JP4529602B2 - Abnormality diagnosis apparatus and abnormality diagnosis method - Google Patents

Abnormality diagnosis apparatus and abnormality diagnosis method Download PDF

Info

Publication number
JP4529602B2
JP4529602B2 JP2004265218A JP2004265218A JP4529602B2 JP 4529602 B2 JP4529602 B2 JP 4529602B2 JP 2004265218 A JP2004265218 A JP 2004265218A JP 2004265218 A JP2004265218 A JP 2004265218A JP 4529602 B2 JP4529602 B2 JP 4529602B2
Authority
JP
Japan
Prior art keywords
abnormality
sensor
rotating
abnormality diagnosis
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004265218A
Other languages
Japanese (ja)
Other versions
JP2006077945A (en
Inventor
泰之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004265218A priority Critical patent/JP4529602B2/en
Publication of JP2006077945A publication Critical patent/JP2006077945A/en
Application granted granted Critical
Publication of JP4529602B2 publication Critical patent/JP4529602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/042Housings for rolling element bearings for rotary movement

Description

本発明は、例えば鉄道車両の車軸やギアボックス或いは発電用風車の減速機等に用いられる複数の回転部品の異常を診断する異常診断装置及び異常診断方法に関する。   The present invention relates to an abnormality diagnosing device and an abnormality diagnosing method for diagnosing abnormalities in a plurality of rotating parts used in, for example, an axle of a railway vehicle, a gear box, or a reduction gear of a wind turbine for power generation.

従来、鉄道車両や発電用風車等の回転部品は、一定期間使用した後に、軸受やその他の回転部品について、損傷や摩耗等の異常の有無が定期的に検査される。この定期的な検査は、回転部品が組み込まれた機械装置を分解することにより行われ、回転部品に発生した損傷や摩耗は、担当者が目視による検査により発見するようにしている。そして、検査で発見される主な欠陥としては、軸受の場合、異物の噛み込み等によって生ずる圧痕、転がり疲れによる剥離、その他の摩耗等、歯車の場合には、歯部の欠損や摩耗等、車輪の場合には、フラット等の摩耗があり、いずれの場合も新品にはない凹凸や摩耗等が発見されれば、新品に交換される。   Conventionally, after rotating parts such as railway vehicles and wind turbines for power generation are used for a certain period, bearings and other rotating parts are regularly inspected for abnormalities such as damage and wear. This periodic inspection is carried out by disassembling the mechanical device in which the rotating parts are incorporated, and the person in charge finds damage and wear generated in the rotating parts by visual inspection. And the main defects found in the inspection are in the case of bearings, indentations caused by the biting of foreign matter, peeling due to rolling fatigue, other wear, etc., in the case of gears, missing teeth and wear, etc. In the case of a wheel, there is wear such as a flat, and in any case, if irregularities or wear that is not found in a new article is found, it is replaced with a new one.

また、回転部品が組み込まれた機械装置を分解することなく、実稼動状態で回転部品の異常診断を行う例として、機械装置の状態を振動センサ又は温度センサ等で常時計測して、各計測値が予め設定しておいた規定値以上に上昇したか否かで異常の有無を判定し、異常判定の場合に、異常警報を出力したり、装置の稼動を停止させたりする方法が提案されている(例えば特許文献1参照。)。   In addition, as an example of diagnosing abnormalities of rotating parts in the actual operating state without disassembling the mechanical apparatus in which the rotating part is incorporated, the state of the mechanical apparatus is constantly measured with a vibration sensor or a temperature sensor, etc. A method has been proposed for determining whether or not there is an abnormality based on whether or not the value has risen above a preset value, and in the case of an abnormality determination, outputting an abnormality alarm or stopping the operation of the device. (For example, refer to Patent Document 1).

また、鉄道車両においては、軸受箱に装着された温度センサによる検出温度が予め設定しておいた規定値以上に上昇した時に異常信号を運転台に発するか、又は地上側から温度を計測して軸受の異常監視を行う方法が提案されている(例えば特許文献2参照。)。
特開平11−125244号公報 特開平9−79915号公報
Also, in railway vehicles, when the temperature detected by the temperature sensor mounted on the bearing box rises above a preset value, an abnormal signal is issued to the cab or the temperature is measured from the ground side. A method for monitoring an abnormality of a bearing has been proposed (for example, see Patent Document 2).
Japanese Patent Laid-Open No. 11-125244 JP 9-79915 A

しかしながら、上記特許文献1及び特許文献2においては、振動センサや温度センサ等による計測値が予め設定しておいた規定値以上に上昇したか否かで異常の有無を判定しているため、異常が検知された場合には既に回転部品の損傷の程度が酷くなっていて継続して使用することが不可能なことが多く、機械装置を緊急に停止させなければならないという問題がある。   However, in Patent Document 1 and Patent Document 2, the presence / absence of an abnormality is determined based on whether or not a measurement value by a vibration sensor, a temperature sensor, or the like has risen to a predetermined value or more set in advance. In such a case, the degree of damage to the rotating parts has already become so severe that it cannot be used continuously, and there is a problem that the machine must be stopped urgently.

また、異常警報が発せられて機械装置の稼動が停止しても、異常の部位や異常部品を特定することができないという問題や、突発的な外乱ノイズ等の影響で誤動作が生じて異常警報を発したりする等で安定稼働が妨げられるという問題がある。   In addition, even if an abnormal alarm is issued and the operation of the machine is stopped, it is not possible to identify the abnormal part or abnormal part, or a malfunction occurs due to sudden disturbance noise, etc. There is a problem that the stable operation is hindered by, for example.

更に、多量の回転部品を使用している機械装置では、回転部品の内外径、幅寸法等が同じであれば内部の設計諸元が異なっていても使用することがある。この場合、軸受の設計諸元が異なると軸受の異常を知らせる警報レベルの設定値も異なるため特定の部位に同じ諸元の部品を組込むようにすることがあるが、組み立て時の作業効率が悪くなるという問題がある。   Further, in a mechanical apparatus using a large amount of rotating parts, the rotating parts may be used even if the internal design specifications are different as long as the inner and outer diameters, width dimensions, etc. of the rotating parts are the same. In this case, if the design specifications of the bearing are different, the alarm level setting value that notifies the bearing abnormality is also different, so parts with the same specifications may be incorporated in a specific part, but the work efficiency during assembly is poor. There is a problem of becoming.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、設計諸元が異なった回転部品が任意の部位に組込まれても、該回転部品が組み込まれている装置を分解することなく実稼動状態で回転部品の異常の有無と異常の部品や部位を特定することができる異常診断装置及び異常診断方法を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to disassemble a device in which the rotating component is incorporated even if a rotating component having a different design specification is incorporated in an arbitrary part. It is an object of the present invention to provide an abnormality diagnosis device and an abnormality diagnosis method that can identify the presence / absence of an abnormality of a rotating part and an abnormal part or part in an actual operation state.

