WO2018154808A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
WO2018154808A1
WO2018154808A1 PCT/JP2017/027026 JP2017027026W WO2018154808A1 WO 2018154808 A1 WO2018154808 A1 WO 2018154808A1 JP 2017027026 W JP2017027026 W JP 2017027026W WO 2018154808 A1 WO2018154808 A1 WO 2018154808A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
unit
surface temperature
irradiation
dehumidifier
Prior art date
Application number
PCT/JP2017/027026
Other languages
French (fr)
Japanese (ja)
Inventor
大志 中谷
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to JP2019501017A priority Critical patent/JP6696619B2/en
Priority to TW106132229A priority patent/TWI669427B/en
Publication of WO2018154808A1 publication Critical patent/WO2018154808A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit

Definitions

  • the present invention relates to a dehumidifier.
  • Patent Document 1 describes a clothes dryer having a luminous body as an example of a dehumidifier that sends dry air.
  • a light-emitting body irradiates light toward the direction where dry air is sent out. Thereby, the user can recognize the direction in which the dry air is sent out.
  • Patent Document 1 the user cannot arbitrarily change the direction in which the dry air is sent. The user needs to move the object to which the dry air is sent in accordance with the direction in which the dry air is sent. Moreover, in the said patent document 1, when a user looks directly at a light-emitting body, he will feel strong glare. The dehumidifier described in Patent Document 1 is not preferable for the user.
  • An object of the present invention is to provide a user-friendly dehumidifier capable of easily recognizing the direction in which dry air is sent to the user and easily changing the direction in which dry air is sent to any direction. Is to get.
  • the dehumidifier according to the present invention includes a housing in which an air outlet is formed, a dehumidifying means provided in the housing for removing moisture in the air, and air from which moisture has been removed by the dehumidifying means.
  • Air blowing means to be sent to the outside of the housing, wind direction determining means for determining the direction in which air is sent from the outlet, operating means for transmitting operation instructions, and wind direction determining means based on the operation instructions received from the operating means
  • Wind direction control means for controlling, irradiation means for irradiating visible light in the direction in which air is sent from the blowout port, person detection means for detecting a person in the direction in which air is sent from the blowout port to the housing, and irradiation And irradiation control means for causing the irradiation means to stop the irradiation of visible light when a person is detected by the means while the visible light is irradiated by the means.
  • the dehumidifier according to the present invention includes a housing in which an air outlet is formed, a dehumidifying means provided in the housing for removing moisture in the air, and air from which moisture has been removed by the dehumidifying means.
  • Air blowing means to be sent to the outside of the housing wind direction determining means for determining the direction in which air is sent from the outlet, operating means for transmitting operation instructions, and wind direction determining means based on the operation instructions received from the operating means
  • Wind direction control means for controlling, irradiation means for irradiating visible light in the direction in which air is sent from the blowout port, person detection means for detecting a person in the direction in which air is sent from the blowout port to the housing, and irradiation And irradiation control means for lowering the luminous intensity of the visible light applied to the irradiation means when a person is detected by the means when the means is irradiating visible light.
  • a dehumidifier includes a wind direction determining unit that determines a direction in which air is sent from an outlet, an operating unit that transmits an operation instruction, and a wind direction control that controls the wind direction determining unit based on the operation instruction received from the operating unit. Means, and irradiation means for irradiating visible light in a direction in which air is sent from the outlet. For this reason, according to the present invention, a dehumidifier capable of easily recognizing the direction in which dry air is sent to the user and easily changing the direction in which dry air is sent to any direction is obtained. be able to.
  • the dehumidifier according to the present invention includes an irradiation control unit that stops the irradiation unit from irradiating visible light when a person is detected by the human detection unit while visible light is being irradiated by the irradiation unit. Further, the dehumidifier according to the present invention includes an irradiation control unit that reduces the luminous intensity of the visible light applied to the irradiation unit when a person is detected by the human detection unit when the irradiation unit is irradiated with visible light. Prepare. For this reason, according to the present invention, a more convenient dehumidifier can be obtained.
  • FIG. 1 is a perspective view of a dehumidifier according to Embodiment 1.
  • FIG. It is a front view of the dehumidifier of Embodiment 1. It is a side view of the dehumidifier of Embodiment 1. It is a longitudinal cross-sectional view of the dehumidifier of Embodiment 1.
  • 3 is a cross-sectional view illustrating a configuration of a wind direction changing unit according to Embodiment 1.
  • FIG. It is the figure which looked at the sensor part of Embodiment 1 from the front.
  • 3 is a cross-sectional view showing a structure of a sensor unit according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating functions of a control device according to Embodiment 1.
  • FIG. 4 is a diagram schematically showing information on a reference value of a surface temperature stored in a storage unit according to Embodiment 1.
  • FIG. 2 is a diagram illustrating an example of a configuration of a control device according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a dehumidifier during operation of Embodiment 1.
  • FIG. 3 is a flowchart illustrating control of an irradiation unit according to the first embodiment. 3 is a flowchart showing an operation in a first mode of the dehumidifier of Embodiment 1.
  • 6 is a flowchart illustrating an operation in a second mode of the dehumidifier of the first embodiment. 6 is a flowchart illustrating control of an irradiation unit according to the second embodiment.
  • FIG. 10 is a block diagram illustrating functions of a control device according to a third embodiment. 10 is a flowchart illustrating control of an irradiation unit according to the third embodiment.
  • FIG. 1 is a perspective view of a dehumidifier according to Embodiment 1.
  • FIG. 2 is a front view of the dehumidifier of the first embodiment.
  • FIG. 3 is a side view of the dehumidifier 100 of the first exemplary embodiment. 1, 2, and 3 are views showing the appearance of the dehumidifier 100.
  • the vertical direction on the paper surface in FIG. 2 is the vertical direction of the dehumidifier 100.
  • the front direction of the paper surface in FIG. 2 is the front direction of the dehumidifier 100.
  • the depth direction of the paper surface in FIG. 2 is the rear direction of the dehumidifier 100.
  • the left direction on the paper surface is the right direction of the dehumidifier 100, and the right direction on the paper surface is the left direction of the dehumidifier 100.
  • the left-right direction on the paper surface in FIG. 3 is the front-rear direction of the dehumidifier 100.
  • the vertical direction on the paper surface in FIG. 3 is the vertical direction of the dehumidifier 100.
  • the front side of the paper surface is the left direction of the dehumidifier 100
  • the back direction of the paper surface is the right direction of the dehumidifier 100.
  • FIG. 4 is a longitudinal sectional view of the dehumidifier 100 of the first embodiment.
  • FIG. 4 shows a cross section of the dehumidifier 100 at the AA position in FIG.
  • FIG. 4 schematically shows the internal structure of the dehumidifier 100.
  • the up, down, left, and right directions on the paper surface in FIG. 4 correspond to the up, down, left, and right directions on the paper surface in FIG.
  • the dehumidifier 100 includes a housing 1.
  • the housing 1 is a member that becomes an outer shell of the dehumidifier 100.
  • the housing 1 is formed in, for example, a vertically long box shape that can stand by itself.
  • the dehumidifier 100 may include wheels 2.
  • the wheel 2 is provided at the bottom of the housing 1, for example. With this wheel 2, the user can easily move the dehumidifier 100.
  • the housing 1 is formed with an inlet 3 and an outlet 4.
  • the suction port 3 is an opening for taking air into the housing 1.
  • the suction port 3 is formed on the rear surface of the housing 1, for example.
  • the blower outlet 4 is an opening for blowing air from the inside of the housing 1 toward the outside.
  • the blower outlet 4 is formed in the upper part of the front surface of the housing
  • the shape of the blower outlet 4 is, for example, a rectangular shape extending in the left-right direction of the housing 1.
  • the dehumidifier 100 includes a blower fan 6a and a fan motor 6 as an example of a blower.
  • the blower fan 6 a generates an air flow from the suction port 3 to the blower outlet 4 in the air passage 5.
  • a fan motor 6 is connected to the blower fan 6a.
  • the fan motor 6 is a device that rotates the blower fan 6a.
  • the blower fan 6 a and the fan motor 6 are provided inside the housing 1.
  • the blower fan 6 a is disposed in the air path 5.
  • air flows from the suction port 3 toward the blower outlet 4 in the air passage 5 by the blower fan 6a.
  • air is sent out from the inside of the housing 1 to the outside of the housing 1 by the blower fan 6a.
  • the side with the suction port 3 is the upstream side
  • the side with the air outlet 4 is the downstream side. That is, in the present embodiment, air flows through the air passage 5 from the upstream side toward the downstream side by the blower fan 6a.
  • the dehumidifier 100 includes a dehumidifying unit 7 as an example of a dehumidifying means for removing moisture in the air.
  • the dehumidifying unit 7 is a device that condenses and discharges moisture in the air. As an example, the dehumidifying unit 7 drops the condensed moisture downward as liquid water. The dehumidifying unit 7 removes moisture in the air, that is, dehumidifies the air. The air dehumidified by the dehumidifying unit 7 becomes dry air.
  • the dehumidifying unit 7 is, for example, a device that uses a heat pump circuit.
  • the dehumidifying unit 7 using the heat pump circuit condenses moisture in the air using an evaporator.
  • the dehumidifying unit 7 may be, for example, a desiccant apparatus.
  • the desiccant dehumidifying unit 7 includes an adsorbent that adsorbs moisture in the air, a heater, and a heat exchanger.
  • the moisture adsorbed by the adsorbent included in the desiccant type dehumidifying unit 7 is heated by a heater.
  • the water heated by this heater is cooled and condensed by the heat exchanger.
  • the dehumidifying unit 7 is provided inside the housing 1.
  • the dehumidifying unit 7 is disposed in the air path 5.
  • the dehumidification part 7 is arrange
  • the dehumidification part 7 of this Embodiment is arrange
  • the suction inlet 3, the dehumidification part 7, the ventilation fan 6a, and the blower outlet 4 are arrange
  • the dehumidifier 100 of this embodiment includes a water storage unit 8 that stores the water discharged by the dehumidification unit 7.
  • the water reservoir 8 is, for example, a container-like member that is open at the top.
  • the water storage unit 8 is provided inside the housing 1 and below the dehumidifying unit 7.
  • the water storage unit 8 receives and stores the water dripped from the dehumidifying unit 7 from the upper opening.
  • the water storage unit 8 is provided to be detachable from the housing 1.
  • the dehumidifier 100 may include a filter 9.
  • the filter 9 is provided inside the housing 1.
  • the filter 9 is provided so as to cover the suction port 3 from the inside of the housing 1.
  • the filter 9 prevents dust and dust from entering the housing 1.
  • the dehumidifier 100 includes a wind direction changing unit 10.
  • FIG. 5 is a cross-sectional view illustrating a configuration of the wind direction changing unit 10 according to the first embodiment.
  • FIG. 5 schematically shows a part of a cross section of the dehumidifier 100 at the BB position in FIG.
  • the vertical and horizontal directions on the paper surface in FIG. 5 correspond to the vertical and horizontal directions on the paper surface in FIG.
  • the wind direction changing unit 10 determines the direction in which air is sent out from the air outlet 4.
  • the direction in which air is sent out from the blower outlet 4 is hereinafter referred to as the blowing direction.
  • the air blowing direction is changed by the movement of the wind direction changing unit 10.
  • the air blowing direction is determined by the state of the wind direction changing unit 10.
  • the wind direction changing unit 10 according to the present embodiment is an example of a wind direction determining unit.
  • the wind direction changing unit 10 is disposed in the vicinity of the air outlet 4.
  • the wind direction change part 10 has the up-down direction louver 11 as an example of the 1st change part which changes the direction in which air is sent from the blower outlet 4 to an up-down direction.
  • the vertical louver 11 is formed according to the shape of the air outlet 4.
  • the vertical louver 11 of the present embodiment is a rectangular frame-shaped member extending in the left-right direction.
  • the vertical louver 11 includes three plate-like members extending in the left-right direction as shown in FIG.
  • the vertical louver 11 of the present embodiment has a rectangular opening extending in the left-right direction.
  • the vertical louver 11 is formed to be rotatable so that the direction of the opening is changed up and down.
  • the vertical louver 11 is attached to the housing 1 via, for example, a shaft 11a extending in the horizontal direction.
  • the vertical louver 11 is formed to be rotatable about the shaft 11a.
  • the wind direction changing unit 10 has a first motor 12 for moving the vertical louver 11.
  • the first motor 12 is provided inside the housing 1.
  • the first motor 12 rotates the vertical louver 11 via the gear 12a, the gear 12b, and the gear 12c.
  • the opening direction of the vertical louver 11 is changed to the vertical direction.
  • a ventilation direction is changed to an up-down direction.
  • the wind direction change part 10 has the left-right direction louver 13 as an example of the 2nd change part which changes the direction in which air is sent from the blower outlet 4 to the left-right direction.
  • the left-right direction louver 13 is formed by a plate-like member extending in the up-down direction.
  • the left-right louver 13 includes six plate-like members extending in the up-down direction. The six plate-like members extending in the vertical direction are arranged at equal intervals, for example.
  • the left-right direction louver 13 is disposed inside the frame-like vertical direction louver 11.
  • the left-right direction louver 13 is attached to the up-down direction louver 11 via an axis (not shown) along the up-down direction.
  • the left-right direction louver 13 is rotatable about an axis along the vertical direction.
  • the vertical louver 11 and the horizontal louver 13 are arranged such that the horizontal center of the vertical louver 11 coincides with the horizontal center of the entire horizontal louver 13.
  • the wind direction changing unit 10 has a second motor 14 for moving the left-right direction louver 13.
  • the second motor 14 is provided inside the housing 1. Further, the wind direction changing unit 10 has a link 15. This link 15 is connected to the rear part of the left-right direction louver 13, for example. The link 15 is connected to the second motor 14.
  • the left-right direction louver 13 and the second motor 14 are connected via a link 15.
  • the link 15 moves.
  • the left-right louver 13 rotates in conjunction with the link 15.
  • the left-right louver 13 rotates about an axis along the vertical direction in which the left-right louver 13 is attached to the vertical louver 11.
  • the blowing direction is changed to the left-right direction.
  • the link 15 is formed so as to be interlocked with the vertical louver 11.
  • the link 15 moves together with the vertical louver 11.
  • the left-right louver 13 connected to the link 15 also moves.
  • the up-down direction louver 11 moves, the left-right direction louver 13 moves together with the link 15 interlocked with the up-down direction louver 11. In this way, the horizontal louver 13 moves in the same direction as the vertical louver 11 moves.
  • the dehumidifier 100 includes a sensor unit 16.
  • the sensor unit 16 is disposed inside the frame-like vertical louver 11.
  • the sensor unit 16 is disposed at a central position in the left-right direction of the up-down direction louver 11.
  • FIG. 6 is a front view of the sensor unit 16 according to the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating the structure of the sensor unit 16 according to the first embodiment.
  • FIG. 7 shows a cross section of the sensor unit 16 at the CC position in FIG.
  • the front side of the paper surface of FIG. 6 is the vertical direction of the sensor unit 16.
  • the right direction on the paper surface is the front direction of the sensor unit 16
  • the left direction on the paper surface is the back surface direction of the sensor unit 16.
  • the vertical direction on the paper surface of FIG. 7 is the vertical direction of the sensor unit 16.
  • the sensor unit 16 has a sensor case 17.
  • the sensor case 17 is a member that serves as an outer frame of the sensor unit 16.
  • the sensor case 17 is formed in a cylindrical shape.
  • the sensor case 17 is supported by a shaft (not shown) extending in the vertical direction.
  • the sensor case 17 is supported by, for example, a shaft (not shown) extending in the left-right direction.
  • the sensor case 17 can rotate around these axes.
  • the sensor case 17 is connected to the link 15 at the center position in the left-right direction of the vertical louver 11.
  • the sensor case 17 is connected to the left-right louver 13 via the link 15.
  • the sensor case 17 may be provided directly on the left-right louver 13 without using the link 15.
  • the sensor case 17 is provided so that the front surface of the sensor case 17 faces the blowing direction. As described above, the sensor case 17 is mechanically connected to the link 15 or the left-right direction louver 13. The sensor case 17 is interlocked with the left-right direction louver 13. The sensor case 17 moves in the same direction as the direction in which the left-right louver 13 moves.
  • the left-right louver 13 moves together with the up-down louver 11.
  • the sensor case 17 is interlocked with the vertical louver 11.
  • the sensor case 17 moves in the same direction as the vertical louver 11 moves. In this way, the front surface of the sensor case 17 faces the changed air blowing direction even when the air blowing direction is changed.
  • the sensor case 17 of the present embodiment has a sensor window 17a.
  • the sensor window 17a is formed in the front part of the sensor case 17, as shown in FIGS.
  • the sensor window 17a is formed of a material having a high infrared transmittance.
  • a material having a high infrared transmittance is, for example, silicon.
  • the area where the air sent out from the outlet 4 will be referred to as a blowing area hereinafter.
  • the sensor window 17a is arranged and formed so that infrared rays radiated from the air blowing region are transmitted.
  • the sensor unit 16 includes a surface temperature detection unit 18 as an example of a surface temperature detection unit.
  • the surface temperature detection unit 18 is a device that detects the surface temperature of an object in a non-contact state.
  • the surface temperature detection part 18 detects the surface temperature of the target object which emitted the said infrared rays by receiving the infrared rays which permeate
  • the surface temperature detection unit 18 detects the surface temperature of the air blowing area. That is, the surface temperature detection unit 18 detects the surface temperature of the object that is hit by the air sent out from the air outlet 4.
  • the configuration of the surface temperature detector 18 will be described in more detail.
  • the surface temperature detector 18 is provided inside the sensor case 17.
  • the surface temperature detector 18 is disposed on the back side of the sensor window 17a.
  • the surface temperature detector 18 uses a thermoelectromotive force.
  • the surface temperature detection unit 18 that detects the surface temperature using the thermoelectromotive force has an infrared absorption film and a thermistor.
  • the infrared absorption film of the surface temperature detection unit 18 absorbs infrared rays transmitted through the sensor window 17a.
  • the infrared absorbing film has a heat sensitive part.
  • the heat-sensitive portion of the infrared absorbing film is heated by absorbing infrared rays that have passed through the sensor window 17a.
  • the heat sensitive part of the infrared absorbing film becomes a hot junction.
  • the thermistor of the surface temperature detector 18 detects the temperature of a portion that is not a heat sensitive portion of the infrared absorption film.
  • the portion that is not the heat-sensitive portion of the infrared absorbing film becomes a cold junction.
  • the surface temperature detection part 18 detects the surface temperature of the area
  • the air blowing area which is the area where the air sent out from the air outlet 4 hits, is changed together with the air blowing direction.
  • the surface temperature detector 18 provided inside the sensor case 17 moves together with the sensor case 17. Further, as described above, the sensor case 17 moves together with the vertical louver 11 and the horizontal louver 13. That is, the surface temperature detector 18 moves together with the vertical louver 11 and the horizontal louver 13. Further, the sensor window 17 a formed in the front portion of the sensor case 17 also moves together with the vertical louver 11 and the horizontal louver 13. Thereby, even when the ventilation area
  • the sensor unit 16 includes an irradiation unit 19 as an example of an irradiation unit that emits visible light.
  • the irradiation unit 19 includes a light source 19a and a lens 19b.
  • the lens 19 b is provided on the front portion of the sensor case 17. As an example, the lens 19b is disposed below the sensor window 17a.
  • the light source 19 a is provided inside the sensor case 17.
  • the light source 19a is provided on the back side of the lens 19b.
  • the light source 19a emits visible light.
  • the light source 19a is, for example, an LED.
  • the light source 19a may be a laser diode.
  • the light source 19a emits visible light in the front direction.
  • the light source 19a emits visible light having a luminous intensity of 1000 mcd or more.
  • the light source 19a emits green visible light.
  • the color of visible light emitted from the light source 19a is not limited to green.
  • the color of visible light emitted from the light source 19a may be orange or the like.
  • the lens 19b is for condensing visible light emitted from the light source 19a.
  • the lens 19b is a plano-convex lens made of, for example, an acrylic resin.
  • the material of the lens 19b may be, for example, polycarbonate resin or glass.
  • the lens 19b may be a Fresnel lens.
  • the portion of the sensor case 17 between the light source 19a and the lens 19b is formed of a material that transmits visible light emitted from the light source 19a, for example. Note that an opening may be formed in the sensor case 17 between the light source 19a and the lens 19b. In the present embodiment, the visible light emitted from the light source 19a in the front direction reaches the lens 19b.
  • Visible light emitted from the light source 19a is condensed by passing through the lens 19b.
  • the visible light collected by the lens 19b is easily visible.
  • Visible light collected by the lens 19 b is irradiated toward the outside of the sensor case 17 and the housing 1.
  • the light source 19 a and the lens 19 b are provided so that visible light collected by the lens 19 b is irradiated in the front direction of the sensor case 17.
  • the front surface of the sensor case 17 faces the blowing direction.
  • the visible light condensed by the lens 19b is irradiated in the blowing direction.
  • the light source 19a and the lens 19b are provided in the sensor case 17.
  • the light source 19a and the lens 19b move together with the sensor case 17.
  • the sensor case 17 moves together with the vertical louver 11 and the horizontal louver 13. That is, the light source 19a and the lens 19b move together with the vertical louver 11 and the horizontal louver 13.
  • the visible light condensed by the lens 19b is irradiated in the changed air blowing direction even when the air blowing direction is changed.
  • the user can confirm the blowing direction by looking at the visible light that is easily visible.
  • an area to which the visible light condensed by the lens 19b is irradiated is referred to as an irradiation area 30.
  • the irradiation area 30 is an area illuminated by visible light that is easily visible.
  • the light source 19a and the lens 19b are arranged and formed so that at least a part of the irradiation region 30 is included in the blowing region.
  • the user can check the blowing area by looking at the irradiation area 30 illuminated by the visible light.
  • the light source 19a and the lens 19b may be arranged and formed so that the entire irradiation region 30 is included in the blowing region.
  • the light source 19a and the lens 19b are arranged and formed so that the irradiation region 30 at a position 1 m away from the housing 1 is a circle having a diameter of 60 mm.
  • the size and shape of the irradiation region 30 are not limited to the present embodiment.
  • the shape of the irradiation region 30 may be, for example, a rectangle.
  • the surface temperature detection unit 18 of the present embodiment detects the surface temperature of the air blowing area.
  • the surface temperature detection unit 18 may detect the surface temperature of the object included in the irradiation region 30. That is, the surface temperature detection unit 18 may detect the surface temperature of the object illuminated by visible light.
  • the sensor window 17a may be arranged and formed so that infrared rays emitted from the irradiation region 30 are transmitted.
  • the surface temperature detector 18 detects the surface temperature of the entire irradiation region 30.
  • the dehumidifier 100 includes a control device 20 and an operation unit 21.
  • the control device 20 is connected to each device provided in the dehumidifier 100.
  • the control device 20 controls each device provided in the dehumidifier 100.
  • the control device 20 is provided inside the housing 1.
  • the operation unit 21 is for the user to operate the dehumidifier 100.
  • the operation unit 21 is provided on the rear surface side of the upper surface of the housing 1, for example.
  • the operation unit 21 includes an operation button 21a, a mode selection button 21b, a setting button 21c, and an operation key 21d.
  • the operation button 21a is for starting and stopping the operation of the dehumidifier 100.
  • the mode selection button 21b is for selecting an operation mode of the dehumidifier 100.
  • the control device 20 and the operation unit 21 are electrically connected.
  • the operation button 21 a and the mode selection button 21 b of the operation unit 21 transmit a signal corresponding to the operation from the user to the control device 20.
  • the setting button 21c is for setting the dehumidifier 100.
  • the setting button 21 c transmits a signal corresponding to the operation from the user to the control device 20.
  • the operation key 21d is an example of an operation unit that transmits an operation instruction.
  • the operation key 21 d is for moving the wind direction changing unit 10.
  • the operation key 21d is, for example, a cross key.
  • the operation key 21d transmits a signal corresponding to the operation from the user to the control device 20.
  • a signal transmitted from the operation key 21d to the control device 20 is also referred to as an operation instruction.
  • the control device 20 operates based on the received operation instruction.
  • the operation key 21d may be other than the cross key.
  • FIG. 8 is a block diagram illustrating functions of the control device 20 according to the first embodiment.
  • the control device 20 is electrically connected to the operation unit 21.
  • the control apparatus 20 of this Embodiment is electrically connected to the fan motor 6, the dehumidification part 7, the 1st motor 12, the 2nd motor 14, and the irradiation part 19, as shown in FIG.
  • the operation unit 21 transmits a signal corresponding to the operation from the user to the control device 20.
  • the control device 20 controls the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19 based on the received signal.
  • control device 20 is electrically connected to the surface temperature detection unit 18 as shown in FIG.
  • the surface temperature detector 18 converts the detected surface temperature information into an electrical signal such as a voltage.
  • the surface temperature detection unit 18 transmits the converted electrical signal to the control device 20.
  • the control device 20 controls the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19 based on the electrical signal from the surface temperature detection unit 18.
  • control device 20 of the present embodiment includes an operation control unit 20a, a storage unit 20b, a temperature determination unit 20c, a setting unit 20d, and an irradiation control unit 20e.
  • the operation control unit 20a controls the first motor 12 and the second motor 14 based on an operation instruction from the operation key 21d. As described above, when the first motor 12 and the second motor 14 move, the blowing direction is changed.
  • the operation control part 20a of this Embodiment is an example of the wind direction control means for controlling the direction in which air is sent out from the blower outlet 4. FIG.
  • the storage unit 20b is an example of a storage unit.
  • a plurality of operation modes are set in advance.
  • the operation control unit 20a executes processing for one operation mode from among a plurality of operation modes set in the storage unit 20b based on a signal from the mode selection button 21b.
  • the operation control unit 20a controls the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19 based on a signal from the mode selection button 21b.
  • the first mode is included in the plurality of operation modes set in the storage unit 20b.
  • the first mode is an operation mode in which dry air is intensively supplied in a narrow range.
  • the wind direction changing unit 10 is fixed without swinging. Thereby, for example, a concentrated air is applied to an object such as a small amount of shoes or a small amount of clothes 31.
  • the plurality of operation modes set in the storage unit 20b includes the second mode as an example.
  • the second mode is a mode for suppressing the occurrence of condensation.
  • the surface temperature detection unit 18 detects a low temperature place in the room, and dry air is sent toward the low temperature place. Thereby, the temperature of the indoor low temperature place rises and it dries. In this way, the occurrence of condensation is suppressed.
  • the temperature determination unit 20c performs determination based on the electrical signal transmitted from the surface temperature detection unit 18.
  • the temperature determination unit 20c is an example of a determination unit that performs various determinations.
  • information on the reference value of the surface temperature is stored in the storage unit 20b.
  • the temperature determination unit 20c determines the surface temperature based on the temperature information included in the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b.
  • the information on the reference value of the surface temperature is stored as a table in the storage unit 20b.
  • FIG. 9 is a diagram schematically showing information on the reference value of the surface temperature stored in the storage unit 20b of the first embodiment.
  • the storage unit 20b stores information on the first temperature Th1 and the second temperature Th2, which are examples of the reference value of the surface temperature.
  • the first temperature Th1 and the second temperature Th2 are reference values for determining whether or not there is a person in the blowing direction with respect to the housing 1.
  • the first temperature Th1 and the second temperature Th2 are set based on the human body temperature or the skin surface temperature.
  • the first temperature Th1 is 35 ° C., for example.
  • the second temperature Th2 is 37 ° C., for example. Note that the first temperature Th1 and the second temperature Th2 may be set as temperatures lower than the body temperature of the person in consideration of clothes worn by the person.
  • a temperature range from the first temperature Th1 that is the lower limit value to the second temperature Th2 that is the upper limit value is defined as a first reference Tr1.
  • the temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1. This determination is a determination as to whether or not there is a person in the air blowing direction with respect to the housing 1.
  • the dehumidifier 100 according to the present embodiment stops the irradiation of visible light when the surface temperature detected by the surface temperature detector 18 is within the first reference Tr1.
  • the first reference Tr1 is an example of a reference temperature range for determining the presence or absence of a person.
  • the third temperature Th3 is set as a temperature for determining whether an object such as laundry is dried.
  • the temperature of an object such as laundry containing moisture is lower than the ambient temperature.
  • the temperature of the object that has been dried is equal to or higher than the ambient temperature.
  • the third temperature Th3 is set based on the temperature as an example.
  • the third temperature Th3 is, for example, 20 ° C.
  • a temperature range in which the third temperature Th3 is a lower limit is defined as a second reference Tr2.
  • the first reference Tr1 and the second reference Tr2 may overlap.
  • the temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the second reference Tr2. This determination is a determination as to whether or not the drying of the object has been completed.
  • the setting unit 20d sets a setting direction in the storage unit 20b according to a signal from the setting button 21c.
  • the setting button 21c transmits a signal to the setting unit 20d when pressed when the visible light is irradiated by the irradiation unit 19.
  • the setting unit 20d receives a signal from the setting button 21c, the setting unit 20d sets, in the storage unit 20b, a direction in which visible light is irradiated by the irradiation unit 19 at that time as a setting direction.
  • the setting button 21c and the setting unit 20d in the present embodiment are an example of setting means for setting a setting direction.
  • the irradiation control unit 20e controls the irradiation unit 19.
  • the irradiation control unit 20e controls the light source 19a of the irradiation unit 19.
  • the irradiation control unit 20e is an example of an irradiation control unit.
  • the irradiation control unit 20e controls the light source 19a based on the determination result of the temperature determination unit 20c.
  • FIG. 10 is a diagram illustrating an example of the configuration of the control device 20 according to the first embodiment.
  • the processing circuit may be dedicated hardware 200.
  • the processing circuit may include a processor 201 and a memory 202.
  • a part of the processing circuit may be formed as dedicated hardware 200, and the processing circuit may further include a processor 201 and a memory 202.
  • a part of the processing circuit is formed as dedicated hardware 200.
  • the processing circuit further includes a processor 201 and a memory 202 in addition to the dedicated hardware 200.
  • the processing circuit includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. .
  • each function of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, the setting unit 20d, and the irradiation control unit 20e of the control device 20 is software. , Firmware, or a combination of software and firmware.
  • the processor 201 reads out and executes the program stored in the memory 202, thereby realizing the function of each unit.
  • the processor 201 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • the memory 202 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM and an EEPROM, or a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
  • the processing circuit has functions of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, the setting unit 20d, and the irradiation control unit 20e of the control device 20 by hardware, software, firmware, or a combination thereof. Can be realized.
  • the configuration of the dehumidifier 100 is not limited to a configuration in which the operation is controlled by the single control device 20.
  • the dehumidifier 100 may be configured such that operation is controlled by cooperation of a plurality of devices.
  • FIG. 11 is a diagram illustrating the dehumidifier 100 during the operation of the first embodiment.
  • FIG. 12 is a flowchart illustrating control of the irradiation unit 19 according to the first embodiment. With reference to the flowchart of FIG. 12, control of the irradiation part 19 based on the surface temperature detected by the surface temperature detection part 18 is demonstrated.
  • the dehumidifier 100 is used in a room such as a living room.
  • the dehumidifier 100 starts operation when the user presses the operation button 21a.
  • the operation button 21a pressed by the user transmits a signal to the operation control unit 20a.
  • the operation control unit 20a drives the fan motor 6 and the dehumidifying unit 7.
  • the blower fan 6a rotates.
  • the blower fan 6a generates an air current.
  • the indoor air P is taken into the housing 1 from the suction port 3 by the blower fan 6 a.
  • the room air P is dehumidified by the dehumidifying unit 7 to become dry air Q.
  • the dry air Q is sent out from the blower outlet 4 into the room by the blower fan 6a.
  • the dehumidifier 100 starts operation (step S101).
  • the operation control unit 20a causes the light source 19a of the irradiation unit 19 to emit visible light.
  • the visible light emitted from the light source 19a is collected by the lens 19b.
  • the visible light condensed by the lens 19b is irradiated in the blowing direction of the dry air Q (step S102).
  • the process of said step S101 and the process of step S102 may be performed simultaneously or in reverse order.
  • the blowing direction of the dry air Q is determined by the state of the wind direction changing unit 10.
  • the irradiation part 19 irradiates visible light toward this ventilation direction. As shown in FIG. 11, the visible light irradiated in the blowing direction of the dry air Q illuminates the irradiation region 30.
  • the user operates the operation key 21d while looking at the irradiation area 30.
  • the operation key 21d transmits an operation instruction based on an operation from the user to the operation control unit 20a.
  • the operation control unit 20a controls the first motor 12 and the second motor 14 based on the received operation instruction. Thereby, the up-down direction louver 11 and the left-right direction louver 13 move.
  • the air blowing direction is changed by moving the vertical louver 11 and the horizontal louver 13.
  • the sensor unit 16 also moves.
  • the irradiation unit 19 provided in the sensor case 17 of the sensor unit 16 also moves together.
  • the irradiation unit 19 moves so as to irradiate visible light in the changed air blowing direction.
  • the irradiation area 30 moves according to the change in the blowing direction (step S103).
  • the user of the dehumidifier 100 can visually recognize the blow area where the dry air Q hits by looking at the irradiation area 30 illuminated with visible light.
  • the user operates the operation key 21d while looking at the irradiation area 30 so that the clothes 31 that have been set in advance are illuminated with visible light, for example, as shown in FIG. Thereby, the dry air Q hits the clothes 31 intensively.
  • the user of the dehumidifier 100 of the present embodiment can easily recognize the blowing direction of the dry air Q by looking at the irradiation region 30.
  • the user can easily change the blowing direction of the dry air Q to an arbitrary direction by the operation key 21d.
  • the user can concentrate the dry air Q on the clothes 31 by moving the irradiation region 30 toward the clothes 31 to be dried.
  • the user can dry the clothes 31 with the dry air Q without moving the clothes 31 previously dried according to the position of the dehumidifier 100. According to the present embodiment, it is possible to obtain the dehumidifier 100 that can more easily recognize the blowing direction of the dry air Q and can more easily change the blowing direction of the dry air Q to an arbitrary direction. .
  • the surface temperature detection unit 18 of the present embodiment detects the surface temperature of the air blowing area when the dehumidifier 100 is operating.
  • the surface temperature detection unit 18 sends an electric signal including information on the detected surface temperature to the control device 20.
  • the temperature determination unit 20c of the control device 20 determines the surface temperature based on the temperature information included in the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b. As described above, the temperature determination unit 20c of the present embodiment determines whether the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1. This determination is a determination as to whether or not there is a person in the blowing direction with respect to the housing 1 (step S104).
  • the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1.
  • the processes after step S102 are executed again.
  • the irradiation control unit 20e causes the light source 19a to continue to emit light. Thereby, irradiation of visible light by the irradiation part 19 continues.
  • the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr 1.
  • the irradiation control unit 20e causes the light source 19a to stop emitting light. Thereby, irradiation of visible light by the irradiation part 19 stops (step S105).
  • step S104 the determination in step S104 is performed again. If the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1 while the irradiation of visible light from the irradiation unit 19 is stopped, the irradiation control unit 20e causes the light source 19a to resume light emission. Thereby, irradiation of visible light by the irradiation unit 19 is resumed. After the irradiation of the visible light by the irradiation unit 19 is resumed, the determination in step S104 is performed again.
  • step S105 When the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1 while the irradiation of the visible light by the irradiation unit 19 is resumed, the process of step S105 is executed again, and the visible light by the irradiation unit 19 is displayed. Irradiation stops.
  • FIG. 13 is a flowchart showing an operation in the first mode of the dehumidifier 100 of the first exemplary embodiment.
  • Step S201 in FIG. 13 corresponds to step S101 in FIG.
  • the dehumidifier 100 starts operation when the operation button 21a is operated by the user (step S201).
  • the user may operate the mode selection button 21b after starting the operation of the dehumidifier 100 with the operation button 21a.
  • the user operates the mode selection button 21b to select the operation mode (step S202).
  • the operation control unit 20a executes the process of the first mode set in the storage unit 20b based on the signal from the mode selection button 21b.
  • the operation control unit 20a causes the irradiation unit 19 to emit visible light (step S203). This step S203 corresponds to step S102 in FIG.
  • the irradiation unit 19 emits visible light when the first mode process is executed.
  • the irradiation part 19 may start irradiation of visible light simultaneously with the driving
  • step S204 corresponds to step S103 in FIG.
  • the user who has selected the first mode presses the setting button 21c in a state where the clothes 31 are illuminated by visible light, for example.
  • the setting button 21c pressed by the user transmits a signal to the setting unit 20d.
  • the setting unit 20d sets the direction in which the visible light is irradiated by the irradiation unit 19 as the setting direction in the storage unit 20b.
  • the operation control unit 20a controls the first motor 12 and the second motor 14 so that the blowing direction is fixed in the setting direction (step S205).
  • the surface temperature detection unit 18 detects the surface temperature of the garment 31 that is struck by the dry air Q.
  • the surface temperature detection unit 18 sends an electric signal including information on the detected surface temperature to the control device 20.
  • the temperature determination unit 20c of the control device 20 determines the surface temperature based on the temperature information included in the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b.
  • the temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the second reference Tr2. This determination is a determination as to whether or not the drying of the object has been completed (step S206).
  • the dry air Q continues to be blown out in the setting direction.
  • the temperature determination unit 20c continues the determination in step S206 until the surface temperature of the garment 31 that is exposed to the dry air Q falls within the second reference Tr2.
  • the dry air Q continues to hit the clothes 31 until the surface temperature of the clothes 31 falls within the second reference Tr2.
  • the operation control unit 20a stops the fan motor 6, the dehumidifying unit 7, and the irradiation unit 19. Thereby, the operation of the dehumidifier 100 is completed (step 207).
  • the irradiation unit 19 stops the irradiation of visible light when the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1.
  • the user of the dehumidifier 100 of the present embodiment can concentrate the dry air Q in an arbitrary direction by operating the setting button 21c.
  • the dry air Q is reliably sent toward the specific clothes 31 without waste. Thereby, the useless electricity bill by the ventilation to the thing which does not need to be dried is reduced.
  • the dehumidifier 100 of this Embodiment will complete
  • step S202 when the surface temperature detected by the surface temperature detection part 18 in said step S206 becomes in 2nd reference
  • FIG. 13 is a flowchart showing the operation of the second mode of the dehumidifier 100 of the first exemplary embodiment.
  • Step S301 in FIG. 14 corresponds to step S201 in FIG.
  • Step S302 in FIG. 14 corresponds to step S202 in FIG. Description of step S301 and step S302 is omitted.
  • the operation of the dehumidifier 100 in the second mode will be described on the assumption that the user has selected the second mode in step S302.
  • the operation control unit 20a executes the process of the second mode set in the storage unit 20b.
  • the operation control unit 20a causes the irradiation unit 19 to emit visible light (step 303).
  • This step S303 corresponds to step S203 in FIG.
  • the user operates the operation key 21d to change the blowing direction and the irradiation region 30 (step S304).
  • This step S304 corresponds to step S204 in FIG.
  • the surface temperature detection unit 18 detects a surface temperature in a range that can be detected by the surface temperature detection unit 18 as well as the air blowing region. Based on the surface temperature detected by the surface temperature detector 18, the operation controller 20a controls the first motor 12 and the second motor 14 so that the dry air Q hits a cold place in the room (step S305). ).
  • a low-temperature place is a place where the surface temperature is not more than a preset threshold value, for example. This threshold is set in the storage unit 20b.
  • the surface temperature detection unit 18 detects the surface temperature of a low temperature place where the dry air Q is hit.
  • the surface temperature detection unit 18 sends an electric signal including information on the detected surface temperature to the control device 20.
  • the temperature determination unit 20c of the control device 20 determines the surface temperature based on the temperature information included in the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b.
  • the temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the second reference Tr2. This determination is a determination as to whether or not the temperature of the low-temperature place where the dry air Q is hit has reached the same level as the surroundings (step S306).
  • the temperature determination unit 20c continues the determination in step S306 until the surface temperature of the place where the dry air Q is hit falls within the second reference Tr2.
  • the operation control unit 20a stops the fan motor 6, the dehumidifying unit 7, and the irradiation unit 19. Thereby, the operation of the dehumidifier 100 is completed (step 307). Thereby, the part which was the indoor low temperature disappears, and generation
  • step S305 when the surface temperature detected by the surface temperature detection part 18 in said step S307 becomes in 2nd reference
  • the dehumidifier 100 may operate so that all of the plurality of low-temperature places in the room disappear.
  • the irradiation unit 19 stops the irradiation of visible light when the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1.
  • the dehumidifier 100 of the above embodiment stops the irradiation of visible light when there is a person in the air blowing direction with respect to the housing 1. Thereby, the visible light irradiated from the irradiation part 19 does not enter into a user's eyes directly. According to the above embodiment, the dehumidifier 100 that is more convenient for the user can be obtained.
  • the surface temperature detection unit 18 and the temperature determination unit 20c in the above embodiment are an example of a person detection unit that detects a person.
  • the dehumidifier 100 may include, for example, a sensor using a pyroelectric element as a human detection unit.
  • the dehumidifier 100 may be provided with a sensor for detecting a person using ultrasonic waves or a sensor for detecting a person using visible light as a person detecting unit.
  • the dehumidifier 100 may include a plurality of types of sensors that detect people.
  • the dehumidifier 100 may include a plurality of specific types of sensors that detect people.
  • the person detection means is configured by a plurality of sensors, and can detect a person with high accuracy without being affected by an environment such as temperature.
  • At least one of the plurality of sensors that detect a person may be provided on the right side surface of the housing 1, for example. In addition, at least one of the plurality of sensors that detect a person may be provided on the left side surface of the housing 1, for example.
  • a plurality of sensors for detecting a person are arranged in a distributed manner, so that the range in which the presence of a person can be detected by the plurality of sensors becomes wider.
  • the presence / absence of a person is determined based on the surface temperature detected by the surface temperature detector 18. Thereby, the presence or absence of a person is accurately determined.
  • the surface temperature detection unit 18 for detecting a person can determine whether an object such as the clothing 31 is completed. If it is said embodiment, the dehumidifier 100 which is more convenient is obtained, without adding a useless component.
  • the presence / absence of a person is determined based on a first reference Tr1 that is an example of a reference temperature range. Thereby, the presence or absence of a person is determined with higher accuracy.
  • the temperature determination unit 20c may determine whether the surface temperature detected by the surface temperature detection unit 18 is equal to or higher than the first temperature Th1. This determination is a determination as to whether or not there is a person in the air blowing direction with respect to the housing 1. For example, when there is no person in the blowing direction with respect to the housing 1, the surface temperature detected by the surface temperature detection unit 18 is less than the first temperature Th1. Further, for example, when there is a person in the air blowing direction with respect to the housing 1, the surface temperature detected by the surface temperature detection unit 18 is equal to or higher than the first temperature Th1. Thus, information of one of the first temperature Th1 and the second temperature Th2 may not be set in the storage unit 20b.
  • reference values such as the first temperature Th1, the second temperature Th2, and the third temperature Th3 may not be set as fixed values. Reference values such as the first temperature Th1, the second temperature Th2, and the third temperature Th3 may be calculated by the control device 20 based on, for example, the indoor air temperature.
  • the dehumidifier 100 may include a sensor for measuring the room temperature. The indoor air temperature may be measured by the surface temperature detector 18.
  • the irradiation unit 19 is provided in the sensor case 17 together with the surface temperature detection unit 18.
  • the irradiation unit 19 may be provided at a location away from the surface temperature detection unit 18.
  • the dehumidifier 100 may have a configuration in which the irradiation unit 19 and the wind direction changing unit 10 can operate independently.
  • the dehumidifier 100 may include components for moving the irradiation unit 19 independently of the wind direction changing unit 10 in addition to the first motor 12 and the second motor 14 for moving the wind direction changing unit 10. .
  • the control device 20 may move the irradiation unit 19 provided at a position away from the wind direction changing unit 10 in accordance with the movement of the wind direction changing unit 10.
  • the wind direction changing unit 10 that is an example of the wind direction determining unit may not include the vertical louver 11 and the horizontal louver 13.
  • the wind direction changing unit 10 may have a nozzle-like structure that can move in the vertical and horizontal directions, for example, in addition to the above-described embodiment.
  • the operation key 21d of the operation unit 21 is provided in the housing 1.
  • the user can change the blowing direction of the dry air Q by an easy operation of operating the operation key 21d on the housing 1.
  • the dehumidifier 100 may include a remote controller having operation keys 21d instead of the operation unit 21. Thereby, the user can operate the dehumidifier 100 at a position away from the housing 1. Further, the dehumidifier 100 may include both the operation unit 21 and a remote controller.
  • the operation of drying the garment 31 is shown as an example.
  • the object to which the dry air Q is blown out is not limited to the garment 31.
  • the dehumidifier 100 can also be used when drying indoor wet places such as bathroom walls and floors.
  • the configuration of the dehumidifier 100 according to the second embodiment is shown in FIGS. 1 to 10 as in the first embodiment.
  • the description of the same configuration and operation as in the first embodiment is omitted.
  • FIG. 15 is a flowchart showing control of the irradiation unit 19 according to the second embodiment. Steps S401 to S404 in the flowchart of FIG. 15 are the same as steps S101 to S104 in the flowchart of FIG. 12 of the first embodiment. The description from step S401 to step S404 is omitted.
  • step S404 as in step S104 of the first embodiment, it is determined whether or not there is a person in the blowing direction with respect to the housing 1.
  • the temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1.
  • the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1.
  • the processes after step 402 are executed again.
  • the irradiation control unit 20e causes the light source 19a to continue to emit light. Thereby, irradiation of visible light by the irradiation part 19 continues.
  • the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr 1.
  • the irradiation control unit 20e causes the light source 19a to reduce the luminous intensity of the emitted visible light.
  • the luminous intensity of the visible light irradiated by the irradiation part 19 falls (step S405). If it is this Embodiment, strong visible light will not be irradiated toward a user. For example, the glare when the user looks at the front of the irradiation unit 19 is reduced.
  • the dehumidifier 100 that is easy to use is obtained as in the first embodiment.
  • the process of the flowchart shown in FIG. 15 of the present embodiment may be executed in parallel with the first mode process or the second mode process, as in the first embodiment.
  • Embodiment 3 FIG. Next, Embodiment 3 will be described.
  • the basic configuration of the dehumidifier 101 of the third embodiment is the same as that of the dehumidifier 100 of the first and second embodiments.
  • movement similar to the dehumidifier 100 of Embodiment 1 and Embodiment 2 is abbreviate
  • FIG. 16 is a perspective view of the dehumidifier 101 according to the third embodiment.
  • FIG. 17 is a block diagram illustrating functions of the control device 23 according to the third embodiment.
  • the dehumidifier 101 of this embodiment includes a buzzer 22 that is an example of a sounding device.
  • the buzzer 22 is provided on the upper surface of the housing 1, for example.
  • the arrangement of the buzzer 22 is not limited to the present embodiment.
  • the buzzer 22 which is an example of a sounding device is electrically connected to the control device 23 of the dehumidifier 101 as shown in FIG.
  • the buzzer 22 is controlled by, for example, the operation control unit 20a of the control device 23.
  • the function of the control apparatus 23 of this Embodiment is implement
  • FIG. 18 is a flowchart showing control of the irradiation unit according to the third embodiment. Steps S501 to S505 in the flowchart of FIG. 18 are the same as steps S101 to S105 in the flowchart of FIG. 12 of the first embodiment. The description from step S501 to step S505 is omitted.
  • the buzzer 22 when the irradiation of the visible light by the irradiation unit 19 is stopped in step S505, the buzzer 22 emits a sound.
  • the buzzer 22 is operated by a control device 23 electrically connected to the buzzer 22.
  • the dehumidifier 101 can notify the user of the possibility that the user will directly view the visible light by the buzzer 22 provided in the dehumidifier 101. In the present embodiment, the possibility that the user directly looks at the strong visible light is reduced. According to the present embodiment, it is possible to obtain the dehumidifier 101 that is more convenient for the user.
  • the sounding device included in the dehumidifier 101 is not limited to the buzzer 22 as long as it can emit sound.
  • the dehumidifier according to the present invention is used, for example, for drying an arbitrary object.

Abstract

A dehumidifier (100) comprises: a housing (1); a blower means for blowing air from which moisture has been removed by a dehumidifying means to the outside of the housing (1) via an outlet (4); an air direction modification unit (10) to determine the direction in which air from the outlet (4) is sent; an operation key (21d) to transmit an operation command; an air direction controlling means for controlling the air direction modification unit (10) on the basis of the operation command received from the operation key (21d); an irradiation unit (19) to emit visible light in the direction in which air from the outlet (4) is sent; a surface temperature detection unit (18) for detecting a person present in the direction in which air from the outlet (4) is sent with respect to the housing (1); and an irradiation control means for stopping the irradiation unit (19) from emitting visible light when a person is detected by the surface temperature detection unit (18) when visible light is being emitted by the irradiation unit (19).

Description

除湿機Dehumidifier
 本発明は、除湿機に関するものである。 The present invention relates to a dehumidifier.
 特許文献1に、乾燥した空気を送る除湿機の一例として、発光体を有する衣類乾燥機が記載されている。特許文献1において発光体は、乾燥した空気が送り出される方向に向けて光を照射する。これにより使用者は、乾燥した空気が送り出される方向を認識することができる。 Patent Document 1 describes a clothes dryer having a luminous body as an example of a dehumidifier that sends dry air. In patent document 1, a light-emitting body irradiates light toward the direction where dry air is sent out. Thereby, the user can recognize the direction in which the dry air is sent out.
日本特開2008-188188号公報Japanese Unexamined Patent Publication No. 2008-188188
 上記特許文献1において使用者は、乾燥空気が送られる方向を任意に変更することができない。使用者は、乾燥空気を送る対象物を、乾燥空気が送られる方向に合わせて動かす必要がある。また、上記特許文献1において使用者は、発光体を直視した場合、強い眩しさを感じてしまう。上記特許文献1に記載された除湿機は、使用者にとっての使い勝手が好ましくない。 In the above-mentioned Patent Document 1, the user cannot arbitrarily change the direction in which the dry air is sent. The user needs to move the object to which the dry air is sent in accordance with the direction in which the dry air is sent. Moreover, in the said patent document 1, when a user looks directly at a light-emitting body, he will feel strong glare. The dehumidifier described in Patent Document 1 is not preferable for the user.
 本発明は、上記のような課題を解決するためになされたものである。本発明の目的は、乾燥した空気が送られる方向を使用者へ容易に認識させ、かつ、乾燥した空気が送られる方向を任意の方向へ容易に変更することができるより使い勝手のよい除湿機を得ることである。 The present invention has been made to solve the above-described problems. An object of the present invention is to provide a user-friendly dehumidifier capable of easily recognizing the direction in which dry air is sent to the user and easily changing the direction in which dry air is sent to any direction. Is to get.
 本発明に係る除湿機は、吹出口が形成された筐体と、筐体の内部に設けられ、空気中の水分を除去する除湿手段と、除湿手段によって水分が除去された空気を吹出口を介して筐体の外部へ送る送風手段と、吹出口から空気が送られる方向を決める風向決定手段と、操作指示を送信する操作手段と、操作手段から受信した操作指示に基づいて風向決定手段を制御する風向制御手段と、吹出口から空気が送られる方向へ可視光を照射する照射手段と、筐体に対して吹出口から空気が送られる方向にいる人を検出する人検出手段と、照射手段によって可視光が照射されている時に人検出手段によって人が検出されると、照射手段に可視光の照射を停止させる照射制御手段と、を備える。 The dehumidifier according to the present invention includes a housing in which an air outlet is formed, a dehumidifying means provided in the housing for removing moisture in the air, and air from which moisture has been removed by the dehumidifying means. Air blowing means to be sent to the outside of the housing, wind direction determining means for determining the direction in which air is sent from the outlet, operating means for transmitting operation instructions, and wind direction determining means based on the operation instructions received from the operating means Wind direction control means for controlling, irradiation means for irradiating visible light in the direction in which air is sent from the blowout port, person detection means for detecting a person in the direction in which air is sent from the blowout port to the housing, and irradiation And irradiation control means for causing the irradiation means to stop the irradiation of visible light when a person is detected by the means while the visible light is irradiated by the means.
 本発明に係る除湿機は、吹出口が形成された筐体と、筐体の内部に設けられ、空気中の水分を除去する除湿手段と、除湿手段によって水分が除去された空気を吹出口を介して筐体の外部へ送る送風手段と、吹出口から空気が送られる方向を決める風向決定手段と、操作指示を送信する操作手段と、操作手段から受信した操作指示に基づいて風向決定手段を制御する風向制御手段と、吹出口から空気が送られる方向へ可視光を照射する照射手段と、筐体に対して吹出口から空気が送られる方向にいる人を検出する人検出手段と、照射手段によって可視光が照射されている時に人検出手段によって人が検出されると、照射手段に照射している可視光の光度を低くさせる照射制御手段と、を備える。 The dehumidifier according to the present invention includes a housing in which an air outlet is formed, a dehumidifying means provided in the housing for removing moisture in the air, and air from which moisture has been removed by the dehumidifying means. Air blowing means to be sent to the outside of the housing, wind direction determining means for determining the direction in which air is sent from the outlet, operating means for transmitting operation instructions, and wind direction determining means based on the operation instructions received from the operating means Wind direction control means for controlling, irradiation means for irradiating visible light in the direction in which air is sent from the blowout port, person detection means for detecting a person in the direction in which air is sent from the blowout port to the housing, and irradiation And irradiation control means for lowering the luminous intensity of the visible light applied to the irradiation means when a person is detected by the means when the means is irradiating visible light.
 本発明に係る除湿機は、吹出口から空気が送られる方向を決める風向決定手段と、操作指示を送信する操作手段と、操作手段から受信した操作指示に基づいて風向決定手段を制御する風向制御手段と、吹出口から空気が送られる方向へ可視光を照射する照射手段と、を備える。このため、本発明によれば、乾燥した空気が送られる方向を使用者へ容易に認識させ、かつ、乾燥した空気が送られる方向を任意の方向へ容易に変更することができる除湿機を得ることができる。 A dehumidifier according to the present invention includes a wind direction determining unit that determines a direction in which air is sent from an outlet, an operating unit that transmits an operation instruction, and a wind direction control that controls the wind direction determining unit based on the operation instruction received from the operating unit. Means, and irradiation means for irradiating visible light in a direction in which air is sent from the outlet. For this reason, according to the present invention, a dehumidifier capable of easily recognizing the direction in which dry air is sent to the user and easily changing the direction in which dry air is sent to any direction is obtained. be able to.
 また、本発明に係る除湿機は、照射手段によって可視光が照射されている時に人検出手段によって人が検出されると、照射手段に可視光の照射を停止させる照射制御手段を備える。また、本発明に係る除湿機は、照射手段によって可視光が照射されている時に人検出手段によって人が検出されると、照射手段に照射している可視光の光度を低くさせる照射制御手段を備える。このため、本発明によれば、より使い勝手のよい除湿機を得ることができる。 Further, the dehumidifier according to the present invention includes an irradiation control unit that stops the irradiation unit from irradiating visible light when a person is detected by the human detection unit while visible light is being irradiated by the irradiation unit. Further, the dehumidifier according to the present invention includes an irradiation control unit that reduces the luminous intensity of the visible light applied to the irradiation unit when a person is detected by the human detection unit when the irradiation unit is irradiated with visible light. Prepare. For this reason, according to the present invention, a more convenient dehumidifier can be obtained.
実施の形態1の除湿機の斜視図である。1 is a perspective view of a dehumidifier according to Embodiment 1. FIG. 実施の形態1の除湿機の正面図である。It is a front view of the dehumidifier of Embodiment 1. 実施の形態1の除湿機の側面図である。It is a side view of the dehumidifier of Embodiment 1. 実施の形態1の除湿機の縦断面図である。It is a longitudinal cross-sectional view of the dehumidifier of Embodiment 1. 実施の形態1の風向変更部の構成を示す断面図である。3 is a cross-sectional view illustrating a configuration of a wind direction changing unit according to Embodiment 1. FIG. 実施の形態1のセンサ部を正面から見た図である。It is the figure which looked at the sensor part of Embodiment 1 from the front. 実施の形態1のセンサ部の構造を示す断面図である。3 is a cross-sectional view showing a structure of a sensor unit according to Embodiment 1. FIG. 実施の形態1の制御装置の機能を示すブロック図である。3 is a block diagram illustrating functions of a control device according to Embodiment 1. FIG. 実施の形態1の記憶部に記憶される表面温度の基準値の情報を模式的に示す図である。4 is a diagram schematically showing information on a reference value of a surface temperature stored in a storage unit according to Embodiment 1. FIG. 実施の形態1の制御装置の構成の一例を示す図である。2 is a diagram illustrating an example of a configuration of a control device according to Embodiment 1. FIG. 実施の形態1の動作時の除湿機を示す図である。2 is a diagram illustrating a dehumidifier during operation of Embodiment 1. FIG. 実施の形態1の照射部の制御を示すフローチャートである。3 is a flowchart illustrating control of an irradiation unit according to the first embodiment. 実施の形態1の除湿機の第1モードの動作を示すフローチャートである。3 is a flowchart showing an operation in a first mode of the dehumidifier of Embodiment 1. 実施の形態1の除湿機の第2モードの動作を示すフローチャートである。6 is a flowchart illustrating an operation in a second mode of the dehumidifier of the first embodiment. 実施の形態2の照射部の制御を示すフローチャートである。6 is a flowchart illustrating control of an irradiation unit according to the second embodiment. 実施の形態3の除湿機の斜視図である。It is a perspective view of the dehumidifier of Embodiment 3. 実施の形態3の制御装置の機能を示すブロック図である。FIG. 10 is a block diagram illustrating functions of a control device according to a third embodiment. 実施の形態3の照射部の制御を示すフローチャートである。10 is a flowchart illustrating control of an irradiation unit according to the third embodiment.
 以下、添付の図面を参照して、本発明の実施の形態について説明する。各図における同一の符号は、同一の部分または相当する部分を示す。本開示では、重複する説明については、適宜に簡略化または省略する。なお、本開示は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same reference numerals in the drawings indicate the same or corresponding parts. In the present disclosure, overlapping descriptions will be simplified or omitted as appropriate. Note that the present disclosure may include all combinations of configurations that can be combined among the configurations described in the following embodiments.
実施の形態1.
 図1は、実施の形態1の除湿機の斜視図である。図2は、実施の形態1の除湿機の正面図である。図3は、実施の形態1の除湿機100の側面図である。図1、図2および図3は、除湿機100の外観を示す図である。
Embodiment 1 FIG.
1 is a perspective view of a dehumidifier according to Embodiment 1. FIG. FIG. 2 is a front view of the dehumidifier of the first embodiment. FIG. 3 is a side view of the dehumidifier 100 of the first exemplary embodiment. 1, 2, and 3 are views showing the appearance of the dehumidifier 100.
 ここで、図2における紙面上の上下方向を、除湿機100の上下方向とする。また、図2における紙面の手前方向を、除湿機100の前方向とする。図2における紙面の奥方向を除湿機100の後方向とする。図2において、紙面上の左方向が除湿機100の右方向に、紙面上の右方向が除湿機100の左方向になる。 Here, the vertical direction on the paper surface in FIG. 2 is the vertical direction of the dehumidifier 100. Further, the front direction of the paper surface in FIG. 2 is the front direction of the dehumidifier 100. The depth direction of the paper surface in FIG. 2 is the rear direction of the dehumidifier 100. In FIG. 2, the left direction on the paper surface is the right direction of the dehumidifier 100, and the right direction on the paper surface is the left direction of the dehumidifier 100.
 また、図3における紙面上の左右方向は、除湿機100の前後方向となる。図3における紙面上の上下方向は、除湿機100の上下方向である。図3において、紙面の手前方向が除湿機100の左方向に、紙面の奥方向が除湿機100の右方向になる。 Moreover, the left-right direction on the paper surface in FIG. 3 is the front-rear direction of the dehumidifier 100. The vertical direction on the paper surface in FIG. 3 is the vertical direction of the dehumidifier 100. In FIG. 3, the front side of the paper surface is the left direction of the dehumidifier 100, and the back direction of the paper surface is the right direction of the dehumidifier 100.
 また、図4は、実施の形態1の除湿機100の縦断面図である。図4は、図2におけるA-A位置での除湿機100の断面を示す。図4は、除湿機100の内部の構造を模式的に示す。図4における紙面上の上下左右方向は、図3における紙面上の上下左右方向に対応する。 FIG. 4 is a longitudinal sectional view of the dehumidifier 100 of the first embodiment. FIG. 4 shows a cross section of the dehumidifier 100 at the AA position in FIG. FIG. 4 schematically shows the internal structure of the dehumidifier 100. The up, down, left, and right directions on the paper surface in FIG. 4 correspond to the up, down, left, and right directions on the paper surface in FIG.
 除湿機100は、筐体1を備える。筐体1は、除湿機100の外殻となる部材である。筐体1は、例えば、自立可能な縦長の箱状に形成されている。除湿機100は、車輪2を備えてもよい。車輪2は、例えば、筐体1の底に設けられる。この車輪2によって、使用者は、除湿機100を容易に移動させることができる。 The dehumidifier 100 includes a housing 1. The housing 1 is a member that becomes an outer shell of the dehumidifier 100. The housing 1 is formed in, for example, a vertically long box shape that can stand by itself. The dehumidifier 100 may include wheels 2. The wheel 2 is provided at the bottom of the housing 1, for example. With this wheel 2, the user can easily move the dehumidifier 100.
 筐体1には、吸込口3および吹出口4が形成される。吸込口3は、筐体1の内部に空気を取り込むための開口である。吸込口3は、例えば、筐体1の後面に形成される。吹出口4は、筐体1の内部から外部に向かって空気を吹き出すための開口である。吹出口4は、例えば、筐体1の前面の上部に形成される。吹出口4の形状は、例えば、筐体1の左右方向に伸びる長方形状である。 The housing 1 is formed with an inlet 3 and an outlet 4. The suction port 3 is an opening for taking air into the housing 1. The suction port 3 is formed on the rear surface of the housing 1, for example. The blower outlet 4 is an opening for blowing air from the inside of the housing 1 toward the outside. The blower outlet 4 is formed in the upper part of the front surface of the housing | casing 1, for example. The shape of the blower outlet 4 is, for example, a rectangular shape extending in the left-right direction of the housing 1.
 筐体1の内部には、風路5が形成される。風路5は、吸込口3から吹出口4へ至る空間である。除湿機100は、送風手段の一例として、送風ファン6aおよびファンモータ6を備える。送風ファン6aは、風路5内に、吸込口3から吹出口4へと向かう気流を発生させるものである。送風ファン6aには、ファンモータ6が接続される。ファンモータ6は、送風ファン6aを回転させる装置である。 An air passage 5 is formed inside the housing 1. The air passage 5 is a space from the suction port 3 to the blowout port 4. The dehumidifier 100 includes a blower fan 6a and a fan motor 6 as an example of a blower. The blower fan 6 a generates an air flow from the suction port 3 to the blower outlet 4 in the air passage 5. A fan motor 6 is connected to the blower fan 6a. The fan motor 6 is a device that rotates the blower fan 6a.
 送風ファン6aおよびファンモータ6は、筐体1の内部に設けられる。送風ファン6aは、風路5内に配置される。本実施の形態において風路5内には、送風ファン6aによって、吸込口3から吹出口4へ向かって空気が流れる。本実施の形態では、送風ファン6aによって、筐体1の内部から当該筐体1の外部へ空気が送り出される。ここで、風路5において、吸込口3がある側を上流側、吹出口4がある側を下流側とする。すなわち本実施の形態では、送風ファン6aによって空気が風路5内を上流側から下流側へと向かって流れる。 The blower fan 6 a and the fan motor 6 are provided inside the housing 1. The blower fan 6 a is disposed in the air path 5. In the present embodiment, air flows from the suction port 3 toward the blower outlet 4 in the air passage 5 by the blower fan 6a. In the present embodiment, air is sent out from the inside of the housing 1 to the outside of the housing 1 by the blower fan 6a. Here, in the air passage 5, the side with the suction port 3 is the upstream side, and the side with the air outlet 4 is the downstream side. That is, in the present embodiment, air flows through the air passage 5 from the upstream side toward the downstream side by the blower fan 6a.
 除湿機100は、空気中の水分を除去する除湿手段の一例として、除湿部7を備える。除湿部7は、空気中の水分を凝縮して排出する装置である。一例として、除湿部7は、凝縮した水分を、液体の水として下方に滴下する。除湿部7は、空気中の水分の除去、すなわち空気の除湿を行う。除湿部7によって除湿された空気は、乾燥した空気となる。 The dehumidifier 100 includes a dehumidifying unit 7 as an example of a dehumidifying means for removing moisture in the air. The dehumidifying unit 7 is a device that condenses and discharges moisture in the air. As an example, the dehumidifying unit 7 drops the condensed moisture downward as liquid water. The dehumidifying unit 7 removes moisture in the air, that is, dehumidifies the air. The air dehumidified by the dehumidifying unit 7 becomes dry air.
 除湿部7は、例えば、ヒートポンプ回路を利用した装置である。ヒートポンプ回路を利用した除湿部7は、蒸発器によって、空気中の水分を凝縮させる。なお、除湿部7は、例えば、デシカント方式の装置であってもよい。デシカント方式の除湿部7は、空気中の水分を吸着する吸着剤、ヒーターおよび熱交換器を有する。デシカント方式の除湿部7が有する吸着剤に吸着された水分は、ヒーターによって加熱される。このヒーターによって加熱された水分は、熱交換器によって冷却されて凝縮する。 The dehumidifying unit 7 is, for example, a device that uses a heat pump circuit. The dehumidifying unit 7 using the heat pump circuit condenses moisture in the air using an evaporator. Note that the dehumidifying unit 7 may be, for example, a desiccant apparatus. The desiccant dehumidifying unit 7 includes an adsorbent that adsorbs moisture in the air, a heater, and a heat exchanger. The moisture adsorbed by the adsorbent included in the desiccant type dehumidifying unit 7 is heated by a heater. The water heated by this heater is cooled and condensed by the heat exchanger.
 除湿部7は、筐体1の内部に設けられる。除湿部7は、風路5内に配置される。除湿部7は、一例として、吸込口3と送風ファン6aとの間に配置される。本実施の形態の除湿部7は、送風ファン6aの上流側に配置される。本実施の形態において、吸込口3、除湿部7、送風ファン6aおよび吹出口4は、上流側から下流側へ順に配置される。 The dehumidifying unit 7 is provided inside the housing 1. The dehumidifying unit 7 is disposed in the air path 5. The dehumidification part 7 is arrange | positioned as an example between the suction inlet 3 and the ventilation fan 6a. The dehumidification part 7 of this Embodiment is arrange | positioned in the upstream of the ventilation fan 6a. In this Embodiment, the suction inlet 3, the dehumidification part 7, the ventilation fan 6a, and the blower outlet 4 are arrange | positioned in order from the upstream to the downstream.
 本実施の形態の除湿機100は、除湿部7によって排出された水を貯める貯水部8を備える。貯水部8は、例えば、上部が開口した容器状の部材である。貯水部8は、筐体1の内部で、除湿部7の下方に設けられる。貯水部8は、除湿部7から滴下された水を、上部の開口から受けて貯める。この貯水部8は、筐体1に対して着脱可能に設けられる。 The dehumidifier 100 of this embodiment includes a water storage unit 8 that stores the water discharged by the dehumidification unit 7. The water reservoir 8 is, for example, a container-like member that is open at the top. The water storage unit 8 is provided inside the housing 1 and below the dehumidifying unit 7. The water storage unit 8 receives and stores the water dripped from the dehumidifying unit 7 from the upper opening. The water storage unit 8 is provided to be detachable from the housing 1.
 また、除湿機100は、フィルター9を備えてもよい。フィルター9は、筐体1の内部に設けられる。フィルター9は、吸込口3を筐体1の内部から覆うように設けられる。フィルター9は、筐体1の内部への塵および埃の侵入を防止する。 Further, the dehumidifier 100 may include a filter 9. The filter 9 is provided inside the housing 1. The filter 9 is provided so as to cover the suction port 3 from the inside of the housing 1. The filter 9 prevents dust and dust from entering the housing 1.
 除湿機100は、風向変更部10を備える。図5は、実施の形態1の風向変更部10の構成を示す断面図である。図5は、図3におけるB-B位置での除湿機100の断面の一部を模式的に示す。図5における紙面上の上下左右方向は、図2における紙面上の上下左右方向に対応する。 The dehumidifier 100 includes a wind direction changing unit 10. FIG. 5 is a cross-sectional view illustrating a configuration of the wind direction changing unit 10 according to the first embodiment. FIG. 5 schematically shows a part of a cross section of the dehumidifier 100 at the BB position in FIG. The vertical and horizontal directions on the paper surface in FIG. 5 correspond to the vertical and horizontal directions on the paper surface in FIG.
 風向変更部10は、吹出口4から空気が送り出される方向を決めるものである。吹出口4から空気が送り出される方向を、以下、送風方向と称する。風向変更部10が動くことにより、送風方向は変更される。送風方向は、風向変更部10の状態によって決まる。本実施の形態の風向変更部10は、風向決定手段の一例である。風向変更部10は、吹出口4の近傍に配置される。 The wind direction changing unit 10 determines the direction in which air is sent out from the air outlet 4. The direction in which air is sent out from the blower outlet 4 is hereinafter referred to as the blowing direction. The air blowing direction is changed by the movement of the wind direction changing unit 10. The air blowing direction is determined by the state of the wind direction changing unit 10. The wind direction changing unit 10 according to the present embodiment is an example of a wind direction determining unit. The wind direction changing unit 10 is disposed in the vicinity of the air outlet 4.
 風向変更部10は、吹出口4から空気が送られる方向を上下方向に変更する第1変更部の一例として上下方向ルーバー11を有する。上下方向ルーバー11は、吹出口4の形状に合わせて形成される。本実施の形態の上下方向ルーバー11は、左右方向に伸びる長方形状の枠状の部材である。一例として、上下方向ルーバー11には、図5に示すように、左右方向に伸びる板状の3枚の部材が含まれる。本実施の形態の上下方向ルーバー11は、左右方向に伸びる長方形状の開口を有する。上下方向ルーバー11は、この開口の向きが上下に変更されるように、回転可能に形成される。上下方向ルーバー11は、例えば、左右方向に伸びる軸11aを介して筐体1に取り付けられる。上下方向ルーバー11は、この軸11aを中心にして回転可能に形成される。 The wind direction change part 10 has the up-down direction louver 11 as an example of the 1st change part which changes the direction in which air is sent from the blower outlet 4 to an up-down direction. The vertical louver 11 is formed according to the shape of the air outlet 4. The vertical louver 11 of the present embodiment is a rectangular frame-shaped member extending in the left-right direction. As an example, the vertical louver 11 includes three plate-like members extending in the left-right direction as shown in FIG. The vertical louver 11 of the present embodiment has a rectangular opening extending in the left-right direction. The vertical louver 11 is formed to be rotatable so that the direction of the opening is changed up and down. The vertical louver 11 is attached to the housing 1 via, for example, a shaft 11a extending in the horizontal direction. The vertical louver 11 is formed to be rotatable about the shaft 11a.
 風向変更部10は、上下方向ルーバー11を動かすための第1モータ12を有する。第1モータ12は、筐体1の内部に設けられる。第1モータ12は、歯車12a、歯車12bおよび歯車12cを介して、上下方向ルーバー11を回転させる。上下方向ルーバー11が回転すると、当該上下方向ルーバー11の開口の向きが上下方向に変更される。これにより、送風方向が上下方向に変更される。 The wind direction changing unit 10 has a first motor 12 for moving the vertical louver 11. The first motor 12 is provided inside the housing 1. The first motor 12 rotates the vertical louver 11 via the gear 12a, the gear 12b, and the gear 12c. When the vertical louver 11 rotates, the opening direction of the vertical louver 11 is changed to the vertical direction. Thereby, a ventilation direction is changed to an up-down direction.
 また、風向変更部10は、吹出口4から空気が送られる方向を左右方向に変更する第2変更部の一例として左右方向ルーバー13を有する。左右方向ルーバー13は、上下方向に伸びる板状の部材によって形成される。一例として、左右方向ルーバー13には、上下方向に伸びる板状の部材が6枚含まれる。この上下方向に伸びる6枚の板状の部材は、例えば、等間隔に配置される。 Moreover, the wind direction change part 10 has the left-right direction louver 13 as an example of the 2nd change part which changes the direction in which air is sent from the blower outlet 4 to the left-right direction. The left-right direction louver 13 is formed by a plate-like member extending in the up-down direction. As an example, the left-right louver 13 includes six plate-like members extending in the up-down direction. The six plate-like members extending in the vertical direction are arranged at equal intervals, for example.
 左右方向ルーバー13は、枠状の上下方向ルーバー11の内側に配置される。一例として左右方向ルーバー13は、図示しない上下方向に沿った軸を介し、上下方向ルーバー11に取り付けられる。左右方向ルーバー13は、この上下方向に沿った軸を中心にして回転可能である。また、一例として上下方向ルーバー11および左右方向ルーバー13は、当該上下方向ルーバー11の左右方向の中央と当該左右方向ルーバー13全体の左右方向の中央とが一致するように、配置される。 The left-right direction louver 13 is disposed inside the frame-like vertical direction louver 11. As an example, the left-right direction louver 13 is attached to the up-down direction louver 11 via an axis (not shown) along the up-down direction. The left-right direction louver 13 is rotatable about an axis along the vertical direction. As an example, the vertical louver 11 and the horizontal louver 13 are arranged such that the horizontal center of the vertical louver 11 coincides with the horizontal center of the entire horizontal louver 13.
 風向変更部10は、左右方向ルーバー13を動かすための第2モータ14を有する。第2モータ14は、筐体1の内部に設けられる。また、風向変更部10は、リンク15を有する。このリンク15は、例えば、左右方向ルーバー13の後部に接続される。リンク15は、第2モータ14に接続される。左右方向ルーバー13と第2モータ14とは、リンク15を介して接続される。 The wind direction changing unit 10 has a second motor 14 for moving the left-right direction louver 13. The second motor 14 is provided inside the housing 1. Further, the wind direction changing unit 10 has a link 15. This link 15 is connected to the rear part of the left-right direction louver 13, for example. The link 15 is connected to the second motor 14. The left-right direction louver 13 and the second motor 14 are connected via a link 15.
 第2モータ14が駆動すると、リンク15が動く。リンク15が動くと、左右方向ルーバー13が当該リンク15に連動して回転する。一例として左右方向ルーバー13は、左右方向ルーバー13を上下方向ルーバー11に対して取り付けている上下方向に沿った軸を中心にして、回転する。左右方向ルーバー13が回転することにより、送風方向が左右方向に変更される。 When the second motor 14 is driven, the link 15 moves. When the link 15 moves, the left-right louver 13 rotates in conjunction with the link 15. As an example, the left-right louver 13 rotates about an axis along the vertical direction in which the left-right louver 13 is attached to the vertical louver 11. As the left-right louver 13 rotates, the blowing direction is changed to the left-right direction.
 また、リンク15は、上下方向ルーバー11と連動するように形成される。リンク15は、上下方向ルーバー11が動くと、この上下方向ルーバー11と共に動く。リンク15が動くと、このリンク15に接続された左右方向ルーバー13も動く。左右方向ルーバー13は、上下方向ルーバー11が動くと、この上下方向ルーバー11に連動するリンク15と共に動く。このようにして、左右方向ルーバー13は、上下方向ルーバー11が動く方向と同じ方向へ動く。 Further, the link 15 is formed so as to be interlocked with the vertical louver 11. When the vertical louver 11 moves, the link 15 moves together with the vertical louver 11. When the link 15 moves, the left-right louver 13 connected to the link 15 also moves. When the up-down direction louver 11 moves, the left-right direction louver 13 moves together with the link 15 interlocked with the up-down direction louver 11. In this way, the horizontal louver 13 moves in the same direction as the vertical louver 11 moves.
 また、除湿機100は、センサ部16を備える。本実施の形態においてセンサ部16は、枠状の上下方向ルーバー11の内側に配置される。一例としてセンサ部16は、上下方向ルーバー11の左右方向の中央の位置に配置される。 In addition, the dehumidifier 100 includes a sensor unit 16. In the present embodiment, the sensor unit 16 is disposed inside the frame-like vertical louver 11. As an example, the sensor unit 16 is disposed at a central position in the left-right direction of the up-down direction louver 11.
 図6は、実施の形態1のセンサ部16を正面から見た図である。図7は、実施の形態1のセンサ部16の構造を示す断面図である。図7は、図6におけるC-C位置でのセンサ部16の断面を示す。図6の紙面の手前方向を、センサ部16の正面方向とする。図6の紙面上の上下方向を、センサ部16の上下方向とする。図7において、紙面上の右方向はセンサ部16の正面方向、紙面上の左方向はセンサ部16の背面方向である。図7の紙面上の上下方向は、センサ部16の上下方向である。 FIG. 6 is a front view of the sensor unit 16 according to the first embodiment. FIG. 7 is a cross-sectional view illustrating the structure of the sensor unit 16 according to the first embodiment. FIG. 7 shows a cross section of the sensor unit 16 at the CC position in FIG. The front side of the paper surface of FIG. The vertical direction on the paper surface of FIG. 6 is the vertical direction of the sensor unit 16. In FIG. 7, the right direction on the paper surface is the front direction of the sensor unit 16, and the left direction on the paper surface is the back surface direction of the sensor unit 16. The vertical direction on the paper surface of FIG. 7 is the vertical direction of the sensor unit 16.
 図6および図7に示すように、センサ部16は、センサケース17を有する。センサケース17は、センサ部16の外枠となる部材である。一例として、センサケース17は、筒状に形成される。センサケース17は、例えば、図示しない上下方向に伸びる軸によって支持される。また、センサケース17は、例えば、図示しない左右方向に伸びる軸によって支持される。センサケース17は、これらの軸を中心にして回転可能である。 As shown in FIGS. 6 and 7, the sensor unit 16 has a sensor case 17. The sensor case 17 is a member that serves as an outer frame of the sensor unit 16. As an example, the sensor case 17 is formed in a cylindrical shape. For example, the sensor case 17 is supported by a shaft (not shown) extending in the vertical direction. The sensor case 17 is supported by, for example, a shaft (not shown) extending in the left-right direction. The sensor case 17 can rotate around these axes.
 一例としてセンサケース17は、上下方向ルーバー11の左右方向の中央の位置で、リンク15に接続される。センサケース17は、リンク15を介して、左右方向ルーバー13に接続される。なお、センサケース17は、リンク15を介さず、左右方向ルーバー13に直接設けられてもよい。 As an example, the sensor case 17 is connected to the link 15 at the center position in the left-right direction of the vertical louver 11. The sensor case 17 is connected to the left-right louver 13 via the link 15. The sensor case 17 may be provided directly on the left-right louver 13 without using the link 15.
 センサケース17は、当該センサケース17の正面が送風方向を向くように、設けられる。上述したように、センサケース17は、リンク15または左右方向ルーバー13に機械的に接続されている。センサケース17は、左右方向ルーバー13に連動する。センサケース17は、左右方向ルーバー13が動く方向と同じ方向へ動く。 The sensor case 17 is provided so that the front surface of the sensor case 17 faces the blowing direction. As described above, the sensor case 17 is mechanically connected to the link 15 or the left-right direction louver 13. The sensor case 17 is interlocked with the left-right direction louver 13. The sensor case 17 moves in the same direction as the direction in which the left-right louver 13 moves.
 また、上述したように、左右方向ルーバー13は、上下方向ルーバー11と共に動く。センサケース17は、上下方向ルーバー11が動くと、この上下方向ルーバー11に連動する。センサケース17は、上下方向ルーバー11が動く方向と同じ方向へ動く。このようにして、センサケース17の正面は、送風方向が変更された場合においても、変更された後の送風方向を向く。 Also, as described above, the left-right louver 13 moves together with the up-down louver 11. When the vertical louver 11 moves, the sensor case 17 is interlocked with the vertical louver 11. The sensor case 17 moves in the same direction as the vertical louver 11 moves. In this way, the front surface of the sensor case 17 faces the changed air blowing direction even when the air blowing direction is changed.
 本実施の形態のセンサケース17は、センサ窓17aを有する。センサ窓17aは、図6および図7に示すように、センサケース17の正面部分に形成される。センサ窓17aは、赤外線の透過率が高い材料によって形成される。赤外線の透過率が高い材料は、例えば、シリコンである。ここで、吹出口4から送り出された空気が当たる領域を、以下、送風領域と称することとする。センサ窓17aは、この送風領域から放射される赤外線が透過するように、配置および形成される。 The sensor case 17 of the present embodiment has a sensor window 17a. The sensor window 17a is formed in the front part of the sensor case 17, as shown in FIGS. The sensor window 17a is formed of a material having a high infrared transmittance. A material having a high infrared transmittance is, for example, silicon. Here, the area where the air sent out from the outlet 4 will be referred to as a blowing area hereinafter. The sensor window 17a is arranged and formed so that infrared rays radiated from the air blowing region are transmitted.
 センサ部16は、表面温度検出手段の一例として表面温度検出部18を有する。表面温度検出部18は、対象物の表面温度を、非接触の状態で検出する装置である。本実施の形態において表面温度検出部18は、センサ窓17aを透過した赤外線を受けることで、当該赤外線を発した対象物の表面温度を検出する。表面温度検出部18は、送風領域の表面温度を検出する。すなわち、表面温度検出部18は、吹出口4から送り出された空気が当たっている対象物の表面温度を検出する。 The sensor unit 16 includes a surface temperature detection unit 18 as an example of a surface temperature detection unit. The surface temperature detection unit 18 is a device that detects the surface temperature of an object in a non-contact state. In this Embodiment, the surface temperature detection part 18 detects the surface temperature of the target object which emitted the said infrared rays by receiving the infrared rays which permeate | transmitted the sensor window 17a. The surface temperature detection unit 18 detects the surface temperature of the air blowing area. That is, the surface temperature detection unit 18 detects the surface temperature of the object that is hit by the air sent out from the air outlet 4.
 上記の表面温度検出部18の構成について、より詳しく説明する。表面温度検出部18は、センサケース17の内部に設けられる。表面温度検出部18は、センサ窓17aの背面側に配置される。一例として、表面温度検出部18には、熱起電力を利用したものが用いられる。熱起電力を利用して表面温度を検出する表面温度検出部18は、赤外線吸収膜およびサーミスタを有する。 The configuration of the surface temperature detector 18 will be described in more detail. The surface temperature detector 18 is provided inside the sensor case 17. The surface temperature detector 18 is disposed on the back side of the sensor window 17a. As an example, the surface temperature detector 18 uses a thermoelectromotive force. The surface temperature detection unit 18 that detects the surface temperature using the thermoelectromotive force has an infrared absorption film and a thermistor.
 表面温度検出部18の赤外線吸収膜は、センサ窓17aを透過した赤外線を吸収する。赤外線吸収膜は、感熱部分を有する。赤外線吸収膜の感熱部分は、センサ窓17aを透過した赤外線を吸収することによって昇温する。赤外線吸収膜の感熱部分は、温接点となる。また、表面温度検出部18のサーミスタは、赤外線吸収膜の感熱部分ではない部分の温度を検出する。赤外線吸収膜の感熱部分ではない部分は、冷接点となる。表面温度検出部18は、上記の温接点と冷接点との温度差から、赤外線吸収膜に吸収された赤外線を発した領域の表面温度を検出する。このようにして表面温度検出部18は、送風領域の表面温度を検出する。 The infrared absorption film of the surface temperature detection unit 18 absorbs infrared rays transmitted through the sensor window 17a. The infrared absorbing film has a heat sensitive part. The heat-sensitive portion of the infrared absorbing film is heated by absorbing infrared rays that have passed through the sensor window 17a. The heat sensitive part of the infrared absorbing film becomes a hot junction. The thermistor of the surface temperature detector 18 detects the temperature of a portion that is not a heat sensitive portion of the infrared absorption film. The portion that is not the heat-sensitive portion of the infrared absorbing film becomes a cold junction. The surface temperature detection part 18 detects the surface temperature of the area | region which emitted the infrared rays absorbed by the infrared rays absorption film from the temperature difference of said warm junction and cold junction. Thus, the surface temperature detection part 18 detects the surface temperature of a ventilation area | region.
 吹出口4から送り出された空気が当たる領域である送風領域は、送風方向と共に変更される。センサケース17の内部に設けられた表面温度検出部18は、センサケース17と共に動く。また、上述したように、センサケース17は、上下方向ルーバー11および左右方向ルーバー13と共に動く。すなわち、表面温度検出部18は、上下方向ルーバー11および左右方向ルーバー13と共に動く。また、センサケース17の正面部分に形成されたセンサ窓17aも、上下方向ルーバー11および左右方向ルーバー13と共に動く。これにより、表面温度検出部18は、送風領域が変更された場合においても、変更された後の送風領域の表面温度を検出することができる。 The air blowing area, which is the area where the air sent out from the air outlet 4 hits, is changed together with the air blowing direction. The surface temperature detector 18 provided inside the sensor case 17 moves together with the sensor case 17. Further, as described above, the sensor case 17 moves together with the vertical louver 11 and the horizontal louver 13. That is, the surface temperature detector 18 moves together with the vertical louver 11 and the horizontal louver 13. Further, the sensor window 17 a formed in the front portion of the sensor case 17 also moves together with the vertical louver 11 and the horizontal louver 13. Thereby, even when the ventilation area | region is changed, the surface temperature detection part 18 can detect the surface temperature of the ventilation area | region after a change.
 また、センサ部16は、可視光を照射する照射手段の一例として、照射部19を有する。照射部19は、光源19aおよびレンズ19bを有する。レンズ19bは、センサケース17の正面部分に設けられる。一例として、レンズ19bは、センサ窓17aよりも下方に配置される。光源19aは、センサケース17の内部に設けられる。光源19aは、レンズ19bの背面側に設けられる。 In addition, the sensor unit 16 includes an irradiation unit 19 as an example of an irradiation unit that emits visible light. The irradiation unit 19 includes a light source 19a and a lens 19b. The lens 19 b is provided on the front portion of the sensor case 17. As an example, the lens 19b is disposed below the sensor window 17a. The light source 19 a is provided inside the sensor case 17. The light source 19a is provided on the back side of the lens 19b.
 光源19aは、可視光を発するものである。光源19aは、例えば、LEDである。なお、光源19aは、レーザーダイオードでもよい。本実施の形態において光源19aは、正面方向に可視光を発する。一例として光源19aは、1000mcd以上の光度の可視光を発する。また、一例として光源19aは、緑色の可視光を発する。なお、光源19aが発する可視光の色は、緑色に限られない。光源19aが発する可視光の色は、橙色等であってもよい。 The light source 19a emits visible light. The light source 19a is, for example, an LED. The light source 19a may be a laser diode. In the present embodiment, the light source 19a emits visible light in the front direction. As an example, the light source 19a emits visible light having a luminous intensity of 1000 mcd or more. As an example, the light source 19a emits green visible light. The color of visible light emitted from the light source 19a is not limited to green. The color of visible light emitted from the light source 19a may be orange or the like.
 レンズ19bは、光源19aが発した可視光を集光するためのものである。レンズ19bは、例えば、アクリル樹脂で形成された平凸レンズである。レンズ19bの材質は、例えば、ポリカーボネイト樹脂またはガラスでもよい。また、レンズ19bは、フレネルレンズでもよい。 The lens 19b is for condensing visible light emitted from the light source 19a. The lens 19b is a plano-convex lens made of, for example, an acrylic resin. The material of the lens 19b may be, for example, polycarbonate resin or glass. The lens 19b may be a Fresnel lens.
 センサケース17のうちの光源19aとレンズ19bとの間の部分は、一例として、光源19aによって発せられる可視光が透過する材料で形成される。なお、センサケース17のうち、光源19aとレンズ19bとの間の部位には、開口が形成されていてもよい。本実施の形態において光源19aが正面方向に発した可視光は、レンズ19bへ到達する。 The portion of the sensor case 17 between the light source 19a and the lens 19b is formed of a material that transmits visible light emitted from the light source 19a, for example. Note that an opening may be formed in the sensor case 17 between the light source 19a and the lens 19b. In the present embodiment, the visible light emitted from the light source 19a in the front direction reaches the lens 19b.
 光源19aが発した可視光は、レンズ19bを通過することで集光される。レンズ19bによって集光された可視光は、容易に視認可能な状態となる。レンズ19bによって集光された可視光は、センサケース17および筐体1の外部へ向かって照射される。光源19aおよびレンズ19bは、レンズ19bによって集光された可視光がセンサケース17の正面方向に照射されるように設けられる。 Visible light emitted from the light source 19a is condensed by passing through the lens 19b. The visible light collected by the lens 19b is easily visible. Visible light collected by the lens 19 b is irradiated toward the outside of the sensor case 17 and the housing 1. The light source 19 a and the lens 19 b are provided so that visible light collected by the lens 19 b is irradiated in the front direction of the sensor case 17.
 上述したように、センサケース17の正面は、送風方向を向く。レンズ19bによって集光された可視光は、送風方向へ照射される。また、光源19aおよびレンズ19bは、センサケース17に設けられる。光源19aおよびレンズ19bは、センサケース17と共に動く。上述したように、センサケース17は、上下方向ルーバー11および左右方向ルーバー13と共に動く。すなわち、光源19aおよびレンズ19bは、上下方向ルーバー11および左右方向ルーバー13と共に動く。このため、レンズ19bによって集光された可視光は、送風方向が変更された場合においても、変更された後の送風方向へ照射される。使用者は、容易に視認可能な状態となった可視光を見ることで、送風方向を確認することができる。 As described above, the front surface of the sensor case 17 faces the blowing direction. The visible light condensed by the lens 19b is irradiated in the blowing direction. The light source 19a and the lens 19b are provided in the sensor case 17. The light source 19a and the lens 19b move together with the sensor case 17. As described above, the sensor case 17 moves together with the vertical louver 11 and the horizontal louver 13. That is, the light source 19a and the lens 19b move together with the vertical louver 11 and the horizontal louver 13. For this reason, the visible light condensed by the lens 19b is irradiated in the changed air blowing direction even when the air blowing direction is changed. The user can confirm the blowing direction by looking at the visible light that is easily visible.
 ここで、レンズ19bによって集光された可視光が照射される領域を、照射領域30とする。換言すると、照射領域30とは、容易に視認可能な状態となった可視光によって照らされている領域である。 Here, an area to which the visible light condensed by the lens 19b is irradiated is referred to as an irradiation area 30. In other words, the irradiation area 30 is an area illuminated by visible light that is easily visible.
 光源19aおよびレンズ19bは、照射領域30の少なくとも一部が送風領域に含まれるように配置および形成される。使用者は、可視光によって照らされている照射領域30を見ることで、送風領域を確認することができる。また、一例として、光源19aおよびレンズ19bは、照射領域30の全体が送風領域に含まれるように配置および形成されてもよい。一例として、光源19aおよびレンズ19bは、筐体1から1m離れた位置での照射領域30が直径60mmの円となるように、配置および形成される。なお、照射領域30の大きさおよび形状は、本実施の形態に限定されない。照射領域30の形状は、例えば、長方形等であってもよい。 The light source 19a and the lens 19b are arranged and formed so that at least a part of the irradiation region 30 is included in the blowing region. The user can check the blowing area by looking at the irradiation area 30 illuminated by the visible light. As an example, the light source 19a and the lens 19b may be arranged and formed so that the entire irradiation region 30 is included in the blowing region. As an example, the light source 19a and the lens 19b are arranged and formed so that the irradiation region 30 at a position 1 m away from the housing 1 is a circle having a diameter of 60 mm. The size and shape of the irradiation region 30 are not limited to the present embodiment. The shape of the irradiation region 30 may be, for example, a rectangle.
 上述したように、本実施の形態の表面温度検出部18は、送風領域の表面温度を検出する。表面温度検出部18は、照射領域30に含まれる対象物の表面温度を検出してもよい。すなわち、表面温度検出部18は、可視光によって照らされている対象物の表面温度を検出してもよい。例えば、センサ窓17aは、照射領域30から放射される赤外線が透過するように、配置および形成されてもよい。一例として表面温度検出部18は、照射領域30全域の表面温度を検出する。 As described above, the surface temperature detection unit 18 of the present embodiment detects the surface temperature of the air blowing area. The surface temperature detection unit 18 may detect the surface temperature of the object included in the irradiation region 30. That is, the surface temperature detection unit 18 may detect the surface temperature of the object illuminated by visible light. For example, the sensor window 17a may be arranged and formed so that infrared rays emitted from the irradiation region 30 are transmitted. As an example, the surface temperature detector 18 detects the surface temperature of the entire irradiation region 30.
 また、本実施の形態の除湿機100は、制御装置20および操作部21を備える。制御装置20は、除湿機100に備えられる各機器に接続される。制御装置20は、除湿機100に備えられる各機器を制御するものである。制御装置20は、例えば、筐体1の内部に設けられる。 In addition, the dehumidifier 100 according to the present embodiment includes a control device 20 and an operation unit 21. The control device 20 is connected to each device provided in the dehumidifier 100. The control device 20 controls each device provided in the dehumidifier 100. For example, the control device 20 is provided inside the housing 1.
 操作部21は、使用者が除湿機100を操作するためのものである。操作部21は、例えば、筐体1の上面の後面側に設けられる。一例として操作部21は、運転ボタン21a、モード選択ボタン21b、設定ボタン21cおよび操作キー21dを有する。 The operation unit 21 is for the user to operate the dehumidifier 100. The operation unit 21 is provided on the rear surface side of the upper surface of the housing 1, for example. As an example, the operation unit 21 includes an operation button 21a, a mode selection button 21b, a setting button 21c, and an operation key 21d.
 運転ボタン21aは、除湿機100の運転を開始および停止させるためのものである。モード選択ボタン21bは、除湿機100の運転モードを選択するためのものである。制御装置20と操作部21とは、電気的に接続される。操作部21の運転ボタン21aおよびモード選択ボタン21bは、使用者からの操作に応じた信号を、制御装置20へ送信する。また、設定ボタン21cは、除湿機100の設定を行うためのものである。設定ボタン21cは、使用者からの操作に応じた信号を、制御装置20へ送信する。 The operation button 21a is for starting and stopping the operation of the dehumidifier 100. The mode selection button 21b is for selecting an operation mode of the dehumidifier 100. The control device 20 and the operation unit 21 are electrically connected. The operation button 21 a and the mode selection button 21 b of the operation unit 21 transmit a signal corresponding to the operation from the user to the control device 20. The setting button 21c is for setting the dehumidifier 100. The setting button 21 c transmits a signal corresponding to the operation from the user to the control device 20.
 操作キー21dは、操作指示を送信する操作手段の一例である。操作キー21dは、風向変更部10を動かすためのものである。操作キー21dは、例えば、十字キーである。操作キー21dは、使用者からの操作に応じた信号を、制御装置20へ送信する。以下、操作キー21dが制御装置20へ送信する信号を、操作指示とも称する。制御装置20は、操作指示を受信すると、受信した操作指示に基づいて動作する。なお、操作キー21dは、十字キー以外のものでもよい。 The operation key 21d is an example of an operation unit that transmits an operation instruction. The operation key 21 d is for moving the wind direction changing unit 10. The operation key 21d is, for example, a cross key. The operation key 21d transmits a signal corresponding to the operation from the user to the control device 20. Hereinafter, a signal transmitted from the operation key 21d to the control device 20 is also referred to as an operation instruction. When receiving the operation instruction, the control device 20 operates based on the received operation instruction. The operation key 21d may be other than the cross key.
 図8は、実施の形態1の制御装置20の機能を示すブロック図である。上述したように、制御装置20は、操作部21に電気的に接続される。また、本実施の形態の制御装置20は、図8に示すように、ファンモータ6、除湿部7、第1モータ12、第2モータ14および照射部19に電気的に接続される。操作部21は、使用者からの操作に応じた信号を、制御装置20へ送信する。制御装置20は、操作部21から信号を受信すると、受信した信号に基づいて、ファンモータ6、除湿部7、第1モータ12、第2モータ14および照射部19を制御する。 FIG. 8 is a block diagram illustrating functions of the control device 20 according to the first embodiment. As described above, the control device 20 is electrically connected to the operation unit 21. Moreover, the control apparatus 20 of this Embodiment is electrically connected to the fan motor 6, the dehumidification part 7, the 1st motor 12, the 2nd motor 14, and the irradiation part 19, as shown in FIG. The operation unit 21 transmits a signal corresponding to the operation from the user to the control device 20. When receiving the signal from the operation unit 21, the control device 20 controls the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19 based on the received signal.
 また、制御装置20は、図8に示すように、表面温度検出部18に電気的に接続される。表面温度検出部18は、検出した表面温度の情報を、電圧等の電気信号に変換する。表面温度検出部18は、変換した電気信号を、制御装置20へ送信する。制御装置20は、表面温度検出部18からの電気信号に基づいて、ファンモータ6、除湿部7、第1モータ12、第2モータ14および照射部19を制御する。 Further, the control device 20 is electrically connected to the surface temperature detection unit 18 as shown in FIG. The surface temperature detector 18 converts the detected surface temperature information into an electrical signal such as a voltage. The surface temperature detection unit 18 transmits the converted electrical signal to the control device 20. The control device 20 controls the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19 based on the electrical signal from the surface temperature detection unit 18.
 図8に示すように、本実施の形態の制御装置20は、動作制御部20a、記憶部20b、温度判定部20c、設定部20dおよび照射制御部20eを有する。 As shown in FIG. 8, the control device 20 of the present embodiment includes an operation control unit 20a, a storage unit 20b, a temperature determination unit 20c, a setting unit 20d, and an irradiation control unit 20e.
 動作制御部20aは、操作キー21dからの操作指示に基づいて、第1モータ12および第2モータ14を制御する。上述したように、第1モータ12および第2モータ14が動くと、送風方向が変更される。本実施の形態の動作制御部20aは、吹出口4から空気が送り出される方向を制御するための風向制御手段の一例である。 The operation control unit 20a controls the first motor 12 and the second motor 14 based on an operation instruction from the operation key 21d. As described above, when the first motor 12 and the second motor 14 move, the blowing direction is changed. The operation control part 20a of this Embodiment is an example of the wind direction control means for controlling the direction in which air is sent out from the blower outlet 4. FIG.
 記憶部20bは、記憶手段の一例である。記憶部20bには、例えば、予め複数の運転モードが設定されている。例えば、動作制御部20aは、モード選択ボタン21bからの信号に基づいて、記憶部20bに設定された複数の運転モードの中から1つの運転モードの処理を実行する。動作制御部20aは、モード選択ボタン21bからの信号に基づいて、ファンモータ6、除湿部7、第1モータ12、第2モータ14および照射部19を制御する。 The storage unit 20b is an example of a storage unit. In the storage unit 20b, for example, a plurality of operation modes are set in advance. For example, the operation control unit 20a executes processing for one operation mode from among a plurality of operation modes set in the storage unit 20b based on a signal from the mode selection button 21b. The operation control unit 20a controls the fan motor 6, the dehumidifying unit 7, the first motor 12, the second motor 14, and the irradiation unit 19 based on a signal from the mode selection button 21b.
 一例として、記憶部20bに設定されている複数の運転モードには、第1モードが含まれる。第1モードは、乾燥した空気を狭い範囲に集中的に供給する運転モードである。第1モードが選択された状態で除湿機100が動作すると、風向変更部10はスイングせずに固定される。これにより、例えば、少量の靴または少量の衣服31等の対象物に対して集中的に乾燥した空気が当てられる。 As an example, the first mode is included in the plurality of operation modes set in the storage unit 20b. The first mode is an operation mode in which dry air is intensively supplied in a narrow range. When the dehumidifier 100 operates in a state where the first mode is selected, the wind direction changing unit 10 is fixed without swinging. Thereby, for example, a concentrated air is applied to an object such as a small amount of shoes or a small amount of clothes 31.
 また、記憶部20bに設定されている複数の運転モードには、一例として、第2モードが含まれる。第2モードは、結露の発生を抑制するためのモードである。第2モードが選択された状態で除湿機100が動作すると、表面温度検出部18によって室内の低温の場所が検出され、この低温の場所に向けて乾燥した空気が送られる。これにより、室内の低温の場所の温度が上昇して乾燥する。このようにして、結露の発生が抑制される。 In addition, the plurality of operation modes set in the storage unit 20b includes the second mode as an example. The second mode is a mode for suppressing the occurrence of condensation. When the dehumidifier 100 operates in a state where the second mode is selected, the surface temperature detection unit 18 detects a low temperature place in the room, and dry air is sent toward the low temperature place. Thereby, the temperature of the indoor low temperature place rises and it dries. In this way, the occurrence of condensation is suppressed.
 温度判定部20cは、表面温度検出部18から送信された電気信号に基づいて判定を行う。温度判定部20cは、各種の判定を行う判定手段の一例である。本実施の形態において記憶部20bには、表面温度の基準値の情報が記憶される。温度判定部20cは、表面温度検出部18からの電気信号に含まれる温度情報と記憶部20bに記憶された基準値の情報とに基づいて、表面温度の判定を行う。 The temperature determination unit 20c performs determination based on the electrical signal transmitted from the surface temperature detection unit 18. The temperature determination unit 20c is an example of a determination unit that performs various determinations. In the present embodiment, information on the reference value of the surface temperature is stored in the storage unit 20b. The temperature determination unit 20c determines the surface temperature based on the temperature information included in the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b.
 記憶部20bには、表面温度の基準値の情報がテーブルとして記憶されている。図9は、実施の形態1の記憶部20bに記憶される表面温度の基準値の情報を模式的に示す図である。記憶部20bには、表面温度の基準値の一例である第1温度Th1および第2温度Th2の情報が記憶される。 The information on the reference value of the surface temperature is stored as a table in the storage unit 20b. FIG. 9 is a diagram schematically showing information on the reference value of the surface temperature stored in the storage unit 20b of the first embodiment. The storage unit 20b stores information on the first temperature Th1 and the second temperature Th2, which are examples of the reference value of the surface temperature.
 第1温度Th1および第2温度Th2は、筐体1に対して送風方向に人がいるか否かを判定するための基準値である。第1温度Th1および第2温度Th2は、人の体温または肌の表面温度に基づいて設定される。第1温度Th1は、例えば、35℃である。第2温度Th2は、例えば37℃である。なお、第1温度Th1および第2温度Th2は、人の着ている衣類等を考慮して、人の体温よりも低い温度として設定されてもよい。 The first temperature Th1 and the second temperature Th2 are reference values for determining whether or not there is a person in the blowing direction with respect to the housing 1. The first temperature Th1 and the second temperature Th2 are set based on the human body temperature or the skin surface temperature. The first temperature Th1 is 35 ° C., for example. The second temperature Th2 is 37 ° C., for example. Note that the first temperature Th1 and the second temperature Th2 may be set as temperatures lower than the body temperature of the person in consideration of clothes worn by the person.
 ここで、下限値である第1温度Th1から上限値である第2温度Th2までの温度範囲を、第1基準Tr1とする。本実施の形態において温度判定部20cは、表面温度検出部18によって検出された表面温度が第1基準Tr1内であるか判定する。この判定は、筐体1に対して送風方向に人がいるか否かの判定である。本実施の形態の除湿機100は、表面温度検出部18によって検出された表面温度が第1基準Tr1内である場合には、可視光の照射を停止する。第1基準Tr1は、人の有無を判定するための基準温度範囲の一例である。 Here, a temperature range from the first temperature Th1 that is the lower limit value to the second temperature Th2 that is the upper limit value is defined as a first reference Tr1. In the present embodiment, the temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1. This determination is a determination as to whether or not there is a person in the air blowing direction with respect to the housing 1. The dehumidifier 100 according to the present embodiment stops the irradiation of visible light when the surface temperature detected by the surface temperature detector 18 is within the first reference Tr1. The first reference Tr1 is an example of a reference temperature range for determining the presence or absence of a person.
 また、記憶部20bには、表面温度の基準値の一例である第3温度Th3の情報が記憶されてもよい。第3温度Th3は、洗濯物等の対象物が乾燥したかどうかを判定するための温度として設定される。水分を含んだ洗濯物等の対象物の温度は、周囲の気温よりも低くなる。一例として、乾燥が完了した対象物の温度は、周囲の気温以上になる。第3温度Th3は、一例として、気温に基づいて設定される。第3温度Th3は、例えば、20℃である。ここで、第3温度Th3を下限値とする温度範囲を、第2基準Tr2とする。図9に示すように、第1基準Tr1と第2基準Tr2とは、重複していてもよい。一例として、温度判定部20cは、表面温度検出部18によって検出された表面温度が第2基準Tr2内であるか判定する。この判定は、対象物の乾燥が完了したか否かの判定である。 Further, information on the third temperature Th3, which is an example of a reference value of the surface temperature, may be stored in the storage unit 20b. The third temperature Th3 is set as a temperature for determining whether an object such as laundry is dried. The temperature of an object such as laundry containing moisture is lower than the ambient temperature. As an example, the temperature of the object that has been dried is equal to or higher than the ambient temperature. The third temperature Th3 is set based on the temperature as an example. The third temperature Th3 is, for example, 20 ° C. Here, a temperature range in which the third temperature Th3 is a lower limit is defined as a second reference Tr2. As shown in FIG. 9, the first reference Tr1 and the second reference Tr2 may overlap. As an example, the temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the second reference Tr2. This determination is a determination as to whether or not the drying of the object has been completed.
 設定部20dは、設定ボタン21cからの信号に応じて、記憶部20bに設定方向を設定する。設定ボタン21cは、照射部19によって可視光が照射されている時に押されると、設定部20dへ信号を送信する。設定部20dは、設定ボタン21cから信号を受信すると、その時点で照射部19によって可視光が照射されている方向を、設定方向として記憶部20bに設定する。本実施の形態における設定ボタン21cおよび設定部20dは、設定方向を設定するための設定手段の一例である。 The setting unit 20d sets a setting direction in the storage unit 20b according to a signal from the setting button 21c. The setting button 21c transmits a signal to the setting unit 20d when pressed when the visible light is irradiated by the irradiation unit 19. When the setting unit 20d receives a signal from the setting button 21c, the setting unit 20d sets, in the storage unit 20b, a direction in which visible light is irradiated by the irradiation unit 19 at that time as a setting direction. The setting button 21c and the setting unit 20d in the present embodiment are an example of setting means for setting a setting direction.
 照射制御部20eは、照射部19を制御する。本実施の形態において、照射制御部20eは、照射部19の光源19aを制御する。照射制御部20eは、照射制御手段の一例である。照射制御部20eは、温度判定部20cの判定結果に基づいて光源19aを制御する。 The irradiation control unit 20e controls the irradiation unit 19. In the present embodiment, the irradiation control unit 20e controls the light source 19a of the irradiation unit 19. The irradiation control unit 20e is an example of an irradiation control unit. The irradiation control unit 20e controls the light source 19a based on the determination result of the temperature determination unit 20c.
 図10は、実施の形態1の制御装置20の構成の一例を示す図である。本実施の形態における制御装置20の動作制御部20a、記憶部20b、温度判定部20c、設定部20dおよび照射制御部20eの各機能は、例えば、処理回路により実現される。処理回路は、専用ハードウェア200であってもよい。処理回路は、プロセッサ201およびメモリ202を備えていてもよい。処理回路の一部が専用ハードウェア200として形成され、且つ、当該処理回路は更にプロセッサ201およびメモリ202を備えていてもよい。図10に示す例において、処理回路の一部は専用ハードウェア200として形成されている。また、図10に示す例において、処理回路は、専用ハードウェア200に加えてプロセッサ201およびメモリ202を更に備えている。 FIG. 10 is a diagram illustrating an example of the configuration of the control device 20 according to the first embodiment. Each function of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, the setting unit 20d, and the irradiation control unit 20e of the control device 20 in the present embodiment is realized by a processing circuit, for example. The processing circuit may be dedicated hardware 200. The processing circuit may include a processor 201 and a memory 202. A part of the processing circuit may be formed as dedicated hardware 200, and the processing circuit may further include a processor 201 and a memory 202. In the example shown in FIG. 10, a part of the processing circuit is formed as dedicated hardware 200. In the example illustrated in FIG. 10, the processing circuit further includes a processor 201 and a memory 202 in addition to the dedicated hardware 200.
 一部が少なくとも1つの専用ハードウェア200である処理回路には、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。 The processing circuit, part of which is at least one dedicated hardware 200, includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. .
 処理回路が少なくとも1つのプロセッサ201および少なくとも1つのメモリ202を備える場合、制御装置20の動作制御部20a、記憶部20b、温度判定部20c、設定部20dおよび照射制御部20eの各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。 When the processing circuit includes at least one processor 201 and at least one memory 202, each function of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, the setting unit 20d, and the irradiation control unit 20e of the control device 20 is software. , Firmware, or a combination of software and firmware.
 ソフトウェアおよびファームウェアはプログラムとして記述され、メモリ202に格納される。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。プロセッサ201は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータあるいはDSPともいう。メモリ202には、例えば、RAM、ROM、フラッシュメモリー、EPROMおよびEEPROM等の不揮発性または揮発性の半導体メモリ、または磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクおよびDVD等が該当する。 Software and firmware are described as programs and stored in the memory 202. The processor 201 reads out and executes the program stored in the memory 202, thereby realizing the function of each unit. The processor 201 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP. The memory 202 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM and an EEPROM, or a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、制御装置20の動作制御部20a、記憶部20b、温度判定部20c、設定部20dおよび照射制御部20eの各機能を実現することができる。なお、除湿機100の構成は、単一の制御装置20により動作が制御される構成に限定されるものではない。除湿機100は、複数の装置が連携することにより動作が制御されるように構成されてもよい。 As described above, the processing circuit has functions of the operation control unit 20a, the storage unit 20b, the temperature determination unit 20c, the setting unit 20d, and the irradiation control unit 20e of the control device 20 by hardware, software, firmware, or a combination thereof. Can be realized. The configuration of the dehumidifier 100 is not limited to a configuration in which the operation is controlled by the single control device 20. The dehumidifier 100 may be configured such that operation is controlled by cooperation of a plurality of devices.
 次に、本実施の形態の除湿機100の動作について説明する。図11は、実施の形態1の動作時の除湿機100を示す図である。図12は、実施の形態1の照射部19の制御を示すフローチャートである。図12のフローチャートを参照して、表面温度検出部18によって検出される表面温度に基づく照射部19の制御を説明する。 Next, the operation of the dehumidifier 100 of this embodiment will be described. FIG. 11 is a diagram illustrating the dehumidifier 100 during the operation of the first embodiment. FIG. 12 is a flowchart illustrating control of the irradiation unit 19 according to the first embodiment. With reference to the flowchart of FIG. 12, control of the irradiation part 19 based on the surface temperature detected by the surface temperature detection part 18 is demonstrated.
 除湿機100は、例えば、リビング等の室内で使用される。除湿機100は、使用者によって運転ボタン21aが押されることによって、運転を開始する。使用者によって押された運転ボタン21aは、動作制御部20aへ信号を送信する。動作制御部20aは、運転ボタン21aから信号を受信すると、ファンモータ6および除湿部7を駆動させる。 The dehumidifier 100 is used in a room such as a living room. The dehumidifier 100 starts operation when the user presses the operation button 21a. The operation button 21a pressed by the user transmits a signal to the operation control unit 20a. When receiving a signal from the operation button 21a, the operation control unit 20a drives the fan motor 6 and the dehumidifying unit 7.
 ファンモータ6が駆動すると、送風ファン6aが回転する。送風ファン6aは、気流を発生させる。送風ファン6aによって、図4に示すように、室内空気Pが吸込口3から筐体1の内部へ取り込まれる。室内空気Pは、除湿部7によって除湿されて、乾燥空気Qとなる。乾燥空気Qは、送風ファン6aによって、吹出口4から室内へ送り出される。上記のようにして、除湿機100は運転を開始する(ステップS101)。 When the fan motor 6 is driven, the blower fan 6a rotates. The blower fan 6a generates an air current. As shown in FIG. 4, the indoor air P is taken into the housing 1 from the suction port 3 by the blower fan 6 a. The room air P is dehumidified by the dehumidifying unit 7 to become dry air Q. The dry air Q is sent out from the blower outlet 4 into the room by the blower fan 6a. As described above, the dehumidifier 100 starts operation (step S101).
 動作制御部20aは、ファンモータ6および除湿部7を駆動させると、照射部19の光源19aに可視光を発させる。光源19aが発した可視光は、レンズ19bによって集光される。レンズ19bによって集光された可視光は、乾燥空気Qの送風方向へ照射される(ステップS102)。なお、上記のステップS101の処理とステップS102の処理とは、同時または逆の順序で実行されてもよい。 When the fan motor 6 and the dehumidifying unit 7 are driven, the operation control unit 20a causes the light source 19a of the irradiation unit 19 to emit visible light. The visible light emitted from the light source 19a is collected by the lens 19b. The visible light condensed by the lens 19b is irradiated in the blowing direction of the dry air Q (step S102). In addition, the process of said step S101 and the process of step S102 may be performed simultaneously or in reverse order.
 乾燥空気Qの送風方向は、風向変更部10の状態によって決まる。照射部19は、この送風方向へ向けて可視光を照射する。図11に示すように、乾燥空気Qの送風方向へ照射された可視光は、照射領域30を照らす。使用者は、照射領域30を見ながら操作キー21dを操作する。操作キー21dは、使用者からの操作に基づいた操作指示を、動作制御部20aへ送信する。 The blowing direction of the dry air Q is determined by the state of the wind direction changing unit 10. The irradiation part 19 irradiates visible light toward this ventilation direction. As shown in FIG. 11, the visible light irradiated in the blowing direction of the dry air Q illuminates the irradiation region 30. The user operates the operation key 21d while looking at the irradiation area 30. The operation key 21d transmits an operation instruction based on an operation from the user to the operation control unit 20a.
 動作制御部20aは、受信した操作指示に基づいて、第1モータ12および第2モータ14を制御する。これにより、上下方向ルーバー11および左右方向ルーバー13が動く。上下方向ルーバー11および左右方向ルーバー13が動くことにより、送風方向が変更される。また、上下方向ルーバー11および左右方向ルーバー13が動くと、センサ部16も共に動く。センサ部16のセンサケース17に設けられた照射部19も共に動く。照射部19は、変更された送風方向へ可視光を照射するように動く。照射領域30は、送風方向の変更に合わせて動く(ステップS103)。 The operation control unit 20a controls the first motor 12 and the second motor 14 based on the received operation instruction. Thereby, the up-down direction louver 11 and the left-right direction louver 13 move. The air blowing direction is changed by moving the vertical louver 11 and the horizontal louver 13. When the vertical louver 11 and the horizontal louver 13 move, the sensor unit 16 also moves. The irradiation unit 19 provided in the sensor case 17 of the sensor unit 16 also moves together. The irradiation unit 19 moves so as to irradiate visible light in the changed air blowing direction. The irradiation area 30 moves according to the change in the blowing direction (step S103).
 本実施の形態の除湿機100の使用者は、可視光によって照らされた照射領域30を見ることで、乾燥空気Qが当たる送風領域を視認することができる。使用者は、照射領域30を見ながら、例えば図11に示すように、予め設置しておいた衣服31が可視光で照らされるように操作キー21dを操作する。これにより、衣服31に乾燥空気Qが集中的に当たる。本実施の形態の除湿機100の使用者は、照射領域30を見ることによって、乾燥空気Qの送風方向を容易に認識することができる。 The user of the dehumidifier 100 according to the present embodiment can visually recognize the blow area where the dry air Q hits by looking at the irradiation area 30 illuminated with visible light. The user operates the operation key 21d while looking at the irradiation area 30 so that the clothes 31 that have been set in advance are illuminated with visible light, for example, as shown in FIG. Thereby, the dry air Q hits the clothes 31 intensively. The user of the dehumidifier 100 of the present embodiment can easily recognize the blowing direction of the dry air Q by looking at the irradiation region 30.
 使用者は、操作キー21dによって乾燥空気Qの送風方向を任意の方向へ容易に変更することができる。使用者は、乾かしたい衣服31に向けて照射領域30を動かすことによって、当該衣服31に乾燥空気Qを集中的に当てることができる。使用者は、除湿機100の位置に合わせて予め干しておいた衣服31を動かすことなく、当該衣服31を乾燥空気Qによって乾燥させることができる。本実施の形態によれば、乾燥空気Qの送風方向をより容易に認識することができ、かつ乾燥空気Qの送風方向を任意の方向へより容易に変更することができる除湿機100が得られる。 The user can easily change the blowing direction of the dry air Q to an arbitrary direction by the operation key 21d. The user can concentrate the dry air Q on the clothes 31 by moving the irradiation region 30 toward the clothes 31 to be dried. The user can dry the clothes 31 with the dry air Q without moving the clothes 31 previously dried according to the position of the dehumidifier 100. According to the present embodiment, it is possible to obtain the dehumidifier 100 that can more easily recognize the blowing direction of the dry air Q and can more easily change the blowing direction of the dry air Q to an arbitrary direction. .
 また、本実施の形態の表面温度検出部18は、除湿機100が運転している際、送風領域の表面温度を検出する。表面温度検出部18は、検出した表面温度の情報が含まれる電気信号を制御装置20へ送る。制御装置20の温度判定部20cは、表面温度検出部18からの電気信号に含まれる温度情報と記憶部20bに記憶された基準値の情報とに基づいて、表面温度の判定を行う。上述したように、本実施の形態の温度判定部20cは、表面温度検出部18によって検出された表面温度が第1基準Tr1内であるか判定する。この判定は、筐体1に対して送風方向に人がいるか否かの判定である(ステップS104)。 In addition, the surface temperature detection unit 18 of the present embodiment detects the surface temperature of the air blowing area when the dehumidifier 100 is operating. The surface temperature detection unit 18 sends an electric signal including information on the detected surface temperature to the control device 20. The temperature determination unit 20c of the control device 20 determines the surface temperature based on the temperature information included in the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b. As described above, the temperature determination unit 20c of the present embodiment determines whether the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1. This determination is a determination as to whether or not there is a person in the blowing direction with respect to the housing 1 (step S104).
 例えば、筐体1に対して送風方向に人がいない場合、表面温度検出部18によって検出される表面温度は、第1基準Tr1外になる。表面温度検出部18によって検出された表面温度が第1基準Tr1外であると温度判定部20cによって判定されると、ステップS102以降の処理が、再び実行される。表面温度検出部18によって検出された表面温度が第1基準Tr1外であると温度判定部20cによって判定すると、照射制御部20eは光源19aに発光を継続させる。これにより、照射部19による可視光の照射が継続する。 For example, when there is no person in the air blowing direction with respect to the housing 1, the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1. When the temperature determination unit 20c determines that the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1, the processes after step S102 are executed again. When the temperature determination unit 20c determines that the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1, the irradiation control unit 20e causes the light source 19a to continue to emit light. Thereby, irradiation of visible light by the irradiation part 19 continues.
 また、例えば、筐体1に対して送風方向に人がいる場合、表面温度検出部18によって検出される表面温度は、第1基準Tr1内になる。表面温度検出部18によって検出された表面温度が第1基準Tr1内であると温度判定部20cによって判定されると、照射制御部20eは光源19aに発光を止めさせる。これにより、照射部19による可視光の照射が停止する(ステップS105)。 Further, for example, when there is a person in the air blowing direction with respect to the housing 1, the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr 1. When the temperature determination unit 20c determines that the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1, the irradiation control unit 20e causes the light source 19a to stop emitting light. Thereby, irradiation of visible light by the irradiation part 19 stops (step S105).
 ステップS105で照射部19による可視光の照射が停止すると、再びステップS104の判定が行われる。照射部19からの可視光の照射が停止している状態で表面温度検出部18によって検出される表面温度が第1基準Tr1外になると、照射制御部20eは光源19aに発光を再開させる。これにより、照射部19による可視光の照射が再開する。照射部19による可視光の照射が再開した後に再びステップS104の判定が行われる。照射部19による可視光の照射が再開している状態で表面温度検出部18によって検出される表面温度が第1基準Tr1内になると、ステップS105の処理が再び実行され、照射部19による可視光の照射が停止する。 When the irradiation of visible light by the irradiation unit 19 is stopped in step S105, the determination in step S104 is performed again. If the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1 while the irradiation of visible light from the irradiation unit 19 is stopped, the irradiation control unit 20e causes the light source 19a to resume light emission. Thereby, irradiation of visible light by the irradiation unit 19 is resumed. After the irradiation of the visible light by the irradiation unit 19 is resumed, the determination in step S104 is performed again. When the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1 while the irradiation of the visible light by the irradiation unit 19 is resumed, the process of step S105 is executed again, and the visible light by the irradiation unit 19 is displayed. Irradiation stops.
 次に、本実施の形態の除湿機100の第1モードの動作について説明する。図13は、実施の形態1の除湿機100の第1モードの動作を示すフローチャートである。図13のステップS201は、図12のステップS101に対応する。除湿機100は、使用者によって運転ボタン21aが操作されることで、運転を開始する(ステップS201)。 Next, the operation of the first mode of the dehumidifier 100 of the present embodiment will be described. FIG. 13 is a flowchart showing an operation in the first mode of the dehumidifier 100 of the first exemplary embodiment. Step S201 in FIG. 13 corresponds to step S101 in FIG. The dehumidifier 100 starts operation when the operation button 21a is operated by the user (step S201).
 使用者は、運転ボタン21aによって除湿機100の運転を開始させた後、モード選択ボタン21bを操作してもよい。使用者は、モード選択ボタン21bを操作して、運転モードを選択する(ステップS202)。 The user may operate the mode selection button 21b after starting the operation of the dehumidifier 100 with the operation button 21a. The user operates the mode selection button 21b to select the operation mode (step S202).
 以下、使用者が第1モードを選択したことを前提に、この第1モードでの除湿機100の動作を説明する。動作制御部20aは、モード選択ボタン21bからの信号に基づいて、記憶部20bに設定された第1モードの処理を実行する。動作制御部20aは、照射部19に可視光を照射させる(ステップS203)。このステップS203は、図12のステップS102に対応する。 Hereinafter, the operation of the dehumidifier 100 in the first mode will be described on the assumption that the user has selected the first mode. The operation control unit 20a executes the process of the first mode set in the storage unit 20b based on the signal from the mode selection button 21b. The operation control unit 20a causes the irradiation unit 19 to emit visible light (step S203). This step S203 corresponds to step S102 in FIG.
 図13に示す例において照射部19は、第1モードの処理が実行されると可視光を照射する。なお、照射部19は、除湿機100の運転が開始すると同時に可視光の照射を開始してもよい。また、照射部19は、設定ボタン21cが押されたと同時、または、設定ボタン21cが押されてから一定時間経過後に、可視光の照射を開始してもよい。 In the example shown in FIG. 13, the irradiation unit 19 emits visible light when the first mode process is executed. In addition, the irradiation part 19 may start irradiation of visible light simultaneously with the driving | operation of the dehumidifier 100 being started. Further, the irradiation unit 19 may start the irradiation of visible light at the same time when the setting button 21c is pressed or after a certain time has elapsed since the setting button 21c is pressed.
 使用者は、操作キー21dを操作して、送風方向および照射領域30を変更させる(ステップS204)。このステップS204は、図12のステップS103に対応する。ここで、第1モードを選択した使用者は、例えば衣服31が可視光によって照らされている状態で設定ボタン21cを押す。使用者によって押された設定ボタン21cは、設定部20dへ信号を送信する。設定部20dは、設定ボタン21cから信号を受信すると、照射部19によって可視光が照射されている方向を設定方向として記憶部20bに設定する。設定方向が記憶部20bに設定されると、動作制御部20aは、送風方向がこの設定方向へ固定されるように第1モータ12および第2モータ14を制御する(ステップS205)。 The user operates the operation key 21d to change the blowing direction and the irradiation region 30 (step S204). This step S204 corresponds to step S103 in FIG. Here, the user who has selected the first mode presses the setting button 21c in a state where the clothes 31 are illuminated by visible light, for example. The setting button 21c pressed by the user transmits a signal to the setting unit 20d. When receiving the signal from the setting button 21c, the setting unit 20d sets the direction in which the visible light is irradiated by the irradiation unit 19 as the setting direction in the storage unit 20b. When the setting direction is set in the storage unit 20b, the operation control unit 20a controls the first motor 12 and the second motor 14 so that the blowing direction is fixed in the setting direction (step S205).
 送風方向が設定方向へ固定されると、乾燥空気Qは、設定方向へ吹き出され続ける。表面温度検出部18は、乾燥空気Qが当たっている衣服31の表面温度を検出する。表面温度検出部18は、検出した表面温度の情報が含まれる電気信号を制御装置20へ送る。制御装置20の温度判定部20cは、表面温度検出部18からの電気信号に含まれる温度情報と記憶部20bに記憶された基準値の情報とに基づいて、表面温度の判定を行う。温度判定部20cは、表面温度検出部18によって検出された表面温度が第2基準Tr2内であるか判定する。この判定は、対象物の乾燥が完了したか否かの判定である(ステップS206)。 When the blowing direction is fixed in the setting direction, the dry air Q continues to be blown out in the setting direction. The surface temperature detection unit 18 detects the surface temperature of the garment 31 that is struck by the dry air Q. The surface temperature detection unit 18 sends an electric signal including information on the detected surface temperature to the control device 20. The temperature determination unit 20c of the control device 20 determines the surface temperature based on the temperature information included in the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b. The temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the second reference Tr2. This determination is a determination as to whether or not the drying of the object has been completed (step S206).
 上述したように、送風方向が設定方向へ固定されると、乾燥空気Qは、設定方向へ吹き出され続ける。温度判定部20cは、乾燥空気Qが当たっている衣服31の表面温度が第2基準Tr2内になるまで、ステップS206の判定を継続する。乾燥空気Qは、衣服31の表面温度が第2基準Tr2内になるまで衣服31に当たり続ける。表面温度検出部18によって検出された表面温度が第2基準Tr2内になると、動作制御部20aは、ファンモータ6、除湿部7および照射部19を停止させる。これにより、除湿機100の運転が終了する(ステップ207)。 As described above, when the blowing direction is fixed in the setting direction, the dry air Q continues to be blown out in the setting direction. The temperature determination unit 20c continues the determination in step S206 until the surface temperature of the garment 31 that is exposed to the dry air Q falls within the second reference Tr2. The dry air Q continues to hit the clothes 31 until the surface temperature of the clothes 31 falls within the second reference Tr2. When the surface temperature detected by the surface temperature detection unit 18 falls within the second reference Tr2, the operation control unit 20a stops the fan motor 6, the dehumidifying unit 7, and the irradiation unit 19. Thereby, the operation of the dehumidifier 100 is completed (step 207).
 図13のフローチャートに示す処理は、図12のフローチャートに示す処理と並行して実施される。第1モードが選択されている場合においても、照射部19は、表面温度検出部18によって検出される表面温度が第1基準Tr1内であるときには、可視光の照射を停止する。 The process shown in the flowchart of FIG. 13 is performed in parallel with the process shown in the flowchart of FIG. Even when the first mode is selected, the irradiation unit 19 stops the irradiation of visible light when the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1.
 本実施の形態の除湿機100の使用者は、設定ボタン21cを操作することにより、任意の方向に乾燥空気Qを集中的に送ることができる。乾燥空気Qは、特定の衣服31へ向かって無駄なく確実に送られる。これにより、乾燥させる必要のない物への送風による無駄な電気代が削減される。また、本実施の形態の除湿機100は、対象物の乾燥が完了すると、自動的に運転を終了する。これにより、無駄な電気代がより削減される。 The user of the dehumidifier 100 of the present embodiment can concentrate the dry air Q in an arbitrary direction by operating the setting button 21c. The dry air Q is reliably sent toward the specific clothes 31 without waste. Thereby, the useless electricity bill by the ventilation to the thing which does not need to be dried is reduced. Moreover, the dehumidifier 100 of this Embodiment will complete | finish operation | movement automatically, when drying of a target object is completed. Thereby, useless electricity bill is further reduced.
 なお、上記のステップS206において表面温度検出部18によって検出された表面温度が第2基準Tr2内になった場合には、ステップS202の処理が再び行われてもよい。また、ステップS206の判定は行われなくてもよい。例えば、除湿機100は、ステップS205の処理が行われた一定時間経過後に運転を終了してもよい。 In addition, when the surface temperature detected by the surface temperature detection part 18 in said step S206 becomes in 2nd reference | standard Tr2, the process of step S202 may be performed again. Further, the determination in step S206 may not be performed. For example, the dehumidifier 100 may end the operation after a lapse of a certain time after the process of step S205 is performed.
 次に、本実施の形態の除湿機100の第2モードの動作について説明する。図13は、実施の形態1の除湿機100の第2モードの動作を示すフローチャートである。図14のステップS301は、図13のステップS201に対応する。図14のステップS302は、図13のステップS202に対応する。ステップS301およびステップS302の説明を省略する。 Next, the operation of the second mode of the dehumidifier 100 of this embodiment will be described. FIG. 13 is a flowchart showing the operation of the second mode of the dehumidifier 100 of the first exemplary embodiment. Step S301 in FIG. 14 corresponds to step S201 in FIG. Step S302 in FIG. 14 corresponds to step S202 in FIG. Description of step S301 and step S302 is omitted.
 以下、ステップS302において使用者が第2モードを選択したことを前提に、この第2モードでの除湿機100の動作を説明する。動作制御部20aは、モード選択ボタン21bからの信号に基づいて、記憶部20bに設定された第2モードの処理を実行する。動作制御部20aは、照射部19に可視光を照射させる(ステップ303)。このステップS303は、図13のステップS203に対応する。使用者は、操作キー21dを操作して、送風方向および照射領域30を変更させる(ステップS304)。このステップS304は、図13のステップS204に対応する。 Hereinafter, the operation of the dehumidifier 100 in the second mode will be described on the assumption that the user has selected the second mode in step S302. Based on the signal from the mode selection button 21b, the operation control unit 20a executes the process of the second mode set in the storage unit 20b. The operation control unit 20a causes the irradiation unit 19 to emit visible light (step 303). This step S303 corresponds to step S203 in FIG. The user operates the operation key 21d to change the blowing direction and the irradiation region 30 (step S304). This step S304 corresponds to step S204 in FIG.
 第2モードの処理が実行されている際、表面温度検出部18は、送風領域に限らず、当該表面温度検出部18が検知することが可能な範囲の表面温度を検出する。動作制御部20aは、表面温度検出部18が検出した表面温度に基づいて、室内のうちの低温の場所に乾燥空気Qが当たるように第1モータ12および第2モータ14を制御する(ステップS305)。低温の場所とは、例えば、表面温度が予め設定された閾値以下の場所である。この閾値は、記憶部20bに設定される。 When the processing in the second mode is being performed, the surface temperature detection unit 18 detects a surface temperature in a range that can be detected by the surface temperature detection unit 18 as well as the air blowing region. Based on the surface temperature detected by the surface temperature detector 18, the operation controller 20a controls the first motor 12 and the second motor 14 so that the dry air Q hits a cold place in the room (step S305). ). A low-temperature place is a place where the surface temperature is not more than a preset threshold value, for example. This threshold is set in the storage unit 20b.
 表面温度検出部18は、乾燥空気Qが当たっている低温の場所の表面温度を検出する。表面温度検出部18は、検出した表面温度の情報が含まれる電気信号を制御装置20へ送る。制御装置20の温度判定部20cは、表面温度検出部18からの電気信号に含まれる温度情報と記憶部20bに記憶された基準値の情報とに基づいて、表面温度の判定を行う。温度判定部20cは、表面温度検出部18によって検出された表面温度が第2基準Tr2内であるか判定する。この判定は、乾燥空気Qが当たっている低温の場所の温度が、周囲と同程度になったかの判定である(ステップS306)。 The surface temperature detection unit 18 detects the surface temperature of a low temperature place where the dry air Q is hit. The surface temperature detection unit 18 sends an electric signal including information on the detected surface temperature to the control device 20. The temperature determination unit 20c of the control device 20 determines the surface temperature based on the temperature information included in the electrical signal from the surface temperature detection unit 18 and the reference value information stored in the storage unit 20b. The temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the second reference Tr2. This determination is a determination as to whether or not the temperature of the low-temperature place where the dry air Q is hit has reached the same level as the surroundings (step S306).
 温度判定部20cは、乾燥空気Qが当たっている場所の表面温度が第2基準Tr2内なるまで、ステップS306の判定を継続する。表面温度検出部18によって検出された表面温度が第2基準Tr2内になると、動作制御部20aは、ファンモータ6、除湿部7および照射部19を停止させる。これにより、除湿機100の運転が終了する(ステップ307)。これにより、室内の低温であった部分がなくなり、結露の発生が抑制される。 The temperature determination unit 20c continues the determination in step S306 until the surface temperature of the place where the dry air Q is hit falls within the second reference Tr2. When the surface temperature detected by the surface temperature detection unit 18 falls within the second reference Tr2, the operation control unit 20a stops the fan motor 6, the dehumidifying unit 7, and the irradiation unit 19. Thereby, the operation of the dehumidifier 100 is completed (step 307). Thereby, the part which was the indoor low temperature disappears, and generation | occurrence | production of dew condensation is suppressed.
 なお、上記のステップS307において表面温度検出部18によって検出された表面温度が第2基準Tr2内になった場合には、ステップS305の処理が再び行われてもよい。第2モードが選択された場合において除湿機100は、室内の複数の低温の場所の全てがなくなるように動作してもよい。 In addition, when the surface temperature detected by the surface temperature detection part 18 in said step S307 becomes in 2nd reference | standard Tr2, the process of step S305 may be performed again. When the second mode is selected, the dehumidifier 100 may operate so that all of the plurality of low-temperature places in the room disappear.
 図14のフローチャートに示す処理は、図12のフローチャートに示す処理と並行して実施される。第2モードが選択されている場合においても、照射部19は、表面温度検出部18によって検出される表面温度が第1基準Tr1内であるときには、可視光の照射を停止する。 The process shown in the flowchart of FIG. 14 is performed in parallel with the process shown in the flowchart of FIG. Even when the second mode is selected, the irradiation unit 19 stops the irradiation of visible light when the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1.
 上記の実施の形態の除湿機100は、筐体1に対して送風方向に人がいる場合、可視光の照射を停止する。これにより、照射部19から照射された可視光が使用者の目に直接入ることがない。上記の実施の形態によれば、使用者にとってより使い勝手のよい除湿機100を得ることができる。 The dehumidifier 100 of the above embodiment stops the irradiation of visible light when there is a person in the air blowing direction with respect to the housing 1. Thereby, the visible light irradiated from the irradiation part 19 does not enter into a user's eyes directly. According to the above embodiment, the dehumidifier 100 that is more convenient for the user can be obtained.
 なお、上記の実施の形態における表面温度検出部18および温度判定部20cは、人を検出する人検出手段の一例である。除湿機100は、人検出手段として、例えば、焦電素子を用いたセンサを備えていてもよい。また、除湿機100は、人検出手段として、超音波によって人を検出するセンサまたは可視光によって人を検出するセンサを備えていてもよい。除湿機100は、人を検出する複数種類のセンサを備えていてもよい。また、除湿機100は、人を検出する特定の種類のセンサを複数備えていてもよい。人検出手段は、複数のセンサによって構成されることで、例えば気温等の環境の影響を受けること無く高精度で人を検出することができる。また、人を検出する複数のセンサの少なくとも1つは、例えば、筐体1の右側面に設けられてもよい。また、人を検出する複数のセンサの少なくとも1つは、例えば、筐体1の左側面に設けられてもよい。人を検出する複数のセンサが分散して配置されることで、当該複数のセンサによって人の存在を検知することができる範囲がより広くなる。 In addition, the surface temperature detection unit 18 and the temperature determination unit 20c in the above embodiment are an example of a person detection unit that detects a person. The dehumidifier 100 may include, for example, a sensor using a pyroelectric element as a human detection unit. Moreover, the dehumidifier 100 may be provided with a sensor for detecting a person using ultrasonic waves or a sensor for detecting a person using visible light as a person detecting unit. The dehumidifier 100 may include a plurality of types of sensors that detect people. The dehumidifier 100 may include a plurality of specific types of sensors that detect people. The person detection means is configured by a plurality of sensors, and can detect a person with high accuracy without being affected by an environment such as temperature. In addition, at least one of the plurality of sensors that detect a person may be provided on the right side surface of the housing 1, for example. In addition, at least one of the plurality of sensors that detect a person may be provided on the left side surface of the housing 1, for example. A plurality of sensors for detecting a person are arranged in a distributed manner, so that the range in which the presence of a person can be detected by the plurality of sensors becomes wider.
 上記の実施の形態において、人の存在の有無は、表面温度検出部18が検出する表面温度に基づいて判定される。これにより、精度良く人の存在の有無が判定される。また、人を検出するためのこの表面温度検出部18により、衣服31等の対象物が完了したかが判定可能になる。上記の実施の形態であれば、無駄な構成部品を追加することなく、より使い勝手のよい除湿機100が得られる。また、上記の実施の形態において、人の存在の有無は、基準温度範囲の一例である第1基準Tr1に基づいて判定される。これにより、より精度良く人の存在の有無が判定される。 In the above embodiment, the presence / absence of a person is determined based on the surface temperature detected by the surface temperature detector 18. Thereby, the presence or absence of a person is accurately determined. In addition, the surface temperature detection unit 18 for detecting a person can determine whether an object such as the clothing 31 is completed. If it is said embodiment, the dehumidifier 100 which is more convenient is obtained, without adding a useless component. In the above embodiment, the presence / absence of a person is determined based on a first reference Tr1 that is an example of a reference temperature range. Thereby, the presence or absence of a person is determined with higher accuracy.
 なお、記憶部20bには、例えば、第2温度Th2の情報が設定されていなくてもよい。第1基準Tr1の上限値は、設定されていなくてもよい。温度判定部20cは、例えば、表面温度検出部18によって検出された表面温度が第1温度Th1以上であるかの判定をしてもよい。この判定は、筐体1に対して送風方向に人がいるか否かの判定である。例えば、筐体1に対して送風方向に人がいない場合、表面温度検出部18によって検出された表面温度は第1温度Th1未満になる。また、例えば、筐体1に対して送風方向に人がいる場合、表面温度検出部18によって検出された表面温度は第1温度Th1以上になる。このように、記憶部20bには、第1温度Th1と第2温度Th2とのうちの一方の情報が設定されていなくてもよい。 In the storage unit 20b, for example, information on the second temperature Th2 may not be set. The upper limit value of the first reference Tr1 may not be set. For example, the temperature determination unit 20c may determine whether the surface temperature detected by the surface temperature detection unit 18 is equal to or higher than the first temperature Th1. This determination is a determination as to whether or not there is a person in the air blowing direction with respect to the housing 1. For example, when there is no person in the blowing direction with respect to the housing 1, the surface temperature detected by the surface temperature detection unit 18 is less than the first temperature Th1. Further, for example, when there is a person in the air blowing direction with respect to the housing 1, the surface temperature detected by the surface temperature detection unit 18 is equal to or higher than the first temperature Th1. Thus, information of one of the first temperature Th1 and the second temperature Th2 may not be set in the storage unit 20b.
 また、第1温度Th1、第2温度Th2および第3温度Th3等の基準値は、固定値として設定されなくてもよい。第1温度Th1、第2温度Th2および第3温度Th3等の基準値は、例えば、室内の気温等に基づいて制御装置20によって算出されてもよい。除湿機100は、室内気温を測定するためのセンサ等を備えていてもよい。室内の気温は、表面温度検出部18によって測定されてもよい。 Further, the reference values such as the first temperature Th1, the second temperature Th2, and the third temperature Th3 may not be set as fixed values. Reference values such as the first temperature Th1, the second temperature Th2, and the third temperature Th3 may be calculated by the control device 20 based on, for example, the indoor air temperature. The dehumidifier 100 may include a sensor for measuring the room temperature. The indoor air temperature may be measured by the surface temperature detector 18.
 上記の実施の形態において照射部19は、表面温度検出部18と一緒にセンサケース17に設けられている。照射部19は、表面温度検出部18から離れた場所に設けられていてもよい。また、除湿機100は、照射部19と風向変更部10とが独立して動作可能な構成であってもよい。除湿機100は、風向変更部10を動かすための第1モータ12および第2モータ14に加えて、照射部19を風向変更部10に対して独立して動かすための部品を備えていてもよい。また、制御装置20は、風向変更部10の動きに合わせて、この風向変更部10から離れた位置に設けられた照射部19を動かしてもよい。 In the above embodiment, the irradiation unit 19 is provided in the sensor case 17 together with the surface temperature detection unit 18. The irradiation unit 19 may be provided at a location away from the surface temperature detection unit 18. Further, the dehumidifier 100 may have a configuration in which the irradiation unit 19 and the wind direction changing unit 10 can operate independently. The dehumidifier 100 may include components for moving the irradiation unit 19 independently of the wind direction changing unit 10 in addition to the first motor 12 and the second motor 14 for moving the wind direction changing unit 10. . Further, the control device 20 may move the irradiation unit 19 provided at a position away from the wind direction changing unit 10 in accordance with the movement of the wind direction changing unit 10.
 風向決定手段の一例である風向変更部10は、上下方向ルーバー11および左右方向ルーバー13を有していなくてもよい。風向変更部10は、上記の実施の形態以外にも、例えば上下左右方向へ動くことができるノズル状の構造であってもよい。 The wind direction changing unit 10 that is an example of the wind direction determining unit may not include the vertical louver 11 and the horizontal louver 13. The wind direction changing unit 10 may have a nozzle-like structure that can move in the vertical and horizontal directions, for example, in addition to the above-described embodiment.
 上記の実施の形態において、操作部21の操作キー21dは、筐体1に設けられる。使用者は、筐体1上の操作キー21dを操作するという容易な動作によって、乾燥空気Qの送風方向を変更することができる。なお、除湿機100は、操作部21の代わりに、操作キー21dを有するリモートコントローラーを備えていてもよい。これにより使用者は、筐体1から離れた位置で、除湿機100を操作できる。また、除湿機100は、操作部21とリモートコントローラーとの両方を備えていてもよい。 In the above embodiment, the operation key 21d of the operation unit 21 is provided in the housing 1. The user can change the blowing direction of the dry air Q by an easy operation of operating the operation key 21d on the housing 1. The dehumidifier 100 may include a remote controller having operation keys 21d instead of the operation unit 21. Thereby, the user can operate the dehumidifier 100 at a position away from the housing 1. Further, the dehumidifier 100 may include both the operation unit 21 and a remote controller.
 上記の実施の形態においては衣服31を乾燥させる動作を一例として示したが、乾燥空気Qが吹き出される対象は衣服31に限られない。除湿機100は、浴室の壁および床等の、屋内の濡れた場所を乾燥する際にも使用できる。 In the above embodiment, the operation of drying the garment 31 is shown as an example. However, the object to which the dry air Q is blown out is not limited to the garment 31. The dehumidifier 100 can also be used when drying indoor wet places such as bathroom walls and floors.
実施の形態2.
 次に、実施の形態2について説明する。実施の形態2の除湿機100の構成は、実施の形態1と同様に、図1から図10によって示される。実施の形態1と同様の構成および動作については、説明を省略する。
Embodiment 2. FIG.
Next, a second embodiment will be described. The configuration of the dehumidifier 100 according to the second embodiment is shown in FIGS. 1 to 10 as in the first embodiment. The description of the same configuration and operation as in the first embodiment is omitted.
 図15は、実施の形態2の照射部19の制御を示すフローチャートである。図15のフローチャートにおけるステップS401からステップS404は、実施の形態1の図12のフローチャートにおけるステップS101からステップS104と同様である。ステップS401からステップS404までの説明を、省略する。 FIG. 15 is a flowchart showing control of the irradiation unit 19 according to the second embodiment. Steps S401 to S404 in the flowchart of FIG. 15 are the same as steps S101 to S104 in the flowchart of FIG. 12 of the first embodiment. The description from step S401 to step S404 is omitted.
 ステップS404では、実施の形態1のステップS104と同様に、筐体1に対して送風方向に人がいるか否かの判定が行われる。温度判定部20cは、ステップS404で、表面温度検出部18によって検出された表面温度が第1基準Tr1内であるか判定する。 In step S404, as in step S104 of the first embodiment, it is determined whether or not there is a person in the blowing direction with respect to the housing 1. In step S404, the temperature determination unit 20c determines whether the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1.
 例えば、筐体1に対して送風方向に人がいない場合、表面温度検出部18によって検出される表面温度は、第1基準Tr1外になる。表面温度検出部18によって検出された表面温度が第1基準Tr1外であると温度判定部20cによって判定されると、ステップ402以降の処理が、再び実行される。表面温度検出部18によって検出された表面温度が第1基準Tr1外であると温度判定部20cによって判定すると、照射制御部20eは光源19aに発光を継続させる。これにより、照射部19による可視光の照射が継続する。 For example, when there is no person in the air blowing direction with respect to the housing 1, the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1. When the temperature determination unit 20c determines that the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1, the processes after step 402 are executed again. When the temperature determination unit 20c determines that the surface temperature detected by the surface temperature detection unit 18 is outside the first reference Tr1, the irradiation control unit 20e causes the light source 19a to continue to emit light. Thereby, irradiation of visible light by the irradiation part 19 continues.
 また、例えば、筐体1に対して送風方向に人がいる場合、表面温度検出部18によって検出される表面温度は、第1基準Tr1内になる。表面温度検出部18によって検出された表面温度が第1基準Tr1内であると温度判定部20cによって判定されると、照射制御部20eは光源19aに、発している可視光の光度を低くさせる。これにより、照射部19によって照射される可視光の光度が低下する(ステップS405)。本実施の形態であれば、強い可視光が使用者に向けて照射されない。例えば、使用者が照射部19の正面を見た際の眩しさが低減される。また、人の目に入射する可視光の量が少なくなる。本実施の形態によれば、実施の形態1と同様に、使い勝手のよい除湿機100が得られる。なお、本実施の形態の図15に示すフローチャートの処理は、実施の形態1と同様に、第1モードの処理または第2モードの処理と並行して実行されてもよい。 Further, for example, when there is a person in the air blowing direction with respect to the housing 1, the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr 1. When the temperature determination unit 20c determines that the surface temperature detected by the surface temperature detection unit 18 is within the first reference Tr1, the irradiation control unit 20e causes the light source 19a to reduce the luminous intensity of the emitted visible light. Thereby, the luminous intensity of the visible light irradiated by the irradiation part 19 falls (step S405). If it is this Embodiment, strong visible light will not be irradiated toward a user. For example, the glare when the user looks at the front of the irradiation unit 19 is reduced. Also, the amount of visible light that enters the human eye is reduced. According to the present embodiment, the dehumidifier 100 that is easy to use is obtained as in the first embodiment. The process of the flowchart shown in FIG. 15 of the present embodiment may be executed in parallel with the first mode process or the second mode process, as in the first embodiment.
実施の形態3.
 次に、実施の形態3について説明する。実施の形態3の除湿機101の基本的な構成は、実施の形態1および実施の形態2の除湿機100と同様である。除湿機101について、実施の形態1および実施の形態2の除湿機100と同様の構成および動作の説明を省略する。
Embodiment 3 FIG.
Next, Embodiment 3 will be described. The basic configuration of the dehumidifier 101 of the third embodiment is the same as that of the dehumidifier 100 of the first and second embodiments. About the dehumidifier 101, description of the structure and operation | movement similar to the dehumidifier 100 of Embodiment 1 and Embodiment 2 is abbreviate | omitted.
 図16は、実施の形態3の除湿機101の斜視図である。また、図17は、実施の形態3の制御装置23の機能を示すブロック図である。本実施の形態の除湿機101は、発音装置の一例であるブザー22を備える。ブザー22は、例えば、筐体1の上面に設けられる。なお、ブザー22の配置は、本実施の形態に限定されるものではない。また、発音装置の一例であるブザー22は、図17に示すように、除湿機101の制御装置23に電気的に接続される。ブザー22は、例えば、制御装置23の動作制御部20aによって制御される。なお、本実施の形態の制御装置23の機能は、実施の形態1の制御装置20と同様に、処理回路によって実現される。 FIG. 16 is a perspective view of the dehumidifier 101 according to the third embodiment. FIG. 17 is a block diagram illustrating functions of the control device 23 according to the third embodiment. The dehumidifier 101 of this embodiment includes a buzzer 22 that is an example of a sounding device. The buzzer 22 is provided on the upper surface of the housing 1, for example. The arrangement of the buzzer 22 is not limited to the present embodiment. Moreover, the buzzer 22 which is an example of a sounding device is electrically connected to the control device 23 of the dehumidifier 101 as shown in FIG. The buzzer 22 is controlled by, for example, the operation control unit 20a of the control device 23. In addition, the function of the control apparatus 23 of this Embodiment is implement | achieved by the processing circuit similarly to the control apparatus 20 of Embodiment 1. FIG.
 図18は、実施の形態3の照射部の制御を示すフローチャートである。図18のフローチャートにおけるステップS501からステップS505は、実施の形態1の図12のフローチャートにおけるステップS101からステップS105と同様である。ステップS501からステップS505までの説明を、省略する。 FIG. 18 is a flowchart showing control of the irradiation unit according to the third embodiment. Steps S501 to S505 in the flowchart of FIG. 18 are the same as steps S101 to S105 in the flowchart of FIG. 12 of the first embodiment. The description from step S501 to step S505 is omitted.
 本実施の形態では、ステップS505で照射部19による可視光の照射が停止すると、上記のブザー22が音を発する。ブザー22は、当該ブザー22に電気的に接続された制御装置23によって動作させられる。除湿機101は、当該除湿機101が備えるブザー22により、使用者が可視光を直視してしまう可能性を当該使用者へ報知することができる。本実施の形態であれば、使用者が強い可視光を直視してしまう可能性が、より少なくなる。本実施の形態によれば、使用者にとってより使い勝手がよい除湿機101が得られる。なお、除湿機101が備える発音装置は、音を発することができればよく、ブザー22に限定されるものではない。 In this embodiment, when the irradiation of the visible light by the irradiation unit 19 is stopped in step S505, the buzzer 22 emits a sound. The buzzer 22 is operated by a control device 23 electrically connected to the buzzer 22. The dehumidifier 101 can notify the user of the possibility that the user will directly view the visible light by the buzzer 22 provided in the dehumidifier 101. In the present embodiment, the possibility that the user directly looks at the strong visible light is reduced. According to the present embodiment, it is possible to obtain the dehumidifier 101 that is more convenient for the user. Note that the sounding device included in the dehumidifier 101 is not limited to the buzzer 22 as long as it can emit sound.
 本発明に係る除湿機は、例えば、任意の対象物を乾燥させるために利用される。 The dehumidifier according to the present invention is used, for example, for drying an arbitrary object.
 1 筐体、 2 車輪、 3 吸込口、 4 吹出口、 5 風路、 6 ファンモータ、 6a 送風ファン、 7 除湿部、 8 貯水部、 9 フィルター、 10 風向変更部、11 上下方向ルーバー、 11a 軸、 12 第1モータ、 12a 歯車、 12b 歯車、 12c 歯車、 13 左右方向ルーバー、 14 第2モータ、 15 リンク、 16 センサ部、 17 センサケース、 17a センサ窓、 18 表面温度検出部、 19 照射部、 19a 光源、 19b レンズ、 20 制御装置、 20a 動作制御部、 20b 記憶部、 20c 温度判定部、 20d 設定部、 20e 照射制御部、 21 操作部、 21a 運転ボタン、 21b モード選択ボタン、 21c 設定ボタン、 21d 操作キー、 22 ブザー、 23 制御装置、 30 照射領域、 31 衣服、 100 除湿機、 101 除湿機、 200 専用ハードウェア、 201 プロセッサ、 202 メモリ 1 housing, 2 wheels, 3 inlet, 4 outlet, 5 airway, 6 fan motor, 6a blower fan, 7 dehumidifying part, 8 water storage part, 9 filter, 10 wind direction changing part, 11 vertical louver, 11a shaft , 12 1st motor, 12a gear, 12b gear, 12c gear, 13 left / right louver, 14 2nd motor, 15 link, 16 sensor unit, 17 sensor case, 17a sensor window, 18 surface temperature detection unit, 19 irradiation unit, 19a light source, 19b lens, 20 control device, 20a operation control unit, 20b storage unit, 20c temperature determination unit, 20d setting unit, 20e irradiation control unit, 21 operation unit, 21a operation button, 21b mode selection button, 21c Setting button, 21d operation keys 22 buzzer, 23 controller, 30 irradiation region, 31 garment, 100 dehumidifier, 101 dehumidifier 200 dedicated hardware, 201 processor, 202 memory

Claims (6)

  1.  吹出口が形成された筐体と、
     前記筐体の内部に設けられ、空気中の水分を除去する除湿手段と、
     前記除湿手段によって水分が除去された空気を前記吹出口を介して前記筐体の外部へ送る送風手段と、
     前記吹出口から空気が送られる方向を決める風向決定手段と、
     操作指示を送信する操作手段と、
     前記操作手段から受信した操作指示に基づいて風向決定手段を制御する風向制御手段と、
     前記吹出口から空気が送られる方向へ可視光を照射する照射手段と、
     前記筐体に対して前記吹出口から空気が送られる方向にいる人を検出する人検出手段と、
     前記照射手段によって可視光が照射されている時に前記人検出手段によって人が検出されると、前記照射手段に可視光の照射を停止させる照射制御手段と、
     を備える除湿機。
    A housing in which an air outlet is formed;
    A dehumidifying means provided in the housing for removing moisture in the air;
    An air blowing means for sending the air from which moisture has been removed by the dehumidifying means to the outside of the housing via the air outlet;
    Wind direction determining means for determining a direction in which air is sent from the air outlet;
    An operation means for transmitting an operation instruction;
    Wind direction control means for controlling the wind direction determination means based on the operation instruction received from the operation means;
    Irradiating means for irradiating visible light in a direction in which air is sent from the outlet;
    A person detecting means for detecting a person in a direction in which air is sent from the air outlet to the housing;
    When a person is detected by the human detection means when the visible light is being irradiated by the irradiation means, an irradiation control means for stopping the irradiation of the visible light by the irradiation means,
    A dehumidifier.
  2.  吹出口が形成された筐体と、
     前記筐体の内部に設けられ、空気中の水分を除去する除湿手段と、
     前記除湿手段によって水分が除去された空気を前記吹出口を介して前記筐体の外部へ送る送風手段と、
     前記吹出口から空気が送られる方向を決める風向決定手段と、
     操作指示を送信する操作手段と、
     前記操作手段から受信した操作指示に基づいて風向決定手段を制御する風向制御手段と、
     前記吹出口から空気が送られる方向へ可視光を照射する照射手段と、
     前記筐体に対して前記吹出口から空気が送られる方向にいる人を検出する人検出手段と、
     前記照射手段によって可視光が照射されている時に前記人検出手段によって人の存在が検出されると、前記照射手段に照射している可視光の光度を低くさせる照射制御手段と、
     を備える除湿機。
    A housing in which an air outlet is formed;
    A dehumidifying means provided in the housing for removing moisture in the air;
    An air blowing means for sending the air from which moisture has been removed by the dehumidifying means to the outside of the housing via the air outlet;
    Wind direction determining means for determining a direction in which air is sent from the air outlet;
    An operation means for transmitting an operation instruction;
    Wind direction control means for controlling the wind direction determination means based on the operation instruction received from the operation means;
    Irradiating means for irradiating visible light in a direction in which air is sent from the outlet;
    A person detecting means for detecting a person in a direction in which air is sent from the air outlet to the housing;
    When the presence of a person is detected by the human detection means when visible light is irradiated by the irradiation means, an irradiation control means for reducing the luminous intensity of the visible light irradiated to the irradiation means,
    A dehumidifier.
  3.  前記人検出手段は、前記吹出口から送られた空気が当たる対象物の表面温度を検出する表面温度検出手段を備え、当該表面温度検出手段が検出する表面温度に基づいて人を検出する請求項1または請求項2に記載の除湿機。 The said person detection means is provided with the surface temperature detection means which detects the surface temperature of the target object which the air sent from the said blower outlet hits, and detects a person based on the surface temperature which the said surface temperature detection means detects The dehumidifier according to claim 1 or claim 2.
  4.  基準温度範囲の上限値と下限値とが記憶される記憶手段を更に備え、
     前記人検出手段は、前記表面温度検出手段によって検出された表面温度が前記基準温度範囲内であるときに人を検出する請求項3に記載の除湿機。
    A storage means for storing an upper limit value and a lower limit value of the reference temperature range;
    The dehumidifier according to claim 3, wherein the person detecting unit detects a person when the surface temperature detected by the surface temperature detecting unit is within the reference temperature range.
  5.  前記照射手段は、前記風向決定手段に設けられ、前記風向決定手段と共に動く請求項1から請求項4の何れか1項に記載の除湿機。 The dehumidifier according to any one of claims 1 to 4, wherein the irradiation unit is provided in the wind direction determination unit and moves together with the wind direction determination unit.
  6.  前記風向決定手段は、
     前記吹出口から空気が送られる方向を上下方向に変更する第1変更部と、
     前記吹出口から空気が送られる方向を左右方向に変更する第2変更部と、
     を有し、
     前記第2変更部は、前記第1変更部と共に前記第1変更部が動く方向と同じ方向へ動き、
     前記照射手段は、前記第2変更部と共に前記第2変更部が動く方向と同じ方向へ動く請求項1から請求項5の何れか1項に記載の除湿機。
    The wind direction determining means is
    A first changing unit that changes the direction in which air is sent from the blowout port in the up and down direction;
    A second changing unit that changes the direction in which air is sent from the air outlet in the left-right direction;
    Have
    The second changing unit moves in the same direction as the first changing unit moves together with the first changing unit,
    The dehumidifier according to any one of claims 1 to 5, wherein the irradiating unit moves in the same direction as the second changing unit moves together with the second changing unit.
PCT/JP2017/027026 2017-02-22 2017-07-26 Dehumidifier WO2018154808A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019501017A JP6696619B2 (en) 2017-02-22 2017-07-26 Dehumidifier
TW106132229A TWI669427B (en) 2017-02-22 2017-09-20 dehumidifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-031186 2017-02-22
JP2017031186 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018154808A1 true WO2018154808A1 (en) 2018-08-30

Family

ID=63252532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027026 WO2018154808A1 (en) 2017-02-22 2017-07-26 Dehumidifier

Country Status (3)

Country Link
JP (1) JP6696619B2 (en)
TW (1) TWI669427B (en)
WO (1) WO2018154808A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321437A (en) * 1986-07-16 1988-01-29 Matsushita Electric Ind Co Ltd Air conditioner
JP2006064218A (en) * 2004-08-25 2006-03-09 Daikin Ind Ltd Floor mounted air conditioner
JP2008175458A (en) * 2007-01-18 2008-07-31 Sanyo Electric Co Ltd Air conditioner installed on floor
JP2008188188A (en) * 2007-02-05 2008-08-21 Matsushita Electric Ind Co Ltd Clothes dryer
JP2009282906A (en) * 2008-05-26 2009-12-03 Calsonic Kansei Corp Range image data generation device for vehicle
JP2010226699A (en) * 2009-02-25 2010-10-07 Kyocera Corp Portable electronic equipment
JP2010229693A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Wall panel for building with surface luminescence function
JP2011080625A (en) * 2009-10-05 2011-04-21 Panasonic Corp Air conditioner
JP2013037833A (en) * 2011-08-05 2013-02-21 Sharp Corp Ion feeding device and electric apparatus with it
CN103776144A (en) * 2014-02-21 2014-05-07 深圳如果技术有限公司 Air outlet component, air conditioner and working method of air conditioner
JP2015158353A (en) * 2011-03-07 2015-09-03 三菱電機株式会社 air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114700A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Dehumidifier
CN108603327B (en) * 2016-02-16 2021-03-12 三菱电机株式会社 Dehumidifier
JP6702497B2 (en) * 2017-02-20 2020-06-03 三菱電機株式会社 Dehumidifier

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321437A (en) * 1986-07-16 1988-01-29 Matsushita Electric Ind Co Ltd Air conditioner
JP2006064218A (en) * 2004-08-25 2006-03-09 Daikin Ind Ltd Floor mounted air conditioner
JP2008175458A (en) * 2007-01-18 2008-07-31 Sanyo Electric Co Ltd Air conditioner installed on floor
JP2008188188A (en) * 2007-02-05 2008-08-21 Matsushita Electric Ind Co Ltd Clothes dryer
JP2009282906A (en) * 2008-05-26 2009-12-03 Calsonic Kansei Corp Range image data generation device for vehicle
JP2010226699A (en) * 2009-02-25 2010-10-07 Kyocera Corp Portable electronic equipment
JP2010229693A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Wall panel for building with surface luminescence function
JP2011080625A (en) * 2009-10-05 2011-04-21 Panasonic Corp Air conditioner
JP2015158353A (en) * 2011-03-07 2015-09-03 三菱電機株式会社 air conditioner
JP2013037833A (en) * 2011-08-05 2013-02-21 Sharp Corp Ion feeding device and electric apparatus with it
CN103776144A (en) * 2014-02-21 2014-05-07 深圳如果技术有限公司 Air outlet component, air conditioner and working method of air conditioner

Also Published As

Publication number Publication date
TWI669427B (en) 2019-08-21
JPWO2018154808A1 (en) 2019-08-08
TW201831751A (en) 2018-09-01
JP6696619B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6696514B2 (en) Dehumidifier
JP5984666B2 (en) Dehumidifier
WO2017163470A1 (en) Dehumidifier
WO2018008234A1 (en) Dehumidifier
JP2009014259A (en) Air conditioner
WO2018154808A1 (en) Dehumidifier
JP6702497B2 (en) Dehumidifier
JP6816737B2 (en) Dehumidifier
JP2010270958A (en) Indoor unit of air conditioner
JP2016044925A (en) Humidifier
JP2019007693A (en) Dehumidifier
JP7198113B2 (en) air conditioner
JP2019032102A (en) Dehumidifier
JP2020069431A (en) Dehumidifier
JP7226347B2 (en) dehumidifier
JP6477238B2 (en) humidifier
JP2018008201A (en) Dehumidifier
JP2011185536A (en) Dehumidifier
JP2008093506A (en) Dehumidifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897701

Country of ref document: EP

Kind code of ref document: A1