WO2018079626A1 - Three-dimensional printing apparatus and method for producing three-dimensional printed object - Google Patents

Three-dimensional printing apparatus and method for producing three-dimensional printed object Download PDF

Info

Publication number
WO2018079626A1
WO2018079626A1 PCT/JP2017/038578 JP2017038578W WO2018079626A1 WO 2018079626 A1 WO2018079626 A1 WO 2018079626A1 JP 2017038578 W JP2017038578 W JP 2017038578W WO 2018079626 A1 WO2018079626 A1 WO 2018079626A1
Authority
WO
WIPO (PCT)
Prior art keywords
modeling
powder
layer
heat dissipation
heat
Prior art date
Application number
PCT/JP2017/038578
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 宏
新一朗 原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2018079626A1 publication Critical patent/WO2018079626A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to a three-dimensional modeling apparatus and a method for manufacturing a three-dimensional modeled object.
  • modeling region a predetermined layer (hereinafter referred to as “modeling region”) of a powder layer is irradiated with a laser, that is, by applying heat, the powder material in the modeling region is sintered or melted and solidified.
  • laying a new powder layer on the formed modeling layer and irradiating the laser in the same manner to further form a modeling layer to model a three-dimensional modeled object In the following, for convenience of explanation, a structure in which a modeling layer before being completed as a three-dimensional structure is laminated is also referred to as a “three-dimensional structure”.
  • FIG. 1 is a diagram schematically showing a temperature distribution of a three-dimensional structure within a powder deposition layer.
  • the manufacturing process of modeling a three-dimensional structure includes a modeling phase in which modeling layers are sequentially stacked, and a cooling phase in which the modeling layers are stacked and then left for a certain period of time for air cooling.
  • the surface layer of the powder deposition layer in the modeling phase is repeatedly heated to a temperature equal to or higher than the melting point of the powder material by being irradiated with a laser, and is in a high temperature state (for example, about 180 ° C.) (FIG. 1A).
  • a temperature state for example, about 180 ° C.
  • FIG. 1B shows a state in which the surface layer and the central region of the powder deposition layer reach a high temperature of about 170 ° C., and the deep layer on the lower layer side and the left and right ends are lowered to about 150 ° C.
  • FIG. 1C the central region of the powder deposition layer becomes high at about 150 ° C., and the upper, lower, left and right end portions thereof are about 100 ° C., and the temperature is lowered from the central region toward the periphery.
  • Such a temperature distribution characteristic is generally caused by the fact that the thermal conductivity of the powder material is low and heat tends to be trapped in the powder deposition layer.
  • the present invention has been made in view of the above-described problems, and suppresses unevenness of temperature distribution generated in a three-dimensional structure within a powder accumulation layer, thereby improving a modeling accuracy and a three-dimensional structure. It aims at providing the manufacturing method of.
  • a powder layer forming part for forming a powder layer made of a powder material
  • a laser irradiation unit that irradiates a laser to a modeling region of the powder layer, and forms a modeling layer by sintering or melting and solidifying the modeling region
  • a heat-dissipating material supply section for supplying the heat-dissipating material
  • Control the powder layer forming unit, the heat dissipation material supply unit and the laser irradiation unit Control to dispose the heat dissipating material so that the heat dissipating material is disposed on at least a part of the periphery of the modeling layer by repeating the process of forming the powder layer and the modeling layer while disposing the heat dissipating material.
  • Forming a powder layer made of a powder material on the modeling stage Irradiating a laser to the modeling region of the powder layer, and sintering or melting and solidifying the modeling region to form a modeling layer; Providing a heat dissipating material on the modeling stage, Repeating the step of forming the powder layer and the modeling layer while disposing the heat dissipating material, and laminating the plurality of modeling layers so that the heat dissipating material is disposed around at least a part of the layer; It is a manufacturing method of a three-dimensional structure.
  • the three-dimensional modeling apparatus it is possible to suppress the uneven temperature distribution generated in the three-dimensional modeled object in the powder accumulation layer and improve the modeling accuracy.
  • FIG. 1A, 1B, and 1C are diagrams schematically illustrating a temperature distribution of a three-dimensional structure in a powder deposition layer.
  • FIG. 2 is a diagram schematically illustrating the overall configuration of the three-dimensional modeling apparatus according to the embodiment.
  • FIG. 3 is a diagram illustrating a main part of a control system of the three-dimensional modeling apparatus according to the embodiment.
  • FIG. 4A is a diagram illustrating a model apparatus for a verification experiment.
  • FIG. 4B is a diagram illustrating a model apparatus for a verification experiment.
  • FIG. 5 is a graph showing a temporal change in the temperature distribution in the powder deposition layer in the model apparatus.
  • FIG. 6 is a diagram illustrating an example of an operation flow of the three-dimensional modeling apparatus according to the embodiment.
  • FIG. 1A, 1B, and 1C are diagrams schematically illustrating a temperature distribution of a three-dimensional structure in a powder deposition layer.
  • FIG. 2 is a diagram schematically illustrating the overall
  • FIG. 7 is a diagram schematically illustrating an operation flow process of the three-dimensional modeling apparatus according to the embodiment.
  • FIG. 8A is a diagram illustrating an example of an arrangement position of the heat dissipating material in the stacking direction.
  • FIG. 8B is a diagram illustrating an example of an arrangement position of the heat dissipating material in the stacking direction.
  • FIG. 9 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus according to the first modification.
  • FIG. 10 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus according to the second modification.
  • FIG. 11 is a diagram illustrating an example of a configuration of a three-dimensional modeling apparatus according to Modification 3.
  • FIG. 2 is a diagram schematically showing an overall configuration of the three-dimensional modeling apparatus 100 according to the present embodiment.
  • FIG. 3 is a diagram illustrating a main part of a control system of the three-dimensional modeling apparatus 100 according to the present embodiment.
  • the three-dimensional modeling apparatus 100 includes a modeling stage 110 located in the opening, a powder layer forming unit 120 that forms a powder layer made of a powder material on the modeling stage 110, and a heat dissipation material on the modeling stage 110.
  • the laser radiation unit 130 that supplies the laser to the modeling region of the powder layer, the laser irradiation unit 130 that forms the modeling layer by sintering or melting and solidifying the powder material in the modeling region, and the vertical of the modeling stage 110
  • a stage support unit 140 that variably supports a position in the direction and a base 145 that supports the above-described units are provided.
  • the three-dimensional modeling apparatus 100 does not induce a dust explosion (a phenomenon in which a certain concentration of combustible dust floats in a gas such as the atmosphere and is ignited by a spark to cause an explosion).
  • An inert gas supply unit (not shown) that supplies an inert gas (such as nitrogen) into the apparatus under the control of the control unit 150 may be provided.
  • the three-dimensional modeling apparatus 100 may include a heater (not shown) that preliminarily heats the inside of the apparatus (in particular, the upper surface of the powder layer made of a powder material) under the control of the control unit 150.
  • the 3D modeling apparatus 100 includes a control unit 150 that controls the entire 3D modeling apparatus 100, a display unit 160 that displays various types of information, and a pointing that receives instructions from the user.
  • a data input unit 190 including an interface and the like is provided.
  • the computer device 200 generates data for three-dimensional modeling and transmits the data to the data input unit 190.
  • the three-dimensional modeling apparatus 100 forms a powder layer by the powder layer forming unit 120 on the modeling stage 110, and forms a modeling layer by sintering or melting and solidifying the powder in the modeling region by laser irradiation by the laser irradiation unit 130. To do.
  • the three-dimensional modeling apparatus 100 models a three-dimensional model by repeating the process of laying a new powder layer on the formed modeling layer and irradiating the laser in the same manner to further form a modeling layer.
  • the heat dissipating material supply unit 123 of the three-dimensional modeling apparatus 100 arranges the heat dissipating material so as to surround the modeling region at the same time when the powder layer forming unit 120 forms the powder layer or before forming the powder layer. (It will be described later with reference to FIGS. 6 and 7).
  • the powder layer forming unit 120 includes a powder supply unit 121 and a recoater driving unit 122.
  • the powder supply unit 121 supplies the powder material onto the modeling stage 110.
  • the powder supply unit 121 includes, for example, a supply nozzle 121a, a powder material tank (not shown) that stores the powder material, and a drive mechanism (not shown) such as a motor.
  • the powder supply unit 121 supplies, for example, the powder material supplied from the powder material tank onto the modeling stage 110 by operating a valve body provided at the tip of the supply nozzle 121a.
  • the powder material is a material that is sintered or melted and solidified by a laser irradiated from the laser irradiation unit 130 to form a three-dimensional structure.
  • the powder material is typically a resin material such as polyamide or polystyrene.
  • the recoater driving unit 122 flatly spreads the powder material supplied on the modeling stage 110 using the recoater 122a to form a powder layer made of the powder material.
  • the recoater drive unit 122 includes, for example, the recoater 122a and a drive mechanism (not shown) such as a motor, and drives the drive mechanism to move the recoater 122a horizontally with respect to the modeling stage 110, thereby generating powder. Lay the material flat.
  • the powder layer forming unit 120 may supply the powder material by other methods as long as the powder layer can be laid flat on the modeling stage 110.
  • the powder supply unit 121 may provide a powder material storage unit at the outer edge of the modeling stage 110 and supply the powder material so as to flow from the powder material storage unit onto the modeling stage 110. Good.
  • a roller or the like may be used instead of the recoater 122a.
  • the heat dissipation material supply unit 123 supplies the heat dissipation material onto the modeling stage 110.
  • the heat dissipation material supply unit 123 includes, for example, a supply roller 123a, a heat dissipation material setting unit (not shown) for sequentially setting the heat dissipation material on the supply roller 123a, and a drive mechanism (not shown) such as a motor for moving the supply roller 123a. ).
  • the heat radiating material supply part 123 makes the supply roller 123a hold
  • the heat dissipating material is disposed on the modeling stage 110 so as to surround the periphery of the modeling area. And when the three-dimensional structure is buried in the powder accumulation layer, the heat dissipation material radiates heat from the structure and the surrounding powder material, and suppresses the occurrence of uneven temperature distribution in the three-dimensional structure. .
  • the heat dissipation material a material having a higher thermal conductivity than the powder material is used, and typically, a material having a thermal conductivity of 10 times or more that of the powder material is used. More preferably, a metal material such as silver, copper, aluminum, or stainless steel is used as the heat dissipation material.
  • the metal material has high thermal conductivity and can prevent welding with the powder material. Therefore, it is possible to reuse the heat dissipation material or the powder material.
  • the thermal conductivity of the powder material is polyamide: 0.25 (W / mK), polystyrene: 0.1 to 0.14 (W / mK).
  • the heat conductivity of the heat dissipating material was as follows: silver: 420 (W / mK), copper: 398 (W / mK), aluminum: 236 (W / mK), stainless steel: 16.7 to 20.9 (W / m mK).
  • the heat dissipating material has a thickness equal to or less than the lamination pitch (for example, 0.1 mm) of the powder layer, and for example, a foil or powder is used.
  • the heat radiating material supply part 123 arrange
  • the heat dissipating material supply unit 123 disposes the heat dissipating material on the modeling stage 110 using a supply nozzle or the like.
  • the laser irradiation unit 130 includes a laser light source 131 and a galvano mirror driving unit 132 having a galvano mirror 132a.
  • Examples of the laser light source 131 include a fiber laser light source and a CO 2 laser light source.
  • the laser light source 131 emits a laser toward the galvanometer mirror 132a.
  • the galvanometer mirror 132a is composed of an X mirror that reflects the laser from the laser light source 131 and scans the laser in the X direction, and a Y mirror that reflects the laser from the laser light source 131 and scans the laser in the Y direction.
  • the galvanometer mirror driving unit 132 drives the galvanometer mirror 132a and irradiates the modeling region of the powder layer with laser.
  • the laser irradiation unit 130 may include a lens (not shown) for adjusting the focal length of the laser to the surface of the powder layer.
  • the stage support unit 140 variably supports the position of the modeling stage 110 in the vertical direction. That is, the modeling stage 110 is configured to be precisely movable in the vertical direction by the stage support unit 140.
  • the stage support unit 140 is related to a holding member that holds the modeling stage 110, a guide member that guides the holding member in the vertical direction, and a screw hole provided in the guide member. It can be constituted by a ball screw or the like to be combined.
  • the modeling stage 110 is surrounded by a guide member, and a tank for depositing a powder material is formed by the guide member and the modeling stage 110.
  • the display unit 160 displays various information and messages that should be recognized by the user under the control of the control unit 150.
  • the operation unit 170 includes various operation keys such as a numeric keypad, an execution key, and a start key, receives various input operations by the user, and outputs an operation signal corresponding to the input operation to the control unit 150.
  • various operation keys such as a numeric keypad, an execution key, and a start key
  • receives various input operations by the user and outputs an operation signal corresponding to the input operation to the control unit 150.
  • the three-dimensional structure to be modeled is displayed on the display unit 160 to check whether a desired shape is formed. If the desired shape is not formed, the three-dimensional modeling is performed via the operation unit 170. Modifications may be made to the data.
  • the storage unit 180 stores various types of information including a control program executed by the control unit 150.
  • the storage unit 180 is, for example, various storage media such as a ROM, a RAM, a magnetic disk, an HDD, and an SSD.
  • the storage unit 180 stores, for example, three-dimensional modeling data input via the data input unit 190.
  • the control unit 150 is a control device that controls the entire 3D modeling apparatus 100 and includes, for example, a hardware processor such as a central processing unit.
  • the control unit 150 performs data communication with the powder layer forming unit 120, the heat radiating material supply unit 123, the laser irradiation unit 130, the stage support unit 140, the display unit 160, the operation unit 170, the storage unit 180, and the data input unit 190. To control the operation.
  • 4A and 4B are diagrams showing model devices T1 and T2 for the verification experiment.
  • the model devices T1 and T2 of FIGS. 4A and 4B are provided with heaters Th1 to Th3 around a powder tank containing a powder deposition layer Ta made of a powder material, and temperature sensors TL1 at a plurality of positions in the powder tank.
  • the model device T1 in FIG. 4A is a model device in which a plurality of heat dissipating materials Tb (here, copper foils) are disposed in the entire powder tank, and the model device T2 in FIG. 4B is a heat dissipating material in the powder accumulation layer Ta. This is a model device without Tb.