本発明の目的は、下記の構成により達成される。
(1) 静止部材に対して相対的に回転する複数の回転部品の異常を診断する異常診断装置であって、
前記回転部品または前記静止部材に固定される、振動センサ、音響センサ、超音波センサ及びAEセンサのうちの少なくとも一つの振動系センサと、
回転速度信号に基づき算出した前記回転部品の損傷に起因した周波数成分と前記振動系センサにより検出された信号波形に基づく実測データの周波数成分とを設計諸元が異なる前記複数の回転部品毎に比較する比較照合部と、
前記比較照合部での比較結果に基づき、前記回転部品の異常の有無や異常部品及び部位を特定する異常判定部とを備えていることを特徴とする異常診断装置。
(2) 前記振動系センサにより検出された信号波形から不要な周波数帯域を除去するフィルタ処理部と、
前記フィルタ処理部から転送されたフィルタ処理後の波形の絶対値を検波するエンベロープ処理部と、
前記エンベロープ処理部から転送された波形の周波数を分析する周波数分析部とをさらに備えたことを特徴とする(1)に記載の異常診断装置。
(3) 前記振動系センサと、温度センサ及び回転速度センサのうちの少なくとも一つのセンサが、単一の筐体内に収納される一体型センサを備えたことを特徴とする(1)または(2)に記載の異常診断装置。
(4) 前記静止部材は軸受箱であり、前記一体型センサは、該軸受箱の平坦部に固定されていることを特徴とする(3)に記載の異常診断装置。
(5) 前記異常判定部による判定結果を伝送するデータ伝送手段を有することを特徴とする(1)〜(4)のいずれかに記載の異常診断装置。
(6) 前記センサからの検出信号を基に解析処理し、前記異常判定部からの判定結果を制御系に出力する処理を行なうマイクロコンピュータを具備したことを特徴とする(1)〜(5)のいずれかに記載の異常診断装置。
(7) 前記回転部品が鉄道車両用であることを特徴とする(1)〜(6)のいずれかに記載の異常診断装置。
(8) 前記回転部品が減速機用であることを特徴とする(1)〜(6)のいずれかに記載の異常診断装置。
(9) 静止部材に対して相対的に回転する複数の回転部品の異常を診断する異常診断方法であって、
前記回転部品または前記静止部材の振動、音響、超音波、AEのうち少なくとも一つの信号を検出する検出工程と、
回転速度信号に基づき算出した前記複数の回転部品毎の損傷に起因した周波数成分と前記検出工程により検出された信号波形に基づく実測データの周波数成分とを、設計諸元が異なる前記回転部品毎に比較する比較工程と、
該比較工程での比較結果に基づき、前記回転部品の異常の有無や損傷部位を特定する特定工程とを備えていることを特徴とする異常診断方法。
The object of the present invention is achieved by the following constitution.
(1) An abnormality diagnosis device for diagnosing an abnormality of a plurality of rotating parts that rotate relative to a stationary member,
At least one vibration system sensor of a vibration sensor, an acoustic sensor, an ultrasonic sensor, and an AE sensor fixed to the rotating component or the stationary member;
The frequency component resulting from damage of the rotating component calculated based on the rotation speed signal and the frequency component of the measured data based on the signal waveform detected by the vibration system sensor are compared for each of the plurality of rotating components having different design specifications. A comparison verification unit to
An abnormality diagnosis apparatus comprising: an abnormality determination unit that identifies presence / absence of abnormality of the rotating component and an abnormal component and part based on a comparison result in the comparison / collation unit.
(2) a filter processing unit for removing an unnecessary frequency band from the signal waveform detected by the vibration system sensor;
An envelope processing unit for detecting the absolute value of the filtered waveform transferred from the filter processing unit;
The abnormality diagnosis device according to (1), further comprising a frequency analysis unit that analyzes a frequency of the waveform transferred from the envelope processing unit.
(3) The vibration system sensor and at least one of the temperature sensor and the rotational speed sensor each include an integrated sensor housed in a single casing (1) or (2) ) Abnormality diagnosis device.
(4) The abnormality diagnosis apparatus according to (3), wherein the stationary member is a bearing box, and the integrated sensor is fixed to a flat portion of the bearing box.
(5) The abnormality diagnosis apparatus according to any one of (1) to (4), further including data transmission means for transmitting a determination result by the abnormality determination unit.
(6) The present invention includes a microcomputer that performs analysis processing based on a detection signal from the sensor and outputs a determination result from the abnormality determination unit to a control system (1) to (5) The abnormality diagnosis device according to any one of the above.
(7) The abnormality diagnosis apparatus according to any one of (1) to (6), wherein the rotating component is for a railway vehicle.
(8) The abnormality diagnosis device according to any one of (1) to (6), wherein the rotating component is for a reduction gear.
(9) An abnormality diagnosis method for diagnosing an abnormality of a plurality of rotating parts that rotate relative to a stationary member,
A detection step of detecting at least one signal of vibration, sound, ultrasonic wave, and AE of the rotating component or the stationary member;
The frequency component resulting from damage for each of the plurality of rotating parts calculated based on the rotation speed signal and the frequency component of the measured data based on the signal waveform detected by the detection step are determined for each of the rotating parts having different design specifications. A comparison process to compare;
An abnormality diagnosis method comprising: a specifying step for specifying presence / absence of an abnormality of the rotating component and a damaged portion based on a comparison result in the comparison step.

本発明によれば、設計諸元が異なる複数の回転部品毎に異常の有無と異常部品や部位の診断を行うようにしているので、設計諸元が異なった回転部品が任意の部位に組込まれても、該回転部品が組み込まれている機械装置を分解することなく実稼動状態で回転部品の異常の有無と異常の部品や部位を特定することができる。   According to the present invention, since the presence or absence of abnormality and the diagnosis of abnormal parts and parts are performed for each of a plurality of rotating parts having different design specifications, rotating parts having different design specifications can be incorporated into arbitrary parts. However, the presence or absence of abnormality of the rotating component and the abnormal component or part can be specified in the actual operation state without disassembling the mechanical device in which the rotating component is incorporated.

また、回転速度信号に基づき算出した回転部品の損傷に起因した周波数成分と振動系センサにより検出された信号波形に基づく実測データの周波数成分とを設計諸元が異なる複数の回転部品毎に比較するので、突発的な外乱ノイズ等の影響による誤診断を防止して信頼性の高い異常診断を行うことができ、設計諸元が異なる複数の回転部品が使用されている機械装置に対して高精度な異常診断を行うことができる。   Also, the frequency component resulting from damage to the rotating component calculated based on the rotational speed signal and the frequency component of the measured data based on the signal waveform detected by the vibration system sensor are compared for each of the rotating components having different design specifications. Therefore, it is possible to prevent misdiagnosis due to the influence of sudden disturbance noise, etc., and to perform highly reliable abnormality diagnosis, and it is highly accurate for mechanical devices that use multiple rotating parts with different design specifications Abnormal diagnosis can be performed.

更に、従来のように同じ寸法で且つ同じ諸元の回転部品を組込まなければならないという手間を省くことができ、さらに、同じ寸法で諸元が異なる回転部品を組込んだとしても診断が可能であることから、作業効率が向上して効率的なメンテナンスが可能となる。   Furthermore, it is possible to save the trouble of having to install rotating parts with the same dimensions and the same specifications as in the past, and it is possible to diagnose even if rotating parts with the same dimensions and different specifications are incorporated. As a result, work efficiency is improved and efficient maintenance becomes possible.

以下、本発明の一実施形態について、図面を参照して詳細に説明する。ここで、図1は本発明の一実施形態である異常診断装置の診断対象である複列円すいころ軸受を備えた鉄道車両用転がり軸受装置の断面図、図2は異常診断装置の概念図、図3は異常診断装置の処理フローを示すフローチャート、図4は転がり軸受の傷の部位と、傷に起因して発生する特徴周波数との関係を示す図、図5は歯車の噛み合いで発生する異常振動周波数を示すための図、図6及び図7は設計諸元の異なる複数の軸受A〜Fにおける実測した振動信号に基づくエンベロープ周波数スペクトルと個々の軸受の設計諸元に基づく外輪損傷(剥離)に起因した周波数成分(帯域)との関係を示すグラフである。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. Here, FIG. 1 is a cross-sectional view of a rolling bearing device for a railway vehicle provided with a double row tapered roller bearing that is a diagnosis target of the abnormality diagnosis device according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of the abnormality diagnosis device. FIG. 3 is a flowchart showing the processing flow of the abnormality diagnosis device, FIG. 4 is a diagram showing the relationship between the scratched portion of the rolling bearing and the characteristic frequency generated due to the scratch, and FIG. 5 is the abnormality occurring due to the meshing of the gears. FIGS. 6 and 7 are diagrams for showing the vibration frequency, and FIG. 6 and FIG. 7 show the envelope frequency spectrum based on the actually measured vibration signals in a plurality of bearings A to F having different design specifications and the outer ring damage (peeling) based on the design specifications of each bearing. It is a graph which shows the relationship with the frequency component (band | zone) resulting from this.

図1に示されるように、異常診断装置が適用される鉄道車両用の転がり軸受装置10は、回転部品である複列円すいころ軸受11と、鉄道車両用台車の一部を構成する静止部材である軸受箱12とを備える。   As shown in FIG. 1, a rolling bearing device 10 for a railway vehicle to which an abnormality diagnosis device is applied is a double-row tapered roller bearing 11 that is a rotating part, and a stationary member that constitutes a part of the railway vehicle carriage. A certain bearing box 12 is provided.

複列円すいころ軸受11は、回転軸である鉄道車両の車軸13を回転可能に支持しており、外周面に円すい外面状に傾斜した内輪軌道面15,15を有する一対の内輪14,14と、内周面に円すい内面状に傾斜した一対の外輪軌道面17,17を有する単一の外輪16と、内輪14,14の内輪軌道面15,15と外輪16の外輪軌道面17,17との間に複列で複数配置された転動体である円すいころ18と、円すいころ18を転動自在に保持する環状の打ち抜き保持器19,19と、外輪16の軸方向の両端部にそれぞれ装着された一対のシール部材20,20とを備える。   The double-row tapered roller bearing 11 rotatably supports an axle 13 of a railway vehicle, which is a rotating shaft, and has a pair of inner rings 14, 14 having inner ring raceway surfaces 15, 15 inclined on the outer circumferential surface of the tapered outer surface. A single outer ring 16 having a pair of outer ring raceway surfaces 17, 17 inclined like a conical inner surface on the inner peripheral surface, inner ring raceway surfaces 15, 15 of the inner rings 14, 14, and outer ring raceway surfaces 17, 17 of the outer ring 16, A plurality of tapered rollers 18 that are arranged in multiple rows between each other, annular punching retainers 19 and 19 that hold the tapered rollers 18 in a freely rollable manner, and both axial ends of the outer ring 16 are mounted. A pair of sealing members 20, 20.

軸受箱12は、鉄道車両用台車の側枠を構成するハウジング21を備えており、このハウジング21は外輪16の外周面を覆うように円筒状に形成されている。また、ハウジング21の軸方向の前端部側には前蓋22が配置され、ハウジング21の軸方向の後端部側には後蓋23が配置されている。   The bearing box 12 includes a housing 21 that constitutes a side frame of a railcar bogie. The housing 21 is formed in a cylindrical shape so as to cover the outer peripheral surface of the outer ring 16. A front lid 22 is disposed on the front end side in the axial direction of the housing 21, and a rear lid 23 is disposed on the rear end side in the axial direction of the housing 21.

一対の内輪14,14の間には、内輪間座24が配置されている。一対の内輪14,14及び内輪間座24には車軸13が圧入されており、外輪16はハウジング21に嵌合されている。複列円すいころ軸受11には、種々部材の重量等によるラジアル荷重と任意のアキシアル荷重とが負荷されており、外輪16の周方向の上側部が負荷圏になっている。ここで、負荷圏とは、転動体に対して荷重が負荷される領域をいう。   An inner ring spacer 24 is disposed between the pair of inner rings 14, 14. The axle 13 is press-fitted into the pair of inner rings 14, 14 and the inner ring spacer 24, and the outer ring 16 is fitted in the housing 21. The double row tapered roller bearing 11 is loaded with a radial load due to the weight of various members and an arbitrary axial load, and the upper portion in the circumferential direction of the outer ring 16 is a load zone. Here, the load zone refers to a region where a load is applied to the rolling elements.

車軸13の前端部側に配置された一方のシール部材20は、外輪16の外側端部と前蓋22との間に組み付けられ、後端部側に配置された他方のシール部材20は、外輪16の外側端部と後蓋23との間に組み付けられている。   One seal member 20 disposed on the front end portion side of the axle 13 is assembled between the outer end portion of the outer ring 16 and the front lid 22, and the other seal member 20 disposed on the rear end portion side is disposed on the outer ring. 16 is assembled between the outer end portion of 16 and the rear lid 23.

ハウジング21の外周部の複列円すいころ軸受11の軸方向の略中央部位置には凹部26が形成され、この凹部26内には異常診断装置の一部を構成する異常検出用センサ31が筐体に収容された状態で固定されている。   A concave portion 26 is formed at a substantially central position in the axial direction of the double-row tapered roller bearing 11 on the outer peripheral portion of the housing 21, and an abnormality detection sensor 31 that constitutes a part of the abnormality diagnosis device is housed in the concave portion 26. It is fixed while being housed in the body.

異常検出用センサ31は、振動センサ、AE(acoustic emission)センサ、音響センサ、及び超音波センサの内の少なくとも1つの振動を検出可能な振動系センサと、温度センサと、回転速度センサとを一体に筐体内に収納固定可能な複合型センサである。なお、図1の異常検出用センサ31は、振動センサ32と温度センサ33とが一体に筐体内に収容固定されている。   The abnormality detection sensor 31 is a vibration system sensor capable of detecting at least one of a vibration sensor, an AE (acoustic emission) sensor, an acoustic sensor, and an ultrasonic sensor, a temperature sensor, and a rotation speed sensor. This is a composite sensor that can be housed and fixed in a housing. In the abnormality detection sensor 31 of FIG. 1, a vibration sensor 32 and a temperature sensor 33 are housed and fixed integrally in a housing.

振動センサ32は、圧電素子等の振動測定素子であり、複列円すいころ軸受11の内外輪軌道面15,15,17,17の剥離や、歯車の欠損、車輪のフラット摩耗等を検出するのに用いられる。なお、振動センサ32は、加速度、速度或いは変位型等、振動を電気信号化できるものであればよく、ノイズが多いような機械装置に取付ける際には、絶縁型を使用する方がノイズの影響を受けることが少ないので好ましい。   The vibration sensor 32 is a vibration measuring element such as a piezoelectric element, and detects peeling of the inner and outer ring raceway surfaces 15, 15, 17, 17 of the double row tapered roller bearing 11, a missing gear, flat wear of the wheel, and the like. Used for. The vibration sensor 32 may be an acceleration, speed, displacement type, or the like that can convert vibration into an electrical signal. When the vibration sensor 32 is attached to a mechanical device having a lot of noise, the use of an insulation type is more affected by noise. It is preferable because it is less likely to receive.

温度センサ33は、サーミスタ温度測定素子や白金測温抵抗体や熱電対等の非接触タイプの温度測定素子である。温度センサ33としては、雰囲気温度が規定値を超えると、バイメタルの接点が離れたり、接点が溶断したりすることで導通しなくなる温度ヒューズを用いることができる。その場合、装置の温度が規定値を超えたとき、温度ヒューズの導通が遮断されることによって温度異常が検出される。   The temperature sensor 33 is a non-contact type temperature measuring element such as a thermistor temperature measuring element, a platinum resistance temperature detector, or a thermocouple. As the temperature sensor 33, when the ambient temperature exceeds a specified value, a temperature fuse that does not conduct when the bimetal contact is separated or the contact is blown can be used. In that case, when the temperature of the apparatus exceeds a specified value, the temperature abnormality is detected by blocking the conduction of the thermal fuse.

また、異常検出用センサ31は、複列円すいころ軸受11の非回転側軌道輪に嵌合している軸受箱12のラジアル荷重の負荷圏領域に取り付けている。このため、例えば、軸受軌道面に損傷が発生した場合、その損傷部を転動体が通過する際に生じる衝突力は無負荷圏よりも負荷圏の方が大きく、軸受負荷圏の方が感度良く異常振動を検出することができる。   In addition, the abnormality detection sensor 31 is attached to the radial load area of the bearing housing 12 fitted to the non-rotating side race of the double row tapered roller bearing 11. For this reason, for example, when the bearing raceway surface is damaged, the collision force generated when the rolling element passes through the damaged portion is larger in the load area than in the no-load area, and the bearing load area is more sensitive. Abnormal vibration can be detected.

そして、本実施形態では、図2に示すように、設計諸元の異なる複数の複列円すいころ軸受11の他、車輪や歯車(共に図示せず)等の振動を振動センサ32により検出する。 そして、検出された振動信号は、信号伝送手段34を介して演算処理部50へ送られる。   In the present embodiment, as shown in FIG. 2, the vibration sensor 32 detects vibrations of a plurality of double-row tapered roller bearings 11 having different design specifications, as well as wheels and gears (both not shown). Then, the detected vibration signal is sent to the arithmetic processing unit 50 via the signal transmission means 34.

演算処理部50は、フィルタ処理部37、固有振動数記憶部38、エンベロープ処理部39、周波数分析部40、理論周波数計算部41、比較照合部43、異常判定部44を備える。   The arithmetic processing unit 50 includes a filter processing unit 37, a natural frequency storage unit 38, an envelope processing unit 39, a frequency analysis unit 40, a theoretical frequency calculation unit 41, a comparison / collation unit 43, and an abnormality determination unit 44.

フィルタ処理部37は、振動センサ32によって検出され、信号伝送手段34を介して転送される増幅及びA/D変換後の振動信号を受け取る。そして、フィルタ処理部37は、固有振動数記憶部38に記憶された、回転部品である複列円すいころ軸受11、歯車、車輪、静止部材(例えば軸受箱)等のいずれかの固有振動数に基づいて、振動信号からその固有振動数に対応する所定の周波数帯域のみを抽出し、不要な周波数帯域を除去する。なお、振動信号の増幅及びA/D変換は伝送前に行なわれてもよく、また、増幅とA/D変換の順序は逆であっても良い。   The filter processing unit 37 receives the vibration signal after amplification and A / D conversion detected by the vibration sensor 32 and transferred via the signal transmission means 34. Then, the filter processing unit 37 sets the natural frequency stored in the natural frequency storage unit 38 to any natural frequency such as a double-row tapered roller bearing 11, a gear, a wheel, or a stationary member (for example, a bearing box) that is a rotating part. Based on this, only a predetermined frequency band corresponding to the natural frequency is extracted from the vibration signal, and unnecessary frequency bands are removed. The amplification and A / D conversion of the vibration signal may be performed before transmission, and the order of amplification and A / D conversion may be reversed.

この固有振動数は、複列円すいころ軸受11、歯車、車輪等を被測定物として、打撃法により加振し、被測定物に取付けた振動検出器又は打撃により発生した音響を周波数分析することにより容易に求めることができる。なお、被測定物が複列円すいころ軸受の場合には、内輪、外輪、転動体、保持器等のいずれかに起因する固有振動数が与えられる。一般的に、機械部品の固有振動数は複数存在し、また固有振動数での振幅レベルは高くなるため測定の感度がよい。   This natural frequency is determined by subjecting the double-row tapered roller bearing 11, gears, wheels, and the like to the object to be measured, by exciting the vibration by a striking method and analyzing the frequency of the sound generated by the vibration detector or the striking attached to the object to be measured. Can be easily obtained. When the object to be measured is a double-row tapered roller bearing, a natural frequency due to any of the inner ring, outer ring, rolling element, cage, etc. is given. In general, there are a plurality of natural frequencies of mechanical parts, and the amplitude level at the natural frequencies is high, so the sensitivity of measurement is good.

エンベロープ処理部39は、フィルタ処理部37にて抽出された所定の周波数帯域に対して、波形の絶対値を検波する絶対値検波処理を行う。そして、周波数分析部40は、エンベロープ処理部39から転送された波形の周波数を分析し、異常か否かの基準値となる実測値データを比較照合部43へ転送する。   The envelope processing unit 39 performs absolute value detection processing for detecting the absolute value of the waveform for the predetermined frequency band extracted by the filter processing unit 37. Then, the frequency analysis unit 40 analyzes the frequency of the waveform transferred from the envelope processing unit 39, and transfers the actual measurement data serving as a reference value as to whether there is an abnormality to the comparison / collation unit 43.

一方、理論周波数計算部41は、図示しない回転速度センサにより得られた回転速度情報42に基づき、軸受の剥離、歯車の欠損、車輪のフラット等、各回転部品の損傷に起因した周波数成分(帯域)を計算し、この計算値データを比較照合部43に転送する。比較照合部43は、周波数分析部40による実測値データと理論周波数計算部41による計算値データとを設計諸元が異なる回転部品毎に分けて順番に比較照合する。更に、異常判定部44は、比較照合部43での比較結果に基づき、振動異常の有無、異常された回転部品の特定及び異常部位の特定を行う。   On the other hand, the theoretical frequency calculation unit 41 is based on the rotational speed information 42 obtained by a rotational speed sensor (not shown), and the frequency component (band) caused by damage to each rotating component such as bearing separation, gear loss, wheel flatness, etc. ) And the calculated value data is transferred to the comparison and collation unit 43. The comparison and collation unit 43 performs comparison and collation of the measured value data by the frequency analysis unit 40 and the calculation value data by the theoretical frequency calculation unit 41 for each rotating part having different design specifications in order. Furthermore, the abnormality determination unit 44 performs presence / absence of vibration abnormality, identification of an abnormal rotating part, and identification of an abnormal part based on the comparison result in the comparison / collation unit 43.

そして、異常判定部44での判定結果はデータ伝送手段46を介して結果出力部45へ伝送される。結果出力部45は、異常が検出された場合にはアラーム等の警報を発したり、判定結果を記憶部に取り込む。なお、データ伝送手段46は、有線であっても無線であってもよい。   Then, the determination result in the abnormality determination unit 44 is transmitted to the result output unit 45 via the data transmission unit 46. When an abnormality is detected, the result output unit 45 issues an alarm such as an alarm or takes the determination result into the storage unit. The data transmission means 46 may be wired or wireless.

次に、図3を参照して、振動信号を基にした異常診断の処理フローの具体例について説明する。   Next, a specific example of the abnormality diagnosis processing flow based on the vibration signal will be described with reference to FIG.

まず、振動センサ32が各回転部品の振動を検出する(ステップS101)。検出された振動信号は、所定の増幅率で増幅され、A/D変換器によりデジタル信号に変換され(ステップS102)、フィルタ処理部37により所定の回転部品又は静止部材のいずれかの固有振動数に対応した所定の周波数帯域のみを抽出するフィルタ処理が行われる(ステップS103)。その後、フィルタ処理後のデジタル信号に対してエンベロープ処理部39によりエンベロープ処理を施し(ステップS104)、周波数分析部40でエンベロープ処理後のデジタル信号の周波数スペクトル(音圧レベル)を求める(ステップS105)。   First, the vibration sensor 32 detects the vibration of each rotating component (step S101). The detected vibration signal is amplified at a predetermined amplification factor, converted into a digital signal by an A / D converter (step S102), and the natural frequency of either the predetermined rotating component or the stationary member by the filter processing unit 37. A filter process for extracting only a predetermined frequency band corresponding to is performed (step S103). Thereafter, the envelope processing unit 39 performs envelope processing on the digital signal after the filter processing (step S104), and the frequency analysis unit 40 obtains the frequency spectrum (sound pressure level) of the digital signal after the envelope processing (step S105). .

次に、周波数分析部40で得られた実測値データのデジタル信号の実効値を計算し(ステップS106)、さらに実効値を基にして、異常診断に用いられる基準値(音圧レベル(dB))を算出する(ステップS107)。ここで、実効値は、エンベロープ処理後の周波数スペクトルの自乗平均の平方根として求められる。基準値は、実効値を基に、次式(1)または(2)に基づき算出される。
(基準値)=(実効値)+α …(1)
(基準値)=(実効値)×β …(2)
α,β:データの種類によって可変な所定の値
Next, the effective value of the digital signal of the actual measurement value data obtained by the frequency analysis unit 40 is calculated (step S106), and further, based on the effective value, a reference value (sound pressure level (dB)) used for abnormality diagnosis ) Is calculated (step S107). Here, the effective value is obtained as the square root of the root mean square of the frequency spectrum after the envelope processing. The reference value is calculated based on the effective value based on the following formula (1) or (2).
(Reference value) = (effective value) + α (1)
(Reference value) = (effective value) × β (2)
α, β: Predetermined values that vary depending on the type of data

一方、図4及び図5等に示す関係式から、回転速度信号に基づき各回転部品の異常時に起因して発生する(理論)周波数を求め(ステップS108)、求めた周波数に対応する各回転部品(軸受の場合は、内輪、外輪、転動体、保持器)の異常周波数帯域の音圧レベル、即ち、軸受の傷成分Sx(内輪傷成分Si(Zfi)、外輪傷成分So (Zfc)、転動体傷成分Sb(2fb)及び保持器成分Sc(fc))、歯車の噛み合いに対応する傷成分Sg及び車輪等の回転体の摩耗やアンバランス成分Srの異常周波数帯域の音圧レベルを抽出し(ステップS109)、ステップS107で計算された基準値との比較を設計諸元の異なる各回転部品毎に分けて順番に行う(ステップS110)。なお、周波数演算は、これより前に行ってもよく、以前に同様の診断を行っている場合には、そのデータを用いてもよい。また、算出に用いる各回転部品の設計諸元データは事前に入力記憶させておく。   On the other hand, from the relational expressions shown in FIGS. 4 and 5, etc., the (theoretical) frequency generated due to the abnormality of each rotating component is obtained based on the rotation speed signal (step S108), and each rotating component corresponding to the obtained frequency is obtained. (In the case of a bearing, the sound pressure level in the abnormal frequency band of the inner ring, outer ring, rolling element, cage), that is, the flaw component Sx (inner ring flaw component Si (Zfi), outer ring flaw component So (Zfc), The moving body scratch component Sb (2fb) and the cage component Sc (fc)), the scratch component Sg corresponding to the meshing of the gears, and the sound pressure level in the abnormal frequency band of the wear of the rotating body such as wheels and the unbalance component Sr are extracted. (Step S109), the comparison with the reference value calculated in Step S107 is performed in turn for each rotating component having a different design specification (Step S110). The frequency calculation may be performed before this, or the data may be used when a similar diagnosis has been performed previously. Further, design specification data of each rotating part used for calculation is input and stored in advance.

そして、ステップS110で、回転部品の異常周波数帯域(Sx,Sg,Sr)の音圧レベルの値が基準値より小さい場合には、設計諸元の異なる他の回転部品の異常周波数帯域の音圧レベルを抽出して、再度比較照合する。そして、全ての回転部品の異常周波数帯域(Sx,Sg,Sr)の音圧レベルの値が、基準値より小さい場合には(ステップS111)、各回転部品に異常は発生していないと判断し(ステップS112)、いずれかの回転部品の異常周波数帯域の音圧レベルが基準値以上である場合には、該当する回転部品或いは軸受構成部品に傷や剥離等の異常が発生していると判断(ステップS113)し、その判定結果を警報装置等に出力する(ステップS114)。   In step S110, if the value of the sound pressure level in the abnormal frequency band (Sx, Sg, Sr) of the rotating component is smaller than the reference value, the sound pressure in the abnormal frequency band of another rotating component with different design specifications. Extract levels and compare again. If the value of the sound pressure level in the abnormal frequency band (Sx, Sg, Sr) of all the rotating parts is smaller than the reference value (step S111), it is determined that no abnormality has occurred in each rotating part. (Step S112), if the sound pressure level in the abnormal frequency band of any of the rotating parts is greater than or equal to the reference value, it is determined that an abnormality such as a scratch or peeling has occurred in the corresponding rotating part or bearing component. (Step S113) and the determination result is output to an alarm device or the like (Step S114).

上記のような異常診断では、例えば、複数の回転部品が用いられている機械装置において、設計諸元の異なる3種類の回転部品が任意の部位にランダムに組み込まれる場合、3種類の回転部品の設計諸元を予め入力または記憶し、1種類目の設計諸元の部品に基づく周波数成分との比較照合を行い、次に、2種類目の設計諸元の部品に基づく周波数成分との比較照合を行い、さらに、3種類目の設計諸元の部品に基づく周波数成分との比較照合を行って、個々の照合結果に基づき異常の有無や異常の部品を特定し、出力表示する。   In the abnormality diagnosis as described above, for example, in a mechanical device using a plurality of rotating parts, when three types of rotating parts having different design specifications are randomly incorporated in an arbitrary part, Design specifications are entered or stored in advance, compared with frequency components based on parts of the first type of design specifications, and then compared with frequency components based on parts of the second type of design specifications In addition, the comparison with frequency components based on the parts of the third type of design specifications is performed, and the presence / absence of abnormality and the abnormal parts are specified based on the individual verification results, and are output and displayed.

なお、演算処理部50は、例えば、マイクロコンピュータ或いは専用マイクロチップ等を用いることが可能であり、振動センサ32や温度センサ33からの検出信号を基に解析処理し、異常判定部44からの判定結果を制御系に出力する処理を行なう。また、検出した信号は、演算処理部50のメモリ等の記憶手段に格納後に、演算処理を行うようにしても良い。   The arithmetic processing unit 50 can use, for example, a microcomputer or a dedicated microchip, and performs analysis processing based on detection signals from the vibration sensor 32 and the temperature sensor 33 to determine from the abnormality determination unit 44. Processing to output the result to the control system is performed. The detected signal may be subjected to arithmetic processing after being stored in a storage means such as a memory of the arithmetic processing unit 50.

このように本実施形態では、設計諸元が異なる複数の複列円すいころ軸受11、歯車、車輪等の回転部品毎に異常の有無と異常部品や部位の診断を行うようにしているので、設計諸元が異なった複列円すいころ軸受11等が任意の部位に組込まれても、該複列円すいころ軸受11が組み込まれている鉄道車両用転がり軸受装置10を分解することなく実稼動状態で回転部品の異常の有無と異常の部品や部位を特定することができる。   As described above, in this embodiment, since there is a plurality of double row tapered roller bearings 11 having different design specifications, rotating parts such as gears and wheels, the presence / absence of abnormality and the diagnosis of abnormal parts and parts are performed. Even when a double-row tapered roller bearing 11 or the like having different specifications is incorporated in any part, the rolling bearing device 10 for a railway vehicle in which the double-row tapered roller bearing 11 is incorporated can be used in an actual operation state without being disassembled. It is possible to identify the presence or absence of abnormalities in rotating parts and the parts and parts that are abnormal.

