WO2018043630A1 - Carbon dioxide absorbent, and method and apparatus for separating and recovering carbon dioxide with use of said absorbent - Google Patents

Carbon dioxide absorbent, and method and apparatus for separating and recovering carbon dioxide with use of said absorbent Download PDF

Info

Publication number
WO2018043630A1
WO2018043630A1 PCT/JP2017/031316 JP2017031316W WO2018043630A1 WO 2018043630 A1 WO2018043630 A1 WO 2018043630A1 JP 2017031316 W JP2017031316 W JP 2017031316W WO 2018043630 A1 WO2018043630 A1 WO 2018043630A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorbent
dioxide absorbent
group
mass
Prior art date
Application number
PCT/JP2017/031316
Other languages
French (fr)
Japanese (ja)
Inventor
三豪 末松
上等 和良
与一 高野
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2018537386A priority Critical patent/JP6940824B2/en
Publication of WO2018043630A1 publication Critical patent/WO2018043630A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a carbon dioxide absorbent, a carbon dioxide separation and recovery method using the absorbent, and a separation and recovery apparatus.
  • carbon dioxide contained in gas has been separated by various methods.
  • a method of absorbing and removing carbon dioxide by bringing it into contact with a basic absorbent is generally performed, such as removal of carbon dioxide in an ammonia production process.
  • Such a method is classified as a chemical absorption method, and carbon dioxide chemically absorbed in the absorption tower is released from the absorbent and recovered by heating the absorbent in the regeneration tower.
  • the chemical absorption process is characterized by high-efficiency removal of carbon dioxide and high-purity carbon dioxide recovery.
  • Patent Document 1 and Patent Document 2 propose a method of removing carbon dioxide from combustion exhaust gas using a specific monoamine aqueous solution.
  • Patent Document 3 and Patent Document 4 a method for removing carbon dioxide from combustion exhaust gas using a specific aqueous diamine solution is proposed. Although these methods are improved over the method using a monoethanolamine aqueous solution, further energy saving and higher efficiency are desired.
  • one problem with the conventional carbon dioxide absorbent is further energy saving during the separation and recovery of carbon dioxide. Further, in the conventional absorbent, there is a problem that a small amount of amine compound volatilizes and loses when contacting with gas in the process of absorbing carbon dioxide, so the volatility of the amine compound contained in the carbon dioxide absorbent.
  • One of the challenges is to lower
  • the present invention has been made in view of the above problems, and uses a carbon dioxide absorbent having high carbon dioxide absorption and release performance, low volatility, and excellent thermal stability, and the carbon dioxide absorbent.
  • An object is to provide a carbon dioxide separation and recovery method and a carbon dioxide separation and recovery device.
  • the present invention is as follows.
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms which may have a substituent.
  • the solvent contains at least one selected from the group consisting of water, glycol solvents, alcohol solvents, and aprotic polar solvents, [2] The carbon dioxide absorbent according to [2].
  • the glycol solvent contains at least one selected from the group consisting of ethylene glycol, propylene glycol, and diethylene glycol, The carbon dioxide absorbent according to [3].
  • the alkylidene aminoguanidine includes a compound represented by the following formula (2): The carbon dioxide absorbent according to any one of [1] to [4].
  • the alkylidene aminoguanidine content is 5.0% by mass or more and 80.0% by mass or less based on the total amount of the carbon dioxide absorbent.
  • the total content of the solvent is 1.0% by mass or more and 95.0% by mass or less with respect to the total amount of the carbon dioxide absorbent.
  • the carbon dioxide absorbent according to any one of [1] to [7] is provided, and a gas containing carbon dioxide is brought into contact with the carbon dioxide absorbent so that the carbon dioxide is introduced into the carbon dioxide absorbent.
  • An absorbing device to absorb A desorption device that desorbs the carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed the carbon dioxide in the absorber.
  • Carbon dioxide separation and recovery device [12] Having a recovery device for recovering the desorbed carbon dioxide; [11] The carbon dioxide separation and recovery device according to [11].
  • a carbon oxide absorbent having high carbon dioxide absorption / release performance, low volatility, and excellent thermal stability a method for separating and recovering carbon dioxide using the carbon dioxide absorbent, and carbon dioxide A separation and recovery device can be provided.
  • the carbon dioxide absorbent of the present embodiment contains an alkylideneaminoguanidine represented by the following general formula (1).
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms which may have a substituent.
  • aminoguanidine having no alkylidene moiety is known to easily react with carbon dioxide to give aminoguanidine bicarbonate.
  • aminoguanidine moiety Is considered to be involved in the high reactivity with carbon dioxide, and it is considered that the aminoguanidine site easily reacts with carbon dioxide to form an aminoguanidine bicarbonate structure.
  • aminoguanidine bicarbonate releases carbon dioxide at around 120 ° C
  • alkylidene aminoguanidines with alkylidene moieties release carbon dioxide at lower temperatures than aminoguanidine bicarbonate. This has been clarified by the study of the present inventors.
  • alkylidene aminoguanidine having the above structure does not thermally decompose at 120 ° C., and the alkylidene site is the molecular heat. It is assumed that it contributes to the improvement of stability.
  • alkylideneaminoguanidine having the above structure has low volatility when heated, and it is speculated that the alkylidene moiety is also involved in the effect of suppressing volatility in this respect.
  • the carbon dioxide absorbent of this embodiment containing an alkylideneaminoguanidine represented by the following general formula (1) exhibits high carbon dioxide absorption / release performance, has low volatility, and It is also excellent in stability. Therefore, by using the carbon dioxide absorbent of the present embodiment, it becomes possible to separate and collect carbon dioxide stably and continuously with energy saving, and to achieve a continuous and efficient carbon dioxide separation and recovery method. Is possible.
  • the “carbon dioxide absorbent” is capable of absorbing carbon dioxide under a specific condition, and particularly capable of desorbing carbon dioxide under another condition. is there.
  • the carbon dioxide absorbent of the present embodiment may absorb other acidic gases in addition to carbon dioxide.
  • alkylidene aminoguanidine represented by the general formula (1)
  • the hydrocarbon group having 1 to 18 carbon atoms represented by R 1 and R 2 is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, an alkylene group, and an aryl group. And a group in which an alkyl group and an aryl group are bonded, and a group in which an alkylene group and an aryl group are bonded.
  • an aryl group, a group in which an alkyl group and an aryl group are bonded, a group in which an alkylene group and an aryl group are bonded are preferable, and a group in which an alkylene group and an aryl group are bonded is more preferable.
  • the alkyl group is not particularly limited, but for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, neopentyl group Group, n-hexyl group, texyl group, n-heptyl group, n-octyl group, n-ethylhexyl group, n-nonyl group, n-decyl group and the like.
  • the cycloalkyl group is not particularly limited, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a cyclodecyl group, a cyclododecyl group, a cyclohexadecyl group, and a cyclooctadecyl group.
  • the alkenyl group is not particularly limited, and examples thereof include a vinyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, octynyl group, decynyl group, dodecynyl group, hexadecynyl group, and octadecynyl group.
  • the alkylene group is not particularly limited, and examples thereof include a methylene group, an ethylene group, and a propylene group.
  • the aryl group is not particularly limited, and examples thereof include a phenyl group and a naphthyl group.
  • the number of carbon atoms of the hydrocarbon group is 1 to 18, preferably 2 to 16, more preferably 4 to 14, and further preferably 6 to 12.
  • the alkylideneaminoguanidine represented by the general formula (1) is not particularly limited, and examples thereof include 1-methylethylideneaminoguanidine, 1-methylpropylideneaminoguanidine, 1-methylbutylideneaminoguanidine, 1,3- Dimethylbutylideneaminoguanidine, 1,2-dimethylpropylideneaminoguanidine, 1-methylpentylideneaminoguanidine, 2,6-dimethyl-4-heptylideneaminoguanidine, 2-furylmethylideneaminoguanidine, benzylideneaminoguanidine, 4-dimethylaminophenylmethyleneaminoguanidine, 4-methoxyphenylmethyleneaminoguanidine, 4-hydroxyphenylmethyleneaminoguanidine, 1-phenylethylideneaminoguanidine, 1-methyl-3-phenyl Ruarylideneaminoguanidine, diphen
  • the alkylideneaminoguanidine preferably includes an arylideneaminoguanidine represented by the following formula (1a), more preferably includes a phenylarylideneaminoguanidine represented by the following formula (1b), It preferably contains 3-phenylallylideneaminoguanidine represented by the formula (2).
  • R 3 is a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 16 carbon atoms, preferably an alkyl group, a cycloalkyl group, an alkenyl group, an alkylene group, an aryl group, an alkyl group and an aryl group.
  • R 4 is a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 10 carbon atoms, preferably an alkyl group, a cycloalkyl group, an alkenyl group, or an alkylene group. Further, n is 0 to 5, preferably 0 to 3, and more preferably 0 to 1.
  • the alkylidene aminoguanidine represented by the above formula (1) is obtained by mixing an aminoguanidine salt as a raw material and a carbonyl compound such as acetone or methyl isobutyl ketone forming an alkylidene skeleton in an alcohol solvent such as water or methanol. If necessary, it can be synthesized by adding an acid such as hydrochloric acid, sulfuric acid, nitric acid, carbonic acid and reacting.
  • the content of alkylideneaminoguanidine is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 10.0% by mass or more with respect to the total amount of carbon dioxide absorbent. .
  • the content of alkylideneaminoguanidine is preferably 100.0% by mass or less, more preferably 80.0% by mass or less, and further preferably 70.0% by mass or less, based on the total amount of carbon dioxide absorbent. More preferably, it is 65.0 mass% or less, More preferably, it is 50.0 mass% or less.
  • the content of the alkylideneaminoguanidine is 1.0% by mass or more, the effect of the alkylideneaminoguanidine in the carbon dioxide absorbent tends to be more effectively exhibited.
  • the content of alkylideneaminoguanidine is 100.0% by mass or less, particularly 80.0% by mass or less, an appropriate amount of water molecules is hydrated with respect to alkylideneaminoguanidine that contributes to the carbon dioxide absorption reaction.
  • the reactivity between carbon dioxide and alkylideneaminoguanidine tends to be further improved, and the carbon dioxide absorption / release performance tends to be further improved.
  • the carbon dioxide absorbent of the present embodiment preferably further contains a solvent.
  • the solvent can be appropriately selected according to the solubility or dispersibility of the alkylideneaminoguanidine, but from the viewpoint of being less volatile in the desorption step, a solvent having a low vapor pressure and a high boiling point is preferred, and alkylideneaminoguanidine and carbon dioxide. From the viewpoint that it is difficult to prevent this reaction, a solvent that is not reactive with alkylideneaminoguanidine is preferable, and from the viewpoint of energy saving, a solvent having low specific heat and good thermal conductivity is preferable.
  • Such a solvent examples include, but are not limited to, water; glycol solvents such as ethylene glycol, propylene glycol, diethylene glycol, 1,3-butanediol, and 1,4-butanediol; ethanol, methanol, butanol, Alcohol solvents such as pentanol and cyclohexanol; polyhydric alcohol solvents having three or more hydroxyl groups such as glycerin; aprotic polar solvents such as dimethyl sulfoxide; 2-pyrrolidone, N-methylpyrrolidone, dimethyl Examples thereof include at least one selected from the group consisting of amide solvents such as acetamide; carbonate solvents such as ethylene carbonate, propylene carbonate, and diethyl carbonate; or silicon oil.
  • glycol solvents such as ethylene glycol, propylene glycol, diethylene glycol, 1,3-butanediol, and 1,4-butanediol
  • ethanol
  • water, glycol solvents, alcohol solvents, and aprotic polar solvents are preferable, water, ethylene glycol, propylene glycol, diethylene glycol, methanol, and ethanol are more preferable, and water and ethylene glycol are more preferable.
  • a solvent By using such a solvent, the reactivity of the alkylideneaminoguanidine and carbon dioxide tends to be further improved from the solvation of the solvent molecules and the carbon dioxide solubility of the solvent. Further, the viscosity of the solvent is low, and the carbon dioxide absorption / release performance tends to be further improved. Furthermore, the viscosity can be further reduced by using water or ethylene glycol.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the carbon dioxide absorbent of the present embodiment preferably further contains water.
  • water molecules are hydrated with respect to alkylideneaminoguanidine that contributes to carbon dioxide absorption reaction, the reactivity between carbon dioxide and alkylideneaminoguanidine is further improved, and carbon dioxide absorption and release performance is further improved. It tends to improve.
  • the water content is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 10.0% by mass or more with respect to the total amount of the carbon dioxide absorbent. .
  • the water content is preferably 99.0% by mass or less, more preferably 95.0% by mass or less, and still more preferably 90.0% by mass or less, based on the total amount of the carbon dioxide absorbent. It is.
  • an appropriate amount of water molecules are hydrated with respect to the alkylideneaminoguanidine that contributes to the carbon dioxide absorption reaction, and the reactivity between carbon dioxide and alkylideneaminoguanidine is increased. The carbon dioxide absorption and release performance tends to be further improved.
  • the water content is 99.0% by mass or less, the effect of the alkylideneaminoguanidine in the carbon dioxide absorbent tends to be more effectively exhibited. Note that the optimum value of the water content may vary depending on the alkylideneaminoguanidine used.
  • the content of the glycol solvent is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 10.0% by mass or more with respect to the total amount of the carbon dioxide absorbent. It is. Further, the content of the glycol solvent is preferably 99.0% by mass or less, more preferably 95.0% by mass or less, and further preferably 90.0% by mass with respect to the total amount of the carbon dioxide absorbent. % Or less.
  • the glycol solvent content is 1.0% by mass or more, an appropriate amount of solvent molecules are solvated with respect to the alkylideneaminoguanidine that contributes to the carbon dioxide absorption reaction, and the reaction between carbon dioxide and alkylideneaminoguanidine.
  • the carbon dioxide absorption and release performance tends to be further improved.
  • the content of the glycol solvent is 99.0% by mass or less, the effect of the alkylideneaminoguanidine in the carbon dioxide absorbent tends to be more effectively exhibited.
  • the optimum value of the content of the glycol solvent may vary depending on the alkylideneaminoguanidine used.
  • the content of the solvent other than water and the glycol solvent is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and still more preferably based on the total amount of the carbon dioxide absorbent. Is 10.0% by mass or more. Further, the content of the solvent other than water and the glycol solvent is preferably 99.0% by mass or less, more preferably 95.0% by mass or less, and still more preferably based on the total amount of the carbon dioxide absorbent. Is 90.0 mass% or less. When the content of the solvent other than water and glycol solvent is 1.0% by mass or more, an appropriate amount of solvent molecules are solvated with respect to the alkylideneaminoguanidine contributing to the carbon dioxide absorption reaction, and carbon dioxide and alkylidene.
  • the total content of the solvent is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 10.0% by mass or more with respect to the total amount of the carbon dioxide absorbent. is there.
  • the total content of the solvent is preferably 99.0% by mass or less, more preferably 95.0% by mass or less, and further preferably 90.0% by mass with respect to the total amount of the carbon dioxide absorbent. It is as follows. When the total content of the solvent is 1.0% by mass or more, an appropriate amount of solvent molecules is solvated with respect to the alkylideneaminoguanidine that contributes to the carbon dioxide absorption reaction, and the reactivity between carbon dioxide and alkylideneaminoguanidine.
  • the carbon dioxide absorption and release performance tends to be further improved.
  • the total content of the solvent is 99.0% by mass or less, the effect of the alkylideneaminoguanidine in the carbon dioxide absorbent tends to be more effectively exhibited.
  • the carbon dioxide absorbent of the present embodiment may contain other amine compounds other than alkylideneaminoguanidine as necessary. By containing other amine compounds, the performance of the carbon dioxide absorbent such as the amount of carbon dioxide absorbed and released can be supplementarily improved.
  • the other amine compound is not particularly limited as long as it does not interfere with the reaction between alkylideneaminoguanidine and carbon dioxide, but preferably has a low vapor pressure or a high boiling point, and more preferably has a low reaction heat with carbon dioxide. .
  • Examples of such other amine compounds include, but are not limited to, monoethanolamine, 1-amino-2-propanol, 1-amino-2-butanol, 2-amino-1-propanol, 2-amino-1 -Butanol, 2-amino-2-methyl-1-propanol, 2-amino-1,3-propanediol, 3-amino-1-propanol, 3-amino-1,2-propanediol, aniline, cyclohexylamine, etc.
  • the carbon dioxide absorbent of this embodiment further includes other components such as an acid component, an alkali component, a salt, an antifoaming agent, a dispersion stabilizer, a surfactant, a viscosity modifier, and a corrosion inhibitor as necessary. You may contain.
  • the above-mentioned acid component, alkali component, or salt can be added for the purpose of adjusting the performance of desorbing carbon dioxide from alkylideneaminoguanidine.
  • the antifoaming agent, dispersion stabilizer, surfactant, viscosity modifier, corrosion inhibitor and the like can be appropriately selected and added according to the form of the carbon dioxide absorbent.
  • liquids such as a uniform solution, a dispersion liquid, or an emulsion
  • solids such as powder, a swelling gel form, or a molded object
  • the method for separating and recovering carbon dioxide comprises a contact step of causing the carbon dioxide absorbent to absorb carbon dioxide by bringing the carbon dioxide absorbent into contact with a gas containing carbon dioxide, and absorbing carbon dioxide.
  • FIG. 1 the schematic diagram which shows an example of the carbon dioxide separation-and-recovery apparatus of this embodiment is shown.
  • the contact step is a step of causing the carbon dioxide absorbent to absorb carbon dioxide by bringing the carbon dioxide absorbent into contact with a gas containing carbon dioxide.
  • the contact method can be selected according to the form of the carbon dioxide absorbent, and is not particularly limited.
  • the carbon dioxide absorbent is a liquid
  • the carbon dioxide absorbent and the carbon dioxide are mixed by blowing a gas containing carbon dioxide into the solution or by gas-liquid mixing the solution and the gas containing carbon dioxide.
  • the containing gas can be contacted.
  • the carbon dioxide absorbent is solid, the gas containing carbon dioxide is passed through the solid, the solid is dispersed in the gas containing carbon dioxide, or the solid is placed in the gas containing carbon dioxide.
  • the carbon dioxide absorbent and the gas containing carbon dioxide can be brought into contact with each other.
  • the temperature in the contacting step is preferably 0 ° C. or higher and lower than 60 ° C., more preferably 20 ° C. or higher and lower than 60 ° C., and further preferably 40 ° C. or higher and lower than 60 ° C.
  • the carbon dioxide absorbent tends to absorb carbon dioxide more efficiently.
  • the gas containing carbon dioxide is not particularly limited, and examples thereof include thermal power plant exhaust gas, steel plant exhaust gas, cement factory exhaust gas, chemical plant exhaust gas, biofermentation gas, and natural gas. These gases are particularly required to separate carbon dioxide with energy saving, and the present invention is particularly effective.
  • concentration of the carbon dioxide in gas, the pressure of gas, and the temperature of gas are not restrict
  • the gas containing carbon dioxide may contain an acidic gas other than carbon dioxide. In the case where the exhaust gas or the like contains an acid gas other than carbon dioxide, it is preferable to combine known processes for removing other acid gases.
  • the desorption step is a step of desorbing carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed carbon dioxide.
  • the heating temperature in this desorption step is preferably 60 ° C. or higher and 120 ° C. or lower, more preferably 65 ° C. or higher and 110 ° C. or lower, and further preferably 70 ° C. or higher and 100 ° C. or lower.
  • the temperature in the desorption step is within the above range, carbon dioxide tends to be more efficiently desorbed from the carbon dioxide absorbent.
  • the carbon dioxide separation and recovery device of the present embodiment includes the carbon dioxide absorbent, and makes the carbon dioxide absorbent absorb the carbon dioxide by bringing a gas containing carbon dioxide into contact with the carbon dioxide absorbent. And a desorption device for desorbing the carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed the carbon dioxide in the absorption device.
  • the absorption device includes the carbon dioxide absorbent, and makes the carbon dioxide absorbent absorb carbon dioxide by bringing a gas containing carbon dioxide into contact with the carbon dioxide absorbent.
  • the absorption device is not particularly limited as long as it has a configuration in which a gas containing carbon dioxide and a carbon dioxide absorbent are brought into contact with each other according to the form of the carbon dioxide absorbent.
  • the absorption device can include an absorbent holding unit that holds a carbon dioxide absorbent and a gas supply unit that supplies a gas containing carbon dioxide to the absorbent holding unit. Also, from the viewpoint of discharging the carbon dioxide absorbent that has absorbed carbon dioxide from the absorbent holding section and supplying a new carbon dioxide absorbent, the absorption device discharges the carbon dioxide absorbent held in the absorbent holding section. And an absorbent supply section for supplying a new carbon dioxide absorbent to the absorbent holding section.
  • a contact method what was mentioned above is mentioned.
  • the absorption device may have a heating / cooling mechanism, and the carbon dioxide concentration can be measured so that the carbon dioxide concentration can be measured. It may have a carbon concentration measurement mechanism. Furthermore, in order to adjust the pressure when the gas containing carbon dioxide and the carbon dioxide absorbent are brought into contact with each other, the absorption device may have a pressurization / decompression mechanism.
  • the desorption device desorbs carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed carbon dioxide in the absorption device.
  • the desorption device is not particularly limited as long as it has a configuration for desorbing carbon dioxide from the carbon dioxide absorbent according to the form of the carbon dioxide absorbent.
  • the desorption device can include an absorbent holding unit that holds a carbon dioxide absorbent, and a gas discharge unit that discharges carbon dioxide released from the absorbent holding unit.
  • the means for supplying the carbon dioxide absorbent that has absorbed carbon dioxide from the absorption device to the desorption device is not particularly limited, and the absorption device that has been operated for a certain period of time is temporarily stopped to remove the carbon dioxide absorbent in the absorption device.
  • the carbon dioxide absorbent may be supplied collectively to the separation apparatus, or may be continuously or intermittently supplied from the absorbent holding section to the desorption apparatus using the absorbent discharge section.
  • the desorption device may have a heating / cooling mechanism, or the carbon dioxide concentration measurement so that the carbon dioxide concentration can be measured. You may have a mechanism. Furthermore, in order to adjust the pressure when the gas containing carbon dioxide and the carbon dioxide absorbent are brought into contact with each other, the desorption device may have a pressurization / decompression mechanism.
  • the carbon dioxide absorbent after desorbing carbon dioxide by the desorption device (also referred to as “regeneration tower” or “regeneration device”) can be used again (reused) in the absorption device.
  • the carbon dioxide separation and recovery device of this embodiment may have a recovery device for recovering the desorbed carbon dioxide.
  • the recovered carbon dioxide is used for agricultural applications such as enhanced oil recovery and plant factories; industrial gas applications such as beverages and welding; chemical synthesis applications; and carbon dioxide storage (CCS) applications. Can do. Moreover, you may concentrate the carbon dioxide collect
  • Example 1 [Method of evaluating carbon dioxide absorption and recovery] (Example 1) 9.5 g (10% by mass) of 3-phenylarylideneaminoguanidine obtained in Synthesis Example 1 and 85.5 g (90% by mass) of water were mixed to prepare 95 g of a slurry carbon dioxide absorbent. .
  • This carbon dioxide absorbent is filled in a 200 mL flask, heated to 25 ° C. with an aluminum block, and stirred with a magnetic stirrer to achieve a carbon dioxide (CO 2 ) purity of 99.5 vol% at a flow rate of 100 mL / min. Bubbling was performed for a minute. The weight of the carbon dioxide absorbent before and after aeration was measured, and the weight increase at 25 ° C.
  • a carbon dioxide absorbent was prepared, and the weight increase at 80 ° C. was calculated in the same manner as described above except that the heating temperature of the aluminum block was 80 ° C.
  • the increase in weight at 80 ° C. from (CO 2 absorption amount) was calculated 3-phenyl arylidene aminoguanidine 1 mol mol amount of CO 2 absorbed against the (CO 2 absorption amount C).
  • the molar amount of CO 2 at 40 ° C. (CO 2 absorption amount B) and the molar amount of CO 2 at 100 ° C. (CO 2 absorption amount D) were also measured.
  • the difference between the amount of CO 2 mol absorbed at 25 ° C. and the amount of CO 2 mol absorbed at 80 ° C. was evaluated as the CO 2 recovery amount (AC).
  • the room was at normal pressure and room temperature. The results are shown in Table 1.
  • Example 2 A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that ethylene glycol (Tokyo Chemical Industry Co., Ltd.) was used instead of water, and the same apparatus as in Example 1 was used under the same conditions. The CO 2 absorption amounts A to D and the CO 2 recovery amount (AC) were measured.
  • ethylene glycol Tokyo Chemical Industry Co., Ltd.
  • Example 1 A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that monoethanolamine (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylarylideneaminoguanidine, and the same apparatus as in Example 1 was prepared. Was used to measure the CO 2 absorption amounts AD and the CO 2 recovery amount (AC).
  • monoethanolamine Tokyo Chemical Industry Co., Ltd.
  • Example 2 A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that ethylaminoethanol (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylarylideneaminoguanidine. was used to measure the CO 2 absorption amounts AD and the CO 2 recovery amount (AC).
  • ethylaminoethanol Tokyo Chemical Industry Co., Ltd.
  • Example 3 A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that methyldiethanolamine (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylallylideneaminoguanidine, and an apparatus similar to that in Example 1 was prepared. Used, under the same conditions, the CO 2 absorption amounts A to D and the CO 2 recovery amount (AC) were measured.
  • methyldiethanolamine Tokyo Chemical Industry Co., Ltd.
  • Example 4 A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that diphenylamine (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylarylideneaminoguanidine, and the same apparatus as in Example 1 was used. Under the same conditions, the CO 2 absorption amounts A to D and the CO 2 recovery amount (AC) were measured.
  • diphenylamine Tokyo Chemical Industry Co., Ltd.
  • AC CO 2 recovery amount
  • the carbon dioxide absorbent (Example 1) containing the alkylideneaminoguanidine of the present invention is excellent in carbon dioxide absorption performance at room temperature and carbon dioxide release performance at 80 ° C., and CO 2 is superior to Comparative Examples 1 to 4. It was found that the recovery amount was large and CO 2 could be separated and recovered with energy saving. Further, in the carbon dioxide absorbent in which alkylideneaminoguanidine is uniformly dissolved by using ethylene glycol instead of water (Example 2), the carbon dioxide absorbent in which alkylideneaminoguanidine is dispersed in water in a slurry state. As compared with Example 1, it was found that the CO 2 absorption amount A increased and the CO 2 recovery amount (AC) also increased.
  • thermogravimetric instrument manufactured by Seiko Instruments Inc.
  • the desorption temperature and melting point of carbon dioxide were determined from the endothermic peak by differential scanning calorimetry and the thermogravimetric decrease at the temperature showing the endothermic peak.
  • heat resistance was evaluated from the thermogravimetric temperature. The measurement conditions are shown below.
  • Container Aluminum pan Temperature increase rate: 10 ° C / min Atmosphere: N 2 Measurement temperature: 30-330 ° C (Measurement conditions for thermogravimetry) Container: Aluminum pan Temperature increase rate: 10 ° C / min Atmosphere: N 2 Measurement temperature: 30-350 ° C
  • Example 4 The desorption temperature of carbon dioxide was the same as in Example 3 except that 3-phenylarylideneaminoguanidine bicarbonate (solid) obtained in Synthesis Example 2 was used instead of 3-phenylarylideneaminoguanidine. And the heat resistance of the compound was evaluated.
  • Example 5 The desorption temperature of carbon dioxide and the heat resistance of the compound were evaluated in the same manner as in Example 3 except that aminoguanidine bicarbonate (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylallylideneaminoguanidine.
  • aminoguanidine bicarbonate Tokyo Chemical Industry Co., Ltd.
  • Example 3 is an example using 3-phenylarylideneaminoguanidine before absorbing carbon dioxide
  • Example 4 is 3-phenylarylideneaminoguanidine (bicarbonate) after absorbing carbon dioxide. Salt 3-phenylallylideneaminoguanidine).
  • the carbon dioxide absorbent containing the alkylidene aminoguanidine of the present invention has a lower carbon dioxide desorption temperature than the aminoguanidine bicarbonate having a similar structure (comparison of Example 4 and Comparative Example 5). Moreover, since the thermogravimetric reduction temperature was also high, it turned out that it is excellent also in heat resistance (comparison of Example 3 and Comparative Example 5). Further, although guanidine carbonate having a similar structure is excellent in heat resistance, no desorption of carbon dioxide was observed, indicating that it cannot be used as a carbon dioxide separating agent (Comparative Example 6).
  • the alkylideneaminoguanidine contained in the carbon dioxide absorbent of the present invention exhibits excellent properties in carbon dioxide recovery, desorption temperature, and heat resistance.
  • the present invention can provide a carbon dioxide absorbent for absorbing and separating carbon dioxide contained in gas, and more specifically, carbon dioxide for energy-saving and stable separation. It has industrial applicability as an absorbent. Further, it has industrial applicability as a method for separating carbon dioxide from a gas containing carbon dioxide such as combustion exhaust gas.

Abstract

A carbon dioxide absorbent which contains an alkylidene aminoguanidine represented by general formula (1). (In the formula, each of R1 and R2 independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1-18 carbon atoms.)

Description

二酸化炭素吸収剤、該吸収剤を用いた二酸化炭素の分離回収方法及び分離回収装置Carbon dioxide absorbent, carbon dioxide separation / recovery method and separation / recovery apparatus using the absorbent
 本発明は、二酸化炭素吸収剤、該吸収剤を用いた二酸化炭素の分離回収方法、及び分離回収装置に関する。 The present invention relates to a carbon dioxide absorbent, a carbon dioxide separation and recovery method using the absorbent, and a separation and recovery apparatus.
 近年、地球温暖化の原因物質として大気中の二酸化炭素が着目されており、大規模な排出源である火力発電所、製鉄所、セメント工場等から排出される排ガス中の二酸化炭素を分離回収する検討がなされている。 In recent years, carbon dioxide in the atmosphere has attracted attention as a causative agent of global warming, and separates and recovers carbon dioxide in exhaust gas discharged from large-scale sources such as thermal power plants, steelworks, cement factories, etc. Consideration has been made.
 従来、ガス中に含まれる二酸化炭素の分離は種々の方法により行なわれてきた。例えば、アンモニア製造過程での二酸化炭素の除去等、塩基性の吸収剤と接触させて二酸化炭素を吸収除去する方法が一般的に行なわれている。このような方法は、化学吸収法に分類され、吸収塔で化学的に吸収された二酸化炭素は、再生塔で吸収剤を加熱することにより吸収剤から放出されて回収される。化学吸収法のプロセスでは、二酸化炭素の高効率な除去と高純度の二酸化炭素の回収が可能であることを特徴としている。 Conventionally, carbon dioxide contained in gas has been separated by various methods. For example, a method of absorbing and removing carbon dioxide by bringing it into contact with a basic absorbent is generally performed, such as removal of carbon dioxide in an ammonia production process. Such a method is classified as a chemical absorption method, and carbon dioxide chemically absorbed in the absorption tower is released from the absorbent and recovered by heating the absorbent in the regeneration tower. The chemical absorption process is characterized by high-efficiency removal of carbon dioxide and high-purity carbon dioxide recovery.
 排ガスからの二酸化炭素の分離回収に対して、化学吸収法に代表される従来の分離回収技術を用いた場合、分離に要する付加的なエネルギーの比重が大きくなるため、経済性が非常に大きな問題となる。この分離に要するエネルギーは、化学吸収法の場合、二酸化炭素を吸収させた吸収剤を加熱して、二酸化炭素を放出させる工程での熱エネルギーが最も大きい。化学吸収法で用いられる従来の塩基性の吸収剤としては、炭酸カリウム水溶液や、モノエタノールアミン水溶液に代表されるアルカノールアミン水溶液が使われており、これらを基本技術として、より分離エネルギーの小さな吸収剤の検討がなされている。 When separating and recovering carbon dioxide from exhaust gas, if the conventional separation and recovery technology represented by the chemical absorption method is used, the specific gravity of the additional energy required for the separation becomes large, so the economy is very large. It becomes. In the case of the chemical absorption method, the energy required for this separation is the largest in the process of heating the absorbent that has absorbed carbon dioxide and releasing the carbon dioxide. Conventional basic absorbents used in chemical absorption methods include potassium carbonate aqueous solution and alkanolamine aqueous solution typified by monoethanolamine aqueous solution. These are used as basic technologies for absorption with smaller separation energy. Drugs are being studied.
 特許文献1及び特許文献2では、特定のモノアミン水溶液を用いた燃焼排ガスからの二酸化炭素の除去方法が提案されている。特許文献3及び特許文献4では、特定のジアミン水溶液を用いた燃焼排ガスからの二酸化炭素の除去方法が提案されている。これらの方法は、モノエタノールアミン水溶液を用いた方法より改善はされているものの、さらなる省エネルギー化と高効率化が望まれている。 Patent Document 1 and Patent Document 2 propose a method of removing carbon dioxide from combustion exhaust gas using a specific monoamine aqueous solution. In Patent Document 3 and Patent Document 4, a method for removing carbon dioxide from combustion exhaust gas using a specific aqueous diamine solution is proposed. Although these methods are improved over the method using a monoethanolamine aqueous solution, further energy saving and higher efficiency are desired.
特許第2871334号公報Japanese Patent No. 2871334 特許第2895325号公報Japanese Patent No. 2895325 特開平7-313840号公報JP-A-7-313840 特表2010-514549号公報Special table 2010-514549 gazette
 上記のように、従来の二酸化炭素吸収剤における1つの課題は、二酸化炭素の分離回収時におけるさらなる省エネルギー化である。また、従来の吸収剤では、二酸化炭素を吸収させる工程においてガスと接触させる際に、少量のアミン化合物が揮発損失してしまうという問題があるため、二酸化炭素吸収剤に含まれるアミン化合物の揮発性を下げることも課題の一つである。 As described above, one problem with the conventional carbon dioxide absorbent is further energy saving during the separation and recovery of carbon dioxide. Further, in the conventional absorbent, there is a problem that a small amount of amine compound volatilizes and loses when contacting with gas in the process of absorbing carbon dioxide, so the volatility of the amine compound contained in the carbon dioxide absorbent One of the challenges is to lower
 また、従来の化学吸収法では、110℃~130℃程度の温度までスチーム加熱を行って、吸収剤を沸騰させて再生を行っている。そのため、この方法では、非常に大きな熱エネルギーを必要とする。さらに、この再生工程において二酸化炭素吸収剤に含まれるアミン化合物が熱分解する懸念があるため、二酸化炭素吸収剤の熱安定性も課題である。 In the conventional chemical absorption method, steam heating is performed to a temperature of about 110 ° C. to 130 ° C., and the absorbent is boiled for regeneration. Therefore, this method requires very large heat energy. Furthermore, since there is a concern that the amine compound contained in the carbon dioxide absorbent is thermally decomposed in this regeneration step, the thermal stability of the carbon dioxide absorbent is also a problem.
 本発明は、上記の課題に鑑みてなされたものであり、二酸化炭素吸収放出性能が高く、揮発性が低く、かつ、熱安定性にも優れる二酸化炭素吸収剤、該二酸化炭素吸収剤を用いた二酸化炭素の分離回収方法、及び二酸化炭素分離回収装置を提供することを目的とする。 The present invention has been made in view of the above problems, and uses a carbon dioxide absorbent having high carbon dioxide absorption and release performance, low volatility, and excellent thermal stability, and the carbon dioxide absorbent. An object is to provide a carbon dioxide separation and recovery method and a carbon dioxide separation and recovery device.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定のアルキリデンアミノグアニジンを用いることにより上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a specific alkylideneaminoguanidine, and have completed the present invention.
 即ち、本発明は以下のとおりである。
〔1〕
 下記一般式(1)で表されるアルキリデンアミノグアニジンを含有する、
 二酸化炭素吸収剤。
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRは、各々独立して、水素原子又は置換基を有していてもよい炭素数1~18の炭化水素基である。)
〔2〕
 さらに、溶媒を含有する、
 〔1〕に記載の二酸化炭素吸収剤。
〔3〕
 前記溶媒が、水、グリコール系溶媒、アルコール系溶媒、及び非プロトン性極性溶媒からなる群より選ばれる少なくとも1種以上を含む、
 〔2〕に記載の二酸化炭素吸収剤。
〔4〕
 前記グリコール系溶媒が、エチレングリコール、プロピレングリコール、及びジエチレングリコールからなる群より選ばれる少なくとも1種以上を含む、
 〔3〕に記載の二酸化炭素吸収剤。
〔5〕
 前記アルキリデンアミノグアニジンが、下記式(2)で表される化合物を含む、
 〔1〕~〔4〕のいずれか1項に記載の二酸化炭素吸収剤。
Figure JPOXMLDOC01-appb-C000004
〔6〕
 前記アルキリデンアミノグアニジンの含有量が、前記二酸化炭素吸収剤の総量に対して、5.0質量%以上80.0質量%以下である、
 〔1〕~〔5〕のいずれか一項に記載の二酸化炭素吸収剤。
〔7〕
 前記溶媒の総含有量が、前記二酸化炭素吸収剤の総量に対して、1.0質量%以上95.0質量%以下である、
 〔2〕~〔6〕のいずれか一項に記載の二酸化炭素吸収剤。
〔8〕
 〔1〕~〔7〕のいずれか一項に記載の二酸化炭素吸収剤と、二酸化炭素を含むガスと、を接触させることにより、前記二酸化炭素吸収剤に前記二酸化炭素を吸収させる接触工程と、
 前記二酸化炭素を吸収した前記二酸化炭素吸収剤を加熱することにより、前記二酸化炭素吸収剤から前記二酸化炭素を脱離させる脱離工程と、を含む、
 二酸化炭素の分離回収方法。
〔9〕
 前記接触工程における温度が、0℃以上60℃未満である、
 〔8〕に記載の二酸化炭素の分離回収方法。
〔10〕
 前記脱離工程における温度が、60℃以上120℃以下である、
 〔8〕又は〔9〕に記載の二酸化炭素の分離回収方法。
〔11〕
 〔1〕~〔7〕のいずれか一項に記載の二酸化炭素吸収剤を備え、二酸化炭素を含有するガスと前記二酸化炭素吸収剤とを接触させて、前記二酸化炭素吸収剤に前記二酸化炭素を吸収させる吸収装置と、
 該吸収装置において前記二酸化炭素を吸収した前記二酸化炭素吸収剤を加熱することによって、前記二酸化炭素吸収剤から前記二酸化炭素を脱離する脱離装置と、を有する、
 二酸化炭素分離回収装置。
〔12〕
 脱離した前記二酸化炭素を回収するための回収装置を有する、
 〔11〕に記載の二酸化炭素分離回収装置。
That is, the present invention is as follows.
[1]
Containing an alkylideneaminoguanidine represented by the following general formula (1),
Carbon dioxide absorbent.
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms which may have a substituent.)
[2]
Further containing a solvent,
The carbon dioxide absorbent according to [1].
[3]
The solvent contains at least one selected from the group consisting of water, glycol solvents, alcohol solvents, and aprotic polar solvents,
[2] The carbon dioxide absorbent according to [2].
[4]
The glycol solvent contains at least one selected from the group consisting of ethylene glycol, propylene glycol, and diethylene glycol,
The carbon dioxide absorbent according to [3].
[5]
The alkylidene aminoguanidine includes a compound represented by the following formula (2):
The carbon dioxide absorbent according to any one of [1] to [4].
Figure JPOXMLDOC01-appb-C000004
[6]
The alkylidene aminoguanidine content is 5.0% by mass or more and 80.0% by mass or less based on the total amount of the carbon dioxide absorbent.
The carbon dioxide absorbent according to any one of [1] to [5].
[7]
The total content of the solvent is 1.0% by mass or more and 95.0% by mass or less with respect to the total amount of the carbon dioxide absorbent.
[2] to [6] The carbon dioxide absorbent according to any one of [6].
[8]
A contact step of causing the carbon dioxide absorbent to absorb the carbon dioxide by contacting the carbon dioxide absorbent according to any one of [1] to [7] and a gas containing carbon dioxide;
Desorbing the carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed the carbon dioxide.
Carbon dioxide separation and recovery method.
[9]
The temperature in the contact step is 0 ° C. or more and less than 60 ° C.,
[8] The method for separating and recovering carbon dioxide according to [8].
[10]
The temperature in the desorption step is 60 ° C. or higher and 120 ° C. or lower.
The carbon dioxide separation and recovery method according to [8] or [9].
[11]
The carbon dioxide absorbent according to any one of [1] to [7] is provided, and a gas containing carbon dioxide is brought into contact with the carbon dioxide absorbent so that the carbon dioxide is introduced into the carbon dioxide absorbent. An absorbing device to absorb,
A desorption device that desorbs the carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed the carbon dioxide in the absorber.
Carbon dioxide separation and recovery device.
[12]
Having a recovery device for recovering the desorbed carbon dioxide;
[11] The carbon dioxide separation and recovery device according to [11].
 本発明によれば、二酸化炭素吸収放出性能が高く、揮発性が低く、かつ、熱安定性にも優れる酸化炭素吸収剤、該二酸化炭素吸収剤を用いた二酸化炭素の分離回収方法、及び二酸化炭素分離回収装置を提供することができる。 According to the present invention, a carbon oxide absorbent having high carbon dioxide absorption / release performance, low volatility, and excellent thermal stability, a method for separating and recovering carbon dioxide using the carbon dioxide absorbent, and carbon dioxide A separation and recovery device can be provided.
本実施形態の二酸化炭素分離回収装置を示す模式図Schematic diagram showing the carbon dioxide separation and recovery device of the present embodiment 実施例において二酸化炭素吸収量及び回収量の評価に用いた装置の模式図Schematic diagram of the equipment used for evaluating carbon dioxide absorption and recovery in the examples
 以下に本発明の実施形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the scope of the present invention. is there.
〔二酸化炭素吸収剤〕
 本実施形態の二酸化炭素吸収剤は、下記一般式(1)で表されるアルキリデンアミノグアニジンを含有する。
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは、各々独立して、水素原子又は置換基を有していてもよい炭素数1~18の炭化水素基である。)
[CO2 absorbent]
The carbon dioxide absorbent of the present embodiment contains an alkylideneaminoguanidine represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms which may have a substituent.)
 上記式(1)で表されるように、アミノグアニジン部位とアルキリデン部位を併せ持つことにより、高い二酸化炭素吸収放出性能が発揮され、また、揮発性が低く、かつ、熱安定性にも優れるものとなる。 As represented by the above formula (1), by having both an aminoguanidine moiety and an alkylidene moiety, a high carbon dioxide absorption / release performance is exhibited, and the volatility is low and the thermal stability is also excellent. Become.
 特に、高い二酸化炭素吸収性能に関して、アルキリデン部位を有しないアミノグアニジンは二酸化炭素と容易に反応し、重炭酸アミノグアニジンを与えることが知られており、上記構造を有するアルキリデンアミノグアニジンにおいてもアミノグアニジン部位が二酸化炭素との高い反応性に関与していると推測され、アミノグアニジン部位が二酸化炭素と容易に反応して、重炭酸アミノグアニジン構造を形成するものと考えられる。 In particular, with regard to high carbon dioxide absorption performance, aminoguanidine having no alkylidene moiety is known to easily react with carbon dioxide to give aminoguanidine bicarbonate. Even in alkylideneaminoguanidine having the above structure, aminoguanidine moiety Is considered to be involved in the high reactivity with carbon dioxide, and it is considered that the aminoguanidine site easily reacts with carbon dioxide to form an aminoguanidine bicarbonate structure.
 高い二酸化炭素放出性能に関して、重炭酸アミノグアニジンは120℃付近で二酸化炭素を放出するのに対し、意外なことにアルキリデン部位を有するアルキリデンアミノグアニジンは重炭酸アミノグアニジンよりも低温で二酸化炭素を放出することが本発明者らの検討により明らかになった。 With respect to high carbon dioxide release performance, aminoguanidine bicarbonate releases carbon dioxide at around 120 ° C, while surprisingly alkylidene aminoguanidines with alkylidene moieties release carbon dioxide at lower temperatures than aminoguanidine bicarbonate. This has been clarified by the study of the present inventors.
 更に、重炭酸アミノグアニジンを120℃に加熱すると二酸化炭素の放出と共に熱分解反応も同時に進行するが、上記構造を有するアルキリデンアミノグアニジンは120℃で熱分解することはなく、アルキリデン部位が分子の熱安定性の向上に寄与しているものと推察される。その上、上記構造を有するアルキリデンアミノグアニジンは加熱した場合の揮発性も低く、この点についてもアルキリデン部位が揮発性を抑える効果関与しているものと推察される。 Furthermore, when aminoguanidine bicarbonate is heated to 120 ° C., the pyrolysis reaction proceeds simultaneously with the release of carbon dioxide, but the alkylidene aminoguanidine having the above structure does not thermally decompose at 120 ° C., and the alkylidene site is the molecular heat. It is assumed that it contributes to the improvement of stability. In addition, alkylideneaminoguanidine having the above structure has low volatility when heated, and it is speculated that the alkylidene moiety is also involved in the effect of suppressing volatility in this respect.
 以上のとおり、下記一般式(1)で表されるアルキリデンアミノグアニジンを含有する本実施形態の二酸化炭素吸収剤は、高い二酸化炭素吸収放出性能を発揮し、また、揮発性が低く、かつ、熱安定性にも優れるものである。そのため、本実施形態の二酸化炭素吸収剤を用いることにより、省エネルギーで安定且つ連続的に二酸化炭素を分離回収することが可能となり、さらに連続して効率の良い二酸化炭素の分離回収方法を達成することが可能となる。 As described above, the carbon dioxide absorbent of this embodiment containing an alkylideneaminoguanidine represented by the following general formula (1) exhibits high carbon dioxide absorption / release performance, has low volatility, and It is also excellent in stability. Therefore, by using the carbon dioxide absorbent of the present embodiment, it becomes possible to separate and collect carbon dioxide stably and continuously with energy saving, and to achieve a continuous and efficient carbon dioxide separation and recovery method. Is possible.
 なお、本実施形態において「二酸化炭素吸収剤」とは、特定の条件下において二酸化炭素を吸収することができるものであり、特に、別の条件下において二酸化炭素を脱離することもできるものである。また、本実施形態の二酸化炭素吸収剤は、二酸化炭素の他、その他の酸性ガスを吸収するものであってもよい。 In the present embodiment, the “carbon dioxide absorbent” is capable of absorbing carbon dioxide under a specific condition, and particularly capable of desorbing carbon dioxide under another condition. is there. In addition, the carbon dioxide absorbent of the present embodiment may absorb other acidic gases in addition to carbon dioxide.
(アルキリデンアミノグアニジン)
 本実施形態においては、上記一般式(1)で表されるアルキリデンアミノグアニジンを用いる。一般式(1)中、R及びRで表される炭素数1~18の炭化水素基としては、特に限定されないが、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキレン基、アリール基、アルキル基とアリール基とが結合した基、アルキレン基とアリール基とが結合した基などが挙げられる。このなかでも、アリール基、アルキル基とアリール基とが結合した基、アルキレン基とアリール基とが結合した基が好ましく、アルキレン基とアリール基とが結合した基がさらに好ましい。
(Alkylidene aminoguanidine)
In the present embodiment, alkylideneaminoguanidine represented by the general formula (1) is used. In general formula (1), the hydrocarbon group having 1 to 18 carbon atoms represented by R 1 and R 2 is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, an alkylene group, and an aryl group. And a group in which an alkyl group and an aryl group are bonded, and a group in which an alkylene group and an aryl group are bonded. Among these, an aryl group, a group in which an alkyl group and an aryl group are bonded, a group in which an alkylene group and an aryl group are bonded are preferable, and a group in which an alkylene group and an aryl group are bonded is more preferable.
 アルキル基としては、特に制限されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、n-へプチル基、n-オクチル基、n-エチルヘキシル基、n-ノニル基、n-デシル基等が挙げられる。 The alkyl group is not particularly limited, but for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, neopentyl group Group, n-hexyl group, texyl group, n-heptyl group, n-octyl group, n-ethylhexyl group, n-nonyl group, n-decyl group and the like.
 シクロアルキル基としては、特に制限されないが、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基、シクロドデシル基、シクロヘキサデシル基、シクロオクタデシル基等が挙げられる。 The cycloalkyl group is not particularly limited, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a cyclodecyl group, a cyclododecyl group, a cyclohexadecyl group, and a cyclooctadecyl group.
 アルケニル基としては、特に限定されないが、例えば、ビニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、オクチニル基、デシニル基、ドデシニル基、ヘキサデシニル基、オクタデシニル基等が挙げられる。 The alkenyl group is not particularly limited, and examples thereof include a vinyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, octynyl group, decynyl group, dodecynyl group, hexadecynyl group, and octadecynyl group.
 アルキレン基としては、特に制限されないが、例えば、メチレン基、エチレン基、プロピレン基等が挙げられる。 The alkylene group is not particularly limited, and examples thereof include a methylene group, an ethylene group, and a propylene group.
 アリール基としては、特に限定されないが、例えば、フェニル基、ナフチル基等が挙げられる。 The aryl group is not particularly limited, and examples thereof include a phenyl group and a naphthyl group.
 炭化水素基の炭素数は、1~18であり、好ましくは2~16であり、より好ましくは4~14であり、さらに好ましくは6~12である。 The number of carbon atoms of the hydrocarbon group is 1 to 18, preferably 2 to 16, more preferably 4 to 14, and further preferably 6 to 12.
 炭化水素基の水素原子を置換する置換基としては、特に限定されないが、例えば、硫黄原子を含む基、窒素原子を含む基、又は酸素原子を含む基が挙げられる。 Although it does not specifically limit as a substituent which substitutes the hydrogen atom of a hydrocarbon group, For example, the group containing a sulfur atom, the group containing a nitrogen atom, or the group containing an oxygen atom is mentioned.
 上記一般式(1)で表されるアルキリデンアミノグアニジンとしては、特に限定されないが、例えば、1-メチルエチリデンアミノグアニジン、1-メチルプロピリデンアミノグアニジン、1-メチルブチリデンアミノグアニジン、1,3-ジメチルブチリデンアミノグアニジン、1,2-ジメチルプロピリデンアミノグアニジン、1-メチルペンチリデンアミノグアニジン、2,6-ジメチル-4-へプチリデンアミノグアニジン、2-フリルメチリデンアミノグアニジン、ベンジリデンアミノグアニジン、4-ジメチルアミノフェニルメチレンアミノグアニジン、4-メトキシフェニルメチレンアミノグアニジン、4-ヒドロキシフェニルメチレンアミノグアニジン、1-フェニルエチリデンアミノグアニジン、1-メチル-3-フェニルアリリデンアミノグアニジン、ジフェニルメチレンアミノグアニジン、1-(2,4-ジヒドロキシフェニル)ベンジリデンアミノグアニジン、2-メチルアリリデンアミノグアニジン、2-ブテン-1-イリデンアミノグアニジン、1-メチルヘキシリデンアミノグアニジン、3-フェニルアリリデンアミノグアニジン、2-メチルプロピリデンアミノグアニジン等が挙げられる。 The alkylideneaminoguanidine represented by the general formula (1) is not particularly limited, and examples thereof include 1-methylethylideneaminoguanidine, 1-methylpropylideneaminoguanidine, 1-methylbutylideneaminoguanidine, 1,3- Dimethylbutylideneaminoguanidine, 1,2-dimethylpropylideneaminoguanidine, 1-methylpentylideneaminoguanidine, 2,6-dimethyl-4-heptylideneaminoguanidine, 2-furylmethylideneaminoguanidine, benzylideneaminoguanidine, 4-dimethylaminophenylmethyleneaminoguanidine, 4-methoxyphenylmethyleneaminoguanidine, 4-hydroxyphenylmethyleneaminoguanidine, 1-phenylethylideneaminoguanidine, 1-methyl-3-phenyl Ruarylideneaminoguanidine, diphenylmethyleneaminoguanidine, 1- (2,4-dihydroxyphenyl) benzylideneaminoguanidine, 2-methylarylideneaminoguanidine, 2-butene-1-ylideneaminoguanidine, 1-methylhexylidene Aminoguanidine, 3-phenylarylideneaminoguanidine, 2-methylpropylideneaminoguanidine and the like can be mentioned.
 これらの中でも、アルキリデンアミノグアニジンが、下記式(1a)で表されるアリリデンアミノグアニジンを含むことが好ましく、下記式(1b)で表されるフェニルアリリデンアミノグアニジンを含むことがより好ましく、下記式(2)で表される3-フェニルアリリデンアミノグアニジンを含むことが好ましい。このようなアルキリデンアミノグアニジンを用いることにより揮発性が低下し、二酸化炭素吸収放出性能及び熱安定性がより向上する傾向にある。
Figure JPOXMLDOC01-appb-C000006
Among these, the alkylideneaminoguanidine preferably includes an arylideneaminoguanidine represented by the following formula (1a), more preferably includes a phenylarylideneaminoguanidine represented by the following formula (1b), It preferably contains 3-phenylallylideneaminoguanidine represented by the formula (2). By using such alkylideneaminoguanidine, volatility is lowered and carbon dioxide absorption / release performance and thermal stability tend to be further improved.
Figure JPOXMLDOC01-appb-C000006
 Rは、水素原子又は置換基を有していてもよい炭素数1~16の炭化水素基であり、好ましくはアルキル基、シクロアルキル基、アルケニル基、アルキレン基、アリール基、アルキル基とアリール基とが結合した基、アルキレン基とアリール基とが結合した基であり、より好ましくはアリール基、アルキル基とアリール基とが結合した基、アルキレン基とアリール基とが結合した基であり、さらに好ましくはアルキレン基とアリール基とが結合した基である。 R 3 is a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 16 carbon atoms, preferably an alkyl group, a cycloalkyl group, an alkenyl group, an alkylene group, an aryl group, an alkyl group and an aryl group. A group bonded to a group, a group bonded to an alkylene group and an aryl group, more preferably an aryl group, a group bonded to an alkyl group and an aryl group, a group bonded to an alkylene group and an aryl group, More preferably, it is a group in which an alkylene group and an aryl group are bonded.
 また、Rは、水素原子又は置換基を有していてもよい炭素数1~10の炭化水素基であり、好ましくはアルキル基、シクロアルキル基、アルケニル基、アルキレン基である。さらに、nは0~5であり、好ましくは0~3であり、より好ましくは0~1である。 R 4 is a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 10 carbon atoms, preferably an alkyl group, a cycloalkyl group, an alkenyl group, or an alkylene group. Further, n is 0 to 5, preferably 0 to 3, and more preferably 0 to 1.
 上記の式(1)で表されるアルキリデンアミノグアニジンは、原料となるアミノグアニジン塩と、アルキリデン骨格を形成するアセトン、メチルイソブチルケトン等のカルボニル化合物とを、水又はメタノール等のアルコール溶媒中で、必要に応じて塩酸、硫酸、硝酸、炭酸等の酸を添加して反応させることにより合成することができる。 The alkylidene aminoguanidine represented by the above formula (1) is obtained by mixing an aminoguanidine salt as a raw material and a carbonyl compound such as acetone or methyl isobutyl ketone forming an alkylidene skeleton in an alcohol solvent such as water or methanol. If necessary, it can be synthesized by adding an acid such as hydrochloric acid, sulfuric acid, nitric acid, carbonic acid and reacting.
 アルキリデンアミノグアニジンの含有量は、二酸化炭素吸収剤の総量に対して、好ましくは1.0質量%以上であり、より好ましくは5.0質量%以上、さらに好ましくは10.0質量%以上である。また、アルキリデンアミノグアニジンの含有量は、二酸化炭素吸収剤の総量に対して、好ましくは100.0質量%以下であり、より好ましくは80.0質量%以下、さらに好ましくは70.0質量%以下であり、よりさらに好ましくは65.0質量%以下であり、さらにより好ましくは50.0質量%以下である。アルキリデンアミノグアニジンの含有量が1.0質量%以上であることにより、二酸化炭素吸収剤中のアルキリデンアミノグアニジンの効果がより有効に発揮される傾向にある。また、アルキリデンアミノグアニジンの含有量が100.0質量%以下、特に80.0質量%以下であることにより、二酸化炭素吸収反応に寄与するアルキリデンアミノグアニジンに対して、適量の水分子が水和し、二酸化炭素とアルキリデンアミノグアニジンとの反応性がより向上し、二酸化炭素吸収放出性能がより向上する傾向にある。 The content of alkylideneaminoguanidine is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 10.0% by mass or more with respect to the total amount of carbon dioxide absorbent. . The content of alkylideneaminoguanidine is preferably 100.0% by mass or less, more preferably 80.0% by mass or less, and further preferably 70.0% by mass or less, based on the total amount of carbon dioxide absorbent. More preferably, it is 65.0 mass% or less, More preferably, it is 50.0 mass% or less. When the content of the alkylideneaminoguanidine is 1.0% by mass or more, the effect of the alkylideneaminoguanidine in the carbon dioxide absorbent tends to be more effectively exhibited. Further, when the content of alkylideneaminoguanidine is 100.0% by mass or less, particularly 80.0% by mass or less, an appropriate amount of water molecules is hydrated with respect to alkylideneaminoguanidine that contributes to the carbon dioxide absorption reaction. The reactivity between carbon dioxide and alkylideneaminoguanidine tends to be further improved, and the carbon dioxide absorption / release performance tends to be further improved.
(溶媒)
 本実施形態の二酸化炭素吸収剤は、溶媒をさらに含有することが好ましい。溶媒としては、アルキリデンアミノグアニジンの溶解性又は分散性に応じて適宜選択できるが、脱離工程において揮発しにくいという観点からは、蒸気圧が低く沸点の高い溶媒が好ましく、アルキリデンアミノグアニジンと二酸化炭素の反応を妨げにくいという観点からは、アルキリデンアミノグアニジンと反応性しない溶媒が好ましく、省エネルギー化の観点からは、比熱が低く熱伝導性のよい溶媒が好ましい。
(solvent)
The carbon dioxide absorbent of the present embodiment preferably further contains a solvent. The solvent can be appropriately selected according to the solubility or dispersibility of the alkylideneaminoguanidine, but from the viewpoint of being less volatile in the desorption step, a solvent having a low vapor pressure and a high boiling point is preferred, and alkylideneaminoguanidine and carbon dioxide. From the viewpoint that it is difficult to prevent this reaction, a solvent that is not reactive with alkylideneaminoguanidine is preferable, and from the viewpoint of energy saving, a solvent having low specific heat and good thermal conductivity is preferable.
 このような溶媒としては、特に限定されないが、例えば、水;エチレングリコール、プロピレングリコール、ジエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオールのようなグリコール系溶媒;エタノール、メタノール、ブタノール、ペンタノール、シクロヘキサノールのようなアルコール系溶媒;グリセリン等の3つ以上のヒドロキシル基を有する多価アルコール系溶媒;ジメチルスルホキシドのような非プロトン性極性溶媒;2-ピロリドン、N-メチルピロリドン、ジメチルアセトアミド等のアミド系溶媒;エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート等のカーボネート系溶媒;又はシリコンオイル等からなる群より選ばれる少なくとも1種以上が挙げられる。このなかでも、水、グリコール系溶媒、アルコール系溶媒、非プロトン性極性溶媒が好ましく、水、エチレングリコール、プロピレングリコール、ジエチレングリコール、メタノール、エタノールがより好ましく、水、エチレングリコールがより好ましい。このような溶媒を用いることにより、溶媒分子が溶媒和、及び溶媒の二酸化炭素溶解度からアルキリデンアミノグアニジンと二酸化炭素の反応性がより向上する傾向にある。また、溶媒の粘性も低く、二酸化炭素吸収放出性能がより向上する傾向にある。さらに、水、エチレングリコールを用いることで粘性をより一層低下させることができる。溶媒は、1種単独で用いても、2種以上を併用してもよい。 Examples of such a solvent include, but are not limited to, water; glycol solvents such as ethylene glycol, propylene glycol, diethylene glycol, 1,3-butanediol, and 1,4-butanediol; ethanol, methanol, butanol, Alcohol solvents such as pentanol and cyclohexanol; polyhydric alcohol solvents having three or more hydroxyl groups such as glycerin; aprotic polar solvents such as dimethyl sulfoxide; 2-pyrrolidone, N-methylpyrrolidone, dimethyl Examples thereof include at least one selected from the group consisting of amide solvents such as acetamide; carbonate solvents such as ethylene carbonate, propylene carbonate, and diethyl carbonate; or silicon oil. Among these, water, glycol solvents, alcohol solvents, and aprotic polar solvents are preferable, water, ethylene glycol, propylene glycol, diethylene glycol, methanol, and ethanol are more preferable, and water and ethylene glycol are more preferable. By using such a solvent, the reactivity of the alkylideneaminoguanidine and carbon dioxide tends to be further improved from the solvation of the solvent molecules and the carbon dioxide solubility of the solvent. Further, the viscosity of the solvent is low, and the carbon dioxide absorption / release performance tends to be further improved. Furthermore, the viscosity can be further reduced by using water or ethylene glycol. A solvent may be used individually by 1 type, or may use 2 or more types together.
 上記溶媒の中でも、本実施形態の二酸化炭素吸収剤は、水をさらに含有することが好ましい。水を含有することにより、二酸化炭素吸収反応に寄与するアルキリデンアミノグアニジンに対して、水分子が水和し、二酸化炭素とアルキリデンアミノグアニジンとの反応性がより向上し、二酸化炭素吸収放出性能がより向上する傾向にある。 Among the above solvents, the carbon dioxide absorbent of the present embodiment preferably further contains water. By containing water, water molecules are hydrated with respect to alkylideneaminoguanidine that contributes to carbon dioxide absorption reaction, the reactivity between carbon dioxide and alkylideneaminoguanidine is further improved, and carbon dioxide absorption and release performance is further improved. It tends to improve.