  • the temperature distribution and the cooling rate in the powder deposition layer Ta when the powder deposition layer Ta was heated using the heaters Th1 to Th3 and then naturally cooled were confirmed.
  • the temperature distribution at each time is measured by regarding the time during which the powder deposition layer Ta is heated as the modeling phase and the time during which the powder deposition layer Ta is naturally cooled as the cooling phase.
  • FIG. 5 is a graph showing temporal changes in the temperature distribution in the powder deposition layer Ta in the model devices T1 and T2 in FIGS. 4A and 4B.
  • T1mid is the temperature of the central portion in the powder deposition layer Ta of the model apparatus T1
  • T1max is the temperature at which the maximum temperature in the powder deposition layer Ta of the model apparatus T1 is detected
  • T1min is the model apparatus.
  • T2mid is the temperature of the central portion in the powder deposition layer Ta of the model device T2
  • T2max is the maximum temperature in the powder deposition layer Ta of the model device T2.
  • the temperature at which the temperature is detected, T2min indicates the temperature at the position where the minimum temperature in the powder deposition layer Ta of the model apparatus T2 is detected.
  • the heat dissipation material Tb is placed in the powder deposition layer Ta. It can be seen that the uneven distribution of the temperature distribution in the modeling phase can be suppressed by the arrangement.
  • the heat dissipation material Tb is contained in the powder accumulation layer Ta. It can be seen that the uneven distribution of the temperature distribution in the cooling phase can also be suppressed by arranging.
  • cooling gradient in the cooling phase is steeper than T2max, T2min, and T2mid for all of T1max, T1min, and T1mid, cooling is achieved by disposing the heat dissipation material Tb in the powder deposition layer Ta. It can be seen that the cooling time in the phase can be shortened.
  • the temperature distribution of the three-dimensional structure is the same even in the process of actually forming the three-dimensional structure. It is estimated that the same tendency as the result of the verification experiment is shown.
  • this experimental result shows that by disposing the heat dissipating material so as to surround the modeling layer that is the center of heat generation, heat dissipation from the modeling layer buried in the powder deposition layer is promoted in each direction, and the modeling phase and In any of the cooling phases, it is suggested that the uneven temperature distribution generated in the three-dimensional structure can be suppressed.
  • FIG. 6 is a diagram illustrating an example of an operation flow of the 3D modeling apparatus 100 according to the present embodiment.
  • the operation flow shown in FIG. 6 is executed by the control unit 150 according to a computer program, for example.
  • FIG. 7 is a diagram schematically showing the processing of steps S4 to S6 in the operation flow of FIG.
  • La, Lb, and Lc are regions of the powder layer that are sintered or melt-solidified (modeling regions), regions of the powder layer that are not sintered or melt-solidified (non-modeling regions), The area
  • positioned is represented.
  • 8A and 8B are diagrams illustrating an example of the arrangement position of the heat dissipating material in the stacking direction.
  • the control unit 150 first creates slice data (step S1). For example, the control unit 150 converts the three-dimensional modeling shape data acquired by the data input unit 190 from the computer device 200 into a plurality of slice data sliced thinly in the stacking direction of the modeling layer, and stores the data in the storage unit 180. .
  • the slice data is modeling data of each modeling layer for modeling a three-dimensional modeled object. Data for one layer of slice data corresponds to one layer for the powder layer and the modeling layer.
  • control unit 150 determines a region in which the heat dissipating material is disposed based on the slice data (step S2).
  • control unit 150 determines the disposition region of the heat radiation material so as to surround the periphery of the modeling region based on the slice data so as not to cause uneven temperature distribution in the three-dimensional structure. At this time, it is desirable that the disposition position of the heat dissipating material be as close as possible to the modeling region, for example, close to the distance between them is about 2 mm. However, since there exists a possibility that both may weld if a heat sink and a molded article contact, the arrangement
  • the heat dissipating material may be disposed in each layer as shown in FIG. 8A in the stacking direction, or may be disposed at intervals of a plurality of layers as shown in FIG. 8B.
  • TL corresponds to the thickness of one layer of the modeling layer (for example, 0.1 mm).
  • the disposition positions of the heat dissipating materials do not have to be equal.
  • the heat dissipating material may be disposed at least in a part of the stacking direction of the plurality of modeling layers as long as the heat dissipating material surrounds the surroundings. It is good also as what arrange
  • a heat dissipating material may be provided only on the side where heat is accumulated, and a balance with the area where the heat is not accumulated may be achieved.
  • the control unit 150 repeatedly executes the following steps S3 to S7 for each layer based on the data set in steps S1 and S2.
  • the control unit 150 determines whether or not there is a region where the heat dissipating material is disposed in the layer to be stacked (step S3).
  • step S3: YES the disposing process of the heat dissipating material in the subsequent step S4 is performed.
  • step S3: NO the control unit 150 performs the powder layer forming process in the subsequent step S5 without disposing the heat dissipating material.
  • control unit 150 outputs a control signal to the heat dissipation material supply unit 123 to operate the heat dissipation material supply unit 123 (step S4).
  • the heat dissipation material supply unit 123 drives the supply roller 123a according to the control signal output from the control unit 150, and disposes the heat dissipation material in the corresponding region Lc on the modeling stage 110.
  • control unit 150 outputs control signals to the powder supply unit 121 and the recoater driving unit 122 to form a powder layer, and operates them (step S5).
  • the powder supply unit 121 supplies the powder material to the entire modeling stage 110 while moving the supply nozzle 123 a on the modeling stage 110 according to the control signal output from the control unit 150. At this time, the powder supply unit 121 is more powdery than the regions La and Lb in which the heat dissipating material is not provided in the region Lc in which the heat dissipating material is provided so that the height in the stacking direction is uniform as a whole. The amount of material supply may be reduced.
  • the recoater driving unit 122 moves the recoater 122a in the horizontal direction on the modeling stage 110 in accordance with the control signal output from the control unit 150, and presses the powder material so that the thickness becomes one layer of the powder layer. And leveling.
  • the heat dissipating material is made of a foil-like or powdery material having a thickness equal to or less than one layer of the powder layer, so that the heat dissipating material disposed in step S4 is embedded in the powder layer.
  • the recoater driving unit 122 can form a flat powder layer without being disturbed by the heat dissipation material. Accordingly, it is possible to prevent the accuracy of the three-dimensional structure from being deteriorated due to the deterioration of the accuracy of the laser irradiation position in the subsequent step S6.
  • control unit 150 outputs a control signal to the laser irradiation unit 130 to operate the laser irradiation unit 130 (step S6).
  • the laser irradiation unit 130 emits a laser from the laser light source 131 according to the control signal output from the control unit 150, and drives the galvano mirror 132a by the galvano mirror driving unit 132, so that the modeling region La on the powder layer is applied. Irradiate the laser. Then, the powder material is sintered or melted and solidified by laser irradiation, and a modeling layer is formed in the modeling region La.
  • control unit 150 determines whether or not all the modeling layers have been formed based on the slice data (step S7).
  • step S7: YES when it determines with all the modeling layers having been formed (step S7: YES), the control part 150 complete
  • step S7: NO when it determines with not forming all the modeling layers (step S7: NO), the control part 150 outputs a control signal with respect to the stage support part 140, and while operating the stage support part 140, step Returning to the process of S3, a modeling layer according to the next layer is formed.
  • the stage support unit 140 drives the motor and the drive mechanism in response to a control signal output from the control unit 150, and moves the modeling stage 110 downward in the vertical direction by the stacking pitch.
  • a plurality of modeling layers are stacked on the modeling stage 110, and a three-dimensional modeled object is modeled. And after a three-dimensional structure is modeled, the said three-dimensional structure is completed by cooling by natural cooling etc. for a predetermined time.
  • a three-dimensional modeled object is formed while disposing a heat dissipation material around the modeling region. Therefore, the three-dimensional modeling apparatus 100 can stack the modeling layers while eliminating unevenness of the temperature distribution of the model buried in the powder deposition layer. Thereby, it can suppress that a thermal distortion arises in a three-dimensional structure, and can improve the modeling precision of a three-dimensional structure. This also improves the heat dissipation characteristics and shortens the cooling time of the cooling phase.
  • the heat radiation material is constituted by a foil-like or powder-like member having a thickness equal to or less than one layer of the powder layer, and thus the accuracy of the three-dimensional modeled object is high. It can also prevent deterioration.
  • a foil-like heat dissipation material when used, there is an advantage in that it is easy to dispose on the modeling stage 110, and in addition, recovery and reuse are easy.
  • the arrangement position when used, can be finely adjusted in accordance with the shape of the three-dimensional structure, and the modeling accuracy can be further improved and the cooling time can be shortened. There are advantages in terms. Therefore, it is desirable to appropriately select the aspect of the heat dissipation material according to the shape of the three-dimensional structure.
  • the heat radiating material is made of a metal material, it is possible to ensure good heat radiating characteristics and the heat radiating material is welded to the powder material. There is nothing. Therefore, it becomes possible to reuse both the heat dissipation material and the powder material.
  • FIG. 9 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus 100 according to the first modification.
  • FIG. 9 is different from the above embodiment in that the supply nozzle 121a for supplying the powder material and the supply roller 123a for supplying the heat dissipating material are integrally moved.
  • the supply nozzle 121a and the supply roller 123a are disposed on the modeling stage 110 by shifting the positions for supplying the powder material and the heat dissipation material in the horizontal direction.
  • the three-dimensional structure forming apparatus 100 according to Modification 1 executes the process of supplying the powder material by the supply nozzle 121a and the process of supplying the heat dissipation material by the supply roller 123a simultaneously. To do. At this time, the three-dimensional modeling apparatus 100 according to Modification 1 is configured to supply the powder material so as to cover the heat dissipation material after the heat dissipation material is disposed.
  • the modeling time for the entire modeling phase can be shortened.
  • the powder supply unit 121 and the heat dissipation material supply unit 123 can share a motor and a drive mechanism for moving the supply nozzle 121a and the supply roller 123a on the modeling stage 110, cost reduction and size reduction are achieved. Etc.
  • FIG. 10 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus 100 according to the second modification.
  • the three-dimensional modeling apparatus 100 according to Modification 2 is different from Modification 1 in that a supply nozzle 123b is used instead of the supply roller 123a in the heat dissipation material supply method of the heat dissipation material supply unit 123.
  • the heat dissipating material supply unit 123 uses a powder heat dissipating material, and discharges the heat dissipating material from the supply nozzle 123b.
  • the supply nozzle 121a for supplying the powder material and the supply nozzle 123b for supplying the heat dissipating material are held in a state where the discharge ports are shifted in the horizontal direction on the modeling stage 110 so as to be integrated. It is configured to move.
  • the three-dimensional structure forming apparatus 100 When forming a three-dimensional structure, the three-dimensional structure forming apparatus 100 according to the modified example 2 simultaneously performs a process in which the supply nozzle 121a supplies the powder material and a process in which the supply nozzle 123b supplies the heat dissipation material, thereby radiating heat. After disposing the material, a powder material is supplied so as to cover the heat dissipation material.
  • the modeling time of the entire modeling phase can be shortened as in the first modification.
  • the powder supply unit 121 and the heat dissipation material supply unit 123 can share the motor and the drive mechanism for moving the supply nozzle 121a and the supply nozzle 123b on the modeling stage 110, the cost can be reduced and the size can be reduced. Etc.
  • FIG. 11 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus 100 according to the third modification.
  • 3D modeling apparatus 100 according to Modification 3 is different from Modification 2 in that the supply nozzle of the heat dissipation material supply unit 123 and the supply nozzle of the powder supply unit 121 are shared.
  • the supply nozzle 121c of the powder supply unit 121 is a line nozzle having a plurality of discharge ports b1 to b5.
  • the supply nozzle 121c includes a storage chamber (not shown) that holds a discharge target discharged from each of the plurality of discharge ports b1 to b5, and a valve (not shown) for switching the discharge target held in the storage chamber. Is provided. Then, the supply nozzle 121c selectively discharges the powder material or the powder heat radiation material from each of the plurality of discharge ports b1 to b5 by switching the discharge target in the storage chamber that communicates with each of the plurality of discharge ports b1 to b5. .
  • the three-dimensional structure forming apparatus 100 When forming a three-dimensional structure, the three-dimensional structure forming apparatus 100 according to Modification 3 supplies a powder material and a heat dissipation material while moving the supply nozzle 121c in the horizontal direction on the modeling stage 110. The process to perform is performed simultaneously. At this time, the supply nozzle 121c selectively supplies the powder material or the heat radiating material from each of the plurality of discharge ports b1 to b5 according to the position on the modeling stage 110. And the three-dimensional modeling apparatus 100 supplies a powder material so that the said heat radiating material may be covered, after arrange
  • the modeling time of the entire modeling phase can be shortened.
  • the supply nozzle 121c can be shared by the powder supply unit 121 and the heat dissipation material supply unit 123, it contributes to cost reduction and downsizing.
  • the 3D modeling apparatus 100 may form a plurality of 3D models in a series of modeling phases.
  • the control part 150 should just determine the area
  • achieves control of the powder layer formation part 120, the heat radiating material supply part 123, and the laser irradiation part 130 with one computer as an example of the control part 150 was shown.
  • the control may be realized by a plurality of computers.
  • a plurality of computers for controlling the powder layer forming unit 120, the heat radiation material supply unit 123, and the laser irradiation unit 130 may be separately provided. In that case, what is necessary is just to control the powder layer formation part 120, the thermal radiation material supply part 123, and the laser irradiation part 130 in cooperation by the said some computer communicating data mutually.
  • control unit 150 slice data creation and modeling layer formation processing are illustrated as being executed in a series of flows, but some of these processing are performed in parallel. It may be executed.
  • control unit 150 may determine a region where the heat dissipation material is disposed based on slice data of a corresponding layer every time when forming each powder layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

