WO2018088564A1 - Bearing abnormality diagnostic method and diagnostic system - Google Patents

Bearing abnormality diagnostic method and diagnostic system Download PDF

Info

Publication number
WO2018088564A1
WO2018088564A1 PCT/JP2017/040835 JP2017040835W WO2018088564A1 WO 2018088564 A1 WO2018088564 A1 WO 2018088564A1 JP 2017040835 W JP2017040835 W JP 2017040835W WO 2018088564 A1 WO2018088564 A1 WO 2018088564A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
vibration acceleration
abnormality
diagnosis
diagnostic
Prior art date
Application number
PCT/JP2017/040835
Other languages
French (fr)
Japanese (ja)
Inventor
一弘 吉田
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2018088564A1 publication Critical patent/WO2018088564A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present invention relates to a bearing abnormality diagnosis method and diagnosis system, and more particularly, to a bearing abnormality diagnosis method and diagnosis system that can diagnose the presence or absence of an abnormality without disassembling mechanical equipment.
  • a detection device that detects vibration associated with the rotation of the rolling bearing and a signal that represents vibration detected by the detection device are at least Branches into two signals, and based on one of the signals, the presence / absence of damage of the rolling bearing and the damaged member are determined, and the amount of foreign matter mixed in the lubricant is determined based on the other signal.
  • a rolling bearing abnormality determination apparatus or determination method including an arithmetic processing unit that determines whether or not there is an abnormality in the rolling bearing based on at least the results of both of these determinations.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a bearing abnormality diagnosis method and a diagnosis system capable of diagnosing a plurality of types of abnormality of the bearing by a simple determination method.
  • the above object of the present invention can be achieved by the following constitution.
  • (1) The vibration acceleration generated from the bearing is detected by a vibration acceleration sensor, and the number of frequencies required for a plurality of different diagnoses is determined by a plurality of bandpass filters from the vibration acceleration signal from the vibration acceleration sensor.
  • a bearing abnormality diagnosis method comprising: extracting diagnostic signals having different bands and diagnosing a plurality of types of abnormality of the bearing based on the extracted different diagnostic signals.
  • the bearing according to (1) wherein diagnosis of a plurality of types of abnormality of the bearing is performed based on frequency spectra obtained by frequency analysis of the plurality of different diagnostic signals. Abnormal diagnosis method.
  • (3) The vibration acceleration sensor is attached to a bearing housing that supports the bearing, and detects vibration acceleration generated from the bearing through the bearing housing.
  • Bearing abnormality diagnosis method (1) or (2) Bearing abnormality diagnosis method.
  • (4) a vibration acceleration sensor for detecting vibration acceleration generated from the bearing; A plurality of band-pass filters for extracting diagnostic signals having different frequency bands, each of which is required for a plurality of different diagnoses, from vibration acceleration signals from the vibration acceleration sensor; Based on a plurality of diagnostic signals extracted by the bandpass filter, a diagnostic unit for diagnosing a plurality of types of abnormality of the bearing;
  • a bearing abnormality diagnosis system characterized by comprising: (5) The bearing according to (4), wherein diagnosis of a plurality of types of abnormality of the bearing is performed based on frequency spectra obtained by frequency analysis of the plurality of different diagnostic signals. Abnormality diagnosis system.
  • the vibration acceleration sensor is attached to a bearing housing that supports the bearing, and detects vibration acceleration generated from the bearing through the bearing housing. Bearing abnormality diagnosis system.
  • the present invention it is possible to easily perform a plurality of different diagnoses by extracting a plurality of different diagnostic signals from the vibration acceleration signals of the vibration acceleration sensor that detects the vibration acceleration of the bearing. As a result, the type of failure can be determined, and the bearing that needs to be replaced can be replaced at a necessary timing, so that maintenance efficiency can be improved. In addition, since a plurality of types of diagnosis can be performed with a single vibration acceleration signal, it is possible to diagnose even if failures occur simultaneously and frequently.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a bearing abnormality diagnosis system according to an embodiment of the present invention. It is a block diagram which shows the function structure of the diagnostic apparatus which concerns on this embodiment. It is a flowchart for demonstrating the operation
  • (A) is an example of a vibration acceleration signal from a vibration acceleration sensor
  • (b) and (c) are examples of diagnostic signals, and (d), (e), (f), and (g) are examples of spectral data. is there.
  • the bearing abnormality diagnosis system of the present embodiment shown in FIG. 1 diagnoses an abnormality of the rolling bearing 11 that is a rotating component supported by the bearing housing 10, and detects vibration acceleration generated from the rolling bearing 11.
  • the acceleration sensor 12, a rotation sensor (not shown) for detecting the rotation speed of the rolling bearing 11, and signals detected by the vibration acceleration sensor 12 and the rotation sensor are received via the data transmission means (transmission means) 13.
  • a signal input unit 21 that performs filter processing and sends it to the subsequent diagnosis unit 22; a diagnosis unit 22 that diagnoses whether there is an abnormality in the rolling bearing 11 based on a signal from the signal input unit 21; a monitor or an alarm device Etc., and an output device 30 comprising the above.
  • the signal input unit 21 and the diagnosis unit 22 constitute a diagnosis device 20.
  • the rolling bearing 11 includes an inner ring 111 that is externally fitted to the rotating shaft 101 of the mechanical equipment, an outer ring 112 that is internally fitted to the bearing housing 10, and a plurality of rolling rings that are arranged to be able to roll between the inner ring 111 and the outer ring 112. It has the moving body 113 and the holder
  • the vibration acceleration sensor 12 is fixed to the bearing housing 10 that supports the bearing 11.
  • the method for fixing the vibration acceleration sensor 12 includes bolt fixing, adhesion, combined use of bolt fixing and adhesion, and embedding with a resin material.
  • bolt fixation you may make it provide a rotation stop function.
  • by molding the vibration acceleration sensor 12 with a resin material it is possible to prevent moisture from entering, and further to improve the anti-vibration performance against external vibration, thus dramatically improving the reliability of the sensor itself. can do.
  • FIG. 2 is a block diagram showing the main functional configuration of the diagnostic apparatus 20 according to this embodiment.
  • the diagnostic device 20 includes a data collection / distribution unit 211, a rotation analysis unit 212, a filter processing unit 213, a vibration analysis unit 214, a comparison determination unit 215, and an internal memory 216.
  • the data collection / distribution unit 211 and the filter processing unit 213 mainly constitute the signal input unit 21, and the rotation analysis unit 212, the vibration analysis unit 214, the comparison determination unit 215, and the internal memory 216 mainly constitute the diagnosis unit 22.
  • a plurality of filter processing units 213 and diagnosis units 22 are provided in association with each other (see FIG. 1).
  • the diagnostic device 20 is constituted by a microcomputer, and each processing unit such as the data collection / distribution unit 211 executes the following processing by executing a program recorded and held in the microcomputer. Will be executed.
  • the data collection / distribution unit 211 converts the signal Sig1 sent from the vibration acceleration sensor 12 into a digital signal by an A / D converter, and simultaneously collects and temporarily accumulates a signal related to the rotational speed, and sets the signal type. In response, it is distributed to either the rotation analysis unit 212 or the filter processing unit 213.
  • the A / D converter may be integrated with the vibration acceleration sensor 12, and a digital signal may be received via the data transmission means 13 described above.
  • the rotation analysis unit 212 is caused by damage for each part of the rolling bearing 11 using the predetermined relational expression shown in FIG. 4 based on the design specification data of the rolling bearing 11 and the rotation speed signal from the rotation sensor. Calculate bearing damage frequency. The calculation of the bearing damage theoretical frequency may use past data stored in the internal memory 216 if a similar diagnosis has been performed previously.
  • the rotational speed detecting means (not shown) for detecting the rotational speed of the rolling bearing 11 is constituted by an encoder attached to the inner ring 111 and a magnet or a magnetic detection element attached to the outer ring 112.
  • the output signal is a pulse signal corresponding to the shape and rotational speed of the encoder. Therefore, the rotation analysis unit 212 has a predetermined conversion function or conversion table corresponding to the shape of the encoder, and calculates the rotation speed of the inner ring 111 from the pulse signal.
  • the filter processing unit 213 has a function of a bandpass filter (BPF), divides the vibration acceleration signal Sig1 of the vibration acceleration sensor 12 into a plurality of different filter frequency bands for diagnosis, and a plurality of diagnosis signals (Sig2). -1, Sig2-2) is extracted.
  • the filter frequency band to be extracted is set according to the natural frequency band in each bearing device. This natural frequency can be easily obtained by exciting the object to be measured by an impact method using an impulse hammer or the like, and analyzing the frequency of the vibration detector attached to the object to be measured or the sound generated by the impact. it can.
  • the object to be measured is the rolling bearing 11
  • a natural frequency due to any of the inner ring 111, the outer ring 112, the rolling element 113, the bearing housing 10, and the like is given.
  • there are a plurality of natural frequencies of mechanical parts and the amplitude level at the natural frequency is high, so the sensitivity of measurement is good.
  • the number of diagnostic signals in the present embodiment is two, but can be three or more as
  • the frequency band of the diagnostic signal to be extracted from the vibration acceleration signal Sig1 should be appropriately set according to the natural frequency band of each bearing device (bearing 11 and bearing housing 10), the type of abnormality to be diagnosed, diagnostic conditions, and the like. Can do.
  • the illustrated diagnostic signal Sig2-1 is for diagnosing an abnormality A described later, and its frequency band is set to 1K to 2K (Hz), and the diagnostic signal Sig2-2 is for diagnosing an abnormality B described later.
  • the frequency band is set to 3K-4K (Hz).
  • the horizontal axis f is the frequency (Hz)
  • the vertical axis G is the acceleration (m / s 2 ).
  • the vibration analysis unit 214 performs frequency analysis of the vibration signal generated from the rolling bearing 11 based on the diagnostic signals (Sig2-1, Sig2-2) from the filter processing unit 213.
  • the vibration analysis unit 214 is an FFT calculation unit that calculates the frequency spectrum of the vibration signal, and calculates the frequency spectrum of the vibration signal based on the FFT algorithm and envelope analysis.
  • the calculated frequency spectrum is output to the comparison / determination unit 215 as spectrum data as shown in FIG. 5 (d) or FIG. 5 (e) and FIG. 5 (f) or FIG. 5 (g), for example.
  • the vibration analysis unit 214 may perform absolute value processing and envelope processing as preprocessing for performing FFT, and convert only to frequency components necessary for abnormality diagnosis. Further, if necessary, the spectrum data after the envelope processing (envelope frequency spectrum) can also be output to the comparison determination unit 215 together.
  • the comparison / determination unit 215 diagnoses the abnormality of the bearing 11 as follows, for example, using the spectrum data obtained by the vibration analysis unit 214 as shown in FIGS. 5D to 5G, for example.
  • the bearing calculated by the rotation analysis unit 212 is used. Based on the damage frequency, the bearing 11 is diagnosed as having some abnormality A (for example, damage to the outer ring raceway surface).
  • the spectral data obtained based on the diagnostic signal Sig2-1 is such that the rolling element passing vibration is not detected, as shown in FIG. Diagnose it.
  • the rolling element passing vibration as shown in FIG. 5F is detected in the spectrum data obtained based on the above-described diagnostic signal Sig2-2, it is calculated by the rotation analysis unit 212.
  • the bearing 11 is diagnosed as having some abnormality B (for example, wear on the outer ring raceway surface) different from the abnormality A on the bearing 11.
  • the spectrum data obtained based on the diagnostic signal Sig2-2 is such that rolling element passing vibration is not detected, as shown in FIG. Diagnose it.
  • vibration frequency generated with rotation of the bearing such as rolling element passing vibration frequency, rolling element revolution frequency, and rolling element rotation frequency, can be used as a diagnostic index to detect and diagnose the behavior when an abnormality occurs.
  • the diagnosis result of the rolling bearing 11 determined as described above is stored in the internal memory 216 and sent to the output device 30 by the data transmission means 31 using wireless considering the wired or network.
  • the internal memory 216 is constituted by, for example, a memory or an HDD, and the design specification data of each rotating part used for calculation of the abnormal frequency, diagnosis of presence / absence of the abnormality of the rolling bearing 11 determined by the comparison determination unit 215, and abnormality detection Each piece of data relating to site identification is stored.
  • the output device 30 displays the diagnosis result of the rolling bearing 11 on a monitor or the like in real time.
  • an alarm device such as a light or a buzzer may be used to alert the user of the abnormality.
  • the signal data transmission means 13 and 31 need only be capable of transmitting and receiving signals accurately, and may be wired or may be wireless considering the network.
  • FIG. 3 is a flowchart for explaining an operation procedure of the bearing abnormality diagnosis system.
  • step S1 the vibration acceleration sensor 12 detects the vibration acceleration generated from the rolling bearing 11 and the rotation sensor detects the rotation speed of the rolling bearing 11, and the detected vibration acceleration signal and rotation speed signal are used as data transmission means 13. To the data collection / distribution unit 211 of the signal input unit 21.
  • the data collection / distribution unit 211 amplifies the input analog vibration signal as necessary, and converts it into a digital signal by an A / D converter.
  • step S2 based on the data stored in the data collection / distribution unit 211 and the internal memory 216, the filter processing unit 213 extracts a diagnostic signal used for the subsequent diagnosis.
  • step S3 the vibration analysis unit 214 performs frequency analysis of the vibration signal generated from the rolling bearing 11 based on the diagnostic signals (Sig2-1, Sig2-2) from the filter processing unit 213, and The frequency spectrum is calculated and the spectrum data is output to the comparison / determination unit 215.
  • step S4 the comparison / determination unit 215 diagnoses the presence / absence and type of the bearing 11 by comparing the peak frequency of the spectrum data obtained by the vibration analysis unit 214 with the calculated bearing damage frequency, The result is sent to the output device 30 in step S5.
  • the bearing abnormality diagnosis method or diagnosis system As described above, the following effects can be obtained.
  • A By extracting a plurality of different diagnostic signals (Sig2-1, Sig2-2) from the vibration acceleration signal (Sig1) of the vibration acceleration sensor 12 that detects the vibration acceleration of the bearing housing 10 that supports the bearing 11, A plurality of different diagnoses can be easily performed. As a result, the type of failure can be determined, and the bearing that needs to be replaced can be replaced at a necessary timing, so that maintenance efficiency can be improved.
  • B Since a plurality of types of diagnosis can be performed with one vibration acceleration signal (Sig1), it is possible to diagnose even if failures occur simultaneously and frequently.
  • the band set value, the diagnostic index, and the number of corresponding failures are not limited to this, and can be optimally set according to the target bearing, the failure to be detected, the diagnostic conditions, the required specifications, and the like.
  • the detected abnormality includes bearing inner ring, outer ring, scratches on the rolling element, impressions, dents, rust, flaking, and the inner ring of the rolling element.
  • the bearing abnormality diagnosis method or diagnosis system of the present invention can be applied to machine equipment such as automobiles, railway vehicles, machine tools, wind power generators, and elevator devices.
  • machine equipment such as automobiles, railway vehicles, machine tools, wind power generators, and elevator devices.
  • the bearing abnormality diagnosis method or diagnosis system of the present invention monitors the state of the rolling bearing in the outer ring rotation. Is also applicable.
  • a vibration acceleration sensor is attached to the bearing housing and vibration acceleration generated from the bearing is detected via the bearing housing.
  • the vibration acceleration sensor may be attached at an arbitrary position where acceleration can be detected.
  • the vibration acceleration sensor may be directly attached to a stationary wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Provided is a bearing abnormality diagnostic method that comprises: a vibration acceleration sensor (12) that detects vibration acceleration generated from a bearing (11); a plurality of bandpass filters (213), in the number needed for a plurality of different diagnoses, that respectively extract diagnostic signals of different frequency bands; and diagnostic units (22) that diagnose a plurality of types of abnormalities of the bearing (11), on the basis of the plurality of diagnostic signals extracted by the bandpass filters (213).

Description

軸受異常診断方法および診断システムBearing abnormality diagnosis method and diagnosis system
 本発明は、軸受異常診断方法および診断システムに関し、特に、機械設備を分解することなく、異常の有無を診断できる軸受異常診断方法および診断システムに関するものである。 The present invention relates to a bearing abnormality diagnosis method and diagnosis system, and more particularly, to a bearing abnormality diagnosis method and diagnosis system that can diagnose the presence or absence of an abnormality without disassembling mechanical equipment.
 従来、例えば特許文献1に見られるように、転がり軸受の異常の有無の判定を行うべく、転がり軸受の回転に伴う振動を検出する検出装置と、検出装置が検出する振動を表す信号を、少なくとも2つの信号に分岐し、そのうちの一方の信号に基づき、転がり軸受の損傷の有無、並びに、損傷部材の判定を行なうと共に、他方の信号に基づき、潤滑剤に混入した異物の量の判定を行ない、少なくともこれら両判定の結果に基づき、上記転がり軸受の異常の有無の判定を行なう演算処理器とを備えた転がり軸受の異常判定装置ないし判定方法が知られている。 Conventionally, for example, as seen in Patent Document 1, in order to determine whether or not there is an abnormality in a rolling bearing, a detection device that detects vibration associated with the rotation of the rolling bearing and a signal that represents vibration detected by the detection device are at least Branches into two signals, and based on one of the signals, the presence / absence of damage of the rolling bearing and the damaged member are determined, and the amount of foreign matter mixed in the lubricant is determined based on the other signal. There is known a rolling bearing abnormality determination apparatus or determination method including an arithmetic processing unit that determines whether or not there is an abnormality in the rolling bearing based on at least the results of both of these determinations.
日本国特開2009-109267号公報Japanese Unexamined Patent Publication No. 2009-109267
 しかしながら、上記特許文献1記載の転がり軸受の異常判定装置ないし判定方法では、2つの判定結果に基いて異常の有無を判定するため、判定方法が複雑であった。 However, in the rolling bearing abnormality determination device or determination method described in Patent Document 1, the determination method is complicated because the presence or absence of abnormality is determined based on two determination results.
 本発明は、前述した事情に鑑みてなされたものであり、その目的は、簡単な判定方法で軸受の複数種の異常を診断できる軸受異常診断方法および診断システムを提供することにある。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a bearing abnormality diagnosis method and a diagnosis system capable of diagnosing a plurality of types of abnormality of the bearing by a simple determination method.
 本発明の上記目的は、下記の構成により達成される。
(1)軸受から発生する振動加速度を振動加速度センサにより検出し、該振動加速度センサからの振動加速度信号より、複数のバンドパスフィルタにて、複数の異なる診断に必要とされる数の、それぞれ周波数帯域の異なる診断用信号を抽出し、該抽出した複数の異なる診断用信号に基づいて、前記軸受の複数種の異常を診断することを特徴とする軸受異常診断方法。
(2) 前記軸受の複数種の異常の診断は、前記複数の異なる診断用信号を周波数分析することで得られた周波数スペクトルに基づいてそれぞれ行われることを特徴とする(1)に記載の軸受異常診断方法。
(3) 前記振動加速度センサは、前記軸受を支持する軸受ハウジングに取り付けられ、該軸受ハウジングを介して前記軸受から発生する振動加速度を検出することを特徴とする(1)または(2)に記載の軸受異常診断方法。
(4)軸受から発生する振動加速度を検出する振動加速度センサと、
 該振動加速度センサからの振動加速度信号より、複数の異なる診断に必要とされる数の、それぞれ周波数帯域の異なる診断用信号を抽出する複数のバンドパスフィルタと、
 該バンドパスフィルタにて抽出された複数の診断用信号に基づいて、前記軸受の複数種の異常を診断する診断部と、
を備えたことを特徴とする軸受異常診断システム。
(5) 前記軸受の複数種の異常の診断は、前記複数の異なる診断用信号を周波数分析することで得られた周波数スペクトルに基づいてそれぞれ行われることを特徴とする(4)に記載の軸受異常診断システム。
(6) 前記振動加速度センサは、前記軸受を支持する軸受ハウジングに取り付けられ、該軸受ハウジングを介して前記軸受から発生する振動加速度を検出することを特徴とする(4)または(5)に記載の軸受異常診断システム。
The above object of the present invention can be achieved by the following constitution.
(1) The vibration acceleration generated from the bearing is detected by a vibration acceleration sensor, and the number of frequencies required for a plurality of different diagnoses is determined by a plurality of bandpass filters from the vibration acceleration signal from the vibration acceleration sensor. A bearing abnormality diagnosis method comprising: extracting diagnostic signals having different bands and diagnosing a plurality of types of abnormality of the bearing based on the extracted different diagnostic signals.
(2) The bearing according to (1), wherein diagnosis of a plurality of types of abnormality of the bearing is performed based on frequency spectra obtained by frequency analysis of the plurality of different diagnostic signals. Abnormal diagnosis method.
(3) The vibration acceleration sensor is attached to a bearing housing that supports the bearing, and detects vibration acceleration generated from the bearing through the bearing housing. (1) or (2) Bearing abnormality diagnosis method.
(4) a vibration acceleration sensor for detecting vibration acceleration generated from the bearing;
A plurality of band-pass filters for extracting diagnostic signals having different frequency bands, each of which is required for a plurality of different diagnoses, from vibration acceleration signals from the vibration acceleration sensor;
Based on a plurality of diagnostic signals extracted by the bandpass filter, a diagnostic unit for diagnosing a plurality of types of abnormality of the bearing;
A bearing abnormality diagnosis system characterized by comprising:
(5) The bearing according to (4), wherein diagnosis of a plurality of types of abnormality of the bearing is performed based on frequency spectra obtained by frequency analysis of the plurality of different diagnostic signals. Abnormality diagnosis system.
(6) The vibration acceleration sensor is attached to a bearing housing that supports the bearing, and detects vibration acceleration generated from the bearing through the bearing housing. Bearing abnormality diagnosis system.
 本発明によれば、軸受の振動加速度を検出する振動加速度センサの振動加速度信号から複数の異なる診断用信号を抽出することにより、簡単に複数の異なる診断を行うことが可能になる。これにより、故障の種類を判別することが可能となり、交換が必要な軸受を必要なタイミングで交換できるため、メンテナンス効率を向上できる。
 また、一つの振動加速度信号で複数種の診断を行うことができるため、故障が同時多発的に発生しても診断可能である。
According to the present invention, it is possible to easily perform a plurality of different diagnoses by extracting a plurality of different diagnostic signals from the vibration acceleration signals of the vibration acceleration sensor that detects the vibration acceleration of the bearing. As a result, the type of failure can be determined, and the bearing that needs to be replaced can be replaced at a necessary timing, so that maintenance efficiency can be improved.
In addition, since a plurality of types of diagnosis can be performed with a single vibration acceleration signal, it is possible to diagnose even if failures occur simultaneously and frequently.
本発明の一実施形態に係る軸受異常診断システムの概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a bearing abnormality diagnosis system according to an embodiment of the present invention. 本実施形態に係る診断装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the diagnostic apparatus which concerns on this embodiment. 本実施形態に係る軸受異常診断システムの動作手順を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement procedure of the bearing abnormality diagnostic system which concerns on this embodiment. 本実施形態に係る転がり軸受の傷の部位と、傷に起因して発生する振動周波数の関係を示す表である。It is a table | surface which shows the relationship between the site | part of the damage | wound of the rolling bearing which concerns on this embodiment, and the vibration frequency which arises resulting from a damage | wound. (a)は振動加速度センサからの振動加速度信号の一例、(b)(c)は診断用信号の一例、(d)(e)(f)(g)はスペクトルデータの一例をそれぞれ示す図である。(A) is an example of a vibration acceleration signal from a vibration acceleration sensor, (b) and (c) are examples of diagnostic signals, and (d), (e), (f), and (g) are examples of spectral data. is there.
 以下、本発明に係る軸受異常診断方法および診断システムの一実施形態について、図面を参照して詳細に説明する。 Hereinafter, an embodiment of a bearing abnormality diagnosis method and a diagnosis system according to the present invention will be described in detail with reference to the drawings.
 図1に示した本実施形態の軸受異常診断システムは、軸受ハウジング10で支持された回転部品である転がり軸受11の異常を診断するものであり、転がり軸受11から発生する振動加速度を検出する振動加速度センサ12と、転がり軸受11の回転速度を検出する回転センサ(図示せず)と、振動加速度センサ12や回転センサで検出した信号を、データ伝送手段(伝送手段)13を介して受信し、フィルタ処理を行って後段の診断部22に送出する信号入力部21と、この信号入力部21からの信号に基づいて転がり軸受11の異常の有無の診断を行う診断部22と、モニタや警報機等からなる出力装置30とを備えている。
 なお、信号入力部21及び診断部22は、診断装置20を構成する。
The bearing abnormality diagnosis system of the present embodiment shown in FIG. 1 diagnoses an abnormality of the rolling bearing 11 that is a rotating component supported by the bearing housing 10, and detects vibration acceleration generated from the rolling bearing 11. The acceleration sensor 12, a rotation sensor (not shown) for detecting the rotation speed of the rolling bearing 11, and signals detected by the vibration acceleration sensor 12 and the rotation sensor are received via the data transmission means (transmission means) 13. A signal input unit 21 that performs filter processing and sends it to the subsequent diagnosis unit 22; a diagnosis unit 22 that diagnoses whether there is an abnormality in the rolling bearing 11 based on a signal from the signal input unit 21; a monitor or an alarm device Etc., and an output device 30 comprising the above.
The signal input unit 21 and the diagnosis unit 22 constitute a diagnosis device 20.
 転がり軸受11は、機械設備の回転軸101に外嵌される内輪111と、軸受ハウジング10に内嵌される外輪112と、内輪111及び外輪112の間で転動可能に配置された複数の転動体113と、転動体113を転動自在に保持する不図示の保持器と、を有する。 The rolling bearing 11 includes an inner ring 111 that is externally fitted to the rotating shaft 101 of the mechanical equipment, an outer ring 112 that is internally fitted to the bearing housing 10, and a plurality of rolling rings that are arranged to be able to roll between the inner ring 111 and the outer ring 112. It has the moving body 113 and the holder | retainer not shown which hold | maintains the rolling body 113 so that rolling is possible.
 振動加速度センサ12は、軸受11を支持する軸受ハウジング10に固定される。振動加速度センサ12の固定方法には、ボルト固定、接着、ボルト固定と接着の併用、及び樹脂材による埋め込み等がある。
 なお、ボルト固定の場合には、回り止め機能を備えるようにしてもよい。また、振動加速度センサ12を樹脂材によってモールドすることで、水分の浸入を防止することができ、さらに外部からの加振に対する防振性が向上するため、センサ自体の信頼性を飛躍的に向上することができる。
The vibration acceleration sensor 12 is fixed to the bearing housing 10 that supports the bearing 11. The method for fixing the vibration acceleration sensor 12 includes bolt fixing, adhesion, combined use of bolt fixing and adhesion, and embedding with a resin material.
In addition, in the case of bolt fixation, you may make it provide a rotation stop function. In addition, by molding the vibration acceleration sensor 12 with a resin material, it is possible to prevent moisture from entering, and further to improve the anti-vibration performance against external vibration, thus dramatically improving the reliability of the sensor itself. can do.
 図2は、本実施形態に係る診断装置20の主要な機能構成を示すブロック図である。
 図2に示すように、診断装置20は、データ収集・分配部211、回転分析部212、フィルタ処理部213、振動分析部214、比較判定部215及び内部メモリ216を有して構成される。データ収集・分配部211及びフィルタ処理部213は、主に信号入力部21を構成し、回転分析部212、振動分析部214、比較判定部215及び内部メモリ216は、主に診断部22を構成する。また、本実施形態では、フィルタ処理部213、診断部22は、それぞれ対応付けられて複数設けられている(図1参照)。
 なお、この診断装置20は、マイクロコンピュータで構成されており、マイクロコンピュータ内に記録保持されたプログラムが実行されることにより、データ収集・分配部211等の各処理部は以下のような各処理を実行することになる。
FIG. 2 is a block diagram showing the main functional configuration of the diagnostic apparatus 20 according to this embodiment.
As illustrated in FIG. 2, the diagnostic device 20 includes a data collection / distribution unit 211, a rotation analysis unit 212, a filter processing unit 213, a vibration analysis unit 214, a comparison determination unit 215, and an internal memory 216. The data collection / distribution unit 211 and the filter processing unit 213 mainly constitute the signal input unit 21, and the rotation analysis unit 212, the vibration analysis unit 214, the comparison determination unit 215, and the internal memory 216 mainly constitute the diagnosis unit 22. To do. In the present embodiment, a plurality of filter processing units 213 and diagnosis units 22 are provided in association with each other (see FIG. 1).
The diagnostic device 20 is constituted by a microcomputer, and each processing unit such as the data collection / distribution unit 211 executes the following processing by executing a program recorded and held in the microcomputer. Will be executed.
 データ収集・分配部211は、振動加速度センサ12から送られる信号Sig1をA/D変換器によってデジタル信号に変換するとともに、回転速度に関する信号も同時に収集して一時的に蓄積し、信号の種類に応じて回転分析部212、フィルタ処理部213のいずれかに振り分ける。
 なお、A/D変換器を振動加速度センサ12に一体化される構成とし、前述のデータ伝送手段13を介してデジタル信号を受信するようにしてもよい。
The data collection / distribution unit 211 converts the signal Sig1 sent from the vibration acceleration sensor 12 into a digital signal by an A / D converter, and simultaneously collects and temporarily accumulates a signal related to the rotational speed, and sets the signal type. In response, it is distributed to either the rotation analysis unit 212 or the filter processing unit 213.
Note that the A / D converter may be integrated with the vibration acceleration sensor 12, and a digital signal may be received via the data transmission means 13 described above.
 回転分析部212は、転がり軸受11の設計諸元データ、及び回転センサからの回転速度信号に基づいて、図4に示す所定の関係式を用いて、転がり軸受11の部位ごとの損傷に起因する軸受損傷周波数を計算する。
 なお、軸受損傷理論周波数の算出は、以前に同様の診断を行っている場合は、内部メモリ216に記憶しておいた過去のデータを用いてもよい。
 また、転がり軸受11の回転速度を検出する回転速度検出手段(図示せず)が、内輪111に取り付けられたエンコーダと、外輪112に取り付けられた磁石または磁気検出素子と、により構成される場合は、出力信号がエンコーダの形状と回転速度に応じたパルス信号となる。このため、回転分析部212は、エンコーダの形状に応じた所定の変換関数、又は変換テーブルを有し、パルス信号から内輪111の回転速度を算出する。
The rotation analysis unit 212 is caused by damage for each part of the rolling bearing 11 using the predetermined relational expression shown in FIG. 4 based on the design specification data of the rolling bearing 11 and the rotation speed signal from the rotation sensor. Calculate bearing damage frequency.
The calculation of the bearing damage theoretical frequency may use past data stored in the internal memory 216 if a similar diagnosis has been performed previously.
In the case where the rotational speed detecting means (not shown) for detecting the rotational speed of the rolling bearing 11 is constituted by an encoder attached to the inner ring 111 and a magnet or a magnetic detection element attached to the outer ring 112. The output signal is a pulse signal corresponding to the shape and rotational speed of the encoder. Therefore, the rotation analysis unit 212 has a predetermined conversion function or conversion table corresponding to the shape of the encoder, and calculates the rotation speed of the inner ring 111 from the pulse signal.
 フィルタ処理部213は、バンドパスフィルタ(BPF)の機能を有し、振動加速度センサ12の振動加速度信号Sig1を、複数の異なる診断のためのフィルタ周波数帯域に分割し、複数の診断用信号(Sig2-1、Sig2-2)を抽出する。抽出するフィルタ周波数帯域は各軸受装置における固有振動数帯域に応じて設定される。この固有振動数は、インパルスハンマ等を用いた打撃法により被測定物を加振し、被測定物に取付けた振動検出器、又は打撃により発生した音響を周波数分析することにより容易に求めることができる。
 なお、被測定物が転がり軸受11の場合には、内輪111、外輪112、転動体113、軸受ハウジング10等のいずれかに起因する固有振動数が与えられることになる。一般的に、機械部品の固有振動数は複数存在し、固有振動数における振幅レベルは高くなるので測定の感度がよい。
 また、本実施形態での診断用信号の数は2つであるが後述するように3以上とすることもできる。
The filter processing unit 213 has a function of a bandpass filter (BPF), divides the vibration acceleration signal Sig1 of the vibration acceleration sensor 12 into a plurality of different filter frequency bands for diagnosis, and a plurality of diagnosis signals (Sig2). -1, Sig2-2) is extracted. The filter frequency band to be extracted is set according to the natural frequency band in each bearing device. This natural frequency can be easily obtained by exciting the object to be measured by an impact method using an impulse hammer or the like, and analyzing the frequency of the vibration detector attached to the object to be measured or the sound generated by the impact. it can.
When the object to be measured is the rolling bearing 11, a natural frequency due to any of the inner ring 111, the outer ring 112, the rolling element 113, the bearing housing 10, and the like is given. In general, there are a plurality of natural frequencies of mechanical parts, and the amplitude level at the natural frequency is high, so the sensitivity of measurement is good.
The number of diagnostic signals in the present embodiment is two, but can be three or more as will be described later.
 振動加速度信号Sig1から抽出すべき診断用信号の周波数帯域は、各軸受装置(軸受11および軸受ハウジング10)における固有振動数帯域、診断すべき異常の種類、診断条件等に応じて適宜設定することができる。図示の診断用信号Sig2-1は後述する異常Aを診断するものとして、その周波数帯域が1K~2K(Hz)に設定され、診断用信号Sig2-2は後述する異常Bを診断するものとして、その周波数帯域が3K~4K(Hz)に設定されている。
 なお、図5(a)、図5(b)、図5(c)において、横軸fは周波数(Hz)、縦軸Gは加速度(m/s)である。
The frequency band of the diagnostic signal to be extracted from the vibration acceleration signal Sig1 should be appropriately set according to the natural frequency band of each bearing device (bearing 11 and bearing housing 10), the type of abnormality to be diagnosed, diagnostic conditions, and the like. Can do. The illustrated diagnostic signal Sig2-1 is for diagnosing an abnormality A described later, and its frequency band is set to 1K to 2K (Hz), and the diagnostic signal Sig2-2 is for diagnosing an abnormality B described later. The frequency band is set to 3K-4K (Hz).
In FIGS. 5A, 5B, and 5C, the horizontal axis f is the frequency (Hz), and the vertical axis G is the acceleration (m / s 2 ).
 振動分析部214は、フィルタ処理部213からの診断用信号(Sig2-1、Sig2-2)を基にして、転がり軸受11から発生した振動信号の周波数分析を行う。この振動分析部214は、振動信号の周波数スペクトルを算出するFFT演算部であり、FFTアルゴリズム及びエンベロープ分析に基づいて振動信号の周波数スペクトルを算出する。算出された周波数スペクトルは、例えば、図5(d)または図5(e)、および図5(f)または図5(g)に示されるようなスペクトルデータとして比較判定部215に出力される。
 なお、振動分析部214は、FFTを行う前処理として、絶対値化処理やエンベロープ処理を行い、異常の診断に必要な周波数成分のみに変換してもよい。また、必要に応じて、エンベロープ処理後のスペクトルデータ(エンベロープ周波数スペクトル)も併せて比較判定部215に出力するようにすることもできる。
The vibration analysis unit 214 performs frequency analysis of the vibration signal generated from the rolling bearing 11 based on the diagnostic signals (Sig2-1, Sig2-2) from the filter processing unit 213. The vibration analysis unit 214 is an FFT calculation unit that calculates the frequency spectrum of the vibration signal, and calculates the frequency spectrum of the vibration signal based on the FFT algorithm and envelope analysis. The calculated frequency spectrum is output to the comparison / determination unit 215 as spectrum data as shown in FIG. 5 (d) or FIG. 5 (e) and FIG. 5 (f) or FIG. 5 (g), for example.
Note that the vibration analysis unit 214 may perform absolute value processing and envelope processing as preprocessing for performing FFT, and convert only to frequency components necessary for abnormality diagnosis. Further, if necessary, the spectrum data after the envelope processing (envelope frequency spectrum) can also be output to the comparison determination unit 215 together.
 比較判定部215は、振動分析部214にて得られた、例えば図5(d)~図5(g)に示されるようなスペクトルデータにより、軸受11の異常を例えば次のように診断する。 The comparison / determination unit 215 diagnoses the abnormality of the bearing 11 as follows, for example, using the spectrum data obtained by the vibration analysis unit 214 as shown in FIGS. 5D to 5G, for example.
 前述した診断用信号Sig2-1に基づいて得られたスペクトルデータに、例えば図5(d)に見られるような転動体通過振動が検知された場合には、回転分析部212で計算された軸受損傷周波数に基づいて、軸受11には何らかの異常A(例えば外輪軌道面の損傷)があると診断する。
 一方、診断用信号Sig2-1に基づいて得られたスペクトルデータが、例えば図5(e)に見られるように、転動体通過振動が検知されないものである場合には、軸受11に異常Aはないと診断する。
When the rolling element passing vibration as shown in, for example, FIG. 5D is detected in the spectrum data obtained based on the diagnostic signal Sig2-1 described above, the bearing calculated by the rotation analysis unit 212 is used. Based on the damage frequency, the bearing 11 is diagnosed as having some abnormality A (for example, damage to the outer ring raceway surface).
On the other hand, when the spectral data obtained based on the diagnostic signal Sig2-1 is such that the rolling element passing vibration is not detected, as shown in FIG. Diagnose it.
 また、前述した診断用信号Sig2-2に基づいて得られたスペクトルデータに、例えば図5(f)に見られるような転動体通過振動が検知された場合には、回転分析部212で計算された軸受損傷周波数に基づいて、軸受11には異常Aとは別の何らかの異常B(例えば外輪軌道面の摩耗)があると診断する。
 一方、診断用信号Sig2-2に基づいて得られたスペクトルデータが、例えば図5(g)に見られるように、転動体通過振動が検知されないものである場合には、軸受11に異常Bはないと診断する。
 異常診断については、転動体通過振動周波数、転動体公転周波数、転動体回転周波数など、軸受の回転に伴い発生する振動周波数を診断指標とし、異常発生時の挙動を検知、診断することができる。
 即ち、一つのセンサ信号に対して予め検知したい故障の種類分だけ複数のフィルタ処理部(バンドパスフィルタ)213を設けることで、診断部でのエンベロープ解析によって転動体通過振動で検知できたものから故障の有無と種類を検知できる。
 このため、従来、エンベロープ解析などで異常と診断された場合、安全を優先して最も早期に回転不能となる故障に合わせて必要以上に早い段階で軸受を交換してしまうことがあったが、本実施形態では、故障の種類も判断できるので、交換が必要な軸受を必要なタイミングで交換できる。
 また、故障が同時多発的でも軸受の故障の種類を把握可能である。
Further, when the rolling element passing vibration as shown in FIG. 5F is detected in the spectrum data obtained based on the above-described diagnostic signal Sig2-2, it is calculated by the rotation analysis unit 212. The bearing 11 is diagnosed as having some abnormality B (for example, wear on the outer ring raceway surface) different from the abnormality A on the bearing 11.
On the other hand, when the spectrum data obtained based on the diagnostic signal Sig2-2 is such that rolling element passing vibration is not detected, as shown in FIG. Diagnose it.
For abnormality diagnosis, vibration frequency generated with rotation of the bearing, such as rolling element passing vibration frequency, rolling element revolution frequency, and rolling element rotation frequency, can be used as a diagnostic index to detect and diagnose the behavior when an abnormality occurs.
In other words, by providing a plurality of filter processing units (bandpass filters) 213 for each type of failure to be detected in advance for one sensor signal, it is possible to detect rolling element passing vibrations by envelope analysis at the diagnosis unit. The presence and type of failure can be detected.
For this reason, conventionally, when an abnormality was diagnosed by an envelope analysis or the like, the bearing was sometimes replaced at an earlier stage than necessary in accordance with a failure that could not be rotated at the earliest priority given priority to safety. In this embodiment, since the type of failure can also be determined, a bearing that needs to be replaced can be replaced at a necessary timing.
In addition, it is possible to determine the type of bearing failure even if failures occur simultaneously.
 以上のようにして判定された転がり軸受11の診断結果は、内部メモリ216に記憶すると共に、有線又はネットワークを考慮した無線を利用したデータ伝送手段31により出力装置30に送る。 The diagnosis result of the rolling bearing 11 determined as described above is stored in the internal memory 216 and sent to the output device 30 by the data transmission means 31 using wireless considering the wired or network.
 内部メモリ216は、例えばメモリ又はHDD等により構成され、異常周波数の算出に用いる各回転部品の設計諸元データと、比較判定部215により判定された転がり軸受11の異常の有無の診断及び異常の部位特定に関する各データを記憶する。 The internal memory 216 is constituted by, for example, a memory or an HDD, and the design specification data of each rotating part used for calculation of the abnormal frequency, diagnosis of presence / absence of the abnormality of the rolling bearing 11 determined by the comparison determination unit 215, and abnormality detection Each piece of data relating to site identification is stored.
 出力装置30は、転がり軸受11の診断結果をモニタ等にリアルタイムで表示する。また、異常が検出された場合に、ライトやブザー等の警報機を用いて使用者に異常であることの注意を促すようにしてもよい。
 また、信号のデータ伝送手段13、31は、的確に信号を送受信可能であればよいので、有線でも良いし、ネットワークを考慮した無線を利用してもよい。
The output device 30 displays the diagnosis result of the rolling bearing 11 on a monitor or the like in real time. In addition, when an abnormality is detected, an alarm device such as a light or a buzzer may be used to alert the user of the abnormality.
The signal data transmission means 13 and 31 need only be capable of transmitting and receiving signals accurately, and may be wired or may be wireless considering the network.
 次に、このように構成された軸受異常診断システムの動作について説明する。図3は、軸受異常診断システムの動作手順を説明するためのフローチャートである。 Next, the operation of the bearing abnormality diagnosis system configured as described above will be described. FIG. 3 is a flowchart for explaining an operation procedure of the bearing abnormality diagnosis system.
 まず、ステップS1において、振動加速度センサ12により転がり軸受11から発生する振動加速度及び回転センサにより転がり軸受11の回転速度が検出され、この検出された振動加速度信号及び回転速度信号は、データ伝送手段13を介して信号入力部21のデータ収集・分配部211に入力される。 First, in step S1, the vibration acceleration sensor 12 detects the vibration acceleration generated from the rolling bearing 11 and the rotation sensor detects the rotation speed of the rolling bearing 11, and the detected vibration acceleration signal and rotation speed signal are used as data transmission means 13. To the data collection / distribution unit 211 of the signal input unit 21.
 なお、データ収集・分配部211では、入力されたアナログの振動信号を必要に応じて増幅し、A/D変換器によりデジタル信号に変換する。 The data collection / distribution unit 211 amplifies the input analog vibration signal as necessary, and converts it into a digital signal by an A / D converter.
 次に、ステップS2において、データ収集・分配部211及び内部メモリ216に記憶されたデータをもとに、フィルタ処理部213にて、以降の診断に使用される診断用信号を抽出する。 Next, in step S2, based on the data stored in the data collection / distribution unit 211 and the internal memory 216, the filter processing unit 213 extracts a diagnostic signal used for the subsequent diagnosis.
 次に、ステップS3において、振動分析部214で、フィルタ処理部213からの診断用信号(Sig2-1、Sig2-2)を基にして、転がり軸受11から発生した振動信号の周波数分析を行い、周波数スペクトルを算出して、スペクトルデータを比較判定部215に出力する。 Next, in step S3, the vibration analysis unit 214 performs frequency analysis of the vibration signal generated from the rolling bearing 11 based on the diagnostic signals (Sig2-1, Sig2-2) from the filter processing unit 213, and The frequency spectrum is calculated and the spectrum data is output to the comparison / determination unit 215.
 そして、ステップS4で、比較判定部215にて、振動分析部214で得られたスペクトルデータのピーク周波数と計算された軸受損傷周波数との比較により、軸受11の異常の有無および種類を診断し、その結果をステップS5で出力装置30に送る。 In step S4, the comparison / determination unit 215 diagnoses the presence / absence and type of the bearing 11 by comparing the peak frequency of the spectrum data obtained by the vibration analysis unit 214 with the calculated bearing damage frequency, The result is sent to the output device 30 in step S5.
 以上のような軸受異常診断方法ないし診断システムによれば次のような作用効果が得られる。
(a) 軸受11を支持する軸受ハウジング10の振動加速度を検出する振動加速度センサ12の振動加速度信号(Sig1)から複数の異なる診断用信号(Sig2-1、Sig2-2)を抽出することにより、簡単に複数の異なる診断を行うことが可能になる。これにより、故障の種類を判別することが可能となり、交換が必要な軸受を必要なタイミングで交換できるため、メンテナンス効率を向上できる。
(b) 一つの振動加速度信号(Sig1)で複数種の診断を行うことができるため、故障が同時多発的に発生しても診断可能である。
According to the bearing abnormality diagnosis method or diagnosis system as described above, the following effects can be obtained.
(A) By extracting a plurality of different diagnostic signals (Sig2-1, Sig2-2) from the vibration acceleration signal (Sig1) of the vibration acceleration sensor 12 that detects the vibration acceleration of the bearing housing 10 that supports the bearing 11, A plurality of different diagnoses can be easily performed. As a result, the type of failure can be determined, and the bearing that needs to be replaced can be replaced at a necessary timing, so that maintenance efficiency can be improved.
(B) Since a plurality of types of diagnosis can be performed with one vibration acceleration signal (Sig1), it is possible to diagnose even if failures occur simultaneously and frequently.
 なお、本発明は、上記実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
 例えば、帯域設定値や診断指標、対応する故障の数はこの限りではなく、対象の軸受、検知したい故障や診断条件、要求仕様等によって都度最適設定することができる。また、検知される異常としては、上記実施形態の外輪の損傷や摩耗の他に、軸受の内輪、外輪、転動体のきず、圧痕、打痕、さび、フレーキングや、また、転動体の内輪または保持器への衝突、保持器の転動体または軌道輪との衝突、グリースの抵抗による保持器と転動体の衝突、シールの接触部の摩擦などが挙げられる。
 また、本発明の軸受異常診断方法ないし診断システムは、自動車、鉄道車両、工作機械、風力発電装置、エレベータ装置などの機械設備に適用可能である。
 また、本実施形態では、内輪回転の場合の転がり軸受の異常を診断する場合について主として説明したが、本発明の軸受異常診断方法ないし診断システムは、外輪回転の転がり軸受の状態を監視するものにも適用可能である。
In addition, this invention is not limited to what was illustrated to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.
For example, the band set value, the diagnostic index, and the number of corresponding failures are not limited to this, and can be optimally set according to the target bearing, the failure to be detected, the diagnostic conditions, the required specifications, and the like. In addition to the damage and wear of the outer ring of the above embodiment, the detected abnormality includes bearing inner ring, outer ring, scratches on the rolling element, impressions, dents, rust, flaking, and the inner ring of the rolling element. Or a collision with a cage, a collision with a rolling element or a raceway of a cage, a collision between a cage and a rolling element due to grease resistance, friction of a contact portion of a seal, and the like.
Moreover, the bearing abnormality diagnosis method or diagnosis system of the present invention can be applied to machine equipment such as automobiles, railway vehicles, machine tools, wind power generators, and elevator devices.
In the present embodiment, the case of diagnosing the abnormality of the rolling bearing in the case of the inner ring rotation has been mainly described. However, the bearing abnormality diagnosis method or diagnosis system of the present invention monitors the state of the rolling bearing in the outer ring rotation. Is also applicable.
 さらに、上記実施形態では、軸受ハウジングに振動加速度センサを取り付けて、軸受ハウジングを介して軸受から発生する振動加速度を検出しているが、本発明は、これに限定されず、軸受から発生する振動加速度を検出できる任意の位置に振動加速度センサが取り付けられればよく、例えば、静止輪に直接取り付けられてもよい。 Furthermore, in the above embodiment, a vibration acceleration sensor is attached to the bearing housing and vibration acceleration generated from the bearing is detected via the bearing housing. However, the present invention is not limited to this, and vibration generated from the bearing. The vibration acceleration sensor may be attached at an arbitrary position where acceleration can be detected. For example, the vibration acceleration sensor may be directly attached to a stationary wheel.
 本出願は、2016年11月14日出願の日本特許出願2016-221424に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2016-22214 filed on November 14, 2016, the contents of which are incorporated herein by reference.
 10  軸受ハウジング
 11  転がり軸受(軸受)
 12  振動加速度センサ
 20  診断装置
 21  信号入力部
 213 フィルタ処理部(バンドパスフィルタ)
 22  診断部
10 Bearing housing 11 Rolling bearing (bearing)
DESCRIPTION OF SYMBOLS 12 Vibration acceleration sensor 20 Diagnostic apparatus 21 Signal input part 213 Filter process part (band pass filter)
Diagnostic department

Claims (6)

  1.  軸受から発生する振動加速度を振動加速度センサにより検出し、該振動加速度センサからの振動加速度信号より、複数のバンドパスフィルタにて、複数の異なる診断に必要とされる数の、それぞれ周波数帯域の異なる診断用信号を抽出し、該抽出した複数の異なる診断用信号に基づいて、前記軸受の複数種の異常を診断することを特徴とする軸受異常診断方法。 The vibration acceleration generated from the bearing is detected by a vibration acceleration sensor, and the number of frequencies required for a plurality of different diagnoses by a plurality of bandpass filters is different from the vibration acceleration signal from the vibration acceleration sensor. A bearing abnormality diagnosis method comprising: extracting a diagnosis signal and diagnosing a plurality of types of abnormality of the bearing based on the extracted different diagnosis signals.
  2.  前記軸受の複数種の異常の診断は、前記複数の異なる診断用信号を周波数分析することで得られた周波数スペクトルに基づいてそれぞれ行われることを特徴とする請求項1に記載の軸受異常診断方法。 2. The bearing abnormality diagnosis method according to claim 1, wherein diagnosis of a plurality of types of abnormality of the bearing is performed based on frequency spectra obtained by frequency analysis of the plurality of different diagnosis signals. .
  3.  前記振動加速度センサは、前記軸受を支持する軸受ハウジングに取り付けられ、該軸受ハウジングを介して前記軸受から発生する振動加速度を検出することを特徴とする請求項1または2に記載の軸受異常診断方法。 The bearing abnormality diagnosis method according to claim 1, wherein the vibration acceleration sensor is attached to a bearing housing that supports the bearing, and detects vibration acceleration generated from the bearing through the bearing housing. .
  4.  軸受から発生する振動加速度を検出する振動加速度センサと、
     該振動加速度センサからの振動加速度信号より、複数の異なる診断に必要とされる数の、それぞれ周波数帯域の異なる診断用信号を抽出する複数のバンドパスフィルタと、
     該バンドパスフィルタにて抽出された複数の診断用信号に基づいて、前記軸受の複数種の異常を診断する診断部と、
    を備えたことを特徴とする軸受異常診断システム。
    A vibration acceleration sensor for detecting vibration acceleration generated from the bearing;
    A plurality of band-pass filters for extracting diagnostic signals having different frequency bands, each of which is required for a plurality of different diagnoses, from vibration acceleration signals from the vibration acceleration sensor;
    Based on a plurality of diagnostic signals extracted by the bandpass filter, a diagnostic unit for diagnosing a plurality of types of abnormality of the bearing;
    A bearing abnormality diagnosis system characterized by comprising:
  5.  前記軸受の複数種の異常の診断は、前記複数の異なる診断用信号を周波数分析することで得られた周波数スペクトルに基づいてそれぞれ行われることを特徴とする請求項4に記載の軸受異常診断システム。 The bearing abnormality diagnosis system according to claim 4, wherein diagnosis of a plurality of types of abnormality of the bearing is performed based on frequency spectra obtained by frequency analysis of the plurality of different diagnosis signals. .
  6.  前記振動加速度センサは、前記軸受を支持する軸受ハウジングに取り付けられ、該軸受ハウジングを介して前記軸受から発生する振動加速度を検出することを特徴とする請求項4または5に記載の軸受異常診断システム。 The bearing abnormality diagnosis system according to claim 4, wherein the vibration acceleration sensor is attached to a bearing housing that supports the bearing, and detects vibration acceleration generated from the bearing through the bearing housing. .
PCT/JP2017/040835 2016-11-14 2017-11-14 Bearing abnormality diagnostic method and diagnostic system WO2018088564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-221424 2016-11-14
JP2016221424 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088564A1 true WO2018088564A1 (en) 2018-05-17

Family

ID=62109253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040835 WO2018088564A1 (en) 2016-11-14 2017-11-14 Bearing abnormality diagnostic method and diagnostic system

Country Status (1)

Country Link
WO (1) WO2018088564A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187024A (en) * 2018-09-04 2019-01-11 温州大学激光与光电智能制造研究院 A kind of piston type air compressor crankcase Fault Diagnosis of Roller Bearings
WO2020026372A1 (en) * 2018-08-01 2020-02-06 三菱電機株式会社 Waveform data diagnostic device, waveform data diagnostic method, program and waveform data diagnostic system
WO2020132708A1 (en) * 2018-12-27 2020-07-02 Avl List Gmbh Method for monitoring the service life of an installed rolling bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172622A (en) * 1987-12-26 1989-07-07 Tosoh Corp Detection of anomaly of roller bearing
JPH03221818A (en) * 1990-01-29 1991-09-30 Toshiba Corp Abnormality diagnostic device for rolling bearing
US20110041611A1 (en) * 2008-04-29 2011-02-24 Siemens Aktiengesellschaft Method and apparatus for recognizing a bearing damage using oscillation signal analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172622A (en) * 1987-12-26 1989-07-07 Tosoh Corp Detection of anomaly of roller bearing
JPH03221818A (en) * 1990-01-29 1991-09-30 Toshiba Corp Abnormality diagnostic device for rolling bearing
US20110041611A1 (en) * 2008-04-29 2011-02-24 Siemens Aktiengesellschaft Method and apparatus for recognizing a bearing damage using oscillation signal analysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026372A1 (en) * 2018-08-01 2020-02-06 三菱電機株式会社 Waveform data diagnostic device, waveform data diagnostic method, program and waveform data diagnostic system
JPWO2020026372A1 (en) * 2018-08-01 2020-08-20 三菱電機株式会社 Waveform data diagnostic device, waveform data diagnostic method, program and waveform data diagnostic system
CN109187024A (en) * 2018-09-04 2019-01-11 温州大学激光与光电智能制造研究院 A kind of piston type air compressor crankcase Fault Diagnosis of Roller Bearings
WO2020132708A1 (en) * 2018-12-27 2020-07-02 Avl List Gmbh Method for monitoring the service life of an installed rolling bearing
CN113227748A (en) * 2018-12-27 2021-08-06 Avl李斯特有限公司 Method for monitoring the service life of an installed rolling bearing

Similar Documents

Publication Publication Date Title
JP5146008B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
US7860663B2 (en) Abnormality diagnosing apparatus and abnormality diagnosing method
JP6714806B2 (en) Status monitoring device and status monitoring method
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP6508017B2 (en) Evaluation method of machinery and equipment
JP2018155494A (en) Bearing abnormality diagnosis system and bearing abnormality diagnosis method
JP2006077938A (en) Abnormality diagnosing device
JP3944744B2 (en) Abnormality diagnosis device and rolling bearing device having the same
JP2017219469A (en) State monitoring device and state monitoring method
US20200158562A1 (en) Condition monitoring apparatus, condition monitoring system, and condition monitoring method
WO2018088564A1 (en) Bearing abnormality diagnostic method and diagnostic system
JP2006234785A (en) Abnormality diagnosis device and abnormality diagnosis method for mechanical equipment
JP2008292288A (en) Bearing diagnostic device for reduction gear
JP2018179735A (en) Abnormality diagnostic method and abnormality diagnostic device for rotary component
JP2007285875A (en) Anomaly diagnosis apparatus and anomaly diagnosis method
JP2006234786A (en) Abnormality diagnostic device and abnormality diagnostic method for mechanical facility
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
JP6714844B2 (en) Abnormality diagnosis method
JP4529602B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP4730166B2 (en) Machine equipment abnormality diagnosis apparatus and abnormality diagnosis method
KR20110122483A (en) Built-in vibration monitor having order spectrum analysis function and fault diagnosis method of variable rotating speed machine using the monitor
JP6733838B1 (en) Rolling bearing abnormality diagnosis method and abnormality diagnosis device
JP2016170085A (en) Abnormality diagnostic device and abnormality diagnostic method
KR101745805B1 (en) Apparatus and Method for machine condition monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP