WO2018033995A1 - Curable resin composition for forming easily strippable film, and process for producing same - Google Patents

Curable resin composition for forming easily strippable film, and process for producing same Download PDF

Info

Publication number
WO2018033995A1
WO2018033995A1 PCT/JP2016/074180 JP2016074180W WO2018033995A1 WO 2018033995 A1 WO2018033995 A1 WO 2018033995A1 JP 2016074180 W JP2016074180 W JP 2016074180W WO 2018033995 A1 WO2018033995 A1 WO 2018033995A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
coo
resin composition
curable resin
Prior art date
Application number
PCT/JP2016/074180
Other languages
French (fr)
Japanese (ja)
Inventor
幸樹 椿
恵 百本
茂樹 阿波
裕貴 大浦
Original Assignee
大阪有機化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪有機化学工業株式会社 filed Critical 大阪有機化学工業株式会社
Priority to PCT/JP2016/074180 priority Critical patent/WO2018033995A1/en
Priority to KR1020197004839A priority patent/KR102442826B1/en
Priority to PCT/JP2017/029635 priority patent/WO2018034342A1/en
Priority to CN201780058468.8A priority patent/CN109790391B/en
Priority to JP2018534435A priority patent/JP7008627B2/en
Priority to TW106128164A priority patent/TW201825531A/en
Publication of WO2018033995A1 publication Critical patent/WO2018033995A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/20Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for coatings strippable as coherent films, e.g. temporary coatings strippable as coherent films

Definitions

  • the present invention relates to a curable resin composition, and more particularly, to a curable resin composition for forming an easily peelable film, and in particular, can be applied to a substrate such as glass and cured to form a thin film, and then from the substrate without difficulty.
  • the present invention relates to a curable resin composition that provides a thin film that can be easily peeled, and more particularly, to a curable resin composition that provides a thin film that is not easily denatured even when subjected to heat treatment and that maintains easy peelability.
  • Display devices such as liquid crystal display devices are widely used in ticket machines, ATMs, portable terminals such as smartphones, computers, and other various electric and electronic devices.
  • the screens of these display devices are generally rigid flat plates.
  • a flexible display device having a screen that can be deformed to some extent has been developed to reflect the expansion of potential uses of the display device.
  • a photolithography method is used to form a metal film on the base film, coating a photoresist film, pre-baking, exposure of a circuit pattern, resist Processes such as development, rinsing, baking, etching, and photoresist removal by dissolution are combined according to the purpose and method, and repeated to produce a circuit.
  • an anisotropic conductive film (ACF) is disposed between or on the layers thus produced, if necessary, and a printed wiring board is disposed on a necessary portion thereon, and is heated and pressurized.
  • ACF anisotropic conductive film
  • firing is desirably performed at a sufficiently high temperature (around 230 ° C.), but the upper limit of the firing temperature is restricted by the heat resistance level of the base film. In other words, firing in each step cannot be performed unless the region is on the low-temperature side below the limit that the base film can withstand.
  • the wiring produced by low-temperature firing using them is the conventional one using ITO. Since the characteristics are inferior to those of wiring, it is not preferable in terms of technology.
  • the base film is required to be thinner year by year, the heat resistance of the base film decreases as the thickness is reduced.
  • the upper limit of the heat treatment temperature has been reduced to about 100 ° C, and it is assumed that the upper limit of the temperature that can withstand the heat treatment of the base film will further decrease due to further demand for thinness in the future.
  • a resin composition as a base film material is applied to another substrate (such as a glass substrate). It is necessary to prepare a base film by a method of forming a film by curing by heat curing or the like.
  • circuit components such as metal wiring are sequentially formed in layers, for the purpose of installation of anisotropic conductive film, lamination of printed circuit board wiring, circuit connection, etc.
  • the base film is peeled off from the substrate such as glass together with the layers formed thereon as an integral laminated body to obtain a laminated body as a circuit component.
  • the laminate must be easily peeled off from the substrate such as glass. Otherwise, a large strain is generated in the laminated body due to a load at the time of peeling, which causes disconnection of metal wiring and peeling of circuit connection, resulting in a significant deterioration of the product yield.
  • the substrate material itself is resistant to heat treatment at a higher temperature than the conventional one in the form of a thin film
  • the firing in the process of forming the wiring thereon is performed at a higher temperature
  • the substrate material and it It becomes easy to adhere to the substrate surface.
  • the resin material for forming the base film is very thin and uniform without being struck by the substrate when applied to the substrate (glass substrate, etc.). It must be of a nature that can be expanded. On the other hand, such an affinity for the substrate is one of the factors that can cause the loss of easy peelability because it can cause the substrate to adhere to the substrate during the baking process.
  • the present invention is a process in which a film can be formed by applying a very thin surface on a substrate (glass or the like), a cured resin thin film can be formed by curing, and a circuit is formed thereon by patterning or the like.
  • An object of the present invention is to provide a curable resin composition that can withstand a high temperature of 230 ° C. during baking and that can be easily and easily peeled off from a substrate even after being exposed to such a high temperature.
  • the present inventor has found that the above object can be achieved by a curable resin composition comprising a polymer having a side chain having a specific range of structural characteristics and a specific range of a crosslinking agent. That is, the present invention provides the following.
  • a curable resin composition comprising a chain polymer having a side chain having an alcoholic secondary or tertiary hydroxyl group, and a crosslinking agent, (A) the side chain comprises 3 to 30 carbon atoms and comprises at least one saturated or unsaturated hydrocarbon group, or in addition to at least one more An aromatic group and a bond selected from the group consisting of —COO—, —O—, and —CO— that connect carbon atoms; (B) The crosslinking agent is selected from a triazine-based crosslinking agent or a glycoluril-based crosslinking agent. Curable resin composition. 2.
  • the chain polymer is a monomer unit having the side chain having an alcoholic secondary or tertiary hydroxyl group, a (meth) acrylate monomer, a vinyl ester monomer, a vinyl ether monomer, and others
  • the chain polymer is CH 2 ⁇ CH—COO—R 1 , CH 2 ⁇ C (CH 3 ) —COO—R 2 , CH 2 ⁇ CH—O—CO—R 3 , CH 2 ⁇ CH-0—R.
  • R 1 , R 2 , R 3 , R 4 , and R 5 are independently of each other when each vinyl group is bonded via an ester bond] It has 3 to 30 carbon atoms including the carbon atoms constituting the ester bond, has an alcoholic secondary or tertiary hydroxyl group, and contains at least one saturated or unsaturated hydrocarbon group Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. . ]
  • the said curable resin composition of 1 or 2 which comprises the monomer unit chosen from the group which consists of a compound shown by these. 4).
  • the chain polymer further has any one of (meth) acrylic monomer, vinyl ester monomer, vinyl ether monomer, and other vinyl monomers having no hydroxyl group and having 1 to 15 carbon atoms in the side chain.
  • the curable resin composition according to any one of 1 to 3 above, which comprises at least one kind as an additional monomer unit. 5).
  • the additional monomer units are CH 2 ⁇ CH—COO—R 6 , CH 2 ⁇ C (CH 3 ) —COO—R 7 , CH 2 ⁇ CH—O—CO—R 8 , [where R 6 , R 7 and R 8 independently of one another have 1 to 15 carbon atoms, have no hydroxyl groups, comprise at least one saturated or unsaturated hydrocarbon group, or at least It comprises one aromatic group and can have a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms.
  • the group group can have an amino group.
  • CH 2 CH-0-R 9
  • CH 2 CH-R 10
  • R 9 and R 10 independently of one another have 3 to 15 carbon atoms and have a hydroxyl group -COO-, -O-, and -CO, which contain at least one saturated or unsaturated hydrocarbon group, or further contain at least one aromatic group and connect carbon atoms
  • a bond selected from the group consisting of — and the hydrocarbon group or aromatic group may have an amino group;
  • C 4 H 2 NO 2 -R 12 [where C 4 HO 3- represents a maleic anhydride group, C 4 H 2 NO 2- represents a maleimide group, R 11 and R 12 are independently of each other a hydrogen atom or have 1 to 15 carbon atoms, have no hydroxyl group, and contain at least one saturated or unsaturated hydrocarbon group.
  • the curable resin composition according to any one of 1 to 4 above which is selected from the group consisting of compounds represented by the formula: 6).