A three-dimensional printing apparatus is provided with: a powder layer-forming unit (120) for forming a powder layer made of a powder material on a printing stage (110); a laser-irradiating unit (130) for irradiating a laser on the printing region of the powder layer to sinter or melt-solidify the printing region and form a printed layer; a heat-dissipating material-supplying unit (123) for supplying heat-dissipating material on the printing stage (110); and a control unit (150) for controlling the powder layer-forming unit (120), the heat-dissipating material-supplying unit (123) and the laser-irradiating unit (130) to repeat the processes of disposing the heat-dissipating material while forming powder layers and printed layers and laminate multiple printed layers so that at least a portion has the heat-dissipating material disposed therearound.

Description

三次元造形装置及び三次元造形物の製造方法3D modeling apparatus and 3D manufacturing method
 本発明は、三次元造形装置及び三次元造形物の製造方法に関する。 The present invention relates to a three-dimensional modeling apparatus and a method for manufacturing a three-dimensional modeled object.
 従来、粉末材料にレーザーを照射して三次元造形物を造形する三次元造形技術が知られている。この技術では、(i)粉末層の所定領域(以下、「造形領域」と称する)にレーザーを照射する、すなわち熱量を与えることよって当該造形領域の粉末材料を焼結又は溶融固化させて造形層を形成し、(ii)形成された造形層の上に新たな粉末層を敷いて同様にレーザーを照射して更に造形層を形成するといったことを繰り返して三次元造形物を造形する。尚、以下では、説明の便宜として、三次元造形物として完成する前の造形層を積層したものについても「三次元造形物」と称する。 Conventionally, three-dimensional modeling technology for modeling a three-dimensional model by irradiating a powder material with a laser is known. In this technique, (i) a predetermined layer (hereinafter referred to as “modeling region”) of a powder layer is irradiated with a laser, that is, by applying heat, the powder material in the modeling region is sintered or melted and solidified. And (ii) laying a new powder layer on the formed modeling layer and irradiating the laser in the same manner to further form a modeling layer to model a three-dimensional modeled object. In the following, for convenience of explanation, a structure in which a modeling layer before being completed as a three-dimensional structure is laminated is also referred to as a “three-dimensional structure”.
 上記三次元造形技術に関連して、三次元造形物を造形する際に形成される粉末層の堆積層(以下、「粉末堆積層」と称する)内での温度分布特性の検証等がなされている(例えば、非特許文献1を参照)。 In relation to the above three-dimensional modeling technique, verification of temperature distribution characteristics in a powder layer (hereinafter referred to as “powder deposition layer”) formed when modeling a three-dimensional model is performed. (For example, see Non-Patent Document 1).
 図1は、粉末堆積層内における三次元造形物の温度分布を模式的に示す図である。 FIG. 1 is a diagram schematically showing a temperature distribution of a three-dimensional structure within a powder deposition layer.
 三次元造形物を造形する製造プロセスには、造形層を順次積層していく造形フェーズと、造形層を積層した後に一定時間放置して空気冷却する冷却フェーズとがある。 The manufacturing process of modeling a three-dimensional structure includes a modeling phase in which modeling layers are sequentially stacked, and a cooling phase in which the modeling layers are stacked and then left for a certain period of time for air cooling.
 造形フェーズの粉末堆積層の表層は、レーザーで照射されて粉末材料の融点以上の温度に繰り返し加熱され、高温状態(例えば、180℃程度)になっている(図1A)。造形プロセスが進むと、三次元造形物は、粉末堆積層内に埋もれ、当該造形物には鉛直/水平方向で温度差が発生する(図1B)。尚、図1Bでは、粉末堆積層の表層と中心領域が170℃程度で高温となり、下層側の深層や左右の端部が150℃程度まで温度低下した状態を表している。造形後の冷却フェーズでは、粉末堆積層内の中心部の熱が逃げにくくなり、造形物には造形中とは異なる温度分布が広がる(図1C)。尚、図1Cでは、粉末堆積層の中心領域が150℃程度で高温となり、その上下左右の端部が100℃程度となり、中心領域から周囲に向かって温度低下した状態を表している。このような温度分布特性が生じるのは、一般に、粉末材料の熱伝導率が低く、粉末堆積層内に熱がこもりやすいことに起因する。 The surface layer of the powder deposition layer in the modeling phase is repeatedly heated to a temperature equal to or higher than the melting point of the powder material by being irradiated with a laser, and is in a high temperature state (for example, about 180 ° C.) (FIG. 1A). As the modeling process proceeds, the three-dimensional model is buried in the powder accumulation layer, and a temperature difference occurs in the model in the vertical / horizontal direction (FIG. 1B). FIG. 1B shows a state in which the surface layer and the central region of the powder deposition layer reach a high temperature of about 170 ° C., and the deep layer on the lower layer side and the left and right ends are lowered to about 150 ° C. In the cooling phase after modeling, the heat in the central part in the powder accumulation layer is difficult to escape, and the temperature distribution different from that during modeling spreads in the modeled object (FIG. 1C). In FIG. 1C, the central region of the powder deposition layer becomes high at about 150 ° C., and the upper, lower, left and right end portions thereof are about 100 ° C., and the temperature is lowered from the central region toward the periphery. Such a temperature distribution characteristic is generally caused by the fact that the thermal conductivity of the powder material is low and heat tends to be trapped in the powder deposition layer.
 このように三次元造形物は、粉末堆積層内に埋もれた状態(図1B、図1C)になると、三次元造形物の各部で温度分布のムラが生じることになり、これに起因して、部分収縮による反り等の熱歪が生じる。その結果、三次元造形物の造形精度が悪化するという問題があった。 As described above, when the three-dimensional structure is buried in the powder deposition layer (FIG. 1B, FIG. 1C), uneven temperature distribution occurs in each part of the three-dimensional structure. Thermal distortion such as warpage due to partial shrinkage occurs. As a result, there has been a problem that the modeling accuracy of the three-dimensional structure deteriorates.
 本発明は、上記の問題点に鑑みてなされたもので、粉末堆積層内で三次元造形物に生じる温度分布のムラを抑制し、造形精度を向上可能な三次元造形装置及び三次元造形物の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and suppresses unevenness of temperature distribution generated in a three-dimensional structure within a powder accumulation layer, thereby improving a modeling accuracy and a three-dimensional structure. It aims at providing the manufacturing method of.
 前述した課題を解決する主たる本発明は、
 粉末材料からなる粉末層を形成する粉末層形成部と、
 前記粉末層の造形領域にレーザーを照射し、当該造形領域を焼結又は溶融固化させて造形層を形成するレーザー照射部と、
 放熱材を供給する放熱材供給部と、
 前記粉末層形成部、前記放熱材供給部及び前記レーザー照射部を制御し、
 前記放熱材を配設しつつ前記粉末層及び前記造形層を形成する処理を繰り返し、前記造形層の周囲の少なくとも一部に前記放熱材が配設されるように前記放熱材を配設する制御部と、
 を備える三次元造形装置である。
The main present invention for solving the above-described problems is as follows.
A powder layer forming part for forming a powder layer made of a powder material;
A laser irradiation unit that irradiates a laser to a modeling region of the powder layer, and forms a modeling layer by sintering or melting and solidifying the modeling region;
A heat-dissipating material supply section for supplying the heat-dissipating material;
Control the powder layer forming unit, the heat dissipation material supply unit and the laser irradiation unit,
Control to dispose the heat dissipating material so that the heat dissipating material is disposed on at least a part of the periphery of the modeling layer by repeating the process of forming the powder layer and the modeling layer while disposing the heat dissipating material. And
Is a three-dimensional modeling apparatus.
 又、他の局面では、
 造形ステージ上に粉末材料からなる粉末層を形成する工程と、
 前記粉末層の造形領域にレーザーを照射し、当該造形領域を焼結又は溶融固化させて造形層を形成する工程と、
 前記造形ステージ上に放熱材を配設する工程と、を備え、
 前記放熱材を配設しつつ前記粉末層及び前記造形層を形成する工程を繰り返し、少なくとも一部の周囲に前記放熱材が配設されるように複数の前記造形層を積層する、
 三次元造形物の製造方法である。
In other aspects,
Forming a powder layer made of a powder material on the modeling stage;
Irradiating a laser to the modeling region of the powder layer, and sintering or melting and solidifying the modeling region to form a modeling layer;
Providing a heat dissipating material on the modeling stage,
Repeating the step of forming the powder layer and the modeling layer while disposing the heat dissipating material, and laminating the plurality of modeling layers so that the heat dissipating material is disposed around at least a part of the layer;
It is a manufacturing method of a three-dimensional structure.
 本発明に係る三次元造形装置によれば、粉末堆積層内で三次元造形物に生じる温度分布のムラを抑制し、造形精度を向上させることができる。 According to the three-dimensional modeling apparatus according to the present invention, it is possible to suppress the uneven temperature distribution generated in the three-dimensional modeled object in the powder accumulation layer and improve the modeling accuracy.
図1A、図1B及び図1Cは、粉末堆積層内における三次元造形物の温度分布を模式的に示す図である。1A, 1B, and 1C are diagrams schematically illustrating a temperature distribution of a three-dimensional structure in a powder deposition layer. 図2は、実施形態に係る三次元造形装置の全体構成を概略的に示す図である。FIG. 2 is a diagram schematically illustrating the overall configuration of the three-dimensional modeling apparatus according to the embodiment. 図3は、実施形態に係る三次元造形装置の制御系の主要部を示す図である。FIG. 3 is a diagram illustrating a main part of a control system of the three-dimensional modeling apparatus according to the embodiment. 図4Aは、検証実験のモデル装置を示す図である。FIG. 4A is a diagram illustrating a model apparatus for a verification experiment. 図4Bは、検証実験のモデル装置を示す図である。FIG. 4B is a diagram illustrating a model apparatus for a verification experiment. 図5は、モデル装置における粉末堆積層内の温度分布の時間的変化を示すグラフである。FIG. 5 is a graph showing a temporal change in the temperature distribution in the powder deposition layer in the model apparatus. 図6は、実施形態に係る三次元造形装置の動作フローの一例を示す図である。FIG. 6 is a diagram illustrating an example of an operation flow of the three-dimensional modeling apparatus according to the embodiment. 図7は、実施形態に係る三次元造形装置の動作フローの処理を模式的に示す図である。FIG. 7 is a diagram schematically illustrating an operation flow process of the three-dimensional modeling apparatus according to the embodiment. 図8Aは、積層方向における放熱材の配設位置の一例を示す図である。FIG. 8A is a diagram illustrating an example of an arrangement position of the heat dissipating material in the stacking direction. 図8Bは、積層方向における放熱材の配設位置の一例を示す図である。FIG. 8B is a diagram illustrating an example of an arrangement position of the heat dissipating material in the stacking direction. 図9は、変形例1に係る三次元造形装置の構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus according to the first modification. 図10は、変形例2に係る三次元造形装置の構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus according to the second modification. 図11は、変形例3に係る三次元造形装置の構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a configuration of a three-dimensional modeling apparatus according to Modification 3.
 以下、本発明の一実施形態を図面に基づいて詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図2は、本実施形態に係る三次元造形装置100の全体構成を概略的に示す図である。図3は、本実施形態に係る三次元造形装置100の制御系の主要部を示す図である。 FIG. 2 is a diagram schematically showing an overall configuration of the three-dimensional modeling apparatus 100 according to the present embodiment. FIG. 3 is a diagram illustrating a main part of a control system of the three-dimensional modeling apparatus 100 according to the present embodiment.
 図2に示すように、三次元造形装置100は、開口内に位置する造形ステージ110、粉末材料からなる粉末層を造形ステージ110上に形成する粉末層形成部120、造形ステージ110上に放熱材に供給する放熱材供給部123、粉末層の造形領域にレーザーを照射して、当該造形領域の粉末材料を焼結又は溶融固化して造形層を形成するレーザー照射部130、造形ステージ110の鉛直方向における位置を可変に支持するステージ支持部140、上記各部を支持するベース145を備える。 As shown in FIG. 2, the three-dimensional modeling apparatus 100 includes a modeling stage 110 located in the opening, a powder layer forming unit 120 that forms a powder layer made of a powder material on the modeling stage 110, and a heat dissipation material on the modeling stage 110. The laser radiation unit 130 that supplies the laser to the modeling region of the powder layer, the laser irradiation unit 130 that forms the modeling layer by sintering or melting and solidifying the powder material in the modeling region, and the vertical of the modeling stage 110 A stage support unit 140 that variably supports a position in the direction and a base 145 that supports the above-described units are provided.
 尚、三次元造形装置100は、粉塵爆発(ある一定の濃度の可燃性の粉塵が大気などの気体中に浮遊した状態で、火花などにより引火して爆発を起こす現象)を誘発しないために、制御部150の制御を受けて不活性ガス(窒素など)を装置内に供給する不活性ガス供給部(図示せず)を備えていてもよい。又、三次元造形装置100は、制御部150の制御を受けて、装置内(特に、粉末材料による粉末層の上面)を予備的に加熱するヒーター(図示せず)を備えてもよい。 The three-dimensional modeling apparatus 100 does not induce a dust explosion (a phenomenon in which a certain concentration of combustible dust floats in a gas such as the atmosphere and is ignited by a spark to cause an explosion). An inert gas supply unit (not shown) that supplies an inert gas (such as nitrogen) into the apparatus under the control of the control unit 150 may be provided. The three-dimensional modeling apparatus 100 may include a heater (not shown) that preliminarily heats the inside of the apparatus (in particular, the upper surface of the powder layer made of a powder material) under the control of the control unit 150.
 又、図3に示すように、三次元造形装置100は、三次元造形装置100の全体を制御する制御部150、各種情報を表示するための表示部160、ユーザーからの指示を受け付けるためのポインティングデバイス等を含む操作部170、制御部150の実行する制御プログラムを含む各種の情報を記憶する記憶部180、及び、コンピューター装置200との間で三次元造形データ等の各種情報を送受信するためのインターフェース等を含むデータ入力部190を備える。コンピューター装置200は、三次元造形用のデータを生成してデータ入力部190に送信する。 As shown in FIG. 3, the 3D modeling apparatus 100 includes a control unit 150 that controls the entire 3D modeling apparatus 100, a display unit 160 that displays various types of information, and a pointing that receives instructions from the user. An operation unit 170 including a device and the like, a storage unit 180 that stores various types of information including a control program executed by the control unit 150, and various types of information such as three-dimensional modeling data between the computer device 200 and the like. A data input unit 190 including an interface and the like is provided. The computer device 200 generates data for three-dimensional modeling and transmits the data to the data input unit 190.
 三次元造形装置100は、造形ステージ110上に粉末層形成部120により粉末層を形成し、レーザー照射部130によるレーザーの照射によって当該造形領域の粉末を焼結又は溶融固化させて造形層を形成する。三次元造形装置100は、形成された造形層の上に新たな粉末層を敷いて同様にレーザーを照射して更に造形層を形成するといったことを繰り返して、三次元造形物を造形する。この際、三次元造形装置100の放熱材供給部123は、粉末層形成部120が粉末層を形成すると同時に又は粉末層を形成する前に、造形領域の周囲を取り囲むように放熱材を配設していく(図6、図7を参照して後述)。 The three-dimensional modeling apparatus 100 forms a powder layer by the powder layer forming unit 120 on the modeling stage 110, and forms a modeling layer by sintering or melting and solidifying the powder in the modeling region by laser irradiation by the laser irradiation unit 130. To do. The three-dimensional modeling apparatus 100 models a three-dimensional model by repeating the process of laying a new powder layer on the formed modeling layer and irradiating the laser in the same manner to further form a modeling layer. At this time, the heat dissipating material supply unit 123 of the three-dimensional modeling apparatus 100 arranges the heat dissipating material so as to surround the modeling region at the same time when the powder layer forming unit 120 forms the powder layer or before forming the powder layer. (It will be described later with reference to FIGS. 6 and 7).
 粉末層形成部120は、粉末供給部121及びリコーター駆動部122を含んで構成される。 The powder layer forming unit 120 includes a powder supply unit 121 and a recoater driving unit 122.
 粉末供給部121は、粉末材料を造形ステージ110上に供給する。粉末供給部121は、例えば、供給ノズル121a、粉末材料を貯留する粉末材料タンク(図示せず)、モーター等の駆動機構(図示せず)を含んで構成される。粉末供給部121は、例えば、供給ノズル121aの先端に設けられた弁体を動作させることで、粉末材料タンクから供給された粉末材料を造形ステージ110上に供給する。 The powder supply unit 121 supplies the powder material onto the modeling stage 110. The powder supply unit 121 includes, for example, a supply nozzle 121a, a powder material tank (not shown) that stores the powder material, and a drive mechanism (not shown) such as a motor. The powder supply unit 121 supplies, for example, the powder material supplied from the powder material tank onto the modeling stage 110 by operating a valve body provided at the tip of the supply nozzle 121a.
 粉末材料は、レーザー照射部130から照射されるレーザーによって焼結又は溶融固化し、三次元造形物を形成する素材である。粉末材料は、典型的には、樹脂材料であり、例えば、ポリアミド、ポリスチレン等が用いられる。 The powder material is a material that is sintered or melted and solidified by a laser irradiated from the laser irradiation unit 130 to form a three-dimensional structure. The powder material is typically a resin material such as polyamide or polystyrene.
 リコーター駆動部122は、リコーター122aを用いて造形ステージ110上に供給された粉末材料を平らに敷き詰めて、粉末材料からなる粉末層を形成する。リコーター駆動部122は、例えば、上記リコーター122aとモーター等の駆動機構(図示せず)を含んで構成され、駆動機構を駆動させて、リコーター122aを造形ステージ110に対して水平に移動させ、粉末材料を平らに敷き詰める。 The recoater driving unit 122 flatly spreads the powder material supplied on the modeling stage 110 using the recoater 122a to form a powder layer made of the powder material. The recoater drive unit 122 includes, for example, the recoater 122a and a drive mechanism (not shown) such as a motor, and drives the drive mechanism to move the recoater 122a horizontally with respect to the modeling stage 110, thereby generating powder. Lay the material flat.
 尚、粉末層形成部120は、造形ステージ110上に粉末層を平らに敷き詰めることができれば、他の方式で粉末材料を供給したりしてもよい。例えば、粉末供給部121は、供給ノズル121aに代えて、造形ステージ110の外縁部に粉末材料貯留部を設け、当該粉末材料貯留部から造形ステージ110上に流し込むように粉末材料を供給してもよい。又、造形ステージ110上に粉末材料を平らに敷き詰めるための手段として、リコーター122aの代わりにローラー等を用いてもよい。 It should be noted that the powder layer forming unit 120 may supply the powder material by other methods as long as the powder layer can be laid flat on the modeling stage 110. For example, instead of the supply nozzle 121a, the powder supply unit 121 may provide a powder material storage unit at the outer edge of the modeling stage 110 and supply the powder material so as to flow from the powder material storage unit onto the modeling stage 110. Good. Further, as a means for spreading the powder material flat on the modeling stage 110, a roller or the like may be used instead of the recoater 122a.
 放熱材供給部123は、放熱材を造形ステージ110上に供給する。放熱材供給部123は、例えば、供給ローラー123a、当該供給ローラー123aに放熱材を順次セットする放熱材セッティング部(図示せず)、及び供給ローラー123aを移動させるモーター等の駆動機構(図示せず)を含んで構成される。そして、放熱材供給部123は、例えば、供給ローラー123aに銅箔等の放熱材を保持させ、供給ローラー123aを駆動させることにより、当該放熱材をスライドさせて造形ステージ110上に配設する。 The heat dissipation material supply unit 123 supplies the heat dissipation material onto the modeling stage 110. The heat dissipation material supply unit 123 includes, for example, a supply roller 123a, a heat dissipation material setting unit (not shown) for sequentially setting the heat dissipation material on the supply roller 123a, and a drive mechanism (not shown) such as a motor for moving the supply roller 123a. ). And the heat radiating material supply part 123 makes the supply roller 123a hold | maintain heat radiating materials, such as copper foil, for example, drives the supply roller 123a, and slides the said heat radiating material, and is arrange | positioned on the modeling stage 110. FIG.
 放熱材は、造形領域の周囲を取り囲むように造形ステージ110上に配設される。そして、放熱材は、三次元造形物が粉末堆積層内に埋もれた際、当該造形物及びその周囲の粉末材料から放熱し、三次元造形物の中で温度分布のムラが生じることを抑制する。 The heat dissipating material is disposed on the modeling stage 110 so as to surround the periphery of the modeling area. And when the three-dimensional structure is buried in the powder accumulation layer, the heat dissipation material radiates heat from the structure and the surrounding powder material, and suppresses the occurrence of uneven temperature distribution in the three-dimensional structure. .
 放熱材は、粉末材料よりも熱伝導率が高い素材が用いられ、典型的には、熱伝導率が粉末材料の10倍以上の素材が用いられる。放熱材としては、より望ましくは、銀、銅、アルミニウム、ステンレス鋼等の金属素材を用いる。金属素材は、熱伝導率が高い上、粉末材料と溶着することも防止できる。そのため、放熱材又は粉末材料の再利用も可能である。 As the heat dissipation material, a material having a higher thermal conductivity than the powder material is used, and typically, a material having a thermal conductivity of 10 times or more that of the powder material is used. More preferably, a metal material such as silver, copper, aluminum, or stainless steel is used as the heat dissipation material. The metal material has high thermal conductivity and can prevent welding with the powder material. Therefore, it is possible to reuse the heat dissipation material or the powder material.
 尚、一例として、粉末材料の熱伝導率は、ポリアミド:0.25(W/mK)、ポリスチレン:0.1~0.14(W/mK)である。又、放熱材の熱伝導率は、銀:420(W/mK)、銅:398(W/mK)、アルミニウム:236(W/mK)、ステンレス鋼:16.7~20.9(W/mK)である。 As an example, the thermal conductivity of the powder material is polyamide: 0.25 (W / mK), polystyrene: 0.1 to 0.14 (W / mK). The heat conductivity of the heat dissipating material was as follows: silver: 420 (W / mK), copper: 398 (W / mK), aluminum: 236 (W / mK), stainless steel: 16.7 to 20.9 (W / m mK).
 放熱材は、厚みが粉末層の積層ピッチ(例えば、0.1mm)と同等又はそれ以下であるのが望ましく、例えば、箔状又は粉体状のものを用いる。 It is desirable that the heat dissipating material has a thickness equal to or less than the lamination pitch (for example, 0.1 mm) of the powder layer, and for example, a foil or powder is used.
 尚、放熱材供給部123は、放熱材が箔状の場合、上記した供給ローラー123aを用いて、又は、ロボットアームを用いて、当該放熱材を造形ステージ110上に配設する。一方、放熱材が粉体状の場合、放熱材供給部123は、供給ノズル等を用いて、当該放熱材を造形ステージ110上に配設する。 In addition, the heat radiating material supply part 123 arrange | positions the said heat radiating material on the modeling stage 110 using the above-mentioned supply roller 123a or a robot arm, when a heat radiating material is foil shape. On the other hand, when the heat dissipating material is in a powder form, the heat dissipating material supply unit 123 disposes the heat dissipating material on the modeling stage 110 using a supply nozzle or the like.
 レーザー照射部130は、レーザー光源131、及びガルバノミラー132aを有するガルバノミラー駆動部132を含んで構成される。レーザー光源131の例としては、ファイバーレーザー光源及びCOレーザー光源が挙げられる。レーザー光源131は、ガルバノミラー132aに向けてレーザーを出射する。 The laser irradiation unit 130 includes a laser light source 131 and a galvano mirror driving unit 132 having a galvano mirror 132a. Examples of the laser light source 131 include a fiber laser light source and a CO 2 laser light source. The laser light source 131 emits a laser toward the galvanometer mirror 132a.
 ガルバノミラー132aは、レーザー光源131からのレーザーを反射して当該レーザーをX方向に走査するXミラー、及びレーザー光源131からのレーザーを反射して当該レーザーをY方向に走査するYミラーから構成される。ガルバノミラー駆動部132は、ガルバノミラー132aを駆動して、粉末層の造形領域に対してレーザーを照射する。尚、レーザー照射部130は、レーザーの焦点距離を粉末層の表面に合わせるためのレンズ(図示せず)を備えていてもよい。 The galvanometer mirror 132a is composed of an X mirror that reflects the laser from the laser light source 131 and scans the laser in the X direction, and a Y mirror that reflects the laser from the laser light source 131 and scans the laser in the Y direction. The The galvanometer mirror driving unit 132 drives the galvanometer mirror 132a and irradiates the modeling region of the powder layer with laser. The laser irradiation unit 130 may include a lens (not shown) for adjusting the focal length of the laser to the surface of the powder layer.
 ステージ支持部140は、鉛直方向における造形ステージ110の位置を可変に支持する。すなわち、造形ステージ110は、ステージ支持部140によって鉛直方向に精密に移動可能に構成されている。ステージ支持部140としては、種々の構成を採用できるが、例えば、造形ステージ110を保持する保持部材と、当該保持部材を鉛直方向に案内するガイド部材と、ガイド部材に設けられたねじ孔に係合するボールねじ等で構成することができる。尚、造形ステージ110は、ガイド部材によって周囲を囲まれ、当該ガイド部材と造形ステージ110によって粉末材料を堆積する槽が形成されている。 The stage support unit 140 variably supports the position of the modeling stage 110 in the vertical direction. That is, the modeling stage 110 is configured to be precisely movable in the vertical direction by the stage support unit 140. Although various configurations can be adopted as the stage support unit 140, for example, it is related to a holding member that holds the modeling stage 110, a guide member that guides the holding member in the vertical direction, and a screw hole provided in the guide member. It can be constituted by a ball screw or the like to be combined. The modeling stage 110 is surrounded by a guide member, and a tank for depositing a powder material is formed by the guide member and the modeling stage 110.
 表示部160は、制御部150の制御を受けて、ユーザーに認識させるべき各種の情報やメッセージを表示する。 The display unit 160 displays various information and messages that should be recognized by the user under the control of the control unit 150.
 操作部170は、テンキー、実行キー、スタートキー等の各種操作キーを備え、ユーザーによる各種入力操作を受け付けて、その入力操作に応じた操作信号を制御部150に出力する。例えば、造形対象の三次元造形物を表示部160に表示して所望の形状が形成されるか否かについて確認し、所望の形状が形成されない場合には、操作部170を介して三次元造形データに修正を加えてもよい。 The operation unit 170 includes various operation keys such as a numeric keypad, an execution key, and a start key, receives various input operations by the user, and outputs an operation signal corresponding to the input operation to the control unit 150. For example, the three-dimensional structure to be modeled is displayed on the display unit 160 to check whether a desired shape is formed. If the desired shape is not formed, the three-dimensional modeling is performed via the operation unit 170. Modifications may be made to the data.
 記憶部180は、制御部150の実行する制御プログラムを含む各種の情報を記憶する。記憶部180は、例えば、ROM、RAM、磁気ディスク、HDD、SSD等の各種の記憶媒体である。記憶部180には、例えば、データ入力部190を介して入力された三次元造形用のデータが格納される。 The storage unit 180 stores various types of information including a control program executed by the control unit 150. The storage unit 180 is, for example, various storage media such as a ROM, a RAM, a magnetic disk, an HDD, and an SSD. The storage unit 180 stores, for example, three-dimensional modeling data input via the data input unit 190.
 制御部150は、三次元造形装置100全体を制御する制御装置であって、例えば、中央処理装置等のハードウェアプロセッサーを含んで構成される。制御部150は、粉末層形成部120、放熱材供給部123、レーザー照射部130、ステージ支持部140、表示部160、操作部170、記憶部180、データ入力部190とデータ通信して、これらの動作を制御する。 The control unit 150 is a control device that controls the entire 3D modeling apparatus 100 and includes, for example, a hardware processor such as a central processing unit. The control unit 150 performs data communication with the powder layer forming unit 120, the heat radiating material supply unit 123, the laser irradiation unit 130, the stage support unit 140, the display unit 160, the operation unit 170, the storage unit 180, and the data input unit 190. To control the operation.
 [検証実験]
 本願の発明者らは、鋭意検討の結果、造形領域の周囲を取り囲むように放熱材を配設することによって、三次元造形物に生じる温度分布のムラを抑制できることを見出し、本発明に想到するに至った。
[Verification experiment]
As a result of intensive studies, the inventors of the present application have found that by arranging the heat dissipating material so as to surround the modeling region, it is possible to suppress uneven temperature distribution that occurs in the three-dimensional modeled object, and arrive at the present invention. It came to.
 以下、放熱材を適用することによる効果検証の実験結果について説明する。 Hereinafter, the experimental results of the effect verification by applying the heat radiating material will be described.
 図4A、図4Bは、検証実験のモデル装置T1、T2を示す図である。 4A and 4B are diagrams showing model devices T1 and T2 for the verification experiment.
 図4A、図4Bのモデル装置T1、T2は、粉末材料からなる粉末堆積層Taを収容する粉体槽の周囲にヒーターTh1~Th3を設けるとともに、粉体槽内の複数の位置に温度センサTL1~TL3を設けたものである。図4Aのモデル装置T1は、粉体槽内全体に複数の放熱材Tb(ここでは、銅箔)が配設されたモデル装置、図4Bのモデル装置T2は、粉末堆積層Ta内に放熱材Tbが配設されていないモデル装置となっている。 The model devices T1 and T2 of FIGS. 4A and 4B are provided with heaters Th1 to Th3 around a powder tank containing a powder deposition layer Ta made of a powder material, and temperature sensors TL1 at a plurality of positions in the powder tank. To TL3. The model device T1 in FIG. 4A is a model device in which a plurality of heat dissipating materials Tb (here, copper foils) are disposed in the entire powder tank, and the model device T2 in FIG. 4B is a heat dissipating material in the powder accumulation layer Ta. This is a model device without Tb.
 検証実験では、モデル装置T1、T2において、ヒーターTh1~Th3を用いて粉末堆積層Taを加熱し、その後、自然冷却したときの、当該粉末堆積層Ta内における温度分布及び冷却速度を確認した。本検証実験では、粉末堆積層Taを加熱している時間を造形フェーズ、粉末堆積層Taを自然冷却している時間を冷却フェーズとみなして、各時間における温度分布を測定している。 In the verification experiment, in the model devices T1 and T2, the temperature distribution and the cooling rate in the powder deposition layer Ta when the powder deposition layer Ta was heated using the heaters Th1 to Th3 and then naturally cooled were confirmed. In this verification experiment, the temperature distribution at each time is measured by regarding the time during which the powder deposition layer Ta is heated as the modeling phase and the time during which the powder deposition layer Ta is naturally cooled as the cooling phase.
 図5は、図4A、図4Bのモデル装置T1、T2における粉末堆積層Ta内の温度分布の時間的変化を示すグラフである。尚、図5において、T1midはモデル装置T1の粉末堆積層Ta内の中心部分の温度、T1maxはモデル装置T1の粉末堆積層Ta内の最大の温度が検出された位置の温度、T1minはモデル装置T1の粉末堆積層Ta内の最小の温度が検出された位置の温度、T2midはモデル装置T2の粉末堆積層Ta内の中心部分の温度、T2maxはモデル装置T2の粉末堆積層Ta内の最大の温度が検出された位置の温度、T2minはモデル装置T2の粉末堆積層Ta内の最小の温度が検出された位置の温度を示している。 FIG. 5 is a graph showing temporal changes in the temperature distribution in the powder deposition layer Ta in the model devices T1 and T2 in FIGS. 4A and 4B. In FIG. 5, T1mid is the temperature of the central portion in the powder deposition layer Ta of the model apparatus T1, T1max is the temperature at which the maximum temperature in the powder deposition layer Ta of the model apparatus T1 is detected, and T1min is the model apparatus. The temperature at which the minimum temperature in the powder deposition layer Ta of T1 is detected, T2mid is the temperature of the central portion in the powder deposition layer Ta of the model device T2, and T2max is the maximum temperature in the powder deposition layer Ta of the model device T2. The temperature at which the temperature is detected, T2min, indicates the temperature at the position where the minimum temperature in the powder deposition layer Ta of the model apparatus T2 is detected.
 図5を参照すると、粉末堆積層Ta内に放熱材Tbを配設することによって、以下のような効果があることが分かる。 Referring to FIG. 5, it can be seen that the following effects can be obtained by disposing the heat dissipating material Tb in the powder deposition layer Ta.
 まず、造形フェーズにおける最大値T1maxと最小値T1minの差が最大値T2maxと最小値T2minの差と比較して、1/3程度になっていることから、粉末堆積層Ta内に放熱材Tbを配設することによって、造形フェーズにおける温度分布のムラを抑制できることが分かる。 First, since the difference between the maximum value T1max and the minimum value T1min in the modeling phase is about 1/3 compared to the difference between the maximum value T2max and the minimum value T2min, the heat dissipation material Tb is placed in the powder deposition layer Ta. It can be seen that the uneven distribution of the temperature distribution in the modeling phase can be suppressed by the arrangement.
 又、冷却フェーズにおける最大値T1maxと最小値T1minの差が、最大値T2maxと最小値T2minの差と比較して、1/3程度になっていることから、粉末堆積層Ta内に放熱材Tbを配設することによって、冷却フェーズにおける温度分布のムラも抑制できることが分かる。 In addition, since the difference between the maximum value T1max and the minimum value T1min in the cooling phase is about 1/3 compared to the difference between the maximum value T2max and the minimum value T2min, the heat dissipation material Tb is contained in the powder accumulation layer Ta. It can be seen that the uneven distribution of the temperature distribution in the cooling phase can also be suppressed by arranging.
 更に、冷却フェーズにおける冷却勾配がT1max、T1min、T1midのいずれについても、T2max、T2min、T2midよりも急峻になっていることから、粉末堆積層Ta内に放熱材Tbを配設することによって、冷却フェーズにおける冷却時間の短縮も可能でことが分かる。 Furthermore, since the cooling gradient in the cooling phase is steeper than T2max, T2min, and T2mid for all of T1max, T1min, and T1mid, cooling is achieved by disposing the heat dissipation material Tb in the powder deposition layer Ta. It can be seen that the cooling time in the phase can be shortened.
 尚、三次元造形物は、粉末材料を焼結又は溶融固化して形成されるものであるため、実際に三次元造形物を形成するプロセスにおいても、当該三次元造形物の温度分布は、本検証実験の結果と同様の傾向を示すと推測される。 In addition, since the three-dimensional structure is formed by sintering or melting and solidifying a powder material, the temperature distribution of the three-dimensional structure is the same even in the process of actually forming the three-dimensional structure. It is estimated that the same tendency as the result of the verification experiment is shown.
 つまり、この実験結果は、発熱中心となる造形層の周囲を取り囲むように放熱材を配設することによって、粉末堆積層内に埋もれた造形層から各方向への放熱が促進され、造形フェーズ及び冷却フェーズのいずれにおいても、三次元造形物に生じる温度分布のムラを抑制できることを示唆する。 In other words, this experimental result shows that by disposing the heat dissipating material so as to surround the modeling layer that is the center of heat generation, heat dissipation from the modeling layer buried in the powder deposition layer is promoted in each direction, and the modeling phase and In any of the cooling phases, it is suggested that the uneven temperature distribution generated in the three-dimensional structure can be suppressed.
 [三次元造形物の製造プロセス]
 次に、図6、図7、図8A、図8Bを参照して、本実施形態に係る三次元造形装置100が、三次元造形物を製造する際の動作フローの一例について説明する。
[Manufacturing process of 3D objects]
Next, with reference to FIG. 6, FIG. 7, FIG. 8A and FIG. 8B, an example of an operation flow when the 3D modeling apparatus 100 according to the present embodiment manufactures a 3D model will be described.
 図6は、本実施形態に係る三次元造形装置100の動作フローの一例を示す図である。図6に示す動作フローは、例えば、制御部150がコンピュータプログラムに従って実行するものである。 FIG. 6 is a diagram illustrating an example of an operation flow of the 3D modeling apparatus 100 according to the present embodiment. The operation flow shown in FIG. 6 is executed by the control unit 150 according to a computer program, for example.
 図7は、図6の動作フローのステップS4~S6の処理を模式的に示す図である。図7中で、La、Lb、Lcは、それぞれ、粉末層のうち焼結又は溶融固化された領域(造形領域)、粉末層のうち焼結又は溶融固化されていない領域(非造形領域)、放熱材が配設された領域を表している。又、図8A、図8Bは、積層方向における放熱材の配設位置の一例を示す図である。 FIG. 7 is a diagram schematically showing the processing of steps S4 to S6 in the operation flow of FIG. In FIG. 7, La, Lb, and Lc are regions of the powder layer that are sintered or melt-solidified (modeling regions), regions of the powder layer that are not sintered or melt-solidified (non-modeling regions), The area | region where the heat radiating material was arrange | positioned is represented. 8A and 8B are diagrams illustrating an example of the arrangement position of the heat dissipating material in the stacking direction.
 制御部150は、まず、スライスデータを作成する(ステップS1)。制御部150は、例えば、データ入力部190がコンピューター装置200から取得した三次元の造形形状データを、造形層の積層方向について薄く切った複数のスライスデータに変換して、記憶部180に格納する。尚、スライスデータは、三次元造形物を造形するための各造形層の造形データである。スライスデータの一層分のデータは、粉末層及び造形層の一層分に相当する。 The control unit 150 first creates slice data (step S1). For example, the control unit 150 converts the three-dimensional modeling shape data acquired by the data input unit 190 from the computer device 200 into a plurality of slice data sliced thinly in the stacking direction of the modeling layer, and stores the data in the storage unit 180. . The slice data is modeling data of each modeling layer for modeling a three-dimensional modeled object. Data for one layer of slice data corresponds to one layer for the powder layer and the modeling layer.
 次に、制御部150は、スライスデータに基づいて、放熱材を配設する領域を決定する(ステップS2)。 Next, the control unit 150 determines a region in which the heat dissipating material is disposed based on the slice data (step S2).
 制御部150は、具体的には、三次元造形物に温度分布のムラが生じないようにするべく、スライスデータに基づいて造形領域の周囲を取り囲むように放熱材の配設領域を決定する。このとき、放熱材の配設位置は、できるだけ造形領域と近接させるのが望ましく、例えば、両者の間隔が2mm程度になるまで近接させる。但し、放熱材と造形物とが接触すると両者が溶着してしまうおそれがあるため、放熱材の配設位置は、両者が接触しないような位置とする。 Specifically, the control unit 150 determines the disposition region of the heat radiation material so as to surround the periphery of the modeling region based on the slice data so as not to cause uneven temperature distribution in the three-dimensional structure. At this time, it is desirable that the disposition position of the heat dissipating material be as close as possible to the modeling region, for example, close to the distance between them is about 2 mm. However, since there exists a possibility that both may weld if a heat sink and a molded article contact, the arrangement | positioning position of a heat sink shall be a position where both do not contact.
 又、放熱材の配設位置は、積層方向については、図8Aに示すように各層に配設するものしてもよいし、図8Bに示すように複数層間隔で配設するものとしてもよい。尚、図8A、図8Bにおいては、TLが造形層の一層分の厚さ(例えば、0.1mm)に相当する。 Further, the heat dissipating material may be disposed in each layer as shown in FIG. 8A in the stacking direction, or may be disposed at intervals of a plurality of layers as shown in FIG. 8B. . In FIGS. 8A and 8B, TL corresponds to the thickness of one layer of the modeling layer (for example, 0.1 mm).
 他方、放熱材の配設位置は、等間隔でなくてもよいのは勿論である。又、放熱材の配設位置は、複数の造形層の積層方向の少なくとも一部において、放熱材が周囲を取り囲むものであればよく、例えば、偶数番目の層には造形領域の上下に放熱材を配設し、奇数番目の層には造形領域の左右に放熱材を配設するものとしてもよい。又、三次元造形物の形状によっては、熱がこもる箇所側のみに放熱材を配設し、こもらない箇所とのバランスを取るようにしてもよい。 On the other hand, of course, the disposition positions of the heat dissipating materials do not have to be equal. In addition, the heat dissipating material may be disposed at least in a part of the stacking direction of the plurality of modeling layers as long as the heat dissipating material surrounds the surroundings. It is good also as what arrange | positions a thermal radiation material in the right and left of a modeling area | region in the odd-numbered layer. Further, depending on the shape of the three-dimensional structure, a heat dissipating material may be provided only on the side where heat is accumulated, and a balance with the area where the heat is not accumulated may be achieved.
 制御部150は、上記ステップS1及びS2で設定されたデータに基づいて、各層について、以下のステップS3~S7を繰り返し実行する。 The control unit 150 repeatedly executes the following steps S3 to S7 for each layer based on the data set in steps S1 and S2.
 制御部150は、まず、積層対象の層に放熱材を配設する領域が存在するか否かを判定する(ステップS3)。放熱材を配設する場合(ステップS3:YES)、続くステップS4の放熱材の配設処理を行う。一方、放熱材を配設しない場合(ステップS3:NO)、制御部150は、放熱材を配設することなく、続くステップS5の粉末層の形成処理を行う。 First, the control unit 150 determines whether or not there is a region where the heat dissipating material is disposed in the layer to be stacked (step S3). When disposing a heat dissipating material (step S3: YES), the disposing process of the heat dissipating material in the subsequent step S4 is performed. On the other hand, when the heat dissipating material is not disposed (step S3: NO), the control unit 150 performs the powder layer forming process in the subsequent step S5 without disposing the heat dissipating material.
 次に、制御部150は、放熱材供給部123に対して制御信号を出力し、放熱材供給部123を動作させる(ステップS4)。 Next, the control unit 150 outputs a control signal to the heat dissipation material supply unit 123 to operate the heat dissipation material supply unit 123 (step S4).
 放熱材供給部123は、制御部150から出力された制御信号に従って、供給ローラー123aを駆動させて、造形ステージ110上の対応する領域Lcに放熱材を配設する。 The heat dissipation material supply unit 123 drives the supply roller 123a according to the control signal output from the control unit 150, and disposes the heat dissipation material in the corresponding region Lc on the modeling stage 110.
 次に、制御部150は、粉末層を形成するべく、粉末供給部121及びリコーター駆動部122に対して制御信号を出力し、これらを動作させる(ステップS5)。 Next, the control unit 150 outputs control signals to the powder supply unit 121 and the recoater driving unit 122 to form a powder layer, and operates them (step S5).
 粉末供給部121は、制御部150から出力された制御信号に従って、供給ノズル123aを造形ステージ110上で移動させながら造形ステージ110上の全体に粉末材料を供給する。尚、この際、粉末供給部121は、積層方向の高さが全体として均等になるように放熱材が配設された領域Lcについては放熱材が配設されていない領域La、Lbよりも粉末材料を供給する量を少なくしてもよい。 The powder supply unit 121 supplies the powder material to the entire modeling stage 110 while moving the supply nozzle 123 a on the modeling stage 110 according to the control signal output from the control unit 150. At this time, the powder supply unit 121 is more powdery than the regions La and Lb in which the heat dissipating material is not provided in the region Lc in which the heat dissipating material is provided so that the height in the stacking direction is uniform as a whole. The amount of material supply may be reduced.
 その後、リコーター駆動部122は、制御部150から出力された制御信号に従って、造形ステージ110上で水平方向にリコーター122aを移動して、粉末層の1層分の厚さとなるように粉末材料を押圧し、整地する。 Thereafter, the recoater driving unit 122 moves the recoater 122a in the horizontal direction on the modeling stage 110 in accordance with the control signal output from the control unit 150, and presses the powder material so that the thickness becomes one layer of the powder layer. And leveling.
 この際、放熱材は、粉末層の一層分以下の厚みの箔状又は粉体状の材料により構成されているため、ステップS4で配設した放熱材は、粉末層内に埋設されることになる。換言すると、リコーター駆動部122は、放熱材に阻害されることなく、平坦な粉末層を形成することができる。これによって、続くステップS6において、レーザーの照射位置の精度等が悪化することに起因して、三次元造形物の精度が悪化することも防止できる。 At this time, the heat dissipating material is made of a foil-like or powdery material having a thickness equal to or less than one layer of the powder layer, so that the heat dissipating material disposed in step S4 is embedded in the powder layer. Become. In other words, the recoater driving unit 122 can form a flat powder layer without being disturbed by the heat dissipation material. Accordingly, it is possible to prevent the accuracy of the three-dimensional structure from being deteriorated due to the deterioration of the accuracy of the laser irradiation position in the subsequent step S6.
 次に、制御部150は、レーザー照射部130に対して制御信号を出力し、レーザー照射部130を動作させる(ステップS6)。 Next, the control unit 150 outputs a control signal to the laser irradiation unit 130 to operate the laser irradiation unit 130 (step S6).
 レーザー照射部130は、制御部150から出力された制御信号に従って、レーザー光源131からレーザーを出射するとともに、ガルバノミラー駆動部132によりガルバノミラー132aを駆動して、粉末層上の造形領域Laに対してレーザーを照射する。そして、レーザーの照射によって粉末材料が焼結又は溶融固化し、造形領域Laに造形層が形成される。 The laser irradiation unit 130 emits a laser from the laser light source 131 according to the control signal output from the control unit 150, and drives the galvano mirror 132a by the galvano mirror driving unit 132, so that the modeling region La on the powder layer is applied. Irradiate the laser. Then, the powder material is sintered or melted and solidified by laser irradiation, and a modeling layer is formed in the modeling region La.
 次に、制御部150は、スライスデータに基づいて、すべての造形層を形成したか否かを判定する(ステップS7)。ここで、すべての造形層を形成したと判定した場合(ステップS7:YES)、制御部150は、一連の処理を終了する。一方、すべての造形層を形成していないと判定した場合(ステップS7:NO)、制御部150は、ステージ支持部140に対して制御信号を出力し、ステージ支持部140を動作させるとともに、ステップS3の処理に戻って、次の層に係る造形層を形成する。 Next, the control unit 150 determines whether or not all the modeling layers have been formed based on the slice data (step S7). Here, when it determines with all the modeling layers having been formed (step S7: YES), the control part 150 complete | finishes a series of processes. On the other hand, when it determines with not forming all the modeling layers (step S7: NO), the control part 150 outputs a control signal with respect to the stage support part 140, and while operating the stage support part 140, step Returning to the process of S3, a modeling layer according to the next layer is formed.
 ステージ支持部140は、制御部150から制御信号が出力されるに応じて、モーター及び駆動機構を駆動し、造形ステージ110を積層ピッチだけ鉛直方向下方に移動する。 The stage support unit 140 drives the motor and the drive mechanism in response to a control signal output from the control unit 150, and moves the modeling stage 110 downward in the vertical direction by the stacking pitch.
 以上、ステップS3~S7の動作を繰り返すことにより、造形ステージ110上に複数の造形層が積層され、三次元造形物が造形される。そして、三次元造形物が造形された後、所定時間、自然冷却等によって冷却することで、当該三次元造形物が完成する。 As described above, by repeating the operations of steps S3 to S7, a plurality of modeling layers are stacked on the modeling stage 110, and a three-dimensional modeled object is modeled. And after a three-dimensional structure is modeled, the said three-dimensional structure is completed by cooling by natural cooling etc. for a predetermined time.
 以上、本実施形態に係る三次元造形装置100によれば、造形領域の周囲に放熱材を配設しながら三次元造形物を形成していく。そのため、この三次元造形装置100は、粉末堆積層内に埋もれた造形物の温度分布のムラを解消しながら、造形層を積層していくことが可能である。これによって、三次元造形物に熱歪が生じることを抑制し、三次元造形物の造形精度を向上させることができる。又、これによって、放熱特性が向上し、冷却フェーズの冷却時間を短縮することも可能である。 As described above, according to the three-dimensional modeling apparatus 100 according to the present embodiment, a three-dimensional modeled object is formed while disposing a heat dissipation material around the modeling region. Therefore, the three-dimensional modeling apparatus 100 can stack the modeling layers while eliminating unevenness of the temperature distribution of the model buried in the powder deposition layer. Thereby, it can suppress that a thermal distortion arises in a three-dimensional structure, and can improve the modeling precision of a three-dimensional structure. This also improves the heat dissipation characteristics and shortens the cooling time of the cooling phase.
 又、本実施形態に係る三次元造形装置100によれば、粉末層の一層分以下の厚みの箔状又は粉体状の部材により放熱材を構成しているため、三次元造形物の精度が悪化することも防止できる。ここで、箔状の放熱材を用いた場合は、造形ステージ110上に配設することが容易であり、加えて、回収及び再利用も容易である点で利点がある。一方、粉体状の放熱材を用いた場合は、三次元造形物の形状に合わせて配設位置の微調整が可能であり、より造形精度の向上及び冷却時間の短縮化を図ることができる点で利点がある。そのため、放熱材の態様は、三次元造形物の形状等に応じて、適宜選択するのが望ましい。 Moreover, according to the three-dimensional modeling apparatus 100 according to the present embodiment, the heat radiation material is constituted by a foil-like or powder-like member having a thickness equal to or less than one layer of the powder layer, and thus the accuracy of the three-dimensional modeled object is high. It can also prevent deterioration. Here, when a foil-like heat dissipation material is used, there is an advantage in that it is easy to dispose on the modeling stage 110, and in addition, recovery and reuse are easy. On the other hand, when a powdery heat dissipation material is used, the arrangement position can be finely adjusted in accordance with the shape of the three-dimensional structure, and the modeling accuracy can be further improved and the cooling time can be shortened. There are advantages in terms. Therefore, it is desirable to appropriately select the aspect of the heat dissipation material according to the shape of the three-dimensional structure.
 又、本実施形態に係る三次元造形装置100によれば、放熱材を金属素材により構成しているため、良好な放熱特性を確保することが可能であるとともに、放熱材が粉末材料と溶着することもない。そのため、放熱材及び粉末材料の両方の再利用が可能となる。 Further, according to the three-dimensional modeling apparatus 100 according to the present embodiment, since the heat radiating material is made of a metal material, it is possible to ensure good heat radiating characteristics and the heat radiating material is welded to the powder material. There is nothing. Therefore, it becomes possible to reuse both the heat dissipation material and the powder material.
 (変形例1)
 図9は、変形例1に係る三次元造形装置100の構成の一例を示す図である。
(Modification 1)
FIG. 9 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus 100 according to the first modification.
 図9では、粉末材料を供給する供給ノズル121aと放熱材を供給する供給ローラー123aとが一体的に移動する構成となっている点で、上記実施形態と相違する。 FIG. 9 is different from the above embodiment in that the supply nozzle 121a for supplying the powder material and the supply roller 123a for supplying the heat dissipating material are integrally moved.
 そして、供給ノズル121aと供給ローラー123aとは、造形ステージ110上において、粉末材料及び放熱材を供給する位置を水平方向にずらして配設されている。 Further, the supply nozzle 121a and the supply roller 123a are disposed on the modeling stage 110 by shifting the positions for supplying the powder material and the heat dissipation material in the horizontal direction.
 三次元造形物を形成する際には、変形例1に係る三次元造形装置100は、供給ノズル121aが粉末材料を供給する工程と供給ローラー123aが放熱材を供給する工程を同時並行的に実行する。そして、この際、変形例1に係る三次元造形装置100は、放熱材を配設した後に、当該放熱材を覆うように粉末材料を供給する構成となっている。 When forming a three-dimensional structure, the three-dimensional structure forming apparatus 100 according to Modification 1 executes the process of supplying the powder material by the supply nozzle 121a and the process of supplying the heat dissipation material by the supply roller 123a simultaneously. To do. At this time, the three-dimensional modeling apparatus 100 according to Modification 1 is configured to supply the powder material so as to cover the heat dissipation material after the heat dissipation material is disposed.
 このような構成とすることによって、造形フェーズ全体の造形時間を短縮することができる。又、粉末供給部121と放熱材供給部123とで、造形ステージ110上で供給ノズル121a及び供給ローラー123aを移動させるためのモーター及び駆動機構を共用化することができるため、コスト削減及び小型化等にも資する。 With this configuration, the modeling time for the entire modeling phase can be shortened. In addition, since the powder supply unit 121 and the heat dissipation material supply unit 123 can share a motor and a drive mechanism for moving the supply nozzle 121a and the supply roller 123a on the modeling stage 110, cost reduction and size reduction are achieved. Etc.
(変形例2)
 図10は、変形例2に係る三次元造形装置100の構成の一例を示す図である。
(Modification 2)
FIG. 10 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus 100 according to the second modification.
 変形例2に係る三次元造形装置100は、放熱材供給部123の放熱材の供給方式が供給ローラー123aに代えて、供給ノズル123bが用いられている点で、上記変形例1と相違する。 The three-dimensional modeling apparatus 100 according to Modification 2 is different from Modification 1 in that a supply nozzle 123b is used instead of the supply roller 123a in the heat dissipation material supply method of the heat dissipation material supply unit 123.
 変形例2に係る放熱材供給部123は、粉体状の放熱材を用いており、供給ノズル123bから当該放熱材を吐出する。又、変形例1と同様に、粉末材料を供給する供給ノズル121aと放熱材を供給する供給ノズル123bとは、造形ステージ110上の水平方向に吐出口をずらした状態で保持され、一体的に移動する構成となっている。 The heat dissipating material supply unit 123 according to Modification 2 uses a powder heat dissipating material, and discharges the heat dissipating material from the supply nozzle 123b. Similarly to the first modification, the supply nozzle 121a for supplying the powder material and the supply nozzle 123b for supplying the heat dissipating material are held in a state where the discharge ports are shifted in the horizontal direction on the modeling stage 110 so as to be integrated. It is configured to move.
 三次元造形物を形成する際には、変形例2に係る三次元造形装置100は、供給ノズル121aが粉末材料を供給する工程と供給ノズル123bが放熱材を供給する工程を同時に実行し、放熱材を配設した後に、当該放熱材を覆うように粉末材料を供給する。 When forming a three-dimensional structure, the three-dimensional structure forming apparatus 100 according to the modified example 2 simultaneously performs a process in which the supply nozzle 121a supplies the powder material and a process in which the supply nozzle 123b supplies the heat dissipation material, thereby radiating heat. After disposing the material, a powder material is supplied so as to cover the heat dissipation material.
 このような構成とすることによっても、変形例1と同様に、造形フェーズ全体の造形時間を短縮することができる。又、粉末供給部121と放熱材供給部123とで、造形ステージ110上で供給ノズル121a及び供給ノズル123bを移動させるためのモーター及び駆動機構を共用化することができるため、コスト削減及び小型化等にも資する。 Even with this configuration, the modeling time of the entire modeling phase can be shortened as in the first modification. In addition, since the powder supply unit 121 and the heat dissipation material supply unit 123 can share the motor and the drive mechanism for moving the supply nozzle 121a and the supply nozzle 123b on the modeling stage 110, the cost can be reduced and the size can be reduced. Etc.
(変形例3)
 図11は、変形例3に係る三次元造形装置100の構成の一例を示す図である。
(Modification 3)
FIG. 11 is a diagram illustrating an example of the configuration of the three-dimensional modeling apparatus 100 according to the third modification.
 変形例3に係る三次元造形装置100は、放熱材供給部123の供給ノズルと粉末供給部121の供給ノズルとが共用化される点で、上記変形例2と相違する。 3D modeling apparatus 100 according to Modification 3 is different from Modification 2 in that the supply nozzle of the heat dissipation material supply unit 123 and the supply nozzle of the powder supply unit 121 are shared.
 変形例3に係る粉末供給部121の供給ノズル121cは、複数の吐出口b1~b5を有するラインノズルとなっている。供給ノズル121cには、複数の吐出口b1~b5のそれぞれから吐出する吐出対象を保持する収容室(図示せず)、及び当該収容室内に保持する吐出対象を切り替えるための弁(図示せず)が設けられている。そして、供給ノズル121cは、複数の吐出口b1~b5それぞれに通ずる収容室内の吐出対象を切り替えることで、複数の吐出口b1~b5それぞれから選択的に粉末材料又は粉体状放熱材を吐出する。 The supply nozzle 121c of the powder supply unit 121 according to Modification 3 is a line nozzle having a plurality of discharge ports b1 to b5. The supply nozzle 121c includes a storage chamber (not shown) that holds a discharge target discharged from each of the plurality of discharge ports b1 to b5, and a valve (not shown) for switching the discharge target held in the storage chamber. Is provided. Then, the supply nozzle 121c selectively discharges the powder material or the powder heat radiation material from each of the plurality of discharge ports b1 to b5 by switching the discharge target in the storage chamber that communicates with each of the plurality of discharge ports b1 to b5. .
 三次元造形物を形成する際には、変形例3に係る三次元造形装置100は、供給ノズル121cを造形ステージ110上で水平方向に移動しながら、粉末材料を供給する工程と放熱材を供給する工程を同時に実行する。この際、供給ノズル121cは、造形ステージ110上の位置に応じて、複数の吐出口b1~b5それぞれから、選択的に粉末材料又は放熱材を供給する。そして、三次元造形装置100は、放熱材を配設した後に、当該放熱材を覆うように粉末材料を供給する。 When forming a three-dimensional structure, the three-dimensional structure forming apparatus 100 according to Modification 3 supplies a powder material and a heat dissipation material while moving the supply nozzle 121c in the horizontal direction on the modeling stage 110. The process to perform is performed simultaneously. At this time, the supply nozzle 121c selectively supplies the powder material or the heat radiating material from each of the plurality of discharge ports b1 to b5 according to the position on the modeling stage 110. And the three-dimensional modeling apparatus 100 supplies a powder material so that the said heat radiating material may be covered, after arrange | positioning a heat radiating material.
 このような構成とすることによっても、造形フェーズ全体の造形時間を短縮することができる。加えて、又、粉末供給部121と放熱材供給部123とで、供給ノズル121cを共用化することができるため、コスト削減及び小型化等にも資する。 Even with such a configuration, the modeling time of the entire modeling phase can be shortened. In addition, since the supply nozzle 121c can be shared by the powder supply unit 121 and the heat dissipation material supply unit 123, it contributes to cost reduction and downsizing.
(その他の実施形態)
 本発明は、上記実施形態に限らず、種々に変形態様が考えられる。
(Other embodiments)
The present invention is not limited to the above embodiment, and various modifications can be considered.
 上記実施形態では、三次元造形装置100の一例として、一個の三次元造形物を形成する態様について説明した。しかしながら、三次元造形装置100は、一連の造形フェーズにおいて、複数の三次元造形物を形成してもよいのは勿論である。その場合、制御部150は、当該複数の三次元造形物それぞれのスライスデータに基づいて、放熱材を配設する領域を決定すればよい。 In the above-described embodiment, as an example of the three-dimensional modeling apparatus 100, the aspect of forming one three-dimensional modeled object has been described. However, of course, the 3D modeling apparatus 100 may form a plurality of 3D models in a series of modeling phases. In that case, the control part 150 should just determine the area | region which arrange | positions a thermal radiation material based on the slice data of each of the said some three-dimensional structure.
 又、上記実施形態では、制御部150の一例として、一のコンピューターによって粉末層形成部120、放熱材供給部123及びレーザー照射部130の制御を実現する構成を示した。しかしながら、当該制御は、複数のコンピューターによって実現されてもよいのは勿論である。例えば、粉末層形成部120、放熱材供給部123及びレーザー照射部130それぞれを制御する複数のコンピューターを別個に設けてもよい。その場合、当該複数のコンピューターが互いにデータ通信することによって、粉末層形成部120、放熱材供給部123及びレーザー照射部130を連携して制御すればよい。 Moreover, in the said embodiment, the structure which implement | achieves control of the powder layer formation part 120, the heat radiating material supply part 123, and the laser irradiation part 130 with one computer as an example of the control part 150 was shown. However, it goes without saying that the control may be realized by a plurality of computers. For example, a plurality of computers for controlling the powder layer forming unit 120, the heat radiation material supply unit 123, and the laser irradiation unit 130 may be separately provided. In that case, what is necessary is just to control the powder layer formation part 120, the thermal radiation material supply part 123, and the laser irradiation part 130 in cooperation by the said some computer communicating data mutually.
 又、上記実施形態では、制御部150の一例として、スライスデータを作成や造形層の形成の処理を一連のフローの中で実行されるものとして示したが、これらの処理の一部が並列で実行されるものとしてもよい。又、制御部150は、各粉末層を形成する際に、毎回、対応する層のスライスデータに基づいて放熱材を配設する領域を決定してもよい。 In the above-described embodiment, as an example of the control unit 150, slice data creation and modeling layer formation processing are illustrated as being executed in a series of flows, but some of these processing are performed in parallel. It may be executed. In addition, the control unit 150 may determine a region where the heat dissipation material is disposed based on slice data of a corresponding layer every time when forming each powder layer.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 2016年10月26日出願の特願2016-209739の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2016-209739 filed on Oct. 26, 2016 is incorporated herein by reference.
 100 三次元造形装置
 110 造形ステージ
 120 粉末層形成部
 121 粉末供給部
 122 リコーター駆動部
 123 放熱材供給部
 130 レーザー照射部
 131 レーザー光源
 132 ガルバノミラー駆動部
 140 ステージ支持部
 145 ベース
 150 制御部
 160 表示部
 170 操作部
 180 記憶部
 190 データ入力部
 200 コンピューター装置
 
 
DESCRIPTION OF SYMBOLS 100 Three-dimensional modeling apparatus 110 Modeling stage 120 Powder layer forming part 121 Powder supply part 122 Recoater drive part 123 Heat radiation material supply part 130 Laser irradiation part 131 Laser light source 132 Galvano mirror drive part 140 Stage support part 145 Base 150 Control part 160 Display part 170 Operation Unit 180 Storage Unit 190 Data Input Unit 200 Computer Device

Claims (13)

  1.  粉末材料からなる粉末層を形成する粉末層形成部と、
     前記粉末層の造形領域にレーザーを照射し、当該造形領域を焼結又は溶融固化させて造形層を形成するレーザー照射部と、
     放熱材を供給する放熱材供給部と、
     前記粉末層形成部、前記放熱材供給部及び前記レーザー照射部を制御し、
     前記放熱材を配設しつつ前記粉末層及び前記造形層を形成する処理を繰り返し、前記造形層の周囲の少なくとも一部に前記放熱材が配設されるように前記放熱材を配設する制御部と、
     を備える三次元造形装置。
    A powder layer forming part for forming a powder layer made of a powder material;
    A laser irradiation unit that irradiates a laser to a modeling region of the powder layer, and forms a modeling layer by sintering or melting and solidifying the modeling region;
    A heat-dissipating material supply section for supplying the heat-dissipating material;
    Control the powder layer forming unit, the heat dissipation material supply unit and the laser irradiation unit,
    Control to dispose the heat dissipating material so that the heat dissipating material is disposed on at least a part of the periphery of the modeling layer by repeating the process of forming the powder layer and the modeling layer while disposing the heat dissipating material. And
    3D modeling device.
  2.  前記放熱材の熱伝導率は、前記粉末材料の熱伝導率の10倍以上である、
     請求項1に記載の三次元造形装置。
    The thermal conductivity of the heat dissipation material is 10 times or more the thermal conductivity of the powder material.
    The three-dimensional modeling apparatus according to claim 1.
  3.  前記放熱材は、箔状の素材である、
     請求項1又は2に記載の三次元造形装置。
    The heat dissipation material is a foil-shaped material.
    The three-dimensional modeling apparatus according to claim 1 or 2.
  4.  前記放熱材は、粉体状の素材である、
     請求項1又は2に記載の三次元造形装置。
    The heat dissipation material is a powdery material,
    The three-dimensional modeling apparatus according to claim 1 or 2.
  5.  前記放熱材は、金属素材により構成される、
     請求項1乃至4のいずれか一項に記載の三次元造形装置。
    The heat dissipation material is composed of a metal material,
    The three-dimensional modeling apparatus according to any one of claims 1 to 4.
  6.  前記放熱材は、前記粉末層の一層分以下の厚みの部材により構成される、
     請求項1乃至5のいずれか一項に記載の三次元造形装置。
    The heat dissipation material is constituted by a member having a thickness equal to or less than one layer of the powder layer.
    The three-dimensional modeling apparatus according to any one of claims 1 to 5.
  7.  前記放熱材は、前記粉末層の各層又は複数層ごとに配設される、
     請求項1乃至6のいずれか一項に記載の三次元造形装置。
    The heat dissipation material is disposed for each layer or a plurality of layers of the powder layer.
    The three-dimensional modeling apparatus according to any one of claims 1 to 6.
  8.  前記放熱材供給部は、前記放熱材を保持する供給ローラーを有し、
     当該供給ローラーの駆動により前記放熱材をスライドさせて、造形ステージ上に前記放熱材を配設する、
     請求項3に記載の三次元造形装置。
    The heat dissipation material supply unit has a supply roller that holds the heat dissipation material,
    The heat dissipation material is slid by driving the supply roller, and the heat dissipation material is disposed on the modeling stage.
    The three-dimensional modeling apparatus according to claim 3.
  9.  前記放熱材供給部は、前記放熱材を内部に保持する供給ノズルを有し、
     当該供給ノズルから前記放熱材を吐出して、造形ステージ上に前記放熱材を配設する、
     請求項4に記載の三次元造形装置。
    The heat dissipation material supply unit has a supply nozzle for holding the heat dissipation material inside,
    The heat dissipation material is discharged from the supply nozzle, and the heat dissipation material is disposed on the modeling stage.
    The three-dimensional modeling apparatus according to claim 4.
  10.  前記供給ノズルは、前記粉末材料を更に内部に保持し、
     吐出対象を前記放熱材又は前記粉末材料に切り替え可能に構成される、
     請求項9に記載の三次元造形装置。
    The supply nozzle further holds the powder material inside,
    The discharge target is configured to be switchable to the heat dissipation material or the powder material.
    The three-dimensional modeling apparatus according to claim 9.
  11.  前記制御部は、前記三次元造形物の造形形状データを各層にスライスしたスライスデータを用いて、前記放熱材を配設する領域を決定する、
     請求項1乃至10のいずれか一項に記載の三次元造形装置。
    The control unit determines an area where the heat dissipation material is disposed using slice data obtained by slicing the modeling shape data of the three-dimensional structure in each layer.
    The three-dimensional modeling apparatus according to any one of claims 1 to 10.
  12.  前記放熱材供給部は、前記放熱材が前記レーザー照射部によるレーザー照射領域に接触しないように前記放熱材を供給する、
     請求項1乃至11のいずれか一項に記載の三次元造形装置。
    The heat dissipating material supply unit supplies the heat dissipating material so that the heat dissipating material does not contact a laser irradiation region by the laser irradiation unit.
    The three-dimensional modeling apparatus according to any one of claims 1 to 11.
  13.  造形ステージ上に粉末材料からなる粉末層を形成する工程と、
     前記粉末層の造形領域にレーザーを照射し、当該造形領域を焼結又は溶融固化させて造形層を形成する工程と、
     前記造形ステージ上に放熱材を配設する工程と、を備え、
     前記放熱材を配設しつつ前記粉末層及び前記造形層を形成する工程を繰り返し、少なくとも一部の周囲に前記放熱材が配設されるように複数の前記造形層を積層する、
     三次元造形物の製造方法。
     
    Forming a powder layer made of a powder material on the modeling stage;
    Irradiating a laser to the modeling region of the powder layer, and sintering or melting and solidifying the modeling region to form a modeling layer;
    Providing a heat dissipating material on the modeling stage,
    Repeating the step of forming the powder layer and the modeling layer while disposing the heat dissipating material, and laminating the plurality of modeling layers so that the heat dissipating material is disposed around at least a part of the layer;
    A manufacturing method of a three-dimensional structure.
PCT/JP2017/038578 2016-10-26 2017-10-25 Three-dimensional printing apparatus and method for producing three-dimensional printed object WO2018079626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016209739 2016-10-26
JP2016-209739 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018079626A1 true WO2018079626A1 (en) 2018-05-03

Family

ID=62025022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038578 WO2018079626A1 (en) 2016-10-26 2017-10-25 Three-dimensional printing apparatus and method for producing three-dimensional printed object

Country Status (1)

Country Link
WO (1) WO2018079626A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU185518U1 (en) * 2018-05-19 2018-12-07 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Control device and adaptive control for direct laser growing
JP2020138342A (en) * 2019-02-27 2020-09-03 セイコーエプソン株式会社 Modeling method of three-dimensional modeled product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212131A (en) * 1988-10-13 1990-08-23 Matsushita Electric Works Ltd Method of molding three dimensional configuration
JPH09272153A (en) * 1996-02-07 1997-10-21 Ricoh Co Ltd Manufacture of three-dimensional article
JP2000024755A (en) * 1998-07-13 2000-01-25 Toyota Motor Corp Manufacture of mold, and device therefor
JP2016168746A (en) * 2015-03-12 2016-09-23 キヤノン株式会社 Method and apparatus for manufacturing three-dimensional object
JP2017075366A (en) * 2015-10-15 2017-04-20 セイコーエプソン株式会社 Flowable composition set and flowable composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212131A (en) * 1988-10-13 1990-08-23 Matsushita Electric Works Ltd Method of molding three dimensional configuration
JPH09272153A (en) * 1996-02-07 1997-10-21 Ricoh Co Ltd Manufacture of three-dimensional article
JP2000024755A (en) * 1998-07-13 2000-01-25 Toyota Motor Corp Manufacture of mold, and device therefor
JP2016168746A (en) * 2015-03-12 2016-09-23 キヤノン株式会社 Method and apparatus for manufacturing three-dimensional object
JP2017075366A (en) * 2015-10-15 2017-04-20 セイコーエプソン株式会社 Flowable composition set and flowable composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU185518U1 (en) * 2018-05-19 2018-12-07 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Control device and adaptive control for direct laser growing
JP2020138342A (en) * 2019-02-27 2020-09-03 セイコーエプソン株式会社 Modeling method of three-dimensional modeled product
JP7263838B2 (en) 2019-02-27 2023-04-25 セイコーエプソン株式会社 Modeling method of three-dimensional object

Similar Documents

Publication Publication Date Title
JP5746024B2 (en) Equipment for manufacturing three-dimensional objects one by one
KR102151445B1 (en) Additive manufacturing apparatus and method for manufacturing three dimensional object
JP4917381B2 (en) Powder sintering additive manufacturing apparatus and powder sintering additive manufacturing method
US9839960B2 (en) Three dimensional printer
US20110316178A1 (en) Method And Apparatus For Making Products By Sintering And/Or Melting
KR102032888B1 (en) 3D printer apparatus integrated post processing unit
JP7009706B2 (en) Methods and equipment to generate additive manufacturing scanpaths using thermal and strain modeling
JP2017094540A (en) Three-dimensional shaping device, three-dimensional shaping method, program, and recording medium
JP2007030303A (en) Powder sintering lamination molding apparatus
JP5669908B2 (en) Manufacturing method for forming a three-dimensional object with less warpage by using a cooling method
US20180304527A1 (en) Device and Method for Producing a Three-Dimensional Object
JP4856979B2 (en) Powder sintering additive manufacturing apparatus and powder sintering additive manufacturing method
US10967575B2 (en) Method and device for the generative manufacturing of a three-dimensional object
JP2008068439A (en) Powder sintering/laminating/molding apparatus and powder sintering/laminating/molding method
US20200079009A1 (en) Method and device for producing a three-dimensional object
WO2018079626A1 (en) Three-dimensional printing apparatus and method for producing three-dimensional printed object
WO2019031979A1 (en) Additive manufacturing apparatus with a heat shield for controlling heat losses from a powder bed
EP3995293B1 (en) Method for additively manufacturing at least one three-dimensional object
JP2017189875A (en) 3-dimensional formation apparatus and 3-dimensional formation method
JP6471975B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JPWO2018193744A1 (en) Three-dimensional modeling device
JP2017217791A (en) Three-dimensional molding apparatus
JP2003321704A (en) Lamination shaping method and lamination shaping apparatus used in the same
US20170216971A1 (en) Use of variable wavelength laser energy for custom additive manufacturing
KR102476579B1 (en) Printer for manufacturing three-dimensional object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP