JP2009006275A - Efficient recovering method of carbon dioxide in exhaust gas - Google Patents

Efficient recovering method of carbon dioxide in exhaust gas Download PDF

Info

Publication number
JP2009006275A
JP2009006275A JP2007170687A JP2007170687A JP2009006275A JP 2009006275 A JP2009006275 A JP 2009006275A JP 2007170687 A JP2007170687 A JP 2007170687A JP 2007170687 A JP2007170687 A JP 2007170687A JP 2009006275 A JP2009006275 A JP 2009006275A
Authority
JP
Japan
Prior art keywords
carbon dioxide
aqueous solution
absorption
desorption
absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007170687A
Other languages
Japanese (ja)
Inventor
Shinkichi Shimizu
信吉 清水
Alam Chowdhury Firoz
フィロツ・アラム・チョウドリ
Kazuya Goto
和也 後藤
Hiromichi Okabe
弘道 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2007170687A priority Critical patent/JP2009006275A/en
Publication of JP2009006275A publication Critical patent/JP2009006275A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovering method of carbon dioxide of high purity, not only highly efficiently recovering carbon dioxide in gas, but also highly efficiently eliminating carbon dioxide from an aqueous solution having absorbed carbon dioxide. <P>SOLUTION: The recovering method of carbon dioxide from gas containing carbon dioxide comprises (1) a process of absorbing carbon dioxide into an aqueous solution by bringing gas containing carbon dioxide into contact with the aqueous solution containing only isopropyl aminoethanol as an effective component (content of isopropyl aminoethanol in the aqueous solution is 35-50 wt.%), and (2) a process of eliminating and recovering carbon dioxide by heating the aqueous solution having absorbed carbon dioxide obtained in the process (1). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガス中に含まれる二酸化炭素(CO)を、二酸化炭素回収用水溶液を用いて吸収し、続いて二酸化炭素が吸収された二酸化炭素回収用水溶液から二酸化炭素を脱離して回収する方法に関する。 The present invention absorbs carbon dioxide (CO 2 ) contained in a gas by using an aqueous solution for carbon dioxide recovery, and subsequently recovers by desorbing carbon dioxide from the aqueous solution for carbon dioxide recovery in which carbon dioxide has been absorbed. Regarding the method.

近年、地球温暖化に起因すると考えられる気象変動や災害の頻発が、農業生産、住環境、エネルギー消費等に多大の影響をおよぼしている。この地球温暖化は、人間の活動が活発になることに付随して増大する二酸化炭素、メタン、亜酸化窒素、フロン等の温室効果ガスが大気中に増大するためであると考えられている。その温室効果ガスの中で最も主要なものとして、大気中の二酸化炭素が挙げられる。地球温暖化の防止のため1997年12月には温暖化防止京都会議(COP3)が開催され、その会議で採択された京都議定書が2005年2月16日に発効し、二酸化炭素放出量の削減に向けての対策が緊急に必要となっている。   In recent years, frequent weather fluctuations and disasters that are thought to be caused by global warming have greatly affected agricultural production, living environment, energy consumption, and the like. This global warming is considered to be due to an increase in the atmosphere of greenhouse gases such as carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons, which increase as human activities become active. The most important greenhouse gas is carbon dioxide in the atmosphere. To prevent global warming, the Kyoto Conference on Global Warming Prevention (COP3) was held in December 1997, and the Kyoto Protocol adopted at that conference entered into force on February 16, 2005, reducing CO2 emissions. There is an urgent need to take measures toward this.

二酸化炭素の発生源としては石炭、重油、天然ガス等を燃料とする火力発電所、製造所のボイラーあるいはセメント工場のキルン、コークスで酸化鉄を還元する製鐵所の高炉、そしてガソリン、重油、軽油等を燃料とする自動車、船舶、航空機等の輸送機器などがある。これらのうち輸送機器を除くものについては固定的な設備であり、二酸化炭素の放出を削減する対策を施しやすい設備として期待されている。   Sources of carbon dioxide include coal, heavy oil, natural gas and other thermal power plants, factory boilers or kilns in cement plants, blast furnace blast furnaces that reduce iron oxide with coke, gasoline, heavy oil, There are transportation equipment such as automobiles, ships, and aircraft that use light oil as fuel. Of these, those other than transportation equipment are fixed facilities, and are expected to be easy to implement measures to reduce carbon dioxide emissions.

ガス中の二酸化炭素を回収する方法としてはこれまでもいくつかの方法が知られている。そしてまた現在も広く種々の方法が研究されている。   Several methods have been known so far for recovering carbon dioxide in gas. And now, various methods are widely studied.

例えば、二酸化炭素を含むガスを吸収塔内でアルカノールアミン水溶液と接触させて二酸化炭素を吸収させた後、その二酸化炭素回収用水溶液を加熱して脱離塔で二酸化炭素を脱離回収させる方法は、1930年代から開発され、尿素合成プラント塔で実用化されている。この方法は、経済的でありかつ大型化しやすいものである。   For example, after a gas containing carbon dioxide is brought into contact with an alkanolamine aqueous solution in an absorption tower to absorb carbon dioxide, the carbon dioxide recovery aqueous solution is heated to desorb and recover carbon dioxide in the desorption tower. Developed since the 1930s and put into practical use in urea synthesis plant towers. This method is economical and easy to enlarge.

ここでアルカノールアミンとしては、モノエタノールアミン(以下、MEAと示すこともある)、ジエタノールアミン(以下、DEAと示すこともある)、トリエタノールアミン(以下、TEAと示すこともある)、メチルジエタノールアミン(以下、MDEAと示すこともある)、ジイソプロパノールアミン(DIPA)、ジグリコールアミン(DGA)等が知られているが、通常MEAが用いられている。   Here, examples of the alkanolamine include monoethanolamine (hereinafter sometimes referred to as MEA), diethanolamine (hereinafter sometimes referred to as DEA), triethanolamine (hereinafter sometimes referred to as TEA), methyldiethanolamine ( Hereinafter, it may be indicated as MDEA), diisopropanolamine (DIPA), diglycolamine (DGA), etc., but MEA is usually used.

しかし、これらのアルカノールアミンの水溶液を吸収液として用いた場合、装置の材質の腐食性が高いため、装置に高価な耐食鋼を用いる必要があったり、吸収液中のアミン濃度をさげる必要がある。また、吸収した二酸化炭素を脱離しにくいために、脱離の温度を120℃と高い温度に加熱して脱離、回収する必要がある。また、それとは別に二酸化炭素を吸収液から脱離するのに必要なエネルギーが、20cal/molCOと高いという欠点もある。例えば、この方法を用いて発電所において二酸化炭素を回収するには、発電量の20%にもあたる余分なエネルギーが必要となってしまう。二酸化炭素の発生の削減、省エネルギー及び省資源が求められる時代においては、この高エネルギー消費は二酸化炭素吸収、回収設備の実用化を阻む大きな要因となっている。 However, when an aqueous solution of these alkanolamines is used as the absorbing solution, the material of the device is highly corrosive, so it is necessary to use expensive corrosion-resistant steel for the device or to reduce the concentration of amine in the absorbing solution. . Further, since the absorbed carbon dioxide is difficult to desorb, it is necessary to desorb and recover by heating the desorption temperature to a high temperature of 120 ° C. In addition, the energy required for desorbing carbon dioxide from the absorbing solution is also high at 20 cal / mol CO 2 . For example, in order to collect carbon dioxide at a power plant using this method, extra energy equivalent to 20% of the power generation amount is required. In an era where reduction of carbon dioxide generation, energy saving and resource saving are required, this high energy consumption is a major factor that impedes the practical use of carbon dioxide absorption and recovery equipment.

例えば、特許文献1には、アミノ基周辺にアルキル基等の立体障害があるいわゆるヒンダードアミンの水溶液と大気圧下の燃焼排ガスとを接触させ、当該水溶液に二酸化炭素を吸収させることによる、燃料排ガス中の二酸化炭素の除去方法が記載されている。   For example, in Patent Document 1, a so-called hindered amine aqueous solution having a steric hindrance such as an alkyl group around an amino group is brought into contact with combustion exhaust gas under atmospheric pressure, and carbon dioxide is absorbed in the aqueous solution. A method for removing carbon dioxide is described.

当該特許文献1には、ヒンダードアミンとして2−メチルアミノエタノール(以下、MAEと示すこともある)及び2−エチルアミノエタノール(以下、EAEと示すこともある)の実施例が記され、MAEおよびEAEの水溶液が、二酸化炭素の吸収に好ましいと記載されている。   Patent Document 1 describes examples of 2-methylaminoethanol (hereinafter also referred to as MAE) and 2-ethylaminoethanol (hereinafter also referred to as EAE) as hindered amines. MAE and EAE Is described as being preferred for carbon dioxide absorption.

特許文献2には、アミン水溶液と混合ガスとを接触させて二酸化炭素を吸収する工程及び当該水溶液から二酸化炭素を脱離する工程を含む二酸化炭素の除去方法が記載されている。   Patent Document 2 describes a carbon dioxide removal method including a step of bringing an aqueous amine solution into contact with a mixed gas to absorb carbon dioxide and a step of desorbing carbon dioxide from the aqueous solution.

特許文献2には、アミン水溶液として、2級もしくは3級炭素と結合した2級アミノ基又は3級炭素と結合した1級アミンを含む化合物、例えば、2−メチルピペラジン(以下、2MPZと示すこともある)、2−アミノ−2-メチル−1−プロパノール(以下、AMPと示すこともある)等が記載されている。   Patent Document 2 discloses a compound containing a secondary amino group bonded to a secondary or tertiary carbon or a primary amine bonded to a tertiary carbon, for example, 2-methylpiperazine (hereinafter referred to as 2MPZ) as an aqueous amine solution. 2), 2-amino-2-methyl-1-propanol (hereinafter sometimes referred to as AMP), and the like.

特許文献3には、(A)分子内にアルコール性の水酸基を1個と第一アミノ基とを有し、該第一アミノ基は2個の非置換アルキル基を有する第三級炭素原子に結合したものである化合物、及び(C)ジエタノールアミンからなる群から選ばれるアミン化合物100重量部:ならびに(D)ピペラジン、(E)ピペリジン、(F)モルフォリン、(G)グリシン、(H)2−ピペリジノエタノール及び(I)分子内にアルコール性水酸基を1個と第二アミノ基とを有し、該第二アミノ基は結合炭素原子を含めて炭素数2以上の連鎖を有する基に結合したN原子と炭素数3以下の非置換アルキル基とを有するものである化合物からなる群から選ばれるアミン化合物1〜25重量部の混合水溶液と大気圧中の燃焼排ガスとを接触させることを特徴とする燃焼排ガス中の二酸化炭素を除去する方法が記載されている。当該特許文献3には、(I)で示されるアミン化合物として、エチルアミノエタノール及び2−メチルアミノエタノールが好ましいと記載されている。   In Patent Document 3, (A) the molecule has one alcoholic hydroxyl group and a primary amino group, and the primary amino group is a tertiary carbon atom having two unsubstituted alkyl groups. 100 parts by weight of an amine compound selected from the group consisting of a compound that is bound and (C) diethanolamine: and (D) piperazine, (E) piperidine, (F) morpholine, (G) glycine, (H) 2 -Piperidinoethanol and (I) a group having one alcoholic hydroxyl group and a secondary amino group in the molecule, wherein the second amino group is a group having a chain of 2 or more carbon atoms including a bonding carbon atom. Contacting a mixed aqueous solution of 1 to 25 parts by weight of an amine compound selected from the group consisting of a compound having a bonded N atom and an unsubstituted alkyl group having 3 or less carbon atoms with combustion exhaust gas at atmospheric pressure. Features and Method of removing carbon dioxide in combustion exhaust gas is described that. Patent Document 3 describes that ethylaminoethanol and 2-methylaminoethanol are preferable as the amine compound represented by (I).

特許文献4には、大気圧下の燃焼排ガスと、第二級アミン及び第三級アミンのそれぞれの濃度が10〜45重量%の範囲にあるアミン混合水溶液とを接触させて燃焼排ガス中の二酸化炭素を除去する方法が記載されている。参考例として2−イソプロピルアミノエタノール(以下、IPAEと示すこともある)他の30%液の実験例も示されている。   In Patent Document 4, a combustion exhaust gas under atmospheric pressure is brought into contact with an amine mixed aqueous solution in which each concentration of secondary amine and tertiary amine is in the range of 10 to 45% by weight, and the CO 2 in the combustion exhaust gas is contacted. A method for removing carbon is described. As a reference example, there is also shown an experimental example of 2-isopropylaminoethanol (hereinafter sometimes referred to as IPAE) and other 30% liquid.

二酸化炭素の回収方法は、燃焼排ガス中からの二酸化炭素の除去、すなわち水溶液への二酸化炭素の吸収工程、及び二酸化炭素を吸収した水溶液からの二酸化炭素の脱離工程からなるので、効率的に二酸化炭素を回収するためには、当該吸収工程が高効率に行われるだけでなく、脱離工程も高効率に行われる必要がある。   The carbon dioxide recovery method comprises the removal of carbon dioxide from the combustion exhaust gas, that is, the absorption process of carbon dioxide into the aqueous solution, and the desorption process of carbon dioxide from the aqueous solution that has absorbed carbon dioxide. In order to recover carbon, not only the absorption process is performed with high efficiency, but also the desorption process needs to be performed with high efficiency.

前述のように、従来は、水溶液への二酸化炭素の吸収工程の効率化についての多くの試みはなされているが、二酸化炭素の脱離効率は検討されていないか、または検討されていても、その脱離量及び脱離速度が不十分な方法しかなかった。従って、従来の二酸化炭素回収方法は、二酸化炭素の吸収と脱離とのバランスが悪く、二酸化炭素回収の効率が悪いという問題点があった。   As described above, in the past, many attempts have been made to improve the efficiency of the process of absorbing carbon dioxide into an aqueous solution, but the efficiency of desorption of carbon dioxide has not been studied or has been studied. There was only a method with an insufficient amount and rate of desorption. Therefore, the conventional carbon dioxide recovery method has a problem that the balance between absorption and desorption of carbon dioxide is poor and the efficiency of carbon dioxide recovery is poor.

また、二酸化炭素吸収の反応熱、換言すれば二酸化炭素脱離のために必要な熱を小さくすることが大きな課題となっている。
特許2871334号 米国特許第4,112,052号明細書 特許2871335号 特許3197183号
In addition, it is a big problem to reduce the heat of reaction for carbon dioxide absorption, in other words, the heat required for carbon dioxide desorption.
Japanese Patent No. 2871334 US Pat. No. 4,112,052 Japanese Patent No. 2871335 Patent 3197183

以上の従来技術の問題点に鑑み、本発明は、ガス中二酸化炭素の吸収を高効率で行うだけでなく、二酸化炭素を吸収した水溶液からの二酸化炭素の脱離も高効率に行われ、低いエネルギー消費量で、高純度の二酸化炭素を回収する方法を提供することを目的とする。具体的には、単位量あたりの二酸化炭素吸収量や二酸化炭素脱離量が大きく、かつ、二酸化炭素脱離に必要なエネルギーが低い二酸化炭素回収用水溶液を用いて、効率的に二酸化炭素を吸収しかつ脱離して高純度の二酸化炭素を回収する方法を提供することを目的とする。   In view of the above problems of the prior art, the present invention not only absorbs carbon dioxide in a gas with high efficiency, but also efficiently desorbs carbon dioxide from an aqueous solution that has absorbed carbon dioxide. It aims at providing the method of collect | recovering high purity carbon dioxide with energy consumption. Specifically, carbon dioxide is efficiently absorbed using an aqueous solution for carbon dioxide recovery that has a large amount of carbon dioxide absorption and carbon dioxide desorption per unit and low energy required for carbon dioxide desorption. It is another object of the present invention to provide a method for recovering high purity carbon dioxide by desorption.

本発明者らは、アルカノールアミンを含む水溶液への二酸化炭素の吸収に加えて、二酸化炭素を吸収したアミン水溶液からの二酸化炭素の脱離についても鋭意研究した。その結果、種々のアルカノールアミンのうち35〜50重量%のイソプロピルアミノエタノール(以下、IPAEと示すこともある)を含む水溶液を用いた場合に、高い二酸化炭素吸収量、吸収速度を示すだけでなく、高い二酸化炭素脱離量及び脱離速度を顕著に示し、極めて高効率で二酸化炭素を回収できることを見出した。かかる知見に基づき、更に研究を重ねた結果、本発明を完成するに至った。   In addition to absorption of carbon dioxide into an aqueous solution containing alkanolamine, the present inventors have also intensively studied the elimination of carbon dioxide from an aqueous amine solution that has absorbed carbon dioxide. As a result, when using an aqueous solution containing 35 to 50% by weight of isopropylaminoethanol (hereinafter sometimes referred to as IPAE) among various alkanolamines, not only shows high carbon dioxide absorption and absorption rate. The present inventors have found that carbon dioxide can be recovered with extremely high efficiency by remarkably showing a high carbon dioxide desorption amount and desorption rate. As a result of further research based on this knowledge, the present invention has been completed.

即ち、本発明は以下の二酸化炭素を効率的に回収する新規な方法を提供する。   That is, the present invention provides a novel method for efficiently recovering the following carbon dioxide.

項1.二酸化炭素を含むガスから二酸化炭素を回収する方法であって、
(1)有効成分として、式〔I〕:
Item 1. A method for recovering carbon dioxide from a gas containing carbon dioxide,
(1) As an active ingredient, the formula [I]:

Figure 2009006275
Figure 2009006275

で表されるイソプロピルアミノエタノールのみを含む水溶液に二酸化炭素を含むガスを接触させて、該水溶液に二酸化炭素を吸収させる工程、及び
(2)上記工程(1)で得られた二酸化炭素が吸収された水溶液を加熱して、二酸化炭素を脱離して回収する工程、
を含む二酸化炭素の回収方法であって、
前記水溶液中のイソプロピルアミノエタノールの含有量が、35〜50重量%である、
二酸化炭素の回収方法。
A step of bringing a gas containing carbon dioxide into contact with an aqueous solution containing only isopropylaminoethanol represented by formula (2), and absorbing the carbon dioxide into the aqueous solution; and (2) carbon dioxide obtained in the step (1) is absorbed. Heating the aqueous solution to desorb and recover carbon dioxide,
A method for recovering carbon dioxide containing
The content of isopropylaminoethanol in the aqueous solution is 35 to 50% by weight,
Carbon dioxide recovery method.

項2.前記工程(1)において二酸化炭素を含むガスを前記水溶液に60℃以下の温度で接触させ、かつ、前記工程(2)において二酸化炭素が吸収された水溶液を70℃以上の温度で加熱して二酸化炭素を脱離する項1に記載の二酸化炭素回収方法。   Item 2. In the step (1), a gas containing carbon dioxide is brought into contact with the aqueous solution at a temperature of 60 ° C. or lower, and the aqueous solution in which carbon dioxide is absorbed in the step (2) is heated at a temperature of 70 ° C. or higher to produce carbon dioxide. Item 2. The carbon dioxide recovery method according to Item 1, wherein carbon is desorbed.

本発明の二酸化炭素の吸収液を用いた二酸化炭素の分離回収方法は、二酸化炭素の吸収速度が高いのみならず、公知の二酸化炭素回収用水溶液に比較して吸収した二酸化炭素を容易に脱離して、極めて高い吸収・脱離工程1サイクルあたりの二酸化炭素回収量が得られる。また二酸化炭素の吸収反応熱熱も低く、効率的かつ低いエネルギー消費量でガス中の二酸化炭素を吸収及び脱離して、高純度の二酸化炭素を回収することができる。これにより、二酸化炭素吸収塔、二酸化炭素脱離塔及びこれらに付随する装置を小型化し、液循環量も減らしてエネルギー損失を削減し、合わせて建設費用を減らすことが可能となる。   The method for separating and recovering carbon dioxide using the carbon dioxide absorbing liquid of the present invention not only has a high carbon dioxide absorption rate, but also easily desorbs absorbed carbon dioxide as compared with known aqueous solutions for carbon dioxide recovery. Thus, an extremely high carbon dioxide recovery amount per cycle of the absorption / desorption process can be obtained. Further, the heat of reaction for absorption of carbon dioxide is low, and carbon dioxide in the gas can be absorbed and desorbed with an efficient and low energy consumption, so that high purity carbon dioxide can be recovered. As a result, the carbon dioxide absorption tower, the carbon dioxide desorption tower, and the devices associated therewith can be miniaturized, the amount of liquid circulation can be reduced, energy loss can be reduced, and construction costs can be reduced.

また、二酸化炭素吸収に用いるモノエタノールアミン等のアルカノールアミン類は、一般的に炭素鋼などの金属材料に対して高い腐食性を示すが、本発明で用いる混合アミンの水溶液は腐食性も著しく低下し、プラント建設において、高価な高級耐食鋼を用いる必要がない点で有利である。   In addition, alkanolamines such as monoethanolamine used for carbon dioxide absorption are generally highly corrosive to metal materials such as carbon steel, but the aqueous solution of the mixed amine used in the present invention is also significantly reduced in corrosivity. However, it is advantageous in that it is not necessary to use expensive high-grade corrosion resistant steel in plant construction.

以下、本発明を詳述する。
本発明の方法は、
(1)有効成分として、式〔I〕:
The present invention is described in detail below.
The method of the present invention comprises:
(1) As an active ingredient, the formula [I]:

Figure 2009006275
Figure 2009006275

で表されるイソプロピルアミノエタノールのみを含む水溶液(以下、二酸化炭素回収用水溶液と示すこともある。)に二酸化炭素を含むガスを接触させて、該水溶液に二酸化炭素を吸収させる工程、及び
(2)上記工程(1)で得られた二酸化炭素が吸収された水溶液を加熱して、二酸化炭素を脱離して回収する工程、
を含む二酸化炭素の回収方法であり、当該水溶液中のイソプロピルアミノエタノールの含有量は35〜50重量%であることを特徴とする。
A step of bringing a gas containing carbon dioxide into contact with an aqueous solution containing only isopropylaminoethanol represented by (hereinafter also referred to as an aqueous solution for carbon dioxide recovery), and allowing the aqueous solution to absorb carbon dioxide, and (2 ) Heating the aqueous solution in which the carbon dioxide obtained in the above step (1) is absorbed, and desorbing and collecting the carbon dioxide;
And the content of isopropylaminoethanol in the aqueous solution is 35 to 50% by weight.

二酸化炭素回収用水溶液
本発明における二酸化炭素回収用水溶液中のイソプロピルアミノエタノールの濃度は35〜50重量であり、好ましくは37から48重量%であり、より好ましくは38から45重量%である。
Carbon dioxide recovery aqueous solution The concentration of isopropylaminoethanol in the carbon dioxide recovery aqueous solution in the present invention is 35 to 50% by weight, preferably 37 to 48% by weight, and more preferably 38 to 45% by weight.

一般的にはアミン成分の濃度が高い方が単位液容量あたりの二酸化炭素の吸収量、吸収速度、脱離量及び脱離速度が大きく、エネルギー消費やプラント設備の大きさや効率からは望ましいが濃度が高すぎると二酸化炭素の吸収のための活性剤として水が十分に機能しないことや、粘度が上昇するなどの障害も惹起するが本願のイソプロピルアミノエタノール濃度が35〜50重量%では、そのような性能低下は見られない。   In general, the higher the concentration of the amine component, the greater the amount of carbon dioxide absorbed, the absorption rate, the desorption amount, and the desorption rate per unit liquid volume, which are desirable from the viewpoint of energy consumption and the size and efficiency of plant equipment. Is too high, water may not sufficiently function as an activator for absorbing carbon dioxide, and causes problems such as an increase in viscosity. However, when the isopropylaminoethanol concentration of the present application is 35 to 50% by weight, There is no significant performance degradation.

上記濃度範囲のイソプロピルアミノエタノールを含む水溶液は、二酸化炭素回収用水溶液として用いた場合、二酸化炭素吸収量及び二酸化炭素吸収速度だけでなく、二酸化炭素脱離量及び二酸化炭素脱離速度も高いため、二酸化炭素回収を効率的に行うために有利である。   When the aqueous solution containing isopropylaminoethanol in the above concentration range is used as an aqueous solution for carbon dioxide recovery, not only the carbon dioxide absorption amount and carbon dioxide absorption rate, but also the carbon dioxide desorption amount and carbon dioxide desorption rate are high. This is advantageous for efficient carbon dioxide recovery.

また、上記水溶液には設備の腐食を防止するためにリン酸系などの防食剤を、泡立ち防止のためにシリコーン系などの消泡剤を、そして吸収剤の劣化防止のために酸化防止剤等などを少量加えてもよい。   In addition, anticorrosives such as phosphoric acid are used in the aqueous solution to prevent corrosion of equipment, antifoaming agents such as silicone are used to prevent foaming, and antioxidants are used to prevent deterioration of the absorbent. A small amount may be added.

従来、二酸化炭素吸収に用いられているMEA等のアルカノールアミン類は、一般的に炭素鋼などの金属材料に対して高い腐食性を示すが、本発明で用いる混合アミンの水溶液は腐食性も著しく低下し、プラント建設において、高価な高級耐食鋼を用いる必要がない点で有利である。   Conventionally, alkanolamines such as MEA used for carbon dioxide absorption are generally highly corrosive to metal materials such as carbon steel, but the mixed amine aqueous solution used in the present invention is also extremely corrosive. This is advantageous in that it is not necessary to use expensive high-grade corrosion-resistant steel in plant construction.

二酸化炭素吸収工程
前述のように、本発明の方法は、二酸化炭素回収用水溶液に二酸化炭素を含むガスを接触させて、該水溶液に二酸化炭素を吸収させる工程を含む。
Carbon dioxide absorption step As described above, the method of the present invention includes the step of bringing a carbon dioxide-containing gas into contact with an aqueous solution for carbon dioxide recovery and causing the aqueous solution to absorb carbon dioxide.

二酸化炭素を含むガスを、上記イソプロピルアミノエタノールを含む水溶液に接触させる方法は特に限定はない。例えば、該水溶液中に二酸化炭素を含むガスをバブリングさせて吸収する方法、二酸化炭素を含むガス気流中に該水溶液を霧状に降らす方法(噴霧乃至スプレー方式)、あるいは磁製や金属網製の充填材の入った吸収塔内で二酸化炭素を含むガスと該水溶液を向流接触させる方法などによって行われる。   There is no particular limitation on the method of bringing the gas containing carbon dioxide into contact with the aqueous solution containing isopropylaminoethanol. For example, a method of bubbling and absorbing a gas containing carbon dioxide in the aqueous solution, a method of dropping the aqueous solution into a gas stream containing carbon dioxide (a spraying or spraying method), or a magnetic or metal mesh This is performed by a method in which a gas containing carbon dioxide and the aqueous solution are brought into countercurrent contact in an absorption tower containing a filler.

一般に有機アミン水溶液によって吸収された二酸化炭素は、水溶液中にてカルバミン酸アニオンや重炭酸イオンを形成しているものと考えられているが、本発明者らの13C−NMR測定によれば、代表的な一級アルカノールアミンである2−アミノエタノールは高吸収反応熱を示すカルバミン酸アニオンが多く、低吸収反応熱を示す重炭酸イオンの生成は少ない。二級アルカノールアミンにおいても2−エチルアミノエタノール(EAE)はMEA同様高吸収反応熱を示すカルバミン酸アニオンが多く、低吸収反応熱を示す重炭酸イオンの生成は少ない。これに対し本発明のイソプロピルアミノエタノールにおいては高吸収反応熱を示すカルバミン酸アニオンは痕跡程度で、低吸収反応熱を示す重炭酸イオンの生成が殆どであることを見出した。同じ二級アルカノールアミンであってもイソプロピルアミノエタノールはアルキル基がメチル基やエチル基である(以下、MAEと示すこともある)及び2−エチルアミノエタノール(以下、EAEと示すこともある)とは全く異なる挙動をとっていることが分かった。イソプロピルアミノエタノールが二酸化炭素の脱離性能が著しく優れているのはそうした理由によるとも考えられる。 In general, carbon dioxide absorbed by an organic amine aqueous solution is considered to form carbamate anions and bicarbonate ions in the aqueous solution, but according to the inventors' 13 C-NMR measurement, 2-aminoethanol, which is a typical primary alkanolamine, has a large amount of carbamate anions that exhibit a high heat of absorption reaction, and produces less bicarbonate ions that exhibit a low heat of reaction. Even in the secondary alkanolamine, 2-ethylaminoethanol (EAE) has a large amount of carbamate anion that exhibits a high heat of absorption reaction like MEA, and produces less bicarbonate ion that exhibits a low heat of reaction. On the other hand, in the isopropylaminoethanol of the present invention, it was found that the carbamate anion exhibiting a high absorption reaction heat is trace, and that most of the bicarbonate ion exhibiting a low absorption reaction heat is generated. Even in the same secondary alkanolamine, isopropylaminoethanol has an alkyl group that is a methyl group or an ethyl group (hereinafter also referred to as MAE) and 2-ethylaminoethanol (hereinafter also referred to as EAE). Was found to behave quite differently. The reason why isopropylaminoethanol is remarkably excellent in carbon dioxide desorption is considered to be due to such a reason.

二酸化炭素を含むガスを水溶液に吸収させる時の液温度は、通常室温から60℃以下で行われ、好ましくは50℃以下、より好ましくは20〜45℃程度で行われる。温度が低いほど吸収量は増加するが、どこまで温度を下げるかはプロセス上のガス温度や熱回収目標等によって決定される。二酸化炭素吸収時の圧力は通常ほぼ大気圧で行われる。吸収性能を高めるためより高い圧力まで加圧することもできるが、圧縮のために要するエネルギー消費を抑えるため大気圧下で行うのが好ましい。   The liquid temperature when the gas containing carbon dioxide is absorbed in the aqueous solution is usually from room temperature to 60 ° C. or less, preferably 50 ° C. or less, more preferably about 20 to 45 ° C. The amount of absorption increases as the temperature decreases, but the extent to which the temperature is lowered is determined by the gas temperature in the process, the heat recovery target, and the like. The pressure during carbon dioxide absorption is usually about atmospheric pressure. Although it is possible to pressurize to a higher pressure in order to enhance the absorption performance, it is preferable to carry out under atmospheric pressure in order to suppress energy consumption required for compression.

本発明の方法において、イソプロピルアミノエタノールを35〜50重量%含む水溶液の二酸化炭素吸収時(40℃)における二酸化炭素飽和吸収量は、100〜140g/L程度、特に110〜130g/L程度であり、飽和吸収量の3/4の二酸化炭素を吸収した時点の二酸化炭素吸収速度は1.5〜4.0g/L/分程度、特に2.0〜3.0g/L/分程度である。   In the method of the present invention, the saturated carbon dioxide absorption at the time of carbon dioxide absorption (40 ° C.) of an aqueous solution containing 35 to 50% by weight of isopropylaminoethanol is about 100 to 140 g / L, particularly about 110 to 130 g / L. The carbon dioxide absorption rate at the time of absorbing 3/4 of the saturated absorption amount is about 1.5 to 4.0 g / L / min, particularly about 2.0 to 3.0 g / L / min.

ここで、二酸化炭素飽和吸収量は、該水溶液中の無機炭素量をガスクロマトグラフ式の全有機炭素計で測定した値であり、また、二酸化炭素吸収速度は、飽和吸収量の3/4の二酸化炭素を吸収した時点において赤外線式二酸化炭素計を用いて測定した値である。   Here, the saturated carbon dioxide absorption is a value obtained by measuring the amount of inorganic carbon in the aqueous solution with a gas chromatographic total organic carbon meter, and the carbon dioxide absorption rate is 3/4 of the saturated absorption. It is a value measured using an infrared carbon dioxide meter when carbon is absorbed.

また、本発明で用いられる水溶液は、二酸化炭素吸収の反応熱が小さいという特徴も有している。二酸化炭素吸収の反応熱は、二酸化炭素脱離時に必要な熱に相当するため、二酸化炭素を脱離させるために必要なエネルギー消費を低く抑えることができる。   Further, the aqueous solution used in the present invention has a feature that the reaction heat of carbon dioxide absorption is small. Since the reaction heat for carbon dioxide absorption corresponds to the heat required for desorption of carbon dioxide, the energy consumption necessary for desorbing carbon dioxide can be kept low.

二酸化炭素脱離工程
本発明の方法は、上記二酸化炭素吸収工程で得られた、二酸化炭素が吸収された水溶液を加熱して、二酸化炭素を脱離して回収する工程を含む。
Carbon dioxide desorption step The method of the present invention includes a step of heating and recovering the carbon dioxide by heating the aqueous solution obtained by the carbon dioxide absorption step.

二酸化炭素を吸収した水溶液から二酸化炭素を脱離し、純粋なあるいは高濃度の二酸化炭素を回収する方法としては、蒸留と同じく水溶液を加熱して釜で泡立てて脱離する方法、棚段塔、スプレー塔、磁製や金属網製の充填材の入った脱離塔内で液界面を広げて加熱する方法などが挙げられる。これにより、カルバミン酸アニオンや重炭酸イオンから二酸化炭素が遊離して放出される。   As a method of desorbing carbon dioxide from an aqueous solution that has absorbed carbon dioxide and recovering pure or high-concentration carbon dioxide, a method of heating the aqueous solution and defoaming with a kettle as in distillation, a plate tower, a spray Examples include a method of heating by expanding the liquid interface in a tower, a desorption tower containing a magnetic or metal mesh filler. Thereby, carbon dioxide is liberated and released from the carbamate anion and bicarbonate ion.

二酸化炭素脱離時の液温度は通常70℃以上で行われ、好ましくは80℃以上、より好ましくは90〜120℃程度で行われる。温度が高いほど吸収量は増加するが、温度を上げると吸収液の加熱に要するエネルギーが増すため、その温度はプロセス上のガス温度や熱回収目標等によって決定される。二酸化炭素脱離時の圧力は通常ほぼ大気圧で行われる。脱離性能を高めるためより低い圧力まで減圧することもできるが、減圧のために要するエネルギー消費を抑えるため大気圧下で行うのが好ましい。   The liquid temperature at the time of desorption of carbon dioxide is usually 70 ° C. or higher, preferably 80 ° C. or higher, more preferably about 90 to 120 ° C. The higher the temperature, the greater the amount of absorption, but the higher the temperature, the greater the energy required to heat the absorbent, so the temperature is determined by the process gas temperature, heat recovery target, etc. The pressure during carbon dioxide desorption is usually about atmospheric pressure. Although the pressure can be reduced to a lower pressure in order to enhance the desorption performance, it is preferably performed under atmospheric pressure in order to suppress energy consumption required for the pressure reduction.

本発明のイソプロピルアミノエタノールを35〜50重量%含む水溶液の二酸化炭素脱離時(70℃)における二酸化炭素脱離量は、35.0〜60.0g/L程度、特に40.0〜55.0g/L程度であり、昇温開始から10分までの平均二酸化炭素脱離速度は1.5〜3.5g/L/分程度、特に2.0〜3.0g/L/分程度である。   The amount of carbon dioxide desorbed at the time of carbon dioxide desorption (70 ° C.) of an aqueous solution containing 35 to 50% by weight of isopropylaminoethanol of the present invention is about 35.0 to 60.0 g / L, particularly 40.0 to 55. The average carbon dioxide desorption rate from the start of temperature increase to 10 minutes is about 1.5 to 3.5 g / L / minute, particularly about 2.0 to 3.0 g / L / minute. .

なお、二酸化炭素脱離量は全有機炭素計で測定した値であり、また、二酸化炭素脱離速度は赤外線式二酸化炭素計で測定した値である。アミン成分濃度を20重量%以上にした場合、上記の二酸化炭素脱離量及び平均二酸化炭素脱離速度の値はほぼ濃度に比例した値となる。   The carbon dioxide desorption amount is a value measured with a total organic carbon meter, and the carbon dioxide desorption rate is a value measured with an infrared carbon dioxide meter. When the amine component concentration is 20% by weight or more, the carbon dioxide desorption amount and the average carbon dioxide desorption rate are substantially proportional to the concentration.

この様に、二酸化炭素脱離時の温度が70℃と比較的低い場合でも、アミン水溶液から良好な二酸化炭素脱離量及び二酸化炭素脱離速度が達成される。もちろん、二酸化炭素脱離時の温度が70℃を越える場合、例えば、80℃、90℃、100℃、110℃、120℃と上昇するに従い、二酸化炭素脱離量及び二酸化炭素脱離速度もさらに向上する。   Thus, even when the temperature during carbon dioxide desorption is relatively low at 70 ° C., a good carbon dioxide desorption amount and carbon dioxide desorption rate can be achieved from the aqueous amine solution. Of course, when the temperature at the time of carbon dioxide desorption exceeds 70 ° C., for example, as the temperature increases to 80 ° C., 90 ° C., 100 ° C., 110 ° C., 120 ° C., the carbon dioxide desorption amount and the carbon dioxide desorption rate further increase. improves.

二酸化炭素を脱離した後の水溶液は、再び二酸化炭素吸収工程に送られ循環使用(リサイクル)される。また、二酸化炭素吸収の際に生じた熱は、一般的には水溶液のリサイクル過程において脱離塔に注入される水溶液の予熱のために熱交換器で熱交換されて冷却される。   The aqueous solution from which carbon dioxide has been desorbed is sent again to the carbon dioxide absorption step and recycled (recycled). In addition, the heat generated during carbon dioxide absorption is generally cooled by heat exchange in a heat exchanger in order to preheat the aqueous solution injected into the desorption tower in the aqueous solution recycling process.

このようにして回収された二酸化炭素の純度は、通常、95〜99体積%程度と極めて純度が高いものである。この純粋な二酸化炭素あるいは高濃度の二酸化炭素は、化学品、あるいは高分子物質の合成原料、食品冷凍用の冷剤等として用いられる。その他、回収した二酸化炭素を、現在技術開発されつつある地下等へ隔離貯蔵することも可能である。   The purity of the carbon dioxide recovered in this manner is usually as high as about 95 to 99% by volume. This pure carbon dioxide or high-concentration carbon dioxide is used as a chemical, a synthetic raw material for a polymer substance, a cooling agent for freezing foods, or the like. In addition, it is possible to sequester and store the recovered carbon dioxide in the underground, where technology is currently being developed.

二酸化炭素脱離性能は実際のプラントで想定される二酸化炭素吸収条件、例えば温度40℃、二酸化炭素分圧20kPaと二酸化炭素脱離条件、例えば温度120℃、二酸化炭素分圧100kPaの液中の二酸化炭素濃度(ローディング)差を気液平衡試験データで比較することにより明示される。   The carbon dioxide desorption performance is the carbon dioxide absorption conditions assumed in an actual plant, for example, a temperature of 40 ° C., a carbon dioxide partial pressure of 20 kPa and a carbon dioxide desorption condition, for example, a temperature of 120 ° C. and a carbon dioxide partial pressure of 100 kPa. This is manifested by comparing carbon concentration (loading) differences with vapor-liquid equilibrium test data.

次に、本発明について実施例、比較例及び参考例を用いて詳細に説明するが、本発明はこの実施例に限定されるものではない。尚、本明細書中において、特に指定しない限り、%とは、重量%を示す。   Next, although an Example, a comparative example, and a reference example are demonstrated in detail about this invention, this invention is not limited to this Example. In the present specification, unless otherwise specified, “%” means “% by weight”.

実施例1
液の温度が40℃になるように設定した恒温水槽内に、ガラス製のガス洗浄ビンを浸し、これにイソプロピルアミノエタノール 35重量%を含む水溶液50mlを充填した。この液の中に、目の粗さ100μm、直径13mmのガラスフィルターを通して、大気圧、0.7リツトル/分で二酸化炭素 20体積%及びN 80体積%を含む混合ガスを泡状に分散させて吸収させた。
Example 1
A glass gas cleaning bottle was immersed in a constant temperature water bath set so that the temperature of the liquid was 40 ° C., and this was filled with 50 ml of an aqueous solution containing 35% by weight of isopropylaminoethanol. In this liquid, a mixed gas containing 20% by volume of carbon dioxide and 80% by volume of N 2 is dispersed in the form of foam through a glass filter having a coarseness of 100 μm and a diameter of 13 mm at atmospheric pressure and 0.7 liter / min. Absorbed.

吸収液前及び吸収液出口のガス中の二酸化炭素濃度を、赤外線式の二酸化炭素計で連続的に測定して、入口及び出口の二酸化炭素流量の差から二酸化炭素吸収量を測定した。必要により吸収液中の無機炭素量をガスクロマトグラフ式の全有機炭素計で測定し赤外線式二酸化炭素計から算出される値と比較した。飽和吸収量は吸収液出口の二酸化炭素濃度が入口の二酸化炭素濃度に一致する時点における量とした。吸収速度は吸収量の1/2を吸収した時点ではガス中の二酸化炭素のほとんどが吸収され、二酸化炭素供給速度に等しいので、吸収量の3/4を吸収した時点の吸収速度で比較することとした。二酸化炭素飽和吸収量112.3g/Lで飽和吸収量3/4吸収時の吸収速度は2.64g/L/分であった。なお全有機炭素計で測定した二酸化炭素吸収量は113g/Lであり、ガス分析による値とよく一致した。   The carbon dioxide concentration in the gas before the absorbing liquid and in the gas at the outlet of the absorbing liquid was continuously measured with an infrared carbon dioxide meter, and the amount of carbon dioxide absorbed was measured from the difference in the carbon dioxide flow rate at the inlet and outlet. If necessary, the amount of inorganic carbon in the absorbing solution was measured with a gas chromatographic total organic carbon meter and compared with a value calculated from an infrared carbon dioxide meter. The saturated absorption amount was the amount at the time when the carbon dioxide concentration at the outlet of the absorbing liquid coincided with the carbon dioxide concentration at the inlet. Since the absorption rate is almost equal to the carbon dioxide supply rate when 1/2 of the absorption amount is absorbed, it is compared with the absorption rate when 3/4 of the absorption amount is absorbed. It was. The absorption rate at the time of absorption of carbon dioxide saturated absorption 112.3 g / L and saturated absorption 3/4 was 2.64 g / L / min. The carbon dioxide absorption measured with a total organic carbon meter was 113 g / L, which agreed well with the value obtained by gas analysis.

ついで同じガス気流中で液温を数分にて70℃にあげて、液からの二酸化炭素脱離量と脱離速度を測定した。比較に用いる脱離速度は、昇温開始から10分までの平均脱離速度とした。二酸化炭素脱離量は44.25g/Lで脱離速度は2.08g/L/分であった。   Subsequently, the liquid temperature was raised to 70 ° C. in several minutes in the same gas stream, and the amount of carbon dioxide desorbed from the liquid and the desorption rate were measured. The desorption rate used for comparison was the average desorption rate from the start of temperature increase to 10 minutes. The carbon dioxide desorption amount was 44.25 g / L and the desorption rate was 2.08 g / L / min.

実施例2及び3
実施例2及び3として、イソプロピルアミノエタノールを表1に示す組成で含有する水溶液を調製し、実施例1と同じ装置を用い、同条件で、二酸化炭素の飽和吸収量、同速度と二酸化炭素脱離量及び同速度の測定を行った。40℃の二酸化炭素飽和吸収量、飽和吸収量、3/4吸収時の吸収速度、及び70℃の二酸化炭素脱離量も表1に示す。
Examples 2 and 3
As Examples 2 and 3, an aqueous solution containing isopropylaminoethanol with the composition shown in Table 1 was prepared, and using the same apparatus as in Example 1, under the same conditions, the saturated absorption amount of carbon dioxide, the same rate, and carbon dioxide desorption. The amount of separation and the same speed were measured. Table 1 also shows the saturated absorption amount of carbon dioxide at 40 ° C., the saturated absorption amount, the absorption rate at 3/4 absorption, and the carbon dioxide desorption amount at 70 ° C.

Figure 2009006275
Figure 2009006275

比較例1〜7
実施例1と同じ装置を用い、同条件で、IPAE、2−メチルピペラジン(2MPZ)、2−エチルアミノエタノール(EAE)、及びジメチルアミノエタノール(DMAE)を表2に記載の濃度で含む水溶液を用いて、二酸化炭素の飽和吸収量、吸収速度と二酸化炭素脱離量及び同速度の測定を行った。得られた結果を表2に示した。
Comparative Examples 1-7
An aqueous solution containing IPAE, 2-methylpiperazine (2MPZ), 2-ethylaminoethanol (EAE), and dimethylaminoethanol (DMAE) at the concentrations shown in Table 2 under the same conditions using the same apparatus as in Example 1. The saturated absorption amount of carbon dioxide, the absorption rate, the carbon dioxide desorption amount, and the same rate were measured. The obtained results are shown in Table 2.

Figure 2009006275
Figure 2009006275

上記表1に示されるように、IPAEの濃度が35〜50重量%の範囲内である水溶液を用いる実施例1〜3の方法は、二酸化炭素の飽和吸収量、二酸化炭素吸収速度、二酸化炭素脱離量及び二酸化炭素脱離速度が高く、効率的に二酸化炭素を回収できた。   As shown in Table 1 above, the methods of Examples 1 to 3 using an aqueous solution in which the concentration of IPAE is in the range of 35 to 50% by weight are the saturated absorption amount of carbon dioxide, carbon dioxide absorption rate, carbon dioxide desorption. Separation amount and carbon dioxide desorption rate were high, and carbon dioxide could be efficiently recovered.

これに対し、表2に示されるように、IPAE濃度が30重量%である水溶液を用いる比較例1の方法は、上記実施例1〜3と比較して二酸化炭素の飽和吸収量、二酸化炭素脱離量及び二酸化炭素脱離速度がいずれも低く、二酸化炭素回収の効率は悪かった。   On the other hand, as shown in Table 2, the method of Comparative Example 1 using an aqueous solution having an IPAE concentration of 30% by weight is higher in saturated carbon dioxide absorption, carbon dioxide desorption than in Examples 1-3. Both the separation amount and the carbon dioxide desorption rate were low, and the efficiency of carbon dioxide recovery was poor.

また、IPAE濃度が60重量%である水溶液を用いる比較例2の方法は、実施例1〜3の方法と比較して、二酸化炭素の飽和吸収量、二酸化炭素吸収速度、二酸化炭素脱離量及び二酸化炭素脱離速度が全て低く、二酸化炭素回収の効率は悪かった。   Further, the method of Comparative Example 2 using an aqueous solution having an IPAE concentration of 60% by weight, compared with the methods of Examples 1 to 3, was a saturated absorption amount of carbon dioxide, a carbon dioxide absorption rate, a carbon dioxide desorption amount, and All the carbon dioxide desorption rates were low, and the efficiency of carbon dioxide recovery was poor.

また、表2に示されるように、本願実施例1と同じ45重量%で2MPZ、EAE又はMDEAを含む比較例3〜5の水溶液は、特に二酸化炭素脱離量及び脱離速度が低かった。   As shown in Table 2, the aqueous solutions of Comparative Examples 3 to 5 containing 2MPZ, EAE or MDEA at 45% by weight as in Example 1 of the present application had particularly low carbon dioxide desorption amount and desorption rate.

これらのことから明らかなように、IPAEを35〜50重量%含む水溶液を用いる本発明の方法は、IPAE濃度が上記範囲外である水溶液を用いる方法、IPAE以外のアミン類のみを含む水溶液と比較して、特に二酸化炭素脱離量及び脱離速度に優れており、二酸化炭素の吸収及び脱離のバランスがよいため、効率よく二酸化炭素を回収することができる。   As is clear from these, the method of the present invention using an aqueous solution containing 35 to 50% by weight of IPAE is compared with a method using an aqueous solution having an IPAE concentration outside the above range, and an aqueous solution containing only amines other than IPAE. In particular, since the carbon dioxide desorption amount and desorption rate are excellent and the balance between absorption and desorption of carbon dioxide is good, carbon dioxide can be efficiently recovered.

実施例5
攪拌翼を内装した容量1.5リツトルのステンレス製耐圧容器に、実施例3と同じ45重量%濃度のイソプロピルアミノエタノール水溶液からなる吸収液700ミリリットルを充填した。この容器に二酸化炭素を含む二酸化炭素−N混合ガスを全圧で0.1−0.6気圧として圧を変化することにより、二酸化炭素分圧が0.003MPから0.2MPの間の飽和吸収量を測定した。容器は、容器外壁に巻かれた電熱ヒーターによって加熱し、40℃における気液平衡曲線と120℃における気液平衡曲線を測定した。
Example 5
A stainless steel pressure-resistant vessel having a capacity of 1.5 liters equipped with a stirring blade was filled with 700 ml of an absorbing solution consisting of the same 45 wt% isopropylaminoethanol aqueous solution as in Example 3. By changing the pressure of the carbon dioxide-N 2 mixed gas containing carbon dioxide to 0.1-0.6 atm in total pressure in this container, the carbon dioxide partial pressure is saturated between 0.003MP and 0.2MP. Absorption was measured. The container was heated by an electric heater wound around the outer wall of the container, and a gas-liquid equilibrium curve at 40 ° C. and a gas-liquid equilibrium curve at 120 ° C. were measured.

その結果を図1に示す。40℃では広い二酸化炭素分圧において高い平衡液中二酸化炭素濃度(ローディング)(20kPaで0.69molCO/molアミン)を示し、120℃においては逆に広い二酸化炭素分圧において低い平衡液中二酸化炭素濃度(100kPaで0.13 molCO/molアミン)を示していて、その間のローディング差は0.55 molCO/molアミンであった。低温における吸収と高温における脱離操作による、効率的な二酸化炭素回収が可能であることが明らかとなった。 The result is shown in FIG. At 40 ° C., the carbon dioxide concentration (loading) in the equilibrium liquid is high at a wide carbon dioxide partial pressure (0.69 mol CO 2 / mol amine at 20 kPa), while at 120 ° C., the carbon dioxide concentration in the equilibrium liquid is low at a wide carbon dioxide partial pressure. Carbon concentration (0.13 at 100 kPa molCO 2 / mol amine), and the loading difference therebetween was 0.55 molCO 2 / mol amine. It has become clear that efficient carbon dioxide recovery is possible by absorption at low temperature and desorption operation at high temperature.

実施例6
恒温槽中に設置された同一形状のガラス製反応槽及びリファレンス槽からなる示差熱型反応熱量計(SETARAM社、DRC)を用いて実施例3と同じ45重量%濃度のイソプロピルアミノエタノール水溶液からなる吸収液への二酸化炭素吸収の反応熱を測定した。反応槽及びリファレンス槽にそれぞれ150mLの実施例1の吸収液を充填し、槽のジャケット部分に40℃の恒温水を循環させる。この状態で反応槽の吸収液に100%濃度の二酸化炭素を200ml/分で吹込み、液の温度上昇を二酸化炭素吸収が終了するまで温度記録計にて連続的に記録し、事前に測定された反応槽とジャケット水間の総括伝熱係数を用いて、反応熱算出した。その結果二酸化炭素吸収の反応熱は15.8kcal/mol−COであった。
Example 6
It consists of the same 45 weight% concentration isopropylaminoethanol aqueous solution as Example 3 using the differential thermal reaction calorimeter (SETARAM, DRC) which consists of the glass reaction tank of the same shape installed in the thermostat, and a reference tank. The heat of reaction of carbon dioxide absorption into the absorbing solution was measured. Each of the reaction tank and the reference tank is filled with 150 mL of the absorption liquid of Example 1, and constant temperature water at 40 ° C. is circulated through the jacket portion of the tank. In this state, 100% carbon dioxide was blown into the absorption liquid in the reaction tank at 200 ml / min, and the temperature rise of the liquid was continuously recorded with a temperature recorder until the carbon dioxide absorption was completed, and measured in advance. The reaction heat was calculated using the overall heat transfer coefficient between the reaction tank and the jacket water. As a result, the heat of reaction for carbon dioxide absorption was 15.8 kcal / mol-CO 2 .

参考例1
イソプロピルエタノールを30重量%含む水溶液およびこの液に二酸化炭素を吸収させたものの13C−NMRスペクトルである。二酸化炭素の吸収は実施例1と同様の条件、即ち、液の温度が40℃、イソプロピルアミノエタノール 45重量%を含む水溶液50mlに、大気圧、0.7リツトル/分で二酸化炭素 20体積%及びN 80体積%を含む混合ガスを泡状に分散させて60分間流通しておこなった。二酸化炭素の吸収量は0.701mol−CO/mol−アミンであった。二酸化炭素を吸収したものではシフト値162.09ppmに重炭酸アニオンのピークが見られるがカルバメートアニオン由来のピークはほとんど見られない。
Reference example 1
It is a 13 C-NMR spectrum of an aqueous solution containing 30% by weight of isopropyl ethanol and carbon dioxide absorbed in this solution. Absorption of carbon dioxide was carried out under the same conditions as in Example 1, that is, the temperature of the liquid was 40 ° C., 50 ml of an aqueous solution containing 45% by weight of isopropylaminoethanol, 20 vol% carbon dioxide at atmospheric pressure and 0.7 liter / min, and A mixed gas containing 80% by volume of N 2 was dispersed in the form of foam and distributed for 60 minutes. Absorption of carbon dioxide was 0.701mol-CO 2 / mol- amine. In the case of absorbing carbon dioxide, a peak of bicarbonate anion is seen at a shift value of 162.09 ppm, but a peak derived from carbamate anion is hardly seen.

参考例2
2−エチルアミノエタノール(EAE) 30重量%水溶液について参考例1と同条件で吸収液およびその液に二酸化炭素を吸収させたものの13C−NMRスペクトルを測定した。二酸化炭素の吸収量は0.665mol−CO/mol−アミンであった。二酸化炭素を吸収したものではシフト値162.31ppmにはカルバメートアニオン由来の大名ピークが見られ、163.48ppmの重炭酸アニオンのピークはその半量に過ぎない。
Reference example 2
A 13 C-NMR spectrum of a 30% by weight aqueous solution of 2-ethylaminoethanol (EAE) was measured under the same conditions as in Reference Example 1, and the carbon dioxide was absorbed in the liquid. Absorption of carbon dioxide was 0.665mol-CO 2 / mol- amine. In the case where carbon dioxide was absorbed, a daimyo peak derived from the carbamate anion was observed at a shift value of 162.31 ppm, and the peak of the bicarbonate anion at 163.48 ppm was only half that amount.

実施例5の45%イソプロピルアミノエタノール水溶液の二酸化炭素との気液平衡データである。It is a vapor-liquid equilibrium data with the carbon dioxide of 45% isopropylaminoethanol aqueous solution of Example 5. 参考例1の二酸化炭素を吸収した30%イソプロピルアミノエタノール水溶液の13C−NMRスペクトルである。It is a 13 C-NMR spectrum of a 30% isopropylaminoethanol aqueous solution that absorbed carbon dioxide of Reference Example 1. 参考例2の二酸化炭素を吸収した30%EAE水溶液の13C−NMRスペクトルである。4 is a 13 C-NMR spectrum of a 30% EAE aqueous solution that absorbed carbon dioxide of Reference Example 2.

Claims (2)

二酸化炭素を含むガスから二酸化炭素を回収する方法であって、
(1)有効成分として、式〔I〕:
Figure 2009006275
で表されるイソプロピルアミノエタノールのみを含む水溶液に二酸化炭素を含むガスを接触させて、該水溶液に二酸化炭素を吸収させる工程、及び
(2)上記工程(1)で得られた二酸化炭素が吸収された水溶液を加熱して、二酸化炭素を脱離して回収する工程、
を含む二酸化炭素の回収方法であって、
前記水溶液中のイソプロピルアミノエタノールの含有量が、35〜50重量%である、
二酸化炭素の回収方法。
A method for recovering carbon dioxide from a gas containing carbon dioxide,
(1) As an active ingredient, the formula [I]:
Figure 2009006275
A step of bringing a gas containing carbon dioxide into contact with an aqueous solution containing only isopropylaminoethanol represented by formula (2), and absorbing the carbon dioxide into the aqueous solution; and (2) carbon dioxide obtained in the step (1) is absorbed. Heating the aqueous solution to desorb and recover carbon dioxide,
A method for recovering carbon dioxide containing
The content of isopropylaminoethanol in the aqueous solution is 35 to 50% by weight,
Carbon dioxide recovery method.
前記工程(1)において二酸化炭素を含むガスを前記水溶液に60℃以下の温度で接触させ、かつ、前記工程(2)において二酸化炭素が吸収された水溶液を70℃以上の温度で加熱して二酸化炭素を脱離する請求項1に記載の二酸化炭素回収方法。 In the step (1), a gas containing carbon dioxide is brought into contact with the aqueous solution at a temperature of 60 ° C. or lower, and the aqueous solution in which carbon dioxide is absorbed in the step (2) is heated at a temperature of 70 ° C. or higher to produce carbon dioxide. The carbon dioxide recovery method according to claim 1, wherein carbon is desorbed.
JP2007170687A 2007-06-28 2007-06-28 Efficient recovering method of carbon dioxide in exhaust gas Pending JP2009006275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170687A JP2009006275A (en) 2007-06-28 2007-06-28 Efficient recovering method of carbon dioxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170687A JP2009006275A (en) 2007-06-28 2007-06-28 Efficient recovering method of carbon dioxide in exhaust gas

Publications (1)

Publication Number Publication Date
JP2009006275A true JP2009006275A (en) 2009-01-15

Family

ID=40321927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170687A Pending JP2009006275A (en) 2007-06-28 2007-06-28 Efficient recovering method of carbon dioxide in exhaust gas

Country Status (1)

Country Link
JP (1) JP2009006275A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241649A (en) * 2009-04-08 2010-10-28 Toshiba Corp Carbon dioxide recovering system
WO2011013332A1 (en) 2009-07-27 2011-02-03 川崎重工業株式会社 Method and device for separating carbon dioxide
WO2012002394A1 (en) 2010-06-30 2012-01-05 財団法人地球環境産業技術研究機構 Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency
JP2012139622A (en) * 2010-12-28 2012-07-26 Research Institute Of Innovative Technology For The Earth Solid absorber for separating/recovering carbon dioxide and method for recovering carbon dioxide
JP5272099B1 (en) * 2012-07-26 2013-08-28 新日鉄住金エンジニアリング株式会社 Carbon dioxide recovery method
WO2014129400A1 (en) 2013-02-25 2014-08-28 公益財団法人地球環境産業技術研究機構 Liquid for absorbing and collecting carbon dioxide in gas, and method for collecting carbon dioxide with use of same
EP2813277A4 (en) * 2012-02-08 2015-09-30 Res Inst Innovative Tech Earth Aqueous solution which efficiently absorbs and recovers carbon dioxide in exhaust gas, and method for recovering carbon dioxide using same
US9409119B2 (en) 2010-12-22 2016-08-09 Kabushiki Kaisha Toshiba Acid gas absorbent, acid gas removal method, and acid gas removal device
JP2016182562A (en) * 2015-03-26 2016-10-20 公益財団法人地球環境産業技術研究機構 Absorbent for separating and recovering carbon dioxide, and separation and recovery method of carbon dioxide using the same
US9724642B2 (en) 2013-12-03 2017-08-08 Kabushiki Kaisha Toshiba Acid gas absorbent, acid gas removal device, and acid gas removal method
US10377647B2 (en) 2010-12-15 2019-08-13 Queen's University at Kingson Systems and methods for use of water with switchable ionic strength
WO2019163867A1 (en) * 2018-02-23 2019-08-29 公益財団法人地球環境産業技術研究機構 Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide
WO2021117623A1 (en) 2019-12-10 2021-06-17 戸田工業株式会社 Sodium ferrite particle powder and production method thereof
US11498853B2 (en) 2010-02-10 2022-11-15 Queen's University At Kingston Water with switchable ionic strength

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241649A (en) * 2009-04-08 2010-10-28 Toshiba Corp Carbon dioxide recovering system
WO2011013332A1 (en) 2009-07-27 2011-02-03 川崎重工業株式会社 Method and device for separating carbon dioxide
US8840704B2 (en) 2009-07-27 2014-09-23 Kawasaki Jukogyo Kabushiki Kaisha Carbon dioxide separation method and apparatus
US11498853B2 (en) 2010-02-10 2022-11-15 Queen's University At Kingston Water with switchable ionic strength
WO2012002394A1 (en) 2010-06-30 2012-01-05 財団法人地球環境産業技術研究機構 Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency
JP2012011309A (en) * 2010-06-30 2012-01-19 Research Institute Of Innovative Technology For The Earth Aqueous solution efficiently absorbing and collecting carbon dioxide in exhaust gas
US10377647B2 (en) 2010-12-15 2019-08-13 Queen's University at Kingson Systems and methods for use of water with switchable ionic strength
US9409119B2 (en) 2010-12-22 2016-08-09 Kabushiki Kaisha Toshiba Acid gas absorbent, acid gas removal method, and acid gas removal device
JP2012139622A (en) * 2010-12-28 2012-07-26 Research Institute Of Innovative Technology For The Earth Solid absorber for separating/recovering carbon dioxide and method for recovering carbon dioxide
US9636628B2 (en) 2012-02-08 2017-05-02 Research Institute Of Innovative Technology For The Earth Aqueous solution which efficiently absorbs and recovers carbon dioxide in exhaust gas, and method for recovering carbon dioxide using same
EP2813277A4 (en) * 2012-02-08 2015-09-30 Res Inst Innovative Tech Earth Aqueous solution which efficiently absorbs and recovers carbon dioxide in exhaust gas, and method for recovering carbon dioxide using same
JP5272099B1 (en) * 2012-07-26 2013-08-28 新日鉄住金エンジニアリング株式会社 Carbon dioxide recovery method
US20150197425A1 (en) * 2012-07-26 2015-07-16 Nippon Steel & Sumikin Engineering Co., Ltd. Carbon dioxide recovery method and carbon dioxide recovery device
WO2014017654A1 (en) * 2012-07-26 2014-01-30 新日鉄住金エンジニアリング株式会社 Carbon dioxide recovery method and carbon dioxide recovery device
KR20150121152A (en) 2013-02-25 2015-10-28 신닛테츠스미킨 카부시키카이샤 Liquid for absorbing and collecting carbon dioxide in gas, and method for collecting carbon dioxide with use of same
WO2014129400A1 (en) 2013-02-25 2014-08-28 公益財団法人地球環境産業技術研究機構 Liquid for absorbing and collecting carbon dioxide in gas, and method for collecting carbon dioxide with use of same
US9724642B2 (en) 2013-12-03 2017-08-08 Kabushiki Kaisha Toshiba Acid gas absorbent, acid gas removal device, and acid gas removal method
JP2016182562A (en) * 2015-03-26 2016-10-20 公益財団法人地球環境産業技術研究機構 Absorbent for separating and recovering carbon dioxide, and separation and recovery method of carbon dioxide using the same
WO2019163867A1 (en) * 2018-02-23 2019-08-29 公益財団法人地球環境産業技術研究機構 Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide
JPWO2019163867A1 (en) * 2018-02-23 2021-03-04 公益財団法人地球環境産業技術研究機構 Carbon dioxide absorber and carbon dioxide separation and recovery method
WO2021117623A1 (en) 2019-12-10 2021-06-17 戸田工業株式会社 Sodium ferrite particle powder and production method thereof
KR20220112802A (en) 2019-12-10 2022-08-11 도다 고교 가부시끼가이샤 Sodium ferrite particle powder and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2009006275A (en) Efficient recovering method of carbon dioxide in exhaust gas
JP5452222B2 (en) Method for efficiently recovering carbon dioxide in gas
JP5659128B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP5659084B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP5557426B2 (en) Aqueous solution and method for efficiently absorbing and recovering carbon dioxide in gas
JP6095579B2 (en) Aqueous solution that efficiently absorbs and recovers carbon dioxide in exhaust gas, and carbon dioxide recovery method using the same
JP2006240966A (en) Method for recovering carbon dioxide in exhaust gas by absorption and releasing
JP5868795B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP2008013400A (en) Method for recovering carbon dioxide in waste gas by absorption and releasing
JP5506486B2 (en) Aqueous solution that effectively absorbs and recovers carbon dioxide contained in gas
JP6173817B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP2007325996A (en) Absorbent, and apparatus and method for removing co2 and/or h2s
WO2012002394A1 (en) Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency
JP2018122278A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2017035669A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2015107443A (en) Acidic gas absorbent, acidic gas removal device, and acidic gas removal method
AU2016202116B2 (en) Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
JP2017121610A (en) Acidic gas absorbent, acidic gas removing method and acidic gas removing device
JP2009213974A (en) Aqueous solution and method of absorbing and desorption-recovering effectively carbon dioxides in gas
JP2008168227A (en) Absorbing liquid of carbon dioxide in exhaust gas
JP2015112574A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2008168184A (en) Composition for absorbing and dissociating carbon dioxide in exhaust gas to recover it and carbon dioxide recovering method using it
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JP2006167520A (en) Absorbing liquid and apparatus and method for removing carbon dioxide or hydrogen sulfide in gas by using absorbing liquid
JP2022049431A (en) Acidic gas absorbent, acidic gas removing method, and acidic gas removing device