また、回転速度信号に基づき算出した回転部品の損傷に起因した周波数成分と振動センサ32により検出された信号波形に基づく実測データの周波数成分とを設計諸元が異なる複数の回転部品毎に比較しているので、突発的な外乱ノイズ等の影響による誤診断を防止して信頼性の高い異常診断を行うことができる。この結果、設計諸元が異なる複数の回転部品が使用されている鉄道車両用転がり軸受装置10に対して高精度な異常診断を行うことができる。   Further, the frequency component resulting from the damage of the rotating component calculated based on the rotation speed signal and the frequency component of the measured data based on the signal waveform detected by the vibration sensor 32 are compared for each of a plurality of rotating components having different design specifications. Therefore, it is possible to prevent erroneous diagnosis due to the influence of sudden disturbance noise or the like and perform highly reliable abnormality diagnosis. As a result, a highly accurate abnormality diagnosis can be performed on the rolling bearing device 10 for railway vehicles in which a plurality of rotating parts having different design specifications are used.

また、従来のように同じ寸法で且つ同じ設計諸元の回転部品を組込まなければならないという手間を省くことができ、さらに、同じ寸法で設計諸元が異なる回転部品を組込んだとしても異常診断が可能であることから、作業効率が向上して効率的なメンテナンスが可能となる。   In addition, the trouble of having to install rotating parts with the same dimensions and the same design specifications as in the past can be saved, and even if rotating parts with the same dimensions and different design specifications are incorporated, abnormality diagnosis Therefore, work efficiency is improved and efficient maintenance is possible.

なお、本発明は上記実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、本実施形態では、複数の回転部品として鉄道車両用転がり軸受装置に組み込まれる複列円すいころ軸受等を例示したが、これに代えて、発電用風車の減速機に組み込まれる複数の転がり軸受や歯車等の回転部品を異常診断対象にして本発明を適用してもよい。
また、本実施形態の回転部品は、転がり軸受や歯車や車軸に限定されず、損傷によって周期的な振動を発生する部品であれば良い。
In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.
For example, in the present embodiment, a double row tapered roller bearing or the like incorporated in a rolling bearing device for a railway vehicle is exemplified as a plurality of rotating parts, but instead, a plurality of rolling bearings incorporated in a reduction gear of a wind turbine for power generation is used. The present invention may be applied to a rotating component such as a gear or a gear as an abnormality diagnosis target.
In addition, the rotating component of the present embodiment is not limited to a rolling bearing, a gear, or an axle, and may be a component that generates periodic vibration due to damage.

さらに、本実施形態では、診断すべき各回転部品に振動センサを複数準備して、各振動センサからの信号波形に基づく実測データの周波数成分に対して、対応する回転部品の損傷に起因した周波数成分を比較しているが、各回転部品の諸元が全て異なる場合には、全ての回転部品に対して単一の振動センサを用い、この振動センサからの信号波形に基づく実測データの周波数成分に対して、各回転部品の損傷に起因した各周波数成分を順次比較していくことで、異常の回転部品を検知することも可能である。   Furthermore, in this embodiment, a plurality of vibration sensors are prepared for each rotating component to be diagnosed, and the frequency component of the measured data based on the signal waveform from each vibration sensor is the frequency caused by the damage of the corresponding rotating component. Compare the components, but if the specifications of each rotating component are all different, use a single vibration sensor for all the rotating components and use the frequency component of the measured data based on the signal waveform from this vibration sensor. On the other hand, it is also possible to detect abnormal rotating parts by sequentially comparing each frequency component resulting from damage of each rotating part.

次に、図6及び図7を参照して、本発明の異常診断装置を用いた回転部品の異常診断の具体例を示す。   Next, referring to FIG. 6 and FIG. 7, a specific example of abnormality diagnosis of a rotating part using the abnormality diagnosis apparatus of the present invention will be shown.

試験は、内外径寸法は同一であるが内部設計諸元が異なる3種類(A,B,C)の円すいころ軸受のうち1種類のみに外輪軌道面に欠陥をつけ、個々の軸受をハウジングに組み込み、300min-1で内輪を回転させた時に発生する振動をハウジングに取り付けた圧電式絶縁型加速度センサにより検出し、増幅後の信号を周波数分析(エンベロープ分析)して比較した。 In the test, only one of the three types (A, B, C) of tapered roller bearings with the same inner and outer diameters but different internal design specifications has defects in the outer ring raceway surface. incorporation was detected by a piezoelectric Isolated acceleration sensor attached to the housing the vibration generated when rotating the inner ring at 300 min -1, and the signal after amplification and compared to frequency analysis (envelope analysis).

図6は、3種類の軸受A,B,Cを回転させた時のハウジングの振動をエンベロープ処理した後、周波数分析を行った結果である。ここで、各図の実線は実測した振動データに基づくエンベロープ周波数スペクトルであり、点線は予め記憶された個々の軸受の設計諸元に基づく外輪損傷に起因した周波数成分(帯域)を示している。   FIG. 6 shows the result of frequency analysis after envelope processing of the vibration of the housing when the three types of bearings A, B, and C are rotated. Here, the solid line in each figure is the envelope frequency spectrum based on the actually measured vibration data, and the dotted line shows the frequency component (band) resulting from the outer ring damage based on the design specifications of the individual bearings stored in advance.

各図より、軸受Aと軸受Cについては各設計諸元に基づく外輪損傷に起因した周波数成分(点線)上に顕著なピークは存在しないが、軸受Bには実測スペクトルに顕著なピークが存在し、それらのピークは何れも外輪損傷に起因した周波数成分(点線)と一致していることがわかる。これにより、この部位には軸受Bの設計諸元の軸受が組込まれており、且つ外輪が損傷していることが判る。   From each figure, for bearing A and bearing C, there is no significant peak on the frequency component (dotted line) due to outer ring damage based on each design specification, but bearing B has a significant peak in the measured spectrum. It can be seen that these peaks all coincide with the frequency component (dotted line) resulting from the outer ring damage. Thereby, it can be seen that the bearing of the design specification of the bearing B is incorporated in this portion, and the outer ring is damaged.

次に、内外径寸法は同一であるが内部設計諸元が異なる3種類(D,E,F)の円すいころ軸受の一種類のみに外輪軌道面に欠陥をつけ、個々の軸受をハウジングに組み込み、300min-1で内輪を回転させた時に発生する振動をハウジングに取り付けた圧電式絶縁型加速度センサにより検出し、増幅後の信号を周波数分析(エンベロープ分析)して比較した。 Next, only one type of three types (D, E, F) tapered roller bearings with the same inner and outer diameter dimensions but different internal design specifications have defects in the outer ring raceway surface, and individual bearings are incorporated into the housing. The vibration generated when the inner ring was rotated at 300 min −1 was detected by a piezoelectric insulation type acceleration sensor attached to the housing, and the amplified signal was compared by frequency analysis (envelope analysis).

図7は、外輪軌道面に欠陥をつけた軸受を回転させた時のハウジングの振動をエンベロープ処理後周波数分析を行った結果を、3種類の軸受D,E,Fの設計諸元に基づく外輪損傷に起因した周波数成分と照合した結果である。ここで、上記同様に、各図の実線は外輪軌道面に欠陥をつけた軸受について実測した振動データに基づくエンベロープ周波数スペクトルであり、点線は予め記憶された個々の軸受の設計諸元に基づく外輪損傷に起因した周波数成分(帯域)を示している。   FIG. 7 shows the result of frequency analysis after envelope processing of the vibration of the housing when a bearing with a defective outer ring raceway surface is rotated, and the outer ring based on the design specifications of three types of bearings D, E, and F. It is the result collated with the frequency component resulting from damage. Here, as described above, the solid line in each figure is an envelope frequency spectrum based on vibration data measured for a bearing with a defect on the outer ring raceway surface, and the dotted line is an outer ring based on design specifications of individual bearings stored in advance. The frequency component (band) resulting from damage is shown.

図7より、外輪軌道面に欠陥をつけた軸受のピークは軸受Fの設計諸元を有している外輪損傷の周波数成分(点線)と一致しているため、外輪が損傷している軸受は軸受Fであると特定することができる。   From FIG. 7, the peak of the bearing with a defect on the outer ring raceway surface coincides with the frequency component (dotted line) of the outer ring damage having the design specifications of the bearing F. The bearing F can be specified.

本発明の一実施形態である異常診断装置の診断対象である複列円すいころ軸受を備えた鉄道車両用転がり軸受装置の断面図である。It is sectional drawing of the rolling bearing apparatus for rail vehicles provided with the double row tapered roller bearing which is a diagnostic object of the abnormality diagnosis apparatus which is one Embodiment of this invention. 本発明の一実施形態である異常診断装置の信号処理系統のブロック図である。It is a block diagram of the signal processing system of the abnormality diagnosis apparatus which is one Embodiment of this invention. 本発明の一実施形態である異常診断装置の処理フローを示すフローチャートである。It is a flowchart which shows the processing flow of the abnormality diagnosis apparatus which is one Embodiment of this invention. 転がり軸受の傷の部位と、傷に起因して発生する特徴周波数の関係を示す図である。It is a figure which shows the relationship between the site | part of the damage | wound of a rolling bearing, and the characteristic frequency which arises resulting from a damage | wound. 歯車の噛み合いで発生する異常振動周波数の関係式を説明するための図である。It is a figure for demonstrating the relational expression of the abnormal vibration frequency which generate | occur | produces by meshing | engagement of a gearwheel. 個々の軸受の実測した振動信号に基づくエンベロープ周波数スペクトルと個々の軸受の設計諸元に基づく外輪損傷(剥離)に起因した周波数成分(帯域)との関係を示すグラフであり、(a)は軸受Aについて、(b)は軸受Bについて、(c)は軸受Cについてのグラフである。It is a graph which shows the relationship between the envelope frequency spectrum based on the vibration signal actually measured of each bearing, and the frequency component (band) resulting from the outer ring damage (peeling) based on the design specifications of each bearing. About A, (b) is a graph about the bearing B, (c) is a graph about the bearing C. 外輪軌道面に欠陥をつけた軸受の実測した振動信号に基づくエンベロープ周波数スペクトルと個々の軸受の設計諸元に基づく外輪損傷(剥離)に起因した周波数成分(帯域)との照合関係を示すグラフであり、(a)は軸受D、(b)は軸受E、(c)は軸受Fについて設計諸元に基づく外輪損傷傷の周波数成分と照合したグラフである。This graph shows the collation relationship between the envelope frequency spectrum based on the measured vibration signal of the bearing with a defect on the outer ring raceway surface and the frequency component (band) due to outer ring damage (separation) based on the design specifications of each bearing. There are graphs in which (a) is a bearing D, (b) is a bearing E, and (c) is a collation with a frequency component of an outer ring damage flaw based on design specifications.

符号の説明Explanation of symbols

11 鉄道車両用複列円すいころ軸受(回転部品)
12 軸受箱(静止部材)
27 平坦部
31 異常検出用センサ(一体型センサ)
32 振動センサ(振動系センサ)
33 温度センサ
37 フィルタ処理部
39 エンベロープ処理部
40 周波数分析部
43 比較照合部
44 異常判定部
45 結果出力部
11 Double-row tapered roller bearings for rolling stock (rotary parts)
12 Bearing box (stationary member)
27 Flat part 31 Abnormality detection sensor (integrated sensor)
32 Vibration sensor (vibration system sensor)
33 Temperature sensor 37 Filter processing unit 39 Envelope processing unit 40 Frequency analysis unit 43 Comparison verification unit 44 Abnormality determination unit 45 Result output unit

Claims (9)

静止部材に対して相対的に回転する複数の回転部品の異常を診断する異常診断装置であって、
前記回転部品または前記静止部材に固定される、振動センサ、音響センサ、超音波センサ及びAEセンサのうちの少なくとも一つの振動系センサと、
回転速度信号に基づき算出した前記回転部品の損傷に起因した周波数成分と前記振動系センサにより検出された信号波形に基づく実測データの周波数成分とを設計諸元が異なる前記複数の回転部品毎に比較する比較照合部と、
前記比較照合部での比較結果に基づき、前記回転部品の異常の有無や異常部品及び部位を特定する異常判定部とを備えていることを特徴とする異常診断装置。
An abnormality diagnosis device for diagnosing an abnormality of a plurality of rotating parts that rotate relative to a stationary member,
At least one vibration system sensor of a vibration sensor, an acoustic sensor, an ultrasonic sensor, and an AE sensor fixed to the rotating component or the stationary member;
The frequency component resulting from damage of the rotating component calculated based on the rotation speed signal and the frequency component of the measured data based on the signal waveform detected by the vibration system sensor are compared for each of the plurality of rotating components having different design specifications. A comparison verification unit to
An abnormality diagnosis apparatus comprising: an abnormality determination unit that identifies presence / absence of abnormality of the rotating component and an abnormal component and part based on a comparison result in the comparison / collation unit.
前記振動系センサにより検出された信号波形から不要な周波数帯域を除去するフィルタ処理部と、
前記フィルタ処理部から転送されたフィルタ処理後の波形の絶対値を検波するエンベロープ処理部と、
前記エンベロープ処理部から転送された波形の周波数を分析する周波数分析部とをさらに備えたことを特徴とする請求項1に記載の異常診断装置。
A filter processing unit for removing unnecessary frequency bands from the signal waveform detected by the vibration system sensor;
An envelope processing unit for detecting the absolute value of the filtered waveform transferred from the filter processing unit;
The abnormality diagnosis apparatus according to claim 1, further comprising a frequency analysis unit that analyzes a frequency of a waveform transferred from the envelope processing unit.
前記振動系センサと、温度センサ及び回転速度センサのうちの少なくとも一つのセンサが、単一の筐体内に収納される一体型センサを備えたことを特徴とする請求項1または2に記載の異常診断装置。   3. The abnormality according to claim 1, wherein at least one of the vibration system sensor, the temperature sensor, and the rotation speed sensor includes an integrated sensor housed in a single housing. Diagnostic device. 前記静止部材は軸受箱であり、前記一体型センサは、該軸受箱の平坦部に固定されていることを特徴とする請求項3に記載の異常診断装置。   The abnormality diagnosis apparatus according to claim 3, wherein the stationary member is a bearing box, and the integrated sensor is fixed to a flat portion of the bearing box. 前記異常判定部による判定結果を伝送するデータ伝送手段を有することを特徴とする請求項1〜4のいずれかに記載の異常診断装置。   The abnormality diagnosis apparatus according to claim 1, further comprising a data transmission unit configured to transmit a determination result by the abnormality determination unit. 前記センサからの検出信号を基に解析処理し、前記異常判定部からの判定結果を制御系に出力する処理を行なうマイクロコンピュータを具備したことを特徴とする請求項1〜5のいずれかに記載の異常診断装置。   6. The microcomputer according to claim 1, further comprising a microcomputer that performs analysis processing based on a detection signal from the sensor and outputs a determination result from the abnormality determination unit to a control system. Abnormality diagnosis device. 前記回転部品が鉄道車両用であることを特徴とする請求項1〜6のいずれかに記載の異常診断装置。   The abnormality diagnosis apparatus according to claim 1, wherein the rotating component is for a railway vehicle. 前記回転部品が減速機用であることを特徴とする請求項1〜6のいずれかに記載の異常診断装置。   The abnormality diagnosis apparatus according to claim 1, wherein the rotating component is for a speed reducer. 静止部材に対して相対的に回転する複数の回転部品の異常を診断する異常診断方法であって、
前記回転部品または前記静止部材の振動、音響、超音波、AEのうち少なくとも一つの信号を検出する検出工程と、
回転速度信号に基づき算出した前記複数の回転部品毎の損傷に起因した周波数成分と前記検出工程により検出された信号波形に基づく実測データの周波数成分とを、設計諸元が異なる前記回転部品毎に比較する比較工程と、
該比較工程での比較結果に基づき、前記回転部品の異常の有無や損傷部位を特定する特定工程とを備えていることを特徴とする異常診断方法。
An abnormality diagnosis method for diagnosing an abnormality in a plurality of rotating parts rotating relative to a stationary member,
A detection step of detecting at least one signal of vibration, sound, ultrasonic wave, and AE of the rotating component or the stationary member;
The frequency component resulting from damage for each of the plurality of rotating parts calculated based on the rotation speed signal and the frequency component of the measured data based on the signal waveform detected by the detection step are determined for each of the rotating parts having different design specifications. A comparison process to compare;
An abnormality diagnosis method comprising: a specifying step for specifying presence / absence of an abnormality of the rotating component and a damaged portion based on a comparison result in the comparison step.
JP2004265218A 2004-09-13 2004-09-13 Abnormality diagnosis apparatus and abnormality diagnosis method Expired - Fee Related JP4529602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265218A JP4529602B2 (en) 2004-09-13 2004-09-13 Abnormality diagnosis apparatus and abnormality diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265218A JP4529602B2 (en) 2004-09-13 2004-09-13 Abnormality diagnosis apparatus and abnormality diagnosis method

Publications (2)

Publication Number Publication Date
JP2006077945A JP2006077945A (en) 2006-03-23
JP4529602B2 true JP4529602B2 (en) 2010-08-25

Family

ID=36157564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265218A Expired - Fee Related JP4529602B2 (en) 2004-09-13 2004-09-13 Abnormality diagnosis apparatus and abnormality diagnosis method

Country Status (1)

Country Link
JP (1) JP4529602B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016055840A (en) * 2014-09-12 2016-04-21 Ntn株式会社 Bearing abnormality detection device for railway vehicle
JP2016075479A (en) * 2014-10-02 2016-05-12 Ntn株式会社 Rolling stock bearing abnormality detection device
JP2016075478A (en) * 2014-10-02 2016-05-12 Ntn株式会社 Rolling stock bearing abnormality detection device
US10352821B2 (en) 2014-09-12 2019-07-16 Ntn Corporation Bearing abnormality sensing system for railway vehicle
US11594243B2 (en) 2020-12-23 2023-02-28 Toyota Jidosha Kabushiki Kaisha Sound source estimation system and sound source estimation method
US11780442B2 (en) 2020-12-23 2023-10-10 Toyota Jidosha Kabushiki Kaisha Sound source estimation server, sound source estimation system, sound source estimation device, and sound source estimation method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008019776A1 (en) * 2008-04-18 2009-10-22 CFS Bühl GmbH Method, device and knife for slicing food
JP5086954B2 (en) * 2008-09-19 2012-11-28 三菱重工業株式会社 Planetary roller traction drive
JP5173860B2 (en) * 2009-01-15 2013-04-03 三菱重工業株式会社 Planetary roller type power transmission device
JP5301303B2 (en) * 2009-02-02 2013-09-25 Ntn株式会社 Inspection method and inspection apparatus
JP2012137195A (en) * 2012-04-23 2012-07-19 Mitsubishi Heavy Ind Ltd Planetary roller type traction drive
JP6558131B2 (en) * 2015-08-04 2019-08-14 日本精工株式会社 Abnormality diagnosis device, bearing, mechanical device and vehicle
SE543580C2 (en) 2016-05-25 2021-04-06 Hitachi Ltd Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method
JP7294222B2 (en) * 2020-04-16 2023-06-20 トヨタ自動車株式会社 Abnormal noise evaluation system and abnormal noise evaluation method
CN114658611A (en) * 2020-12-23 2022-06-24 新疆金风科技股份有限公司 Method and device for detecting abnormality of main bearing of wind power generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271181A (en) * 1998-01-22 1999-10-05 Nippon Steel Corp Method and device for diagnosing failure in rolling bearing
JP2001021453A (en) * 1999-07-09 2001-01-26 Nsk Ltd Method and device for diagnosing anomaly in bearing
JP2003185535A (en) * 2001-12-18 2003-07-03 Nsk Ltd Evaluating apparatus
JP2004218814A (en) * 2003-01-17 2004-08-05 Nsk Ltd Bearing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271181A (en) * 1998-01-22 1999-10-05 Nippon Steel Corp Method and device for diagnosing failure in rolling bearing
JP2001021453A (en) * 1999-07-09 2001-01-26 Nsk Ltd Method and device for diagnosing anomaly in bearing
JP2003185535A (en) * 2001-12-18 2003-07-03 Nsk Ltd Evaluating apparatus
JP2004218814A (en) * 2003-01-17 2004-08-05 Nsk Ltd Bearing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016055840A (en) * 2014-09-12 2016-04-21 Ntn株式会社 Bearing abnormality detection device for railway vehicle
US10352821B2 (en) 2014-09-12 2019-07-16 Ntn Corporation Bearing abnormality sensing system for railway vehicle
JP2016075479A (en) * 2014-10-02 2016-05-12 Ntn株式会社 Rolling stock bearing abnormality detection device
JP2016075478A (en) * 2014-10-02 2016-05-12 Ntn株式会社 Rolling stock bearing abnormality detection device
US11594243B2 (en) 2020-12-23 2023-02-28 Toyota Jidosha Kabushiki Kaisha Sound source estimation system and sound source estimation method
US11780442B2 (en) 2020-12-23 2023-10-10 Toyota Jidosha Kabushiki Kaisha Sound source estimation server, sound source estimation system, sound source estimation device, and sound source estimation method

Also Published As

Publication number Publication date
JP2006077945A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP4581693B2 (en) Abnormality diagnosis device
JP2006077938A (en) Abnormality diagnosing device
JP3944744B2 (en) Abnormality diagnosis device and rolling bearing device having the same
JP4529602B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP5146008B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
US7860663B2 (en) Abnormality diagnosing apparatus and abnormality diagnosing method
JP4581860B2 (en) Machine equipment abnormality diagnosis apparatus and abnormality diagnosis method
US7523615B2 (en) Telemetry system
JP2004233284A (en) Diagnostic device and diagnostic method of rolling bearing unit
JP4935165B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP7027782B2 (en) Rolling bearing abnormality diagnostic device
JP6714806B2 (en) Status monitoring device and status monitoring method
US8315826B2 (en) Diagnostic method for a ball bearing, in particular for an angular-contact ball bearing, a corresponding diagnostic system, and use of the diagnostic system
JP4710455B2 (en) Abnormality diagnosis device for axle support device of railway vehicle
JP2006234785A (en) Abnormality diagnosis device and abnormality diagnosis method for mechanical equipment
JP2007108189A (en) Method and device for diagnosing abnormality in rotor
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
WO2019221251A1 (en) Bearing state monitoring method and state monitoring device
JP2018155494A (en) Bearing abnormality diagnosis system and bearing abnormality diagnosis method
JP6714844B2 (en) Abnormality diagnosis method
JP5673382B2 (en) Abnormal diagnosis method
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
WO2018088564A1 (en) Bearing abnormality diagnostic method and diagnostic system
JP2016170085A (en) Abnormality diagnostic device and abnormality diagnostic method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4529602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees