WO2018034236A1 - Gas detection system and gas detection method - Google Patents

Gas detection system and gas detection method Download PDF

Info

Publication number
WO2018034236A1
WO2018034236A1 PCT/JP2017/029129 JP2017029129W WO2018034236A1 WO 2018034236 A1 WO2018034236 A1 WO 2018034236A1 JP 2017029129 W JP2017029129 W JP 2017029129W WO 2018034236 A1 WO2018034236 A1 WO 2018034236A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
value
distribution information
dimensional
gas
Prior art date
Application number
PCT/JP2017/029129
Other languages
French (fr)
Japanese (ja)
Inventor
久一郎 今出
義憲 井手
亮太 石川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2018034236A1 publication Critical patent/WO2018034236A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to a gas detection system and a gas detection method for acquiring a two-dimensional gas distribution by scanning measurement light.
  • JP 2014-185914 A Japanese Unexamined Patent Publication No. 2000-346796
  • the leakage state of gas changes with time history, it may be difficult to determine the location of leakage only with the gas two-dimensional distribution information at a certain timing. Even if the transition of the gas distribution is displayed on the basis of this, it may be difficult for the user who refers to this to determine the leak location.
  • one surface of the measurement area is not measured at the same time, but one surface of the measurement area is measured by two-dimensionally scanning the light projecting / receiving direction (measurement direction) of the laser for measuring one measurement point. Therefore, it takes a certain amount of time to measure one surface of the measurement area.
  • the present invention has been made in view of the above problems in the prior art, and in a gas detection system and a gas detection method for acquiring a two-dimensional gas distribution by scanning measurement light, gas two-dimensional distribution information is obtained. Based on the time history data, it is an object to output information that assists in grasping a gas distribution state such as determination of a gas leakage position to a user.
  • the invention according to claim 1 for solving the above-described problem is a light projecting unit that emits measurement light for detecting surrounding gas toward a target area, A light receiving unit that receives measurement light that is emitted from the light projecting unit and reflected back by a background object in the target area; and A control unit for controlling two-dimensional scanning measurement for obtaining two-dimensional distribution information of a gas including a measurement value calculated based on a signal output from the light receiving unit and a two-dimensional coordinate indicating a position of the measurement point; Based on the time history data of the two-dimensional distribution information over a plurality of frames using the two-dimensional distribution information of one surface obtained by the two-dimensional scanning measurement as one frame, a statistical value is calculated for each measurement point, and the statistical value A gas detection system having a calculation unit that outputs the two-dimensional distribution information.
  • the invention according to claim 2 is the gas detection system according to claim 1, wherein the calculation unit calculates an average value in the time history data of the statistical object at each measurement point as one of the statistical values.
  • the calculation unit calculates a high concentration frequency indicating the number of times that the high concentration is higher than the threshold at each measurement point as one of the statistical values. It is a gas detection system as described in above.
  • the calculation unit in calculating the high density frequency, sets the threshold value to a value that partitions a measurement value group in one frame at a certain rate between a higher level and a lower level.
  • the threshold value is a value that divides the measured value group in all frames in the time history data to be statistically divided into the upper part and the lower part at a certain ratio. It is a gas detection system of Claim 3 set to these.
  • the calculation unit sets the threshold value to a value that partitions a measurement value group in one frame at a certain rate between a higher level and a lower level.
  • 1 frame medium high concentration frequency calculated as common in the time history data of the statistical target
  • the threshold value is calculated by setting the measurement value group in all frames in the statistical history data to a value that divides the upper part and the lower part at a certain ratio
  • the average value in the time history data of the statistical object at each measurement point is a predetermined positive number that is uniformly given to the measurement points that are higher in concentration than the threshold value that divides the upper and lower parts at a fixed rate.
  • the gas detection system according to claim 3, wherein a total score obtained by adding at least two of the two is calculated, and the total score is output as it is or after subtracting a positive number less than the highest score.
  • the invention according to claim 7 is a light projecting unit that emits measurement light for detecting ambient gas toward a target area;
  • a light receiving unit that receives measurement light that is emitted from the light projecting unit and reflected back by a background object in the target area; and
  • a measurement value is calculated based on a signal output from the light receiving unit, and two-dimensional distribution information of a gas including a two-dimensional coordinate indicating a position of a measurement point and the measurement value is acquired.
  • a processor that calculates statistic values for each measurement point based on the time history data of the two-dimensional distribution information over a plurality of frames with the dimensional distribution information as one frame, and outputs the two-dimensional distribution information of the statistical values. It is a gas detection system.
  • the invention according to claim 8 emits measurement light for detecting the surrounding gas from the light projecting unit toward the target area,
  • the light receiving unit receives the measurement light emitted from the light projecting unit and reflected by the background object in the target area.
  • Calculate the measured value based on the signal output from the light receiving unit Obtaining the two-dimensional distribution information of the gas comprising the two-dimensional coordinates indicating the position of the measurement point and the measurement value;
  • This is a gas detection method to output.
  • a statistical value is calculated for each measurement point, and the two-dimensional distribution information of the statistical value is output, whereby a gas such as determination of a gas leakage position is obtained.
  • Information that helps grasp the distribution state can be output to the user. Since statistical processing is performed on the time history data over a plurality of frames, the influence of non-synchronization in one frame can be mitigated and reliable information can be provided.
  • FIG. 1 is a configuration block diagram showing an embodiment of a gas detection system of the present invention.
  • the display example of the background by the gas detection system which concerns on one Embodiment of this invention, and the two-dimensional distribution information of the gas superimposed on this is shown.
  • It is a flowchart which shows the calculation process of the two-dimensional distribution information of the statistics value by the gas detection system which concerns on one Embodiment of this invention.
  • the two-dimensional distribution information in the gas detection system which concerns on one Embodiment of this invention is shown, and is one frame of the time history data of the two-dimensional distribution information over four frames.
  • 2D shows the two-dimensional distribution information in the gas detection system according to the embodiment of the present invention, and is another one frame of the time history data of the two-dimensional distribution information over four frames.
  • FIG. 4 shows two-dimensional distribution information in a gas detection system according to an embodiment of the present invention, showing average two-dimensional distribution information calculated based on the time history data of FIGS. 4A-4D.
  • (a) is 2 of average value high concentration frequency. Indicates dimension distribution information.
  • the two-dimensional distribution information of the statistical value calculated based on the time history data of FIGS. 4A-4D is shown. Show.
  • the two-dimensional distribution information of the statistical values calculated based on the time history data of FIGS. 4A-4D is shown. Show.
  • the two-dimensional distribution information of the statistical values calculated based on the time history data of FIGS. 4A-4D is shown, and 1 is subtracted from the total value of FIGS. 5A-5C.
  • the gas detection system of the present embodiment that executes the gas detection method of the present invention is configured in the gas detection device 1 shown in FIG.
  • the gas detection device 1 includes a concentration measurement unit 10, a scanning unit 2, a background imaging unit 3, a display unit 4, and a control unit 5.
  • the concentration measuring unit 10 includes a light projecting unit 11, a light receiving unit 12, and a calculation unit 13.
  • the light projecting unit 11 emits laser light for detecting the surrounding gas toward the target area as measurement light.
  • the light projecting unit 11 emits light based on a control command from the control unit 5.
  • the light receiving unit 12 receives the measurement light emitted from the light projecting unit 11 and reflected back by the background object in the target area.
  • the computing unit 13 calculates the measured value of the gas in the form of gas two-dimensional distribution information based on the light reception signal from the light receiving unit 12.
  • the calculation unit 13 functions as a calculation unit that calculates a statistical value for each measurement point and outputs two-dimensional distribution information of the statistical value.
  • the hardware configuration such that the calculation unit 13 and the control unit 5 are configured by the same CPU (Central Processing Unit).
  • As a gas measurement method laser light having wavelengths of the target gas absorption band and non-absorption band is emitted from the gas detection device 1 (light projecting unit 11), passed through the same space, and reflected on a background object such as a wall.
  • the calculation unit 13 calculates the concentration thickness product by taking the intensity ratio of the amount of received light between the absorption band and the non-absorption band based on the received light signal.
  • the scanning unit 2 deflects the measurement direction and moves the measurement point.
  • the scanning unit 2 is a mirror incorporated in a light projecting / receiving optical path in the density measuring unit 10 such as an electric pan head capable of pan / tilt movement, a galvano mirror, and the like, and an actuator for changing the reflection direction is attached. You may comprise by an element.
  • the background imaging unit 3 is a camera or a 3D scanner, and the captured image and the distance image are input to the control unit 5.
  • the display unit 4 displays the gas two-dimensional distribution information (measured values) and the statistical value two-dimensional distribution information calculated by the calculation unit 13 based on the control of the control unit 5.
  • the control unit 5 is configured and functions by executing a program in a CPU (Central Processing Unit) of the computer.
  • the control unit 5 controls the light projecting unit 11 and the scanning unit 2 to control the two-dimensional scanning measurement.
  • the calculation unit 13 calculates a measurement value at each measurement point (coordinate) based on the light reception signal obtained by the two-dimensional scanning measurement, and thus includes a two-dimensional coordinate indicating the position of the measurement point and a corresponding measurement value.
  • the gas two-dimensional distribution information is calculated and output to the control unit 5.
  • the calculation unit 13 calculates the two-dimensional distribution information of the statistical value and outputs it to the control unit 5.
  • the control unit 5 displays gas two-dimensional distribution information (measured values, statistical values) 30 as shown in FIG. 2 on the display unit 4. Measurement is performed by superimposing and displaying gas two-dimensional distribution information (measured values, statistical values) 30 on a graphic 20 that is a two-dimensional image or a three-dimensional distance image acquired by the background imaging unit 3 simultaneously with the two-dimensional scanning measurement of gas.
  • the gas distribution state in the target real space is displayed to the user in a concise manner.
  • the gas detection device 1 includes a storage unit, an operation unit, and the like (not shown).
  • the calculation unit 13 generates time history data of two-dimensional distribution information of measurement values over a plurality of frames using the one-dimensional two-dimensional distribution information acquired by the above-described two-dimensional scanning measurement as one frame (S1).
  • the control unit 5 reproduces and displays a plurality of frames on the display unit 4 at a predetermined frame rate, and a frame to be statistically selected is selected by the user (S2).
  • a predetermined number of all frames that are consecutive without being subjected to a frame selection process may be implemented as a statistical target.
  • a statistical object includes a frame that clearly shows a measurement error when the user confirms the reproduction display or the like. Therefore, a means for selecting a frame to be excluded is provided by providing a frame selection process. If the user does not exclude the frame, a predetermined number of all consecutive frames are subject to statistics.
  • 4A-4D are examples of time history data of two-dimensional distribution information over four frames.
  • the number of frames included in the time history data to be statistics is assumed to be four.
  • one frame has 80 measurement values distributed in a vertical 10 squares ⁇ horizontal 8 squares.
  • FIGS. 4A-4E a higher numerical value is displayed for each cell in a higher density.
  • the number of frames, the resolution of the two-dimensional coordinates, and the resolution of the measurement value are only examples. Further, statistical processing may be performed after reducing the resolution of the data.
  • the calculation unit 13 normalizes the measurement value of each frame (S3), and uses the normalized data to calculate a high concentration frequency indicating the number of times that the concentration is higher than the threshold at each measurement point.
  • the threshold value is set to a value that partitions the measurement value group in one frame at a certain ratio between the upper part and the lower part, and the certain ratio is made common in the statistical time history data (S4).
  • the obtained high density frequency is referred to as one frame high density frequency.
  • FIG. 5B shows two-dimensional distribution information with a high density frequency in one frame.
  • the top 20% square in each frame is counted once, and since there are 4 frames, the frequency in the range of 0 to 4 is shown as in FIG. 5B.
  • a count number of one time is given to the square that is the top 20% in the first frame of FIG. 4A. The same applies to other frames. Since it is the top 20% in that frame, it does not necessarily match the threshold of the top 20% in other frames.
  • the calculation unit 13 calculates a high concentration frequency indicating the number of times that the high concentration is higher than other threshold values at each measurement point.
  • the threshold value is set to a value that separates the upper and lower levels of the measured value group in all frames in the time history data to be statistics at a certain rate (S5).
  • the obtained high density frequency is referred to as “high density frequency in all frames”.
  • FIG. 5C shows the two-dimensional distribution information of the high density frequency in all frames. Since there are 4 frames, the frequency can be 0-4.
  • the threshold is set to the upper 20%. Since it is the top 20% of the measured value group in all frames in the time history data to be statistically targeted, the threshold value is common to all frames as a value.
  • the high density frequency in all frames there may be a case where a cell that has entered the top 20% in one frame is not counted, or a cell that has not entered the top 20% in a certain frame may be counted. Therefore, compared to the high concentration frequency in one frame, the effect of the momentary bias is eliminated, such as removing the upper part (highly likely to move away from the gas leak position) in one frame where the overall concentration is low. Therefore, the reliability can be enhanced as data for determining the gas leakage position.
  • the calculating part 13 calculates the average value in the historical data of the statistics object in each measurement point (S6). This average value is an average value of these four measurement values because there are four measurement values at each measurement point (the square in the figure) in this example.
  • FIG. 4E shows the average two-dimensional distribution information calculated based on the time history data of FIGS. 4A-4D.
  • the calculation unit 13 is a predetermined positive number that is uniformly given to the measurement points whose average value in the time-history data of the statistical object at each measurement point is higher than the threshold value that divides the upper part and the lower part at a certain rate. Two-dimensional distribution information of average value high density frequency is generated (S7).
  • the threshold is the upper 20%
  • the predetermined positive number is 1, and the result is as shown in FIG. 5A.
  • the high density region at the average value can be displayed in an easy-to-understand manner. Only the two-dimensional distribution information of the average value indicates a region where the average value is high, but it is not possible to grasp the nature of the change such as whether the value was constantly high or instantaneously high.
  • the gas leak position is considered to have a strong tendency to be constantly high, so it is necessary to evaluate the possibility that the area where the average value is high due to the instantaneously high value is a gas leak position is low. There is.
  • the arithmetic unit 13 adds the total score obtained by adding at least any two of the above-mentioned one frame medium high concentration frequency (FIG. 5B), all frame medium high concentration frequency (FIG. 5C), and average value high concentration frequency (FIG. 5A). Is calculated, and the total score is output as it is or after subtracting a positive number less than the maximum score (S8). In this example, three are added, 1 is subtracted from the result, and the result is output as shown in FIG. 5D. The score that becomes negative after subtraction is 0. As described above, it is possible to improve the reliability as data for determining the gas leakage position in consideration of the statistical properties of a plurality of statistical values.
  • the total score may be output as it is, but the lower value is cut by subtracting a positive number (1 in this example) that is less than the maximum score (8 points in the examples of FIGS. 5A-5C). Thus, it is possible to exclude a region that is unlikely to be a gas leakage position.
  • the control unit 5 appropriately outputs the above-described two-dimensional distribution information shown in FIGS. 4E and 5A-5D on the display unit 4 for reference by the user. The same processing is sequentially repeated for every subsequent four frames.
  • the distribution state of the leaking gas is not limited to the example of FIGS. 4A to 4D, and therefore, even when it is difficult to grasp in the reproduction display of FIGS. It is possible to easily grasp the leakage position.
  • a statistical value is calculated for each measurement point based on the time history data of the two-dimensional distribution information, and the two-dimensional distribution information of the statistical value is output, Information that assists in grasping the gas distribution state, such as determination of the gas leakage position, can be output to the user.
  • the present invention can be used not only for the leak position of gas from piping equipment but also for grasping a region where gas is present at a high concentration.
  • the present invention can be used for gas detection.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided are a gas detection system and a gas detection method in which scanning by measuring beam is performed to acquire a two-dimensional gas distribution, wherein information which facilitates gas distribution-state understanding such as determining a gas leak location is output to a user on the basis of temporal history data of two-dimensional gas distribution information. The gas detection system comprises a light projection unit and light reception unit of measurement light, and calculates a gas measurement value on the basis of a light reception signal received by the light reception unit. The gas detection system includes: a control unit that controls a two-dimensional scanning measurement for acquiring two-dimensional gas distribution information consisting of two-dimensional coordinates indicating the location of a measurement point and a measurement value corresponding to the two-dimensional coordinates; and a calculation unit that calculates, on the basis of temporal history data of the two-dimensional distribution information which spans across multiple frames, where one frame consists of two-dimensional distribution information of one plane acquired by the two-dimensional scanning measurement, a statistic value such as an average value, a high concentration frequency, etc. for each measurement point, and that outputs two-dimensional distribution information of the statistic value.

Description

ガス検知システム及びガス検知方法Gas detection system and gas detection method
 本発明は、測定光を走査して2次元的なガス分布を取得するガス検知システム及びガス検知方法に関する。 The present invention relates to a gas detection system and a gas detection method for acquiring a two-dimensional gas distribution by scanning measurement light.
 近年、ガス設備の老朽化や採掘現場のガスの漏えいが環境問題になっており、ガス漏えいの監視、ガス漏れ事故時のガス検知、ガス濃度分布の把握が求められている。
 空間でガスを検出する方法としては、レーザー光による1点測定が知られている。この方法は、目的のガスの吸収帯と非吸収帯の波長のレーザー光を測定器から発して同じ空間に通し、壁などの任意の反射物に反射させて測定器に戻し、受光光量の強度比をみることで、ガス検知を行う。レーザー光の光路上に目的のガスが存在すれば、非吸収帯に対する吸収帯の強度比が低下するからである。
In recent years, aging of gas facilities and gas leaks at mining sites have become environmental problems, and monitoring of gas leaks, detection of gas in the event of a gas leak, and grasping of gas concentration distribution are required.
As a method for detecting gas in space, one-point measurement using laser light is known. This method emits laser light with wavelengths of the target gas absorption band and non-absorption band from the measuring instrument, passes it through the same space, reflects it to any reflecting object such as a wall, and returns it to the measuring instrument. The gas is detected by looking at the ratio. This is because if the target gas is present on the optical path of the laser light, the intensity ratio of the absorption band to the non-absorption band decreases.
 特許文献1に記載の発明にあっては、2次元センサーで受光し、漏洩の有無を閾値設定で判断する。2次元的な情報は扱うが、時刻歴でのデータの扱いはない。
 特許文献2に記載の発明にあっては、赤外光を照射し、カメラを介してガスを2次元的に検出し可視化する。熱赤外画像にガス濃度画像を重ねて表示する。漏洩状態の可視化はできるが、瞬間の情報しか把握できない。
In the invention described in Patent Document 1, light is received by a two-dimensional sensor, and the presence or absence of leakage is determined by threshold setting. Two-dimensional information is handled, but data is not handled in the time history.
In the invention described in Patent Document 2, infrared light is irradiated, and gas is two-dimensionally detected and visualized through a camera. A gas concentration image is superimposed on the thermal infrared image. Although the leakage state can be visualized, only the instantaneous information can be grasped.
特開2014-185914号公報JP 2014-185914 A 特開2000-346796号公報Japanese Unexamined Patent Publication No. 2000-346796
 ガスは漏洩状態が時刻歴で変化するため、あるタイミングでのガスの2次元分布情報のみでは、漏洩箇所を判断することが困難な場合があり、またガスの2次元分布情報の時歴データに基づきガスの分布の移り変わりを表示しても、これを参照するユーザーが漏洩箇所を判断することもまた困難な場合がある。
 また、レーザー方式の場合、測定エリアの一面を同時に測定するものではなく、一測定点を測定するレーザーの投受光方向(測定方位)を2次元的に走査して測定エリアの一面の測定を行うので、測定エリアの一面の測定にある程度の時間を要する。そのため、そのような測定エリアの一面を2次元走査して得られるガスの2次元分布情報は、位置(座標)により時間差が生じる(1フレーム中の非同時性)。したがって、このことの影響を考慮してユーザーがガスの2次元分布情報を参照しなければならないとすると、漏洩箇所を判断することが困難になる。
Since the leakage state of gas changes with time history, it may be difficult to determine the location of leakage only with the gas two-dimensional distribution information at a certain timing. Even if the transition of the gas distribution is displayed on the basis of this, it may be difficult for the user who refers to this to determine the leak location.
In the case of the laser system, one surface of the measurement area is not measured at the same time, but one surface of the measurement area is measured by two-dimensionally scanning the light projecting / receiving direction (measurement direction) of the laser for measuring one measurement point. Therefore, it takes a certain amount of time to measure one surface of the measurement area. Therefore, in the two-dimensional distribution information of the gas obtained by two-dimensionally scanning one surface of such a measurement area, a time difference occurs depending on the position (coordinates) (asynchrony in one frame). Therefore, if the user has to refer to the two-dimensional gas distribution information in consideration of the influence of this, it is difficult to determine the leak location.
 本発明は以上の従来技術における問題に鑑みてなされたものであって、測定光を走査して2次元的なガス分布を取得するガス検知システム及びガス検知方法において、ガスの2次元分布情報の時歴データに基づき、ガスの漏洩位置の判断などのガス分布状態の把握を助ける情報をユーザーに出力することを課題とする。 The present invention has been made in view of the above problems in the prior art, and in a gas detection system and a gas detection method for acquiring a two-dimensional gas distribution by scanning measurement light, gas two-dimensional distribution information is obtained. Based on the time history data, it is an object to output information that assists in grasping a gas distribution state such as determination of a gas leakage position to a user.
 以上の課題を解決するための請求項1記載の発明は、周囲のガスを検知するための測定光を対象域に向けて出射する投光部と、
 前記投光部から出射し対象域の背景物体により反射して戻ってくる測定光を受光する受光部と、
 前記受光部から出力される信号に基づいて算出される測定値と、測定点の位置を示す2次元座標とからなるガスの2次元分布情報を取得する2次元走査測定を制御する制御部と、
 前記2次元走査測定により取得された一面の前記2次元分布情報を1フレームとして複数のフレームに亘る前記2次元分布情報の時歴データに基づき、測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力する演算部と、を有するガス検知システムである。
The invention according to claim 1 for solving the above-described problem is a light projecting unit that emits measurement light for detecting surrounding gas toward a target area,
A light receiving unit that receives measurement light that is emitted from the light projecting unit and reflected back by a background object in the target area; and
A control unit for controlling two-dimensional scanning measurement for obtaining two-dimensional distribution information of a gas including a measurement value calculated based on a signal output from the light receiving unit and a two-dimensional coordinate indicating a position of the measurement point;
Based on the time history data of the two-dimensional distribution information over a plurality of frames using the two-dimensional distribution information of one surface obtained by the two-dimensional scanning measurement as one frame, a statistical value is calculated for each measurement point, and the statistical value A gas detection system having a calculation unit that outputs the two-dimensional distribution information.
 請求項2記載の発明は、前記演算部は、前記統計値の一つして各測定点における統計対象の時歴データ内の平均値を算出する請求項1に記載のガス検知システムである。 The invention according to claim 2 is the gas detection system according to claim 1, wherein the calculation unit calculates an average value in the time history data of the statistical object at each measurement point as one of the statistical values.
 請求項3記載の発明は、前記演算部は、前記統計値の一つして各測定点において閾値より上位の高濃度となった回数を示す高濃度頻度を算出する請求項1又は請求項2に記載のガス検知システムである。 According to a third aspect of the present invention, the calculation unit calculates a high concentration frequency indicating the number of times that the high concentration is higher than the threshold at each measurement point as one of the statistical values. It is a gas detection system as described in above.
 請求項4記載の発明は、前記演算部は、前記高濃度頻度を算出するにあたり、前記閾値を一フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定し、前記一定割合を統計対象の時歴データにおいて共通とする請求項3に記載のガス検知システムである。 According to a fourth aspect of the present invention, in calculating the high density frequency, the calculation unit sets the threshold value to a value that partitions a measurement value group in one frame at a certain rate between a higher level and a lower level. The gas detection system according to claim 3, which is common in time history data to be statistics.
 請求項5記載の発明は、前記演算部は、前記高濃度頻度を算出するにあたり、前記閾値を統計対象の時歴データ内の全フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定する請求項3に記載のガス検知システムである。 In the invention according to claim 5, when the calculation unit calculates the high concentration frequency, the threshold value is a value that divides the measured value group in all frames in the time history data to be statistically divided into the upper part and the lower part at a certain ratio. It is a gas detection system of Claim 3 set to these.
 請求項6記載の発明は、前記演算部は、前記高濃度頻度を算出するにあたり、前記閾値を一フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定し、前記一定割合を統計対象の時歴データにおいて共通として算出する1フレーム中高濃度頻度と、
前記高濃度頻度を算出するにあたり、前記閾値を統計対象の時歴データ内の全フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定して算出する全フレーム中高濃度頻度と、
各測定点における統計対象の時歴データ内の平均値が、一定割合で上位と下位を仕切る閾値より高濃度である測定点に一律に付与する所定の正数である平均値高濃度度数の3つのうち少なくともいずれか2つを加算した総合スコアを算出し、当該総合スコアをそのまま又は最高スコアに満たない正数を減算して出力する請求項3に記載のガス検知システムである。
According to a sixth aspect of the present invention, in calculating the high concentration frequency, the calculation unit sets the threshold value to a value that partitions a measurement value group in one frame at a certain rate between a higher level and a lower level. 1 frame medium high concentration frequency calculated as common in the time history data of the statistical target,
In calculating the high concentration frequency, the threshold value is calculated by setting the measurement value group in all frames in the statistical history data to a value that divides the upper part and the lower part at a certain ratio,
The average value in the time history data of the statistical object at each measurement point is a predetermined positive number that is uniformly given to the measurement points that are higher in concentration than the threshold value that divides the upper and lower parts at a fixed rate. The gas detection system according to claim 3, wherein a total score obtained by adding at least two of the two is calculated, and the total score is output as it is or after subtracting a positive number less than the highest score.
 請求項7記載の発明は、周囲のガスを検知するための測定光を対象域に向けて出射する投光部と、
 前記投光部から出射し対象域の背景物体により反射して戻ってくる測定光を受光する受光部と、
 前記受光部から出力される信号に基づいて測定値を算出し、測定点の位置を示す2次元座標と前記測定値とからなるガスの2次元分布情報を取得し、取得された一面の前記2次元分布情報を1フレームとして複数のフレームに亘る前記2次元分布情報の時歴データに基づき、測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力するプロセッサーと、を有するガス検知システムである。
The invention according to claim 7 is a light projecting unit that emits measurement light for detecting ambient gas toward a target area;
A light receiving unit that receives measurement light that is emitted from the light projecting unit and reflected back by a background object in the target area; and
A measurement value is calculated based on a signal output from the light receiving unit, and two-dimensional distribution information of a gas including a two-dimensional coordinate indicating a position of a measurement point and the measurement value is acquired. A processor that calculates statistic values for each measurement point based on the time history data of the two-dimensional distribution information over a plurality of frames with the dimensional distribution information as one frame, and outputs the two-dimensional distribution information of the statistical values. It is a gas detection system.
 請求項8記載の発明は、周囲のガスを検知するための測定光を投光部から対象域に向けて出射し、
 前記投光部から出射し対象域の背景物体により反射して戻ってくる測定光を受光部で受光し、
 前記受光部から出力される信号に基づいて測定値を算出し、
 測定点の位置を示す2次元座標と前記測定値とからなるガスの2次元分布情報を取得し、
 取得された一面の前記2次元分布情報を1フレームとして複数のフレームに亘る前記2次元分布情報の時歴データに基づき、測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力するガス検知方法である。
The invention according to claim 8 emits measurement light for detecting the surrounding gas from the light projecting unit toward the target area,
The light receiving unit receives the measurement light emitted from the light projecting unit and reflected by the background object in the target area.
Calculate the measured value based on the signal output from the light receiving unit,
Obtaining the two-dimensional distribution information of the gas comprising the two-dimensional coordinates indicating the position of the measurement point and the measurement value;
Based on the time history data of the two-dimensional distribution information over a plurality of frames using the acquired one-dimensional two-dimensional distribution information as one frame, a statistical value is calculated for each measurement point, and the two-dimensional distribution information of the statistical value is obtained. This is a gas detection method to output.
 本発明によれば、2次元分布情報の時歴データに基づき、測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力することにより、ガスの漏洩位置の判断などのガス分布状態の把握を助ける情報をユーザーに出力することができる。
 複数のフレームに亘る時歴データを統計処理するため、1フレーム中の非同時性の影響が緩和されて信頼性のある情報を提供することができる。
According to the present invention, based on the time history data of the two-dimensional distribution information, a statistical value is calculated for each measurement point, and the two-dimensional distribution information of the statistical value is output, whereby a gas such as determination of a gas leakage position is obtained. Information that helps grasp the distribution state can be output to the user.
Since statistical processing is performed on the time history data over a plurality of frames, the influence of non-synchronization in one frame can be mitigated and reliable information can be provided.
本発明のガス検知システムの一実施形態を示す構成ブロック図である。1 is a configuration block diagram showing an embodiment of a gas detection system of the present invention. 本発明の一実施形態に係るガス検知システムによる背景とこれに重畳したガスの2次元分布情報の表示例を示す。The display example of the background by the gas detection system which concerns on one Embodiment of this invention, and the two-dimensional distribution information of the gas superimposed on this is shown. 本発明の一実施形態に係るガス検知システムによる統計値の2次元分布情報の演算過程を示すフローチャートである。It is a flowchart which shows the calculation process of the two-dimensional distribution information of the statistics value by the gas detection system which concerns on one Embodiment of this invention. 本発明の一実施形態に係るガス検知システムにおける2次元分布情報を示したものであり、4フレームに亘る2次元分布情報の時歴データのうちの1フレームである。The two-dimensional distribution information in the gas detection system which concerns on one Embodiment of this invention is shown, and is one frame of the time history data of the two-dimensional distribution information over four frames. 本発明の一実施形態に係るガス検知システムにおける2次元分布情報を示したものであり、4フレームに亘る2次元分布情報の時歴データのうちの他の1フレームである。2D shows the two-dimensional distribution information in the gas detection system according to the embodiment of the present invention, and is another one frame of the time history data of the two-dimensional distribution information over four frames. 本発明の一実施形態に係るガス検知システムにおける2次元分布情報を示したものであり、4フレームに亘る2次元分布情報の時歴データのうちの他の1フレームである。2D shows the two-dimensional distribution information in the gas detection system according to the embodiment of the present invention, and is another one frame of the time history data of the two-dimensional distribution information over four frames. 本発明の一実施形態に係るガス検知システムにおける2次元分布情報を示したものであり、4フレームに亘る2次元分布情報の時歴データのうちの他の1フレームである。2D shows the two-dimensional distribution information in the gas detection system according to the embodiment of the present invention, and is another one frame of the time history data of the two-dimensional distribution information over four frames. 本発明の一実施形態に係るガス検知システムにおける2次元分布情報を示したものであり、図4A-4Dの時歴データに基づき算出した平均値の2次元分布情報を示す。FIG. 4 shows two-dimensional distribution information in a gas detection system according to an embodiment of the present invention, showing average two-dimensional distribution information calculated based on the time history data of FIGS. 4A-4D. 本発明の一実施形態に係るガス検知システムにおいて、図4A-4Dの時歴データに基づき算出した統計値の2次元分布情報を示したものであり、(a)は平均値高濃度度数の2次元分布情報を示す。In the gas detection system which concerns on one Embodiment of this invention, the two-dimensional distribution information of the statistical value computed based on the time history data of FIG. 4A-4D is shown, (a) is 2 of average value high concentration frequency. Indicates dimension distribution information. 本発明の一実施形態に係るガス検知システムにおいて、図4A-4Dの時歴データに基づき算出した統計値の2次元分布情報を示したものであり、1フレーム中高濃度頻度の2次元分布情報を示す。In the gas detection system according to an embodiment of the present invention, the two-dimensional distribution information of the statistical value calculated based on the time history data of FIGS. 4A-4D is shown. Show. 本発明の一実施形態に係るガス検知システムにおいて、図4A-4Dの時歴データに基づき算出した統計値の2次元分布情報を示したものであり、全フレーム中高濃度頻度の2次元分布情報を示す。In the gas detection system according to an embodiment of the present invention, the two-dimensional distribution information of the statistical values calculated based on the time history data of FIGS. 4A-4D is shown. Show. 本発明の一実施形態に係るガス検知システムにおいて、図4A-4Dの時歴データに基づき算出した統計値の2次元分布情報を示したものであり、図5A-5Cの合算値から1減算して算出した総合スコアの2次元分布情報を示す。In the gas detection system according to an embodiment of the present invention, the two-dimensional distribution information of the statistical values calculated based on the time history data of FIGS. 4A-4D is shown, and 1 is subtracted from the total value of FIGS. 5A-5C. The two-dimensional distribution information of the total score calculated by
 以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.
 本発明のガス検知方法を実行する本実施形態のガス検知システムは、図1に示すガス検知装置1に構成される。
 ガス検知装置1は、濃度測定部10と、走査部2と、背景撮像部3と、表示部4と、制御部5とを備える。濃度測定部10は、投光部11と、受光部12と、演算部13とを備える。
 投光部11は、周囲のガスを検出するためのレーザー光を測定光として対象域に向けて出射する。投光部11は、制御部5からの制御指令に基づき発光する。
 受光部12は、投光部11から出射し対象域の背景物体により反射して戻ってくる測定光を受光する。
 演算部13は、受光部12による受光信号に基づき、ガスの測定値をガスの2次元分布情報の形式で算出する。また、本実施形態では、演算部13は測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力する演算部として機能する。演算部13と制御部5とを同一CPU(Central Processing Unit)で構成するなどハードウエア構成は問わない。
 ガスの測定方式としては、目的のガスの吸収帯と非吸収帯の波長のレーザー光をガス検知装置1(投光部11)から発して同じ空間に通し、壁などの背景物体に反射させてガス検知装置1(受光部12)に戻し、その受光信号に基づき演算部13が、吸収帯と非吸収帯の受光光量の強度比をとって濃度厚み積を算出する方式を適用できる。
The gas detection system of the present embodiment that executes the gas detection method of the present invention is configured in the gas detection device 1 shown in FIG.
The gas detection device 1 includes a concentration measurement unit 10, a scanning unit 2, a background imaging unit 3, a display unit 4, and a control unit 5. The concentration measuring unit 10 includes a light projecting unit 11, a light receiving unit 12, and a calculation unit 13.
The light projecting unit 11 emits laser light for detecting the surrounding gas toward the target area as measurement light. The light projecting unit 11 emits light based on a control command from the control unit 5.
The light receiving unit 12 receives the measurement light emitted from the light projecting unit 11 and reflected back by the background object in the target area.
The computing unit 13 calculates the measured value of the gas in the form of gas two-dimensional distribution information based on the light reception signal from the light receiving unit 12. In the present embodiment, the calculation unit 13 functions as a calculation unit that calculates a statistical value for each measurement point and outputs two-dimensional distribution information of the statistical value. There is no limitation on the hardware configuration such that the calculation unit 13 and the control unit 5 are configured by the same CPU (Central Processing Unit).
As a gas measurement method, laser light having wavelengths of the target gas absorption band and non-absorption band is emitted from the gas detection device 1 (light projecting unit 11), passed through the same space, and reflected on a background object such as a wall. Returning to the gas detection device 1 (light receiving unit 12), a method can be applied in which the calculation unit 13 calculates the concentration thickness product by taking the intensity ratio of the amount of received light between the absorption band and the non-absorption band based on the received light signal.
 走査部2は、制御部5の制御に基づき、測定方位を偏向して測定点を移動させる。走査部2は、例えば、パン・チルト移動が可能な電動雲台や、ガルバノミラーなど、濃度測定部10内の投受光光路に組み込まれたミラーであってその反射方向を変更するアクチュエーターが付随した要素によって構成してもよい。
 背景撮像部3は、カメラや3Dスキャナであって、その撮影画像や距離画像が制御部5に入力される。
Based on the control of the control unit 5, the scanning unit 2 deflects the measurement direction and moves the measurement point. The scanning unit 2 is a mirror incorporated in a light projecting / receiving optical path in the density measuring unit 10 such as an electric pan head capable of pan / tilt movement, a galvano mirror, and the like, and an actuator for changing the reflection direction is attached. You may comprise by an element.
The background imaging unit 3 is a camera or a 3D scanner, and the captured image and the distance image are input to the control unit 5.
 表示部4は、演算部13が算出したガスの2次元分布情報(測定値)や統計値の2次元分布情報を制御部5の制御に基づき表示する。
 制御部5は、コンピューターのCPU(Central Processing Unit)でのプログラムの実行により構成され機能する。制御部5が、投光部11、走査部2を制御して2次元走査測定を制御する。この2次元走査測定により得られる受光信号に基づき演算部13が各測定点(座標)における測定値を算出することで、測定点の位置を示す2次元座標とこれに対応する測定値とからなるガスの2次元分布情報の演算し、制御部5に出力する。また、演算部13は、統計値の2次元分布情報を演算し、制御部5に出力する。制御部5は、表示部4に図2に示すようなガスの2次元分布情報(測定値、統計値)30を表示する。ガスの2次元走査測定と同時に背景撮像部3が取得した2次元画像又は3次元距離画像であるグラフィック20にガスの2次元分布情報(測定値、統計値)30を重畳表示することで、測定対象の実空間におけるガスの分布状態をユーザーに対して簡明に表示する。
 その他、ガス検知装置1は、図示しない記憶部、操作部等を備える。
The display unit 4 displays the gas two-dimensional distribution information (measured values) and the statistical value two-dimensional distribution information calculated by the calculation unit 13 based on the control of the control unit 5.
The control unit 5 is configured and functions by executing a program in a CPU (Central Processing Unit) of the computer. The control unit 5 controls the light projecting unit 11 and the scanning unit 2 to control the two-dimensional scanning measurement. The calculation unit 13 calculates a measurement value at each measurement point (coordinate) based on the light reception signal obtained by the two-dimensional scanning measurement, and thus includes a two-dimensional coordinate indicating the position of the measurement point and a corresponding measurement value. The gas two-dimensional distribution information is calculated and output to the control unit 5. Further, the calculation unit 13 calculates the two-dimensional distribution information of the statistical value and outputs it to the control unit 5. The control unit 5 displays gas two-dimensional distribution information (measured values, statistical values) 30 as shown in FIG. 2 on the display unit 4. Measurement is performed by superimposing and displaying gas two-dimensional distribution information (measured values, statistical values) 30 on a graphic 20 that is a two-dimensional image or a three-dimensional distance image acquired by the background imaging unit 3 simultaneously with the two-dimensional scanning measurement of gas. The gas distribution state in the target real space is displayed to the user in a concise manner.
In addition, the gas detection device 1 includes a storage unit, an operation unit, and the like (not shown).
 次に、図3から図5Dを参照して、統計値の2次元分布情報の演算過程につき説明する。
 まず、演算部13は、上述した2次元走査測定により取得された一面の2次元分布情報を1フレームとして複数のフレームに亘る測定値の2次元分布情報の時歴データを生成する(S1)。
 制御部5は、複数のフレームを所定のフレームレートで表示部4に再生表示し、ユーザーの選択により統計対象とするフレームが選択される(S2)。フレーム選択の過程を設けずに連続した所定数の全フレームを統計対象として実施してもよい。しかし、ユーザーが上記再生表示等で確認した際に明らかに測定エラーであるとわかるフレームが統計対象に含まれることは好ましくない。そのため、フレーム選択の過程を設けてユーザーに除外するフレームを選択させる手段を与える。ユーザーがフレームを除外しなかった場合は、連続した所定数の全フレームが統計対象となる。
Next, with reference to FIG. 3 to FIG. 5D, the calculation process of statistical value two-dimensional distribution information will be described.
First, the calculation unit 13 generates time history data of two-dimensional distribution information of measurement values over a plurality of frames using the one-dimensional two-dimensional distribution information acquired by the above-described two-dimensional scanning measurement as one frame (S1).
The control unit 5 reproduces and displays a plurality of frames on the display unit 4 at a predetermined frame rate, and a frame to be statistically selected is selected by the user (S2). A predetermined number of all frames that are consecutive without being subjected to a frame selection process may be implemented as a statistical target. However, it is not preferable that a statistical object includes a frame that clearly shows a measurement error when the user confirms the reproduction display or the like. Therefore, a means for selecting a frame to be excluded is provided by providing a frame selection process. If the user does not exclude the frame, a predetermined number of all consecutive frames are subject to statistics.
 図4A-4Dは、4フレームに亘る2次元分布情報の時歴データの例である。説明の簡単のため、統計対象の時歴データに含まれるフレーム数を4とする。また、1フレームは、縦10マス×横8マスに分布する80の測定値を有するものとする。図4A-4Eにおいて各マス目に高濃度ほど高い数値を表示する。フレーム数、2次元座標の分解能、測定値の分解能は一例にすぎない。また、データを低分解能化してから統計処理を実施してもよい。 4A-4D are examples of time history data of two-dimensional distribution information over four frames. For simplicity of explanation, the number of frames included in the time history data to be statistics is assumed to be four. Further, one frame has 80 measurement values distributed in a vertical 10 squares × horizontal 8 squares. In FIGS. 4A-4E, a higher numerical value is displayed for each cell in a higher density. The number of frames, the resolution of the two-dimensional coordinates, and the resolution of the measurement value are only examples. Further, statistical processing may be performed after reducing the resolution of the data.
 演算部13は、各フレームの測定値を正規化し(S3)、正規化したデータを用いて各測定点において閾値より上位の高濃度となった回数を示す高濃度頻度を算出する。その際、閾値を一フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定し、前記一定割合を統計対象の時歴データにおいて共通とする(S4)。これによって、得られた高濃度頻度を1フレーム中高濃度頻度と呼ぶ。また、1フレーム中高濃度頻度の2次元分布情報を示すと図5Bのようになる。図4A-4Dの例では、各フレームにおいて上位20%なったマス目は1回をカウントし、4フレームあるので0~4の範囲の頻度が図5Bのように示される。図4Aの1フレーム目で上位20%なったマス目に1回のカウント数を与える。他のフレームについても同様である。そのフレームでの上位20%であるので、他のフレームの上位20%の閾値とは必ずしも一致しない。 The calculation unit 13 normalizes the measurement value of each frame (S3), and uses the normalized data to calculate a high concentration frequency indicating the number of times that the concentration is higher than the threshold at each measurement point. At this time, the threshold value is set to a value that partitions the measurement value group in one frame at a certain ratio between the upper part and the lower part, and the certain ratio is made common in the statistical time history data (S4). Thus, the obtained high density frequency is referred to as one frame high density frequency. Further, FIG. 5B shows two-dimensional distribution information with a high density frequency in one frame. In the example of FIGS. 4A to 4D, the top 20% square in each frame is counted once, and since there are 4 frames, the frequency in the range of 0 to 4 is shown as in FIG. 5B. A count number of one time is given to the square that is the top 20% in the first frame of FIG. 4A. The same applies to other frames. Since it is the top 20% in that frame, it does not necessarily match the threshold of the top 20% in other frames.
 演算部13は、各測定点において他の閾値より上位の高濃度となった回数を示す高濃度頻度を算出する。その際、閾値を統計対象の時歴データ内の全フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定する(S5)。これによって、得られた高濃度頻度を全フレーム中高濃度頻度と呼ぶ。また、全フレーム中高濃度頻度の2次元分布情報を示すと図5Cのようになる。4フレームあるので0~4の頻度をとり得る。本例では閾値を上位20%としている。統計対象の時歴データ内の全フレーム中の測定値群における上位20%であるので、値として閾値が全フレームで共通している。したがって、全フレーム中高濃度頻度によると、ある1フレームで上位20%に入ったマス目がカウントされない場合も、ある1フレームで上位20%に入らなかったマス目がカウントされる場合もある。そのため、1フレーム中高濃度頻度と比較すると、全体的に低濃度となった1フレーム中の上位(ガスの漏洩位置から離れる可能性が高い)は除かれるなど、瞬間的な偏りの影響を除去してガスの漏洩位置を判断するためのデータとして信頼度を高めることができる。 The calculation unit 13 calculates a high concentration frequency indicating the number of times that the high concentration is higher than other threshold values at each measurement point. At this time, the threshold value is set to a value that separates the upper and lower levels of the measured value group in all frames in the time history data to be statistics at a certain rate (S5). Thus, the obtained high density frequency is referred to as “high density frequency in all frames”. FIG. 5C shows the two-dimensional distribution information of the high density frequency in all frames. Since there are 4 frames, the frequency can be 0-4. In this example, the threshold is set to the upper 20%. Since it is the top 20% of the measured value group in all frames in the time history data to be statistically targeted, the threshold value is common to all frames as a value. Therefore, according to the high density frequency in all frames, there may be a case where a cell that has entered the top 20% in one frame is not counted, or a cell that has not entered the top 20% in a certain frame may be counted. Therefore, compared to the high concentration frequency in one frame, the effect of the momentary bias is eliminated, such as removing the upper part (highly likely to move away from the gas leak position) in one frame where the overall concentration is low. Therefore, the reliability can be enhanced as data for determining the gas leakage position.
 また、演算部13は、各測定点における統計対象の時歴データ内の平均値を算出する(S6)。この平均値は、本例では、各測定点(図中のマス目)で4つの測定値があるので、この4つの測定値の平均値である。図4A-4Dの時歴データに基づき算出した平均値の2次元分布情報を示すと図4Eのようになる。
 また、演算部13は、各測定点における統計対象の時歴データ内の平均値が、一定割合で上位と下位を仕切る閾値より高濃度である測定点に一律に付与する所定の正数である平均値高濃度度数の2次元分布情報を生成する(S7)。本例では、閾値を上位20%とし、所定の正数を1としており、結果を示すと図5Aのようになる。図5Aのように、平均値での高濃度領域がわかりやすく表示できる。
 平均値の2次元分布情報のみによると、平均値が高い領域はわかるが、定常的に高い値だったのか、瞬間的に高い値だったのかなどの変化の性質までは把握できない。ガスの漏洩位置は、定常的に高い値である傾向が強いと考えられるから、瞬間的に高い値だったために平均値が高くなった領域はガスの漏洩位置である可能性は低く評価する必要がある。
Moreover, the calculating part 13 calculates the average value in the historical data of the statistics object in each measurement point (S6). This average value is an average value of these four measurement values because there are four measurement values at each measurement point (the square in the figure) in this example. FIG. 4E shows the average two-dimensional distribution information calculated based on the time history data of FIGS. 4A-4D.
In addition, the calculation unit 13 is a predetermined positive number that is uniformly given to the measurement points whose average value in the time-history data of the statistical object at each measurement point is higher than the threshold value that divides the upper part and the lower part at a certain rate. Two-dimensional distribution information of average value high density frequency is generated (S7). In this example, the threshold is the upper 20%, the predetermined positive number is 1, and the result is as shown in FIG. 5A. As shown in FIG. 5A, the high density region at the average value can be displayed in an easy-to-understand manner.
Only the two-dimensional distribution information of the average value indicates a region where the average value is high, but it is not possible to grasp the nature of the change such as whether the value was constantly high or instantaneously high. The gas leak position is considered to have a strong tendency to be constantly high, so it is necessary to evaluate the possibility that the area where the average value is high due to the instantaneously high value is a gas leak position is low. There is.
 さらに、演算部13は、以上の1フレーム中高濃度頻度(図5B)、全フレーム中高濃度頻度(図5C)及び平均値高濃度度数(図5A)のうち少なくともいずれか2つを加算した総合スコアを算出し、当該総合スコアをそのまま又は最高スコアに満たない正数を減算して出力する(S8)。本例では、3つを加算し、その結果から1を減算して出力して、図5Dのようになる。減算後に負の値になるスコアは0とする。
 以上により複数の統計値の統計的性質を考慮して、ガスの漏洩位置を判断するためのデータとして信頼度を高めることができる。
 総合スコアをそのまま出力してもよいが、最高スコア(図5A-5Cの例で8点)に満たない正数(本例では1とした)を減算して出力することで、低い値をカットして、ガスの漏洩位置である可能性の低い領域を除外することができる。
Further, the arithmetic unit 13 adds the total score obtained by adding at least any two of the above-mentioned one frame medium high concentration frequency (FIG. 5B), all frame medium high concentration frequency (FIG. 5C), and average value high concentration frequency (FIG. 5A). Is calculated, and the total score is output as it is or after subtracting a positive number less than the maximum score (S8). In this example, three are added, 1 is subtracted from the result, and the result is output as shown in FIG. 5D. The score that becomes negative after subtraction is 0.
As described above, it is possible to improve the reliability as data for determining the gas leakage position in consideration of the statistical properties of a plurality of statistical values.
The total score may be output as it is, but the lower value is cut by subtracting a positive number (1 in this example) that is less than the maximum score (8 points in the examples of FIGS. 5A-5C). Thus, it is possible to exclude a region that is unlikely to be a gas leakage position.
 制御部5は、以上の図4E、図5A-5Dの2次元分布情報を適宜表示部4に表示出力しユーザーの参照に供する。後続する4フレームごとに対しても順次同様の処理を繰り返し実施する。
 図4A-4Dの例に限らず、漏洩するガスの分布状態は様々に変化するので、図4A-4Dの再生表示では把握しづらい場合にも、以上の統計値の2次元分布情報によりガスの漏洩位置を把握しやすくすることができる。
The control unit 5 appropriately outputs the above-described two-dimensional distribution information shown in FIGS. 4E and 5A-5D on the display unit 4 for reference by the user. The same processing is sequentially repeated for every subsequent four frames.
The distribution state of the leaking gas is not limited to the example of FIGS. 4A to 4D, and therefore, even when it is difficult to grasp in the reproduction display of FIGS. It is possible to easily grasp the leakage position.
 以上のように本実施形態のガス検知システムによれば、2次元分布情報の時歴データに基づき、測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力することにより、ガスの漏洩位置の判断などのガス分布状態の把握を助ける情報をユーザーに出力することができる。配管設備などからのガスの漏洩位置に限らず、高濃度にガスが存在する領域を把握するために利用することができる。 As described above, according to the gas detection system of the present embodiment, a statistical value is calculated for each measurement point based on the time history data of the two-dimensional distribution information, and the two-dimensional distribution information of the statistical value is output, Information that assists in grasping the gas distribution state, such as determination of the gas leakage position, can be output to the user. The present invention can be used not only for the leak position of gas from piping equipment but also for grasping a region where gas is present at a high concentration.
 本発明は、ガスの検知に利用することができる。 The present invention can be used for gas detection.
1 ガス検知装置
2 走査部
3 背景撮像部
4 表示部
5 制御部
10 濃度測定部
11 投光部
12 受光部
13 演算部
DESCRIPTION OF SYMBOLS 1 Gas detection apparatus 2 Scan part 3 Background imaging part 4 Display part 5 Control part 10 Concentration measurement part 11 Light projection part 12 Light reception part 13 Calculation part

Claims (8)

  1.  周囲のガスを検知するための測定光を対象域に向けて出射する投光部と、
     前記投光部から出射し対象域の背景物体により反射して戻ってくる測定光を受光する受光部と、
     前記受光部から出力される信号に基づいて算出される測定値と、測定点の位置を示す2次元座標とからなるガスの2次元分布情報を取得する2次元走査測定を制御する制御部と、
     前記2次元走査測定により取得された一面の前記2次元分布情報を1フレームとして複数のフレームに亘る前記2次元分布情報の時歴データに基づき、測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力する演算部と、を有するガス検知システム。
    A light projecting unit that emits measurement light for detecting surrounding gas toward the target area;
    A light receiving unit that receives measurement light that is emitted from the light projecting unit and reflected back by a background object in the target area; and
    A control unit for controlling two-dimensional scanning measurement for obtaining two-dimensional distribution information of a gas including a measurement value calculated based on a signal output from the light receiving unit and a two-dimensional coordinate indicating a position of the measurement point;
    Based on the time history data of the two-dimensional distribution information over a plurality of frames using the two-dimensional distribution information of one surface obtained by the two-dimensional scanning measurement as one frame, a statistical value is calculated for each measurement point, and the statistical value A gas detection system.
  2.  前記演算部は、前記統計値の一つして各測定点における統計対象の時歴データ内の平均値を算出する請求項1に記載のガス検知システム。 The gas detection system according to claim 1, wherein the calculation unit calculates an average value in the time history data of the statistical object at each measurement point as one of the statistical values.
  3.  前記演算部は、前記統計値の一つして各測定点において閾値より上位の高濃度となった回数を示す高濃度頻度を算出する請求項1又は請求項2に記載のガス検知システム。 3. The gas detection system according to claim 1, wherein the calculation unit calculates a high concentration frequency indicating one of the statistical values and the number of times the concentration is higher than a threshold value at each measurement point.
  4.  前記演算部は、前記高濃度頻度を算出するにあたり、前記閾値を一フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定し、前記一定割合を統計対象の時歴データにおいて共通とする請求項3に記載のガス検知システム。 In calculating the high concentration frequency, the calculation unit sets the threshold value to a value that divides the measurement value group in one frame at a certain ratio between the upper part and the lower part, and the constant ratio is commonly used in statistical time history data. The gas detection system according to claim 3.
  5.  前記演算部は、前記高濃度頻度を算出するにあたり、前記閾値を統計対象の時歴データ内の全フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定する請求項3に記載のガス検知システム。 4. The calculation unit according to claim 3, wherein, when calculating the high concentration frequency, the threshold value is set to a value that partitions a measurement value group in all frames in statistical time-history data at a certain ratio between an upper part and a lower part. Gas detection system.
  6.  前記演算部は、前記高濃度頻度を算出するにあたり、前記閾値を一フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定し、前記一定割合を統計対象の時歴データにおいて共通として算出する1フレーム中高濃度頻度と、
     前記高濃度頻度を算出するにあたり、前記閾値を統計対象の時歴データ内の全フレーム中の測定値群を一定割合で上位と下位を仕切る値に設定して算出する全フレーム中高濃度頻度と、
     各測定点における統計対象の時歴データ内の平均値が、一定割合で上位と下位を仕切る閾値より高濃度である測定点に一律に付与する所定の正数である平均値高濃度度数の3つのうち少なくともいずれか2つを加算した総合スコアを算出し、当該総合スコアをそのまま又は最高スコアに満たない正数を減算して出力する請求項3に記載のガス検知システム。
    In calculating the high concentration frequency, the calculation unit sets the threshold value to a value that divides the measurement value group in one frame at a certain ratio between the upper part and the lower part, and the constant ratio is commonly used in statistical time history data. 1 frame medium high concentration frequency calculated as:
    In calculating the high concentration frequency, the threshold value is calculated by setting the measurement value group in all frames in the statistical history data to a value that divides the upper part and the lower part at a certain ratio,
    The average value in the time history data of the statistical object at each measurement point is a predetermined positive number that is uniformly given to the measurement points that are higher in concentration than the threshold value that divides the upper and lower parts at a fixed rate. The gas detection system according to claim 3, wherein a total score obtained by adding at least two of the two is calculated, and the total score is output as it is or by subtracting a positive number less than the highest score.
  7.  周囲のガスを検知するための測定光を対象域に向けて出射する投光部と、
     前記投光部から出射し対象域の背景物体により反射して戻ってくる測定光を受光する受光部と、
     前記受光部から出力される信号に基づいて測定値を算出し、測定点の位置を示す2次元座標と前記測定値とからなるガスの2次元分布情報を取得し、取得された一面の前記2次元分布情報を1フレームとして複数のフレームに亘る前記2次元分布情報の時歴データに基づき、測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力するプロセッサーと、を有するガス検知システム。
    A light projecting unit that emits measurement light for detecting surrounding gas toward the target area;
    A light receiving unit that receives measurement light that is emitted from the light projecting unit and reflected back by a background object in the target area; and
    A measurement value is calculated based on a signal output from the light receiving unit, and two-dimensional distribution information of a gas including a two-dimensional coordinate indicating a position of a measurement point and the measurement value is acquired. A processor that calculates statistic values for each measurement point based on the time history data of the two-dimensional distribution information over a plurality of frames with the dimensional distribution information as one frame, and outputs the two-dimensional distribution information of the statistical values. Gas detection system.
  8.  周囲のガスを検知するための測定光を投光部から対象域に向けて出射し、
     前記投光部から出射し対象域の背景物体により反射して戻ってくる測定光を受光部で受光し、
     前記受光部から出力される信号に基づいて測定値を算出し、
     測定点の位置を示す2次元座標と前記測定値とからなるガスの2次元分布情報を取得し、
     取得された一面の前記2次元分布情報を1フレームとして複数のフレームに亘る前記2次元分布情報の時歴データに基づき、測定点ごとに統計値を算出し、当該統計値の2次元分布情報を出力するガス検知方法。
    The measurement light for detecting the surrounding gas is emitted from the light projecting part toward the target area,
    The light receiving unit receives the measurement light emitted from the light projecting unit and reflected by the background object in the target area.
    Calculate the measured value based on the signal output from the light receiving unit,
    Obtaining the two-dimensional distribution information of the gas comprising the two-dimensional coordinates indicating the position of the measurement point and the measurement value;
    Based on the time history data of the two-dimensional distribution information over a plurality of frames using the acquired one-dimensional two-dimensional distribution information as one frame, a statistical value is calculated for each measurement point, and the two-dimensional distribution information of the statistical value is obtained. Gas detection method to output.
PCT/JP2017/029129 2016-08-15 2017-08-10 Gas detection system and gas detection method WO2018034236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016159067A JP2019168224A (en) 2016-08-15 2016-08-15 Gas detection system
JP2016-159067 2016-08-15

Publications (1)

Publication Number Publication Date
WO2018034236A1 true WO2018034236A1 (en) 2018-02-22

Family

ID=61196769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029129 WO2018034236A1 (en) 2016-08-15 2017-08-10 Gas detection system and gas detection method

Country Status (2)

Country Link
JP (1) JP2019168224A (en)
WO (1) WO2018034236A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017060A1 (en) * 2018-07-20 2020-01-23 マクセル株式会社 Terahertz wave detection device, terahertz wave detection method, and terahertz wave detection system
JP2022066541A (en) * 2018-07-20 2022-04-28 マクセル株式会社 Terahertz wave detection device, terahertz wave detection method, and information processing device
CN115032340A (en) * 2022-06-01 2022-09-09 上海贝辉木业有限公司 Waste gas monitoring method and device for glue making workshop, electronic equipment and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012527A (en) * 1983-07-04 1985-01-22 Secoh Giken Inc Infrared beam scanner
JPH08122197A (en) * 1994-10-21 1996-05-17 Osaka Gas Co Ltd Method and equipment for detecting leakage by image
JP2000346796A (en) * 1999-06-02 2000-12-15 Nec San-Ei Instruments Ltd Gas visualizing apparatus and method
US20060203248A1 (en) * 2005-03-11 2006-09-14 Reichardt Thomas A Natural gas leak mapper
JP2010097412A (en) * 2008-10-16 2010-04-30 Nohmi Bosai Ltd Smoke detecting apparatus
JP2012220313A (en) * 2011-04-07 2012-11-12 Mitsubishi Electric Corp Gas detecting device
JP2015108917A (en) * 2013-12-04 2015-06-11 能美防災株式会社 Flame detector, and method for determining flame detection candidate area

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012527A (en) * 1983-07-04 1985-01-22 Secoh Giken Inc Infrared beam scanner
JPH08122197A (en) * 1994-10-21 1996-05-17 Osaka Gas Co Ltd Method and equipment for detecting leakage by image
JP2000346796A (en) * 1999-06-02 2000-12-15 Nec San-Ei Instruments Ltd Gas visualizing apparatus and method
US20060203248A1 (en) * 2005-03-11 2006-09-14 Reichardt Thomas A Natural gas leak mapper
JP2010097412A (en) * 2008-10-16 2010-04-30 Nohmi Bosai Ltd Smoke detecting apparatus
JP2012220313A (en) * 2011-04-07 2012-11-12 Mitsubishi Electric Corp Gas detecting device
JP2015108917A (en) * 2013-12-04 2015-06-11 能美防災株式会社 Flame detector, and method for determining flame detection candidate area

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017060A1 (en) * 2018-07-20 2020-01-23 マクセル株式会社 Terahertz wave detection device, terahertz wave detection method, and terahertz wave detection system
CN112041664A (en) * 2018-07-20 2020-12-04 麦克赛尔株式会社 Terahertz wave detection device, terahertz wave detection method, and terahertz wave detection system
JPWO2020017060A1 (en) * 2018-07-20 2021-02-25 マクセル株式会社 Terahertz wave detector, terahertz wave detection method, and terahertz wave detection system
JP2022066541A (en) * 2018-07-20 2022-04-28 マクセル株式会社 Terahertz wave detection device, terahertz wave detection method, and information processing device
US11346776B2 (en) 2018-07-20 2022-05-31 Maxell, Ltd. Terahertz wave detection device, terahertz wave detection method, and terahertz wave detection system
US11668650B2 (en) 2018-07-20 2023-06-06 Maxell, Ltd. Terahertz wave detection device, terahertz wave detection method, and terahertz wave detection system
JP7323667B2 (en) 2018-07-20 2023-08-08 マクセル株式会社 Terahertz wave detection device, terahertz wave detection method, and information processing device
CN115032340A (en) * 2022-06-01 2022-09-09 上海贝辉木业有限公司 Waste gas monitoring method and device for glue making workshop, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP2019168224A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
EP3552180B1 (en) Distance sensor including adjustable focus imaging sensor
US10742958B2 (en) Endoscope apparatus
US10281264B2 (en) Three-dimensional measurement apparatus and control method for the same
US11474245B2 (en) Distance measurement using high density projection patterns
JP6109357B2 (en) Information processing apparatus, information processing method, and program
EP3015882B1 (en) Distance measuring device
JP6621836B2 (en) Depth mapping of objects in the volume using intensity variation of light pattern
WO2018034236A1 (en) Gas detection system and gas detection method
US10684120B2 (en) Wire rope measuring device and wire rope measuring method
EP3051492A1 (en) Method and apparatus for determining disparity
WO2018034228A1 (en) Gas detection system and gas detection method
US11846708B2 (en) Object monitoring system including distance measuring device
US10379058B2 (en) Measurement device and method for operating the same
US11004229B2 (en) Image measurement device, image measurement method, imaging device
JP6404985B1 (en) Imaging device for detecting abnormality of range image
EP3798629A1 (en) Processing system, processing method, and storage medium
JP2016065785A (en) Image processor, and method and program for image processing
JP7176429B2 (en) Gas leak localization system and gas leak localization program
KR101492185B1 (en) Apparatus for measuring snowfall
US20230345142A1 (en) Three-dimensional-measurement device and three-dimensional-measurement method
WO2023176137A1 (en) Sensor system and control method therefor
Curto et al. Fitting a Normal Probability Distribution to Depth Estimations of Three REALSENSE™ Rgb-D Cameras Tested in Scenes with Transparency
CN115298514A (en) Distance measurement including supplemental accuracy data
JPWO2022168903A5 (en)
JP2021000342A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17841459

Country of ref document: EP

Kind code of ref document: A1