unit 243 integrates the values supplied from the amplifying unit 240 and the amplifying unit 241, and supplies the integrated value to the threshold comparing unit 244.
  • the integration by the integration unit 243 is continued for a predetermined period as in the graph shown in FIG.
  • the integrated value may be supplied to the threshold comparing unit 244 every time the values supplied from the amplifying unit 240 or the amplifying unit 241 are integrated, or supplied to the threshold comparing unit 244 after a predetermined period. You may be made to do.
  • the integration unit 243 can be realized by an arbitrary configuration.
  • the integrating unit 243 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like.
  • the integrating unit 243 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the threshold value comparing unit 244 compares the integrated value supplied from the integrating unit 243 with a predetermined threshold value, and supplies the comparison result to the CPU 211.
  • the threshold comparison unit 244 can be realized by an arbitrary configuration.
  • the threshold comparison unit 244 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the threshold comparison unit 244 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the CPU 211 determines whether the modulation detector 218 has detected the modulation of the surrounding antenna power, that is, whether the encryption key update instruction from the high sensitivity receiver 102 has been received. To do. For example, when the integrated value is equal to or greater than the threshold value, the CPU 211 determines that the modulation of the antenna power is detected by the modulation detection unit 218. In that case, the CPU 211 sets the value of the fill-up information to a value (for example, “1”) indicating that the antenna power modulation is detected, and adds the value to the payload. That is, fill-up information with a value “1” is transmitted. When the integrated value is smaller than the threshold value, it is determined that the modulation detector 218 has not detected the antenna power modulation.
  • a value for example, “1”
  • the CPU 211 sets the value of the fill-up information to a value (for example, “0”) indicating that the antenna power modulation is not detected, and adds the value to the payload. That is, fill-up information with a value “0” is transmitted.
  • the subtraction unit 238 obtains the antenna power in a state in which the transmission apparatus 101 correctly detects the antenna power modulation by the high-sensitivity receiving apparatus 102.
  • the sign of the value is positive.
  • the sign of the value obtained by the subtracting unit 238 is positive, there is a possibility that the transmitting apparatus 101 has correctly detected the antenna power modulation by the high sensitivity receiving apparatus 102.
  • the sign of the value obtained by the subtracting unit 238 is negative, the antenna power is not modulated by the high sensitivity receiver 102 or the transmitter 101 due to other factors such as noise.
  • the modulation of the antenna power by the high sensitivity receiver 102 cannot be detected correctly. Therefore, in other words, as the number of times that a positive value is obtained by the subtracting unit 238 increases, the possibility that the transmission apparatus 101 can correctly detect the modulation of the antenna power by the high sensitivity receiving apparatus 102 increases.
  • the CPU 211 determines that the difference value obtained by subtracting the power value of the reception power in the first half of the carrier sense section from the power value of the reception power in the second half of the carrier sense section is multiplied by a sign corresponding to a pseudorandom number.
  • the integrated value of the integrating unit 243 is reset (initialized) by the CPU 211. That is, the integrated value of the integrating unit 243 is set to an initial value (for example, “0”). Thereby, the integration unit 243 can repeatedly perform the same integration for each predetermined period and output the integration value for each period, and the threshold value comparison unit 244 compares the integration value of each period with a common threshold value. be able to. Therefore, the CPU 211 can more easily determine whether or not the surrounding antenna power modulation has been detected.
  • the CPU 211 detects that the antenna power modulation is detected based on the comparison result by the threshold comparison unit 244 and determines that an encryption key update instruction has been received, the CPU 211 encrypts the payload at a predetermined timing, for example, at the beginning of the month. Update the encryption key to be used. After that, the CPU 211 encrypts the payload using the updated encryption key (new encryption key).
  • the timing of this update is shared with the high-sensitivity receiving apparatus 102 (known to both the transmission apparatus 101 and the high-sensitivity receiving apparatus 102), and the high-sensitivity receiving apparatus 102 also uses the encryption key at the same timing. Update.
  • the encryption key generation rule is common to the transmission apparatus 101 and the high-sensitivity reception apparatus 102. Therefore, the transmitting apparatus 101 and the high sensitivity receiving apparatus 102 can simultaneously acquire new encryption keys corresponding to each other. That is, the transmission apparatus 101 and the high sensitivity receiving apparatus 102 can normally communicate using the new encryption key. Therefore, the transmitter 101 and the high sensitivity receiver 102 can reduce the possibility of wiretapping or tampering with the communication.
  • the encryption key update process is a process for updating an encryption key used for encrypting and decrypting the payload of the transmitting apparatus 101 and the high sensitivity receiving apparatus 102.
  • the encryption key update process is a process for updating an encryption key used for encrypting and decrypting the payload of the transmitting apparatus 101 and the high sensitivity receiving apparatus 102.
  • FIG. 8 an example in which the encryption key is successfully updated will be described.
  • the CPU 211 of the transmission device 101 resets the integrated value of the integrating unit 243 (step S101).
  • the power modulation unit 156 of the high sensitivity receiver 102 requests the transmitter 101 to update the encryption key by modulating the antenna power (step S121).
  • the modulation detection unit 218 of the transmission apparatus 101 performs carrier sense and detects the modulation of the surrounding antenna power (step S102).
  • the amplification unit 152 of the high sensitivity receiving apparatus 102 receives the transmission signal via the antenna 151 and amplifies it. Further, the demodulating unit 153 demodulates, and the error correcting unit 154 performs error correction. The CPU 155 extracts the encrypted payload and decrypts it using the encryption key. In this way, the payload is received (step S122). Since the value of the fill-up information of this payload is “0”, the update of the encryption key is not yet reserved.
  • steps S102 and S103, and steps S121 and S122 are repeatedly performed during a predetermined period (for example, one month).
  • the CPU 211 of the transmission apparatus 101 sets the value “1”. Fill-up information is added to the payload.
  • the transmission unit 215 of the transmission device 101 transmits the payload (step S105).
  • the high sensitivity receiving apparatus 102 receives the payload as in the case of the processing in step S122 and the like (step S124). Since the value of the fill-up information becomes “1”, the update of the encryption key is reserved.
  • the CPU 211 of the transmission apparatus 101 updates the encryption key at a known predetermined timing such as the end of the month (step S106).
  • the CPU 155 of the high sensitivity receiving apparatus 102 also updates the encryption key (step S125).
  • the CPU 211 of the transmission device 101 resets the integrated value of the integrating unit 243 (step S141).
  • the power modulation unit 156 of the high sensitivity receiving apparatus 102 requests the transmitting apparatus 101 to update the encryption key by modulating the antenna power (step S161).
  • the modulation detection unit 218 of the transmission apparatus 101 performs carrier sense and detects the modulation of the surrounding antenna power (step S142).
  • the amplification unit 152 of the high sensitivity receiving apparatus 102 receives the transmission signal via the antenna 151 and amplifies it. Further, the demodulating unit 153 demodulates, and the error correcting unit 154 performs error correction. The CPU 155 extracts the encrypted payload and decrypts it using the encryption key. In this way, the payload is received (step S162). Since the value of the fill-up information of this payload is “0”, the update of the encryption key is not yet reserved.
  • steps S142 and S143, and steps S161 and S162 is repeatedly performed during a predetermined period (for example, one month).
  • step S144 and S145, and steps S163 and S164 If the integrated value does not exceed the threshold value in the processes (steps S144 and S145, and steps S163 and S164) performed at the end of the predetermined period, transmission is performed from the transmission device 101 to the high sensitivity reception device 102.
  • the value of the fill-up information added to the added payload remains “0”, and the encryption key update is not reserved.
  • the CPU 211 of the transmission apparatus 101 does not update the encryption key at a known predetermined timing such as the end of the month (encryption). (Key update is omitted) (step S146). Further, at the same timing, the CPU 155 of the high sensitivity receiving apparatus 102 also does not update the encryption key (the update of the encryption key is omitted) (step S165).
  • the transmission device 101 and the high sensitivity receiving device 102 perform encryption at the same timing, for example, by updating the encryption key or omitting the update of the encryption key.
  • the same process can be performed for the key update. Therefore, the transmitting device 101 and the high sensitivity receiving device 102 can perform encryption and decryption of information using an encryption key while maintaining a state where information can be normally exchanged.
  • the encryption key can also be updated. Therefore, the possibility of wiretapping or tampering with communication can be reduced.
  • the transmission apparatus 101 and the high sensitivity receiving apparatus 102 can update the encryption key irregularly. Therefore, it is possible to further reduce the possibility of wiretapping or tampering with communication.
  • the high sensitivity receiving apparatus 102 does not have a signal receiving function and can control the transmitting apparatus 101 that performs one-way communication from the outside.
  • the period of repeating the carrier sense (accumulating period) has been described as one month, but the length of this period is arbitrary.
  • the drive of the transmission apparatus 101 may be controlled using the encryption key update process as described above.
  • the transmission device 101 that is no longer needed is left unattended, and unnecessary signals are continuously transmitted from the transmission device 101, and the unnecessary signal transmission occupies the frequency band used for communication, It may be an interference wave for other communications.
  • the high-sensitivity receiving apparatus 102 continuing to receive signals transmitted from the unnecessary transmitting apparatus 101 is a wasteful process.
  • this unnecessary communication does not update the encryption key for a long period of time, the security level is reduced, and there is a possibility that it may be used for wiretapping or tampering of communication.
  • an expiration date may be provided for driving the transmission apparatus 101, and the expiration date may be managed using the encryption key update process described above.
  • the above-described encryption key update processing may be repeatedly executed, and signal transmission by the transmission apparatus 101 may be stopped when the encryption key update fails for a predetermined period (continuously a predetermined number of times). In this case, reception of a signal from the transmission device 101 by the high sensitivity reception device 102 may be stopped.
  • the transmission apparatus 101 When the control process is started, the transmission apparatus 101 performs an encryption key update request process (step S181), and the high sensitivity receiver 102 performs an encryption key update request confirmation process (step S191). With this process, the transmission apparatus 101 resets the integrated value at the expiration date start timing (for example, at the beginning of the month).
  • the transmission apparatus 101 Performs encryption key update request processing again (step S182).
  • the encryption key update request confirmation process is performed again (step S192).
  • the transmitting apparatus 101 performs the encryption key update request process again (step S183).
  • the high sensitivity receiving apparatus 102 performs encryption key update request confirmation processing again.
  • the CPU 211 of the transmission apparatus 101 determines that the expiration date has expired, and controls other processing units as necessary. Signal transmission is stopped (step S184). Further, the CPU 155 of the high-sensitivity receiving apparatus 102 determines that the expiration date of the transmission apparatus 101 that is a communication partner has expired, controls other processing units as necessary, and stops reception from the transmission apparatus 101. (Step S194).
  • the high sensitivity receiving apparatus 102 does not have a signal receiving function and can control the transmitting apparatus 101 that performs one-way communication from the outside.
  • the modulation scheme in the carrier sense section is arbitrary and is not limited to the above example. For example, spread modulation using a pseudo random number sequence may be used. Further, for example, the carrier sense section may be divided into three or more partial sections, and a difference value may be calculated between the partial sections. In the case of the method of calculating the difference value between the first half and the second half of the carrier sense interval described above, only 1-bit information can be supplied to the transmission apparatus 101. By doing so, multiple-bit information is transmitted. The apparatus 101 can be supplied.
  • the method for calculating each modulated antenna power may be any method as long as it is shared between the modulating side and the detecting side (if known).
  • the carrier sense section is divided into four, the modulation of the antenna power in each partial section is “+1”, “ ⁇ 1”, “+1”, “ ⁇ 1”, and the antenna power in the odd-numbered partial section is added, You may make it subtract the antenna power of the even-numbered partial area.
  • the method of calculating the antenna power of each partial section (for example, whether to add or subtract) may be determined from a pseudo random number.
  • the number of divisions of the carrier sense section is arbitrary, and may be eight divisions, for example.
  • the transmission apparatus 101 determines that the A process is instructed for the first time, determines that the B process is instructed for the second time, determines that the C process is instructed for the third time, and so on.
  • the content for example, instruction content
  • the supplied information may be changed.
  • one piece of information may be supplied to the transmission apparatus 101 in multiple detections of the modulation of the antenna power.
  • a multi-bit encryption key may be obtained by collecting 1-bit information supplied to the transmission apparatus 101 each time. That is, arbitrary information such as an encryption key can be transmitted using the modulation of the antenna power.
  • the transmission apparatus 101 detects the modulation of the antenna power using the received power received in the carrier sense when transmitting the signal.
  • the transmission apparatus 101 detects the modulation of the antenna power.
  • carrier sense may be separately performed. In this case, since the transmission apparatus 101 does not perform transmission, the transmission power of the carrier sense band transmitted by the high sensitivity receiving apparatus 102 can be increased.
  • the encryption key generation method is arbitrary. For example, a value uniquely determined using GPS time information, LFSR (Linear Feed-back Shift Register), or the like may be used as an encryption key, or a predetermined encryption key table may be used as a highly sensitive reception with the transmission device 101. It may be shared with the apparatus 102 and the encryption key may be set based on the table.
  • LFSR Linear Feed-back Shift Register
  • the high sensitivity receiving apparatus 102 may broadcast a key update command, that is, simultaneously transmit to all the transmitting apparatuses 101, or may change the modulation of the carrier sense interval for each group, for example. .
  • a key update command that is, simultaneously transmit to all the transmitting apparatuses 101
  • the high-sensitivity receiving apparatus 102 has been described so as to modulate the antenna power around the transmission apparatus 101.
  • the present invention is not limited to this, and any apparatus other than the high-sensitivity reception apparatus 102 may receive May be modulated (that is, information is supplied to the transmission apparatus 101).
  • the antenna power is modulated on all channels in the frequency band used for signal transmission / reception.
  • the antenna power is modulated only on one or more representative channels. May be.
  • the channel on which the antenna power is modulated may be variable.
  • the antenna power may be modulated in a band different from the frequency band used for signal transmission / reception.
  • Second Embodiment> ⁇ DPSK>
  • the power value (magnitude) of the antenna power is modulated.
  • the phase of the antenna power may be modulated.
  • differential (difference) phase shift keying DPSK (Differential Phase-Shift Keying)
  • DPSK Different Phase-Shift Keying
  • FIG. 11 shows a main configuration example of the high-sensitivity receiving apparatus 102 when the antenna power is modulated by DPSK.
  • the high sensitivity receiving apparatus 102 in this case basically has the same configuration as that in FIG.
  • the power modulation unit 156 of the high sensitivity receiving apparatus 102 includes a DPSK unit 311 instead of the single carrier modulation unit 163 and the switch 164.
  • the power modulation unit 156 changes the phase of the antenna power for each partial section obtained by dividing the antenna power measurement period in the transmission apparatus 101 into a plurality of sections. For example, the power modulation unit 156 changes the phase of the antenna power for each partial section with a predetermined pattern. For example, the power modulation unit 156 changes the polarity of the phase difference of the antenna power between successive partial sections with a predetermined pattern. For example, the power modulation unit 156 modulates the antenna power for a period including the measurement period twice or more.
  • the DPSK unit 311 generates a signal having a predetermined frequency, and modulates the signal so as to indicate the value of the pseudorandom number supplied from the pseudorandom number generator 162 by the DPSK method. At this time, the DPSK unit 311 performs modulation so that the phase of the antenna power around the transmission apparatus 101 changes during the measurement period of the antenna power in the transmission apparatus 101 (that is, the carrier sense section).
  • the DPSK unit 311 supplies the modulated signal (modulated signal) to the amplification unit 165.
  • the amplification unit 165 transmits the modulated signal via the antenna 166. By doing so, the high sensitivity receiver 102 can modulate the antenna power by the DPSK method.
  • the DPSK unit 311 can be realized by an arbitrary configuration.
  • the DPSK unit 311 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the DPSK unit 311 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • FIG. 12 shows a main configuration example of the transmission apparatus 101 when the antenna power is modulated by the DPSK method.
  • the transmitting apparatus 101 in this case basically has the same configuration as that in FIG.
  • the modulation detection unit 218 of the transmission apparatus 101 includes a phase difference detection unit 321 instead of the subtraction unit 238.
  • the modulation detection unit 218 detects the modulation of the antenna power based on the change in the phase of the antenna power for each partial section obtained by dividing the carrier sense section (aerial power measurement period). For example, the modulation detection unit 218 detects the modulation of the antenna power based on the pattern of the change in the phase of the antenna power for each partial section. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the polarity pattern of the phase difference of the antenna power between successive partial sections. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the magnitude of the integrated value of the polarity.
  • the phase difference detection unit 321 detects the phase difference between the reception power supplied from the A / D conversion unit 235 and the reception power supplied from the A / D conversion unit 236.
  • the phase difference detection unit 321 can be realized by an arbitrary configuration.
  • the phase difference detection unit 321 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
  • the phase difference detection unit 321 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  • the direction of subtraction by the subtraction unit 238 changes according to the value of the pseudo random number. For example, when the value of the pseudo random number is “0”, the subtraction unit 238 subtracts the phase of the reception power in the first half of the carrier sense interval from the phase of the reception power in the second half of the carrier sense interval. For example, when the value of the pseudo random number is “1”, the subtracting unit 238 subtracts the phase of the received power in the second half of the carrier sense interval from the phase of the received power in the first half of the carrier sense interval.
  • the subtracting unit 238 multiplies a difference value (phase difference) obtained by subtracting the phase of the received power in the first half of the carrier sense interval from the phase of the received power in the latter half of the carrier sense interval by a code corresponding to a pseudo random number. calculate. For example, when the value of the pseudo random number is “0”, “+1” is multiplied by a difference value (phase difference) obtained by subtracting the phase of the received power in the first half of the carrier sense interval from the phase of the received power in the latter half of the carrier sense interval. Value is obtained.
  • phase difference a difference value obtained by subtracting the phase of the received power in the first half of the carrier sense interval from the phase of the received power in the latter half of the carrier sense interval. The value multiplied by is obtained.
  • the phase difference detection unit 321 supplies the detected phase difference to the code comparison unit 239.
  • the sign comparison unit 239 determines the sign (whether positive or negative) of the phase difference. That is, in this case, the modulation detector 218 detects the modulation of the antenna power based on the magnitude of the integrated value of the polarities of the difference values between the first half phase and the second half phase of the antenna power measurement period. By doing so, the transmission apparatus 101 can detect the modulation of the antenna power by the DPSK method. Also in this case, the CPU 211 makes a determination based on the integrated value, so that the determination can be performed more accurately than when the determination is made based on the detection result of one carrier sense section.
  • the high sensitivity receiving apparatus 102 can control the transmitting apparatus 101 that does not have a signal receiving function and performs one-way communication from the outside.
  • the position notification system 100 has been described as an example, but the present technology can be applied to any communication system.
  • the transmission apparatus 101 may be installed not only on a person but also on a moving body.
  • the present technology can also be applied to an anti-theft system 800 for preventing theft of automobiles, motorcycles and the like as shown in FIG.
  • the transmission apparatus 101 is installed in an object whose position is monitored by the user, for example, an automobile 801 or a motorcycle 802 owned by the user.
  • the transmission apparatus 101 notifies the high-sensitivity reception apparatus 102 of its own position information (that is, position information of the automobile 801 and the motorcycle 802) as appropriate. That is, as in the case of the position notification system 100, the user can access the server 104 from the terminal device 105 and grasp the positions of the automobile 801 and the motorcycle 802. Therefore, since the user can grasp the positions of the automobile 801 and the motorcycle 802 even if the user is stolen, the user can easily retrieve the automobile 801 and the motorcycle 802.
  • Information transmitted and received between the transmission device 101 and the high sensitivity reception device 102 is arbitrary.
  • the transmission apparatus 101 may transmit transmission information including identification information such as images, sounds, measurement data, devices, parameter setting information, or control information such as commands.
  • the transmission information may include a plurality of types of information such as an image and sound, identification information, setting information, and control information.
  • the transmission apparatus 101 may be able to transmit transmission information including information supplied from another apparatus, for example.
  • the transmission device 101 may have an image, light, brightness, saturation, electricity, sound, vibration, acceleration, speed, angular velocity, force, temperature (not temperature distribution), humidity, distance, area, volume, shape, flow rate, Generate and send transmission information including information (sensor output) output from various sensors that perform detection or measurement for any variable such as time, time, magnetism, chemical substance, or odor, or the amount of change. You may make it do.
  • the present technology for example, three-dimensional shape measurement, spatial measurement, object observation, moving deformation observation, biological observation, authentication processing, monitoring, autofocus, imaging control, illumination control, tracking processing, input / output control, electronic device control,
  • the present invention can be applied to a system used for any application such as actuator control.
  • the present technology can be applied to a system in an arbitrary field such as traffic, medical care, crime prevention, agriculture, livestock industry, mining, beauty, factory, home appliance, weather, and nature monitoring.
  • the present technology can also be applied to a system that captures an image for viewing using a digital camera, a portable device with a camera function, or the like.
  • this technology monitors in-vehicle systems, traveling vehicles, and roads that photograph the front, rear, surroundings, and interiors of automobiles for safe driving such as automatic stop and recognition of the driver's condition.
  • the present invention can also be applied to a system used for traffic, such as a surveillance camera system that performs a distance measurement between vehicles or the like.
  • the present technology can also be applied to a system provided for security using a security camera for surveillance purposes, a camera for personal authentication purposes, or the like.
  • the present technology can also be applied to a system provided for sports using various sensors that can be used for sports applications such as a wearable camera.
  • the present technology can also be applied to a system used for agriculture using various sensors such as a camera for monitoring the state of a field or crop.
  • the present technology can also be applied to a system used for livestock industry that uses various sensors for monitoring the state of livestock such as pigs and cows.
  • the present technology can be applied to systems that monitor natural conditions such as volcanoes, forests, and oceans, meteorological observation systems that observe weather, temperature, humidity, wind speed, sunshine hours, and so on, such as birds, fish, and reptiles. It can also be applied to a system for observing the ecology of wildlife such as moss, amphibians, mammals, insects and plants.
  • the specification of the radio signal and information transmitted / received is arbitrary.
  • the present technology is not limited to a transmission device and a reception device, and can be applied to an arbitrary device such as a transmission / reception device, a communication device, a signal processing device, or an information processing device.
  • ⁇ Computer> The series of processes described above can be executed by hardware or can be executed by software. Also, some processes can be executed by hardware, and other processes can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 14 is a block diagram showing an example of a hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 910 is also connected to the bus 904.
  • An input unit 911, an output unit 912, a storage unit 913, a communication unit 914, and a drive 915 are connected to the input / output interface 910.
  • the input unit 911 includes, for example, a keyboard, a mouse, a microphone, a touch panel, an input terminal, and the like.
  • the output unit 912 includes, for example, a display, a speaker, an output terminal, and the like.
  • the storage unit 913 includes, for example, a hard disk, a RAM disk, a nonvolatile memory, and the like.
  • the communication unit 914 includes a network interface, for example.
  • the drive 915 drives a removable medium 921 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 901 loads the program stored in the storage unit 913 into the RAM 903 via the input / output interface 910 and the bus 904 and executes the program, for example. Is performed.
  • the RAM 903 also appropriately stores data necessary for the CPU 901 to execute various processes.
  • the program executed by the computer can be recorded and applied to, for example, a removable medium 921 as a package medium or the like.
  • the program can be installed in the storage unit 913 via the input / output interface 910 by attaching the removable medium 921 to the drive 915.
  • This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be received by the communication unit 914 and installed in the storage unit 913.
  • this program can be installed in the ROM 902 or the storage unit 913 in advance.
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
  • the present technology may be applied to any configuration that constitutes an apparatus or system, for example, a processor as a system LSI (Large Scale Integration), a module that uses a plurality of processors, a unit that uses a plurality of modules, etc. It can also be implemented as a set or the like to which functions are added (that is, a partial configuration of the apparatus).
  • a processor as a system LSI (Large Scale Integration)
  • a module that uses a plurality of processors
  • a unit that uses a plurality of modules etc.
  • It can also be implemented as a set or the like to which functions are added (that is, a partial configuration of the apparatus).
  • the system means a set of a plurality of constituent elements (devices, modules (parts), etc.), and it does not matter whether all the constituent elements are in the same casing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
  • the present technology can take a configuration of cloud computing in which one function is shared and processed by a plurality of devices via a network.
  • the above-described program can be executed in an arbitrary device.
  • the device may have necessary functions (functional blocks and the like) so that necessary information can be obtained.
  • each step described in the above flowchart can be executed by one device or can be executed by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • a plurality of processes included in one step can be executed as a process of a plurality of steps.
  • the processing described as a plurality of steps can be collectively executed as one step.
  • the program executed by the computer may be such that the processing of steps describing the program is executed in time series in the order described in this specification, or in parallel or when a call is made. It may be executed individually at the required timing. That is, as long as no contradiction occurs, the processing of each step may be executed in an order different from the order described above. Furthermore, the processing of the steps describing this program may be executed in parallel with the processing of other programs, or may be executed in combination with the processing of other programs.
  • the present technology can also have the following configurations.
  • a detector that detects the modulation of the antenna power;
  • a processing unit that performs predetermined processing based on a detection result of the antenna power modulation by the detection unit;
  • a signal processing apparatus comprising: a transmission unit that transmits a signal including a payload.
  • the detection unit detects the modulation of the antenna power based on a change in the antenna power for each partial section obtained by dividing the antenna power measurement period into a plurality of sections.
  • the detection unit detects modulation of the antenna power based on a change in the power value of the antenna power for each partial section.
  • the signal processing device (4) The signal processing device according to (3), wherein the detection unit detects modulation of the antenna power based on a pattern of change in the power value of the antenna power for each partial section. (5) The signal processing device according to (2), wherein the detection unit detects the modulation of the antenna power based on a change in the phase of the antenna power for each partial section. (6) The processing unit sets identification information for identifying whether or not the detection unit has detected a modulation of antenna power as the processing, The signal processing apparatus according to any one of (1) to (5), wherein the transmission unit transmits a signal including the payload and the identification information.
  • the processing unit When the detection unit detects an antenna power modulation, the processing unit, as the processing, Setting the value of the identification information to a value indicating that the modulation of the antenna power is detected; Update the encryption key used for encrypting the payload at a predetermined timing after transmitting the identification information,
  • the signal processing apparatus according to (6), wherein the transmission unit transmits a signal including the payload and the identification information set by the processing unit.
  • the processing unit controls the transmission unit to stop transmission of the payload as the processing. ) To (7).
  • the processing unit acquires, as the processing, information on an encryption key used for encrypting the payload included in the modulated antenna power.
  • the signal processing device according to any one of (8).
  • the detection unit detects the modulation of the antenna power based on the antenna power received in the carrier sense for confirming the usage state of the frequency band used by the transmission unit for signal transmission.
  • the signal processing device according to any one of the above.
  • (11) detect the modulation of the antenna power, Perform predetermined processing based on the detection result of the antenna power modulation, A signal processing method for transmitting a signal including a payload.
  • a signal processing device including a power modulation unit that modulates antenna power.
  • the power modulation unit modulates the antenna power so that the antenna power changes for each of the partial sections obtained by dividing the antenna power measurement period in the transmitter.
  • the power modulation unit changes a power value of antenna power for each partial section.
  • the power modulation unit changes the power value of the antenna power for each of the partial sections with a predetermined pattern.
  • the power modulation unit changes a phase of the antenna power for each partial section.
  • a receiving unit that receives the signal transmitted from the transmission device, and receives the identification information that identifies whether the payload and the modulation of the antenna power detected by the transmission device are included in the signal.
  • the signal processing device according to any one of (12) to (16).
  • the reception unit decrypts a payload encrypted using an encryption key, and when the value of the received identification information is a value indicating that modulation of antenna power is detected by the transmission device, The signal processing device according to (17), wherein the encryption key is updated at a predetermined timing.
  • 100 location notification system 101 transmission device, 102 high sensitivity reception device, 103 network, 104 server, 111 elderly people, 151 antenna, 152 amplification unit, 153 demodulation unit, 154 error correction unit, 155 CPU, 156 power modulation unit, 161 GNSS receiver, 162 pseudo random number generator, 163 single carrier modulator, 164 switch, 165 amplifier, 166 antenna, 210 transmission data generator, 211 CPU, 212 memory, 213 encoder, 214 modulator, 215 transmitter , 216 amplification unit, 217 antenna, 218 modulation detection unit, 219 oscillation unit, 231 amplification unit, 232 reception unit, 233 filter, 234 switch, 235 and 236 A / D conversion unit, 237 addition unit, 238 subtraction unit, 239 code comparison unit, 240 and 241 amplification unit, 243 integration unit, 244 threshold comparison unit, 251 GNSS reception unit, 252 pseudo random number generation unit, 311 DPSK unit , 321 phase difference detector, 800 anti-t

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present technology pertains to a signal processing device and method for enabling control of a transmission device that performs one-way communication. The present invention detects modulation of antenna power, performs a predetermined process on the basis of the detection result of modulation of antenna power, and transmits a signal including a payload. Alternatively, the present invention modulates antenna power. The present disclosure is applicable to, for example, a signal processing device, a transmission device, a reception device, a transmission/reception device, a communication device, an information processing device, an electronic apparatus, a computer, a program, a recording medium, a system, and the like.

Description

信号処理装置および方法Signal processing apparatus and method
 本技術は、信号処理装置および方法に関し、特に、片方向通信を行う送信装置を制御することができるようにした信号処理装置および方法に関する。 The present technology relates to a signal processing device and method, and more particularly, to a signal processing device and method that can control a transmission device that performs one-way communication.
 従来、装置間で通信を行う通信システムにおいて、制御情報を送信することにより他の通信装置を制御する方法があった(例えば、特許文献1参照)。例えば、特許文献1には、鍵更新メッセージを送信することにより他の通信装置に暗号鍵を更新させる方法が記載されている。 Conventionally, there has been a method of controlling other communication devices by transmitting control information in a communication system that performs communication between devices (for example, see Patent Document 1). For example, Patent Literature 1 describes a method for causing another communication device to update an encryption key by transmitting a key update message.
特開2009-10933号公報JP 2009-10933 A
 しかしながら、送信装置から受信装置への一方向のデータ伝送(片方向通信)を行うシステムの場合、送信装置は信号を受信する機能を備えていないため、制御情報を送信装置に送信する等して外部から送信装置を制御することが困難であった。 However, in the case of a system that performs one-way data transmission (one-way communication) from a transmission device to a reception device, the transmission device does not have a function of receiving a signal, so control information is transmitted to the transmission device, etc. It was difficult to control the transmitter from the outside.
 本開示は、このような状況に鑑みてなされたものであり、片方向通信を行う送信装置を制御することができるようにするものである。 The present disclosure has been made in view of such a situation, and makes it possible to control a transmission device that performs one-way communication.
 本技術の一側面の信号処理装置は、空中線電力の変調を検出する検出部と、前記検出部による空中線電力の変調の検出結果に基づいて所定の処理を行う処理部と、ペイロードを含む信号を送信する送信部とを備える信号処理装置である。 A signal processing device according to an aspect of the present technology includes a detection unit that detects modulation of antenna power, a processing unit that performs predetermined processing based on a detection result of the modulation of antenna power by the detection unit, and a signal including a payload. It is a signal processing apparatus provided with the transmission part which transmits.
 前記検出部は、空中線電力の計測期間を複数に分割した部分区間毎の空中線電力の変化に基づいて、空中線電力の変調を検出することができる。 The detection unit can detect the modulation of the antenna power based on the change in the antenna power for each partial section obtained by dividing the antenna power measurement period into a plurality of sections.
 前記検出部は、前記部分区間毎の空中線電力の電力値の変化に基づいて、空中線電力の変調を検出することができる。 The detection unit can detect the modulation of the antenna power based on the change in the power value of the antenna power for each partial section.
 前記検出部は、前記部分区間毎の空中線電力の電力値の変化のパタンに基づいて、空中線電力の変調を検出することができる。 The detection unit can detect the modulation of the antenna power based on the pattern of the change in the power value of the antenna power for each partial section.
 前記検出部は、前記部分区間毎の空中線電力の位相の変化に基づいて、空中線電力の変調を検出することができる。 The detection unit can detect the modulation of the antenna power based on the change in the phase of the antenna power for each partial section.
 前記処理部は、前記処理として、前記検出部が空中線電力の変調を検出したか否かを識別する識別情報を設定し、前記送信部は、前記ペイロードと前記識別情報とを含む信号を送信することができる。 As the processing, the processing unit sets identification information for identifying whether or not the detection unit has detected an antenna power modulation, and the transmission unit transmits a signal including the payload and the identification information. be able to.
 前記処理部は、前記検出部により空中線電力の変調が検出された場合、前記処理として、前記識別情報の値を、前記空中線電力の前記変調が検出されたことを示す値に設定し、前記識別情報送信後の所定のタイミングにおいて、前記ペイロードの暗号化に用いられる暗号鍵を更新し、前記送信部は、前記ペイロードと前記処理部により設定された前記識別情報とを含む信号を送信することができる。 When the detection unit detects the modulation of the antenna power, the processing unit sets the value of the identification information to a value indicating that the modulation of the antenna power is detected as the processing. The encryption key used for encrypting the payload is updated at a predetermined timing after information transmission, and the transmission unit transmits a signal including the payload and the identification information set by the processing unit. it can.
 前記処理部は、所定の期間内に空中線電力の変調が検出されなかったことが所定回数発生した場合、前記処理として、前記送信部を制御し、前記ペイロードの送信を停止させることができる。 When the predetermined number of times that the antenna power modulation is not detected within a predetermined period, the processing unit can control the transmission unit to stop transmission of the payload as the processing.
 前記処理部は、前記検出部により空中線電力の変調が検出された場合、前記処理として、変調された空中線電力に含まれる、前記ペイロードの暗号化に用いられる暗号鍵の情報を取得することができる。 When the detection unit detects the modulation of the antenna power, the processing unit can acquire the encryption key information used for encrypting the payload included in the modulated antenna power as the processing. .
 前記検出部は、前記送信部が信号送信に用いる周波数帯域の利用状況を確認するキャリアセンスにおいて受信された空中線電力に基づいて、空中線電力の変調を検出することができる。 The detection unit can detect the modulation of the antenna power based on the antenna power received in the carrier sense for confirming the usage status of the frequency band used for signal transmission by the transmitter.
 本技術の一側面の信号処理方法は、空中線電力の変調を検出し、空中線電力の変調の検出結果に基づいて所定の処理を行い、ペイロードを含む信号を送信する信号処理方法である。 The signal processing method according to one aspect of the present technology is a signal processing method of detecting a modulation of the antenna power, performing a predetermined process based on the detection result of the antenna power modulation, and transmitting a signal including a payload.
 本技術の他の側面の信号処理装置は、空中線電力を変調する電力変調部を備える信号処理装置である。 A signal processing device according to another aspect of the present technology is a signal processing device including a power modulation unit that modulates antenna power.
 前記電力変調部は、送信装置における空中線電力の計測期間を複数に分割した部分区間毎に空中線電力が変化するように、空中線電力を変調することができる。 The power modulation unit can modulate the antenna power so that the antenna power changes for each partial section obtained by dividing the antenna power measurement period in the transmission apparatus into a plurality of sections.
 前記電力変調部は、前記部分区間毎に空中線電力の電力値を変化させることができる。 The power modulation unit can change the power value of the antenna power for each partial section.
 前記電力変調部は、前記部分区間毎の空中線電力の電力値を所定のパタンで変化させることができる。 The power modulation unit can change the power value of the antenna power for each partial section with a predetermined pattern.
 前記電力変調部は、前記部分区間毎に空中線電力の位相を変化させることができる。 The power modulation unit can change the phase of the antenna power for each partial section.
 送信装置から送信された信号を受信することにより、前記信号に含まれる、ペイロード、および、前記送信装置により空中線電力の変調が検出されたか否かを識別する識別情報を受信する受信部をさらに備えることができる。 A receiving unit that receives the signal transmitted from the transmitting device and receives identification information that identifies whether the signal includes a payload and whether or not modulation of antenna power is detected by the transmitting device. be able to.
 前記受信部は、暗号鍵を用いて暗号化されたペイロードを復号し、受信した前記識別情報の値が前記送信装置により空中線電力の変調が検出されたことを示す値である場合、所定のタイミングにおいて前記暗号鍵を更新することができる。 The reception unit decrypts a payload encrypted using an encryption key, and when the received identification information value is a value indicating that antenna power modulation is detected by the transmission device, a predetermined timing is obtained. The encryption key can be updated at.
 前記受信部は、所定の期間内に前記送信装置により空中線電力の変調が検出されたことを示す値の前記識別情報を受信できなかったことが所定回数発生した場合、前記送信装置から送信された信号の受信を停止することができる。 The reception unit is transmitted from the transmission device when it has occurred a predetermined number of times that the identification information having a value indicating that modulation of antenna power is detected by the transmission device within a predetermined period of time. The reception of the signal can be stopped.
 本技術の他の側面の信号処理方法は、空中線電力を変調する信号処理方法である。 The signal processing method according to another aspect of the present technology is a signal processing method for modulating antenna power.
 本技術の一側面の信号処理装置および方法においては、空中線電力の変調が検出され、空中線電力の変調の検出結果に基づいて所定の処理が行われ、ペイロードを含む信号が送信される。 In the signal processing apparatus and method according to one aspect of the present technology, the modulation of the antenna power is detected, a predetermined process is performed based on the detection result of the antenna power modulation, and a signal including the payload is transmitted.
 本技術の他の側面の信号処理装置および方法においては、空中線電力が変調される。 In the signal processing apparatus and method according to another aspect of the present technology, the antenna power is modulated.
 本技術によれば、信号を処理することが出来る。また本技術によれば、片方向通信を行う送信装置を制御することができる。 According to this technology, the signal can be processed. According to the present technology, it is possible to control a transmission device that performs one-way communication.
空中線電力の変調を用いた送信器制御の様子の例を説明する図である。It is a figure explaining the example of the mode of the transmitter control using the modulation | alteration of antenna power. 空中線電力の変調を用いた暗号鍵更新の様子の例を説明する図である。It is a figure explaining the example of the mode of the encryption key update using the modulation | alteration of antenna power. 空中線電力の変調の様子の例を説明する図である。It is a figure explaining the example of the mode of modulation of antenna power. 空中線電力の変調の様子の例を説明する図である。It is a figure explaining the example of the mode of modulation of antenna power. 位置通知システムの主な構成例を示す図である。It is a figure which shows the main structural examples of a position notification system. 高感度受信装置の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples of a highly sensitive receiver. 送信装置の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples of a transmitter. 暗号鍵更新処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of an encryption key update process. 暗号鍵更新処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of an encryption key update process. 制御処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of control processing. 高感度受信装置の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples of a highly sensitive receiver. 送信装置の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples of a transmitter. 盗難防止システムの主な構成例を示す図である。It is a figure which shows the main structural examples of an antitheft system. コンピュータの主な構成例を示すブロック図である。And FIG. 20 is a block diagram illustrating a main configuration example of a computer.
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.空中線電力の変調を利用した情報伝送
 2.第1の実施の形態(位置通知システム)
 3.第2の実施の形態(DPSK変調)
 4.その他
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. 1. Information transmission using antenna power modulation First embodiment (position notification system)
3. Second embodiment (DPSK modulation)
4). Other
 <1.空中線電力の変調を利用した情報伝送>
  <片方向通信の送信装置の制御>
 従来、装置間で通信を行う通信システムにおいて、例えば、特許文献1に記載のように、鍵更新メッセージを送信することにより他の通信装置に暗号鍵を更新させる等、通信装置を外部から制御する方法が考えられた。
<1. Information transmission using antenna power modulation>
<Control of one-way communication transmitter>
2. Description of the Related Art Conventionally, in a communication system that performs communication between devices, for example, as described in Patent Document 1, a communication device is controlled from the outside, such as by causing another communication device to update an encryption key by transmitting a key update message. A method was considered.
 しかしながら、送信装置から受信装置への一方向のデータ伝送(片方向通信)を行うシステムの場合、送信装置は信号を受信する機能を備えていないため、外部から制御情報等を送信して制御することができなかった。 However, in the case of a system that performs unidirectional data transmission (one-way communication) from the transmission device to the reception device, the transmission device does not have a function of receiving signals, and therefore, control is performed by transmitting control information from the outside. I couldn't.
 例えば、無線通信システムにおいては、一般的に、送信器と受信局との間で授受されるデータは、通信の盗聴や改竄の可能性を低減させるために、暗号化されることが求められる。また、通信の盗聴や改竄の可能性をさらに低減させるために、その暗号化に用いられる暗号鍵を変更可能とすることが望ましい。しかしながら、片方向通信を行なう送信器は、データ送信の方向が一方向(uplink)であるため、受信局からデータを受け取る(downlink)ことができない。したがって、このような送信器が有する暗号鍵を通信によって更新させることは困難であった。 For example, in a wireless communication system, generally, data exchanged between a transmitter and a receiving station is required to be encrypted in order to reduce the possibility of wiretapping or tampering with communication. Also, in order to further reduce the possibility of tapping and tampering with communication, it is desirable to be able to change the encryption key used for the encryption. However, a transmitter that performs one-way communication cannot receive data (downlink) from a receiving station because the direction of data transmission is one-way (uplink). Therefore, it has been difficult to update the encryption key of such a transmitter through communication.
 このような片方向通信の送信器が有する暗号鍵を更新するためには、例えば、USB(Universal Serial Bus)(登録商標)やbluetooth(登録商標)などの別規格の通信手段を用いることが考えられる。しかしながら、送信器が多数存在する場合、全ての送信器を1か所に集め無ければならず、煩雑な作業を必要とした。特に、IoT機器などでは使い捨てることが前提のものも多く、全ての送信器を回収することが困難であった。 In order to update the encryption key of such a one-way communication transmitter, for example, it is considered to use a communication means of another standard such as USB (Universal Serial Bus) (registered trademark) or bluetooth (registered trademark). It is done. However, when there are a large number of transmitters, all the transmitters must be collected in one place, which requires complicated work. In particular, many IoT devices are assumed to be disposable, and it has been difficult to collect all transmitters.
 片方向通信において送信器の暗号鍵を更新する方法として、例えば送信器が日時時刻情報等を用いて定期的に暗号鍵を生成し、変更する方法が考えられる。しかしながらこの方法の場合、暗号鍵の生成規則を固定的にしなければならない。一般的に、暗号鍵の生成規則の漏洩を完全に防止することは困難であるので、この生成規則が固定的であると、漏洩後は秘密の暗号鍵を生成することが困難になる。さらに、この方法の場合、定期的に暗号鍵が更新されることから、その暗号鍵の更新タイミングが漏洩しやすい。したがって、仮に観測等によってその生成規則が漏洩した場合、いつ、どのように暗号鍵が生成されるのかが第3者にとって明らかとなり、通信の盗聴や改竄の可能性を低減させることが困難になるおそれがあった。 As a method for updating the encryption key of the transmitter in one-way communication, for example, a method in which the transmitter periodically generates and changes the encryption key using date / time information and the like can be considered. However, in this method, the encryption key generation rule must be fixed. In general, since it is difficult to completely prevent the leakage of the encryption key generation rule, if this generation rule is fixed, it becomes difficult to generate a secret encryption key after the leakage. Further, in this method, since the encryption key is periodically updated, the update timing of the encryption key is likely to be leaked. Therefore, if the generation rule is leaked due to observation or the like, it becomes clear to the third party how and when the encryption key is generated, and it becomes difficult to reduce the possibility of wiretapping or tampering with communication. There was a fear.
 また、無線通信システムにおいて、不要となった送信器からの送信を停止させることは、セキュリティ面だけでなく周波数帯域(リソース)の有効利用の観点からも重要である。例えば、管理されていない送信器からの信号は、脆弱性を有する可能性が高くなるため、盗聴や改竄の可能性が高くなる。さらに、その信号から通信の脆弱性を解析され、その無線通信システムの他の通信の盗聴や改竄に利用されるおそれもある。また、不要となった送信器からの信号送信は当然不要であるため、その信号によって帯域の使用率が不要に高くなってしまうおそれがあった。 Also, in a wireless communication system, stopping transmission from a transmitter that is no longer necessary is important not only from the viewpoint of security but also from the viewpoint of effective use of frequency bands (resources). For example, a signal from a transmitter that is not managed has a high possibility of being vulnerable, so that the possibility of eavesdropping or tampering is increased. Further, the vulnerability of the communication is analyzed from the signal, and there is a possibility that it is used for wiretapping or tampering with other communication of the wireless communication system. In addition, since signal transmission from a transmitter that is no longer necessary is naturally unnecessary, there is a possibility that the usage rate of the band may be unnecessarily high due to the signal.
 <空中線電力測定の利用>
 そこで、受信装置において、空中線電力を変調するようにする。また、送信装置において、空中線電力の変調を検出し、空中線電力の変調の検出結果に基づいて所定の処理を行い、ペイロードを含む信号を送信するようにする。このようにすることにより、送信装置が有する空中線電力の測定機能を利用して、外部から送信装置に情報を供給することができる。つまり、信号の送信を必要とせずに、外部から送信装置に情報を供給することができる。したがって、送信装置が信号受信機能を有しない場合であっても、外部から送信装置を制御することができる。
<Use of antenna power measurement>
Therefore, the antenna power is modulated in the receiving apparatus. Further, the transmitting device detects the modulation of the antenna power, performs a predetermined process based on the detection result of the antenna power modulation, and transmits a signal including the payload. In this way, information can be supplied from the outside to the transmission device using the antenna power measurement function of the transmission device. In other words, information can be supplied from the outside to the transmission device without the need for signal transmission. Therefore, even when the transmission device does not have a signal reception function, the transmission device can be controlled from the outside.
 <キャリアセンスを利用した制御>
 例えば、図1に示されるように、キャリアセンス機能を利用して外部から暗号鍵の更新を要求するようにしてもよい。キャリアセンスは、送信器1が送信を行なう周波数帯域に他の電波があるかどうかを判定し、ある一定の空中線電力レベルより低ければ送信可能と判断する機能である。この機能は、他の無線による通信を妨害しないことを確認するための手段であり、空中線電力測定だけが行なわれる。つまり、単純にキャリアセンスを行ってもデータビットを受信することはできない。
<Control using carrier sense>
For example, as shown in FIG. 1, the update of the encryption key may be requested from the outside using the carrier sense function. The carrier sense is a function that determines whether or not there is another radio wave in the frequency band in which the transmitter 1 transmits, and determines that transmission is possible if it is lower than a certain antenna power level. This function is a means for confirming that the communication by other radio is not disturbed, and only the antenna power measurement is performed. That is, data bits cannot be received even if carrier sensing is simply performed.
 送信器1は、キャリアセンス状態にして、周辺の空中線電力を監視する。受信局2は、送信器1がキャリアセンスを行なう周波数帯域に、他の通信の妨害波とならない程度の微弱な電力変調を与える。この電力変調は、特定のルールに基づいて行われる。また、電力変調を与えるタイミングも予め定められているものとする。送信器1および受信局2は、それらの情報を予め共有している。送信器1は、そのあらかじめ定められたタイミングにおいてキャリアセンスを行い、その特定のルールに基づいて電力変調を検出する。この変調の検出に成功した場合、送信器1は、受信局2からの所定の指示(命令)を受け付けたものとし、その指示に対応する処理を行う。この指示の内容は予め定められており、送信器1および受信局2でそれを共有している。つまり、送信器1は、予め定められた所定の処理を実行する。このようにすることにより、信号受信機能を有していない送信器1を、キャリアセンス機能を利用して、外部から制御することができる。 Transmitter 1 is in a carrier sense state and monitors surrounding antenna power. The receiving station 2 applies a weak power modulation to a frequency band where the transmitter 1 performs carrier sense so that it does not become an interference wave of other communications. This power modulation is performed based on specific rules. It is also assumed that the timing for applying power modulation is predetermined. The transmitter 1 and the receiving station 2 share such information in advance. The transmitter 1 performs carrier sense at the predetermined timing, and detects power modulation based on the specific rule. When the modulation is successfully detected, the transmitter 1 receives a predetermined instruction (command) from the receiving station 2 and performs processing corresponding to the instruction. The contents of this instruction are predetermined and are shared by the transmitter 1 and the receiving station 2. That is, the transmitter 1 executes a predetermined process that is determined in advance. By doing in this way, the transmitter 1 which does not have a signal reception function can be controlled from the outside using a carrier sense function.
 <キャリアセンスを利用した暗号鍵更新>
 このような方法を利用して、通信データの暗号化に用いられる暗号鍵の更新を、受信局2から送信器1に指示するようにしてもよい。その場合の例を図2に示す。この例では、1か月間を1つの区切りとして鍵更新命令の受信が行なわれている。
<Encryption key update using carrier sense>
Using such a method, the receiving station 2 may instruct the transmitter 1 to update the encryption key used for encrypting communication data. An example in that case is shown in FIG. In this example, the key update command is received with one month as one segment.
 まず、所定のルール(鍵更新命令検出のための疑似乱数列)と時刻(年月日時刻)を送信器1と受信局2との間であらかじめ取り決めておく。受信局2からは送信器1がキャリアセンスするタイミングで空中線電力を微小変調するための送信(downlink)を行なう。送信器1は、この鍵更新命令のための空中線電力微小変調を積算検出していく。送信器1は、積算値が一定の閾値を越えたら、送信するペイロードに用意したフィルアップ(fill-up)情報をセットし、それを受信局2に通知する(uplink)。 First, a predetermined rule (a pseudo-random number sequence for detecting a key update command) and a time (year / month / day / time) are determined in advance between the transmitter 1 and the receiving station 2. The receiving station 2 performs transmission (downlink) for minutely modulating the antenna power at the timing when the transmitter 1 performs carrier sense. The transmitter 1 integrates and detects the antenna power fine modulation for this key update command. When the integrated value exceeds a certain threshold value, the transmitter 1 sets fill-up information prepared in the payload to be transmitted, and notifies the receiving station 2 of it (uplink).
 このフィルアップ情報は、積算値が閾値に達した(受信局2からの指示を受け付けた)ことを示す情報であれば、どのような情報であってもよい。例えば、フィルアップ情報が、積算値が閾値に達したか否かを値によって示すフィルアップフラグ(fill-upフラグ)を含むようにしてもよい。なお、このフィルアップフラグを構成するビットをフィルアップビット(fill-upビット)とも称する。例えば、フィルアップ情報が、積算値が閾値に達していない場合に値「0」をとり、積算値が閾値に達した場合に値「1」をとる1ビットのフィルアップビットからなるフィルアップフラグにより構成されるようにしてもよい。 The fill-up information may be any information as long as it indicates that the integrated value has reached the threshold value (an instruction from the receiving station 2 has been accepted). For example, the fill-up information may include a fill-up flag (fill-up flag) that indicates whether or not the integrated value has reached a threshold value. The bits constituting the fill-up flag are also referred to as fill-up bits. For example, the fill-up flag takes a value “0” when the integrated value has not reached the threshold value, and a fill-up flag composed of 1-bit fill-up bit that has the value “1” when the integrated value has reached the threshold value. It may be configured by.
 受信局2は、ペイロードにフィルアップ情報がセットされたことにより鍵更新命令が送信器1に到達したと判断する。この状態になった後、予め取り決めていた時刻において、送信器1および受信局2の両方において、暗号鍵の更新を同時に行う。 The receiving station 2 determines that the key update command has reached the transmitter 1 when the fill-up information is set in the payload. After this state is reached, the encryption key is updated simultaneously at both the transmitter 1 and the receiving station 2 at a predetermined time.
 例えば、送信器1が、暦において月の最初の日から最終日まで、空中線電力微小変調を積算し、その積算値と閾値とを比較する。送信器1は、その比較結果に応じた値のフィルアップ情報を受信局2に送信する。つまり、その1ヶ月の間に積算値が閾値に達した場合、送信器1は、フィルアップ情報の値を更新して受信局2に送信する。受信局2は、そのフィルアップ情報に基づいて積算値が閾値に達したと判定される場合、月が変わる時刻に暗号鍵を更新する。それと同時に送信器1も暗号鍵を更新する。 For example, the transmitter 1 integrates the antenna power minute modulation from the first day of the month to the last day in the calendar, and compares the accumulated value with a threshold value. The transmitter 1 transmits fill-up information having a value corresponding to the comparison result to the receiving station 2. That is, when the integrated value reaches the threshold during the one month, the transmitter 1 updates the value of the fill-up information and transmits it to the receiving station 2. When it is determined that the integrated value has reached the threshold based on the fill-up information, the receiving station 2 updates the encryption key at the time when the month changes. At the same time, the transmitter 1 also updates the encryption key.
 このようにすることにより、片方向通信を行う送信器1および受信局2において、キャリアセンス機能を利用して、ペイロードの暗号化に用いられる暗号鍵を更新することができる。 By doing so, in the transmitter 1 and the receiving station 2 that perform one-way communication, the encryption key used for payload encryption can be updated using the carrier sense function.
  <変調ルール>
 図3は、受信局2における送信空中線電力の変調ルールを表している。所定の疑似乱数系列発生器から得られる乱数値をprbsと表す。例えば、受信局2は、図3のAの左側に示されるように、この乱数値prbs=‘0’の場合、空中線電力の測定期間(キャリアセンス区間とも称する)の前半よりも後半の方が空中線電力が高くなるような変調パタンで変調する。例えば、受信局2は、キャリアセンス区間の前半において、送信器1の周辺の空中線電力(の電力値)を微増させる変調信号を送信せず、キャリアセンス区間の後半において、その変調信号を送信する。このようにすることにより、受信局2は、送信器1周辺の空中線電力を、例えば図3のAの左側に示されるような波形に変調することができる。
<Modulation rule>
FIG. 3 shows a modulation rule for transmission antenna power at the receiving station 2. A random value obtained from a predetermined pseudo-random number sequence generator is represented as prbs. For example, as shown on the left side of FIG. 3A, when the random number value prbs = '0', the receiving station 2 is in the latter half of the first half of the antenna power measurement period (also referred to as a carrier sense period). Modulate with a modulation pattern that increases the antenna power. For example, the receiving station 2 does not transmit the modulation signal that slightly increases the antenna power around the transmitter 1 in the first half of the carrier sense interval, and transmits the modulation signal in the second half of the carrier sense interval. . In this way, the receiving station 2 can modulate the antenna power around the transmitter 1 into a waveform as shown on the left side of FIG.
 また、例えば、乱数値prbs=‘1’の場合、受信局2は、図3のAの右側に示されるように、空中線電力の測定期間(キャリアセンス区間とも称する)の前半よりも後半の方が空中線電力が低くなるような変調パタンで変調する。例えば、受信局2は、キャリアセンス区間の前半において、送信器1の周辺の空中線電力(の電力値)を微増させる変調信号を送信し、キャリアセンス区間の後半において、その変調信号の送信しない(送信を中止する)。このようにすることにより、受信局2は、送信器1周辺の空中線電力を、例えば図3のAの右側に示されるような波形に変調することができる。 Further, for example, when the random value prbs = '1', the receiving station 2 is in the latter half of the first half of the antenna power measurement period (also referred to as a carrier sense section) as shown on the right side of FIG. Modulates with a modulation pattern that lowers the antenna power. For example, the receiving station 2 transmits a modulation signal that slightly increases the antenna power around the transmitter 1 in the first half of the carrier sense interval, and does not transmit the modulation signal in the second half of the carrier sense interval ( Stop sending). In this way, the receiving station 2 can modulate the antenna power around the transmitter 1 into a waveform as shown on the right side of FIG.
 このような乱数値prbsと変調された空中線電力との関係を図3のBに示す。なお、このキャリアセンス区間の前半の電力値と後半の電力値との差は、他の通信に影響を与えない程十分に微小であるものとする。 FIG. 3B shows the relationship between the random value prbs and the modulated antenna power. It is assumed that the difference between the power value in the first half and the power value in the second half of this carrier sense section is sufficiently small so as not to affect other communications.
 図4は、送信器1における空中線電力を示している。ここで送信器1は、鍵更新命令を検出するために、キャリアセンス期間の前半Aと後半Bで空中電力値をサンプリングし、その差分δ(=PB-PA)を計算する。もしδが正の値であれば判定値Δ=+1とし、負の値であればΔ=-1とする。また、送信器1は、受信局2の場合と同様に所定の疑似乱数系列の出力をprbsとすると、prbs=‘0’の場合、積算極性を正(加算)とし、prbs=‘1’の場合、積算極性を負(減算)として判定値Δを積算していく。 FIG. 4 shows the antenna power in the transmitter 1. Here, in order to detect the key update command, the transmitter 1 samples the air power value in the first half A and the second half B of the carrier sense period, and calculates the difference δ (= PB−PA). If δ is a positive value, the determination value Δ = + 1, and if δ is a negative value, Δ = −1. Similarly to the case of the receiving station 2, the transmitter 1 assumes that the output of a predetermined pseudo-random number sequence is prbs. When prbs = '0', the transmitter polarity is positive (addition) and prbs = '1'. In this case, the determination value Δ is integrated with the integration polarity being negative (subtraction).
 図4のBおよび図4のCに、この積算の様子を表している。図4のBに示されるように、積算値は、電力測定回数が増大するごとに増大する。また、図4のCに示されるように、判定値Δと所定の疑似乱数系列とに関係性がある場合、大きな積算値を得られる。しかしながら、判定値のもとになる空中線電力差分δは小さく環境(天候、電離層など)の影響を受け、また他の無線が空中線電力に影響を与えるなどして、必ずしも正しくはならない。図4のCの演算例は誤りなく積算できることを示した表であり、実際には図4のBのように、積算過程が乱れる場合が多い。 4B and 4C show the state of this integration. As shown in FIG. 4B, the integrated value increases every time the number of power measurements increases. Further, as shown in FIG. 4C, when the determination value Δ and the predetermined pseudo-random number sequence are related, a large integrated value can be obtained. However, the antenna power difference δ, which is the basis of the determination value, is small and is not always correct because it is affected by the environment (weather, ionosphere, etc.), and other radios affect the antenna power. The calculation example of C in FIG. 4 is a table showing that the integration can be performed without error. In practice, the integration process is often disturbed as shown in B of FIG.
 送信器1から送信されるペイロード(データ)には、予め設定した閾値を越えたかどうかを表すfill-upビットフィールド(フラグ)を用意しておく。送信器1は、積算値が閾値を越えた場合にfill-upフラグをセットし、予め定めた期間を積算した後にこれをクリアするとともに、積算器のリセットを行なう。もし複数回の積算トライアルに失敗した場合、送信器1は、送信を停止して、送信機能を無効化する。また1度でも積算トライアルに成功した場合、上述のとおり所定のタイミングで送信器1と受信局2における鍵更新を同時に行う。 In the payload (data) transmitted from the transmitter 1, a fill-up bit field (flag) indicating whether a preset threshold value has been exceeded is prepared. The transmitter 1 sets a fill-up flag when the integrated value exceeds the threshold value, clears this after integrating a predetermined period, and resets the integrator. If a plurality of integration trials fails, the transmitter 1 stops transmission and disables the transmission function. When the integration trial is successful even once, the key update in the transmitter 1 and the receiving station 2 is simultaneously performed at a predetermined timing as described above.
 この積算トライアルを繰り返し、連続して所定の回数鍵更新信号の検出に失敗した場合、有効期限が切れたとみなす。具体的には、送信器1はその送信を停止し、受信局2はその送信器1が既に廃止されたものと考え、その送信器1に対する受信動作を以降行わないものとする。 繰 り 返 し Repeat this integration trial and if it fails to detect the key update signal a predetermined number of times in succession, it is considered that the expiration date has expired. Specifically, the transmitter 1 stops the transmission, and the receiving station 2 considers that the transmitter 1 has been abolished, and does not perform the receiving operation for the transmitter 1 thereafter.
  <他の送信器による空中線電力の影響>
 なお、他の送信器1による空中線電力の影響はランダムである。また送信器1は、長期間(=大きな回数)積算するので、他の送信器1による影響を抑えることができる。また、長期間による「ゴミ」の積算の影響を低減するため、ある一定期間後に積算値がリセットされる(例えば積算値=0)ようにしてもよい。例えば、1分に1回積算検出するようにしてもよい。この場合、30日間で43200回の積算になる。また、30日以内に積算値が閾値を越えない場合、積算値をリセットして、次の30日でもう一度積算を行う。
<Influence of antenna power by other transmitters>
In addition, the influence of the antenna power by the other transmitters 1 is random. Further, since the transmitter 1 integrates for a long time (= a large number of times), the influence of other transmitters 1 can be suppressed. Further, the integrated value may be reset after a certain period (for example, integrated value = 0) in order to reduce the influence of the accumulation of “dust” over a long period of time. For example, the integration may be detected once per minute. In this case, it is accumulated 43200 times in 30 days. If the integrated value does not exceed the threshold value within 30 days, the integrated value is reset and the integration is performed again in the next 30 days.
 なお、積算値が閾値を越えない場合、送信器1側からのfill-upフラグが立たないため、受信局2の暗号鍵は更新されない(当然送信器1の暗号鍵も更新されない)。したがって、送信器1および受信局2の両方とも古い暗号鍵情報のままであるので、送信器1および受信局2間のデータ通信は継続することができる。 Note that if the integrated value does not exceed the threshold value, the fill-up flag from the transmitter 1 side is not raised, so the encryption key of the receiving station 2 is not updated (of course, the encryption key of the transmitter 1 is not updated). Accordingly, since both the transmitter 1 and the receiving station 2 remain the old encryption key information, data communication between the transmitter 1 and the receiving station 2 can be continued.
 <2.第1の実施の形態>
  <位置通知システム>
 次に本技術のより具体的な適用例について説明する。図5は、本技術を適用した信号送受信システムの一実施の形態である位置通知システムの主な構成例を示す図である。図5に示される位置通知システム100は、送信装置101が自身の位置を通知するシステムである。このシステムは、例えば、対象の位置の監視や管理に利用される。図5に示されるように位置通知システム100は、送信装置101、高感度受信装置102、サーバ104、端末装置105等のデバイスを有する。送信装置101、高感度受信装置102、サーバ104、および端末装置105の数は任意であり、それぞれ、複数であってもよい。
<2. First Embodiment>
<Location notification system>
Next, a more specific application example of the present technology will be described. FIG. 5 is a diagram illustrating a main configuration example of a position notification system which is an embodiment of a signal transmission / reception system to which the present technology is applied. The position notification system 100 shown in FIG. 5 is a system in which the transmission apparatus 101 notifies its own position. This system is used, for example, for monitoring and managing a target position. As illustrated in FIG. 5, the position notification system 100 includes devices such as a transmission device 101, a high sensitivity reception device 102, a server 104, and a terminal device 105. The number of the transmission device 101, the high sensitivity receiving device 102, the server 104, and the terminal device 105 is arbitrary, and may be plural.
 送信装置101は、本技術を適用した送信装置の一実施の形態であり、例えば自身を識別する識別情報や自身の位置を示す位置情報等を、無線信号として送信する。高感度受信装置102は、本技術を適用した受信装置の一実施の形態であり、その無線信号を受信して送信装置101の識別情報や位置情報等を取得し、それらを、ネットワーク103を介してサーバ104に供給する。つまり、高感度受信装置102は、送信装置101から送信された情報を中継してサーバ104に伝送する中継局として機能する。サーバ104は、識別情報に位置情報を紐づけして管理することにより、各送信装置101の位置を管理する。送信装置101の位置を知りたいユーザに操作される端末装置105は、ネットワーク103を介してサーバ104にアクセスし、所望の送信装置101の識別情報を供給してその位置情報を要求する。サーバ104は、要求された識別情報に対応する位置情報を端末装置105に供給する。端末装置105は、その位置情報を取得し、例えば地図データ等とともに表示する等して、ユーザに送信装置101の位置を通知する。 The transmission apparatus 101 is an embodiment of a transmission apparatus to which the present technology is applied, and transmits, for example, identification information for identifying itself, position information indicating its own position, and the like as a radio signal. The high-sensitivity receiving apparatus 102 is an embodiment of a receiving apparatus to which the present technology is applied. The high-sensitivity receiving apparatus 102 receives the wireless signal, acquires identification information, position information, and the like of the transmitting apparatus 101, and transmits them through the network 103. To the server 104. That is, the high sensitivity receiving apparatus 102 functions as a relay station that relays the information transmitted from the transmitting apparatus 101 and transmits it to the server 104. The server 104 manages the position of each transmission apparatus 101 by managing the position information associated with the identification information. A terminal device 105 operated by a user who wants to know the position of the transmission apparatus 101 accesses the server 104 via the network 103, supplies identification information of the desired transmission apparatus 101, and requests the position information. The server 104 supplies position information corresponding to the requested identification information to the terminal device 105. The terminal device 105 acquires the position information and notifies the user of the position of the transmission device 101 by displaying the position information together with map data, for example.
 このような送信装置101を、位置を監視(管理)したい対象により携帯(所持や装着等を含む)させることにより、サーバ104は、間接的にその位置監視(管理)対象の位置を管理することができる。図1の例では、ユーザが高齢者111を位置監視の対象としており、その高齢者111に送信装置101を携帯させている。上述のように、送信装置101の位置はサーバ104により管理され、端末装置105に提供される。したがって、ユーザは、端末装置105を操作して、その送信装置101を携帯している高齢者111の位置を把握することができる。 The server 104 can indirectly manage the position of the position monitoring (management) target by carrying (including carrying or wearing) such a transmission apparatus 101 by a target whose position is to be monitored (managed). Can do. In the example of FIG. 1, the user targets the elderly person 111 for position monitoring, and the elderly person 111 carries the transmission device 101. As described above, the position of the transmission device 101 is managed by the server 104 and provided to the terminal device 105. Therefore, the user can grasp the position of the elderly person 111 who is carrying the transmission device 101 by operating the terminal device 105.
 なお、位置監視対象は、任意である。例えば、子供であってもよいし、犬や猫等の動物であってもよいし、企業の社員等であってもよい。送信装置101は、専用の装置として構成されるようにしてもよいが、例えば、携帯電話機やスマートフォンのような携帯型の情報処理装置に組み込むようにしてもよい。 Note that the position monitoring target is arbitrary. For example, it may be a child, an animal such as a dog or a cat, or a company employee. The transmission device 101 may be configured as a dedicated device, but may be incorporated in a portable information processing device such as a mobile phone or a smartphone, for example.
 送信装置101の位置情報は、送信装置101の位置を示すものであればどのような情報であってもよく、どのように生成されるようにしてもよい。例えば、送信装置101が、GNSS(Global Navigation Satellite System)衛星からGNSS信号を受信し、そのGNSS信号に基づいて自身の位置情報(例えば、緯度および経度)を求めるようにしてもよい。また、例えば、送信装置101がGNSS以外の専用の位置特定システムを用いて自身の位置を特定するようにしてもよい。 The position information of the transmission apparatus 101 may be any information as long as it indicates the position of the transmission apparatus 101, and may be generated in any manner. For example, the transmission apparatus 101 may receive a GNSS signal from a GNSS (Global Navigation Satellite System) satellite, and obtain its position information (for example, latitude and longitude) based on the GNSS signal. Further, for example, the transmitting apparatus 101 may specify its own position using a dedicated position specifying system other than GNSS.
 さらに、この位置情報は、例えば高感度受信装置102、サーバ104、または別途設けられた専用の情報処理装置(サーバ等)等のような、送信装置101以外の他の装置において生成されるようにしてもよい。例えば、送信装置101が受信したGNSS信号を他の装置に供給し、他の装置がそのGNSS信号から送信装置101の位置情報を求めるようにしてもよい。また、例えば、送信装置101がGNSS以外の専用の位置特定システムを用いて得られた情報を他の装置に供給し、他の装置がその情報に基づいて送信装置101の位置情報を求めるようにしてもよい。 Further, the position information is generated in a device other than the transmission device 101, such as the high-sensitivity reception device 102, the server 104, or a dedicated information processing device (such as a server) provided separately. May be. For example, the GNSS signal received by the transmission apparatus 101 may be supplied to another apparatus, and the other apparatus may obtain the position information of the transmission apparatus 101 from the GNSS signal. In addition, for example, the transmission apparatus 101 supplies information obtained using a dedicated position specifying system other than GNSS to another apparatus, and the other apparatus obtains position information of the transmission apparatus 101 based on the information. May be.
 また、例えば、他の装置が、送信装置101と高感度受信装置102との通信状況に基づいて送信装置101の位置情報を求めるようにしてもよい。例えば、送信装置101からの信号を受信した高感度受信装置102を特定することにより、送信装置101がその高感度受信装置102の通信可能範囲内に位置することを特定するようにしてもよい。さらに、その高感度受信装置102が受信した受信信号の信号強度や遅延時間等に基づいて、送信装置101のさらに詳細な位置情報を求めるようにしてもよい。また、例えば、送信装置101からの信号を受信した複数の高感度受信装置102の位置情報を用いて三角法等により送信装置101の位置情報を求めるようにしてもよい。 Further, for example, another device may obtain the position information of the transmission device 101 based on the communication status between the transmission device 101 and the high sensitivity reception device 102. For example, by specifying the high sensitivity receiving device 102 that has received the signal from the transmitting device 101, it may be specified that the transmitting device 101 is located within the communicable range of the high sensitivity receiving device 102. Further, more detailed position information of the transmission apparatus 101 may be obtained based on the signal strength, delay time, and the like of the received signal received by the high sensitivity receiving apparatus 102. Further, for example, the position information of the transmission apparatus 101 may be obtained by trigonometry or the like using the position information of a plurality of high sensitivity reception apparatuses 102 that have received signals from the transmission apparatus 101.
 高感度受信装置102の設置位置は任意である。例えば、ビル、マンション、家屋等の建造物112の屋根や屋上等でもよい。建造物112は、送信装置101を携帯する位置監視対象(例えば高齢者111)が活動する可能性が高い都市部に数も多く、また、設置も容易であるので、好適である。特に、位置監視対象が人の場合、その位置監視対象の自宅は、その周辺に位置監視対象が位置する可能性がより高く、好適である。また、設置場所の確保という面についても、この位置通知サービス提供事業者が独自に場所を確保して高感度受信装置102を設置する場合よりも、同意を得やすく容易である。 The installation position of the high sensitivity receiver 102 is arbitrary. For example, the roof or the roof of a building 112 such as a building, apartment, or house may be used. There are many buildings 112 in urban areas where there is a high possibility that a position monitoring target (for example, an elderly person 111) carrying the transmission device 101 is active, and it is preferable because the buildings 112 are easy to install. In particular, when the position monitoring target is a person, the home of the position monitoring target is more preferable because the position monitoring target is more likely to be located in the vicinity thereof. Further, in terms of securing the installation location, it is easier to obtain an agreement than when the location notification service provider independently secures the location and installs the high sensitivity receiver 102.
 なお、高感度受信装置102の設置場所は、この他にも例えば、自動車、バイク、自転車等の移動可能な物体(移動体とも称する)に設置するようにしてもよい。つまり、高感度受信装置102の位置が可変であってもよい。 In addition to this, the high-sensitive receiving device 102 may be installed on a movable object (also referred to as a moving body) such as an automobile, a motorcycle, or a bicycle. That is, the position of the high sensitivity receiving apparatus 102 may be variable.
 ネットワーク103は、任意の通信網であり、有線通信の通信網であってもよいし、無線通信の通信網であってもよいし、それらの両方により構成されるようにしてもよい。また、ネットワーク103が、1の通信網により構成されるようにしてもよいし、複数の通信網により構成されるようにしてもよい。例えば、インターネット、公衆電話回線網、所謂3G回線や4G回線等の無線移動体用の広域通信網、WAN(Wide Area Network)、LAN(Local Area Network)、Bluetooth(登録商標)規格に準拠した通信を行う無線通信網、NFC(Near Field Communication)等の近距離無線通信の通信路、赤外線通信の通信路、HDMI(登録商標)(High-Definition Multimedia Interface)やUSB(Universal Serial Bus)等の規格に準拠した有線通信の通信網等、任意の通信規格の通信網や通信路がネットワーク103に含まれるようにしてもよい。 The network 103 is an arbitrary communication network, may be a wired communication network, a wireless communication network, or may be configured by both of them. Further, the network 103 may be configured by a single communication network or may be configured by a plurality of communication networks. For example, communication conforming to the Internet, public telephone network, so-called 3G and 4G wireless mobile wide area networks, WAN (Wide Area Network), LAN (Local Area Network), Bluetooth (registered trademark) standards , Wireless communication network for near field communication such as NFC (Near Field Communication), infrared communication path, HDMI (High-Definition Multimedia Interface) and USB (Universal Serial Bus) standards The network 103 may include a communication network or a communication path of an arbitrary communication standard such as a wired communication network complying with the standard.
 サーバ104や端末装置105は、情報を処理する情報処理装置である。サーバ104や端末装置105は、ネットワーク103に通信可能に接続されており、このネットワーク103を介してネットワーク103に接続される他の通信装置と通信を行い、情報を授受することができる。 The server 104 and the terminal device 105 are information processing devices that process information. The server 104 and the terminal device 105 are communicably connected to the network 103, and can communicate with other communication devices connected to the network 103 via the network 103 to exchange information.
 サーバ104は、送信装置101の位置を管理する。また、サーバ104は、送信装置101の位置情報の提供を許可するユーザも管理することができる。例えば、サーバ104は、各送信装置101の位置情報を、その送信装置101の位置情報の取得が許可されたユーザに対してのみ提供するようにすることができる。 The server 104 manages the position of the transmission device 101. The server 104 can also manage users who are permitted to provide location information of the transmission apparatus 101. For example, the server 104 can provide the position information of each transmission apparatus 101 only to users who are permitted to acquire the position information of the transmission apparatus 101.
 上述のように、送信装置101から提供される情報が高感度受信装置102により中継されてサーバ104に供給されることにより、サーバ104は、送信装置101の位置を管理する。つまり、送信装置101が、いずれかの高感度受信装置102の通信可能範囲内に位置する状態において、サーバ104は、その送信装置101の位置を管理することができる。換言するに、送信装置101の位置が、いずれの高感度受信装置102の通信可能範囲からも外れると、サーバ104は、その位置を管理することができなくなる。したがって、高感度受信装置102の送信装置101との通信可能範囲網がより広範囲になる程、サーバ104は、送信装置101の位置をより正確に管理することができる。 As described above, the information provided from the transmission apparatus 101 is relayed by the high-sensitivity reception apparatus 102 and supplied to the server 104, whereby the server 104 manages the position of the transmission apparatus 101. That is, the server 104 can manage the position of the transmission device 101 in a state where the transmission device 101 is located within the communicable range of any of the high sensitivity reception devices 102. In other words, if the position of the transmission apparatus 101 is out of the communicable range of any of the high sensitivity receiving apparatuses 102, the server 104 cannot manage the position. Therefore, the server 104 can manage the position of the transmission apparatus 101 more accurately as the communication range network of the high sensitivity reception apparatus 102 with the transmission apparatus 101 becomes wider.
 ここで、より正確な管理とは、より広範囲において送信装置101の位置を管理する(つまり、送信装置101の位置の管理が不可能な領域を少なくする)ことを意味する。送信装置101の位置を管理可能な範囲をより広範囲とするためには、送信装置101と高感度受信装置102とがより遠くまで無線信号を送受信することができる程(各高感度受信装置102の通信可能範囲がより広い程)好ましい。送信装置101と高感度受信装置102との間の無線信号の送受信の方法は任意であり、どのような通信規格に準拠するようにしてもよいが、例えば、925MHzを含む周波数帯(920MHz帯とも称する)を用いて、長距離の通信が可能な方法で行われるようにしてもよい。 Here, more accurate management means that the position of the transmitting apparatus 101 is managed in a wider range (that is, the area where the position of the transmitting apparatus 101 cannot be managed is reduced). In order to make the range in which the position of the transmission apparatus 101 can be managed wider, the transmission apparatus 101 and the high-sensitivity reception apparatus 102 can transmit and receive radio signals farther (for each high-sensitivity reception apparatus 102). A wider communication range is preferable. The method of transmitting and receiving the radio signal between the transmitting apparatus 101 and the high sensitivity receiving apparatus 102 is arbitrary, and may conform to any communication standard. For example, a frequency band including 925 MHz (both 920 MHz band) May be used in a method that enables long-distance communication.
 例えば、送信装置101が無線信号を送信する時刻や周波数が既知(高感度受信装置102が知っている)であれば、高感度受信装置102は、その既知の時刻および周波数において無線信号の検出を行えば良いので、検出がより容易になる。したがって、受信感度を向上させることができる。つまり、高感度受信装置102の通信可能範囲をより拡大させることができる。 For example, if the time and frequency at which the transmission apparatus 101 transmits a radio signal are known (the high sensitivity reception apparatus 102 knows), the high sensitivity reception apparatus 102 detects the radio signal at the known time and frequency. Detection is easier because it only has to be done. Therefore, reception sensitivity can be improved. That is, the communicable range of the high sensitivity receiving apparatus 102 can be further expanded.
  <高感度受信装置の構成>
 図6は、本技術を適用した信号処理装置の一実施の形態である高感度受信装置102の主な構成例を示すブロック図である。図6に示されるように、高感度受信装置102は、アンテナ151、増幅部152、復調部153、誤り訂正部154(FEC(Forward Error Correction))、および、CPU(Central Processing Unit)155を有する。
<Configuration of high sensitivity receiver>
FIG. 6 is a block diagram illustrating a main configuration example of the high-sensitivity receiving apparatus 102 which is an embodiment of the signal processing apparatus to which the present technology is applied. As illustrated in FIG. 6, the high sensitivity receiving apparatus 102 includes an antenna 151, an amplification unit 152, a demodulation unit 153, an error correction unit 154 (FEC (Forward Error Correction)), and a CPU (Central Processing Unit) 155. .
 アンテナ151は、送信装置101から送信された信号の受信に利用される。増幅部152は、アンテナ151を介して受信された受信信号を増幅し、復調部153に供給する。増幅部152は、任意の構成により実現することができる。例えば、増幅部152が、回路、LSI(Large Scale Integration)、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、増幅部152が、オペアンプ等により構成されるようにしてもよい。 The antenna 151 is used for receiving a signal transmitted from the transmission apparatus 101. The amplification unit 152 amplifies the reception signal received via the antenna 151 and supplies the amplified signal to the demodulation unit 153. The amplifying unit 152 can be realized by an arbitrary configuration. For example, the amplification unit 152 may be configured by a circuit, LSI (Large Scale Integration), system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the amplification unit 152 may be configured by an operational amplifier or the like.
 復調部153は、受信信号の復調に関する処理を行う。例えば、復調部153は、増幅部152より供給された信号を、送信側において行われた変調に対応する所定の方法で復調し、得られたデータ(送信装置101から送信されたデータ)を誤り訂正部154に供給する。復調部153は、任意の構成により実現することができる。例えば、復調部153が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、復調部153が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The demodulation unit 153 performs processing related to demodulation of the received signal. For example, the demodulation unit 153 demodulates the signal supplied from the amplification unit 152 by a predetermined method corresponding to the modulation performed on the transmission side, and errors the obtained data (data transmitted from the transmission apparatus 101). This is supplied to the correction unit 154. The demodulator 153 can be realized by an arbitrary configuration. For example, the demodulation unit 153 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the demodulation unit 153 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 誤り訂正部154は、誤り訂正(FEC)に関する処理を行う。例えば、誤り訂正部154は、復調部153から供給されたデータに対して誤り訂正を行い、エラーを検出して訂正し、誤り訂正されたデータをCPU155に供給する。誤り訂正部154は、任意の構成により実現することができる。例えば、誤り訂正部154が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、誤り訂正部154が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The error correction unit 154 performs processing related to error correction (FEC). For example, the error correction unit 154 performs error correction on the data supplied from the demodulation unit 153, detects and corrects an error, and supplies the error-corrected data to the CPU 155. The error correction unit 154 can be realized by an arbitrary configuration. For example, the error correction unit 154 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the error correction unit 154 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 CPU155は、任意の処理を行う。例えば、CPU155は、誤り訂正部154より供給されたデータに対する処理を行う。すなわち、CPU155は、アンテナ151乃至誤り訂正部154を介して信号を受信する受信部として機能する。例えば、CPU155は、送信装置101から送信された信号を受信することにより、その信号に含まれる、ペイロード、および、送信装置101により空中線電力の変調が検出されたか否かを識別する識別情報であるフィルアップ情報を受信する。 The CPU 155 performs arbitrary processing. For example, the CPU 155 performs processing on the data supplied from the error correction unit 154. That is, the CPU 155 functions as a receiving unit that receives signals via the antenna 151 to the error correction unit 154. For example, the CPU 155 receives the signal transmitted from the transmission apparatus 101, and is identification information that identifies whether the payload included in the signal and the antenna power modulation is detected by the transmission apparatus 101. Receive fill-up information.
 また、例えば、CPU155は、所定の期間内に送信装置101により空中線電力の変調が検出されたことを示す値のフィルアップ情報を受信できなかったことが所定回数発生した場合、送信装置101から送信された信号の受信を停止する。 In addition, for example, when a predetermined number of times that the CPU 155 has failed to receive fill-up information having a value indicating that the antenna power modulation has been detected by the transmission apparatus 101 within a predetermined period, the CPU 155 Stop receiving the received signal.
 また、例えば、ペイロードが暗号化されている場合、CPU155は、その暗号化されたペイロードを、暗号鍵を用いて復号する。この暗号鍵は、送信装置101がそのペイロードを暗号化する際に用いる暗号鍵に対応している。例えば、この暗号鍵は、送信装置101の暗号鍵と同一の暗号鍵(共通鍵)である。さらに、CPU155は、この暗号鍵を更新することもできる。例えば、CPU155は、フィルアップ情報の値が送信装置101により空中線電力の変調が検出されたことを示す値(例えば「1」)である場合、所定のタイミングにおいて暗号鍵を更新する。 Further, for example, when the payload is encrypted, the CPU 155 decrypts the encrypted payload using the encryption key. This encryption key corresponds to the encryption key used when the transmission apparatus 101 encrypts the payload. For example, this encryption key is the same encryption key (common key) as the encryption key of the transmission apparatus 101. Further, the CPU 155 can update this encryption key. For example, when the value of the fill-up information is a value (for example, “1”) indicating that the antenna power modulation is detected by the transmission apparatus 101, the CPU 155 updates the encryption key at a predetermined timing.
 CPU155は、このような暗号鍵を用いることにより、その暗号化されたペイロードを正しく復号することができる。換言するに、ペイロードを正しく受け取るためには、送信装置101の暗号鍵と高感度受信装置102の暗号鍵とが正しく対応していなければならない。したがって、送信装置101の暗号鍵を更新する場合、高感度受信装置102の暗号鍵も同時に更新しなければならない。そして、勿論、更新後も、両者の暗号鍵が正しく対応している必要がある。つまり、両者の暗号鍵の更新は、同一のタイミングにおいて同様の手法で行われる必要がある。つまり、送信装置101と高感度受信装置102の両方において、互いに同一のタイミングにおいて互いに同様の手法で新たな暗号鍵を生成し、古い暗号鍵と置き換える必要がある。 The CPU 155 can correctly decrypt the encrypted payload by using such an encryption key. In other words, in order to correctly receive the payload, the encryption key of the transmitting apparatus 101 and the encryption key of the high sensitivity receiving apparatus 102 must correspond correctly. Therefore, when the encryption key of the transmission apparatus 101 is updated, the encryption key of the high sensitivity receiving apparatus 102 must be updated at the same time. And of course, even after updating, both encryption keys need to correspond correctly. That is, both encryption keys need to be updated by the same method at the same timing. That is, it is necessary to generate a new encryption key with the same method at the same timing in both the transmitting apparatus 101 and the high sensitivity receiving apparatus 102 and replace the old encryption key.
 暗号鍵の生成規則が漏洩する可能性があることを想定すると、暗号鍵の更新タイミングは不定期である方が、通信の盗聴や改竄の可能性を低減させることができる。両者の暗号鍵の更新タイミングを揃えつつ、かつ、不定期とするためには、様々な手法が考えられるが、少なくとも、送信装置101と高感度受信装置102との間で、更新が可能である旨を通知し合うことができる必要がある。例えば、高感度受信装置102から送信装置101に対して暗号鍵の更新を要求(指示)し、送信装置101がその要求(指示)に対して応答することにより、送信装置101はその要求(指示)に基づいて高感度受信装置102が暗号鍵を更新することができる状態にあることを確認することができ、高感度受信装置102はその応答に基づいて送信装置101が暗号鍵を更新することができる状態にあることを確認することができる。 Assuming that the encryption key generation rules may be leaked, the possibility of eavesdropping or tampering with communication can be reduced if the encryption key update timing is irregular. Various methods can be considered in order to make the update timings of both encryption keys uniform and irregular, but at least the update can be performed between the transmission device 101 and the high-sensitivity reception device 102. There is a need to be able to notify each other. For example, when the high sensitivity receiving apparatus 102 requests (instructions) to update the encryption key to the transmitting apparatus 101, and the transmitting apparatus 101 responds to the request (instruction), the transmitting apparatus 101 receives the request (instruction). ) Based on the response, the high-sensitivity receiving apparatus 102 can confirm that the encryption key can be updated, and the high-sensitivity receiving apparatus 102 can update the encryption key based on the response. Can be confirmed.
 しかしながら、送信装置101と高感度受信装置102との通信は片方向通信であり、送信装置101は信号受信機能を有していないので、通信によって高感度受信装置102から送信装置101に暗号鍵の更新を要求(指示)することができない。そこで、高感度受信装置102は、空中線電力を変調することにより、暗号鍵の更新を要求(指示)する。 However, since the communication between the transmission device 101 and the high sensitivity receiving device 102 is one-way communication and the transmission device 101 does not have a signal reception function, the encryption key is transferred from the high sensitivity reception device 102 to the transmission device 101 by communication. Cannot request (instruct) update. Therefore, the high sensitivity receiving apparatus 102 requests (instructs) to update the encryption key by modulating the antenna power.
 そのために、高感度受信装置102は、電力変調部156-1、電力変調部156-2、および電力変調部156-3を有する。電力変調部156-1、電力変調部156-2、および電力変調部156-3は互いに同様の構成を有し、同様の処理を行う処理部である。これらを互いに区別して説明する必要がない場合、電力変調部156と称する。 Therefore, the high sensitivity receiving apparatus 102 includes a power modulation unit 156-1, a power modulation unit 156-2, and a power modulation unit 156-3. The power modulation unit 156-1, the power modulation unit 156-2, and the power modulation unit 156-3 are processing units that have the same configuration and perform the same processing. When these do not need to be distinguished from each other, they are referred to as a power modulation unit 156.
 電力変調部156は、高感度受信装置102が信号受信を行う周波数帯域において、空中線電力を変調する。各電力変調部156は、その周波数帯域の互いに異なるチャンネルにおいて、空中線電力を変調する。例えば、電力変調部156は、送信装置101における空中線電力の計測期間を複数に分割した部分区間毎に空中線電力が変化するように、空中線電力を変調する。例えば、電力変調部156は、その部分区間毎に空中線電力の電力値を変化させる。例えば、電力変調部156は、その部分区間毎の空中線電力の電力値を所定のパタンで変化させる。例えば、電力変調部156は、連続する部分区間同士の空中線電力の電力値の差分値の極性を所定のパタンで変化させる。例えば、電力変調部156は、その計測期間を2回以上含む期間、空中線電力を変調する。例えば、電力変調部156は、送信装置101における空中線電力の計測期間内に送信装置101周辺の空中線電力の電力値が変化するように、空中線電力を変調する。 The power modulation unit 156 modulates the antenna power in a frequency band in which the high sensitivity receiving apparatus 102 receives a signal. Each power modulation unit 156 modulates the antenna power in different channels of the frequency band. For example, the power modulation unit 156 modulates the antenna power so that the antenna power changes for each partial section obtained by dividing the antenna power measurement period in the transmission apparatus 101 into a plurality of sections. For example, the power modulation unit 156 changes the power value of the antenna power for each partial section. For example, the power modulation unit 156 changes the power value of the antenna power for each partial section with a predetermined pattern. For example, the power modulation unit 156 changes the polarity of the difference value of the power value of the antenna power between successive partial sections with a predetermined pattern. For example, the power modulation unit 156 modulates the antenna power for a period including the measurement period twice or more. For example, the power modulation unit 156 modulates the antenna power so that the power value of the antenna power around the transmission device 101 changes during the measurement period of the antenna power in the transmission device 101.
 なお、図6においては、3つの電力変調部156(電力変調部156-1、電力変調部156-2、および電力変調部156-3)が示されているが、この電力変調部156の数は任意である。例えば、信号受信が行われる周波数帯域の全てのチャンネルに1つずつ電力変調部156が設けられるようにしてもよい。 In FIG. 6, three power modulation units 156 (power modulation unit 156-1, power modulation unit 156-2, and power modulation unit 156-3) are shown, but the number of power modulation units 156 is shown. Is optional. For example, one power modulation unit 156 may be provided for every channel in the frequency band where signal reception is performed.
 電力変調部156は、任意の構成により実現することができる。例えば、電力変調部156が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。 The power modulation unit 156 can be realized by an arbitrary configuration. For example, the power modulation unit 156 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
 図6の例の場合、電力変調部156は、GNSS受信部161、疑似乱数発生部162、シングルキャリア変調部163、スイッチ164、増幅部165、およびアンテナ166を有する。 6, the power modulation unit 156 includes a GNSS reception unit 161, a pseudo random number generation unit 162, a single carrier modulation unit 163, a switch 164, an amplification unit 165, and an antenna 166.
 GNSS受信部161は、GNSS衛星から送信されるGNSS信号を受信し、そのGNSS信号に含まれる、GNSS衛星において生成された時刻情報を抽出し、それを疑似乱数発生部162に供給する。GNSS受信部161は、任意の構成により実現することができる。例えば、GNSS受信部161が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、GNSS受信部161が、アンテナ、受信回路、信号処理回路等により構成されるようにしてもよい。 The GNSS receiver 161 receives the GNSS signal transmitted from the GNSS satellite, extracts the time information generated in the GNSS satellite included in the GNSS signal, and supplies it to the pseudo-random number generator 162. The GNSS receiving unit 161 can be realized by an arbitrary configuration. For example, the GNSS receiving unit 161 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the GNSS receiving unit 161 may be configured by an antenna, a receiving circuit, a signal processing circuit, and the like.
 疑似乱数発生部162は、GNSS受信部161から供給される時刻情報に基づいて1ビットの疑似乱数を生成し、その疑似乱数をスイッチ164に供給する。疑似乱数発生部162は、任意の構成により実現することができる。例えば、疑似乱数発生部162が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、疑似乱数発生部162が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The pseudorandom number generator 162 generates a 1-bit pseudorandom number based on the time information supplied from the GNSS receiver 161 and supplies the pseudorandom number to the switch 164. The pseudo random number generation unit 162 can be realized by an arbitrary configuration. For example, the pseudo random number generation unit 162 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the pseudo random number generation unit 162 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 シングルキャリア変調部163は、空中線電力を変調する変調信号を生成する。つまり、シングルキャリア変調部163は、送信装置101周辺の空中線電力を微増させるような変調信号を生成する。シングルキャリア変調部163は、生成した変調信号をスイッチ164に供給する。シングルキャリア変調部163は、任意の構成により実現することができる。例えば、シングルキャリア変調部163が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、シングルキャリア変調部163が、上述のように変調信号を生成する変調回路等により構成されるようにしてもよい。 Single carrier modulation section 163 generates a modulation signal for modulating antenna power. That is, the single carrier modulation unit 163 generates a modulation signal that slightly increases the antenna power around the transmission apparatus 101. The single carrier modulation unit 163 supplies the generated modulation signal to the switch 164. The single carrier modulation unit 163 can be realized by an arbitrary configuration. For example, the single carrier modulation unit 163 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the single carrier modulation unit 163 may be configured by a modulation circuit or the like that generates a modulation signal as described above.
 スイッチ164は、疑似乱数発生部162から供給される疑似乱数に基づいて、シングルキャリア変調部163から供給される変調信号の増幅部165への供給(つまり、変調信号の送信)を制御することにより、図3に示されるような変調パタンを生成する。例えば、疑似乱数(prbs)が「0」である場合、スイッチ164は、図3のAの左側に示されるように、キャリアセンス区間の前半において入出力間を切断して変調信号を送信しないようにし、キャリアセンス区間の後半において入出力間を接続して変調信号を送信するようにする。また、疑似乱数(prbs)が「1」である場合、スイッチ164は、図3のAの右側に示されるように、キャリアセンス区間の前半において入出力間を接続して変調信号を送信するようにし、キャリアセンス区間の後半において入出力間を切断して変調信号を送信しないようにする。つまり、スイッチ164により、変調パタンが決定され、キャリアセンス区間の前半の電力値と後半の電力値との差分値の極性が設定される。 The switch 164 controls the supply of the modulation signal supplied from the single carrier modulation unit 163 to the amplification unit 165 (that is, transmission of the modulation signal) based on the pseudo random number supplied from the pseudo random number generation unit 162. Then, a modulation pattern as shown in FIG. 3 is generated. For example, when the pseudo random number (prbs) is “0”, the switch 164 does not transmit the modulation signal by disconnecting between the input and output in the first half of the carrier sense interval, as shown on the left side of FIG. In the second half of the carrier sense period, the input and output are connected to transmit the modulation signal. Further, when the pseudo random number (prbs) is “1”, the switch 164 transmits the modulation signal by connecting the input and output in the first half of the carrier sense period, as shown on the right side of FIG. 3A. In the second half of the carrier sense interval, the input / output is disconnected to prevent the modulation signal from being transmitted. In other words, the modulation pattern is determined by the switch 164, and the polarity of the difference value between the first half power value and the second half power value of the carrier sense section is set.
 スイッチ164は、任意の構成により実現することができる。例えば、スイッチ164が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。 The switch 164 can be realized by an arbitrary configuration. For example, the switch 164 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
 増幅部165は、スイッチ164から供給される変調信号を増幅し、その増幅した変調信号を、アンテナ166を介して無線信号として空中に送信する。つまり、増幅部165は、変調信号を送信する送信部として機能する。これにより、送信装置101の周辺の空中線電力が図4の例のように変調される。増幅部165は、任意の構成により実現することができる。例えば、増幅部165が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、増幅部165が、オペアンプ等により構成されるようにしてもよい。 The amplifying unit 165 amplifies the modulated signal supplied from the switch 164 and transmits the amplified modulated signal to the air as a radio signal via the antenna 166. That is, the amplification unit 165 functions as a transmission unit that transmits a modulated signal. Thereby, the antenna power around the transmission apparatus 101 is modulated as in the example of FIG. The amplification unit 165 can be realized by an arbitrary configuration. For example, the amplification unit 165 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the amplification unit 165 may be configured by an operational amplifier or the like.
 高感度受信装置102は、以上のような構成の電力変調部156を用いて、信号受信に使用される周波数帯の全てのチャンネルについて、空中線電力を変調する。この変調は、送信装置101に対する暗号鍵更新の指示を意味しており、その旨は、送信装置101と高感度受信装置102とで予め共有している(既知である)。つまり、送信装置101は、この変調を検出することにより、高感度受信装置102からの指示、すなわち、暗号鍵の更新指示を受け付ける。 The high-sensitivity receiving apparatus 102 modulates the antenna power for all the channels in the frequency band used for signal reception, using the power modulation unit 156 configured as described above. This modulation means an instruction to update the encryption key to the transmission apparatus 101, and that fact is shared in advance between the transmission apparatus 101 and the high sensitivity receiving apparatus 102 (known). That is, the transmission apparatus 101 receives an instruction from the high sensitivity receiving apparatus 102, that is, an encryption key update instruction by detecting this modulation.
 つまり、以上のように、空中線電力を変調することにより、高感度受信装置102は、信号受信機能を有していない送信装置101に対して、暗号鍵の更新を指示することができる。 That is, as described above, by modulating the antenna power, the high sensitivity receiving apparatus 102 can instruct the transmitting apparatus 101 not having the signal receiving function to update the encryption key.
  <送信装置の構成>
 図7は、本技術を適用した信号処理装置の一実施の形態である送信装置101の主な構成例を示すブロック図である。図7に示されるように、送信装置101は、送信データ生成部210、CPU211、メモリ212、符号化部213、変調部214、送信部215、増幅部216、アンテナ217、変調検出部218、および発振部219を有する。
<Configuration of transmitter>
FIG. 7 is a block diagram illustrating a main configuration example of the transmission apparatus 101 which is an embodiment of the signal processing apparatus to which the present technology is applied. As illustrated in FIG. 7, the transmission apparatus 101 includes a transmission data generation unit 210, a CPU 211, a memory 212, an encoding unit 213, a modulation unit 214, a transmission unit 215, an amplification unit 216, an antenna 217, a modulation detection unit 218, and An oscillation unit 219 is included.
 送信データ生成部210は、送信データの生成に関する処理を行う。送信データの内容は任意である。例えば、送信データ生成部210が、センサ等より得られたセンサデータを用いて、高感度受信装置102に送信する送信データを生成するようにしてもよい。また、例えば、送信データ生成部210が、受信されたGNSS信号を用いて送信データを生成するようにしてもよい。送信データ生成部210は、生成した送信データをCPU211に供給する。 The transmission data generation unit 210 performs processing related to generation of transmission data. The content of the transmission data is arbitrary. For example, the transmission data generation unit 210 may generate transmission data to be transmitted to the high sensitivity receiving apparatus 102 using sensor data obtained from a sensor or the like. For example, the transmission data generation unit 210 may generate transmission data using the received GNSS signal. The transmission data generation unit 210 supplies the generated transmission data to the CPU 211.
 送信データ生成部210は、任意の構成により実現することができる。例えば、送信データ生成部210が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、送信データ生成部210が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The transmission data generation unit 210 can be realized by an arbitrary configuration. For example, the transmission data generation unit 210 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the transmission data generation unit 210 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 CPU211は、送信データに関する処理を行う。例えば、CPU211は、送信データに関する処理として、キャリアセンス結果に基づく送信制御、送信データを用いたペイロードの生成、ペイロードの暗号化等の処理を行う。例えば、CPU211は、送信データを含むペイロードを生成し、ペイロードを暗号化し、フィルアップ情報を設定してペイロードに付加し、そのペイロードをメモリ212に供給する。また、CPU211は、空中線電力の変調の検出結果に基づいて所定の処理を行う。例えば、CPU211は、所定の処理として、ペイロードの暗号化に用いられる暗号鍵の生成・更新、フィルアップ情報の設定やペイロードへの付加、信号送信の停止等を行う。 The CPU 211 performs processing related to transmission data. For example, the CPU 211 performs processing related to transmission data, such as transmission control based on a carrier sense result, generation of a payload using transmission data, and encryption of the payload. For example, the CPU 211 generates a payload including transmission data, encrypts the payload, sets fill-up information, adds the payload to the payload, and supplies the payload to the memory 212. Further, the CPU 211 performs predetermined processing based on the detection result of the antenna power modulation. For example, the CPU 211 performs predetermined processing such as generation / update of an encryption key used for payload encryption, setting of fill-up information, addition to the payload, stop of signal transmission, and the like.
 メモリ212は、CPU211から供給されるペイロードを記憶する。また、メモリ212は、記憶しているペイロードを、所定のタイミングにおいて、または、符号化部213の要求に基づいて、符号化部213に供給する。 The memory 212 stores a payload supplied from the CPU 211. Further, the memory 212 supplies the stored payload to the encoding unit 213 at a predetermined timing or based on a request from the encoding unit 213.
 符号化部213は、そのペイロードを所定の方法で符号化し、変調部214に供給する。符号化部213は、任意の構成により実現することができる。例えば、符号化部213が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、符号化部213が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The encoding unit 213 encodes the payload by a predetermined method and supplies the encoded payload to the modulation unit 214. The encoding unit 213 can be realized by an arbitrary configuration. For example, the encoding unit 213 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the encoding unit 213 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 変調部214は、その符号化されたペイロードを所定の方法で変調し、送信部215に供給する。変調部214は、任意の構成により実現することができる。例えば、変調部214が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、変調部214が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The modulation unit 214 modulates the encoded payload by a predetermined method and supplies the modulated payload to the transmission unit 215. The modulation unit 214 can be realized by an arbitrary configuration. For example, the modulation unit 214 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the modulation unit 214 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 送信部215は、発振部219から拒給されるキャリア信号に、変調部214から供給される信号(ペイロード)を乗算して送信信号を生成する。送信部215は、任意の構成により実現することができる。例えば、送信部215が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、送信部215が、信号処理回路や送信回路等により構成されるようにしてもよい。 The transmission unit 215 generates a transmission signal by multiplying the carrier signal rejected by the oscillation unit 219 by the signal (payload) supplied from the modulation unit 214. The transmission unit 215 can be realized by an arbitrary configuration. For example, the transmission unit 215 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the transmission unit 215 may be configured by a signal processing circuit, a transmission circuit, or the like.
 増幅部216は、その送信信号を増幅する。増幅部216は、任意の構成により実現することができる。例えば、増幅部216が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、増幅部216が、オペアンプ等により構成されるようにしてもよい。アンテナ217は、送信信号の送信に用いられる。送信部215は、生成した送信信号を、増幅部216およびアンテナ217を介して無線信号として送信する。 The amplification unit 216 amplifies the transmission signal. The amplification unit 216 can be realized by an arbitrary configuration. For example, the amplification unit 216 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the amplification unit 216 may be configured by an operational amplifier or the like. The antenna 217 is used for transmitting a transmission signal. The transmission unit 215 transmits the generated transmission signal as a radio signal via the amplification unit 216 and the antenna 217.
 変調検出部218は、信号送信に利用する周波数帯域の全てのチャンネルについてキャリアセンスを行う。また、変調検出部218は、そのキャリアセンスの際に受信した受信電力から、送信装置101周辺の空中線電力の変調を検出する。例えば、変調検出部218は、キャリアセンス区間(空中線電力の計測期間)を複数に分割した部分区間毎の空中線電力の変化に基づいて、空中線電力の変調を検出する。例えば、変調検出部218は、その部分区間毎の空中線電力の電力値の変化に基づいて、空中線電力の変調を検出する。例えば、変調検出部218は、その部分区間毎の空中線電力の電力値の変化のパタンに基づいて、空中線電力の変調を検出する。例えば、変調検出部218は、連続する部分区間同士の空中線電力の電力値の差分値の極性のパタンに基づいて、空中線電力の変調を検出する。例えば、変調検出部218は、その極性の積算値の大きさに基づいて、空中線電力の変調を検出する。例えば、変調検出部218は、キャリアセンス区間(空中線電力の計測期間)の前半の電力値と後半の電力値との差分値の極性の積算値の大きさに基づいて、空中線電力の変調を検出する。 The modulation detector 218 performs carrier sense for all channels in the frequency band used for signal transmission. Also, the modulation detector 218 detects the modulation of the antenna power around the transmission apparatus 101 from the received power received at the time of the carrier sense. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the change in the antenna power for each of the partial sections obtained by dividing the carrier sense section (aerial power measurement period). For example, the modulation detection unit 218 detects the modulation of the antenna power based on the change in the power value of the antenna power for each partial section. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the pattern of the change in the power value of the antenna power for each partial section. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the polarity pattern of the difference value of the power value of the antenna power between successive partial sections. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the magnitude of the integrated value of the polarity. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the magnitude of the integrated value of the difference value between the first half power value and the second half power value of the carrier sense section (antenna power measurement period). To do.
 変調検出部218は、任意の構成により実現することができる。例えば、変調検出部218が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。 The modulation detection unit 218 can be realized by an arbitrary configuration. For example, the modulation detection unit 218 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
 発振部219は、所定の周波数で発振し、その発振信号をキャリア信号として送信部215および変調検出部218(受信部232)に供給する。発振部219は、任意の構成により実現することができる。例えば、発振部219が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、発振部219が、発振回路等により構成されるようにしてもよい。なお、この発振部219の発振方法は任意である。 The oscillation unit 219 oscillates at a predetermined frequency and supplies the oscillation signal as a carrier signal to the transmission unit 215 and the modulation detection unit 218 (reception unit 232). The oscillation unit 219 can be realized by an arbitrary configuration. For example, the oscillating unit 219 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the oscillation unit 219 may be configured by an oscillation circuit or the like. Note that the oscillation method of the oscillation unit 219 is arbitrary.
 図7に示されるように、変調検出部218は、増幅部231、受信部232、フィルタ233、スイッチ234、A/D変換部235、A/D変換部236、加算部237、減算部238、符号比較部239、増幅部240、増幅部241、積算部243、閾値比較部244、GNSS受信部251、および疑似乱数発生部252を有する。 As shown in FIG. 7, the modulation detection unit 218 includes an amplification unit 231, a reception unit 232, a filter 233, a switch 234, an A / D conversion unit 235, an A / D conversion unit 236, an addition unit 237, a subtraction unit 238, A code comparison unit 239, an amplification unit 240, an amplification unit 241, an integration unit 243, a threshold comparison unit 244, a GNSS reception unit 251, and a pseudo-random number generation unit 252 are included.
 GNSS受信部251は、GNSS衛星から送信されるGNSS信号を受信し、GNSS衛星が生成した時刻情報を抽出する。GNSS受信部251は、その時刻情報(GNSS時刻情報)をCPU211に供給する。CPU211は、そのGNSS時刻情報を用いて任意の処理を行うことができる。例えば、CPU211は、そのGNSS時刻情報を疑似乱数発生部252に供給する。また、GNSS受信部251は、その時刻情報(GNSS情報)を、例えば符号化部213、変調部214、送信部215、発振部219等、送信装置101内の任意の処理部に供給することができる。送信装置101内の各処理部は、例えば、そのGNSS情報に基づくタイミングで処理を行うことができる。これにより、各処理部は、より正確なタイミングで処理を行うことができる。 The GNSS receiving unit 251 receives a GNSS signal transmitted from a GNSS satellite and extracts time information generated by the GNSS satellite. The GNSS receiver 251 supplies the time information (GNSS time information) to the CPU 211. The CPU 211 can perform arbitrary processing using the GNSS time information. For example, the CPU 211 supplies the GNSS time information to the pseudo random number generation unit 252. Further, the GNSS receiving unit 251 supplies the time information (GNSS information) to an arbitrary processing unit in the transmitting apparatus 101 such as an encoding unit 213, a modulation unit 214, a transmission unit 215, an oscillation unit 219, and the like. it can. Each processing unit in the transmission apparatus 101 can perform processing at timing based on the GNSS information, for example. Thereby, each processing unit can perform processing at a more accurate timing.
 GNSS受信部251は、任意の構成により実現することができる。例えば、GNSS受信部251が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、GNSS受信部251が、アンテナ、受信回路、信号処理回路等により構成されるようにしてもよい。 The GNSS receiving unit 251 can be realized by an arbitrary configuration. For example, the GNSS receiver 251 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the GNSS receiving unit 251 may be configured with an antenna, a receiving circuit, a signal processing circuit, and the like.
 疑似乱数発生部252は、CPU211から供給されたGNSS時刻情報に基づいて、高感度受信装置102(疑似乱数発生部162)が生成する疑似乱数と同一の値の1ビットの疑似乱数(prbs)を生成する。疑似乱数発生部252は、生成した疑似乱数をスイッチ234に供給する。疑似乱数発生部252は、任意の構成により実現することができる。例えば、疑似乱数発生部252が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、疑似乱数発生部252が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 Based on the GNSS time information supplied from the CPU 211, the pseudo random number generator 252 generates a 1-bit pseudo random number (prbs) having the same value as the pseudo random number generated by the high sensitivity receiver 102 (pseudo random number generator 162). Generate. The pseudo random number generation unit 252 supplies the generated pseudo random number to the switch 234. The pseudo random number generation unit 252 can be realized by an arbitrary configuration. For example, the pseudo random number generation unit 252 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the pseudo random number generation unit 252 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 増幅部231は、キャリアセンスの際に、アンテナ217を介して受信される受信電力を増幅し、受信部232に供給する。増幅部231は、任意の構成により実現することができる。例えば、増幅部231が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、増幅部231が、オペアンプ等により構成されるようにしてもよい。 The amplifying unit 231 amplifies the received power received via the antenna 217 during carrier sense and supplies the amplified received power to the receiving unit 232. The amplification unit 231 can be realized by an arbitrary configuration. For example, the amplification unit 231 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the amplification unit 231 may be configured by an operational amplifier or the like.
 受信部232は、キャリアセンスの際に、アンテナ217および増幅部231を介して、送信装置101周辺の空中線電力を受信する。受信部232は、発振部219から供給されるキャリア信号を用いて、信号送信に使用する周波数帯の各チャンネルについて、空中線電力を受信する。受信部232は、その受信電力をフィルタ233に供給する。受信部232は、任意の構成により実現することができる。例えば、受信部232が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、受信部232が、信号処理回路や受信回路等により構成されるようにしてもよい。 The receiving unit 232 receives the antenna power around the transmitting apparatus 101 via the antenna 217 and the amplifying unit 231 during carrier sense. The receiving unit 232 receives the antenna power for each channel in the frequency band used for signal transmission, using the carrier signal supplied from the oscillating unit 219. The receiving unit 232 supplies the received power to the filter 233. The receiving unit 232 can be realized by an arbitrary configuration. For example, the receiving unit 232 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the receiving unit 232 may be configured by a signal processing circuit, a receiving circuit, or the like.
 フィルタ233は、供給された受信電力に含まれる所望の周波数帯域の成分を抽出し、それをスイッチ234に供給する。フィルタ233は、任意の構成により実現することができる。例えば、フィルタ233が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、フィルタ233が、バイパスフィルタ、ローパスフィルタ、またはハイパスフィルタ等の所定のフィルタ回路により構成されるようにしてもよい。また、例えば、フィルタ233が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The filter 233 extracts a component of a desired frequency band included in the supplied reception power and supplies it to the switch 234. The filter 233 can be realized by an arbitrary configuration. For example, the filter 233 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the filter 233 may be configured by a predetermined filter circuit such as a bypass filter, a low-pass filter, or a high-pass filter. Further, for example, the filter 233 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 スイッチ234は、疑似乱数発生部252から供給される疑似乱数の値に応じて、供給された受信電力の供給先を切り替える。例えば、疑似乱数の値が「0」である場合、スイッチ234は、キャリアセンス区間の前半の受信電力をA/D変換部236に供給し、キャリアセンス区間の後半の受信電力をA/D変換部235に供給するように、受信電力の供給先を切り替える。また、例えば、疑似乱数の値が「1」である場合、スイッチ234は、キャリアセンス区間の前半の受信電力をA/D変換部235に供給し、キャリアセンス区間の後半の受信電力をA/D変換部236に供給するように、受信電力の供給先を切り替える。 The switch 234 switches the supply destination of the supplied received power according to the value of the pseudo random number supplied from the pseudo random number generator 252. For example, when the value of the pseudo random number is “0”, the switch 234 supplies the reception power in the first half of the carrier sense interval to the A / D conversion unit 236 and converts the reception power in the second half of the carrier sense interval to A / D conversion. The supply destination of the received power is switched so as to be supplied to the unit 235. For example, when the value of the pseudo random number is “1”, the switch 234 supplies the reception power in the first half of the carrier sense interval to the A / D conversion unit 235, and the reception power in the second half of the carrier sense interval is A / D. The supply destination of the received power is switched so as to be supplied to the D conversion unit 236.
 スイッチ234は、任意の構成により実現することができる。例えば、スイッチ234が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。 The switch 234 can be realized by an arbitrary configuration. For example, the switch 234 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined.
 A/D変換部235およびA/D変換部236は、それぞれ、供給された受信電力をA/D変換してデジタルデータ化する。A/D変換部235およびA/D変換部236は、それぞれ、受信電力のデジタルデータを加算部237および減算部238に供給する。A/D変換部235およびA/D変換部236は、それぞれ、任意の構成により実現することができる。例えば、A/D変換部235およびA/D変換部236が、それぞれ、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、A/D変換部235およびA/D変換部236が、それぞれ、所定のA/D変換回路により構成されるようにしてもよいし、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The A / D conversion unit 235 and the A / D conversion unit 236 respectively A / D convert the supplied received power into digital data. The A / D conversion unit 235 and the A / D conversion unit 236 supply digital data of received power to the addition unit 237 and the subtraction unit 238, respectively. Each of the A / D conversion unit 235 and the A / D conversion unit 236 can be realized by an arbitrary configuration. For example, the A / D conversion unit 235 and the A / D conversion unit 236 may be configured by circuits, LSIs, system LSIs, processors, modules, units, sets, devices, apparatuses, systems, or the like, respectively. . A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, each of the A / D conversion unit 235 and the A / D conversion unit 236 may be configured by a predetermined A / D conversion circuit, or may have a CPU and a memory, and the CPU uses the memory. The above process may be performed by executing a program.
 加算部237は、A/D変換部235から供給される受信電力と、A/D変換部236から供給される受信電力とを加算する。つまり、加算部237は、キャリアセンス区間の前半の受信電力と後半の受信電力とを加算し、そのキャリアセンス区間全体の電力測定結果を得る。加算部237は、そのキャリアセンス区間全体の電力測定結果をCPU211に供給する。加算部237は、任意の構成により実現することができる。例えば、加算部237が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、加算部237が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の演算を行うようにしてもよい。 The addition unit 237 adds the reception power supplied from the A / D conversion unit 235 and the reception power supplied from the A / D conversion unit 236. That is, the adding unit 237 adds the reception power in the first half and the reception power in the second half of the carrier sense interval, and obtains the power measurement result of the entire carrier sense interval. The adding unit 237 supplies the power measurement result of the entire carrier sense section to the CPU 211. The adding unit 237 can be realized by an arbitrary configuration. For example, the adding unit 237 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the adding unit 237 may include a CPU and a memory, and the CPU may execute the above-described calculation by executing a program using the memory.
 CPU211は、このように加算部237から供給される各チャンネルの電力測定結果(キャリアセンスの結果)に基づいて、使用する周波数帯域が空いているか否かを判定し、空いていると判定した場合は、各処理部を制御して送信を開始させる。また、周波数帯域が空いていないと判定された場合は、CPU211は、各処理部を制御して信号を送信させないようにする。 When the CPU 211 determines whether or not the frequency band to be used is vacant based on the power measurement result (carrier sense result) of each channel supplied from the adding unit 237 in this way, Controls each processing unit to start transmission. Further, when it is determined that the frequency band is not free, the CPU 211 controls each processing unit so as not to transmit a signal.
 減算部238は、A/D変換部235から供給される受信電力の電力値と、A/D変換部236から供給される受信電力の電力値との差分値を算出する。 The subtraction unit 238 calculates a difference value between the power value of the reception power supplied from the A / D conversion unit 235 and the power value of the reception power supplied from the A / D conversion unit 236.
 上述のように、スイッチ234が疑似乱数の値に基づいて受信電力の供給先を切り替えるので、減算部238による減算の向きがその疑似乱数の値に応じて変化する。例えば、疑似乱数の値が「0」である場合、減算部238は、キャリアセンス区間の後半の受信電力の電力値からキャリアセンス区間の前半の受信電力の電力値を減算する。また、例えば、疑似乱数の値が「1」である場合、減算部238は、キャリアセンス区間の前半の受信電力の電力値からキャリアセンス区間の後半の受信電力の電力値を減算する。つまり、減算部238は、キャリアセンス区間の後半の受信電力の電力値からキャリアセンス区間の前半の受信電力の電力値を減算した差分値に、疑似乱数に応じた符号を乗算した値を算出する。例えば、疑似乱数の値が「0」の場合、キャリアセンス区間の後半の受信電力の電力値からキャリアセンス区間の前半の受信電力の電力値を減算した差分値に「+1」が乗算された値が得られる。また、例えば、疑似乱数の値が「1」の場合、キャリアセンス区間の後半の受信電力の電力値からキャリアセンス区間の前半の受信電力の電力値を減算した差分値に「-1」が乗算された値が得られる。 As described above, since the switch 234 switches the reception power supply destination based on the value of the pseudo random number, the direction of subtraction by the subtraction unit 238 changes according to the value of the pseudo random number. For example, when the value of the pseudo random number is “0”, the subtraction unit 238 subtracts the power value of the reception power in the first half of the carrier sense interval from the power value of the reception power in the second half of the carrier sense interval. For example, when the value of the pseudo random number is “1”, the subtraction unit 238 subtracts the power value of the received power in the second half of the carrier sense section from the power value of the first half of the carrier sense section. That is, the subtracting unit 238 calculates a value obtained by multiplying the difference value obtained by subtracting the power value of the reception power in the first half of the carrier sense section from the power value of the reception power in the second half of the carrier sense section by the code corresponding to the pseudorandom number. . For example, when the value of the pseudo random number is “0”, a value obtained by multiplying the difference value obtained by subtracting the power value of the reception power in the first half of the carrier sense section from the power value of the reception power in the second half of the carrier sense section by “+1” Is obtained. Also, for example, when the value of the pseudo random number is “1”, the difference value obtained by subtracting the power value of the reception power in the first half of the carrier sense section from the power value of the reception power in the second half of the carrier sense section is multiplied by “−1”. The obtained value is obtained.
 減算部238は、算出した差分値を符号比較部239に供給する。減算部238は、任意の構成により実現することができる。例えば、減算部238が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、減算部238が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の演算を行うようにしてもよい。 The subtraction unit 238 supplies the calculated difference value to the code comparison unit 239. The subtraction unit 238 can be realized by an arbitrary configuration. For example, the subtraction unit 238 may be configured by a circuit, an LSI, a system LSI, a processor, a module, a unit, a set, a device, an apparatus, a system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the subtraction unit 238 may include a CPU and a memory, and the CPU may execute the above-described calculation by executing a program using the memory.
 符号比較部239は、差分値の符号(正であるか負であるか)を判定する。符号比較部239は、その判定結果を増幅部240または増幅部241に通知する。例えば、差分値の符号が正であると判定した場合、符号比較部239は、その旨を増幅部240に通知する。また、例えば、差分値の符号が負であると判定した場合、符号比較部239は、その旨を増幅部241に通知する。 The sign comparison unit 239 determines the sign of the difference value (whether positive or negative). The code comparison unit 239 notifies the amplification unit 240 or the amplification unit 241 of the determination result. For example, when it is determined that the sign of the difference value is positive, the sign comparison unit 239 notifies the amplification unit 240 accordingly. For example, when it is determined that the sign of the difference value is negative, the sign comparison unit 239 notifies the amplification unit 241 to that effect.
 符号比較部239は、任意の構成により実現することができる。例えば、符号比較部239が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、符号比較部239が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The code comparison unit 239 can be realized by an arbitrary configuration. For example, the code comparison unit 239 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the code comparison unit 239 may include a CPU and a memory, and the CPU may execute the above process by executing a program using the memory.
 増幅部240は、その符号比較部239からの通知に従って値「+1」を積算部243に供給する。増幅部241は、その符号比較部239からの通知に従って値「-1」を積算部243に供給する。増幅部240は、任意の構成により実現することができる。例えば、増幅部240が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、増幅部240が、オペアンプ等により構成されるようにしてもよい。 The amplification unit 240 supplies the value “+1” to the integration unit 243 in accordance with the notification from the code comparison unit 239. The amplifying unit 241 supplies the value “−1” to the accumulating unit 243 according to the notification from the code comparing unit 239. The amplifying unit 240 can be realized by an arbitrary configuration. For example, the amplification unit 240 may be configured by a circuit, an LSI, a system LSI, a processor, a module, a unit, a set, a device, an apparatus, or a system. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the amplification unit 240 may be configured by an operational amplifier or the like.
 積算部243は、増幅部240および増幅部241から供給される値を積算し、その積算値を閾値比較部244に供給する。積算部243による積算は、図4のBに示されるグラフのように、所定の期間継続される。なお、積算値は、増幅部240または増幅部241から供給される値が積算される度に閾値比較部244に供給されるようにしてもよいし、所定の期間終了後に閾値比較部244に供給されるようにしてもよい。積算部243は、任意の構成により実現することができる。例えば、積算部243が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、積算部243が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The integrating unit 243 integrates the values supplied from the amplifying unit 240 and the amplifying unit 241, and supplies the integrated value to the threshold comparing unit 244. The integration by the integration unit 243 is continued for a predetermined period as in the graph shown in FIG. The integrated value may be supplied to the threshold comparing unit 244 every time the values supplied from the amplifying unit 240 or the amplifying unit 241 are integrated, or supplied to the threshold comparing unit 244 after a predetermined period. You may be made to do. The integration unit 243 can be realized by an arbitrary configuration. For example, the integrating unit 243 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the integrating unit 243 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 閾値比較部244は、積算部243から供給される積算値を所定の閾値と比較し、その比較結果をCPU211に供給する。閾値比較部244は、任意の構成により実現することができる。例えば、閾値比較部244が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、閾値比較部244が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The threshold value comparing unit 244 compares the integrated value supplied from the integrating unit 243 with a predetermined threshold value, and supplies the comparison result to the CPU 211. The threshold comparison unit 244 can be realized by an arbitrary configuration. For example, the threshold comparison unit 244 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the threshold comparison unit 244 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 CPU211は、その比較結果に基づいて、変調検出部218により、周辺の空中線電力の変調が検出されたか否か、すなわち、高感度受信装置102からの暗号鍵の更新指示を受け付けたか否かを判定する。例えば、CPU211は、積算値が閾値以上である場合、変調検出部218により空中線電力の変調が検出されたと判定する。その場合、CPU211は、フィルアップ情報の値を、空中線電力の変調が検出されたことを示す値(例えば「1」)に設定し、ペイロードに付加する。つまり、値「1」のフィルアップ情報が送信される。また、積算値が閾値より小さい場合、変調検出部218により空中線電力の変調が検出されていないと判定する。その場合、CPU211は、フィルアップ情報の値を、空中線電力の変調が検出されていないことを示す値(例えば「0」)に設定し、ペイロードに付加する。つまり、値「0」のフィルアップ情報が送信される。 Based on the comparison result, the CPU 211 determines whether the modulation detector 218 has detected the modulation of the surrounding antenna power, that is, whether the encryption key update instruction from the high sensitivity receiver 102 has been received. To do. For example, when the integrated value is equal to or greater than the threshold value, the CPU 211 determines that the modulation of the antenna power is detected by the modulation detection unit 218. In that case, the CPU 211 sets the value of the fill-up information to a value (for example, “1”) indicating that the antenna power modulation is detected, and adds the value to the payload. That is, fill-up information with a value “1” is transmitted. When the integrated value is smaller than the threshold value, it is determined that the modulation detector 218 has not detected the antenna power modulation. In this case, the CPU 211 sets the value of the fill-up information to a value (for example, “0”) indicating that the antenna power modulation is not detected, and adds the value to the payload. That is, fill-up information with a value “0” is transmitted.
 高感度受信装置102が疑似乱数に応じた変調パタンで空中線電力を変調するため、送信装置101が高感度受信装置102による空中線電力の変調を正しく検出している状態において、減算部238により得られる値の符号は正となる。換言するに、減算部238により得られた値の符号が正である場合、送信装置101が高感度受信装置102による空中線電力の変調を正しく検出できている可能性がある。さらに換言するに、減算部238により得られた値の符号が負である場合、高感度受信装置102による空中線電力の変調が行われていないか、または、ノイズ等の他の要因により送信装置101が高感度受信装置102による空中線電力の変調を正しく検出できていない。したがって、さらに換言するに、減算部238により正の値が得られる回数が増大するほど、送信装置101が高感度受信装置102による空中線電力の変調を正しく検出できている可能性が高くなる。 Since the high-sensitivity receiving apparatus 102 modulates the antenna power with a modulation pattern corresponding to the pseudo-random number, the subtraction unit 238 obtains the antenna power in a state in which the transmission apparatus 101 correctly detects the antenna power modulation by the high-sensitivity receiving apparatus 102. The sign of the value is positive. In other words, when the sign of the value obtained by the subtracting unit 238 is positive, there is a possibility that the transmitting apparatus 101 has correctly detected the antenna power modulation by the high sensitivity receiving apparatus 102. Furthermore, in other words, when the sign of the value obtained by the subtracting unit 238 is negative, the antenna power is not modulated by the high sensitivity receiver 102 or the transmitter 101 due to other factors such as noise. However, the modulation of the antenna power by the high sensitivity receiver 102 cannot be detected correctly. Therefore, in other words, as the number of times that a positive value is obtained by the subtracting unit 238 increases, the possibility that the transmission apparatus 101 can correctly detect the modulation of the antenna power by the high sensitivity receiving apparatus 102 increases.
 したがって、CPU211が、「キャリアセンス区間の後半の受信電力の電力値からキャリアセンス区間の前半の受信電力の電力値を減算した差分値に、疑似乱数に応じた符号を乗算した値」の符号の積算値に基づいて、高感度受信装置102からの暗号鍵の更新指示を受け付けたか否かを判定することにより、1キャリアセンス区間の検出結果に基づいてその判定を行う場合よりも正確にその判定を行うことができる。 Therefore, the CPU 211 determines that the difference value obtained by subtracting the power value of the reception power in the first half of the carrier sense section from the power value of the reception power in the second half of the carrier sense section is multiplied by a sign corresponding to a pseudorandom number. By determining whether or not an encryption key update instruction from the high sensitivity receiver 102 has been received based on the integrated value, the determination can be made more accurately than when the determination is made based on the detection result of one carrier sense interval It can be performed.
 なお、積算値が閾値比較部244に供給された後、積算部243の積算値は、CPU211によりリセット(初期化)される。つまり、積算部243の積算値が初期値(例えば「0」)に設定される。これにより、積算部243は、所定の期間毎に同様の積算を繰り返し行い、期間毎の積算値を出力することができ、閾値比較部244は、各期間の積算値を共通の閾値と比較することができる。したがって、CPU211は、周辺の空中線電力の変調を検出したか否かをより容易に判定することができる。 In addition, after the integrated value is supplied to the threshold value comparing unit 244, the integrated value of the integrating unit 243 is reset (initialized) by the CPU 211. That is, the integrated value of the integrating unit 243 is set to an initial value (for example, “0”). Thereby, the integration unit 243 can repeatedly perform the same integration for each predetermined period and output the integration value for each period, and the threshold value comparison unit 244 compares the integration value of each period with a common threshold value. be able to. Therefore, the CPU 211 can more easily determine whether or not the surrounding antenna power modulation has been detected.
 そして、閾値比較部244による比較結果に基づいて、空中線電力の変調を検出し、暗号鍵の更新指示を受け付けたと判定した場合、CPU211は、例えば月初等、所定のタイミングにおいて、ペイロードの暗号化に用いる暗号鍵を更新する。その後は、CPU211は、その更新された暗号鍵(新たな暗号鍵)を用いてペイロードを暗号化する。 If the CPU 211 detects that the antenna power modulation is detected based on the comparison result by the threshold comparison unit 244 and determines that an encryption key update instruction has been received, the CPU 211 encrypts the payload at a predetermined timing, for example, at the beginning of the month. Update the encryption key to be used. After that, the CPU 211 encrypts the payload using the updated encryption key (new encryption key).
 なお、この更新のタイミングは、高感度受信装置102と共有しており(送信装置101および高感度受信装置102の両方にとって既知であり)、高感度受信装置102も、同じタイミングにおいて、暗号鍵を更新する。もちろん、暗号鍵の生成規則は、送信装置101および高感度受信装置102において共通である。したがって、送信装置101および高感度受信装置102は、互いに対応する新たな暗号鍵を同時に取得することができる。つまり、送信装置101および高感度受信装置102は、その新たな暗号鍵を用いて正常に通信を行うことができる。したがって、送信装置101および高感度受信装置102は、その通信の盗聴や改竄の可能性を低減させることができる。 Note that the timing of this update is shared with the high-sensitivity receiving apparatus 102 (known to both the transmission apparatus 101 and the high-sensitivity receiving apparatus 102), and the high-sensitivity receiving apparatus 102 also uses the encryption key at the same timing. Update. Of course, the encryption key generation rule is common to the transmission apparatus 101 and the high-sensitivity reception apparatus 102. Therefore, the transmitting apparatus 101 and the high sensitivity receiving apparatus 102 can simultaneously acquire new encryption keys corresponding to each other. That is, the transmission apparatus 101 and the high sensitivity receiving apparatus 102 can normally communicate using the new encryption key. Therefore, the transmitter 101 and the high sensitivity receiver 102 can reduce the possibility of wiretapping or tampering with the communication.
  <暗号鍵更新処理の流れ>
 次に、このような位置通知システム100において行われる暗号鍵更新処理の流れの例を、図8および図9のフローチャートを参照して説明する。暗号鍵更新処理は、送信装置101および高感度受信装置102が有するペイロードを暗号化・復号するのに用いる暗号鍵を更新する処理である。図8のフローチャートを参照して、暗号鍵の更新に成功する場合の例について説明する。
<Flow of encryption key update processing>
Next, an example of the flow of the encryption key update process performed in the position notification system 100 will be described with reference to the flowcharts of FIGS. The encryption key update process is a process for updating an encryption key used for encrypting and decrypting the payload of the transmitting apparatus 101 and the high sensitivity receiving apparatus 102. With reference to the flowchart in FIG. 8, an example in which the encryption key is successfully updated will be described.
 例えば月の初めにおいて、送信装置101のCPU211は、積算部243の積算値をリセットする(ステップS101)。 For example, at the beginning of the month, the CPU 211 of the transmission device 101 resets the integrated value of the integrating unit 243 (step S101).
 高感度受信装置102の電力変調部156は、空中線電力を変調することにより、送信装置101に対して暗号鍵の更新を要求する(ステップS121)。これに対して、送信装置101の変調検出部218は、キャリアセンスを行い、周辺の空中線電力の変調を検出する(ステップS102)。 The power modulation unit 156 of the high sensitivity receiver 102 requests the transmitter 101 to update the encryption key by modulating the antenna power (step S121). On the other hand, the modulation detection unit 218 of the transmission apparatus 101 performs carrier sense and detects the modulation of the surrounding antenna power (step S102).
 キャリアセンスにより所望の周波数帯域が空いていることが確認されると、送信装置101の送信部215は、暗号化されたペイロードを含む送信信号を送信する(ステップS103)。この時点において積算値が閾値に達していないので、このペイロードに付加されたフィルアップ情報の値は「0」(fillup=0)である。これに対して、高感度受信装置102の増幅部152は、その送信信号をアンテナ151を介して受信し、増幅する。さらに、復調部153が復調し、誤り訂正部154が誤り訂正を行う。CPU155は、暗号化されたペイロードを抽出し、暗号鍵を用いてそれを復号する。このようにしてペイロードが受信される(ステップS122)。このペイロードのフィルアップ情報の値が「0」であるので、暗号鍵の更新はまだ予約されない。 When it is confirmed by carrier sense that a desired frequency band is free, the transmission unit 215 of the transmission apparatus 101 transmits a transmission signal including an encrypted payload (step S103). Since the integrated value has not reached the threshold at this time, the value of the fill-up information added to this payload is “0” (fillup = 0). On the other hand, the amplification unit 152 of the high sensitivity receiving apparatus 102 receives the transmission signal via the antenna 151 and amplifies it. Further, the demodulating unit 153 demodulates, and the error correcting unit 154 performs error correction. The CPU 155 extracts the encrypted payload and decrypts it using the encryption key. In this way, the payload is received (step S122). Since the value of the fill-up information of this payload is “0”, the update of the encryption key is not yet reserved.
 以上のような処理(ステップS102およびステップS103、並びに、ステップS121およびステップS122)が所定の期間中(例えば1か月)に繰り返し行われる。 The above processes (steps S102 and S103, and steps S121 and S122) are repeatedly performed during a predetermined period (for example, one month).
 そして、同様に、何度目かの空中線電力の変調(ステップS123)とキャリアセンス(ステップS104)が行われた結果、積算値が閾値に達すると、送信装置101のCPU211は、値「1」のフィルアップ情報をペイロードに付加する。送信装置101の送信部215は、そのペイロードを送信する(ステップS105)。高感度受信装置102は、ステップS122等の処理の場合と同様に、ペイロードを受信する(ステップS124)。フィルアップ情報の値が「1」になったので、暗号鍵の更新が予約される。 Similarly, when the integrated value reaches the threshold value as a result of performing the antenna power modulation (step S123) and the carrier sense (step S104) several times, the CPU 211 of the transmission apparatus 101 sets the value “1”. Fill-up information is added to the payload. The transmission unit 215 of the transmission device 101 transmits the payload (step S105). The high sensitivity receiving apparatus 102 receives the payload as in the case of the processing in step S122 and the like (step S124). Since the value of the fill-up information becomes “1”, the update of the encryption key is reserved.
 そして、暗号鍵の更新が予約されたので、例えば月の終わり等の既知の所定のタイミングにおいて、送信装置101のCPU211は、暗号鍵を更新する(ステップS106)。また、同一のタイミングにおいて、高感度受信装置102のCPU155も、暗号鍵を更新する(ステップS125)。 And since the update of the encryption key is reserved, the CPU 211 of the transmission apparatus 101 updates the encryption key at a known predetermined timing such as the end of the month (step S106). At the same timing, the CPU 155 of the high sensitivity receiving apparatus 102 also updates the encryption key (step S125).
 次に、図9のフローチャートを参照して、暗号鍵の更新に失敗する場合の暗号鍵更新処理の流れの例について説明する。 Next, an example of the flow of encryption key update processing when the update of the encryption key fails will be described with reference to the flowchart of FIG.
 例えば月の初めにおいて、送信装置101のCPU211は、積算部243の積算値をリセットする(ステップS141)。 For example, at the beginning of the month, the CPU 211 of the transmission device 101 resets the integrated value of the integrating unit 243 (step S141).
 高感度受信装置102の電力変調部156は、空中線電力を変調することにより、送信装置101に対して暗号鍵の更新を要求する(ステップS161)。これに対して、送信装置101の変調検出部218は、キャリアセンスを行い、周辺の空中線電力の変調を検出する(ステップS142)。 The power modulation unit 156 of the high sensitivity receiving apparatus 102 requests the transmitting apparatus 101 to update the encryption key by modulating the antenna power (step S161). On the other hand, the modulation detection unit 218 of the transmission apparatus 101 performs carrier sense and detects the modulation of the surrounding antenna power (step S142).
 キャリアセンスにより所望の周波数帯域が空いていることが確認されると、送信装置101の送信部215は、暗号化されたペイロードを含む送信信号を送信する(ステップS143)。この時点において積算値が閾値に達していないので、このペイロードに付加されたフィルアップ情報の値は「0」(fillup=0)である。これに対して、高感度受信装置102の増幅部152は、その送信信号をアンテナ151を介して受信し、増幅する。さらに、復調部153が復調し、誤り訂正部154が誤り訂正を行う。CPU155は、暗号化されたペイロードを抽出し、暗号鍵を用いてそれを復号する。このようにしてペイロードが受信される(ステップS162)。このペイロードのフィルアップ情報の値が「0」であるので、暗号鍵の更新はまだ予約されない。 When it is confirmed by carrier sense that a desired frequency band is free, the transmission unit 215 of the transmission apparatus 101 transmits a transmission signal including an encrypted payload (step S143). Since the integrated value has not reached the threshold at this time, the value of the fill-up information added to this payload is “0” (fillup = 0). On the other hand, the amplification unit 152 of the high sensitivity receiving apparatus 102 receives the transmission signal via the antenna 151 and amplifies it. Further, the demodulating unit 153 demodulates, and the error correcting unit 154 performs error correction. The CPU 155 extracts the encrypted payload and decrypts it using the encryption key. In this way, the payload is received (step S162). Since the value of the fill-up information of this payload is “0”, the update of the encryption key is not yet reserved.
 以上のような処理(ステップS142およびステップS143、並びに、ステップS161およびステップS162)が所定の期間中(例えば1か月)に繰り返し行われる。 The above processing (steps S142 and S143, and steps S161 and S162) is repeatedly performed during a predetermined period (for example, one month).
 そして、その所定の期間の最後に行われた処理(ステップS144およびステップS145、並びに、ステップS163およびステップS164)においても積算値が閾値を超えない場合、送信装置101から高感度受信装置102に送信されたペイロードに付加されたフィルアップ情報の値は、「0」のままであり、暗号鍵の更新は予約されない。 If the integrated value does not exceed the threshold value in the processes (steps S144 and S145, and steps S163 and S164) performed at the end of the predetermined period, transmission is performed from the transmission device 101 to the high sensitivity reception device 102. The value of the fill-up information added to the added payload remains “0”, and the encryption key update is not reserved.
 つまり、暗号鍵の更新が予約されていない(積算値が閾値を超えていない)ので、例えば月の終わり等の既知の所定のタイミングにおいて、送信装置101のCPU211は、暗号鍵を更新しない(暗号鍵の更新を省略する)(ステップS146)。また、同一のタイミングにおいて、高感度受信装置102のCPU155も、暗号鍵を更新しない(暗号鍵の更新を省略する)(ステップS165)。 That is, since the update of the encryption key is not reserved (the integrated value does not exceed the threshold value), the CPU 211 of the transmission apparatus 101 does not update the encryption key at a known predetermined timing such as the end of the month (encryption). (Key update is omitted) (step S146). Further, at the same timing, the CPU 155 of the high sensitivity receiving apparatus 102 also does not update the encryption key (the update of the encryption key is omitted) (step S165).
 以上のように暗号鍵更新処理を実行することにより、送信装置101および高感度受信装置102は、互いに同一のタイミングにおいて、例えば暗号鍵を更新したり暗号鍵の更新を省略したりする等、暗号鍵の更新について互いに同様の処理を行うことができる。したがって、送信装置101および高感度受信装置102は、正常に情報の授受を行うことができる状態を維持したまま、暗号鍵を利用して情報の暗号化や復号を行うことができ、さらに、その暗号鍵の更新も行うことができる。したがって、通信の盗聴や改竄の可能性を低減させることができる。 By executing the encryption key update process as described above, the transmission device 101 and the high sensitivity receiving device 102 perform encryption at the same timing, for example, by updating the encryption key or omitting the update of the encryption key. The same process can be performed for the key update. Therefore, the transmitting device 101 and the high sensitivity receiving device 102 can perform encryption and decryption of information using an encryption key while maintaining a state where information can be normally exchanged. The encryption key can also be updated. Therefore, the possibility of wiretapping or tampering with communication can be reduced.
 また、上述のように暗号鍵更新処理を実行することにより、送信装置101および高感度受信装置102は、暗号鍵の更新を不定期に行うことができる。したがって、通信の盗聴や改竄の可能性をより低減させることができる。 Further, by executing the encryption key update process as described above, the transmission apparatus 101 and the high sensitivity receiving apparatus 102 can update the encryption key irregularly. Therefore, it is possible to further reduce the possibility of wiretapping or tampering with communication.
 つまり、高感度受信装置102は、信号受信機能を有しておらず片方向通信を行う送信装置101を外部から制御することができる。 That is, the high sensitivity receiving apparatus 102 does not have a signal receiving function and can control the transmitting apparatus 101 that performs one-way communication from the outside.
 なお、以上においては、キャリアセンスを繰り返す期間(積算する期間)を1か月として説明したが、この期間の長さは任意である。 In the above description, the period of repeating the carrier sense (accumulating period) has been described as one month, but the length of this period is arbitrary.
  <制御処理の流れ>
 以上のような暗号鍵更新処理を利用して送信装置101の駆動を制御するようにしてもよい。例えば、使い捨てのような場合、不要になった送信装置101が放置され、その送信装置101から不要な信号が送信され続け、その不要な信号送信が、通信に用いられる周波数帯域を占有したり、他の通信の妨害波となったりすることが考えられる。また、高感度受信装置102にとっても、不要な送信装置101から送信される信号を受信し続けることは無駄な処理である。さらに、この不要な通信は、長期間暗号鍵が更新されないためセキュリティレベルが低減し、通信の盗聴や改竄等に利用されるおそれもある。
<Flow of control processing>
The drive of the transmission apparatus 101 may be controlled using the encryption key update process as described above. For example, in the case of disposable, the transmission device 101 that is no longer needed is left unattended, and unnecessary signals are continuously transmitted from the transmission device 101, and the unnecessary signal transmission occupies the frequency band used for communication, It may be an interference wave for other communications. Also for the high-sensitivity receiving apparatus 102, continuing to receive signals transmitted from the unnecessary transmitting apparatus 101 is a wasteful process. Furthermore, since this unnecessary communication does not update the encryption key for a long period of time, the security level is reduced, and there is a possibility that it may be used for wiretapping or tampering of communication.
 そこで、送信装置101の駆動に有効期限を設け、その有効期限の管理を、上述した暗号鍵更新処理を利用して行うようにしてもよい。例えば、上述の暗号鍵更新処理を繰り返し実行し、所定期間(連続して所定回数)、暗号鍵の更新に失敗した場合、送信装置101による信号送信を停止するようにしてもよい。また、その場合、高感度受信装置102による送信装置101からの信号の受信を停止するようにしてもよい。 Therefore, an expiration date may be provided for driving the transmission apparatus 101, and the expiration date may be managed using the encryption key update process described above. For example, the above-described encryption key update processing may be repeatedly executed, and signal transmission by the transmission apparatus 101 may be stopped when the encryption key update fails for a predetermined period (continuously a predetermined number of times). In this case, reception of a signal from the transmission device 101 by the high sensitivity reception device 102 may be stopped.
 このような制御を実現するための制御処理の流れの例を、図10のフローチャートを参照して説明する。 An example of the flow of control processing for realizing such control will be described with reference to the flowchart of FIG.
 制御処理が開始されると、送信装置101は、暗号鍵更新要求処理を行い(ステップS181)、高感度受信装置102は、暗号鍵更新要求確認処理を行う(ステップS191)。この処理により、送信装置101は、有効期限の開始タイミング(例えば月の初め)において、積算値をリセットする。 When the control process is started, the transmission apparatus 101 performs an encryption key update request process (step S181), and the high sensitivity receiver 102 performs an encryption key update request confirmation process (step S191). With this process, the transmission apparatus 101 resets the integrated value at the expiration date start timing (for example, at the beginning of the month).
 所定期間(例えば1か月)が経過し、送信装置101において、高感度受信装置102からの指示を受け付けていない(つまり、積算値が閾値に達していない)と判定された場合、送信装置101は、再度、暗号鍵更新要求処理を行う(ステップS182)。その際、高感度受信装置102も、送信装置101から値「1」のフィルアップ情報を受け取っていないので、再度、暗号鍵更新要求確認処理を行う(ステップS192)。 When it is determined that a predetermined period (for example, one month) has elapsed and the transmission apparatus 101 has not received an instruction from the high sensitivity reception apparatus 102 (that is, the integrated value has not reached the threshold value), the transmission apparatus 101 Performs encryption key update request processing again (step S182). At this time, since the high sensitivity receiving apparatus 102 has not received the fill-up information of the value “1” from the transmitting apparatus 101, the encryption key update request confirmation process is performed again (step S192).
 そしてまた所定期間(例えば1か月)が経過し、同様に暗号鍵を更新しない場合、送信装置101は、再度、暗号鍵更新要求処理を行う(ステップS183)。それに対して、高感度受信装置102は、再度、暗号鍵更新要求確認処理を行う。 Further, when a predetermined period (for example, one month) elapses and the encryption key is not updated in the same manner, the transmitting apparatus 101 performs the encryption key update request process again (step S183). On the other hand, the high sensitivity receiving apparatus 102 performs encryption key update request confirmation processing again.
 そしてまた所定期間(例えば1か月)が経過して同様に暗号鍵を更新しない場合、送信装置101のCPU211は、有効期限が切れたと判定し、必要に応じて他の処理部を制御し、信号送信を停止する(ステップS184)。また、高感度受信装置102のCPU155は、通信相手である当該送信装置101の有効期限が切れたと判定し、必要に応じて他の処理部を制御し、当該送信装置101からの受信を停止する(ステップS194)。 If the encryption key is not updated after a predetermined period (for example, one month), the CPU 211 of the transmission apparatus 101 determines that the expiration date has expired, and controls other processing units as necessary. Signal transmission is stopped (step S184). Further, the CPU 155 of the high-sensitivity receiving apparatus 102 determines that the expiration date of the transmission apparatus 101 that is a communication partner has expired, controls other processing units as necessary, and stops reception from the transmission apparatus 101. (Step S194).
 このようにすることにより、不要な信号送受信を停止することができるので、周波数帯域の利用効率の低減を抑制することができる。また、他の通信の受信感度の低減を抑制することができる。さらに、通信の盗聴や改竄の可能性を低減させることができる。 By doing so, unnecessary signal transmission / reception can be stopped, so that reduction in the frequency band utilization efficiency can be suppressed. In addition, it is possible to suppress a decrease in reception sensitivity of other communications. Furthermore, the possibility of wiretapping or tampering with communication can be reduced.
 つまり、高感度受信装置102は、信号受信機能を有しておらず片方向通信を行う送信装置101を外部から制御することができる。 That is, the high sensitivity receiving apparatus 102 does not have a signal receiving function and can control the transmitting apparatus 101 that performs one-way communication from the outside.
 なお、図10において、暗号鍵更新が成功した場合、暗号鍵更新の失敗回数はリセットされる。つまり、有効期限が更新(延長)されたものとみなされる。また、図10においては、暗号鍵更新が連続して3回失敗した場合に有効期限が切れるように説明したが、この回数は何回としても良い。 In FIG. 10, when the encryption key update is successful, the number of failed encryption key updates is reset. That is, it is considered that the expiration date has been updated (extended). Further, in FIG. 10, it has been described that the expiration date expires when the encryption key update fails three times in succession, but this number may be any number.
  <応用例>
 なお、キャリアセンス区間の変調方式は任意であり、上述の例に限定されない。例えば、疑似乱数系列を用いた拡散変調にするようにしてもよい。また、例えば、キャリアセンス区間を3以上の部分区間に分割し、その部分区間の間で差分値を算出するようにしてもよい。上述のキャリアセンス区間の前半と後半とで差分値を算出する方法の場合、1ビットの情報しか送信装置101に供給することができなかったが、このようにすることにより複数ビットの情報を送信装置101に供給することができる。
<Application example>
The modulation scheme in the carrier sense section is arbitrary and is not limited to the above example. For example, spread modulation using a pseudo random number sequence may be used. Further, for example, the carrier sense section may be divided into three or more partial sections, and a difference value may be calculated between the partial sections. In the case of the method of calculating the difference value between the first half and the second half of the carrier sense interval described above, only 1-bit information can be supplied to the transmission apparatus 101. By doing so, multiple-bit information is transmitted. The apparatus 101 can be supplied.
 また、変調された各空中線電力の演算方法は、変調する側と変調を検知する側とで共有していれば(既知であれば)どのような方法であってもよい。例えば、キャリアセンス区間を4分割し、各部分区間の空中線電力の変調を「+1」、「-1」、「+1」、「-1」とし、奇数番目の部分区間の空中線電力を加算し、偶数番目の部分区間の空中線電力を減算するようにしてもよい。また、各部分区間の空中線電力の演算方法(例えば加算するか減算するか等)を疑似乱数から決定するようにしてもよい。もちろん、この場合もキャリアセンス区間の分割数は任意であり、例えば8分割であってもよい。 Further, the method for calculating each modulated antenna power may be any method as long as it is shared between the modulating side and the detecting side (if known). For example, the carrier sense section is divided into four, the modulation of the antenna power in each partial section is “+1”, “−1”, “+1”, “−1”, and the antenna power in the odd-numbered partial section is added, You may make it subtract the antenna power of the even-numbered partial area. Further, the method of calculating the antenna power of each partial section (for example, whether to add or subtract) may be determined from a pseudo random number. Of course, also in this case, the number of divisions of the carrier sense section is arbitrary, and may be eight divisions, for example.
 また、差分値の符号だけでなく、差分値の大きさも情報化するようにしてもよい。つまり、Δ=1をΔ=δにしてもよい。このようにすることにより、より多くの情報を送信装置101に供給することができる。 Further, not only the sign of the difference value but also the magnitude of the difference value may be computerized. That is, Δ = 1 may be changed to Δ = δ. By doing so, more information can be supplied to the transmission apparatus 101.
 また、上述の制御処理における暗号化更新処理の繰り返しのように、空中線電力の変調によって情報を送信装置101に供給する処理を繰り返す場合、つまり空中線電力の変調の検出(積算値のリセット)を複数回行う場合、空中線電力の変調を検出する(積算値が閾値を超える)度に、異なる情報が送信装置101に供給されるようにしてもよい。つまり、送信装置101が、例えば、1回目は、A処理を指示されたと判定し、2回目はB処理を指示されたと判定し、3回目はC処理を指示されたと判定し、・・・といったように、供給されたとする情報の内容(例えば指示内容)を変更することができるようにしてもよい。 Further, when the process of supplying information to the transmitting apparatus 101 by the modulation of the antenna power is repeated, such as the repetition of the encryption update process in the control process described above, that is, a plurality of detections of the antenna power modulation (reset of integrated values) When the transmission is performed once, different information may be supplied to the transmission apparatus 101 each time the modulation of the antenna power is detected (the integrated value exceeds the threshold value). That is, for example, the transmission apparatus 101 determines that the A process is instructed for the first time, determines that the B process is instructed for the second time, determines that the C process is instructed for the third time, and so on. As described above, the content (for example, instruction content) of the supplied information may be changed.
 さらに、空中線電力の変調の検出複数回分で1つの情報が送信装置101に供給されるようにしてもよい。例えば、各回において送信装置101に供給される1ビットの情報を集めることにより複数ビットの暗号鍵が得られるようにしてもよい。つまり、空中線電力の変調を利用して、暗号鍵等の任意の情報を伝送することができる。 Furthermore, one piece of information may be supplied to the transmission apparatus 101 in multiple detections of the modulation of the antenna power. For example, a multi-bit encryption key may be obtained by collecting 1-bit information supplied to the transmission apparatus 101 each time. That is, arbitrary information such as an encryption key can be transmitted using the modulation of the antenna power.
 また、以上においては、送信装置101が、信号を送信する際のキャリアセンスにおいて受信した受信電力を用いて空中線電力の変調を検出するように説明したが、送信装置101が空中線電力の変調を検出するために、別途キャリアセンスを行うようにしてもよい。この場合、送信装置101が送信を行なわないので、高感度受信装置102により送信されるキャリアセンス帯域の送信電力を高くすることができる。 In the above description, it has been described that the transmission apparatus 101 detects the modulation of the antenna power using the received power received in the carrier sense when transmitting the signal. However, the transmission apparatus 101 detects the modulation of the antenna power. For this purpose, carrier sense may be separately performed. In this case, since the transmission apparatus 101 does not perform transmission, the transmission power of the carrier sense band transmitted by the high sensitivity receiving apparatus 102 can be increased.
 また、暗号鍵の生成方法は任意である。例えば、GPS時刻情報やLFSR(Linear Feed-back Shift Register)等を用いて一意に決まる値を暗号鍵とするようにしてもよいし、予め定めた暗号鍵のテーブルを送信装置101と高感度受信装置102とで共有しておき、そのテーブルに基づいて暗号鍵を設定するようにしてもよい。 Also, the encryption key generation method is arbitrary. For example, a value uniquely determined using GPS time information, LFSR (Linear Feed-back Shift Register), or the like may be used as an encryption key, or a predetermined encryption key table may be used as a highly sensitive reception with the transmission device 101. It may be shared with the apparatus 102 and the encryption key may be set based on the table.
 なお、高感度受信装置102は、鍵更新命令をブロードキャスト、すなわち全送信装置101に対して一斉送信するようにしてもよいし、例えばグループ等毎にキャリアセンス区間の変調を変えるようにしてもよい。例えば、所定のグループに所属する送信装置101と高感度受信装置102とで予めルールを定めておくことにより、そのグループに対する専用の鍵更新を行うようにすることもできる。この場合、グループ外の送信装置101には、空中線電力の変調がノイズとして受信される。 Note that the high sensitivity receiving apparatus 102 may broadcast a key update command, that is, simultaneously transmit to all the transmitting apparatuses 101, or may change the modulation of the carrier sense interval for each group, for example. . For example, it is possible to perform a dedicated key update for a group by setting a rule in advance between the transmitting apparatus 101 and the high sensitivity receiving apparatus 102 belonging to a predetermined group. In this case, the modulation of the antenna power is received as noise by the transmission apparatus 101 outside the group.
 また以上においては、高感度受信装置102が、送信装置101周辺の空中線電力を変調するように説明したが、これに限らず、高感度受信装置102以外の装置が、送信装置101周辺の空中線電力を変調する(すなわち、送信装置101に情報を供給する)ようにしてもよい。 In the above description, the high-sensitivity receiving apparatus 102 has been described so as to modulate the antenna power around the transmission apparatus 101. However, the present invention is not limited to this, and any apparatus other than the high-sensitivity reception apparatus 102 may receive May be modulated (that is, information is supplied to the transmission apparatus 101).
 また、以上においては、空中線電力の変調が信号送受信に利用される周波数帯の全チャンネルにおいて行われるように説明したが、例えば、空中線電力の変調が単数または複数の代表チャンネルにおいてのみ行われるようにしてもよい。また、その空中線電力の変調が行われるチャンネルが可変であってもよい。さらに、空中線電力の変調が信号送受信に利用される周波数帯とは異なる帯域で行われるようにしてもよい。 In the above description, the antenna power is modulated on all channels in the frequency band used for signal transmission / reception. For example, the antenna power is modulated only on one or more representative channels. May be. Further, the channel on which the antenna power is modulated may be variable. Further, the antenna power may be modulated in a band different from the frequency band used for signal transmission / reception.
 <3.第2の実施の形態>
  <DPSK>
 また、以上においては、空中線電力の電力値(大きさ)を変調するように説明したが、空中線電力の位相を変調するようにしてもよい。さらに、差動(差分)位相偏移変調(DPSK(Differential Phase-Shift Keying))を用いるようにしてもよい。
<3. Second Embodiment>
<DPSK>
In the above description, the power value (magnitude) of the antenna power is modulated. However, the phase of the antenna power may be modulated. Further, differential (difference) phase shift keying (DPSK (Differential Phase-Shift Keying)) may be used.
  <高感度受信装置の構成>
 DPSKにより空中線電力を変調する場合の高感度受信装置102の主な構成例を図11に示す。図11に示されるように、この場合の高感度受信装置102は、基本的に、図6の場合と同様の構成を有する。ただし、この場合、高感度受信装置102の電力変調部156は、シングルキャリア変調部163およびスイッチ164の代わりにDPSK部311を有する。
<Configuration of high sensitivity receiver>
FIG. 11 shows a main configuration example of the high-sensitivity receiving apparatus 102 when the antenna power is modulated by DPSK. As shown in FIG. 11, the high sensitivity receiving apparatus 102 in this case basically has the same configuration as that in FIG. However, in this case, the power modulation unit 156 of the high sensitivity receiving apparatus 102 includes a DPSK unit 311 instead of the single carrier modulation unit 163 and the switch 164.
 この場合、例えば、電力変調部156は、送信装置101における空中線電力の計測期間を複数に分割した部分区間毎に空中線電力の位相を変化させる。例えば、電力変調部156は、その部分区間毎の空中線電力の位相を所定のパタンで変化させる。例えば、電力変調部156は、連続する部分区間同士の空中線電力の位相差の極性を所定のパタンで変化させる。例えば、電力変調部156は、その計測期間を2回以上含む期間、空中線電力を変調する。 In this case, for example, the power modulation unit 156 changes the phase of the antenna power for each partial section obtained by dividing the antenna power measurement period in the transmission apparatus 101 into a plurality of sections. For example, the power modulation unit 156 changes the phase of the antenna power for each partial section with a predetermined pattern. For example, the power modulation unit 156 changes the polarity of the phase difference of the antenna power between successive partial sections with a predetermined pattern. For example, the power modulation unit 156 modulates the antenna power for a period including the measurement period twice or more.
 DPSK部311は、所定の周波数の信号を生成し、その信号を、DPSK方式により、疑似乱数発生部162から供給される疑似乱数の値を示すように変調する。その際、DPSK部311は、送信装置101における空中線電力の計測期間(すなわちキャリアセンス区間)内に送信装置101周辺の空中線電力の位相が変化するように変調する。DPSK部311は、その変調された信号(変調信号)を増幅部165に供給する。増幅部165は、その変調信号を、アンテナ166を介して送信する。このようにすることにより、高感度受信装置102は、空中線電力をDPSK方式で変調することができる。 The DPSK unit 311 generates a signal having a predetermined frequency, and modulates the signal so as to indicate the value of the pseudorandom number supplied from the pseudorandom number generator 162 by the DPSK method. At this time, the DPSK unit 311 performs modulation so that the phase of the antenna power around the transmission apparatus 101 changes during the measurement period of the antenna power in the transmission apparatus 101 (that is, the carrier sense section). The DPSK unit 311 supplies the modulated signal (modulated signal) to the amplification unit 165. The amplification unit 165 transmits the modulated signal via the antenna 166. By doing so, the high sensitivity receiver 102 can modulate the antenna power by the DPSK method.
 なお、DPSK部311は、任意の構成により実現することができる。例えば、DPSK部311が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、DPSK部311が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 The DPSK unit 311 can be realized by an arbitrary configuration. For example, the DPSK unit 311 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the DPSK unit 311 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
  <送信装置の構成>
 DPSK方式により空中線電力が変調される場合の送信装置101の主な構成例を図12に示す。図12に示されるように、この場合の送信装置101は、基本的に、図7の場合と同様の構成を有する。ただし、この場合、送信装置101の変調検出部218は、減算部238の代わりに位相差検出部321を有する。
<Configuration of transmitter>
FIG. 12 shows a main configuration example of the transmission apparatus 101 when the antenna power is modulated by the DPSK method. As shown in FIG. 12, the transmitting apparatus 101 in this case basically has the same configuration as that in FIG. However, in this case, the modulation detection unit 218 of the transmission apparatus 101 includes a phase difference detection unit 321 instead of the subtraction unit 238.
 この場合、例えば、変調検出部218は、キャリアセンス区間(空中線電力の計測期間)を複数に分割した部分区間毎の空中線電力の位相の変化に基づいて、空中線電力の変調を検出する。例えば、変調検出部218は、その部分区間毎の空中線電力の位相の変化のパタンに基づいて、空中線電力の変調を検出する。例えば、変調検出部218は、連続する部分区間同士の空中線電力の位相差の極性のパタンに基づいて、空中線電力の変調を検出する。例えば、変調検出部218は、その極性の積算値の大きさに基づいて、空中線電力の変調を検出する。 In this case, for example, the modulation detection unit 218 detects the modulation of the antenna power based on the change in the phase of the antenna power for each partial section obtained by dividing the carrier sense section (aerial power measurement period). For example, the modulation detection unit 218 detects the modulation of the antenna power based on the pattern of the change in the phase of the antenna power for each partial section. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the polarity pattern of the phase difference of the antenna power between successive partial sections. For example, the modulation detection unit 218 detects the modulation of the antenna power based on the magnitude of the integrated value of the polarity.
 つまり、位相差検出部321は、A/D変換部235から供給される受信電力と、A/D変換部236から供給される受信電力との位相差を検出する。なお、位相差検出部321は、任意の構成により実現することができる。例えば、位相差検出部321が、回路、LSI、システムLSI、プロセッサ、モジュール、ユニット、セット、デバイス、装置、またはシステム等により構成されるようにしてもよい。また、それらを複数組み合わせるようにしてもよい。その際、例えば、複数の回路、複数のプロセッサ等のように同じ種類の構成を組み合わせるようにしてもよいし、回路とLSI等のように異なる種類の構成を組み合わせるようにしてもよい。例えば、位相差検出部321が、CPUとメモリを有し、CPUがメモリを用いてプログラムを実行することにより、上述の処理を行うようにしてもよい。 That is, the phase difference detection unit 321 detects the phase difference between the reception power supplied from the A / D conversion unit 235 and the reception power supplied from the A / D conversion unit 236. The phase difference detection unit 321 can be realized by an arbitrary configuration. For example, the phase difference detection unit 321 may be configured by a circuit, LSI, system LSI, processor, module, unit, set, device, apparatus, system, or the like. A plurality of them may be combined. At this time, for example, the same type of configuration such as a plurality of circuits and a plurality of processors may be combined, or different types of configurations such as a circuit and an LSI may be combined. For example, the phase difference detection unit 321 may include a CPU and a memory, and the CPU may execute the above-described processing by executing a program using the memory.
 上述のように、スイッチ234が疑似乱数の値に基づいて受信電力の供給先を切り替えるので、減算部238による減算の向きがその疑似乱数の値に応じて変化する。例えば、疑似乱数の値が「0」である場合、減算部238は、キャリアセンス区間の後半の受信電力の位相からキャリアセンス区間の前半の受信電力の位相を減算する。また、例えば、疑似乱数の値が「1」である場合、減算部238は、キャリアセンス区間の前半の受信電力の位相からキャリアセンス区間の後半の受信電力の位相を減算する。 As described above, since the switch 234 switches the reception power supply destination based on the value of the pseudo random number, the direction of subtraction by the subtraction unit 238 changes according to the value of the pseudo random number. For example, when the value of the pseudo random number is “0”, the subtraction unit 238 subtracts the phase of the reception power in the first half of the carrier sense interval from the phase of the reception power in the second half of the carrier sense interval. For example, when the value of the pseudo random number is “1”, the subtracting unit 238 subtracts the phase of the received power in the second half of the carrier sense interval from the phase of the received power in the first half of the carrier sense interval.
 つまり、減算部238は、キャリアセンス区間の後半の受信電力の位相からキャリアセンス区間の前半の受信電力の位相を減算した差分値(位相差)に、疑似乱数に応じた符号を乗算した値を算出する。例えば、疑似乱数の値が「0」の場合、キャリアセンス区間の後半の受信電力の位相からキャリアセンス区間の前半の受信電力の位相を減算した差分値(位相差)に「+1」が乗算された値が得られる。また、例えば、疑似乱数の値が「1」の場合、キャリアセンス区間の後半の受信電力の位相からキャリアセンス区間の前半の受信電力の位相を減算した差分値(位相差)に「-1」が乗算された値が得られる。 That is, the subtracting unit 238 multiplies a difference value (phase difference) obtained by subtracting the phase of the received power in the first half of the carrier sense interval from the phase of the received power in the latter half of the carrier sense interval by a code corresponding to a pseudo random number. calculate. For example, when the value of the pseudo random number is “0”, “+1” is multiplied by a difference value (phase difference) obtained by subtracting the phase of the received power in the first half of the carrier sense interval from the phase of the received power in the latter half of the carrier sense interval. Value is obtained. Further, for example, when the value of the pseudo random number is “1”, “−1” is added to a difference value (phase difference) obtained by subtracting the phase of the received power in the first half of the carrier sense interval from the phase of the received power in the latter half of the carrier sense interval. The value multiplied by is obtained.
 位相差検出部321は、検出した位相差を符号比較部239に供給する。符号比較部239は、その位相差の符号(正であるか負であるか)を判定する。つまり、この場合、変調検出部218は、空中線電力の計測期間の前半の位相と後半の位相との差分値の極性の積算値の大きさに基づいて、空中線電力の変調を検出する。このようにすることにより、送信装置101は、DPSK方式による空中線電力の変調を検出することができる。また、この場合もCPU211がその積算値に基づいて判定を行うことにより、1キャリアセンス区間の検出結果に基づいてその判定を行う場合よりも正確にその判定を行うことができる。 The phase difference detection unit 321 supplies the detected phase difference to the code comparison unit 239. The sign comparison unit 239 determines the sign (whether positive or negative) of the phase difference. That is, in this case, the modulation detector 218 detects the modulation of the antenna power based on the magnitude of the integrated value of the polarities of the difference values between the first half phase and the second half phase of the antenna power measurement period. By doing so, the transmission apparatus 101 can detect the modulation of the antenna power by the DPSK method. Also in this case, the CPU 211 makes a determination based on the integrated value, so that the determination can be performed more accurately than when the determination is made based on the detection result of one carrier sense section.
 つまり、高感度受信装置102は、第1の実施の形態の場合と同様に、信号受信機能を有しておらず片方向通信を行う送信装置101を外部から制御することができる。 That is, as in the case of the first embodiment, the high sensitivity receiving apparatus 102 can control the transmitting apparatus 101 that does not have a signal receiving function and performs one-way communication from the outside.
 <4.その他>
  <盗難防止システム>
 以上においては、位置通知システム100を例に説明したが、本技術は、任意の通信システムに適用することができる。例えば、送信装置101は、人物だけでなく、移動体等に設置するようにしてもよい。
<4. Other>
<Anti-theft system>
In the above, the position notification system 100 has been described as an example, but the present technology can be applied to any communication system. For example, the transmission apparatus 101 may be installed not only on a person but also on a moving body.
 例えば、本技術は、図13に示されるような自動車やバイク等の盗難を防ぐための盗難防止システム800に適用することもできる。この盗難防止システム800の場合、送信装置101は、ユーザが位置を監視する対象物、例えばユーザが所有する自動車801やバイク802に設置される。送信装置101は、位置通知システム100の場合と同様に、自身の位置情報(すなわち、自動車801やバイク802の位置情報)を、適宜、高感度受信装置102に通知する。つまり、ユーザは、位置通知システム100の場合と同様に、端末装置105からサーバ104にアクセスして、自動車801やバイク802の位置を把握することができる。したがって、ユーザは、盗難にあった場合であっても、自動車801やバイク802の位置を把握することができるので、その自動車801やバイク802を容易に取り戻すことができる。 For example, the present technology can also be applied to an anti-theft system 800 for preventing theft of automobiles, motorcycles and the like as shown in FIG. In the case of this anti-theft system 800, the transmission apparatus 101 is installed in an object whose position is monitored by the user, for example, an automobile 801 or a motorcycle 802 owned by the user. As in the case of the position notification system 100, the transmission apparatus 101 notifies the high-sensitivity reception apparatus 102 of its own position information (that is, position information of the automobile 801 and the motorcycle 802) as appropriate. That is, as in the case of the position notification system 100, the user can access the server 104 from the terminal device 105 and grasp the positions of the automobile 801 and the motorcycle 802. Therefore, since the user can grasp the positions of the automobile 801 and the motorcycle 802 even if the user is stolen, the user can easily retrieve the automobile 801 and the motorcycle 802.
 このような盗難防止システム800の場合も、送信装置101や高感度受信装置102に対して各実施の形態において上述した本技術を適用することにより、上述した位置通知システム100の場合と同様の効果を得ることができる。 In the case of such an anti-theft system 800 as well, the same effects as those of the position notification system 100 described above can be obtained by applying the present technology described above in each embodiment to the transmission apparatus 101 and the high sensitivity receiving apparatus 102. Can be obtained.
  <その他の通信システム>
 なお、送信装置101と高感度受信装置102との間で送受信される情報は任意である。例えば送信装置101が、画像、音声、測定データ、機器等の識別情報、パラメータの設定情報、または指令等の制御情報等を含む送信情報を送信するようにしてもよい。また、この送信情報には、例えば、画像と音声、識別情報と設定情報と制御情報等のように、複数種類の情報が含まれるようにしてもよい。
<Other communication systems>
Information transmitted and received between the transmission device 101 and the high sensitivity reception device 102 is arbitrary. For example, the transmission apparatus 101 may transmit transmission information including identification information such as images, sounds, measurement data, devices, parameter setting information, or control information such as commands. The transmission information may include a plurality of types of information such as an image and sound, identification information, setting information, and control information.
 また、送信装置101が、例えば、他の装置から供給される情報を含む送信情報を送信することができるようにしてもよい。例えば、送信装置101が、画像、光、明度、彩度、電気、音、振動、加速度、速度、角速度、力、温度(温度分布ではない)、湿度、距離、面積、体積、形状、流量、時刻、時間、磁気、化学物質、または匂い等、任意の変数について、またはその変化量について、検出または計測等を行う各種センサから出力される情報(センサ出力)を含む送信情報を生成し、送信するようにしてもよい。 Further, the transmission apparatus 101 may be able to transmit transmission information including information supplied from another apparatus, for example. For example, the transmission device 101 may have an image, light, brightness, saturation, electricity, sound, vibration, acceleration, speed, angular velocity, force, temperature (not temperature distribution), humidity, distance, area, volume, shape, flow rate, Generate and send transmission information including information (sensor output) output from various sensors that perform detection or measurement for any variable such as time, time, magnetism, chemical substance, or odor, or the amount of change. You may make it do.
 つまり、本技術は、例えば、立体形状計測、空間計測、物体観測、移動変形観測、生体観測、認証処理、監視、オートフォーカス、撮像制御、照明制御、追尾処理、入出力制御、電子機器制御、アクチュエータ制御等、任意の用途に用いられるシステムに適用することができる。 In other words, the present technology, for example, three-dimensional shape measurement, spatial measurement, object observation, moving deformation observation, biological observation, authentication processing, monitoring, autofocus, imaging control, illumination control, tracking processing, input / output control, electronic device control, The present invention can be applied to a system used for any application such as actuator control.
 また、本技術は、例えば、交通、医療、防犯、農業、畜産業、鉱業、美容、工場、家電、気象、自然監視等、任意の分野のシステムに適用することができる。例えば、本技術は、ディジタルカメラや、カメラ機能付きの携帯機器等を用いる、鑑賞の用に供される画像を撮影するシステムにも適用することができる。また、例えば、本技術は、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用システム、走行車両や道路を監視する監視カメラシステム、車両間等の測距を行う測距システム等の、交通の用に供されるシステムにも適用することができる。さらに、例えば、本技術は、防犯用途の監視カメラや、人物認証用途のカメラ等を用いる、セキュリティの用に供されるシステムにも適用することができる。また、例えば、本技術は、ウェアラブルカメラ等のようなスポーツ用途等向けに利用可能な各種センサ等を用いる、スポーツの用に供されるシステムにも適用することができる。さらに、例えば、本技術は、畑や作物の状態を監視するためのカメラ等の各種センサを用いる、農業の用に供されるシステムにも適用することができる。また、例えば、本技術は、豚や牛等の家畜の状態を監視するための各種センサを用いる、畜産業の用に供されるシステムにも適用することができる。さらに、本技術は、例えば火山、森林、海洋等の自然の状態を監視するシステムや、例えば天気、気温、湿度、風速、日照時間等を観測する気象観測システムや、例えば鳥類、魚類、ハ虫類、両生類、哺乳類、昆虫、植物等の野生生物の生態を観測するシステム等にも適用することができる。 In addition, the present technology can be applied to a system in an arbitrary field such as traffic, medical care, crime prevention, agriculture, livestock industry, mining, beauty, factory, home appliance, weather, and nature monitoring. For example, the present technology can also be applied to a system that captures an image for viewing using a digital camera, a portable device with a camera function, or the like. In addition, for example, this technology monitors in-vehicle systems, traveling vehicles, and roads that photograph the front, rear, surroundings, and interiors of automobiles for safe driving such as automatic stop and recognition of the driver's condition. The present invention can also be applied to a system used for traffic, such as a surveillance camera system that performs a distance measurement between vehicles or the like. Furthermore, for example, the present technology can also be applied to a system provided for security using a security camera for surveillance purposes, a camera for personal authentication purposes, or the like. In addition, for example, the present technology can also be applied to a system provided for sports using various sensors that can be used for sports applications such as a wearable camera. Furthermore, for example, the present technology can also be applied to a system used for agriculture using various sensors such as a camera for monitoring the state of a field or crop. In addition, for example, the present technology can also be applied to a system used for livestock industry that uses various sensors for monitoring the state of livestock such as pigs and cows. Furthermore, the present technology can be applied to systems that monitor natural conditions such as volcanoes, forests, and oceans, meteorological observation systems that observe weather, temperature, humidity, wind speed, sunshine hours, and so on, such as birds, fish, and reptiles. It can also be applied to a system for observing the ecology of wildlife such as moss, amphibians, mammals, insects and plants.
  <その他の装置>
 さらに、送受信される無線信号や情報の仕様は任意である。また、以上においては、本技術を送信装置101や高感度受信装置102に適用する例を説明したが、本技術は、任意の送信装置や受信装置に適用することができる。さらに、本技術は、送信装置や受信装置に限らず、例えば、送受信装置、通信装置、信号処理装置、情報処理装置等、任意の装置に適用することができる。
<Other devices>
Furthermore, the specification of the radio signal and information transmitted / received is arbitrary. In the above, an example in which the present technology is applied to the transmission device 101 and the high-sensitivity reception device 102 has been described. Furthermore, the present technology is not limited to a transmission device and a reception device, and can be applied to an arbitrary device such as a transmission / reception device, a communication device, a signal processing device, or an information processing device.
  <コンピュータ>
 上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。また、一部の処理をハードウエアにより実行させ、他の処理をソフトウエアにより実行させることもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここでコンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータ等が含まれる。
<Computer>
The series of processes described above can be executed by hardware or can be executed by software. Also, some processes can be executed by hardware, and other processes can be executed by software. When a series of processing is executed by software, a program constituting the software is installed in the computer. Here, the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
 図14は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。 FIG. 14 is a block diagram showing an example of a hardware configuration of a computer that executes the above-described series of processing by a program.
 図14に示されるコンピュータ900において、CPU(Central Processing Unit)901、ROM(Read Only Memory)902、RAM(Random Access Memory)903は、バス904を介して相互に接続されている。 In a computer 900 shown in FIG. 14, a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, and a RAM (Random Access Memory) 903 are connected to each other via a bus 904.
 バス904にはまた、入出力インタフェース910も接続されている。入出力インタフェース910には、入力部911、出力部912、記憶部913、通信部914、およびドライブ915が接続されている。 An input / output interface 910 is also connected to the bus 904. An input unit 911, an output unit 912, a storage unit 913, a communication unit 914, and a drive 915 are connected to the input / output interface 910.
 入力部911は、例えば、キーボード、マウス、マイクロホン、タッチパネル、入力端子などよりなる。出力部912は、例えば、ディスプレイ、スピーカ、出力端子などよりなる。記憶部913は、例えば、ハードディスク、RAMディスク、不揮発性のメモリなどよりなる。通信部914は、例えば、ネットワークインタフェースよりなる。ドライブ915は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブルメディア921を駆動する。 The input unit 911 includes, for example, a keyboard, a mouse, a microphone, a touch panel, an input terminal, and the like. The output unit 912 includes, for example, a display, a speaker, an output terminal, and the like. The storage unit 913 includes, for example, a hard disk, a RAM disk, a nonvolatile memory, and the like. The communication unit 914 includes a network interface, for example. The drive 915 drives a removable medium 921 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
 以上のように構成されるコンピュータでは、CPU901が、例えば、記憶部913に記憶されているプログラムを、入出力インタフェース910およびバス904を介して、RAM903にロードして実行することにより、上述した一連の処理が行われる。RAM903にはまた、CPU901が各種の処理を実行する上において必要なデータなども適宜記憶される。 In the computer configured as described above, the CPU 901 loads the program stored in the storage unit 913 into the RAM 903 via the input / output interface 910 and the bus 904 and executes the program, for example. Is performed. The RAM 903 also appropriately stores data necessary for the CPU 901 to execute various processes.
 コンピュータ(CPU901)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア921に記録して適用することができる。その場合、プログラムは、リムーバブルメディア921をドライブ915に装着することにより、入出力インタフェース910を介して、記憶部913にインストールすることができる。また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。その場合、プログラムは、通信部914で受信し、記憶部913にインストールすることができる。その他、このプログラムは、ROM902や記憶部913に、あらかじめインストールしておくこともできる。 The program executed by the computer (CPU 901) can be recorded and applied to, for example, a removable medium 921 as a package medium or the like. In that case, the program can be installed in the storage unit 913 via the input / output interface 910 by attaching the removable medium 921 to the drive 915. This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 914 and installed in the storage unit 913. In addition, this program can be installed in the ROM 902 or the storage unit 913 in advance.
  <補足>
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
<Supplement>
Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 例えば、本技術は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。 For example, the present technology may be applied to any configuration that constitutes an apparatus or system, for example, a processor as a system LSI (Large Scale Integration), a module that uses a plurality of processors, a unit that uses a plurality of modules, etc. It can also be implemented as a set or the like to which functions are added (that is, a partial configuration of the apparatus).
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 In this specification, the system means a set of a plurality of constituent elements (devices, modules (parts), etc.), and it does not matter whether all the constituent elements are in the same casing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
 また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。 Further, for example, the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units). Conversely, the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit). Of course, a configuration other than that described above may be added to the configuration of each device (or each processing unit). Furthermore, if the configuration and operation of the entire system are substantially the same, a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
 また、例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 Also, for example, the present technology can take a configuration of cloud computing in which one function is shared and processed by a plurality of devices via a network.
 また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。 Also, for example, the above-described program can be executed in an arbitrary device. In that case, the device may have necessary functions (functional blocks and the like) so that necessary information can be obtained.
 また、例えば、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。換言するに、1つのステップに含まれる複数の処理を、複数のステップの処理として実行することもできる。逆に、複数のステップとして説明した処理を1つのステップとしてまとめて実行することもできる。 Also, for example, each step described in the above flowchart can be executed by one device or can be executed by a plurality of devices. Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus. In other words, a plurality of processes included in one step can be executed as a process of a plurality of steps. Conversely, the processing described as a plurality of steps can be collectively executed as one step.
 コンピュータが実行するプログラムは、プログラムを記述するステップの処理が、本明細書で説明する順序に沿って時系列に実行されるようにしても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで個別に実行されるようにしても良い。つまり、矛盾が生じない限り、各ステップの処理が上述した順序と異なる順序で実行されるようにしてもよい。さらに、このプログラムを記述するステップの処理が、他のプログラムの処理と並列に実行されるようにしても良いし、他のプログラムの処理と組み合わせて実行されるようにしても良い。 The program executed by the computer may be such that the processing of steps describing the program is executed in time series in the order described in this specification, or in parallel or when a call is made. It may be executed individually at the required timing. That is, as long as no contradiction occurs, the processing of each step may be executed in an order different from the order described above. Furthermore, the processing of the steps describing this program may be executed in parallel with the processing of other programs, or may be executed in combination with the processing of other programs.
 本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。 The technologies described in this specification can be implemented independently as long as no contradiction arises. Of course, any of a plurality of present technologies can be used in combination. For example, part or all of the present technology described in any of the embodiments can be combined with part or all of the present technology described in other embodiments. Moreover, a part or all of the arbitrary present technology described above can be implemented in combination with other technologies not described above.
 本技術は以下のような構成も取ることができる。
 (1) 空中線電力の変調を検出する検出部と、
 前記検出部による空中線電力の変調の検出結果に基づいて所定の処理を行う処理部と、
 ペイロードを含む信号を送信する送信部と
 を備える信号処理装置。
 (2) 前記検出部は、空中線電力の計測期間を複数に分割した部分区間毎の空中線電力の変化に基づいて、空中線電力の変調を検出する
 (1)に記載の信号処理装置。
 (3) 前記検出部は、前記部分区間毎の空中線電力の電力値の変化に基づいて、空中線電力の変調を検出する
 (2)に記載の信号処理装置。
 (4) 前記検出部は、前記部分区間毎の空中線電力の電力値の変化のパタンに基づいて、空中線電力の変調を検出する
 (3)に記載の信号処理装置。
 (5) 前記検出部は、前記部分区間毎の空中線電力の位相の変化に基づいて、空中線電力の変調を検出する
 (2)に記載の信号処理装置。
 (6) 前記処理部は、前記処理として、前記検出部が空中線電力の変調を検出したか否かを識別する識別情報を設定し、
 前記送信部は、前記ペイロードと前記識別情報とを含む信号を送信する
 (1)乃至(5)のいずれかに記載の信号処理装置。
 (7) 前記処理部は、前記検出部により空中線電力の変調が検出された場合、前記処理として、
  前記識別情報の値を、前記空中線電力の前記変調が検出されたことを示す値に設定し、
  前記識別情報送信後の所定のタイミングにおいて、前記ペイロードの暗号化に用いられる暗号鍵を更新し、
 前記送信部は、前記ペイロードと前記処理部により設定された前記識別情報とを含む信号を送信する
 (6)に記載の信号処理装置。
 (8) 前記処理部は、所定の期間内に空中線電力の変調が検出されなかったことが所定回数発生した場合、前記処理として、前記送信部を制御し、前記ペイロードの送信を停止させる
 (1)乃至(7)のいずれかに記載の信号処理装置。
 (9) 前記処理部は、前記検出部により空中線電力の変調が検出された場合、前記処理として、変調された空中線電力に含まれる、前記ペイロードの暗号化に用いられる暗号鍵の情報を取得する
 (1)乃至(8)のいずれかに記載の信号処理装置。
 (10) 前記検出部は、前記送信部が信号送信に用いる周波数帯域の利用状況を確認するキャリアセンスにおいて受信された空中線電力に基づいて、空中線電力の変調を検出する
 (1)乃至(9)のいずれかに記載の信号処理装置。
 (11) 空中線電力の変調を検出し、
 空中線電力の変調の検出結果に基づいて所定の処理を行い、
 ペイロードを含む信号を送信する
 信号処理方法。
The present technology can also have the following configurations.
(1) a detector that detects the modulation of the antenna power;
A processing unit that performs predetermined processing based on a detection result of the antenna power modulation by the detection unit;
A signal processing apparatus comprising: a transmission unit that transmits a signal including a payload.
(2) The signal processing device according to (1), wherein the detection unit detects the modulation of the antenna power based on a change in the antenna power for each partial section obtained by dividing the antenna power measurement period into a plurality of sections.
(3) The signal processing device according to (2), wherein the detection unit detects modulation of the antenna power based on a change in the power value of the antenna power for each partial section.
(4) The signal processing device according to (3), wherein the detection unit detects modulation of the antenna power based on a pattern of change in the power value of the antenna power for each partial section.
(5) The signal processing device according to (2), wherein the detection unit detects the modulation of the antenna power based on a change in the phase of the antenna power for each partial section.
(6) The processing unit sets identification information for identifying whether or not the detection unit has detected a modulation of antenna power as the processing,
The signal processing apparatus according to any one of (1) to (5), wherein the transmission unit transmits a signal including the payload and the identification information.
(7) When the detection unit detects an antenna power modulation, the processing unit, as the processing,
Setting the value of the identification information to a value indicating that the modulation of the antenna power is detected;
Update the encryption key used for encrypting the payload at a predetermined timing after transmitting the identification information,
The signal processing apparatus according to (6), wherein the transmission unit transmits a signal including the payload and the identification information set by the processing unit.
(8) When the predetermined number of times that the antenna power modulation is not detected within a predetermined period, the processing unit controls the transmission unit to stop transmission of the payload as the processing. ) To (7).
(9) When the detection unit detects the modulation of the antenna power, the processing unit acquires, as the processing, information on an encryption key used for encrypting the payload included in the modulated antenna power. (1) The signal processing device according to any one of (8).
(10) The detection unit detects the modulation of the antenna power based on the antenna power received in the carrier sense for confirming the usage state of the frequency band used by the transmission unit for signal transmission. (1) to (9) The signal processing device according to any one of the above.
(11) detect the modulation of the antenna power,
Perform predetermined processing based on the detection result of the antenna power modulation,
A signal processing method for transmitting a signal including a payload.
 (12) 空中線電力を変調する電力変調部を備える
 信号処理装置。
 (13) 前記電力変調部は、送信装置における空中線電力の計測期間を複数に分割した部分区間毎に空中線電力が変化するように、空中線電力を変調する
 (12)に記載の信号処理装置。
 (14) 前記電力変調部は、前記部分区間毎に空中線電力の電力値を変化させる
 (13)に記載の信号処理装置。
 (15) 前記電力変調部は、前記部分区間毎の空中線電力の電力値を所定のパタンで変化させる
 (14)に記載の信号処理装置。
 (16) 前記電力変調部は、前記部分区間毎に空中線電力の位相を変化させる
 (12)に記載の信号処理装置。
 (17) 送信装置から送信された信号を受信することにより、前記信号に含まれる、ペイロード、および、前記送信装置により空中線電力の変調が検出されたか否かを識別する識別情報を受信する受信部をさらに備える
 (12)乃至(16)のいずれかに記載の信号処理装置。
 (18) 前記受信部は、暗号鍵を用いて暗号化されたペイロードを復号し、受信した前記識別情報の値が前記送信装置により空中線電力の変調が検出されたことを示す値である場合、所定のタイミングにおいて前記暗号鍵を更新する
 (17)に記載の信号処理装置。
 (19) 前記受信部は、所定の期間内に前記送信装置により空中線電力の変調が検出されたことを示す値の前記識別情報を受信できなかったことが所定回数発生した場合、前記送信装置から送信された信号の受信を停止する
 (17)または(18)に記載の信号処理装置。
 (20) 空中線電力を変調する
 信号処理方法。
(12) A signal processing device including a power modulation unit that modulates antenna power.
(13) The signal processing device according to (12), wherein the power modulation unit modulates the antenna power so that the antenna power changes for each of the partial sections obtained by dividing the antenna power measurement period in the transmitter.
(14) The signal processing device according to (13), wherein the power modulation unit changes a power value of antenna power for each partial section.
(15) The signal processing device according to (14), wherein the power modulation unit changes the power value of the antenna power for each of the partial sections with a predetermined pattern.
(16) The signal processing device according to (12), wherein the power modulation unit changes a phase of the antenna power for each partial section.
(17) A receiving unit that receives the signal transmitted from the transmission device, and receives the identification information that identifies whether the payload and the modulation of the antenna power detected by the transmission device are included in the signal. The signal processing device according to any one of (12) to (16).
(18) The reception unit decrypts a payload encrypted using an encryption key, and when the value of the received identification information is a value indicating that modulation of antenna power is detected by the transmission device, The signal processing device according to (17), wherein the encryption key is updated at a predetermined timing.
(19) When the reception unit has generated a predetermined number of times that the identification information having a value indicating that modulation of antenna power is detected by the transmission device within a predetermined period, The signal processing device according to (17) or (18), wherein reception of the transmitted signal is stopped.
(20) A signal processing method for modulating antenna power.
100 位置通知システム, 101 送信装置, 102 高感度受信装置, 103 ネットワーク, 104 サーバ, 111 高齢者, 151 アンテナ, 152 増幅部, 153 復調部, 154 誤り訂正部, 155 CPU, 156 電力変調部, 161 GNSS受信部, 162 疑似乱数発生部, 163 シングルキャリア変調部, 164 スイッチ, 165 増幅部, 166 アンテナ, 210 送信データ生成部, 211 CPU, 212 メモリ, 213 符号化部, 214 変調部, 215 送信部, 216 増幅部, 217 アンテナ, 218 変調検出部, 219 発振部, 231 増幅部, 232 受信部, 233 フィルタ, 234 スイッチ, 235および236 A/D変換部, 237 加算部, 238 減算部, 239 符号比較部, 240および241 増幅部, 243 積算部, 244 閾値比較部, 251 GNSS受信部, 252 疑似乱数発生部, 311 DPSK部, 321 位相差検出部, 800 盗難防止システム 100 location notification system, 101 transmission device, 102 high sensitivity reception device, 103 network, 104 server, 111 elderly people, 151 antenna, 152 amplification unit, 153 demodulation unit, 154 error correction unit, 155 CPU, 156 power modulation unit, 161 GNSS receiver, 162 pseudo random number generator, 163 single carrier modulator, 164 switch, 165 amplifier, 166 antenna, 210 transmission data generator, 211 CPU, 212 memory, 213 encoder, 214 modulator, 215 transmitter , 216 amplification unit, 217 antenna, 218 modulation detection unit, 219 oscillation unit, 231 amplification unit, 232 reception unit, 233 filter, 234 switch, 235 and 236 A / D conversion unit, 237 addition unit, 238 subtraction unit, 239 code comparison unit, 240 and 241 amplification unit, 243 integration unit, 244 threshold comparison unit, 251 GNSS reception unit, 252 pseudo random number generation unit, 311 DPSK unit , 321 phase difference detector, 800 anti-theft system

Claims (20)

  1.  空中線電力の変調を検出する検出部と、
     前記検出部による空中線電力の変調の検出結果に基づいて所定の処理を行う処理部と、
     ペイロードを含む信号を送信する送信部と
     を備える信号処理装置。
    A detector for detecting the modulation of the antenna power;
    A processing unit that performs predetermined processing based on a detection result of the antenna power modulation by the detection unit;
    A signal processing apparatus comprising: a transmission unit that transmits a signal including a payload.
  2.  前記検出部は、空中線電力の計測期間を複数に分割した部分区間毎の空中線電力の変化に基づいて、空中線電力の変調を検出する
     請求項1に記載の信号処理装置。
    The signal processing apparatus according to claim 1, wherein the detection unit detects modulation of the antenna power based on a change in the antenna power for each partial section obtained by dividing the antenna power measurement period into a plurality of sections.
  3.  前記検出部は、前記部分区間毎の空中線電力の電力値の変化に基づいて、空中線電力の変調を検出する
     請求項2に記載の信号処理装置。
    The signal processing apparatus according to claim 2, wherein the detection unit detects the modulation of the antenna power based on a change in the power value of the antenna power for each partial section.
  4.  前記検出部は、前記部分区間毎の空中線電力の電力値の変化のパタンに基づいて、空中線電力の変調を検出する
     請求項3に記載の信号処理装置。
    The signal processing device according to claim 3, wherein the detection unit detects modulation of the antenna power based on a pattern of a change in the power value of the antenna power for each partial section.
  5.  前記検出部は、前記部分区間毎の空中線電力の位相の変化に基づいて、空中線電力の変調を検出する
     請求項2に記載の信号処理装置。
    The signal processing device according to claim 2, wherein the detection unit detects the modulation of the antenna power based on a change in the phase of the antenna power for each partial section.
  6.  前記処理部は、前記処理として、前記検出部が空中線電力の変調を検出したか否かを識別する識別情報を設定し、
     前記送信部は、前記ペイロードと前記識別情報とを含む信号を送信する
     請求項1に記載の信号処理装置。
    The processing unit sets identification information for identifying whether or not the detection unit has detected a modulation of antenna power as the processing,
    The signal processing apparatus according to claim 1, wherein the transmission unit transmits a signal including the payload and the identification information.
  7.  前記処理部は、前記検出部により空中線電力の変調が検出された場合、前記処理として、
      前記識別情報の値を、前記空中線電力の前記変調が検出されたことを示す値に設定し、
      前記識別情報送信後の所定のタイミングにおいて、前記ペイロードの暗号化に用いられる暗号鍵を更新し、
     前記送信部は、前記ペイロードと前記処理部により設定された前記識別情報とを含む信号を送信する
     請求項6に記載の信号処理装置。
    When the detection unit detects the modulation of the antenna power, as the processing,
    Setting the value of the identification information to a value indicating that the modulation of the antenna power is detected;
    Update the encryption key used for encrypting the payload at a predetermined timing after transmitting the identification information,
    The signal processing device according to claim 6, wherein the transmission unit transmits a signal including the payload and the identification information set by the processing unit.
  8.  前記処理部は、所定の期間内に空中線電力の変調が検出されなかったことが所定回数発生した場合、前記処理として、前記送信部を制御し、前記ペイロードの送信を停止させる
     請求項1に記載の信号処理装置。
    The said processing part controls the said transmission part and stops transmission of the said payload as the said process, when the frequency | count that the modulation | alteration of antenna power is not detected within a predetermined period generate | occur | produces the predetermined number of times. Signal processing equipment.
  9.  前記処理部は、前記検出部により空中線電力の変調が検出された場合、前記処理として、変調された空中線電力に含まれる、前記ペイロードの暗号化に用いられる暗号鍵の情報を取得する
     請求項1に記載の信号処理装置。
    The processing unit acquires information on an encryption key used for encryption of the payload included in the modulated antenna power as the processing when the detection unit detects modulation of the antenna power. A signal processing device according to 1.
  10.  前記検出部は、前記送信部が信号送信に用いる周波数帯域の利用状況を確認するキャリアセンスにおいて受信された空中線電力に基づいて、空中線電力の変調を検出する
     請求項1に記載の信号処理装置。
    The signal processing apparatus according to claim 1, wherein the detection unit detects the modulation of the antenna power based on the antenna power received in carrier sense for confirming a usage state of a frequency band used for signal transmission by the transmission unit.
  11.  空中線電力の変調を検出し、
     空中線電力の変調の検出結果に基づいて所定の処理を行い、
     ペイロードを含む信号を送信する
     信号処理方法。
    Detects the modulation of the antenna power,
    Perform predetermined processing based on the detection result of the antenna power modulation,
    A signal processing method for transmitting a signal including a payload.
  12.  空中線電力を変調する電力変調部を備える
     信号処理装置。
    A signal processing device including a power modulation unit that modulates antenna power.
  13.  前記電力変調部は、送信装置における空中線電力の計測期間を複数に分割した部分区間毎に空中線電力が変化するように、空中線電力を変調する
     請求項12に記載の信号処理装置。
    The signal processing device according to claim 12, wherein the power modulation unit modulates the antenna power so that the antenna power changes for each partial section obtained by dividing the antenna power measurement period in the transmission device into a plurality of sections.
  14.  前記電力変調部は、前記部分区間毎に空中線電力の電力値を変化させる
     請求項13に記載の信号処理装置。
    The signal processing device according to claim 13, wherein the power modulation unit changes a power value of antenna power for each partial section.
  15.  前記電力変調部は、前記部分区間毎の空中線電力の電力値を所定のパタンで変化させる
     請求項14に記載の信号処理装置。
    The signal processing device according to claim 14, wherein the power modulation unit changes the power value of the antenna power for each partial section according to a predetermined pattern.
  16.  前記電力変調部は、前記部分区間毎に空中線電力の位相を変化させる
     請求項13に記載の信号処理装置。
    The signal processing device according to claim 13, wherein the power modulation unit changes a phase of the antenna power for each of the partial sections.
  17.  送信装置から送信された信号を受信することにより、前記信号に含まれる、ペイロード、および、前記送信装置により空中線電力の変調が検出されたか否かを識別する識別情報を受信する受信部をさらに備える
     請求項12に記載の信号処理装置。
    A receiving unit that receives the signal transmitted from the transmitting device and receives identification information that identifies whether the signal includes a payload and whether or not modulation of antenna power is detected by the transmitting device. The signal processing device according to claim 12.
  18.  前記受信部は、暗号鍵を用いて暗号化されたペイロードを復号し、受信した前記識別情報の値が前記送信装置により空中線電力の変調が検出されたことを示す値である場合、所定のタイミングにおいて前記暗号鍵を更新する
     請求項17に記載の信号処理装置。
    The reception unit decrypts a payload encrypted using an encryption key, and when the received identification information value is a value indicating that antenna power modulation is detected by the transmission device, a predetermined timing is obtained. The signal processing apparatus according to claim 17, wherein the encryption key is updated.
  19.  前記受信部は、所定の期間内に前記送信装置により空中線電力の変調が検出されたことを示す値の前記識別情報を受信できなかったことが所定回数発生した場合、前記送信装置から送信された信号の受信を停止する
     請求項17に記載の信号処理装置。
    The reception unit is transmitted from the transmission device when it has occurred a predetermined number of times that the identification information having a value indicating that modulation of antenna power is detected by the transmission device within a predetermined period of time. The signal processing device according to claim 17, wherein reception of the signal is stopped.
  20.  空中線電力を変調する
     信号処理方法。
    A signal processing method for modulating antenna power.
PCT/JP2018/010163 2017-03-28 2018-03-15 Signal processing device and method WO2018180529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509241A JP7187439B2 (en) 2017-03-28 2018-03-15 Signal processing apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062307 2017-03-28
JP2017-062307 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180529A1 true WO2018180529A1 (en) 2018-10-04

Family

ID=63675432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010163 WO2018180529A1 (en) 2017-03-28 2018-03-15 Signal processing device and method

Country Status (2)

Country Link
JP (1) JP7187439B2 (en)
WO (1) WO2018180529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970068A (en) * 2020-08-03 2020-11-20 北京聚利科技有限公司 Antenna detection method, antenna detection device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248722A (en) * 1988-03-30 1989-10-04 Toshiba Corp Information exchange unit
JP2006005651A (en) * 2004-06-17 2006-01-05 Fujitsu Ltd Reader device, and transmitting method and tag of the same
JP2008079057A (en) * 2006-09-22 2008-04-03 Saxa Inc Radio communication system
JP2009010933A (en) * 2007-05-31 2009-01-15 Panasonic Corp Communication equipment, communication method and integrated circuit
WO2011074082A1 (en) * 2009-12-16 2011-06-23 富士通株式会社 Magnetic-resonant-coupling power transmission apparatus and magnetic-resonant-coupling power reception apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248722A (en) * 1988-03-30 1989-10-04 Toshiba Corp Information exchange unit
JP2006005651A (en) * 2004-06-17 2006-01-05 Fujitsu Ltd Reader device, and transmitting method and tag of the same
JP2008079057A (en) * 2006-09-22 2008-04-03 Saxa Inc Radio communication system
JP2009010933A (en) * 2007-05-31 2009-01-15 Panasonic Corp Communication equipment, communication method and integrated circuit
WO2011074082A1 (en) * 2009-12-16 2011-06-23 富士通株式会社 Magnetic-resonant-coupling power transmission apparatus and magnetic-resonant-coupling power reception apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970068A (en) * 2020-08-03 2020-11-20 北京聚利科技有限公司 Antenna detection method, antenna detection device, electronic equipment and storage medium
CN111970068B (en) * 2020-08-03 2022-09-20 北京聚利科技有限公司 Antenna detection method, device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPWO2018180529A1 (en) 2020-04-09
JP7187439B2 (en) 2022-12-12

Similar Documents

Publication Publication Date Title
JP6259550B1 (en) Information processing apparatus and method, transmission apparatus and method, and reception apparatus and method
US7924153B1 (en) Mobile asset tracking unit, system and method
Horton et al. Development of a GPS spoofing apparatus to attack a DJI Matrice 100 Quadcopter
JP4699424B2 (en) System and method for securing communications using an improved GPS receiver
Di Gennaro et al. WaterS: A Sigfox‐compliant prototype for water monitoring
WO2018180529A1 (en) Signal processing device and method
KR102087466B1 (en) Systems and methods for providing conditional access to transmitted information
JP7042617B2 (en) Information processing system
WO2018163840A1 (en) Signal processing device and method
Bender DJI drone IDs are not encrypted
JP7167710B2 (en) Transmitting device and method, and receiving device and method
US10838070B1 (en) Systems and methods for managing global navigation satellite system (GNSS) receivers
WO2018190149A1 (en) Signal processing device and method
US20190044220A1 (en) Communication apparatus and method, antenna apparatus, and communication system
WO2018173795A1 (en) Transmission device, transmission method, reception device, and reception method
JP7073719B2 (en) Information processing equipment and methods
Chalacan Performance Evaluation of Long Range (LoRa) Wireless RF Technology for the Internet of Things (IoT) Using Dragino LoRa at 915 MHz
Manandhar et al. Signal Authentication for Anti-Spoofing based on L1S
US20190037599A1 (en) Communication apparatus and method, and communication system
Effrosyni Overview of the LoRaWAN standard and the MAC layer
JP6819591B2 (en) Information processing equipment and methods, and programs
Vidhatri et al. Design of an Analog Wireless Communication for Radiation Monitoring System with Inherent Encryption
KR101084798B1 (en) Position tracking apparatus and control method thereof using mobile communication network
JP7106248B2 (en) Signal processing apparatus and method
KR101726975B1 (en) System for securing information of moving object and method for securing information of moving object using the system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775716

Country of ref document: EP

Kind code of ref document: A1