JPWO2018193744A1 - Three-dimensional modeling device - Google Patents

Three-dimensional modeling device Download PDF

Info

Publication number
JPWO2018193744A1
JPWO2018193744A1 JP2019513260A JP2019513260A JPWO2018193744A1 JP WO2018193744 A1 JPWO2018193744 A1 JP WO2018193744A1 JP 2019513260 A JP2019513260 A JP 2019513260A JP 2019513260 A JP2019513260 A JP 2019513260A JP WO2018193744 A1 JPWO2018193744 A1 JP WO2018193744A1
Authority
JP
Japan
Prior art keywords
modeling
radiation shield
electron beam
dimensional
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019513260A
Other languages
Japanese (ja)
Other versions
JP6639735B2 (en
Inventor
恭諒 丸小
恭諒 丸小
武士 物種
武士 物種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018193744A1 publication Critical patent/JPWO2018193744A1/en
Application granted granted Critical
Publication of JP6639735B2 publication Critical patent/JP6639735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

大型の三次元造形物を製造する場合でも、粉末材料の十分な予熱を容易に行うことができる三次元造形装置を得る。三次元造形装置100において、粉末材料に電子ビームEB1を照射する電子銃2と、真空チャンバ1の床面1aに設けられ、粉末材料が敷き詰められて粉末層7が形成される造形領域形成部3と、昇温した状態で粉末層7に埋め込まれ、熱移動により粉末材料を予熱する台座4と、造形領域形成部3を覆い、台座4からの熱輻射により昇温する輻射シールド10とを備え、粉末材料は、造形領域形成部3からの熱移動及び昇温した輻射シールド10からの熱輻射により予熱される。A three-dimensional shaping apparatus capable of easily performing sufficient preheating of powder material even when producing a large three-dimensional shaped article is obtained. In the three-dimensional modeling apparatus 100, an electron gun 2 for irradiating a powder material with an electron beam EB1 and a modeling area forming unit 3 provided on the floor surface 1a of the vacuum chamber 1 and having the powder material spread to form a powder layer 7 And a pedestal 4 which is embedded in the powder layer 7 in a heated state and which preheats the powder material by heat transfer, and a radiation shield 10 which covers the shaping region forming portion 3 and which is heated by heat radiation from the pedestal 4 The powder material is preheated by the heat transfer from the shaping region forming unit 3 and the heat radiation from the heated radiation shield 10.

Description

本願は、例えば金属粒体からなる粉末材料を選択的に固化させる工程を繰り返すことにより三次元形状の造形物を製造する三次元造形装置に関するものである。   The present application relates to, for example, a three-dimensional shaping apparatus that manufactures a three-dimensional shaped object by repeating a process of selectively solidifying a powder material made of metal particles.

粉末材料によって形成された粉末層の所定領域に高エネルギーのビームを照射して、粉末材料を選択的に溶融凝固又は焼結させて固化させる工程を繰り返すことにより三次元形状の造形物を製造するものがある。高エネルギーのビームとしては、レーザー又は電子ビームが用いられるが、電子ビームを用いる場合、高融点合金にも対応可能であり、スキャン速度がより速いというメリットがある(例えば、非特許文献1参照)。このような三次元造形装置としては、従来、反応性ガスを供給しながら作業領域上に配置された材料に電子ビームを照射する装置が提案されていた(例えば、特許文献1参照)。また、希ガス雰囲気中で電子ビームを最新の焼結層に照射して、表面を改質させる工程を繰り返すことで三次元形状の積層造形物を形成する製造装置が提案されていた(例えば、特許文献2参照)。   A three-dimensional shaped object is manufactured by repeating a process of selectively melting, solidifying or sintering the powder material by irradiating a high energy beam to a predetermined region of the powder layer formed by the powder material, and repeating the process of solidifying or sintering the powder material. There is something. A laser or an electron beam is used as the high energy beam, but when an electron beam is used, it is also possible to cope with high melting point alloys, and there is an advantage that the scanning speed is faster (see, for example, Non-Patent Document 1) . Conventionally, as such a three-dimensional modeling apparatus, an apparatus has been proposed which irradiates a material disposed on a work area with an electron beam while supplying a reactive gas (see, for example, Patent Document 1). In addition, a manufacturing apparatus has been proposed that forms a three-dimensional laminated molded object by repeating the process of irradiating the latest sintered layer with an electron beam in a rare gas atmosphere to reform the surface (for example, Patent Document 2).

一方、非特許文献1に示されているように、粉末材料を溶融凝固するために電子ビームを用いる場合、電子ビームとの相互作用により粉末材料が負に帯電し、個々の粉末同士がクーロン斥力により反発して飛散する虞があるため、粉末層の粉末材料を予熱して飛散を防止する必要がある。予熱された粉末材料は電気抵抗が低下し、電子ビームとの相互作用により生じる電荷を導通させるために帯電しなくなり、上記のような飛散は起きなくなる。そこで、電子ビームを用いて三次元物体を作る装置において、電子ビームのビーム電流(ビーム出力)及びビーム走査速度を変化させることで粉末材料の温度を予め上昇させることが提案されている(例えば、特許文献3)。   On the other hand, as shown in Non-Patent Document 1, when using an electron beam to melt and solidify the powder material, the powder material is negatively charged due to the interaction with the electron beam, and the individual powders are coulombic repulsion Since there is a risk of repulsion and scattering, it is necessary to preheat the powder material of the powder layer to prevent scattering. The preheated powder material has a reduced electrical resistance, is not charged to conduct the charge generated by the interaction with the electron beam, and the above-mentioned scattering does not occur. Therefore, in an apparatus for producing a three-dimensional object using an electron beam, it has been proposed to raise the temperature of the powder material in advance by changing the beam current (beam output) of the electron beam and the beam scanning speed (for example, Patent Document 3).

特表2011−506761号公報JP 2011-506761 gazette 特開2015−30872号公報JP, 2015-30872, A 特表2010−526694号公報Japanese Patent Publication No. 2010-526694

計測と制御、第54巻第6号、2015年6月号(P.399〜404)Measurement and Control, Vol. 54, No. 6, June 2015 (P. 399-404)

しかしながら、特許文献3のように電子ビームのビーム出力等のパラメータを変化させて予熱を行う方法では、製造する三次元造形物の大きさが大きく、粉末層の表面積も大きい場合、粉末層表面からの熱輻射による大きな熱損失のために予熱が不十分となる虞がある。これは、予熱の段階では粉末材料を溶融凝固又は焼結させるような高エネルギーの電子ビームを使用することができずビーム出力に上限があるため、熱輻射による熱損失をビーム出力の調整でカバーすることは困難であるためである。   However, in the method of performing preheating by changing parameters such as the beam output of the electron beam as in Patent Document 3, when the size of the three-dimensional structure to be manufactured is large and the surface area of the powder layer is large, Due to the large heat loss due to the heat radiation, the preheating may be insufficient. This is because it is not possible to use a high energy electron beam to melt, solidify or sinter the powder material in the preheating stage, and there is an upper limit to the beam output, so the heat loss due to heat radiation is covered by adjusting the beam output. Because it is difficult to do.

本願は、上述のような問題点を解決するためになされたもので、大型の三次元造形物を製造する場合でも、粉末材料の十分な予熱を容易に行うことができる三次元造形装置を得るものである。   The present application has been made to solve the problems as described above, and provides a three-dimensional shaping apparatus capable of easily performing sufficient preheating of a powder material even when producing a large three-dimensional structure. It is a thing.

本願に開示される三次元造形装置は、粉末層を形成する粉末材料を電子ビームの照射によって選択的に固化させる工程を繰り返すことにより三次元造形物を製造する三次元造形装置であって、粉末材料に電子ビームを照射する電子ビーム照射手段と、電子ビーム照射手段に対向する面に設けられ、粉末材料が敷き詰められて粉末層が形成される造形領域形成部と、昇温した状態で粉末層に埋め込まれ、熱移動により粉末材料を予熱する予熱部材と、造形領域形成部を覆い、予熱部材からの熱輻射により昇温するシールド部材とを備え、粉末材料は、予熱部材からの熱移動及び昇温したシールド部材からの熱輻射により予熱されるものである。   The three-dimensional modeling apparatus disclosed in the present application is a three-dimensional modeling apparatus that manufactures a three-dimensional model by repeating a process of selectively solidifying a powder material that forms a powder layer by irradiation with an electron beam. An electron beam irradiation means for irradiating the material with an electron beam, a modeling region forming portion provided on a surface facing the electron beam irradiation means, and in which the powder material is spread to form a powder layer, and the powder layer in a heated state And a shield member which covers the shaping region forming portion and heats up by heat radiation from the preheating member, and the powder material transfers heat from the preheating member and It is preheated by the heat radiation from the shield member which was heated.

本願に開示される三次元造形装置によれば、大型の三次元造形物を製造する場合でも、粉末材料の十分な予熱を容易に行うことができる。   According to the three-dimensional shaping apparatus disclosed in the present application, sufficient preheating of the powder material can be easily performed even in the case of producing a large three-dimensional figure.

実施の形態1における三次元造形装置を示す概略図である。FIG. 1 is a schematic view showing a three-dimensional shaping apparatus in Embodiment 1. 実施の形態1に係る輻射シールドの概要を示す斜視図である。FIG. 1 is a perspective view showing an outline of a radiation shield according to a first embodiment. 実施の形態1に係る輻射シールドの枠を示す平面図である。5 is a plan view showing a frame of the radiation shield according to Embodiment 1. FIG. 実施の形態1に係る輻射シールドの側面部を構成する金属板を示す図である。FIG. 5 is a view showing a metal plate that constitutes a side surface portion of the radiation shield according to the first embodiment. 実施の形態1における三次元造形装置の動作を説明する図である。FIG. 6 is a view for explaining the operation of the three-dimensional shaping apparatus in Embodiment 1. 実施の形態1の変形例に係る輻射シールドの斜視図である。FIG. 10 is a perspective view of a radiation shield according to a modification of the first embodiment. 実施の形態2に係る輻射シールドの概要を示す斜視図である。FIG. 8 is a perspective view showing an outline of a radiation shield according to Embodiment 2; 実施の形態3に係る輻射シールドの概要を示す斜視図である。FIG. 10 is a perspective view showing an outline of a radiation shield according to Embodiment 3. 実施の形態4における三次元造形装置を示す概略図である。FIG. 16 is a schematic view showing a three-dimensional shaping apparatus in a fourth embodiment. 実施の形態5における三次元造形装置を示す概略図である。FIG. 18 is a schematic view showing a three-dimensional shaping apparatus in a fifth embodiment.

実施の形態1.
以下に、実施の形態1を図1から図5に基づいて説明する。図1は、実施の形態1における三次元造形装置を示す概略図である。三次元造形装置100において、真空チャンバ1の上部には、電子ビームEB1を下方に照射する電子銃2、すなわち電子ビーム照射手段が設けられ、真空チャンバ1の天井面1b、すなわち造形領域形成部と対向する面には電子ビームEB1を通す開口(図示なし)が設けられている。電子銃2は、真空チャンバ1の床面1aに形成された造形領域形成部3に対向しており、造形領域形成部3の内部に電子ビームEB1を照射可能である。造形領域形成部3は、例えば90mm×90mmの正方形状の水平断面を持ち、その内部が三次元造形物の造形領域となるもので、粉末材料からなる粉末層7が形成されている。
Embodiment 1
The first embodiment will be described below based on FIGS. 1 to 5. FIG. 1 is a schematic view showing a three-dimensional shaping apparatus in the first embodiment. In the three-dimensional modeling apparatus 100, an electron gun 2 for irradiating the electron beam EB1 downward, ie, an electron beam irradiation means is provided in the upper part of the vacuum chamber 1, and the ceiling surface 1b of the vacuum chamber 1 The opposite surface is provided with an opening (not shown) for passing the electron beam EB1. The electron gun 2 faces the modeling area forming unit 3 formed on the floor surface 1 a of the vacuum chamber 1, and can irradiate the inside of the modeling area forming unit 3 with the electron beam EB 1. The modeling region forming unit 3 has, for example, a square horizontal cross section of 90 mm × 90 mm, the inside thereof is a modeling region of a three-dimensional model, and the powder layer 7 made of a powder material is formed.

粉末材料は、固化して三次元造形物を構成する粉末状の材料であり、電子銃2からの電子ビームEB1が照射されることで溶融凝固又は焼結して固化体8となる。粉末層7を構成する粉末材料は、例えばコバルトクロムモリブデン合金又はチタン合金などの金属粒体の粉末材料であるが、これに限られるものではなく、電子ビームの照射により溶融凝固又は焼結可能なものであればよい。粉末層7は、粉末材料供給部93が造形領域形成部3の上部及び周辺を移動しながら所定量の粉末材料を供給し、造形領域形成部3の内部に粉末材料を層状に敷き詰めることで形成されるものである。粉末材料供給部93が供給する粉末材料は、例えば直方体の箱体である粉末材料収納部92に収納されている。粉末材料収納部92は、粉末材料供給部が下方に来ると粉末材料を落下させ、粉末材料供給部93に粉末材料を供給する。なお、電子銃2から造形領域形成部3に電子ビームEB1を照射できればよいので、造形領域形成部3を設ける位置は床面1aに限られるものではなく、電子銃2に対向する面であればよい。例えば、床面1aに作業台(図示なし)を設置し、その上面に造形領域形成部3を設けてもよい。   The powder material is a powdery material that solidifies to form a three-dimensional structure, and when it is irradiated with the electron beam EB1 from the electron gun 2, it is melted and solidified or sintered to form a solidified body 8. The powder material constituting the powder layer 7 is, for example, a powder material of metal particles such as cobalt chromium molybdenum alloy or titanium alloy, but is not limited thereto, and can be melt solidified or sintered by irradiation of electron beam. What is necessary. The powder layer 7 is formed by supplying a predetermined amount of powder material while moving the upper part and the periphery of the shaping region forming portion 3 and the powder material supplying portion 93 spreading the powder material inside the shaping region forming portion 3 in layers. It is The powder material supplied by the powder material supply unit 93 is accommodated in a powder material accommodation unit 92 which is, for example, a rectangular parallelepiped box. The powder material storage unit 92 drops the powder material when the powder material supply unit comes down, and supplies the powder material to the powder material supply unit 93. It is sufficient that the electron beam EB1 can be irradiated from the electron gun 2 to the modeling area forming unit 3, so the position at which the modeling area forming unit 3 is provided is not limited to the floor surface 1a. Good. For example, a work bench (not shown) may be installed on the floor surface 1a, and the modeling region forming unit 3 may be provided on the upper surface thereof.

造形領域形成部3の底部には、上下にスライド可能な造形テーブル5が設けられている。造形テーブル5は、下方に設けられた昇降機構6により昇降するものであり、昇降機構6を操作することにより造形領域形成部3の深さを調整することが可能である。図1は、造形テーブル5が床面1aから粉末層7の2層分だけ下げられた状態を示しており、破線より下が1層目の粉末層7、破線より上が2層目の粉末層7である。なお、1層目の粉末層7は台座4の周囲を覆うために厚めに形成しているが、2層目以降の粉末層7は数十μm程度の厚さで形成している。   At the bottom of the modeling area forming unit 3, a modeling table 5 which can slide up and down is provided. The modeling table 5 is moved up and down by a lifting mechanism 6 provided below, and by operating the lifting mechanism 6, the depth of the modeling area forming unit 3 can be adjusted. FIG. 1 shows a state in which the shaping table 5 is lowered from the floor surface 1 a by two layers of the powder layer 7, and the first powder layer 7 below the broken line and the second powder above the broken line Layer 7 The first powder layer 7 is formed thick to cover the periphery of the pedestal 4, but the second and subsequent powder layers 7 are formed to have a thickness of about several tens of μm.

1層目の粉末層7には、昇温した状態の台座4が埋め込まれている。台座4は、三次元造形物の土台部分となるとともに、粉末材料の予熱部材として機能するものである。台座4の材質は、電子ビームの照射により昇温するものであれば特に限られるものではないが、熱容量が大きいものであることが好ましい。   The pedestal 4 in the heated state is embedded in the first powder layer 7. The pedestal 4 serves as a base portion of the three-dimensional structure and also functions as a preheating member for the powder material. The material of the pedestal 4 is not particularly limited as long as the temperature is raised by the irradiation of the electron beam, but it is preferable that the heat capacity is large.

造形領域形成部3の上方には、支えジグ91によって所定の高さに支持され、造形領域形成部3全体を覆う輻射シールド10が設けられている。輻射シールド10は側面視において下方ほど、すなわち造形領域形成部3に近いほど広がる台形状をなし、下方ほど床面1aに平行な方向の断面積が大きくなっている。また、輻射シールド10を設置する高さは、粉末材料供給部93の移動を妨げない範囲であれば特に限られるものではない。輻射シールド10は、上端に電子銃2と対向する開口部10cが設けられ、下端に造形領域形成部3と対向する開口部10bが設けられて、電子ビームEB1が通る中空部10aが上端から下端に亘って内部に形成されているため、電子銃2から造形領域形成部3への電子ビームEB1の照射が輻射シールド10に妨げられることはない。   Above the modeling area formation part 3, the radiation shield 10 which is supported by the support jig 91 at a predetermined height and covers the whole modeling area formation part 3 is provided. The radiation shield 10 has a trapezoidal shape that widens in the side view in the side view, that is, as it approaches the modeling area forming portion 3, and the cross-sectional area in the direction parallel to the floor surface 1a increases in the lower side. Further, the height at which the radiation shield 10 is installed is not particularly limited as long as the movement of the powder material supply unit 93 is not hindered. The radiation shield 10 is provided at the upper end with an opening 10c facing the electron gun 2 and at the lower end with an opening 10b facing the shaping region forming part 3 so that the hollow portion 10a through which the electron beam EB1 passes is from the upper end to the lower end The radiation shield 10 does not prevent the irradiation of the electron beam EB1 from the electron gun 2 to the shaping region forming portion 3 because it is formed inside.

図2は、実施の形態1に係る輻射シールドの概要を示す斜視図、図3は、輻射シールドの上部の枠を示す平面図であり、図4は、輻射シールドの側面部を構成する金属板、すなわち板状部材を示す図である。輻射シールド10は、図2に示すように輻射シールド10の上端に配置され、輻射シールド10の上面11を構成する四角形の枠12の各辺に第1の側面部13及び第2の側面部14を隙間なく取り付けたものであり、第1の側面部13及び第2の側面部14は、それぞれ1対ずつネジ19によって枠12に取り付けられている。
第1の側面部13は、輻射シールド10の上面11から下方、すなわち造形領域形成部3の方向へ延び、上面11に対して直角に取り付けられている。第2の側面部14は、上面11から下方に延び、上面11に対して45°の角をなして取り付けられている。このように、第2の側面部14が輻射シールド10の上面11に対して45°の角をなしているため、輻射シールド10及び中空部10aは、下方に向かって広がる形状となっている。
なお、実施の形態1では第2の側面部14が上面11に対して45°の角をなしているが、輻射シールド10が下方に向かって広がればよいので、は第2の側面部14が上面11に対してなす角は45°に限らず鋭角であればよい。また、第1の側面部13は上面11に対して直角に取り付けられているが、第1の側面部13も第2の側面部14と同様に上面11に対して鋭角をなして取り付けてもよい。
FIG. 2 is a perspective view showing an outline of the radiation shield according to the first embodiment, FIG. 3 is a plan view showing an upper frame of the radiation shield, and FIG. 4 is a metal plate constituting a side portion of the radiation shield. That is, it is a figure which shows a plate-shaped member. The radiation shield 10 is disposed at the upper end of the radiation shield 10 as shown in FIG. 2, and the first side surface portion 13 and the second side surface portion 14 are provided on each side of the rectangular frame 12 which constitutes the upper surface 11 of the radiation shield 10. Of the first side face portion 13 and the second side face portion 14 are attached to the frame 12 by screws 19 respectively.
The first side surface portion 13 extends downward from the upper surface 11 of the radiation shield 10, that is, in the direction of the shaping region forming portion 3, and is attached to the upper surface 11 at a right angle. The second side portion 14 extends downward from the upper surface 11 and is attached at an angle of 45 ° to the upper surface 11. As described above, since the second side face portion 14 forms an angle of 45 ° with the upper surface 11 of the radiation shield 10, the radiation shield 10 and the hollow portion 10a are shaped to expand downward.
In the first embodiment, although the second side face portion 14 forms an angle of 45 ° with the upper surface 11, the second side face portion 14 may have a wide angle as the radiation shield 10 extends downward. The angle formed with respect to the upper surface 11 is not limited to 45 ° and may be an acute angle. Also, although the first side surface portion 13 is attached at a right angle to the upper surface 11, even if the first side surface portion 13 is attached at an acute angle to the upper surface 11 as well as the second side surface portion 14. Good.

枠12は、図3に示すように例えば38mm×38mmの大きさの開口部10cを略中央に形成している。また枠12には、折り曲げ部12bが図中左右の両端部に設けられている。この折り曲げ部12bは、上面11に対して45°の角をなして下方に折り曲げられ、その上面側に第2の側面部14が取り付けられる。また、折り曲げ部12bにはネジ19が貫通する2つのネジ穴12cが形成されている。
第1の側面部13は、図4(a)に示す金属板131を3重に重ね合わせ、それぞれの金属板131のネジ穴13cと枠12の側部に形成されたネジ穴(図示なし)を貫通するネジ19により枠12に取り付けられる。金属板131は、平面視台形状であり、例えば長さ47mmの上辺13aと、上辺13aと135°の角をなし、例えば長さ74mmの斜辺13bとを有している。ここで、上辺13aは輻射シールド10の上面11と平行であるので、斜辺13bは上面11に対して下方に45°の角をなす。第2の側面部14は、図4(b)に示す金属板141を3重に重ね合わせ、それぞれの金属板141のネジ穴14cと枠12のネジ穴12cを貫通するネジ19により枠12に取り付けられる。金属板141、は平面視長方形状であり、例えば長さ54mmの短辺14aと、例えば長さ74mmの長辺14bとを有している。金属板131及び金属板141の材質は例えばSUS304であり、厚さは0.5mm〜1mmである。金属板131及び金属板141をそれぞれ重ねる際には、ワッシャー等を間に挟んで互いに隣接する金属板131、金属板141の間に厚さ2mm程度の間隔を設ける。なお、重ねる金属板131、金属板141の枚数及び間隔は上記に限られるものではなく、複数の金属板131、金属板141を互いに間隔を空けて重ねればよい。
As shown in FIG. 3, the frame 12 has an opening 10c of, for example, 38 mm × 38 mm in size, formed substantially at the center. Further, in the frame 12, bent portions 12b are provided at both left and right ends in the drawing. The bent portion 12 b is bent downward at an angle of 45 ° with respect to the upper surface 11, and the second side surface portion 14 is attached to the upper surface side. Further, two screw holes 12c through which the screws 19 pass are formed in the bent portion 12b.
The first side face portion 13 is formed by superposing the metal plates 131 shown in FIG. 4A in triple layers, and screw holes (not shown) formed in the screw holes 13 c of the metal plates 131 and the side portions of the frame 12. Are attached to the frame 12 by means of screws 19 which pass through. The metal plate 131 has a trapezoidal shape in a plan view, and has, for example, an upper side 13a of 47 mm in length, and an oblique side 13b of, for example, 74 mm in length that forms an angle of 135 ° with the upper side 13a. Here, since the upper side 13 a is parallel to the upper surface 11 of the radiation shield 10, the oblique side 13 b makes an angle of 45 ° with the upper surface 11 downward. The second side face portion 14 is formed by overlapping the metal plates 141 shown in FIG. 4B in triples, and using screws 19 passing through the screw holes 14c of the respective metal plates 141 and the screw holes 12c of the frame 12 It is attached. The metal plate 141 is rectangular in a plan view, and has, for example, a short side 14a of 54 mm in length and a long side 14b of, for example, 74 mm in length. The material of the metal plate 131 and the metal plate 141 is, for example, SUS304, and the thickness is 0.5 mm to 1 mm. When the metal plate 131 and the metal plate 141 are stacked, an interval of about 2 mm is provided between the metal plate 131 and the metal plate 141 adjacent to each other with a washer or the like interposed therebetween. In addition, the number of sheets and the space | interval of the metal plate 131 and the metal plate 141 to overlap are not restricted above, What is necessary is just to mutually space the some metal plate 131 and the metal plate 141, and to overlap.

次に、動作について説明する。図5は、実施の形態1における三次元造形装置の動作を説明する図である。造形領域形成部3に粉末材料を敷き詰めて1層目の粉末層7を形成した後、1層目の粉末層7の上面に台座4を埋め込む。この台座4に対し、粉末材料を溶融凝固させる電子ビームEB1よりもエネルギー密度が小さい電子ビームである予熱用電子ビームEB2を照射して台座4を昇温させると、図5(a)に示すように台座4の上方には熱輻射H2が発生するとともに、台座4の側方及び下方には熱伝導及び熱輻射からなる熱移動H1が発生する。輻射シールド10は、上述したように造形領域形成部3全体を覆っているため、上方への熱輻射H2の大部分を回収し昇温する。熱移動H1は、粉末層7及び造形領域形成部3表面を昇温させる。   Next, the operation will be described. FIG. 5 is a diagram for explaining the operation of the three-dimensional modeling apparatus in the first embodiment. After the powder material is spread in the formation region forming portion 3 to form the first powder layer 7, the pedestal 4 is embedded in the upper surface of the first powder layer 7. As shown in FIG. 5A, when the pedestal 4 is heated by irradiating the pedestal 4 with the preheating electron beam EB2, which is an electron beam having a smaller energy density than the electron beam EB1 for melting and solidifying the powder material. The heat radiation H2 is generated above the pedestal 4, and the heat transfer H1 consisting of heat conduction and heat radiation is generated at the sides and below the pedestal 4. Since the radiation shield 10 covers the whole of the modeling area forming portion 3 as described above, most of the heat radiation H2 upward is recovered and heated. The heat transfer H1 raises the temperature of the powder layer 7 and the shaping region forming unit 3 surface.

輻射シールド10及び造形領域形成部3表面が昇温すると、図5(b)に示すように昇温した輻射シールド10からは1層目の粉末層7及び台座4への熱輻射H2が発生する。また、昇温した造形領域形成部3表面からは1層目の粉末層7及び台座4への熱移動H1が発生する。1層目の粉末層7は、台座4からの熱移動H1、造形領域形成部3表面からの熱移動H1、及び輻射シールド10からの熱輻射H2によって昇温する。   When the surface of the radiation shield 10 and the shaping region forming portion 3 is heated, the heat radiation H2 to the first powder layer 7 and the pedestal 4 is generated from the radiation shield 10 which is heated as shown in FIG. . In addition, heat transfer H1 to the powder layer 7 and the pedestal 4 of the first layer occurs from the surface of the modeling region forming portion 3 whose temperature has been raised. The temperature of the first powder layer 7 is raised by heat transfer H 1 from the pedestal 4, heat transfer H 1 from the surface of the shaping region forming portion 3, and heat radiation H 2 from the radiation shield 10.

1層目の粉末層7の昇温後、図5(c)に示すように造形テーブル5及び1層目の粉末層7を昇降機構6により降下させてスペースを形成し、1層目の場合と同様にして2層目の粉末層7を形成する。2層目の粉末層7を形成するとき、1層目の粉末層7、造形領域形成部3表面、及び輻射シールド10は十分に昇温した状態であるため、1層目の粉末層7及び台座4から2層目の粉末層7へ熱移動H1が発生し、輻射シールド10から2層目の粉末層7へ熱輻射H2が発生する。2層目の粉末層7は、これらの熱移動H1及び熱輻射H2により、予熱用電子ビームEB2が照射されても粉末材料の飛散が起こらない温度まで予熱される。その後、図5(d)に示すように予熱用電子ビームEB2を2層目の粉末層7に照射し、粉末材料を溶融凝固させる電子ビームEB1が照射されても飛散が起こらない温度まで2層目の粉末層7を予熱する。1層目の粉末層7及び台座4からの熱移動H1、及び輻射シールド10からの熱輻射H2は、予熱用電子ビームEB2による予熱が行われる間も発生している。すなわち、2層目の粉末層7は、予熱用電子ビームEB2の照射に加え、台座4、1層目の粉末層7及び造形領域形成部3表面からの熱移動H1、及び輻射シールド10からの熱輻射H2によっても予熱される。   After the temperature rise of the first powder layer 7, as shown in FIG. 5C, the shaping table 5 and the first powder layer 7 are lowered by the lifting mechanism 6 to form a space, and in the case of the first layer Similarly to the above, the second powder layer 7 is formed. When the second powder layer 7 is formed, the first powder layer 7, the surface of the shaping region forming portion 3, and the radiation shield 10 are in a sufficiently heated state, and thus the first powder layer 7 and Heat transfer H1 is generated from the pedestal 4 to the second powder layer 7, and heat radiation H2 is generated from the radiation shield 10 to the second powder layer 7. The powder layer 7 of the second layer is preheated to such a temperature that scattering of the powder material does not occur by the heat transfer H1 and the heat radiation H2 even when the preheating electron beam EB2 is irradiated. Thereafter, as shown in FIG. 5 (d), the second powder layer 7 is irradiated with the preheating electron beam EB2 to melt and solidify the powder material. The eye powder layer 7 is preheated. The heat transfer H1 from the first powder layer 7 and the pedestal 4 and the heat radiation H2 from the radiation shield 10 are also generated during preheating by the preheating electron beam EB2. That is, in addition to the irradiation of the preheating electron beam EB2, the second powder layer 7 receives the heat transfer H1 from the surface of the pedestal 4, the first powder layer 7 and the shaping region forming portion 3, and the radiation shield 10 It is also preheated by the heat radiation H2.

2層目の粉末層7の予熱後、図5(e)に示すように電子ビームEB1を粉末層7の粉末材料に選択的に照射し、所望の範囲の粉末材料を溶融凝固させて固化体8を生成する。固化体8の生成後、造形テーブル5をさらに降下させ、2層目の場合と同様にして3層目以降の粉末層7の形成、予熱及び固化体の生成を繰り返す。   After preheating of the second powder layer 7, as shown in FIG. 5 (e), the electron beam EB1 is selectively irradiated to the powder material of the powder layer 7 to melt and solidify the powder material in the desired range and solidify. Generate 8 After the formation of the solidified body 8, the forming table 5 is further lowered, and the formation of the third and subsequent powder layers 7, the preheating, and the generation of the solidified body are repeated in the same manner as in the second layer.

なお、実施の形態1では電子銃2から照射される予熱用電子ビームEB2を照射することで1層目の粉末層7に埋め込まれた台座4を昇温させたが、台座4の昇温手段はこれに限られるものではない。例えば、ヒーター等で予め昇温した状態の台座4を1層目の粉末層7に埋め込んでもよい。要は、昇温した台座4が1層目の粉末層7に埋め込まれた状態が一定時間以上継続して、台座4からの熱輻射H2によって輻射シールド10が昇温し、台座4からの熱移動H1と昇温した輻射シールド10からの熱輻射H2によって、粉末層7が予熱されればよい。   In the first embodiment, the pedestal 4 embedded in the first powder layer 7 is heated by irradiation with the preheating electron beam EB2 emitted from the electron gun 2. Is not limited to this. For example, you may embed the base 4 of the state which heated up previously with the heater etc. in the powder layer 7 of 1st layer. The point is that the heated pedestal 4 is embedded in the first powder layer 7 continuously for a predetermined time or more, and the radiation shield 10 is heated by the heat radiation H2 from the pedestal 4 and the heat from the pedestal 4 is increased. The powder layer 7 may be preheated by the heat radiation H2 from the radiation shield 10 whose temperature has been increased and the temperature H1.

輻射シールド10は、上述したように第1の側面部13及び第2の側面部14がそれぞれ3枚の金属板131、金属板141を互いに間隔を空けて重ねられることで構成されているため、それぞれの金属板131の間、及びそれぞれの金属板141の間における熱抵抗が大きい。このため、間隔を空けずに金属板131、金属板141を重ねた場合よりも造形領域形成部3に最も近い金属板131及び金属板141の温度上昇が速くなっている。また、金属板1枚のみで構成した場合よりも第1の側面部13及び第2の側面部14の熱容量が大きくなり、輻射シールド10の温度がより長時間高温に維持される。   As described above, the radiation shield 10 is configured by overlapping the first side surface portion 13 and the second side surface portion 14 with the three metal plates 131 and the metal plates 141 at an interval, respectively. The thermal resistance between the respective metal plates 131 and between the respective metal plates 141 is large. For this reason, the temperature rise of the metal plate 131 and the metal plate 141 closest to the modeling region forming portion 3 is quicker than when the metal plate 131 and the metal plate 141 are stacked without leaving a space. In addition, the heat capacity of the first side surface portion 13 and the second side surface portion 14 becomes larger than the case where it is configured by only one metal plate, and the temperature of the radiation shield 10 is maintained at high temperature for a long time.

粉末層7の予熱に対する輻射シールド10の寄与を調べるため、輻射シールド10を設けない場合と設けた場合の台座4の昇温時間及び昇温速度を測定した。測定は、図5(a)と同様に造形領域形成部3の内部に形成された1層目の粉末層7の上面に台座4を埋め込んだ状態で行い、台座4の下部に取り付けたシース型熱電対の取り付け位置の温度を台座4の温度とした。輻射シールド10を設けない場合、台座4の温度を850℃まで昇温させるために要する時間は1200秒(昇温速度:0.69℃/秒)であるのに対し、輻射シールド10を設けた場合は640秒(昇温速度:1.21℃/秒)であった。このように昇温時間及び昇温速度に差が生じるのは、輻射シールド10がなければ上方への熱輻射により熱損失となるエネルギーを輻射シールド10により回収、再利用しているためと考えられる。   In order to investigate the contribution of the radiation shield 10 to the preheating of the powder layer 7, the temperature rising time and the temperature rising rate of the pedestal 4 without and with the radiation shield 10 were measured. The measurement is performed in a state in which the pedestal 4 is embedded in the upper surface of the first powder layer 7 formed in the interior of the modeling area forming portion 3 as in FIG. 5A, and the sheath type attached to the lower portion of the pedestal 4 The temperature at the mounting position of the thermocouple was taken as the temperature of the pedestal 4. When the radiation shield 10 is not provided, the radiation shield 10 is provided while the time required to raise the temperature of the pedestal 4 to 850 ° C. is 1200 seconds (heating rate: 0.69 ° C./second). In the case, it was 640 seconds (heating rate: 1.21 ° C./sec). The reason why the temperature rise time and the temperature rise rate are different in this way is considered that the energy which is a heat loss due to the heat radiation upward without the radiation shield 10 is recovered and reused by the radiation shield 10 .

また、台座4の温度が850℃に達するまでの台座4の中心部と台座4の端部の表面温度の履歴をとり、中心部と端部の温度差を測定した結果、輻射シールド10を設けない場合の最大温度差が250℃であるのに対し、輻射シールド10を設けた場合の最大温度差は160℃であり、温度ムラが90℃低減されていた。これは、中心部よりも熱輻射H2による損失が大きい端部において、輻射シールド10による熱輻射H2の回収、再利用による効果が大きく、温度ムラが低減されたと考えられる。   In addition, the surface temperature of the center of the base 4 and the end of the base 4 are recorded until the temperature of the base 4 reaches 850 ° C., and the temperature difference between the center and the end is measured. The maximum temperature difference in the case where the radiation shield 10 was not provided was 250 ° C., while the maximum temperature difference in the case where the radiation shield 10 was provided was 160 ° C., and the temperature unevenness was reduced by 90 ° C. It is considered that the effect by the recovery and reuse of the thermal radiation H2 by the radiation shield 10 is large at the end where the loss due to the thermal radiation H2 is larger than that at the central portion, and the temperature unevenness is reduced.

なお、ここでは台座4を昇温させる場合の輻射シールド10の寄与について説明したが、粉末層7を予熱する場合も同様である。輻射シールド10は、粉末層7が形成される造形領域形成部3全体を覆っているため、昇温した台座4及び造形領域形成部3、粉末層7の表面から上方に発せられる熱輻射H2を回収するとともに、回収した熱輻射H2により昇温することで粉末層7への熱輻射H2を発生させ、粉末層7の予熱及び温度ムラの低減に寄与する。特に、製造する三次元造形物が大きく造形領域形成部3及び粉末層7の表面積が大きい場合は、上方への熱輻射も大きくなるため、輻射シールド10の寄与も大きいと考えられる。   Although the contribution of the radiation shield 10 in the case of raising the temperature of the pedestal 4 has been described here, the same applies to the case where the powder layer 7 is preheated. Since the radiation shield 10 covers the whole of the modeling region forming portion 3 where the powder layer 7 is formed, the heat radiation H 2 emitted upward from the surface of the pedestal 4 and the modeling region forming portion 3 heated up from the surface of the powder layer 7 is The temperature is raised by the collected heat radiation H2 while generating the heat radiation H2 to the powder layer 7, thereby contributing to the preheating of the powder layer 7 and the reduction of temperature unevenness. In particular, when the three-dimensional structure to be manufactured is large and the surface area of the modeling region forming portion 3 and the powder layer 7 is large, the heat radiation to the upper side is also large, so the contribution of the radiation shield 10 is considered to be large.

造形領域形成部3及び粉末層7の熱輻射は全方向に発せられるものであり、輻射シールド10との間の間隔から漏れてしまう熱輻射もあるため、輻射シールド10はできるだけ造形領域形成部3に近づけて配置することが好ましい。上述したように、輻射シールド10の高さは粉末材料供給部が93の移動を妨げない範囲にする必要があるが、例えば支えジグ91に替えて高さ調整が可能な支持部材により輻射シールド10を支持する構成にしてもよい。この場合、粉末層7を形成するときは粉末材料供給部93の移動を妨げないように輻射シールド10を高く配置し、それ以外のときは輻射シールド10をできるだけ下方に配置して造形領域形成部3に近づけることでより多くの熱輻射H2を回収できる。
また、輻射シールド10からの熱輻射H2は、表面の放熱性に依るため、金属板131及び金属板141の下表面、すなわち造形領域形成部3と対向する面にアルマイト加工処理を施して輻射シールド10の放熱性を高めても良い。
The heat radiation of the shaping region forming portion 3 and the powder layer 7 is emitted in all directions, and there is also the heat radiation which leaks from the space between the radiation shield 10. It is preferable to arrange it close to As described above, the height of the radiation shield 10 needs to be in a range that does not impede the movement of the powder material supply unit 93. For example, instead of the support jig 91, the radiation shield 10 can be adjusted by height adjustment. May be supported. In this case, when forming the powder layer 7, the radiation shield 10 is disposed high to prevent movement of the powder material supply unit 93, and in the other cases, the radiation shield 10 is arranged as low as possible. By bringing it closer to 3, more heat radiation H2 can be recovered.
Further, since the heat radiation H2 from the radiation shield 10 depends on the heat radiation of the surface, the lower surface of the metal plate 131 and the metal plate 141, that is, the surface facing the shaping region forming portion 3 is subjected to anodizing treatment to be a radiation shield. The heat dissipation of 10 may be enhanced.

実施の形態1によれば、大型の三次元造形物を製造する場合でも、粉末材料の十分な予熱を容易に行うことができる。より具体的には、予熱用電子ビームにより昇温した台座、台座からの熱移動により昇温した造形領域形成部の表面から上方に発せられる熱輻射を、造形領域形成部全体を覆う輻射シールドによって回収、再利用するため、特に大型の三次元造形物を製造する場合のように、上方への熱輻射による熱損失が大きくなる虞がある場合でも、熱輻射による粉末層の温度低下が抑制され、粉末層の十分な予熱が容易となっている。   According to Embodiment 1, even in the case of producing a large three-dimensional structure, sufficient preheating of the powder material can be easily performed. More specifically, heat radiation emitted upward from the surface of the pedestal heated by the preheating electron beam and the surface of the modeling region forming portion heated by heat transfer from the pedestal is covered by the radiation shield covering the entire modeling region forming portion Even when there is a possibility that the heat loss due to the heat radiation to the upper side may become large as in the case of manufacturing a large three-dimensional structure, in order to recover and reuse it, the temperature drop of the powder layer due to the heat radiation is suppressed. , Sufficient preheating of the powder layer is easy.

また、2層目以降の粉末層の予熱において、予熱用電子ビームのエネルギー密度を従来よりも小さくすることができる。より具体的には、2層目以降の粉末層は、予熱用電子ビームの照射に加え、台座、1層目以前の粉末層及び造形領域形成部表面からの熱移動、及び輻射シールドからの熱輻射によっても予熱されるため、予熱用電子ビームのエネルギー密度を従来よりも小さくすることができる   In addition, in the preheating of the second and subsequent powder layers, the energy density of the preheating electron beam can be made smaller than that of the prior art. More specifically, in addition to the irradiation of the preheating electron beam, the powder layers of the second and subsequent layers are heat transfer from the pedestal, the powder layers before the first layer, and the surface of the shaping region forming portion, and heat from the radiation shield. Since energy is also preheated by radiation, the energy density of the preheating electron beam can be made smaller than before.

また、粉末層の十分な予熱をより安定的に行うことができる。より具体的には、熱輻射による損失がより大きい端部からの熱輻射を輻射シールドにより回収、再利用することで中心部と端部との間の温度ムラを低減するため、粉末層の十分な予熱をより安定的に行うことができる。特に、製造する三次元造形物が大きくなるほど温度ムラが大きくなり、端部において十分な予熱がなされない虞が高まるが、上記のように温度ムラを低減することで、十分な予熱をより安定的に行うことができる。   In addition, sufficient preheating of the powder layer can be performed more stably. More specifically, the heat radiation from the end where the loss due to heat radiation is larger is recovered by a radiation shield and reused to reduce temperature unevenness between the center and the end, so that the powder layer sufficiently Preheating can be performed more stably. In particular, the larger the three-dimensional object to be manufactured, the larger the temperature unevenness, and the possibility that sufficient preheating is not achieved at the end increases. However, by reducing the temperature unevenness as described above, sufficient preheating is more stable. Can be done.

また、輻射シールドが粉末層の予熱に寄与する時間をより長くすることができる。より具体的には、輻射シールドの第1の側面部及び第2の側面部を構成する金属板を3重に重ね合わせることにより、第1の側面部及び第2の側面部の熱容量を大きくしているため、昇温した輻射シールドの高温状態を維持し、熱輻射により粉末層の予熱に寄与する時間をより長くすることができる。   Also, the time during which the radiation shield contributes to the preheating of the powder layer can be made longer. More specifically, the heat capacity of the first side portion and the second side portion is increased by stacking the metal plates constituting the first side portion and the second side portion of the radiation shield in a triple layer. Therefore, the high temperature state of the heated radiation shield can be maintained, and the time which contributes to the preheating of the powder layer by the heat radiation can be made longer.

また、輻射シールドによる粉末層の温度低下抑制の効果をより早期に得ることができる。より具体的には、輻射シールドの第1の側面部及び第2の側面部を構成する金属板を互いに間隔を空けて重ね合わせることにより、金属板を接触させて重ね合わせた場合よりも金属板間の熱抵抗を大きくしているため、造形領域形成部に最も近い金属板の昇温速度がより速くなり、輻射シールドからの熱輻射がより早く始まって、粉末層の温度低下抑制の効果をより早期に得ることができる。   In addition, the effect of suppressing the temperature drop of the powder layer by the radiation shield can be obtained earlier. More specifically, the metal plates constituting the first side surface portion and the second side surface portion of the radiation shield are overlapped with each other at an interval, so that the metal plates are in contact rather than being brought into contact with each other. Because the thermal resistance between the two is increased, the temperature rising rate of the metal plate closest to the modeling area formation part is faster, the heat radiation from the radiation shield starts earlier, and the temperature drop suppression effect of the powder layer is You can get it earlier.

また、輻射シールドの設置スペースを抑制することができる。より具体的には、第2の側面部を輻射シールドの上面に対して45°の角をなして取り付けたことにより、輻射シールドを下方に向かって広がる形状とすることで、造形領域形成部に近いほど真空チャンバの床面と平行な方向の断面積を大きくしたため、下方については造形領域形成部全体を覆うために必要な断面積を確保しつつ、輻射シールドの上部は小さくすることで輻射シールドの設置スペースを抑制することができる。   In addition, the installation space of the radiation shield can be reduced. More specifically, the second side surface portion is attached at an angle of 45 ° with respect to the upper surface of the radiation shield, whereby the radiation shield has a shape which spreads downward, thereby forming the shaped region forming portion. As the cross-sectional area in the direction parallel to the floor surface of the vacuum chamber is larger the closer it is to the lower side, the cross-sectional area necessary to cover the entire modeling area forming portion is secured while the top of the radiation shield is reduced. Installation space can be reduced.

ここで、実施の形態1の変形例について説明する。図6は、実施の形態1の変形例に係る輻射シールドの斜視図である。輻射シールド101は、造形領域形成部3全体を覆う平板121に輻射シールド10の中空部10aに相当する開口部101aを形成したものである。平板121は、台座4などからの熱輻射を回収して昇温し、昇温後は下方に熱輻射を発生させることで粉末層7の予熱に寄与する。輻射シールド101は、側面部がないために実施の形態1の輻射シールド10と比べて台座4などからの熱輻射が漏れやすくなっているが、構成が非常に簡単である。   Here, a modification of the first embodiment will be described. FIG. 6 is a perspective view of a radiation shield according to a modification of the first embodiment. The radiation shield 101 is obtained by forming an opening 101 a corresponding to the hollow portion 10 a of the radiation shield 10 in a flat plate 121 covering the entire modeling region forming portion 3. The flat plate 121 contributes to the preheating of the powder layer 7 by recovering the heat radiation from the pedestal 4 and raising the temperature, and generating the heat radiation downward after the temperature rise. Although the radiation shield 101 has a side surface, the heat radiation from the pedestal 4 and the like is easily leaked compared to the radiation shield 10 of the first embodiment, but the configuration is very simple.

実施の形態2.
以下に、実施の形態2を図7に基づいて説明する。なお、図1から図4と同一又は相当部分については同一の符号を付し、その説明を省略する。実施の形態2は、輻射シールドの形状が実施の形態1と異なる。図7は、実施の形態2に係る輻射シールドの概要を示す斜視図である。輻射シールド20は、互いに大きさの異なる四角形の枠22A〜22Cを互いに平行に配置し、それぞれの枠に対して第1の側面構成部材23A〜23C及び第2の側面構成部材24A〜24Cをネジ29により隙間なく取り付けることで第1の側面部23及び第2の側面部24を構成したものである。輻射シールド20の内部には、上端から下端に亘って中空部(図示なし)が形成されている。
Second Embodiment
The second embodiment will be described below based on FIG. The same or corresponding portions as in FIGS. 1 to 4 are denoted by the same reference numerals, and the description thereof will be omitted. The second embodiment differs from the first embodiment in the shape of the radiation shield. FIG. 7 is a perspective view showing an outline of a radiation shield according to the second embodiment. The radiation shield 20 arranges rectangular frames 22A to 22C having mutually different sizes in parallel, and screws the first side component 23A to 23C and the second side component 24A to 24C with respect to each frame. The first side surface portion 23 and the second side surface portion 24 are configured by being attached with no gap by 29. Inside the radiation shield 20, a hollow portion (not shown) is formed from the upper end to the lower end.

枠22A〜22Cのうちの最も小さい枠22Aは、輻射シールド20の上端部に配置され、輻射シールド20の上面21を構成する。枠22Aには第1の側面構成部材23A及び第2の側面構成部材24Aが取り付けられている。第1の側面構成部材23Aは、輻射シールド20の上面21から下方、すなわち造形領域形成部3の方向へ延び、上面21に対して直角に取り付けられている。第2の側面構成部材24Aは、上面21から下方に延び、上面21に対して30°の角をなして取り付けられている。
中間の大きさの枠22Bは、枠22Aから第1の側面構成部材23Aの高さだけ下方に配置され、第1の側面構成部材23B及び第2の側面構成部材24Bが取り付けられている。第1の側面構成部材23Bは、枠22Bに対して直角に取り付けられ、第2の側面構成部材24Bは、枠22Bに対して45°の角をなして取り付けられている。ここで、枠22Bは枠22Aと平行に配置されており、上面21とも平行であるので、第1の側面構成部材23Bは上面21に対しても直角をなし、第2の側面構成部材24Bは上面21に対しても45°の角をなしている。
最も大きい枠22Cは、枠22Bから第1の側面構成部材23Bの高さだけ下方に配置され、第1の側面構成部材23C及び第2の側面構成部材24Cが取り付けられている。第1の側面構成部材23Cは、枠22Cに対して直角に取り付けられ、第2の側面構成部材24Cは、枠22Cに対して60°の角をなして取り付けられている。ここで、枠22Cは枠22Aと平行に配置されており、上面21とも平行であるので、第1の側面構成部材23Cは上面21に対しても直角をなし、第2の側面構成部材24Cは上面21に対しても60°の角をなしている。
上記のように、実施の形態2では、第2の側面構成部材24A〜24Cが上面21となす角度が、30°、45°、60°と、下方に向かうほど段階的に大きくなっている。
The smallest frame 22 </ b> A of the frames 22 </ b> A to 22 </ b> C is disposed at the upper end of the radiation shield 20 and constitutes the upper surface 21 of the radiation shield 20. A first side component 23A and a second side component 24A are attached to the frame 22A. The first side component 23A extends downward from the upper surface 21 of the radiation shield 20, that is, in the direction of the shaping region forming portion 3, and is attached to the upper surface 21 at a right angle. The second side component 24 A extends downward from the top surface 21 and is attached at an angle of 30 ° to the top surface 21.
The middle sized frame 22B is disposed below the frame 22A by the height of the first side component 23A, and the first side component 23B and the second side component 24B are attached. The first side component 23B is attached at a right angle to the frame 22B, and the second side component 24B is attached at an angle of 45 ° to the frame 22B. Here, the frame 22B is disposed parallel to the frame 22A and is also parallel to the upper surface 21. Therefore, the first side component 23B is also perpendicular to the upper surface 21, and the second side component 24B is The top surface 21 also has a 45 ° angle.
The largest frame 22C is disposed below the frame 22B by the height of the first side component 23B, and the first side component 23C and the second side component 24C are attached. The first side component 23C is attached at a right angle to the frame 22C, and the second side component 24C is attached at an angle of 60 ° to the frame 22C. Here, the frame 22C is disposed parallel to the frame 22A and is parallel to the upper surface 21. Therefore, the first side component 23C is also perpendicular to the upper surface 21, and the second side component 24C is The top surface 21 also has an angle of 60 °.
As described above, in the second embodiment, the angles formed by the second side surface component members 24A to 24C with the upper surface 21 gradually increase in the downward direction to 30 °, 45 °, and 60 °.

第2の側面構成部材24A〜24Cを枠22A〜枠22Cに対して鋭角をなして取り付けるためには、実施の形態1の枠12のように折り曲げ部を設け、下方に折り曲げた折り曲げ部の上面にそれぞれの第2の側面構成部材24A〜24Cを取り付ければよい。また、第1の側面構成部材23A〜23C及び第2の側面構成部材24A〜24Cは、実施の形態1と同様に、互いに2mmの間隔を空けて重ね合わされた3枚の金属板により構成されている。   In order to attach the second side component members 24A to 24C at an acute angle to the frames 22A to 22C, a bent portion is provided as in the frame 12 of the first embodiment, and the upper surface of the bent portion bent downward. Each second side component 24A-24C should just be attached to. Further, as in the first embodiment, the first side surface component members 23A to 23C and the second side surface component members 24A to 24C are formed of three metal plates overlapped at an interval of 2 mm. There is.

粉末層7の予熱に対する輻射シールド20の寄与を調べるため、実施の形態1と同様にして輻射シールド20を設けた場合の台座4の昇温時間及び昇温速度を測定した。輻射シールド20を設けた場合、台座4の温度を850℃まで昇温させるために要する時間は610秒(昇温速度:1.31℃/秒)となり、実施の形態1の輻射シールド10を設けた場合よりもさらに30秒の短縮が確かめられた。また、温度ムラについては、最大温度差が75℃となり、輻射シールド10を設けた場合よりもさらに85℃の温度ムラ低減が確かめられた。これは、最も造形領域形成部3に最も近い第2の側面構成部材24Cと輻射シールド20の上面21とがなす角度が60°であり、輻射シールド10の第2の側面部14と上面11とがなす角度である45°よりも大きいためと考えられる。すなわち、輻射シールドの上面となす角度が大きいほど(直角に近いほど)輻射シールド10又は輻射シールド20と台座4の隙間から側方に漏れる熱輻射H2が減少し、台座4からの熱輻射H2をより多く回収、再利用できるために昇温速度をさらに高めたと考えられる。また、側方に漏れる熱輻射H2は、台座4の中心部からよりも端部から発せられているものが多いと考えられるため、端部の温度低下がさらに低減され、温度ムラも低減されたと考えられる。
なお、輻射シールド20は粉末層7が形成される造形領域形成部3全体を覆っているため、同様の効果は粉末層7を予熱する場合にも得られると考えられる。
その他については実施の形態2と同様であるので、その説明を省略する。
In order to investigate the contribution of the radiation shield 20 to the preheating of the powder layer 7, the temperature rising time and the temperature rising rate of the pedestal 4 when the radiation shield 20 was provided were measured in the same manner as in the first embodiment. When the radiation shield 20 is provided, the time required to raise the temperature of the pedestal 4 to 850 ° C. is 610 seconds (heating rate: 1.31 ° C./sec), and the radiation shield 10 of the first embodiment is provided. A further reduction of 30 seconds was confirmed. As for the temperature non-uniformity, the maximum temperature difference was 75 ° C., and it was confirmed that the temperature non-uniformity was further reduced by 85 ° C. than when the radiation shield 10 was provided. This is because the angle between the second side component 24C closest to the modeling area forming portion 3 and the upper surface 21 of the radiation shield 20 is 60 °, and the second side portion 14 and the upper surface 11 of the radiation shield 10 are Is considered to be larger than 45 °, which is an angle formed by That is, as the angle with the upper surface of the radiation shield is larger (closer to the right angle), the heat radiation H2 leaking to the side from the gap between the radiation shield 10 or the radiation shield 20 and the pedestal 4 decreases, and the heat radiation H2 from the pedestal 4 It is considered that the heating rate is further increased because more recovery and reuse can be performed. Further, it is considered that the heat radiation H2 leaking to the side is more likely to be emitted from the end rather than from the center of the pedestal 4, so that the temperature decrease at the end is further reduced and the temperature unevenness is also reduced. Conceivable.
In addition, since the radiation shield 20 covers the whole modeling area | region formation part 3 in which the powder layer 7 is formed, it is thought that the same effect is acquired also when preheating the powder layer 7. FIG.
The other aspects are the same as in the second embodiment, and thus the description thereof is omitted.

実施の形態2によれば、実施の形態1と同様の効果を得ることができる。   According to the second embodiment, the same effect as that of the first embodiment can be obtained.

また、粉末層7の予熱時の昇温速度をさらに高めるとともに、温度ムラをさらに低減することができる。より具体的には、第2の側面構成部材が輻射シールドの上面に対してなす角度が段階的に大きくなる形状とし、造形領域形成部と輻射シールドとの間から漏れる熱輻射をより少なくしているため、特に端部からの熱輻射をより多く回収、再利用することでき、昇温速度をさらに高めるとともに、温度ムラをさらに低減することができる。   Moreover, while raising the temperature rising rate at the time of preheating of the powder layer 7 further, temperature irregularity can be further reduced. More specifically, the angle formed by the second side component with respect to the upper surface of the radiation shield is gradually increased, and the heat radiation leaking from between the shaping region forming portion and the radiation shield is further reduced. In particular, the heat radiation from the end portion can be recovered and reused more, and the temperature rising rate can be further increased, and the temperature unevenness can be further reduced.

実施の形態3.
以下に、実施の形態3を図8に基づいて説明する。なお、図1から図4と同一又は相当部分については同一の符号を付し、その説明を省略する。実施の形態3は、輻射シールドの形状が実施の形態1及び実施の形態2と異なる。図8は、実施の形態3に係る輻射シールドの概要を示す斜視図である。輻射シールド30は、互いに大きさの異なる枠32A〜32Cを互いに平行に配置し、複数の側面構成部材33Aをネジ39により隙間なく取り付けることで全体として放物面を形成する側面部33を構成したものである。輻射シールド30の内部には、上端から下端に亘って中空部(図示なし)が形成されている。
Third Embodiment
The third embodiment will be described below based on FIG. The same or corresponding portions as in FIGS. 1 to 4 are denoted by the same reference numerals, and the description thereof will be omitted. The third embodiment differs from the first and second embodiments in the shape of the radiation shield. FIG. 8 is a perspective view showing an outline of a radiation shield according to the third embodiment. The radiation shield 30 has the side portions 33 forming a paraboloid as a whole by arranging the frames 32A to 32C having mutually different sizes in parallel with one another and attaching the plurality of side surface members 33A without a gap with the screws 39. It is a thing. Inside the radiation shield 30, a hollow portion (not shown) is formed from the upper end to the lower end.

枠32A〜32Cのうちの最も小さい枠32Aは、輻射シールド30の上端部に配置され、輻射シールド30の上面31を構成する。枠32Aには側面構成部材33Aが取り付けられており、側面構成部材33Aは、輻射シールド30の上面31から下方、すなわち造形領域形成部3の方向へ延びている。中間の大きさの枠32Bは、枠32Aから側面構成部材33Aの高さだけ下方に配置され、側面構成部材33Bが取り付けられている。最も大きい枠32Cは、枠32Bから側面構成部材33Bの高さだけ下方に配置され、側面構成部材33Cが取り付けられている。それぞれの側面構成部材33A〜33Cは、側面部33全体として放物面を形成するように曲げられ、互いに2mmの間隔を空けて重ね合わされた3枚の金属板から構成されている。側面構成部材33A〜33Cは、側面部33の下面、すなわち造形領域形成部3と対向する面が放物面を構成するように取り付けるため、いずれの側面構成部材33A〜33Cも上面31に対して鋭角をなしており、その角度は下方ほど大きい。このため、上面31となす角度は側面構成部材33Aよりも側面構成部材33Bの方が大きく、側面構成部材33Bよりも側面構成部材33Cの方が大きい。その他については実施の形態2と同様であるので、その説明を省略する。   The smallest frame 32 </ b> A of the frames 32 </ b> A to 32 </ b> C is disposed at the upper end of the radiation shield 30 and constitutes the upper surface 31 of the radiation shield 30. A side surface component 33A is attached to the frame 32A, and the side component 33A extends downward from the upper surface 31 of the radiation shield 30, that is, in the direction of the shaping region forming portion 3. The middle size frame 32B is disposed below the frame 32A by the height of the side component 33A, and the side component 33B is attached. The largest frame 32C is disposed below the frame 32B by the height of the side component 33B, and the side component 33C is attached. Each of the side surface component members 33A to 33C is bent so as to form a paraboloid as a whole of the side surface portion 33, and is formed of three metal plates overlapped at an interval of 2 mm. Since the side surface members 33A to 33C are attached in such a manner that the lower surface of the side surface portion 33, that is, the surface facing the shaping region forming portion 3 constitutes a paraboloid, any side surface members 33A to 33C are attached to the upper surface 31 It has an acute angle, and the angle is larger toward the bottom. Therefore, the angle between the side surface component 33B is larger than that of the side surface component 33A, and the angle of the side surface component 33C is larger than the side surface component 33B. The other aspects are the same as in the second embodiment, and thus the description thereof is omitted.

実施の形態3によれば、実施の形態2と同様の効果を得ることができる。   According to the third embodiment, the same effect as that of the second embodiment can be obtained.

実施の形態4.
以下に、実施の形態4を図9に基づいて説明する。なお、図1から図8と同一又は相当部分については同一の符号を付し、その説明を省略する。図9は、実施の形態4における三次元造形装置を示す概略図である。三次元造形装置200において、輻射シールド40は上端に電子銃2に対向する開口部40cが設けられ、下端に造形領域形成部3に対向する開口部40bが設けられて、電子ビームEB1が通る中空部40aが上端から下端に亘って内部に形成されている。輻射シールド40は、実施の形態1の輻射シールド10と同様に、側面視において上方ほど、すなわち造形領域形成部3から遠いほど狭くなる台形状をなし、上方ほど床面1aに平行な方向の断面積が小さくなっている。また、下端の開口部40bの高さは輻射シールド10の開口部10bと同様であるが、輻射シールド40は、側面が輻射シールド10よりも上方に延びており、上端の開口部40cの高さが輻射シールド10の上端の開口部10cよりも高くなっている。より具体的には、上端の開口部40cと真空チャンバ1の天井面1bとの間の距離D2が、下端の開口部40bと粉末層7との間の距離D1以下とすることが一例として考えられる。開口部40cと真空チャンバ1の天井1b面との間の距離D2が小さいほど開口部40cが高くなり、開口部40cの断面積が小さくなるので、距離D2は、できるだけ小さい方が望ましい。その他については実施の形態1と同様であるので、説明を省略する。
Fourth Embodiment
The fourth embodiment will be described below based on FIG. The same or corresponding portions as in FIGS. 1 to 8 are denoted by the same reference numerals, and the description thereof will be omitted. FIG. 9 is a schematic view showing a three-dimensional shaping apparatus in a fourth embodiment. In the three-dimensional modeling apparatus 200, the radiation shield 40 is provided at the upper end with an opening 40c facing the electron gun 2 and at the lower end with an opening 40b facing the shaping region forming part 3 and through which the electron beam EB1 passes The portion 40a is formed inside from the upper end to the lower end. Similar to the radiation shield 10 of the first embodiment, the radiation shield 40 has a trapezoidal shape that narrows in the upper side in a side view, that is, the further away from the shaping region forming portion 3, and cuts in a direction parallel to the floor surface 1 a in the upper direction. The area is getting smaller. The height of the opening 40b at the lower end is the same as the opening 10b of the radiation shield 10. However, the side of the radiation shield 40 extends above the radiation shield 10, and the height of the opening 40c at the upper end Is higher than the opening 10 c at the upper end of the radiation shield 10. More specifically, it is considered as an example that the distance D2 between the opening 40c at the upper end and the ceiling surface 1b of the vacuum chamber 1 is equal to or less than the distance D1 between the opening 40b at the lower end and the powder layer 7 Be The smaller the distance D2 between the opening 40c and the ceiling 1b surface of the vacuum chamber 1 is, the higher the opening 40c is and the smaller the cross-sectional area of the opening 40c. Therefore, the distance D2 is preferably as small as possible. The other aspects are the same as in the first embodiment, and thus the description thereof is omitted.

実施の形態4によれば、実施の形態1と同様の効果を得ることができる。   According to the fourth embodiment, the same effect as that of the first embodiment can be obtained.

また、上方ほど断面積が小さくなる台形状の輻射シールドにおいて側面を上方に延ばしたことにより、造形領域形成部側の開口部の高さを低く保ちつつ、造形領域形成部と反対側に設けられた開口部の高さを高くし、造形領域形成部と反対側の開口部の断面積をより小さくした。このため、造形領域から回収する熱輻射の量を維持しつつ、回収された熱輻射が造形領域形成部と反対側の開口部から漏れ出ることを抑制し、より効率的に粉末層の予熱を行うことができる。   Also, by extending the side surface upward in the trapezoidal radiation shield whose cross-sectional area decreases toward the upper side, it is provided on the opposite side to the modeling region forming portion while keeping the height of the opening on the modeling region forming portion side low. The height of the opening is increased, and the cross-sectional area of the opening opposite to the shaping region forming portion is further reduced. For this reason, while maintaining the amount of heat radiation collected from the modeling area, it is suppressed that the collected heat radiation leaks from the opening on the opposite side to the modeling area forming part, and the powder layer can be preheated more efficiently. It can be carried out.

実施の形態5.
以下に、実施の形態5を図10に基づいて説明する。なお、図1から図9と同一又は相当部分については同一の符号を付し、その説明を省略する。実施の形態5は、輻射シールドの側面を実施の形態4よりもさらに上方に延ばしたものである。図10は、実施の形態5における三次元造形装置を示す概略図である。三次元造形装置300において、輻射シールド50は上端に電子銃2に対向する開口部50cが設けられ、下端に造形領域形成部3に対向する開口部50bが設けられて、電子ビームEB1が通る中空部50aが上端から下端に亘って内部に形成されている。輻射シールド50は、実施の形態1の輻射シールド10と同様に、側面視において上方ほど、すなわち造形領域形成部3から遠いほど狭くなる台形状をなし、上方ほど床面1aに平行な方向の断面積が小さくなっている。また、輻射シールド50の側面は輻射シールド10よりも上方に延び、上端の開口部50cが真空チャンバ1の天井面1bに当接し、開口部50cと天井面1bの間の隙間が塞がれている。その他については実施の形態1と同様であるので、説明を省略する。
Embodiment 5
The fifth embodiment will be described below based on FIG. The same or corresponding portions as in FIGS. 1 to 9 are denoted by the same reference numerals, and the description thereof will be omitted. In the fifth embodiment, the side surface of the radiation shield is extended further upward than the fourth embodiment. FIG. 10 is a schematic view showing a three-dimensional shaping apparatus in the fifth embodiment. In the three-dimensional modeling apparatus 300, the radiation shield 50 is provided at the upper end with an opening 50c facing the electron gun 2 and at the lower end with an opening 50b facing the shaping region forming part 3 and through which the electron beam EB1 passes The portion 50a is formed inside from the upper end to the lower end. Similar to the radiation shield 10 of the first embodiment, the radiation shield 50 has a trapezoidal shape that narrows in the upper side in the side view, that is, the further away from the shaping region forming portion 3, and cuts in a direction parallel to the floor surface 1 a in the upper direction. The area is getting smaller. Further, the side surface of the radiation shield 50 extends above the radiation shield 10, the opening 50c at the upper end abuts on the ceiling surface 1b of the vacuum chamber 1, and the gap between the opening 50c and the ceiling surface 1b is closed. There is. The other aspects are the same as in the first embodiment, and thus the description thereof is omitted.

実施の形態5によれば、実施の形態4と同様の効果を得ることができる。   According to the fifth embodiment, the same effect as that of the fourth embodiment can be obtained.

また、造形領域形成部と反対側に設けられた開口部を真空チャンバの天井面に当接させ、造形領域形成部と反対側に設けられた開口部と天井面との間の隙間を塞いだので、造形領域から回収する熱輻射の量を維持しつつ、回収された熱輻射が造形領域と反対側の開口部から漏れ出ることをより確実に抑制し、さらに効率的に粉末層の予熱を行うことができる。   In addition, the opening provided on the opposite side of the forming area forming part is brought into contact with the ceiling surface of the vacuum chamber, and the gap between the opening provided on the opposite side of the forming area forming part and the ceiling surface is closed. Therefore, while maintaining the amount of heat radiation recovered from the modeling area, it is possible to more reliably suppress leakage of the recovered heat radiation from the opening opposite to the modeling area, and more efficiently to preheat the powder layer. It can be carried out.

本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments apply to the specific embodiments. The present invention is not limited to the above, and can be applied to the embodiments alone or in various combinations.
Accordingly, numerous modifications not illustrated are contemplated within the scope of the technology disclosed herein. For example, when deforming at least one component, adding or omitting it, it is further included that at least one component is extracted and combined with a component of another embodiment.

1 真空チャンバ、1a 床面、1b 天井面、2 電子銃、3 造形領域形成部、4 台座(予熱部材)、7 粉末層、10、101、20、30、40、50 輻射シールド、10a、40a、50a 中空部、10b、10c、101a、40b、40c、50b、50c 開口部、11、21、31 上面、13、23 第1の側面部、23A〜23C 第1の側面構成部材、14、24 第2の側面部、24A〜24C 第2の側面構成部材、33 側面部、33A〜33C 側面構成部材、131、141 金属板、100、200、300 三次元造形装置、EB1 電子ビーム、EB2 予熱用電子ビーム、H1 熱移動、H2 熱輻射 DESCRIPTION OF SYMBOLS 1 Vacuum chamber, 1a floor surface, 1b ceiling surface, 2 electron gun, 3 modeling area formation part, 4 pedestal (preheating member), 7 powder layer, 10, 101, 20, 30, 40, 50 radiation shield, 10a, 40a , 50a hollow part, 10b, 10c, 101a, 40b, 40c, 50c, opening part 11, 21, 31 upper surface, 13, 23 first side part, 23A to 23C first side component member 14, 24 Second side part, 24A-24C second side component, 33 side part, 33A-33C side component, 131, 141 metal plate, 100, 200, 300 three-dimensional modeling apparatus, EB1 electron beam, EB2 for preheating Electron beam, H1 heat transfer, H2 heat radiation

Claims (9)

粉末層を形成する粉末材料を電子ビームの照射によって選択的に固化させる工程を繰り返すことにより三次元造形物を製造する三次元造形装置であって、
前記粉末材料に電子ビームを照射する電子ビーム照射手段と、
前記電子ビーム照射手段に対向する面に設けられ、前記粉末材料の粉末層が形成される造形領域形成部と、
昇温した状態で前記粉末層に埋め込まれ、熱移動により前記粉末材料を予熱する予熱部材と、
前記造形領域形成部を覆い、前記予熱部材からの熱輻射により昇温するシールド部材とを備え、
前記粉末材料は、前記予熱部材からの熱移動及び昇温した前記シールド部材からの熱輻射により予熱されることを特徴とする三次元造形装置。
A three-dimensional shaping apparatus for producing a three-dimensional structure by repeating a process of selectively solidifying a powder material forming a powder layer by irradiation of an electron beam,
Electron beam irradiation means for irradiating the powder material with an electron beam;
A modeling region forming portion provided on a surface facing the electron beam irradiation means, in which a powder layer of the powder material is formed;
A preheating member which is embedded in the powder layer in a heated state and which preheats the powder material by heat transfer;
And a shield member which covers the modeling area forming portion and which is heated by heat radiation from the preheating member.
The three-dimensional shaping apparatus characterized in that the powder material is preheated by heat transfer from the preheating member and heat radiation from the shield member that has been heated.
前記予熱部材は、前記電子ビーム照射手段が照射する予熱用電子ビームにより昇温することを特徴とする請求項1に記載の三次元造形装置。   The three-dimensional shaping apparatus according to claim 1, wherein the temperature of the preheating member is raised by the preheating electron beam irradiated by the electron beam irradiation means. 前記シールド部材は、前記造形領域形成部に近いほど前記造形領域形成部が設けられた面と平行な方向の断面積が大きいことを特徴とする請求項1または2に記載の三次元造形装置。   The three-dimensional modeling apparatus according to claim 1 or 2, wherein the shield member has a larger cross-sectional area in a direction parallel to the surface provided with the modeling area forming section as closer to the modeling area forming section. 前記シールド部材は、前記造形領域形成部の方向に延び、前記シールド部材の上面に対して鋭角をなす側面部を備えたことを特徴とする請求項1から3のいずれか1項に記載の三次元造形装置。   The tertiary according to any one of claims 1 to 3, wherein the shield member comprises a side surface portion extending in the direction of the shaped region forming portion and forming an acute angle with the upper surface of the shield member. Original modeling device. 前記側面部は、互いに間隔を空けて重ねられた複数枚の板状部材であることを特徴とする請求項4に記載の三次元造形装置。   The three-dimensional modeling apparatus according to claim 4, wherein the side surface portion is a plurality of plate-like members overlapped at intervals. 前記板状部材は、3重に重ねられていることを特徴とする請求項5に記載の三次元造形装置。   The three-dimensional modeling apparatus according to claim 5, wherein the plate-like members are stacked in three layers. 前記側面部は、前記造形領域形成部に近いほど前記鋭角の角度が大きいことを特徴とする請求項4から6のいずれか1項に記載の三次元造形装置。   The three-dimensional modeling apparatus according to any one of claims 4 to 6, wherein the acute angle is larger as the side surface portion is closer to the modeling region forming portion. 前記側面部は、前記造形領域形成部に対向する面が放物面であることを特徴とする請求項4から7のいずれか1項に記載の三次元造形装置。   The three-dimensional modeling apparatus according to any one of claims 4 to 7, wherein in the side surface section, a surface opposite to the modeling region forming section is a paraboloid. 前記シールド部材は、前記造形領域形成部と反対側に設けられた開口部が前記造形領域形成部と対向する面に当接していることを特徴とする請求項4から8のいずれか1項に記載の三次元造形装置。   The shield member according to any one of claims 4 to 8, wherein an opening provided on the opposite side to the modeling area forming section is in contact with a surface facing the modeling area forming section. Three-dimensional modeling device as described.
JP2019513260A 2017-04-19 2018-03-08 3D modeling equipment Active JP6639735B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017082539 2017-04-19
JP2017082539 2017-04-19
PCT/JP2018/008939 WO2018193744A1 (en) 2017-04-19 2018-03-08 Three-dimensional manufacturing device

Publications (2)

Publication Number Publication Date
JPWO2018193744A1 true JPWO2018193744A1 (en) 2019-06-27
JP6639735B2 JP6639735B2 (en) 2020-02-05

Family

ID=63856495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513260A Active JP6639735B2 (en) 2017-04-19 2018-03-08 3D modeling equipment

Country Status (2)

Country Link
JP (1) JP6639735B2 (en)
WO (1) WO2018193744A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346264A (en) * 2022-03-18 2022-04-15 西安赛隆金属材料有限责任公司 Electron beam additive manufacturing equipment and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014652A (en) * 2019-05-14 2019-07-16 哈尔滨福沃德多维智能装备有限公司 Powder uniform high temperature preheating structure and method in a kind of closed cavity
SE544890C2 (en) * 2020-04-17 2022-12-20 Freemelt Ab Preheating of powder bed
JP7476042B2 (en) 2020-09-07 2024-04-30 日本電子株式会社 3D additive manufacturing equipment
JP7457613B2 (en) 2020-09-14 2024-03-28 日本電子株式会社 3D additive manufacturing device and 3D additive manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508322A (en) * 1990-11-09 1999-07-21 ディーティーエム・コーポレーション Selective laser sintering device with radiant heater
JP2001522326A (en) * 1997-04-30 2001-11-13 ロートン,ジョン,エイ. A method for forming a three-dimensional object using homogenization of components
US20020090313A1 (en) * 2000-11-27 2002-07-11 Wang Xinhua Method and apparatus for creating a free-form three-dimensional metal part using high-temperature direct laser melting
JP2009220576A (en) * 2005-04-06 2009-10-01 Eos Gmbh Electro Optical Systems Device for production of three-dimensional object
JP2015183245A (en) * 2014-03-25 2015-10-22 日本電子株式会社 Three-dimensional laminate shaping apparatus
US20160067778A1 (en) * 2014-05-27 2016-03-10 Jian Liu Method and Apparatus for Three-Dimensional Additive Manufacturing with a High Energy High Power Ultrafast Laser
JP2016534902A (en) * 2013-08-23 2016-11-10 エフイーテー アーゲー Equipment for manufacturing three-dimensional objects

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508322A (en) * 1990-11-09 1999-07-21 ディーティーエム・コーポレーション Selective laser sintering device with radiant heater
JP2001522326A (en) * 1997-04-30 2001-11-13 ロートン,ジョン,エイ. A method for forming a three-dimensional object using homogenization of components
US20020090313A1 (en) * 2000-11-27 2002-07-11 Wang Xinhua Method and apparatus for creating a free-form three-dimensional metal part using high-temperature direct laser melting
JP2009220576A (en) * 2005-04-06 2009-10-01 Eos Gmbh Electro Optical Systems Device for production of three-dimensional object
JP2016534902A (en) * 2013-08-23 2016-11-10 エフイーテー アーゲー Equipment for manufacturing three-dimensional objects
JP2015183245A (en) * 2014-03-25 2015-10-22 日本電子株式会社 Three-dimensional laminate shaping apparatus
US20160067778A1 (en) * 2014-05-27 2016-03-10 Jian Liu Method and Apparatus for Three-Dimensional Additive Manufacturing with a High Energy High Power Ultrafast Laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346264A (en) * 2022-03-18 2022-04-15 西安赛隆金属材料有限责任公司 Electron beam additive manufacturing equipment and method
CN114346264B (en) * 2022-03-18 2022-06-10 西安赛隆金属材料有限责任公司 Electron beam additive manufacturing equipment and method

Also Published As

Publication number Publication date
JP6639735B2 (en) 2020-02-05
WO2018193744A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JPWO2018193744A1 (en) Three-dimensional modeling device
JP6110867B2 (en) Equipment for producing parts by selective melting of powders
CN107262711B (en) Three-dimensional manufacturing method and three-dimensional manufacturing apparatus
JP4054075B2 (en) Method and apparatus for manufacturing a three-dimensional object
US20150064048A1 (en) Method and apparatus for producing three-dimensional objects with improved properties
JP2016505709A (en) Method for melting powder, including heating in a range adjacent to the molten bath
JP6273578B2 (en) Three-dimensional additive manufacturing apparatus and three-dimensional additive manufacturing method
JP6882508B2 (en) Equipment and methods for manufacturing 3D workpieces
CN107848208A (en) The increasing material manufacturing being compacted using electrostatic
JP2011251529A (en) Device and method of generatively manufacturing three-dimensional object with working field limitation
JP6273372B1 (en) Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
JP6216464B1 (en) Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
JP2020518722A (en) Powder bed fusion beam scanning
JP2010255057A (en) Apparatus for forming shaped article with electron beam
US11396175B2 (en) Method and device for producing a three-dimensional object
WO2019031979A1 (en) Additive manufacturing apparatus with a heat shield for controlling heat losses from a powder bed
US20190009368A1 (en) Methods and support structures leveraging grown build envelope
WO2019087845A1 (en) Three-dimensional shaping device and three-dimensional shaping method
JP2010222684A (en) Method for producing metallic glass article
WO2018194481A1 (en) Additive manufacturing technique including direct resistive heating of a workpiece
JP2015189085A (en) Lamination shaping method and lamination shaping apparatus
WO2018079626A1 (en) Three-dimensional printing apparatus and method for producing three-dimensional printed object
JP2021155845A (en) Three-dimensional molding apparatus and manufacturing method of molding
JP6960867B2 (en) Laminated modeling equipment
JP7240992B2 (en) Manufacturing equipment and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R151 Written notification of patent or utility model registration

Ref document number: 6639735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250