 水の含有量は、二酸化炭素吸収剤の総量に対して、好ましくは1.0質量%以上であり、より好ましくは5.0質量%以上であり、さらに好ましくは10.0質量%以上である。また、水の含有量は、二酸化炭素吸収剤の総量に対して、好ましくは99.0質量%以下であり、より好ましくは95.0質量%以下であり、さらに好ましくは90.0質量%以下である。水の含有量が1.0質量%以上であることにより、二酸化炭素吸収反応に寄与するアルキリデンアミノグアニジンに対して、適量の水分子が水和し、二酸化炭素とアルキリデンアミノグアニジンとの反応性がより向上し、二酸化炭素吸収放出性能がより向上する傾向にある。また、水の含有量が99.0質量%以下であることにより、二酸化炭素吸収剤中のアルキリデンアミノグアニジンの効果がより有効に発揮される傾向にある。なお、水の含有量の最適値は、用いるアルキリデンアミノグアニジンによって異なり得る。 The water content is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 10.0% by mass or more with respect to the total amount of the carbon dioxide absorbent. . The water content is preferably 99.0% by mass or less, more preferably 95.0% by mass or less, and still more preferably 90.0% by mass or less, based on the total amount of the carbon dioxide absorbent. It is. When the water content is 1.0% by mass or more, an appropriate amount of water molecules are hydrated with respect to the alkylideneaminoguanidine that contributes to the carbon dioxide absorption reaction, and the reactivity between carbon dioxide and alkylideneaminoguanidine is increased. The carbon dioxide absorption and release performance tends to be further improved. Moreover, when the water content is 99.0% by mass or less, the effect of the alkylideneaminoguanidine in the carbon dioxide absorbent tends to be more effectively exhibited. Note that the optimum value of the water content may vary depending on the alkylideneaminoguanidine used.
 グリコール系溶媒の含有量は、二酸化炭素吸収剤の総量に対して、好ましくは1.0質量%以上であり、より好ましくは5.0質量%以上であり、さらに好ましくは10.0質量%以上である。また、グリコール系溶媒の含有量は、二酸化炭素吸収剤の総量に対して、好ましくは99.0質量%以下であり、より好ましくは95.0質量%以下であり、さらに好ましくは90.0質量%以下である。グリコール系溶媒の含有量が1.0質量%以上であることにより、二酸化炭素吸収反応に寄与するアルキリデンアミノグアニジンに対して、適量の溶媒分子が溶媒和し、二酸化炭素とアルキリデンアミノグアニジンとの反応性がより向上し、二酸化炭素吸収放出性能がより向上する傾向にある。また、グリコール系溶媒の含有量が99.0質量%以下であることにより、二酸化炭素吸収剤中のアルキリデンアミノグアニジンの効果がより有効に発揮される傾向にある。なお、グリコール系溶媒の含有量の最適値は、用いるアルキリデンアミノグアニジンによって異なり得る。 The content of the glycol solvent is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 10.0% by mass or more with respect to the total amount of the carbon dioxide absorbent. It is. Further, the content of the glycol solvent is preferably 99.0% by mass or less, more preferably 95.0% by mass or less, and further preferably 90.0% by mass with respect to the total amount of the carbon dioxide absorbent. % Or less. When the glycol solvent content is 1.0% by mass or more, an appropriate amount of solvent molecules are solvated with respect to the alkylideneaminoguanidine that contributes to the carbon dioxide absorption reaction, and the reaction between carbon dioxide and alkylideneaminoguanidine. Tend to be improved, and the carbon dioxide absorption and release performance tends to be further improved. Moreover, when the content of the glycol solvent is 99.0% by mass or less, the effect of the alkylideneaminoguanidine in the carbon dioxide absorbent tends to be more effectively exhibited. Note that the optimum value of the content of the glycol solvent may vary depending on the alkylideneaminoguanidine used.
 また、水及びグリコール系溶媒以外の溶媒の含有量は、二酸化炭素吸収剤の総量に対して、好ましくは1.0質量%以上であり、より好ましくは5.0質量%以上であり、さらに好ましくは10.0質量%以上である。また、水及びグリコール系溶媒以外の溶媒の含有量は、二酸化炭素吸収剤の総量に対して、好ましくは99.0質量%以下であり、より好ましくは95.0質量%以下であり、さらに好ましくは90.0質量%以下である。水及びグリコール系溶媒以外の溶媒の含有量が1.0質量%以上であることにより、二酸化炭素吸収反応に寄与するアルキリデンアミノグアニジンに対して、適量の溶媒分子が溶媒和し、二酸化炭素とアルキリデンアミノグアニジンとの反応性がより向上し、二酸化炭素吸収放出性能がより向上する傾向にある。また、水及びグリコール系溶媒以外の溶媒の含有量が99.0質量%以下であることにより、二酸化炭素吸収剤中のアルキリデンアミノグアニジンの効果がより有効に発揮される傾向にある。 Further, the content of the solvent other than water and the glycol solvent is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and still more preferably based on the total amount of the carbon dioxide absorbent. Is 10.0% by mass or more. Further, the content of the solvent other than water and the glycol solvent is preferably 99.0% by mass or less, more preferably 95.0% by mass or less, and still more preferably based on the total amount of the carbon dioxide absorbent. Is 90.0 mass% or less. When the content of the solvent other than water and glycol solvent is 1.0% by mass or more, an appropriate amount of solvent molecules are solvated with respect to the alkylideneaminoguanidine contributing to the carbon dioxide absorption reaction, and carbon dioxide and alkylidene. The reactivity with aminoguanidine tends to be further improved, and the carbon dioxide absorption / release performance tends to be further improved. Moreover, it exists in the tendency for the effect of the alkylidene amino guanidine in a carbon dioxide absorbent to exhibit more effectively because content of solvents other than water and a glycol type solvent is 99.0 mass% or less.
 溶媒の総含有量は、二酸化炭素吸収剤の総量に対して、好ましくは1.0質量%以上であり、より好ましくは5.0質量%以上であり、さらに好ましくは10.0質量%以上である。また、溶媒の総含有量は、二酸化炭素吸収剤の総量に対して、好ましくは99.0質量%以下であり、より好ましくは95.0質量%以下であり、さらに好ましくは90.0質量%以下である。溶媒の総含有量が1.0質量%以上であることにより、二酸化炭素吸収反応に寄与するアルキリデンアミノグアニジンに対して、適量の溶媒分子が溶媒和し、二酸化炭素とアルキリデンアミノグアニジンとの反応性がより向上し、二酸化炭素吸収放出性能がより向上する傾向にある。また、溶媒の総含有量が99.0質量%以下であることにより、二酸化炭素吸収剤中のアルキリデンアミノグアニジンの効果がより有効に発揮される傾向にある。 The total content of the solvent is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, and further preferably 10.0% by mass or more with respect to the total amount of the carbon dioxide absorbent. is there. The total content of the solvent is preferably 99.0% by mass or less, more preferably 95.0% by mass or less, and further preferably 90.0% by mass with respect to the total amount of the carbon dioxide absorbent. It is as follows. When the total content of the solvent is 1.0% by mass or more, an appropriate amount of solvent molecules is solvated with respect to the alkylideneaminoguanidine that contributes to the carbon dioxide absorption reaction, and the reactivity between carbon dioxide and alkylideneaminoguanidine. However, the carbon dioxide absorption and release performance tends to be further improved. Moreover, when the total content of the solvent is 99.0% by mass or less, the effect of the alkylideneaminoguanidine in the carbon dioxide absorbent tends to be more effectively exhibited.
(他のアミン化合物)
 本実施形態の二酸化炭素吸収剤は、必要に応じて、アルキリデンアミノグアニジン以外の他のアミン化合物を含有してもよい。他のアミン化合物を含有することにより、二酸化炭素の吸収量や放出量といった二酸化炭素吸収剤の性能を補助的に向上させることができる。
(Other amine compounds)
The carbon dioxide absorbent of the present embodiment may contain other amine compounds other than alkylideneaminoguanidine as necessary. By containing other amine compounds, the performance of the carbon dioxide absorbent such as the amount of carbon dioxide absorbed and released can be supplementarily improved.
 他のアミン化合物としては、アルキリデンアミノグアニジンと二酸化炭素との反応を妨げなければ特に制限はないが、蒸気圧の低い又は沸点の高いものが好ましく、二酸化炭素との反応熱の小さいものがより好ましい。 The other amine compound is not particularly limited as long as it does not interfere with the reaction between alkylideneaminoguanidine and carbon dioxide, but preferably has a low vapor pressure or a high boiling point, and more preferably has a low reaction heat with carbon dioxide. .
 このような他のアミン化合物としては、特に限定されないが、例えば、モノエタノールアミン、1-アミノ-2-プロパノール、1-アミノ-2-ブタノール、2-アミノ-1-プロパノール、2-アミノ-1-ブタノール、2-アミノ-2-メチル-1-プロパノール、2-アミノ-1,3-プロパンジオール、3-アミノ-1-プロパノール、3-アミノ-1,2-プロパンジオール、アニリン、シクロヘキシルアミン等の第一級アミン類;2-メチルアミノエタノール、2-エチルアミノエタノール、2-イソプロピルアミノエタノール、2-プロピルアミノエタノール、ジエタノールアミン、ジイソプロパノールアミン、2-t-ブチルアミノエタノール、2-n-ブチルアミノエタノール、ピペリジン等の第二級アミン類;2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、1-ジメチルアミノ-2-プロパノール、N-エチル-N-メチルエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、トリエタノールアミン、N,N-ジメチルアニリン、ピリジン、1-ヒドロキシエチルピペリジン等の第三級アミン類;1,3-ジアミノプロパン-2-オール、エチレンジアミン、N-(2-ヒドロキシエチル)-1,2-エチレンジアミン、N-(2-ヒドロキシプロピル)-1,2-エチレンジアミン、N,N'-ビス(2-ヒドロキシエチル)-1,2-エチレンジアミン、N,N,N'-トリス(2-ヒドロキシエチル)-1,2-エチレンジアミン、N,N,N'-トリス(2-ヒドロキシプロピル)-1,2-エチレンジアミン、N,N,N',N'-テトラキス(2-ヒドロキシエチル)-1,2-エチレンジアミン、N,N,N',N'-テトラキス(2-ヒドロキシプロピル)-1,2-エチレンジアミン、ヘキサメチレンジアミン、N-(2-ヒドロキシエチル)-1,6-ヘキサメチレンジアミン、N-(2-ヒドロキシプロピル)-1,6-ヘキサメチレンジアミン、N,N'-ビス(2-ヒドロキシエチル)-1,6-ヘキサメチレンジアミン、N,N,N'-トリス(2-ヒドロキシエチル)-1,6-ヘキサメチレンジアミン、N,N,N'-トリス(2-ヒドロキシプロピル)-1,6-ヘキサメチレンジアミン、N,N,N',N'-テトラキス(2-ヒドロキシエチル)-1,6-ヘキサメチレンジアミン、N,N,N',N'-テトラキス(2-ヒドロキシプロピル)-1,6-ヘキサメチレンジアミン等のジアミン類;ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、1-ヒドロキシエチルピペラジン等のピペラジン類;ジエチレントリアミン、テトラエチレンペンタミン、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン等が挙げられる。 Examples of such other amine compounds include, but are not limited to, monoethanolamine, 1-amino-2-propanol, 1-amino-2-butanol, 2-amino-1-propanol, 2-amino-1 -Butanol, 2-amino-2-methyl-1-propanol, 2-amino-1,3-propanediol, 3-amino-1-propanol, 3-amino-1,2-propanediol, aniline, cyclohexylamine, etc. Primary amines: 2-methylaminoethanol, 2-ethylaminoethanol, 2-isopropylaminoethanol, 2-propylaminoethanol, diethanolamine, diisopropanolamine, 2-t-butylaminoethanol, 2-n-butyl Secondary amines such as aminoethanol and piperidine; 2- Methylaminoethanol, 2-diethylaminoethanol, 1-dimethylamino-2-propanol, N-ethyl-N-methylethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, triethanolamine, N, N-dimethylaniline, pyridine Tertiary amines such as 1-hydroxyethylpiperidine; 1,3-diaminopropan-2-ol, ethylenediamine, N- (2-hydroxyethyl) -1,2-ethylenediamine, N- (2-hydroxypropyl) -1,2-ethylenediamine, N, N′-bis (2-hydroxyethyl) -1,2-ethylenediamine, N, N, N′-tris (2-hydroxyethyl) -1,2-ethylenediamine, N, N , N'-Tris (2-hydroxypropyl) -1,2-ethyl Diamine, N, N, N ′, N′-tetrakis (2-hydroxyethyl) -1,2-ethylenediamine, N, N, N ′, N′-tetrakis (2-hydroxypropyl) -1,2-ethylenediamine, Hexamethylenediamine, N- (2-hydroxyethyl) -1,6-hexamethylenediamine, N- (2-hydroxypropyl) -1,6-hexamethylenediamine, N, N′-bis (2-hydroxyethyl) -1,6-hexamethylenediamine, N, N, N′-tris (2-hydroxyethyl) -1,6-hexamethylenediamine, N, N, N′-tris (2-hydroxypropyl) -1,6 -Hexamethylenediamine, N, N, N ', N'-tetrakis (2-hydroxyethyl) -1,6-hexamethylenediamine, N, N, N', N'-tetrakis (2 Diamines such as hydroxypropyl) -1,6-hexamethylenediamine; piperazines such as piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 1-hydroxyethylpiperazine; diethylenetriamine, tetraethylenepentamine, polyethyleneimine, Examples include polyvinylamine and polyallylamine.
(その他の成分)
 本実施形態の二酸化炭素吸収剤は、必要に応じて、酸成分、アルカリ成分、塩、消泡剤、分散安定剤、界面活性剤、粘度調整剤、及び腐食防止剤等のその他の成分をさらに含有してもよい。
(Other ingredients)
The carbon dioxide absorbent of this embodiment further includes other components such as an acid component, an alkali component, a salt, an antifoaming agent, a dispersion stabilizer, a surfactant, a viscosity modifier, and a corrosion inhibitor as necessary. You may contain.
 上記酸成分、アルカリ成分、又は塩は、アルキリデンアミノグアニジンから二酸化炭素が脱離する性能を調整する目的で、添加することができる。 The above-mentioned acid component, alkali component, or salt can be added for the purpose of adjusting the performance of desorbing carbon dioxide from alkylideneaminoguanidine.
 また、上記消泡剤、分散安定剤、界面活性剤、粘度調整剤、及び腐食防止剤等は、二酸化炭素吸収剤の形態に応じて、適宜選択して添加することができる。本実施形態の二酸化炭素吸収剤の形態としては、特に限定されないが、例えば、均一溶液、分散液、又はエマルジョン等の液体;粉体、膨潤ゲル状、又は成形体等の固体等様々な形態を取ることが可能である。また、多孔質の支持体に担時させて使用することも可能である。 The antifoaming agent, dispersion stabilizer, surfactant, viscosity modifier, corrosion inhibitor and the like can be appropriately selected and added according to the form of the carbon dioxide absorbent. Although it does not specifically limit as a form of the carbon dioxide absorbent of this embodiment, For example, liquids, such as a uniform solution, a dispersion liquid, or an emulsion; Various forms, such as solids, such as powder, a swelling gel form, or a molded object, are included. It is possible to take. It is also possible to use it while supporting it on a porous support.
〔二酸化炭素の分離回収方法〕
 本実施形態の二酸化炭素の分離回収方法は、上記二酸化炭素吸収剤と、二酸化炭素を含むガスと、を接触させることにより、二酸化炭素吸収剤に二酸化炭素を吸収させる接触工程と、二酸化炭素を吸収した二酸化炭素吸収剤を加熱することにより、二酸化炭素吸収剤から二酸化炭素を脱離させる脱離工程と、を含む。図1に、本実施形態の二酸化炭素分離回収装置の一例を示す模式図を示す。
[Method for separating and recovering carbon dioxide]
The method for separating and recovering carbon dioxide according to the present embodiment comprises a contact step of causing the carbon dioxide absorbent to absorb carbon dioxide by bringing the carbon dioxide absorbent into contact with a gas containing carbon dioxide, and absorbing carbon dioxide. A desorption step of desorbing carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent. In FIG. 1, the schematic diagram which shows an example of the carbon dioxide separation-and-recovery apparatus of this embodiment is shown.
(接触工程)
 接触工程は、二酸化炭素吸収剤と、二酸化炭素を含むガスと、を接触させることにより、二酸化炭素吸収剤に二酸化炭素を吸収させる工程である。接触方法は、二酸化炭素吸収剤の形態に応じて適したものを選択することができ、特に限定されない。例えば、二酸化炭素吸収剤が液体である場合には、溶液に対して二酸化炭素を含むガスを吹き込む又は溶液と二酸化炭素を含むガスとを気液混合することにより、二酸化炭素吸収剤と二酸化炭素を含むガスとを接触させることができる。また、二酸化炭素吸収剤が固体である場合には、二酸化炭素を含むガスを固体中に通過させる、二酸化炭素を含むガス中に固体を散布する、又は二酸化炭素を含むガス中に固体を設置することにより、二酸化炭素吸収剤と二酸化炭素を含むガスとを接触させることができる。
(Contact process)
The contact step is a step of causing the carbon dioxide absorbent to absorb carbon dioxide by bringing the carbon dioxide absorbent into contact with a gas containing carbon dioxide. The contact method can be selected according to the form of the carbon dioxide absorbent, and is not particularly limited. For example, when the carbon dioxide absorbent is a liquid, the carbon dioxide absorbent and the carbon dioxide are mixed by blowing a gas containing carbon dioxide into the solution or by gas-liquid mixing the solution and the gas containing carbon dioxide. The containing gas can be contacted. When the carbon dioxide absorbent is solid, the gas containing carbon dioxide is passed through the solid, the solid is dispersed in the gas containing carbon dioxide, or the solid is placed in the gas containing carbon dioxide. Thus, the carbon dioxide absorbent and the gas containing carbon dioxide can be brought into contact with each other.
 接触工程における温度は、好ましくは0℃以上60℃未満であり、より好ましくは20℃以上60℃未満であり、さらに好ましくは40℃以上60℃未満である。接触工程における温度が上記範囲内であることにより、より効率的に二酸化炭素吸収剤が二酸化炭素を吸収する傾向にある。 The temperature in the contacting step is preferably 0 ° C. or higher and lower than 60 ° C., more preferably 20 ° C. or higher and lower than 60 ° C., and further preferably 40 ° C. or higher and lower than 60 ° C. When the temperature in the contact step is within the above range, the carbon dioxide absorbent tends to absorb carbon dioxide more efficiently.
 (二酸化炭素を含むガス)
 二酸化炭素を含むガスとしては、特に限定されないが、例えば、火力発電所排ガス、鉄鋼所排ガス、セメント工場排ガス、化学プラント排ガス、バイオ発酵ガス、天然ガス等が挙げられる。これらガスは、特に省エネルギーで二酸化炭素を分離することが求められるものであり、本発明が特に有効である。なお、ガス中の二酸化炭素の濃度、ガスの圧力、及びガスの温度は特に制限されず、広い範囲の条件のガスにおいて本実施形態を適用することができる。また、二酸化炭素を含むガスは、二酸化炭素以外の酸性ガス等を含有してもよい。上記排ガス等が二酸化炭素以外の酸性ガス等を含有する場合、その他の酸性ガスを除去する公知の工程を組み合わせることが好ましい。具体的には、二酸化炭素以外の酸性ガス等を含有するガスに対して本実施形態の二酸化炭素の分離回収方法を適用する態様、又は、二酸化炭素以外の酸性ガス等を含有するガスから公知手段によりその他の酸性ガスを除去した後、本実施形態の二酸化炭素の分離回収方法を適用する態様が挙げられる。
(Gas containing carbon dioxide)
The gas containing carbon dioxide is not particularly limited, and examples thereof include thermal power plant exhaust gas, steel plant exhaust gas, cement factory exhaust gas, chemical plant exhaust gas, biofermentation gas, and natural gas. These gases are particularly required to separate carbon dioxide with energy saving, and the present invention is particularly effective. In addition, the density | concentration of the carbon dioxide in gas, the pressure of gas, and the temperature of gas are not restrict | limited in particular, This embodiment can be applied in the gas of a wide range of conditions. Moreover, the gas containing carbon dioxide may contain an acidic gas other than carbon dioxide. In the case where the exhaust gas or the like contains an acid gas other than carbon dioxide, it is preferable to combine known processes for removing other acid gases. Specifically, from a mode in which the carbon dioxide separation and recovery method of the present embodiment is applied to a gas containing an acidic gas other than carbon dioxide, or a gas containing an acidic gas other than carbon dioxide or the like, known means Then, after removing other acidic gas, an embodiment in which the method for separating and recovering carbon dioxide of the present embodiment is applied.
〔脱離工程〕
 脱離工程は、二酸化炭素を吸収した二酸化炭素吸収剤を加熱することにより、二酸化炭素吸収剤から二酸化炭素を脱離させる工程である。この脱離工程における加熱温度は、好ましくは60℃以上120℃以下であり、より好ましくは65℃以上110℃以下であり、さらに好ましくは70℃以上100℃以下である。脱離工程における温度が上記範囲内であることにより、より効率的に二酸化炭素吸収剤から二酸化炭素が脱離する傾向にある。
[Desorption step]
The desorption step is a step of desorbing carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed carbon dioxide. The heating temperature in this desorption step is preferably 60 ° C. or higher and 120 ° C. or lower, more preferably 65 ° C. or higher and 110 ° C. or lower, and further preferably 70 ° C. or higher and 100 ° C. or lower. When the temperature in the desorption step is within the above range, carbon dioxide tends to be more efficiently desorbed from the carbon dioxide absorbent.
〔二酸化炭素分離回収装置〕
 本実施形態の二酸化炭素分離回収装置は、上記二酸化炭素吸収剤を備え、二酸化炭素を含有するガスと前記二酸化炭素吸収剤とを接触させて、前記二酸化炭素吸収剤に前記二酸化炭素を吸収させる吸収装置と、該吸収装置において前記二酸化炭素を吸収した前記二酸化炭素吸収剤を加熱することによって、前記二酸化炭素吸収剤から前記二酸化炭素を脱離する脱離装置と、を有する。
[CO2 separation and recovery equipment]
The carbon dioxide separation and recovery device of the present embodiment includes the carbon dioxide absorbent, and makes the carbon dioxide absorbent absorb the carbon dioxide by bringing a gas containing carbon dioxide into contact with the carbon dioxide absorbent. And a desorption device for desorbing the carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed the carbon dioxide in the absorption device.
(吸収装置)
 吸収装置は、上記二酸化炭素吸収剤を備え、二酸化炭素を含有するガスと二酸化炭素吸収剤とを接触させて、二酸化炭素吸収剤に二酸化炭素を吸収させるものである。吸収装置は、二酸化炭素吸収剤の形態に応じて、二酸化炭素を含有するガスと二酸化炭素吸収剤とを接触させる構成を有するものであれば特に制限されない。
(Absorber)
The absorption device includes the carbon dioxide absorbent, and makes the carbon dioxide absorbent absorb carbon dioxide by bringing a gas containing carbon dioxide into contact with the carbon dioxide absorbent. The absorption device is not particularly limited as long as it has a configuration in which a gas containing carbon dioxide and a carbon dioxide absorbent are brought into contact with each other according to the form of the carbon dioxide absorbent.
 例えば、吸収装置は、二酸化炭素吸収剤を保持する吸収剤保持部と、当該吸収剤保持部に対して二酸化炭素を含有するガスを供給するガス供給部と、を備えることができる。また、吸収剤保持部から二酸化炭素を吸収した二酸化炭素吸収剤を排出し、新たな二酸化炭素吸収剤を供給する観点から、吸収装置は、吸収剤保持部に保持された二酸化炭素吸収剤を排出する吸収剤排出部と、吸収剤保持部に新しい二酸化炭素吸収剤を供給する吸収剤供給部と、を有することもできる。なお、接触方法としては、上記したものが挙げられる。 For example, the absorption device can include an absorbent holding unit that holds a carbon dioxide absorbent and a gas supply unit that supplies a gas containing carbon dioxide to the absorbent holding unit. Also, from the viewpoint of discharging the carbon dioxide absorbent that has absorbed carbon dioxide from the absorbent holding section and supplying a new carbon dioxide absorbent, the absorption device discharges the carbon dioxide absorbent held in the absorbent holding section. And an absorbent supply section for supplying a new carbon dioxide absorbent to the absorbent holding section. In addition, as a contact method, what was mentioned above is mentioned.
 さらに、二酸化炭素を含有するガスと二酸化炭素吸収剤とを接触させる際の温度を調整するために、吸収装置は加熱冷却機構を有していてもよいし、二酸化炭素濃度を測定できるように二酸化炭素濃度測定機構を有していてもよい。さらに、二酸化炭素を含有するガスと二酸化炭素吸収剤とを接触させる際の圧力を調整するために、吸収装置は加圧減圧機構を有していてもよい。 Furthermore, in order to adjust the temperature at which the gas containing carbon dioxide and the carbon dioxide absorbent are brought into contact with each other, the absorption device may have a heating / cooling mechanism, and the carbon dioxide concentration can be measured so that the carbon dioxide concentration can be measured. It may have a carbon concentration measurement mechanism. Furthermore, in order to adjust the pressure when the gas containing carbon dioxide and the carbon dioxide absorbent are brought into contact with each other, the absorption device may have a pressurization / decompression mechanism.
(脱離装置)
 脱離装置は、吸収装置において二酸化炭素を吸収した二酸化炭素吸収剤を加熱することによって、二酸化炭素吸収剤から二酸化炭素を脱離するものである。脱離装置は、二酸化炭素吸収剤の形態に応じて、二酸化炭素吸収剤から二酸化炭素を脱離させる構成を有するものであれば特に制限されない。
(Desorption device)
The desorption device desorbs carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed carbon dioxide in the absorption device. The desorption device is not particularly limited as long as it has a configuration for desorbing carbon dioxide from the carbon dioxide absorbent according to the form of the carbon dioxide absorbent.
 例えば、脱離装置は、二酸化炭素吸収剤を保持する吸収剤保持部と、当該吸収剤保持部から脱離した二酸化炭素を排出するガス排出部と、を備えることができる。また、二酸化炭素を吸収した二酸化炭素吸収剤を吸収装置から脱離装置へ供給する手段は特に制限されず、一定時間運転した吸収装置を一度停止して、吸収装置内の二酸化炭素吸収剤を脱離装置へまとめて供給してもよいし、上記吸収剤排出部を利用して、連続的又は断続的に吸収剤保持部から、脱離装置へ二酸化炭素吸収剤を供給してもよい。 For example, the desorption device can include an absorbent holding unit that holds a carbon dioxide absorbent, and a gas discharge unit that discharges carbon dioxide released from the absorbent holding unit. The means for supplying the carbon dioxide absorbent that has absorbed carbon dioxide from the absorption device to the desorption device is not particularly limited, and the absorption device that has been operated for a certain period of time is temporarily stopped to remove the carbon dioxide absorbent in the absorption device. The carbon dioxide absorbent may be supplied collectively to the separation apparatus, or may be continuously or intermittently supplied from the absorbent holding section to the desorption apparatus using the absorbent discharge section.
 さらに、二酸化炭素吸収剤から二酸化炭素を脱離する際の温度を調整するために、脱離装置は加熱冷却機構を有していてもよいし、二酸化炭素濃度を測定できるように二酸化炭素濃度測定機構を有していてもよい。さらに、二酸化炭素を含有するガスと二酸化炭素吸収剤とを接触させる際の圧力を調整するために、脱離装置は加圧減圧機構を有していてもよい。 Furthermore, in order to adjust the temperature at which carbon dioxide is desorbed from the carbon dioxide absorbent, the desorption device may have a heating / cooling mechanism, or the carbon dioxide concentration measurement so that the carbon dioxide concentration can be measured. You may have a mechanism. Furthermore, in order to adjust the pressure when the gas containing carbon dioxide and the carbon dioxide absorbent are brought into contact with each other, the desorption device may have a pressurization / decompression mechanism.
 脱離装置(「再生塔」又は「再生装置」ともいう)により、二酸化炭素を脱離した後の二酸化炭素吸収剤は、再度吸収装置において用いること(再利用)が可能である。 The carbon dioxide absorbent after desorbing carbon dioxide by the desorption device (also referred to as “regeneration tower” or “regeneration device”) can be used again (reused) in the absorption device.
(回収装置)
 本実施形態の二酸化炭素分離回収装置は、脱離した二酸化炭素を回収するための回収装置を有していてもよい。なお、ここで、回収した二酸化炭素は、石油増進回収法や植物工場などの農業用途;飲料や溶接などの産業ガス用途;化学合成用途等に用いること;二酸化炭素貯留(CCS)用途に用いることができる。また、これら用途に用いる前に回収した二酸化炭素を濃縮してもよい。
(Recovery device)
The carbon dioxide separation and recovery device of this embodiment may have a recovery device for recovering the desorbed carbon dioxide. The recovered carbon dioxide is used for agricultural applications such as enhanced oil recovery and plant factories; industrial gas applications such as beverages and welding; chemical synthesis applications; and carbon dioxide storage (CCS) applications. Can do. Moreover, you may concentrate the carbon dioxide collect | recovered before using for these uses.
 以下、本発明を実施例及び比較例を用いてより詳細に説明する。なお、本発明は以下の実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail using examples and comparative examples. In addition, this invention is not limited at all by the following examples.
(合成例1)3-フェニルアリリデンアミノグアニジン(2)の合成
 50mLナス型フラスコに、アミノグアニジン塩酸塩1.332g(12.0mmol)、メタノール6mL、及び12N塩酸0.25mLを加え、室温で10分間撹拌した。その後、シンナムアルデヒド1.609g(12.2mmol)を加え、磁気撹拌子を用いて室温で撹拌した。2時間撹拌した後、得られた反応液を飽和炭酸水素ナトリウム水溶液20mLに滴下すると薄黄色結晶が析出した。これを濾取、水洗後、50℃で24時間真空乾燥して、薄黄色固体を2.213g(11.8mmol)得た。アミノグアニジン塩酸塩に対するモル収率は98%であった。
(Synthesis Example 1) Synthesis of 3-phenylarylideneaminoguanidine (2) To a 50 mL eggplant-shaped flask was added 1.332 g (12.0 mmol) of aminoguanidine hydrochloride, 6 mL of methanol, and 0.25 mL of 12N hydrochloric acid at room temperature. Stir for 10 minutes. Thereafter, 1.609 g (12.2 mmol) of cinnamaldehyde was added, and the mixture was stirred at room temperature using a magnetic stirring bar. After stirring for 2 hours, the resulting reaction solution was added dropwise to 20 mL of a saturated aqueous sodium hydrogen carbonate solution to precipitate pale yellow crystals. This was collected by filtration, washed with water, and then vacuum-dried at 50 ° C. for 24 hours to obtain 2.213 g (11.8 mmol) of a pale yellow solid. The molar yield based on aminoguanidine hydrochloride was 98%.
 得られた固体を1H-NMRで分析し、下記式(2)で表される3-フェニルアリリデンアミノグアニジンであることを確認した。
 1H-NMR測定条件:
 (DMSO-d6,500MHz,δ;ppm)=5.5(s;2H)、5.7-5.8(br;2H)、6.7(d;1H)、6.9(dd;1H)、7.2(dd;1H)、7.3(dd;2H)、7.5(d;2H)、7.8(d;1H))
Figure JPOXMLDOC01-appb-C000007
The obtained solid was analyzed by 1H-NMR and confirmed to be 3-phenylarylideneaminoguanidine represented by the following formula (2).
1H-NMR measurement conditions:
(DMSO-d6, 500 MHz, δ; ppm) = 5.5 (s; 2H), 5.7-5.8 (br; 2H), 6.7 (d; 1H), 6.9 (dd; 1H) ), 7.2 (dd; 1H), 7.3 (dd; 2H), 7.5 (d; 2H), 7.8 (d; 1H))
Figure JPOXMLDOC01-appb-C000007
 また、微量融点測定器BY-1((株)矢沢科学製)を用いて、得られた3-フェニルアリリデンアミノグアニジンの融点を測定したところ、190~192℃であった。 Further, when the melting point of the obtained 3-phenylarylideneaminoguanidine was measured using a trace melting point measuring device BY-1 (manufactured by Yazawa Kagaku Co., Ltd.), it was 190 to 192 ° C.
 さらに、炭素、水素、窒素同時定量装置CHNコーダーMT-6(ヤナコ分析工業(株))を用いて元素分析を行ったところ、以下の結果を得た。
 計算値C,63.81;H,6.43;N,29.77
 実測値C,63.26;H,6.45;N,29.43
Furthermore, elemental analysis was performed using a simultaneous carbon, hydrogen, and nitrogen quantitative determination apparatus CHN Coder MT-6 (Yanaco Analytical Industrial Co., Ltd.), and the following results were obtained.
Calculated C, 63.81; H, 6.43; N, 29.77
Found C, 63.26; H, 6.45; N, 29.43
(合成例2)重炭酸3-フェニルアリリデンアミノグアニジンの合成
 上記合成例1で得られた3-フェニルアリリデンアミノグアニジン9.50g(10質量%)と、水85.5g(90質量%)とを混合し、スラリー状の二酸化炭素吸収剤95gを調製した。この二酸化炭素吸収剤を200mLフラスコに充填してアルミブロックで25℃に加熱し、磁気撹拌子を用いて撹拌しながら、二酸化炭素(CO)純度99.5体積%を流速100mL/minで60分間通気(バブリング)した。その後、二酸化炭素吸収剤中の固体成分を濾取し、50℃で24時間真空乾燥して、薄黄色固体を11.0g得た。
(Synthesis Example 2) Synthesis of 3-phenylarylideneaminoguanidine bicarbonate 9.50 g (10% by mass) of 3-phenylarylideneaminoguanidine obtained in Synthesis Example 1 above and 85.5 g (90% by mass) of water Were mixed to prepare 95 g of a slurry carbon dioxide absorbent. This carbon dioxide absorbent is filled in a 200 mL flask, heated to 25 ° C. with an aluminum block, and stirred with a magnetic stirrer to achieve a carbon dioxide (CO 2 ) purity of 99.5 vol% at a flow rate of 100 mL / min. Bubbling was performed for a minute. Thereafter, the solid component in the carbon dioxide absorbent was collected by filtration and vacuum dried at 50 ° C. for 24 hours to obtain 11.0 g of a light yellow solid.
 得られた固体を1H-NMRで分析し、下記式(3)で表される重炭酸3-フェニルアリリデンアミノグアニジンであることを確認した。
 1H-NMR測定条件:
(DMSO-d6,500MHz,δ;ppm)=5.5(s;2H)、5.7-5.8(br;2H)、6.7(d;1H)、6.9(dd;1H)、7.2(dd;1H)、7.3(dd;2H)、7.5(d;2H)、7.8(d;1H))
The obtained solid was analyzed by 1H-NMR and confirmed to be 3-phenylarylideneaminoguanidine bicarbonate represented by the following formula (3).
1H-NMR measurement conditions:
(DMSO-d6, 500 MHz, δ; ppm) = 5.5 (s; 2H), 5.7-5.8 (br; 2H), 6.7 (d; 1H), 6.9 (dd; 1H) ), 7.2 (dd; 1H), 7.3 (dd; 2H), 7.5 (d; 2H), 7.8 (d; 1H))
 また、炭素、水素、窒素同時定量装置CHNコーダーMT-6(ヤナコ分析工業(株))を用いて元素分析を行ったところ、以下の結果を得た。
 計算値C,52.79;H,5.64;N,22.39
 実測値C,52.24;H,5.49;N,22.78
Figure JPOXMLDOC01-appb-C000008
Further, the following results were obtained when elemental analysis was performed using a CHN coder MT-6 (Yanaco Analytical Industrial Co., Ltd.), a simultaneous carbon, hydrogen, and nitrogen quantitative determination apparatus.
Calculated C, 52.79; H, 5.64; N, 22.39
Found C, 52.24; H, 5.49; N, 22.78
Figure JPOXMLDOC01-appb-C000008
〔二酸化炭素吸収量、回収量の評価方法〕
(実施例1)
 上記合成例1で得られた3-フェニルアリリデンアミノグアニジン9.5g(10質量%)と、水85.5g(90質量%)とを混合し、スラリー状の二酸化炭素吸収剤95gを調製した。この二酸化炭素吸収剤を200mLフラスコに充填してアルミブロックで25℃に加熱し、磁気撹拌子を用いて撹拌しながら、二酸化炭素(CO)純度99.5体積%を流速100mL/minで60分間通気(バブリング)した。通気前と通気後の二酸化炭素吸収剤の重量を測定し、得られた重量から25℃における重量増加量を算出した。そして、25℃における重量増加量(CO吸収量)から、3-フェニルアリリデンアミノグアニジン1molに対して吸収したCOのmol量(CO吸収量A)を算出した。なお、この装置図は図2に示す。
[Method of evaluating carbon dioxide absorption and recovery]
(Example 1)
9.5 g (10% by mass) of 3-phenylarylideneaminoguanidine obtained in Synthesis Example 1 and 85.5 g (90% by mass) of water were mixed to prepare 95 g of a slurry carbon dioxide absorbent. . This carbon dioxide absorbent is filled in a 200 mL flask, heated to 25 ° C. with an aluminum block, and stirred with a magnetic stirrer to achieve a carbon dioxide (CO 2 ) purity of 99.5 vol% at a flow rate of 100 mL / min. Bubbling was performed for a minute. The weight of the carbon dioxide absorbent before and after aeration was measured, and the weight increase at 25 ° C. was calculated from the obtained weight. Then, was calculated from the amount of weight increase at 25 ° C. (CO 2 absorption), 3-phenyl-arylidene aminoguanidine 1 mol mol amount of CO 2 absorbed against the (CO 2 absorption amount A). This apparatus diagram is shown in FIG.
 また、別途、二酸化炭素吸収剤を調製し、アルミブロックの加熱温度を80℃にしたこと以外は上記と同様にして、80℃における重量増加量を算出した。そして、80℃における重量増加量(CO吸収量)から、3-フェニルアリリデンアミノグアニジン1molに対して吸収したCOのmol量(CO吸収量C)を算出した。同様にして、40℃におけるCOのmol量(CO吸収量B)及び100℃におけるCOのmol量(CO吸収量D)も測定した。 Separately, a carbon dioxide absorbent was prepared, and the weight increase at 80 ° C. was calculated in the same manner as described above except that the heating temperature of the aluminum block was 80 ° C. The increase in weight at 80 ° C. from (CO 2 absorption amount) was calculated 3-phenyl arylidene aminoguanidine 1 mol mol amount of CO 2 absorbed against the (CO 2 absorption amount C). Similarly, the molar amount of CO 2 at 40 ° C. (CO 2 absorption amount B) and the molar amount of CO 2 at 100 ° C. (CO 2 absorption amount D) were also measured.
 25℃において吸収されたCOmol量と、80℃において吸収されたCOmol量との差分をCO回収量(A-C)として評価した。尚、室内は常圧・常温であった。その結果を表1に示す。 The difference between the amount of CO 2 mol absorbed at 25 ° C. and the amount of CO 2 mol absorbed at 80 ° C. was evaluated as the CO 2 recovery amount (AC). The room was at normal pressure and room temperature. The results are shown in Table 1.
(実施例2)
 水に代えて、エチレングリコール(東京化成工業株式会社)を用いたこと以外は、実施例1と同様にして二酸化炭素吸収剤を調製し、実施例1と同様の装置を用い、同条件下でCO吸収量A~D、及びCO回収量(A-C)を測定した。
(Example 2)
A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that ethylene glycol (Tokyo Chemical Industry Co., Ltd.) was used instead of water, and the same apparatus as in Example 1 was used under the same conditions. The CO 2 absorption amounts A to D and the CO 2 recovery amount (AC) were measured.
(比較例1)
 3-フェニルアリリデンアミノグアニジンに代えて、モノエタノールアミン(東京化成工業株式会社)を用いたこと以外は、実施例1と同様にして二酸化炭素吸収剤を調製し、実施例1と同様の装置を用い、同条件下でCO吸収量A~D、及びCO回収量(A-C)を測定した。
(Comparative Example 1)
A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that monoethanolamine (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylarylideneaminoguanidine, and the same apparatus as in Example 1 was prepared. Was used to measure the CO 2 absorption amounts AD and the CO 2 recovery amount (AC).
(比較例2)
 3-フェニルアリリデンアミノグアニジンに代えて、エチルアミノエタノール(東京化成工業株式会社)を用いたこと以外は、実施例1と同様にして二酸化炭素吸収剤を調製し、実施例1と同様の装置を用い、同条件下でCO吸収量A~D、及びCO回収量(A-C)を測定した。
(Comparative Example 2)
A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that ethylaminoethanol (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylarylideneaminoguanidine. Was used to measure the CO 2 absorption amounts AD and the CO 2 recovery amount (AC).
(比較例3)
 3-フェニルアリリデンアミノグアニジンに代えて、メチルジエタノールアミン(東京化成工業株式会社)を用いたこと以外は、実施例1と同様にして二酸化炭素吸収剤を調製し、実施例1と同様の装置を用い、同条件下でCO吸収量A~D、及びCO回収量(A-C)を測定した。
(Comparative Example 3)
A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that methyldiethanolamine (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylallylideneaminoguanidine, and an apparatus similar to that in Example 1 was prepared. Used, under the same conditions, the CO 2 absorption amounts A to D and the CO 2 recovery amount (AC) were measured.
(比較例4)
 3-フェニルアリリデンアミノグアニジンに代えて、ジフェニルアミン(東京化成工業株式会社)を用いたこと以外は、実施例1と同様にして二酸化炭素吸収剤を調製し、実施例1と同様の装置を用い、同条件下でCO吸収量A~D、及びCO回収量(A-C)を測定した。
(Comparative Example 4)
A carbon dioxide absorbent was prepared in the same manner as in Example 1 except that diphenylamine (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylarylideneaminoguanidine, and the same apparatus as in Example 1 was used. Under the same conditions, the CO 2 absorption amounts A to D and the CO 2 recovery amount (AC) were measured.
Figure JPOXMLDOC01-appb-T000009
 PAG     :3-フェニルアリリデンアミノグアニジン
 MEA     :モノエタノールアミン
 EAE     :エチルアミノエタノール
 MDEA    :メチルジエタノールアミン
 DPA     :ジフェニルアミン
 CO吸収量単位:COmol/アミンmol
Figure JPOXMLDOC01-appb-T000009
PAG: 3- phenyl-allylidene aminoguanidine MEA: monoethanolamine EAE: ethylamino ethanol MDEA: methyldiethanolamine DPA: Diphenylamine CO 2 absorption units: CO 2 mol / amine mol
 表1より、本発明のアルキリデンアミノグアニジンを含有する二酸化炭素吸収剤(実施例1)は、室温における二酸化炭素吸収性能及び80℃における二酸化炭素放出性能に優れ、比較例1~4よりもCO回収量が大きく、省エネルギーでCOを分離回収可能であることがわかった。また、水に代えてエチレングリコールを用いることにより、アルキリデンアミノグアニジンを均一に溶解させた二酸化炭素吸収剤(実施例2)においては、水にアルキリデンアミノグアニジンをスラリー状に分散させた二酸化炭素吸収剤(実施例1)と比較して、CO吸収量Aが大きくなり、CO回収量(A-C)も増えることが分かった。 From Table 1, the carbon dioxide absorbent (Example 1) containing the alkylideneaminoguanidine of the present invention is excellent in carbon dioxide absorption performance at room temperature and carbon dioxide release performance at 80 ° C., and CO 2 is superior to Comparative Examples 1 to 4. It was found that the recovery amount was large and CO 2 could be separated and recovered with energy saving. Further, in the carbon dioxide absorbent in which alkylideneaminoguanidine is uniformly dissolved by using ethylene glycol instead of water (Example 2), the carbon dioxide absorbent in which alkylideneaminoguanidine is dispersed in water in a slurry state. As compared with Example 1, it was found that the CO 2 absorption amount A increased and the CO 2 recovery amount (AC) also increased.
〔二酸化炭素の脱離温度及び化合物の耐熱性の評価〕
(実施例3)
 上記合成例1で得られた3-フェニルアリリデンアミノグアニジン(固体)を所定量測り取り、二酸化炭素の脱離温度の評価と、耐熱性の評価を行った。
[Evaluation of desorption temperature of carbon dioxide and heat resistance of compounds]
(Example 3)
A predetermined amount of 3-phenylarylideneaminoguanidine (solid) obtained in Synthesis Example 1 was measured, and the desorption temperature of carbon dioxide and the heat resistance were evaluated.
 二酸化炭素吸収剤の二酸化炭素の脱離温度と耐熱性の評価は、示差走査熱量測定装置(セイコーインスツル社製)及び、熱重量測定装置(セイコーインスツル社製)を用いた。示差走査熱量測定による吸熱ピークと吸熱ピークを示した温度での熱重量減少から二酸化炭素の脱離温度及び融点を求めた。また、熱重量減少温度より、耐熱性を評価した。測定条件を以下に示す。
(示差走査熱量の測定条件)
 容器  :アルミパン
 昇温速度:10℃/min
 雰囲気 :N
 測定温度:30-330℃
 (熱重量減少の測定条件)
 容器  :アルミパン
 昇温速度:10℃/min
 雰囲気 :N
 測定温度:30-350℃
For the evaluation of the carbon dioxide desorption temperature and heat resistance of the carbon dioxide absorbent, a differential scanning calorimeter (manufactured by Seiko Instruments Inc.) and a thermogravimetric instrument (manufactured by Seiko Instruments Inc.) were used. The desorption temperature and melting point of carbon dioxide were determined from the endothermic peak by differential scanning calorimetry and the thermogravimetric decrease at the temperature showing the endothermic peak. Moreover, heat resistance was evaluated from the thermogravimetric temperature. The measurement conditions are shown below.
(Differential scanning calorimetry measurement conditions)
Container: Aluminum pan Temperature increase rate: 10 ° C / min
Atmosphere: N 2
Measurement temperature: 30-330 ° C
(Measurement conditions for thermogravimetry)
Container: Aluminum pan Temperature increase rate: 10 ° C / min
Atmosphere: N 2
Measurement temperature: 30-350 ° C
(実施例4)
 3-フェニルアリリデンアミノグアニジンに代えて、上記合成例2で得られた重炭酸3-フェニルアリリデンアミノグアニジン(固体)を用いたこと以外は、実施例3と同様に二酸化炭素の脱離温度及び化合物の耐熱性を評価した。
Example 4
The desorption temperature of carbon dioxide was the same as in Example 3 except that 3-phenylarylideneaminoguanidine bicarbonate (solid) obtained in Synthesis Example 2 was used instead of 3-phenylarylideneaminoguanidine. And the heat resistance of the compound was evaluated.
(比較例5)
 3-フェニルアリリデンアミノグアニジンに代えて、重炭酸アミノグアニジン(東京化成工業株式会社)を用いたこと以外は、実施例3と同様に二酸化炭素の脱離温度及び化合物の耐熱性を評価した。
(Comparative Example 5)
The desorption temperature of carbon dioxide and the heat resistance of the compound were evaluated in the same manner as in Example 3 except that aminoguanidine bicarbonate (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylallylideneaminoguanidine.
(比較例6)
 3-フェニルアリリデンアミノグアニジンに代えて、グアニジン炭酸塩(東京化成工業株式会社)を用いたこと以外は、実施例3と同様に二酸化炭素の脱離温度及び化合物の耐熱性を評価しした。
(Comparative Example 6)
The desorption temperature of carbon dioxide and the heat resistance of the compound were evaluated in the same manner as in Example 3 except that guanidine carbonate (Tokyo Chemical Industry Co., Ltd.) was used instead of 3-phenylallylideneaminoguanidine.
Figure JPOXMLDOC01-appb-T000010
 ※1:二酸化炭素を含有していないので観測されず
 ※2:二酸化炭素を含有しているが観測されず
 PAG   :3-フェニルアリリデンアミノグアニジン
 PAG(C):重炭酸塩3-フェニルアリリデンアミノグアニジン
 AG(C) :重炭酸アミノグアニジン
 G(C)  :グアニジン炭酸塩
Figure JPOXMLDOC01-appb-T000010
* 1: Not observed because it does not contain carbon dioxide * 2: Contains carbon dioxide but not observed PAG: 3-phenylarylideneaminoguanidine PAG (C): Bicarbonate 3-phenylarylidene Aminoguanidine AG (C): Aminoguanidine bicarbonate G (C): Guanidine carbonate
 なお、実施例3は、二酸化炭素を吸収する前の3-フェニルアリリデンアミノグアニジンを用いた例であり、実施例4は、二酸化炭素を吸収した後の3-フェニルアリリデンアミノグアニジン(重炭酸塩3-フェニルアリリデンアミノグアニジン)を用いた例である。 Example 3 is an example using 3-phenylarylideneaminoguanidine before absorbing carbon dioxide, and Example 4 is 3-phenylarylideneaminoguanidine (bicarbonate) after absorbing carbon dioxide. Salt 3-phenylallylideneaminoguanidine).
 表2より、本発明のアルキリデンアミノグアニジンを含有する二酸化炭素吸収剤は、構造の類似する重炭酸アミノグアニジンよりも二酸化炭素の脱離温度が低い(実施例4、比較例5の比較)。また、熱重量減少温度も高いことから、耐熱性にも優れていることがわかった(実施例3、比較例5の比較)。また、構造の類似するグアニジン炭酸塩は耐熱性に優れてはいるものの、二酸化炭素の脱離は観測されず、二酸化炭素分離剤としては使用ができないことがわかった(比較例6)。 From Table 2, the carbon dioxide absorbent containing the alkylidene aminoguanidine of the present invention has a lower carbon dioxide desorption temperature than the aminoguanidine bicarbonate having a similar structure (comparison of Example 4 and Comparative Example 5). Moreover, since the thermogravimetric reduction temperature was also high, it turned out that it is excellent also in heat resistance (comparison of Example 3 and Comparative Example 5). Further, although guanidine carbonate having a similar structure is excellent in heat resistance, no desorption of carbon dioxide was observed, indicating that it cannot be used as a carbon dioxide separating agent (Comparative Example 6).
 以上のことから、本発明の二酸化炭素吸収剤に含まれるアルキリデンアミノグアニジンは、二酸化炭素回収量、脱離温度及び、耐熱性において優れた性質を示すことが示された。 From the above, it was shown that the alkylideneaminoguanidine contained in the carbon dioxide absorbent of the present invention exhibits excellent properties in carbon dioxide recovery, desorption temperature, and heat resistance.
 本出願は、2016年9月2日に日本国特許庁へ出願された日本特許出願(特願2016-172182)、2016年12月14日に日本国特許庁へ出願された日本特許出願(特願2016-242666)に基づくものであり、その内容はここに参照として取り込まれる。 This application includes a Japanese patent application filed with the Japan Patent Office on September 2, 2016 (Japanese Patent Application No. 2016-172182), and a Japanese patent application filed with the Japan Patent Office on December 14, 2016 (Japanese Patent No. 2016-242666), the contents of which are incorporated herein by reference.
 本発明は、ガス中に含まれる二酸化炭素を吸収させた後、再度放出させて分離するための二酸化炭素吸収剤を提供することができ、さらに詳しくは、省エネルギーで安定に分離するための二酸化炭素吸収剤として産業上の利用可能性を有する。また、燃焼排ガスのような二酸化炭素を含有するガスからの二酸化炭素の分離方法として産業上の利用可能性を有する。 The present invention can provide a carbon dioxide absorbent for absorbing and separating carbon dioxide contained in gas, and more specifically, carbon dioxide for energy-saving and stable separation. It has industrial applicability as an absorbent. Further, it has industrial applicability as a method for separating carbon dioxide from a gas containing carbon dioxide such as combustion exhaust gas.

Claims (12)

  1.  下記一般式(1)で表されるアルキリデンアミノグアニジンを含有する、
     二酸化炭素吸収剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、各々独立して、水素原子又は置換基を有していてもよい炭素数1~18の炭化水素基である。)
    Containing an alkylideneaminoguanidine represented by the following general formula (1),
    Carbon dioxide absorbent.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms which may have a substituent.)
  2.  さらに、溶媒を含有する、
     請求項1に記載の二酸化炭素吸収剤。
    Further containing a solvent,
    The carbon dioxide absorbent according to claim 1.
  3.  前記溶媒が、水、グリコール系溶媒、アルコール系溶媒、及び非プロトン性極性溶媒からなる群より選ばれる少なくとも1種以上を含む、
     請求項2に記載の二酸化炭素吸収剤。
    The solvent contains at least one selected from the group consisting of water, glycol solvents, alcohol solvents, and aprotic polar solvents,
    The carbon dioxide absorbent according to claim 2.
  4.  前記グリコール系溶媒が、エチレングリコール、プロピレングリコール、及びジエチレングリコールからなる群より選ばれる少なくとも1種以上を含む、
     請求項3に記載の二酸化炭素吸収剤。
    The glycol solvent contains at least one selected from the group consisting of ethylene glycol, propylene glycol, and diethylene glycol,
    The carbon dioxide absorbent according to claim 3.
  5.  前記アルキリデンアミノグアニジンが、下記式(2)で表される化合物を含む、
     請求項1~4のいずれか1項に記載の二酸化炭素吸収剤。
    Figure JPOXMLDOC01-appb-C000002
    The alkylidene aminoguanidine includes a compound represented by the following formula (2):
    The carbon dioxide absorbent according to any one of claims 1 to 4.
    Figure JPOXMLDOC01-appb-C000002
  6.  前記アルキリデンアミノグアニジンの含有量が、前記二酸化炭素吸収剤の総量に対して、5.0質量%以上80.0質量%以下である、
     請求項1~5のいずれか一項に記載の二酸化炭素吸収剤。
    The alkylidene aminoguanidine content is 5.0% by mass or more and 80.0% by mass or less based on the total amount of the carbon dioxide absorbent.
    The carbon dioxide absorbent according to any one of claims 1 to 5.
  7.  前記溶媒の総含有量が、前記二酸化炭素吸収剤の総量に対して、1.0質量%以上95.0質量%以下である、
     請求項2~6のいずれか一項に記載の二酸化炭素吸収剤。
    The total content of the solvent is 1.0% by mass or more and 95.0% by mass or less with respect to the total amount of the carbon dioxide absorbent.
    The carbon dioxide absorbent according to any one of claims 2 to 6.
  8.  請求項1~7のいずれか一項に記載の二酸化炭素吸収剤と、二酸化炭素を含むガスと、を接触させることにより、前記二酸化炭素吸収剤に前記二酸化炭素を吸収させる接触工程と、
     前記二酸化炭素を吸収した前記二酸化炭素吸収剤を加熱することにより、前記二酸化炭素吸収剤から前記二酸化炭素を脱離させる脱離工程と、を含む、
     二酸化炭素の分離回収方法。
    A contacting step in which the carbon dioxide absorbent is absorbed by the carbon dioxide absorbent according to any one of claims 1 to 7 and a gas containing carbon dioxide;
    Desorbing the carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed the carbon dioxide.
    Carbon dioxide separation and recovery method.
  9.  前記接触工程における温度が、0℃以上60℃未満である、
     請求項8に記載の二酸化炭素の分離回収方法。
    The temperature in the contact step is 0 ° C. or more and less than 60 ° C.,
    The method for separating and recovering carbon dioxide according to claim 8.
  10.  前記脱離工程における温度が、60℃以上120℃以下である、
     請求項8又は9に記載の二酸化炭素の分離回収方法。
    The temperature in the desorption step is 60 ° C. or higher and 120 ° C. or lower.
    The method for separating and recovering carbon dioxide according to claim 8 or 9.
  11.  請求項1~7のいずれか一項に記載の二酸化炭素吸収剤を備え、二酸化炭素を含有するガスと前記二酸化炭素吸収剤とを接触させて、前記二酸化炭素吸収剤に前記二酸化炭素を吸収させる吸収装置と、
     該吸収装置において前記二酸化炭素を吸収した前記二酸化炭素吸収剤を加熱することによって、前記二酸化炭素吸収剤から前記二酸化炭素を脱離する脱離装置と、を有する、
     二酸化炭素分離回収装置。
    A carbon dioxide absorbent according to any one of claims 1 to 7, wherein a gas containing carbon dioxide and the carbon dioxide absorbent are brought into contact with each other to cause the carbon dioxide absorbent to absorb the carbon dioxide. An absorption device;
    A desorption device that desorbs the carbon dioxide from the carbon dioxide absorbent by heating the carbon dioxide absorbent that has absorbed the carbon dioxide in the absorber.
    Carbon dioxide separation and recovery device.
  12.  脱離した前記二酸化炭素を回収するための回収装置を有する、
     請求項11に記載の二酸化炭素分離回収装置。
    Having a recovery device for recovering the desorbed carbon dioxide;
    The carbon dioxide separation and recovery device according to claim 11.
PCT/JP2017/031316 2016-09-02 2017-08-31 Carbon dioxide absorbent, and method and apparatus for separating and recovering carbon dioxide with use of said absorbent WO2018043630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537386A JP6940824B2 (en) 2016-09-02 2017-08-31 Carbon dioxide absorber, carbon dioxide separation / recovery method using the absorbent, and separation / recovery device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016172182 2016-09-02
JP2016-172182 2016-09-02
JP2016242666 2016-12-14
JP2016-242666 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018043630A1 true WO2018043630A1 (en) 2018-03-08

Family

ID=61301032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031316 WO2018043630A1 (en) 2016-09-02 2017-08-31 Carbon dioxide absorbent, and method and apparatus for separating and recovering carbon dioxide with use of said absorbent

Country Status (2)

Country Link
JP (1) JP6940824B2 (en)
WO (1) WO2018043630A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236165A (en) * 2011-05-12 2012-12-06 National Institute Of Advanced Industrial Science & Technology Gas separation and recovery method for recovering carbon dioxide using low temperature waste heat
CN103694482A (en) * 2012-09-27 2014-04-02 中国科学院大连化学物理研究所 Cellulose solution, cellulose dissolution method and regenerated cellulose
KR20150050492A (en) * 2013-10-30 2015-05-08 광주과학기술원 Carbon dioxide absorbent solution comprising guanidine derivatives and method for regenerating the same
WO2015190504A1 (en) * 2014-06-10 2015-12-17 三菱瓦斯化学株式会社 Alkylidene aminoganidine and salt thereof, modifier composition, modified rubber for tire, rubber composition for tire, and tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236165A (en) * 2011-05-12 2012-12-06 National Institute Of Advanced Industrial Science & Technology Gas separation and recovery method for recovering carbon dioxide using low temperature waste heat
CN103694482A (en) * 2012-09-27 2014-04-02 中国科学院大连化学物理研究所 Cellulose solution, cellulose dissolution method and regenerated cellulose
KR20150050492A (en) * 2013-10-30 2015-05-08 광주과학기술원 Carbon dioxide absorbent solution comprising guanidine derivatives and method for regenerating the same
WO2015190504A1 (en) * 2014-06-10 2015-12-17 三菱瓦斯化学株式会社 Alkylidene aminoganidine and salt thereof, modifier composition, modified rubber for tire, rubber composition for tire, and tire

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HENRY R. A. ET AL.: "The Hydrazinolysis of Nitroguanidine in Alcoholic Systems. Preparation and Reactions of 1,6- Dinitrobiguanidine", J. AM. CHEM. SOC., vol. 75, no. 4, 20 February 1953 (1953-02-20), pages 955 - 962, XP055470018, ISSN: 0002-7863 *
LI, T. ET AL.: "Screening and evaluating aminated cationic functional moieties for potential C02 capture applications using an anionic MOF scaffold", CHEM. COMMUN., vol. 49, no. 97, 28 October 2013 (2013-10-28), pages 11385 - 11387, XP055469971, ISSN: 1359-7345 *
RAJAMANICKAM, R. ET AL.: "Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation", SCIENTIFIC REPORTS, vol. 5, no. 10688, 2 June 2015 (2015-06-02), pages 1 - 7, XP055469969, ISSN: 2045-2322 *
XIE, H. ET AL.: "Capturing C02 for cellulose dissolution", GREEN CHEMISTRY, vol. 16, no. 5, 30 January 2014 (2014-01-30), pages 2422 - 2427, XP055469965 *

Also Published As

Publication number Publication date
JP6940824B2 (en) 2021-09-29
JPWO2018043630A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP5091358B2 (en) CO2 absorption from gas mixtures using aqueous 4-amino-2,2,6,6-tetramethylpiperidine
JP5794913B2 (en) Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
JP5452222B2 (en) Method for efficiently recovering carbon dioxide in gas
CN104168979B (en) CO is absorbed from admixture of gas 2method
US9878285B2 (en) Method and absorption medium for absorbing CO2 from a gas mixture
US20130164204A1 (en) Solvent composition for carbon dioxide recovery
JP5557426B2 (en) Aqueous solution and method for efficiently absorbing and recovering carbon dioxide in gas
JP6173817B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP5047481B2 (en) Gas purification method
AU2015201648B2 (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
JP5506486B2 (en) Aqueous solution that effectively absorbs and recovers carbon dioxide contained in gas
CA2893611A1 (en) Method of absorbing co2 from a gas mixture
JPWO2006107026A1 (en) Absorption liquid, CO2 and / or H2S removal method and apparatus
JP2009006275A (en) Efficient recovering method of carbon dioxide in exhaust gas
EP2959956B1 (en) Liquid for absorbing and recovering carbon dioxide in gas, and method for recovering carbon dioxide with use of same
JP5688335B2 (en) Carbon dioxide absorbent and method for separating and recovering carbon dioxide using the absorbent
KR101549950B1 (en) Carbon Dioxide Absorbent Comprising Triamine
JP2017035669A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2008168184A (en) Composition for absorbing and dissociating carbon dioxide in exhaust gas to recover it and carbon dioxide recovering method using it
WO2018043630A1 (en) Carbon dioxide absorbent, and method and apparatus for separating and recovering carbon dioxide with use of said absorbent
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JP2015047581A (en) Carbon dioxide absorbent and carbon dioxide separation and recovery method using the same
KR101446311B1 (en) Nitrile-Functionalized Amines as CO2 Absorbent And Method for Absorbing And Exhausting CO2 Using the Same
JP7185421B2 (en) Acid gas absorbent, method for removing acid gas, and apparatus for removing acid gas
JP2022085754A (en) Absorption liquid and separation recovery method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537386

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846634

Country of ref document: EP

Kind code of ref document: A1