  • the cross-linking agent is a group consisting of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril
  • a method for producing a cured resin film comprising: Providing a chain polymer with a side chain having an alcoholic secondary or tertiary hydroxyl group and a crosslinking agent; Applying a composition comprising the chain polymer and the crosslinking agent on a substrate to form a curable resin composition coating; Including a step of forming a cured resin film by performing a polymerization reaction in the coating film of the curable resin composition to be cured, (A) the side chain comprises 3 to 30 carbon atoms and comprises at least one saturated or unsaturated hydrocarbon group, or in addition to at least one more An aromatic group, and a bond selected from the group consisting of —COO—, —O—, and —CO— that connect carbon atoms of adjacent groups among
  • the crosslinking agent is selected from a triazine-based crosslinking agent or a glycoluril-based crosslinking agent.
  • Production method. 13 The chain polymer is a monomer unit having the side chain having an alcoholic secondary or tertiary hydroxyl group, a (meth) acrylate monomer, a vinyl ester monomer, a vinyl ether monomer, and others 13. The production method according to 12 above, comprising at least one of the vinyl monomers as a monomer unit. 14 The chain polymer is CH 2 ⁇ CH—COO—R 1 , CH 2 ⁇ C (CH 3 ) —COO—R 2 , CH 2 ⁇ CH—O—CO—R 3 , CH 2 ⁇ CH-0—R.
  • R 1 , R 2 , R 3 , R 4 , and R 5 are independently of each other when each vinyl group is bonded via an ester bond] It has 3 to 30 carbon atoms including the carbon atoms constituting the ester bond, has an alcoholic secondary or tertiary hydroxyl group, and contains at least one saturated or unsaturated hydrocarbon group Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. .
  • the manufacturing method of said 12 or 13 which comprises the monomer unit chosen from the group which consists of a compound shown by these. 15.
  • the chain polymer further has any one of (meth) acrylic monomer, vinyl ester monomer, vinyl ether monomer, and other vinyl monomers having no hydroxyl group and having 1 to 15 carbon atoms in the side chain. 15.
  • the additional monomer units are CH 2 ⁇ CH—COO—R 6 , CH 2 ⁇ C (CH 3 ) —COO—R 7 , CH 2 ⁇ CH—O—CO—R 8 , [where R 6 , R 7 and R 8 independently of one another have 1 to 15 carbon atoms, have no hydroxyl group, comprise at least one saturated or unsaturated hydrocarbon group, or at least It may contain a bond selected from the group consisting of —COO—, —O—, and —CO—, which contains one aromatic group and connects carbon atoms.
  • CH 2 CH-0-R 9
  • CH 2 CH-R 10
  • R 9 and R 10 independently of one another have 3 to 15 carbon atoms and have a hydroxyl group -COO-, -O-, and -CO, which contain at least one saturated or unsaturated hydrocarbon group, or further contain at least one aromatic group and connect carbon atoms A bond selected from the group consisting of: ], C 4 HO 3 -R 11 , and C 4 H 2 NO 2 -R 12 [where C 4 HO 3- represents a maleic anhydride group, C 4 H 2 NO 2- represents a maleimide group, R 11 and R 12 are independently of each other a hydrogen atom or have 1 to 15 carbon atoms, have no hydroxyl group, and contain at least one saturated or unsaturated hydrocarbon group.
  • the cross-linking agent consists of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, or fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril 18.
  • the production method according to any one of 12 to 18 above, wherein the ratio of the mass of the linear polymer to the mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05. 20. 20.
  • 20. The production method according to any one of 12 to 19 above, wherein the composition contains a solvent. 21. 21.
  • the curable resin composition of the present invention can be applied to a glass substrate and cured to form a transparent thin film (for example, several hundred nm thick) that can be easily peeled off.
  • the thin film formed on the substrate in this way can withstand heating up to 150 ° C., preferably withstands heating at 230 ° C., and further has resistance to the solvent used in the photoresist solution, Since it withstands an alkaline developing solution, it can be advantageously used as a resin base film for circuit fabrication by photolithography.
  • the thin film formed from the curable resin composition of the present invention has easy peelability even after heating at such a temperature.
  • heat resistance means that a film obtained by curing a curable resin composition can withstand heating up to 150 ° C., and preferably withstands heating at 230 ° C. It means no degradation or other deterioration.
  • the temperature of 230 ° C. is high enough to be used as a baking temperature in the production of an electronic circuit by a photolithography method.
  • “easily peelable film” means that a film formed by coating / curing on a substrate, particularly a glass substrate, can be easily peeled off without damaging the film (ie, without unreasonableness). Some say, “easy peelability” refers to the properties of such a film.
  • the glass substrate include appropriate glass substrates such as a soda glass substrate and a non-alkali glass substrate. A soda glass substrate is a particularly preferred example.
  • the thickness of the “cured resin film” is not limited. When used as a base film for circuit fabrication, the preferred thickness is 200 to 400 nm, for example, about 300 nm. This is a response to the current demand for thin film in the case of electronic parts, and is a cured resin. Since the performance of the film itself is not limited to this thickness range, the thickness of the cured resin film is arbitrary.
  • the film formed of the curable resin of the present invention is heat-resistant in the above sense and has easy peelability even after heat treatment in a temperature range that is heat-resistant.
  • the chain polymer which is one of the constituent elements of the curable resin composition of the present invention has a side chain having an alcoholic secondary or tertiary hydroxyl group.
  • side chain refers to a structural portion branched from a main chain
  • main chain refers to atoms connected in a one-dimensional direction of repeating monomer units in the polymer structure.
  • a chain consisting of therefore, for example, when the polymer is a polymer of (meth) acrylate, “—COO—” which is a portion that contributes to the formation of an ester bond in each monomer is included in a part of the “side chain”.
  • the table designation “(meth) acrylate” indicates acrylate and methacrylate without distinction.
  • the number of carbon atoms contained in the side chain having an alcoholic secondary or tertiary hydroxyl group of the chain polymer is preferably 3 to 30.
  • the number of hydroxyl groups in the side chain having an alcoholic secondary or tertiary hydroxyl group can be one or more.
  • the above side chain comprises a saturated or unsaturated hydrocarbon group of at least one carbon atom, or further comprises at least one aromatic group.
  • the side chain may contain one or more bonds selected from the group consisting of —COO—, —O—, and —CO—.
  • the saturated or unsaturated hydrocarbon group constituting the side chain may occupy all carbon atoms of the side chain, for example, alone, or a plurality of saturated or unsaturated carbon groups may be —COO—, It may be linked via a bond selected from the group consisting of —O— and —CO—.
  • the saturated or unsaturated hydrocarbon group and the aromatic group may be directly bonded, or —COO—, — They may be linked via a bond selected from the group consisting of O— and —CO—.
  • “—O—” and “—CO—” do not include the case where they are constituent parts of “—COO—”.
  • the alcoholic secondary and tertiary hydroxyl groups in the side chain are formed by curing the cured resin thin film formed by applying the curable resin composition of the present invention on a glass substrate and curing it.
  • a chain polymer having such a side chain is a resin composition with an appropriate crosslinking agent, in particular, either a triazine-based crosslinking agent or a glycoluril-based crosslinking agent, and has a heat resistance when cured in the form of a thin film.
  • An easily peelable film can be provided.
  • the chain polymer having the side chain having an alcoholic secondary or tertiary hydroxyl group is more preferably a (meth) acrylate monomer, a vinyl ester monomer, a vinyl ether monomer, other than the above. Vinyl monomers, Any one of them is included as a monomer unit.
  • bonding it has 3 to 30 carbon atoms, more preferably 3 to 25 carbon atoms, still more preferably 3 to 20 carbon atoms including carbon atoms constituting the ester bond, -COO- having a secondary hydroxyl group and comprising at least one saturated or unsaturated hydrocarbon group, or further comprising at least one aromatic group, and connecting between carbon atoms,
  • a monomer unit selected from the group consisting of compounds represented by the formula:
  • saturated or unsaturated hydrocarbon groups include methyl, ethyl, n-propyl, isopropyl, butyl, pentyl, hexyl, cyclohexyl, dicyclopentadienyl, decalinyl, adamantyl, butenyl, hexenyl, cyclohexenyl. , Decyl, and the like, and various linear, branched, monocyclic, and condensed cyclic groups within the limit of the carbon number of the side chain may be mentioned. When these groups are not located at the terminal, they may be divalent or higher groups depending on the bonding relationship with other groups.
  • aromatic groups include monocyclic aromatic groups (monocyclic and condensed ring groups) such as phenyl, biphenylyl, naphthyl, and heteroaromatic groups (monocyclic, pyridinyl, quinolinyl, triazinyl, etc.)
  • each aromatic group may be a divalent or higher valent group depending on the bonding relationship with other groups.
  • a group having a saturated or unsaturated hydrocarbon chain part that forms a ring together with an aromatic ring part is an aromatic group and a saturated or unsaturated hydrocarbon group. Think of it as a combination.
  • the alcoholic secondary or tertiary hydroxyl group replaces a hydrogen atom on either the secondary or tertiary carbon atom of the saturated or unsaturated hydrocarbon group constituting the side chain. Hydroxyl group.
  • the preferred side chain having an alcoholic secondary or tertiary hydroxyl group of the chain polymer in the present invention includes the following, but since it is only necessary to have such a hydroxy group, the mentioned ones are not tired. It is an illustration and it is not limited to them.
  • AO-CO-type (A represents the remainder of the side chain, the same shall apply hereinafter)
  • Side chain 2-hydroxyethoxycarbonyl, 2-hydroxypropoxycarbonyl, 4- (hydroxymethyl) cyclohexylmethoxycarbonyl, 2 -Hydroxy-3- (cyclohexylcarbonyloxy) propoxycarbonyl, 3-benzoyloxy-2-hydroxypropoxycarbonyl, 4-benzoyloxy-3-hydroxycyclohexylmethoxycarbonyl, 3-hydroxy-1-adamantyloxycarbonyl, 2-hydroxycyclohexyl Oxycarbonyl, 4-undecanoyloxy-3-hydroxycyclohexylmethoxycarbonyl, 4-butanoyloxy-3-hydroxycyclohexylmethoxycarbonyl, and the like.
  • A-CO-O-type side chain 2-hydroxypropylcarbonyloxy, 2-hydroxy-3- (cyclohexylcarbonyloxy) propylcarbonyloxy, 3-benzoyloxy-2-hydroxypropylcarbonyloxy, 4-benzoyl Oxy-3-hydroxycyclohexylmethylcarbonyloxy, 3-hydroxy-1-adamantylcarbonyloxy, 2-hydroxycyclohexyloxycarbonyloxy, 4-undecanoyloxy-3-hydroxycyclohexylmethylcarbonyloxy, 4-butanoyloxy- 3-hydroxycyclohexylmethylcarbonyloxy and the like.
  • (3a) AO-type side chain 2-hydroxypropoxy, 2-hydroxy-3- (cyclohexylcarbonyloxy) propoxy, 3-benzoyloxy-2-hydroxypropoxy, 4-benzoyloxy-3-hydroxycyclohexylmethoxy, 3-hydroxy-1-adamantyloxy, 2-hydroxycyclohexyloxy, 4-undecanoyloxy-3-hydroxycyclohexylmethoxy, 4-butanoyloxy-3-hydroxycyclohexylmethoxy and the like.
  • Preferred examples of the monomer that gives these side chains to the chain polymer include, but are not limited to, the following.
  • Maleic anhydride and maleimide each having the above (1a) to (4a) as substituents.
  • the chain polymer in the present invention is a (meth) acrylic polymer having no hydroxyl group and having 1 to 15 carbon atoms in the side chain in addition to the above-mentioned monomer having an alcoholic secondary or tertiary hydroxyl group. Any one of a monomer, a vinyl ester monomer, a vinyl ether monomer, and a vinyl monomer other than these monomers may be included as an additional monomer unit.
  • Such additional monomer units are preferably CH 2 ⁇ CH—COO—R 6 , CH 2 ⁇ C (CH 3 ) —COO—R 7 , CH 2 ⁇ CH—O—CO—R 8 , wherein In which R 6 , R 7 and R 8 independently of one another have 1 to 15 carbon atoms, have no hydroxyl groups and comprise at least one saturated or unsaturated hydrocarbon group , Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms.
  • the hydrogen group or aromatic group can have an amino group.
  • Preferable examples of the monomer unit having no hydroxyl group include, but are not limited to, the following. (1) Methyl (meth) acrylate, propyl (meth) acrylate, glycidyl (meth) acrylate, butyl (meth) acrylate, ethoxyethyl (meth) acrylate, pentyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, cyclohexyl ( (Meth) acrylate, phenyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, octyl (meth) acrylate, benzyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylamino (Meth) acrylates such as propyl (meth) acrylate.
  • Vinyl esters such as vinyl acetate, butanoic acid vinyl ester, pentanoic acid vinyl ester, hexanoic acid vinyl ester, cyclohexanecarboxylic acid vinyl ester, benzoic acid vinyl ester, cyclopentadienylcarboxylic acid vinyl ester, and nonanoic acid vinyl ester .
  • Vinyl derivatives such as 1-butene, 4-ethoxy-1-butene, 1-pentene, 1-hexene, vinylcyclohexane, styrene, vinyltoluene, 1-nonene and 3-phenylpropene.
  • Maleic anhydride derivatives such as maleic anhydride, methylmaleic anhydride, butylmaleic anhydride, hexylmaleic anhydride, cyclohexylmaleic anhydride, phenylmaleic anhydride, octylmaleic anhydride .
  • Maleimide derivatives such as maleimide, methylmaleimide, ethylmaleimide, butylmaleimide, hexylmaleimide, cyclohexylmaleimide, phenylmaleimide, benzylmaleimide and octylmaleimide.
  • the proportion of the monomer unit having an alcoholic secondary or tertiary hydroxyl group in the chain polymer in the present invention is preferably 30 to 100 mol%, more preferably 50 to 100 mol%, more preferably 60 to It is 100 mol%, more preferably 80 to 100 mol%, particularly preferably 90 to 100 mol%.
  • the chain polymer is subjected to a polymerization reaction using a raw material monomer in a conventional manner, for example, using a conventional radical polymerization catalyst such as 2,2′-azobisisobutyronitrile (AIBN). Can be manufactured.
  • a conventional radical polymerization catalyst such as 2,2′-azobisisobutyronitrile (AIBN).
  • AIBN 2,2′-azobisisobutyronitrile
  • the molecular weight of the chain polymer is usually preferably in the range of 10,000 to 100,000 (measured by gel filtration chromatography), but is not particularly limited to this range.
  • a triazine-based crosslinking agent or a glycoluril-based crosslinking agent is preferable.
  • Preferred examples of these cross-linking agents include fully or partially alkoxy (eg methoxy, ethoxy) methylated melamine, fully or partially alkoxy (eg methoxy, ethoxy) methylated guanamine, fully or partially alkoxy (eg methoxy, ethoxy) methyl.
  • the “alkoxy” preferably has 1 to 4 carbon atoms. More specifically, as such a crosslinking agent, for example, hexamethoxymethyl melamine, hexaethoxymethyl melamine, tetramethoxymethyl methylol melamine, tetramethoxymethyl melamine, hexabutoxymethyl melamine, tetramethoxymethyl guanamine, tetramethoxymethyl acetoamine.
  • a crosslinking agent for example, hexamethoxymethyl melamine, hexaethoxymethyl melamine, tetramethoxymethyl methylol melamine, tetramethoxymethyl melamine, hexabutoxymethyl melamine, tetramethoxymethyl guanamine, tetramethoxymethyl acetoamine.
  • Guanamine tetramethoxymethylbenzoguanamine, trimethoxymethylbenzoguanamine, tetraethoxymethylbenzoguanamine, tetramethylolbenzoguanamine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) Although glycoluril etc. are mentioned, it is not limited to these.
  • the curable resin composition can be diluted to an appropriate concentration with a solvent.
  • a conventional aprotic solvent may be used unless there is an inconvenience in forming a uniform coating film by drying after applying the curable resin composition to a substrate such as glass. It can be selected and used as appropriate.
  • propylene glycol monomethyl ether is a suitable solvent, but is not limited thereto. Dilution with a solvent is for convenience of handling at the time of polymerization reaction of a monomer, application of a curable resin composition to which a cross-linking agent and a catalyst are added, and there is no particular upper limit or lower limit for the degree of dilution.
  • the mass ratio of the chain polymer to the crosslinking agent in the curable resin composition of the present invention is preferably 1: 0.05 to 1: 1, more preferably 1: 0.1 to 1: 0.5, Preferably, it is 1: 0.1 to 1: 0.3.
  • 2-hydroxypropyl methacrylate was used as a monomer, and 100 parts by mass thereof was dissolved in propylene glycol monomethyl ether (PGME) so as to be 30% by mass.
  • PGME propylene glycol monomethyl ether
  • AIBN 2,2′-azobisisobutyronitrile
  • polymer A-1 was obtained. It was 25000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
  • Polymer A-2 was obtained in the same manner as in Example 1 except that 3-benzoyloxy-2-hydroxypropyl methacrylate was used as a monomer.
  • the average molecular weight (MW) of the polymer was measured by gel filtration chromatography and found to be 22,000.
  • Polymer A-3 was obtained in the same manner as in Example 1 except that 4-benzoyloxy-3-hydroxycyclohexylmethyl methacrylate was used as a monomer.
  • MW average molecular weight
  • a polymer A-4 was obtained in the same manner as in Example 1 except that 1,3-adamantyldiol monomethacrylate was used as a monomer. It was 18000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
  • Polymer A-5 was obtained in the same manner as in Example 1 except that 2-hydroxycyclohexyl methacrylate was used as a monomer.
  • MW average molecular weight
  • Polymer A-6 was obtained in the same manner as in Example 1 except that 2-hydroxyethyl methacrylate was used as a monomer. When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 42,000.
  • Polymer A-7 was obtained in the same manner as in Example 1 except that 4- (hydroxymethyl) cyclohexylmethyl methacrylate was used as a monomer. It was 18000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
  • Polymer A-10 was obtained in the same manner as in Example 8, except that 2-hydroxypropyl methacrylate of formula (1-1) and styrene were used as monomers.
  • the average molecular weight (MW) of the polymer was measured by gel filtration chromatography and found to be 22,000.
  • Polymer A-12 was prepared in the same manner as in Example 8, except that 2-hydroxycyclohexyl methacrylate and dicyclopentadienyl methacrylate represented by the formula (1-5) were used as monomers. 12 was obtained. It was 25000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
  • Polymer A- 15 was prepared in the same manner as in Example 8 except that 2-hydroxyethyl methacrylate and dicyclopentadienyl methacrylate represented by the formula (1-6) were used as monomers. 15 was obtained. When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 39000.
  • curable resin compositions of the present invention were produced as described below, applied onto two types of glass substrates, and cured by heating to form a film.
  • Example 1 4.4 parts by mass of polymer A-1 and the following formula (B-1) as a crosslinking agent:
  • Example 2 3.2 parts by weight of polymer A-1, 0.8 parts by weight of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by weight of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 3 2.4 parts by mass of polymer A-1, 2.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 4 4.4 parts by mass of polymer A-2, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 5 4.4 parts by mass of polymer A-3, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 6 4.4 parts by mass of polymer A-4, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 7 4.4 parts by mass of polymer A-5, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 8 4.4 parts by mass of polymer A-8, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 9 4.4 parts by mass of polymer A-9, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 10 4.4 parts by mass of polymer A-10, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 11 4.4 parts by mass of polymer A-11, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 12 4.4 parts by mass of polymer A-12, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Example 13 4.4 parts by mass of polymer A-1 and the following formula (B-2) as a crosslinking agent:
  • Example 14 4.4 parts by mass of polymer A-1 and the following formula (B-3) as a crosslinking agent:
  • tetramethoxymethylbenzoguanamine and 0.2 part by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst were dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME).
  • PGME propylene glycol monomethyl ether
  • Example 15 4.4 parts by mass of polymer A-1, 0.4 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)) and 0.2 parts by mass of dodecylbenzenesulfonic acid as a polymerization catalyst It was dissolved in 95 parts by mass of glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME glycol monomethyl ether
  • Example 16 4.4 parts by mass of polymer A-1, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and thermal acid generator Sun-Aid SI-100L (Sanshin Chemical) as a polymerization catalyst 0.2 parts by mass of (Co.) was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Comparative Example 1 4.4 parts by mass of polymer A-6, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • Comparative Example 2 4.4 parts by mass of polymer A-7, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
  • PGME propylene glycol monomethyl ether
  • the peel strengths of the cured resin thin films of Comparative Examples 1 to 6 were 2.2 to 8.7 N / mm 2 (soda glass substrate) and 3.2 to 9.2 (EAGLE-XG substrate). However, in Examples 1 to 16, it is 0.013 to 0.078 (soda glass substrate) and 0.028 to 0.085 ((EAGLE-XG substrate)), which is two orders of magnitude smaller. Actually, each cured resin thin film of the comparative example had a high peel force value, and thus the film and the substrate were destroyed. It could be easily removed without difficulty.
  • the cured resin thin films of Examples 1 and 7 remained at a level two orders of magnitude lower than those of Comparative Examples 1 and 2 before firing even after firing at 230 ° C. for 1 hour or 3 hours. It could be easily removed without difficulty.
  • the cured resin thin films of Comparative Examples 1 and 2 were more strongly bonded to the glass substrate than before firing.
  • the present invention can be applied to a substrate such as glass very thinly, and can be formed into a very thin cured resin thin film by drying and curing after coating, and baking at a temperature of 230 ° C. in the process of producing a circuit by patterning or the like thereon.
  • a curable resin composition that has durability at high temperatures and can be easily peeled off from a substrate even after being exposed to such high temperatures, it is useful for the production of film-type electrical / electronic circuit components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a curable resin composition which can be applied to a surface of a glass substrate to form a thin cured-resin film, which withstands 230°C burning and can be then easily stripped from the substrate. The curable resin composition comprises a crosslinking agent and a chain polymer which includes a side chain having an alcoholic secondary or tertiary hydroxyl group, wherein (a) the side chain contains 3-30 carbon atoms, contains at least one (un)saturated hydrocarbon group and optionally further contains at least one aromatic group, and can contain a bond selected from the group consisting of -COO-, -O-, and -CO-, the bond linking carbon atoms to each other, and (b) the crosslinking agent is selected from between a triazine-based crosslinking agent and a glycoluril-based crosslinking agent.

Description

易剥離膜形成用硬化性樹脂組成物及びその製造方法Curable resin composition for forming easily peelable film and method for producing the same
 本発明は,硬化性樹脂組成物,より詳しくは易剥離膜形成用の硬化性樹脂組成物に関し,特にガラス等の基板上に塗布し硬化させて薄膜へと成膜でき,その後基板から無理なく容易に剥離することができる薄膜を与える硬化性樹脂組成物に関し,特に,熱処理に付されても変性し難く且つ易剥離性を維持し易い薄膜を与える,硬化性樹脂組成物に関する。 The present invention relates to a curable resin composition, and more particularly, to a curable resin composition for forming an easily peelable film, and in particular, can be applied to a substrate such as glass and cured to form a thin film, and then from the substrate without difficulty. The present invention relates to a curable resin composition that provides a thin film that can be easily peeled, and more particularly, to a curable resin composition that provides a thin film that is not easily denatured even when subjected to heat treatment and that maintains easy peelability.
 液晶ディスプレイ装置等の表示装置は,券売機,ATM,スマートフォン等の携帯型端末,コンピュータその他の種々の電気・電子機器に幅広く用いられている。それらのディスプレイ装置のスクリーンは,一般に強直な平板状である。これに対し,表示装置の潜在的用途の拡大を反映して,ある程度の変形が可能なスクリーンを備えた,フレキシブルなディスプレイ装置の開発が行われている。曲げることができる回路を構成する基板としては,樹脂製のベースフィルムがあるが,ディスプレイ装置のスクリーン中で用いる場合,微細な回路が作製でき且つ透明で可能な限り薄く軽いことが求められる。 Display devices such as liquid crystal display devices are widely used in ticket machines, ATMs, portable terminals such as smartphones, computers, and other various electric and electronic devices. The screens of these display devices are generally rigid flat plates. On the other hand, a flexible display device having a screen that can be deformed to some extent has been developed to reflect the expansion of potential uses of the display device. As a substrate constituting a circuit that can be bent, there is a resin base film, but when it is used in a screen of a display device, it is required to be able to produce a fine circuit and be transparent and as thin and light as possible.
 樹脂ベースフィルム上への種々の微細な電気・電子回路の作製では,例えば,フォトリソグラフィ法が用いられ,ベースフィルムへ上の金属膜形成,フォトレジスト膜のコーティング,プリベーク,回路パターンの露光,レジスト溶解による現像,リンス,焼成,エッチング,フォトレジスト除去等の工程が,目的と手法に応じて組み合わされ,反復されて回路が作製される。更に,このようにして作製される層の間や層上に,必要に応じて異方性導電膜(ACF)が配置され,その上の必要部位にプリント配線基板が配置され,加熱,加圧により,異方性導電膜を介してプリント配線基板と金属配線との間での回路接続がなされる。こうして積層体として回路全体が作成されるには,一般に何回かの焼成ステップが含まれる。回路の性能のためには焼成は十分な高さの温度(230℃付近)で行うことが望ましいが,ベースフィルムの耐熱性のレベルよって焼成可能温度の上限が制約を受ける。即ち,ベースフィルムが耐える限度以下の低温側の領域でなければ,各ステップでの焼成を行うことができない。そのような低温域で焼成のできる金属配線として,他の材料(銀ナノ粒子等)を用いることが可能ではあるものの,それらを用いた低温焼成により作製される配線は,ITOを用いた従来の配線に比べて特性が劣るため,技術上好ましくない。 In the production of various fine electric and electronic circuits on a resin base film, for example, a photolithography method is used to form a metal film on the base film, coating a photoresist film, pre-baking, exposure of a circuit pattern, resist Processes such as development, rinsing, baking, etching, and photoresist removal by dissolution are combined according to the purpose and method, and repeated to produce a circuit. Further, an anisotropic conductive film (ACF) is disposed between or on the layers thus produced, if necessary, and a printed wiring board is disposed on a necessary portion thereon, and is heated and pressurized. Thus, the circuit connection between the printed wiring board and the metal wiring is made through the anisotropic conductive film. In order to produce the entire circuit as a laminated body in this manner, generally, several firing steps are included. For circuit performance, firing is desirably performed at a sufficiently high temperature (around 230 ° C.), but the upper limit of the firing temperature is restricted by the heat resistance level of the base film. In other words, firing in each step cannot be performed unless the region is on the low-temperature side below the limit that the base film can withstand. Although it is possible to use other materials (silver nanoparticles, etc.) as the metal wiring that can be fired in such a low temperature range, the wiring produced by low-temperature firing using them is the conventional one using ITO. Since the characteristics are inferior to those of wiring, it is not preferable in terms of technology.
 しかも,ベースフィルムは,年々薄型化が求められているが,薄型化に伴ってベースフィルムの耐熱性は低下する。その結果,現在では熱処理温度の上限が100℃程度まで低下しており,今後更なる薄型要望によりベースフィルムの加熱処理に耐え得る温度の上限が更に低下することを想定すると,回路の性能を維持できる温度での焼成に対応し得るベースフィルム材料が見当たらない,という問題がある。 Moreover, although the base film is required to be thinner year by year, the heat resistance of the base film decreases as the thickness is reduced. As a result, the upper limit of the heat treatment temperature has been reduced to about 100 ° C, and it is assumed that the upper limit of the temperature that can withstand the heat treatment of the base film will further decrease due to further demand for thinness in the future. There is a problem in that there is no base film material that can be fired at a possible temperature.
 このため,従来のものより高い温度に耐えるベースフィルム材料が求められている。 Therefore, there is a demand for a base film material that can withstand higher temperatures than conventional ones.
 また,薄型化に伴いベースフィルムは,300nm程度の非常に薄い膜を用いることが望まれており,そのためには,他の基板(ガラス基板等)にベースフィルム材料である樹脂組成物を塗布し熱硬化等により硬化させて成膜する方法で,ベースフィルムを作成することが必要となる。ガラス等の基板に形成されたこの極めて薄いベースフィルム上で,金属配線等の回路構成要素を順次層状に形成し,異方性導電膜の設置,プリント基板配線の積層,回路接続等も目的に応じて行い,絶縁保護膜の積層を行った後,ガラス等の基板からベースフィルムをその上に形成された各層と共に一体の積層体として剥がせば,回路部品としての積層体が得られる。 In addition, as the thickness of the base film decreases, it is desired to use a very thin film of about 300 nm. For this purpose, a resin composition as a base film material is applied to another substrate (such as a glass substrate). It is necessary to prepare a base film by a method of forming a film by curing by heat curing or the like. On this extremely thin base film formed on a substrate such as glass, circuit components such as metal wiring are sequentially formed in layers, for the purpose of installation of anisotropic conductive film, lamination of printed circuit board wiring, circuit connection, etc. Then, after the insulating protective film is laminated, the base film is peeled off from the substrate such as glass together with the layers formed thereon as an integral laminated body to obtain a laminated body as a circuit component.
 ここで,ガラス等の基板からの積層体の引き剥がしは,無理なく容易に行えるものでなければならない。さもなければ,引き剥がす際の負荷により積層体に大きな歪みが生じ,それにより金属配線の断線や回路接続の剥離が生じて,製品の著しい歩留まり悪化を招くからである。 Here, the laminate must be easily peeled off from the substrate such as glass. Otherwise, a large strain is generated in the laminated body due to a load at the time of peeling, which causes disconnection of metal wiring and peeling of circuit connection, resulting in a significant deterioration of the product yield.
 特に,基板材料自体は薄膜状において従来のものより高い温度での熱処理にれ耐えるとしても,その上に配線を作製する工程での焼成がその分高い温度で行われると,基板材料とそれが載っている基板表面とは固着し易くなる。このため,基板材料としては,薄膜状において従来のものより高温での焼成に耐えるだけでは不十分であり,そのような高温焼成後も基板から無理なく容易に剥離できるという特性のものでなければならない。 In particular, even if the substrate material itself is resistant to heat treatment at a higher temperature than the conventional one in the form of a thin film, if the firing in the process of forming the wiring thereon is performed at a higher temperature, the substrate material and it It becomes easy to adhere to the substrate surface. For this reason, it is not enough for the substrate material to withstand baking at a higher temperature than the conventional one in the form of a thin film, and it must be capable of being easily and easily peeled off from the substrate after such high temperature baking. Don't be.
 更には,上記のようにベースフィルムは非常に薄いものであるため,これを形成するための樹脂材料は,基板(ガラス基板等)に塗布したとき,基板に弾かれることなく極めて薄く一様に拡がることのできる性質のものでなければならない。基板に対するこのような親和性は,その反面,焼成工程で,基板との固着をもたらし得るため,易剥離性を失わせ得る要因の1つでもある。 Furthermore, since the base film is very thin as described above, the resin material for forming the base film is very thin and uniform without being struck by the substrate when applied to the substrate (glass substrate, etc.). It must be of a nature that can be expanded. On the other hand, such an affinity for the substrate is one of the factors that can cause the loss of easy peelability because it can cause the substrate to adhere to the substrate during the baking process.
WO2014/14205号公報WO2014 / 14205 Publication
 上記の背景において,本発明は,基板(ガラス等)の表面に極めて薄く塗布して成膜でき,硬化させることにより硬化樹脂薄膜を成膜でき,その上にパターニング等により回路を作製する工程での焼成において230℃の高温に耐え,しかもそのような高温に曝された後も基板から無理なく容易に剥離することのできる硬化性樹脂組成物の提供を目的とする。 In the above background, the present invention is a process in which a film can be formed by applying a very thin surface on a substrate (glass or the like), a cured resin thin film can be formed by curing, and a circuit is formed thereon by patterning or the like. An object of the present invention is to provide a curable resin composition that can withstand a high temperature of 230 ° C. during baking and that can be easily and easily peeled off from a substrate even after being exposed to such a high temperature.
 本発明者は,上記目的が,特定範囲の構造的特徴を持つ側鎖を備えたポリマーと,特定範囲の架橋剤とを含んでなる硬化性樹脂組成物により達成できることを見出した。即ち,本発明は以下を提供する。 The present inventor has found that the above object can be achieved by a curable resin composition comprising a polymer having a side chain having a specific range of structural characteristics and a specific range of a crosslinking agent. That is, the present invention provides the following.
 1.アルコール性第二級又は第三級ヒドロキシル基を有する側鎖を備えた鎖状ポリマーと,架橋剤とを含んでなる硬化性樹脂組成物であって,
 (a)該側鎖が,炭素原子3~30個を含んでなるものであり,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又はこれに加えて更に少なくとも1個の芳香族基を含んでなるものであり,且つ炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を含んでいることができ,
 (b)該架橋剤が,トリアジン系架橋剤又はグリコールウリル系架橋剤から選ばれるものである,
硬化性樹脂組成物。
 2.該鎖状ポリマーが,アルコール性第二級又は第三級ヒドロキシル基を有する該側鎖を備えたモノマー単位であって,(メタ)アクリレート系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種をモノマー単位として含んでなるものである,上記1の硬化性樹脂組成物。
 3.該鎖状ポリマーが,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,CH=CH-0-R,及びCH=CH-R〔ここにR,R,R,R,及びRは,互いに独立して,各ビニル基にエステル結合を介して結合している場合は当該エステル結合構成炭素原子を含めて炭素原子3~30個を有し,アルコール性第二級又は第三級ヒドロキシル基を有しており,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕で示される化合物よりなる群より選ばれるモノマー単位を含んでなるものである,上記1又は2の硬化性樹脂組成物。
 4.該鎖状ポリマーが更に,ヒドロキシル基を有さず側鎖の炭素数が1~15である,(メタ)アクリル系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種を,追加のモノマー単位として含んでなるものである,上記1~3の何れかの硬化性樹脂組成物。
 5.該追加のモノマー単位が,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,〔ここにR,R及び,Rは,互いに独立して,炭素原子1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕,CH=CH-0-R,CH=CH-R10〔ここにR,及びR10は,互いに独立して,炭素原子3~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕,CHO-R11,及びCNO-R12〔ここにCHO-は無水マレイン酸基を表し,CNO-はマレイミド基を表し,R11,及びR12は,互いに独立して,水素原子であるか又は炭素原子数1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕で示される化合物からなる群より選ばれるものである,上記1~4の何れかの硬化性樹脂組成物。
 6.該鎖状ポリマーを構成するモノマー単位におけるアルコール性第二級又は第三級ヒドロキシル基を有するモノマー単位の占める割合が30~100モル%である,上記1~5の何れかの硬化性樹脂組成物。
 7.該架橋剤が,完全又は部分アルコキシメチル化メラミン,完全又は部分アルコキシメチル化グアナミン,完全又は部分アルコキシメチル化アセトグアナミン,完全又は部分アルコキシメチル化ベンゾグアナミン,及び完全又は部分アルコキシメチル化グリコールウリルからなる群より選ばれるものである,上記1~6の何れかの硬化性樹脂組成物。
 8.該組成物中における該直鎖状ポリマーの質量と該架橋剤の質量の比が,1:2~1:0.05である,上記1~7の何れかの硬化性樹脂組成物。
 9.溶剤を含むものである,上記1~8の何れかの硬化性樹脂組成物。
 10.上記1~9の何れかの硬化性樹脂組成物を硬化させてなる,硬化樹脂膜。
 11.上記1~9の何れかの硬化性樹脂組成物を基板表面に膜状に硬化させてなる,易剥離性硬化樹脂膜。
 12.硬化樹脂膜の製造方法であって,
 アルコール性第二級又は第三級ヒドロキシル基を有する側鎖を備えた鎖状ポリマーと架橋剤とを準備するステップと,
 該鎖状ポリマーと該架橋剤とを含む組成物を基板上に塗布し硬化性樹脂組成物塗膜を形成するステップと,
 該硬化性樹脂組成物塗膜において重合反応を行わせ硬化させることにより硬化樹脂膜とするステップとを含み,ここに,
 (a)該側鎖が,炭素原子3~30個を含んでなるものであり,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又はこれに加えて更に少なくとも1個の芳香族基を含んでなるものであり,且つそれらのうち隣接する基の炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を含んでいることができ,
 (b)該架橋剤が,トリアジン系架橋剤又はグリコールウリル系架橋剤から選ばれるものである,
製造方法。
 13.該鎖状ポリマーが,アルコール性第二級又は第三級ヒドロキシル基を有する該側鎖を備えたモノマー単位であって,(メタ)アクリレート系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種をモノマー単位として含んでなるものである,上記12の製造方法。
 14.該鎖状ポリマーが,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,CH=CH-0-R,及びCH=CH-R〔ここにR,R,R,R,及びRは,互いに独立して,各ビニル基にエステル結合を介して結合している場合は当該エステル結合構成炭素原子を含めて炭素原子3~30個を有し,アルコール性第二級又は第三級ヒドロキシル基を有しており,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕で示される化合物よりなる群より選ばれるモノマー単位を含んでなるものである,上記12又は13の製造方法。
 15.該鎖状ポリマーが更に,ヒドロキシル基を有さず側鎖の炭素数が1~15である,(メタ)アクリル系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種を,追加のモノマー単位として含んでなるものである,上記12~14の何れかの製造方法。
 16.該追加のモノマー単位が,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,〔ここにR,R,及びRは,互いに独立して,炭素原子1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕,CH=CH-0-R,CH=CH-R10〔ここにR,及びR10は,互いに独立して,炭素原子3~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕,CHO-R11,及びCNO-R12〔ここにCHO-は無水マレイン酸基を表し,CNO-はマレイミド基を表し,R11,及びR12は,互いに独立して,水素原子であるか又は炭素原子数1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕で示される化合物からなる群より選ばれるものである,上記12~15の何れかの製造方法。
 17.該鎖状ポリマーを構成するモノマー単位におけるアルコール性第二級又は第三級ヒドロキシル基を有するモノマー単位の占める割合が30~100モル%である,上記12~16の何れかの製造方法。
 18.該架橋剤が,完全又は部分アルコキシメチル化メラミン,完全又は部分アルコキシメチル化グアナミン,完全又は部分アルコキシメチル化アセトグアナミン,又は完全又は部分アルコキシメチル化ベンゾグアナミン,及び完全又は部分アルコキシメチル化グリコールウリルからなる群より選ばれるものである,上記12~17の何れかの製造方法。
 19.該組成物中の該直鎖状ポリマーの質量と該架橋剤の質量の比が,1:2~1:0.05である,上記12~18の何れかの製造方法。
 20.該組成物が溶剤を含むものである,上記12~19の何れかの製造方法。
 21.該基板上に形成されている該硬化樹脂膜を該基板から剥離するステップを更に含む,上記12~20の何れかの硬化樹脂膜の製造方法。
1. A curable resin composition comprising a chain polymer having a side chain having an alcoholic secondary or tertiary hydroxyl group, and a crosslinking agent,
(A) the side chain comprises 3 to 30 carbon atoms and comprises at least one saturated or unsaturated hydrocarbon group, or in addition to at least one more An aromatic group and a bond selected from the group consisting of —COO—, —O—, and —CO— that connect carbon atoms;
(B) The crosslinking agent is selected from a triazine-based crosslinking agent or a glycoluril-based crosslinking agent.
Curable resin composition.
2. The chain polymer is a monomer unit having the side chain having an alcoholic secondary or tertiary hydroxyl group, a (meth) acrylate monomer, a vinyl ester monomer, a vinyl ether monomer, and others The curable resin composition according to 1 above, comprising at least one of the vinyl monomers as a monomer unit.
3. The chain polymer is CH 2 ═CH—COO—R 1 , CH 2 ═C (CH 3 ) —COO—R 2 , CH 2 ═CH—O—CO—R 3 , CH 2 ═CH-0—R. 4 and CH 2 ═CH—R 5 [where R 1 , R 2 , R 3 , R 4 , and R 5 are independently of each other when each vinyl group is bonded via an ester bond] It has 3 to 30 carbon atoms including the carbon atoms constituting the ester bond, has an alcoholic secondary or tertiary hydroxyl group, and contains at least one saturated or unsaturated hydrocarbon group Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. . ] The said curable resin composition of 1 or 2 which comprises the monomer unit chosen from the group which consists of a compound shown by these.
4). The chain polymer further has any one of (meth) acrylic monomer, vinyl ester monomer, vinyl ether monomer, and other vinyl monomers having no hydroxyl group and having 1 to 15 carbon atoms in the side chain. The curable resin composition according to any one of 1 to 3 above, which comprises at least one kind as an additional monomer unit.
5). The additional monomer units are CH 2 ═CH—COO—R 6 , CH 2 ═C (CH 3 ) —COO—R 7 , CH 2 ═CH—O—CO—R 8 , [where R 6 , R 7 and R 8 independently of one another have 1 to 15 carbon atoms, have no hydroxyl groups, comprise at least one saturated or unsaturated hydrocarbon group, or at least It comprises one aromatic group and can have a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. The group group can have an amino group. ], CH 2 = CH-0-R 9 , CH 2 = CH-R 10 [wherein R 9 and R 10 independently of one another have 3 to 15 carbon atoms and have a hydroxyl group -COO-, -O-, and -CO, which contain at least one saturated or unsaturated hydrocarbon group, or further contain at least one aromatic group and connect carbon atoms A bond selected from the group consisting of — and the hydrocarbon group or aromatic group may have an amino group; ], C 4 HO 3 -R 11 , and C 4 H 2 NO 2 -R 12 [where C 4 HO 3- represents a maleic anhydride group, C 4 H 2 NO 2- represents a maleimide group, R 11 and R 12 are independently of each other a hydrogen atom or have 1 to 15 carbon atoms, have no hydroxyl group, and contain at least one saturated or unsaturated hydrocarbon group. Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. The hydrocarbon group or aromatic group can have an amino group. The curable resin composition according to any one of 1 to 4 above, which is selected from the group consisting of compounds represented by the formula:
6). The curable resin composition according to any one of 1 to 5 above, wherein the proportion of the monomer unit having an alcoholic secondary or tertiary hydroxyl group in the monomer unit constituting the chain polymer is 30 to 100 mol% .
7). The cross-linking agent is a group consisting of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril The curable resin composition according to any one of the above 1 to 6, which is selected from the above.
8). 8. The curable resin composition according to any one of 1 to 7 above, wherein the ratio of the weight of the linear polymer to the weight of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
9. The curable resin composition according to any one of 1 to 8 above, which contains a solvent.
10. A cured resin film obtained by curing the curable resin composition according to any one of 1 to 9 above.
11. An easily peelable cured resin film obtained by curing the curable resin composition of any one of 1 to 9 on a substrate surface in a film shape.
12 A method for producing a cured resin film, comprising:
Providing a chain polymer with a side chain having an alcoholic secondary or tertiary hydroxyl group and a crosslinking agent;
Applying a composition comprising the chain polymer and the crosslinking agent on a substrate to form a curable resin composition coating;
Including a step of forming a cured resin film by performing a polymerization reaction in the coating film of the curable resin composition to be cured,
(A) the side chain comprises 3 to 30 carbon atoms and comprises at least one saturated or unsaturated hydrocarbon group, or in addition to at least one more An aromatic group, and a bond selected from the group consisting of —COO—, —O—, and —CO— that connect carbon atoms of adjacent groups among them. ,
(B) The crosslinking agent is selected from a triazine-based crosslinking agent or a glycoluril-based crosslinking agent.
Production method.
13. The chain polymer is a monomer unit having the side chain having an alcoholic secondary or tertiary hydroxyl group, a (meth) acrylate monomer, a vinyl ester monomer, a vinyl ether monomer, and others 13. The production method according to 12 above, comprising at least one of the vinyl monomers as a monomer unit.
14 The chain polymer is CH 2 ═CH—COO—R 1 , CH 2 ═C (CH 3 ) —COO—R 2 , CH 2 ═CH—O—CO—R 3 , CH 2 ═CH-0—R. 4 and CH 2 ═CH—R 5 [where R 1 , R 2 , R 3 , R 4 , and R 5 are independently of each other when each vinyl group is bonded via an ester bond] It has 3 to 30 carbon atoms including the carbon atoms constituting the ester bond, has an alcoholic secondary or tertiary hydroxyl group, and contains at least one saturated or unsaturated hydrocarbon group Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. . The manufacturing method of said 12 or 13 which comprises the monomer unit chosen from the group which consists of a compound shown by these.
15. The chain polymer further has any one of (meth) acrylic monomer, vinyl ester monomer, vinyl ether monomer, and other vinyl monomers having no hydroxyl group and having 1 to 15 carbon atoms in the side chain. 15. The production method according to any one of 12 to 14 above, which comprises at least one kind as an additional monomer unit.
16. The additional monomer units are CH 2 ═CH—COO—R 6 , CH 2 ═C (CH 3 ) —COO—R 7 , CH 2 ═CH—O—CO—R 8 , [where R 6 , R 7 and R 8 independently of one another have 1 to 15 carbon atoms, have no hydroxyl group, comprise at least one saturated or unsaturated hydrocarbon group, or at least It may contain a bond selected from the group consisting of —COO—, —O—, and —CO—, which contains one aromatic group and connects carbon atoms. ], CH 2 = CH-0-R 9 , CH 2 = CH-R 10 [wherein R 9 and R 10 independently of one another have 3 to 15 carbon atoms and have a hydroxyl group -COO-, -O-, and -CO, which contain at least one saturated or unsaturated hydrocarbon group, or further contain at least one aromatic group and connect carbon atoms A bond selected from the group consisting of: ], C 4 HO 3 -R 11 , and C 4 H 2 NO 2 -R 12 [where C 4 HO 3- represents a maleic anhydride group, C 4 H 2 NO 2- represents a maleimide group, R 11 and R 12 are independently of each other a hydrogen atom or have 1 to 15 carbon atoms, have no hydroxyl group, and contain at least one saturated or unsaturated hydrocarbon group. Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. . The production method according to any one of 12 to 15 above, which is selected from the group consisting of compounds represented by the formula:
17. 17. The production method according to any one of 12 to 16 above, wherein the proportion of the monomer unit having an alcoholic secondary or tertiary hydroxyl group in the monomer unit constituting the chain polymer is 30 to 100 mol%.
18. The cross-linking agent consists of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, or fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril 18. The production method according to any one of 12 to 17 above, which is selected from the group.
19. 19. The production method according to any one of 12 to 18 above, wherein the ratio of the mass of the linear polymer to the mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
20. 20. The production method according to any one of 12 to 19 above, wherein the composition contains a solvent.
21. 21. The method for producing a cured resin film according to any one of 12 to 20, further comprising a step of peeling the cured resin film formed on the substrate from the substrate.
 本発明の硬化性樹脂組成物は,これをガラス基板に塗布し硬化させることにより,無理なく容易に剥離することのできる透明な薄膜(例えば数百nm厚)を形成することができる。またこうして基板上に成膜された薄膜は,150℃までの加熱に耐え,好ましくは230℃の加熱にも耐えることができる上,更には,フォトレジスト溶液に用いられる溶剤に耐性を有し,アルカリ性の現像溶液にも耐えることから,フォトリソグラフィ法による回路作製を行うための樹脂製ベースフィルムとして有利に用いることができる。加えて,本発明の硬化性樹脂組成物により形成した薄膜は,そのような温度での加熱後も易剥離性を有しているため,薄膜であるにも拘わらず従来に比べて高温での焼成ステップを含んだ回路作製プロセスに付すことができるため回路の特性保持に有利であり,且つ回路作製後にも基板から無理なく容易に剥離することができる。このため,優れた特徴のベースフィルムとして,シート状のフレキシブルな種々の電気・電子回路部品の作製に幅広く用いることができ,例えばフレキシブルなディスプレイ装置やタッチセンサー等の作製にも利用することができる。 The curable resin composition of the present invention can be applied to a glass substrate and cured to form a transparent thin film (for example, several hundred nm thick) that can be easily peeled off. In addition, the thin film formed on the substrate in this way can withstand heating up to 150 ° C., preferably withstands heating at 230 ° C., and further has resistance to the solvent used in the photoresist solution, Since it withstands an alkaline developing solution, it can be advantageously used as a resin base film for circuit fabrication by photolithography. In addition, the thin film formed from the curable resin composition of the present invention has easy peelability even after heating at such a temperature. Since it can be subjected to a circuit manufacturing process including a baking step, it is advantageous for maintaining the characteristics of the circuit and can be easily and easily peeled off from the substrate even after the circuit is manufactured. For this reason, as a base film having excellent characteristics, it can be widely used in the production of various sheet-like flexible electrical / electronic circuit components, for example, in the production of flexible display devices and touch sensors. .
 本明細書において,「耐熱性」とは,硬化性樹脂組成物を硬化させて得られる膜について,150℃までの加熱に耐え,好ましくは230℃の加熱にも耐えることができ,実質的に分解その他の劣化を起こさないことをいう。230℃という温度は,フォトリソグラフィ法による電子回路の作製において,焼成温度として用いるのに十分な高温である。 In this specification, “heat resistance” means that a film obtained by curing a curable resin composition can withstand heating up to 150 ° C., and preferably withstands heating at 230 ° C. It means no degradation or other deterioration. The temperature of 230 ° C. is high enough to be used as a baking temperature in the production of an electronic circuit by a photolithography method.
 本明細書において,「易剥離膜」とは,基板,特にガラス基板への塗布・硬化により形成された膜が,基板から膜を破損することなしに(即ち無理なく)容易に剥がせるものであることをいい,「易剥離性」とはそのような膜の性質をいう。ガラス基板としては,例えば,ソーダガラス製の基板,無アルカリガラス製の基板等,適宜のガラス基板が挙げられる。ソーダガラス製の基板は特に好ましい一例である。 In this specification, “easily peelable film” means that a film formed by coating / curing on a substrate, particularly a glass substrate, can be easily peeled off without damaging the film (ie, without unreasonableness). Some say, “easy peelability” refers to the properties of such a film. Examples of the glass substrate include appropriate glass substrates such as a soda glass substrate and a non-alkali glass substrate. A soda glass substrate is a particularly preferred example.
 本明細書において,「硬化樹脂膜」についてその厚みは限定されない。回路作製のためのベースフィルムとして使用する場合に好ましい厚みは200~400nm,例えば約300nmであるが,これは,電子部品とする場合における現在の薄膜化の要請に対応したものであり,硬化樹脂膜自体の性能はこの厚み範囲に限定されるものでないから,硬化樹脂膜の厚みは,任意である。 In this specification, the thickness of the “cured resin film” is not limited. When used as a base film for circuit fabrication, the preferred thickness is 200 to 400 nm, for example, about 300 nm. This is a response to the current demand for thin film in the case of electronic parts, and is a cured resin. Since the performance of the film itself is not limited to this thickness range, the thickness of the cured resin film is arbitrary.
 本発明の硬化性樹脂により形成される膜は,上記の意味において耐熱性であると共に,耐熱性である温度範囲での加熱処理の後も易剥離性を有する。 The film formed of the curable resin of the present invention is heat-resistant in the above sense and has easy peelability even after heat treatment in a temperature range that is heat-resistant.
 本発明の硬化性樹脂組成物の構成要素の1つである鎖状ポリマーは,アルコール性第二級又は第三級ヒドロキシル基を有する側鎖を備える。本明細書において,「側鎖」の語は,主鎖から分枝した構造部分をいい,「主鎖」とは,ポリマーの構造中における反復するモノマー単位の一次元方向に連結している原子よりなる鎖をいう。従って,例えばポリマーが(メタ)アクリレートの重合体である場合,各モノマーにおいてエステル結合の形成に与っている部分である「-COO-」は,「側鎖」の一部に含まれる。なお,「(メタ)アクリレート」の表標記は,アクリレート及びメタクリレートを区別なく示す。 The chain polymer which is one of the constituent elements of the curable resin composition of the present invention has a side chain having an alcoholic secondary or tertiary hydroxyl group. In this specification, the term “side chain” refers to a structural portion branched from a main chain, and “main chain” refers to atoms connected in a one-dimensional direction of repeating monomer units in the polymer structure. A chain consisting of Therefore, for example, when the polymer is a polymer of (meth) acrylate, “—COO—” which is a portion that contributes to the formation of an ester bond in each monomer is included in a part of the “side chain”. The table designation “(meth) acrylate” indicates acrylate and methacrylate without distinction.
 本発明において鎖状ポリマーのアルコール性第二級又は第三級ヒドロキシル基を有する側鎖に含まれる炭素原子数は,好ましくは3~30個である。アルコール性第二級又は第三級ヒドロキシル基を有する側鎖における当該ヒドロキシル基の個数は,1個又は2個以上であることができる。 In the present invention, the number of carbon atoms contained in the side chain having an alcoholic secondary or tertiary hydroxyl group of the chain polymer is preferably 3 to 30. The number of hydroxyl groups in the side chain having an alcoholic secondary or tertiary hydroxyl group can be one or more.
 上記の側鎖は,炭素原子少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなる。該側鎖は,-COO-,-O-,及び-CO-よりなる群から選ばれる結合を1個又は2個以上含んでいてもよい。側鎖を構成する飽和又は不飽和の炭化水素基は,例えば1個単独で側鎖の全炭素原子を占めてもよく,また複数の飽和又は不飽和の炭素基が相互間に-COO-,-O-,及び-CO-よりなる群から選ばれる結合を介して連結したものであってもよい。側鎖が飽和又は不飽和の炭化水素基に加えて芳香族基を含む場合,飽和又は不飽和の炭化水素基と芳香族基とは,直接結合していてもよく,また-COO-,-O-,及び-CO-よりなる群から選ばれる結合を介して連結していてもよい。なお,本明細書において,「-O-」及び「-CO-」というときは,それらが「-COO-」の構成部分である場合を含まない。 The above side chain comprises a saturated or unsaturated hydrocarbon group of at least one carbon atom, or further comprises at least one aromatic group. The side chain may contain one or more bonds selected from the group consisting of —COO—, —O—, and —CO—. The saturated or unsaturated hydrocarbon group constituting the side chain may occupy all carbon atoms of the side chain, for example, alone, or a plurality of saturated or unsaturated carbon groups may be —COO—, It may be linked via a bond selected from the group consisting of —O— and —CO—. When the side chain contains an aromatic group in addition to a saturated or unsaturated hydrocarbon group, the saturated or unsaturated hydrocarbon group and the aromatic group may be directly bonded, or —COO—, — They may be linked via a bond selected from the group consisting of O— and —CO—. In this specification, “—O—” and “—CO—” do not include the case where they are constituent parts of “—COO—”.
 本発明において,側鎖におけるアルコール性第二級及び第三級ヒドロキシル基は,本発明の硬化性樹脂組成物をガラス基板上に塗布し硬化させて成膜した硬化樹脂薄膜が,焼成後にも基板からの易剥離性を維持できるための実質上決定的な要素である。このような側鎖を備えた鎖状ポリマーは,適切な架橋剤,特にトリアジン系架橋剤又はグリコールウリル系架橋剤の何れかとの樹脂組成物とし,薄膜の形態で硬化させたとき,耐熱性の易剥離膜を与えることができる。 In the present invention, the alcoholic secondary and tertiary hydroxyl groups in the side chain are formed by curing the cured resin thin film formed by applying the curable resin composition of the present invention on a glass substrate and curing it. This is a decisive factor for maintaining easy peelability from the film. A chain polymer having such a side chain is a resin composition with an appropriate crosslinking agent, in particular, either a triazine-based crosslinking agent or a glycoluril-based crosslinking agent, and has a heat resistance when cured in the form of a thin film. An easily peelable film can be provided.
 本発明においてアルコール性第二級又は第三級ヒドロキシル基を有する該側鎖を備えた鎖状ポリマーは,より好ましくは,(メタ)アクリレート系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,上記以外のビニル系モノマー,
何れか少なくとも1種をモノマー単位として含んでなるものである。
In the present invention, the chain polymer having the side chain having an alcoholic secondary or tertiary hydroxyl group is more preferably a (meth) acrylate monomer, a vinyl ester monomer, a vinyl ether monomer, other than the above. Vinyl monomers,
Any one of them is included as a monomer unit.
 より好ましくは,本発明における鎖状ポリマーは,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,CH=CH-0-R,及びCH=CH-R〔ここにR,R,R,R,及びRは,互いに独立して,各ビニル基にエステル結合を介して結合している場合は当該エステル結合構成炭素原子を含めて炭素原子3~30個,更に好ましくは3~25個,尚も好ましくは3~20個を有し,アルコール性第二級又は第三級ヒドロキシル基を有しており,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕で示される化合物よりなる群より選ばれるモノマー単位を含んでなる。 More preferably, the chain polymer in the present invention is CH 2 ═CH—COO—R 1 , CH 2 ═C (CH 3 ) —COO—R 2 , CH 2 ═CH—O—CO—R 3 , CH 2 = CH-0-R 4 and CH 2 = CH-R 5 [wherein R 1 , R 2 , R 3 , R 4 , and R 5 are independently of each other via an ester bond to each vinyl group. In the case of bonding, it has 3 to 30 carbon atoms, more preferably 3 to 25 carbon atoms, still more preferably 3 to 20 carbon atoms including carbon atoms constituting the ester bond, -COO- having a secondary hydroxyl group and comprising at least one saturated or unsaturated hydrocarbon group, or further comprising at least one aromatic group, and connecting between carbon atoms, A bond selected from the group consisting of —O— and —CO—. Can have. A monomer unit selected from the group consisting of compounds represented by the formula:
 上記において,飽和又は不飽和の炭化水素基の例としては,メチル,エチル,n-プロピル,イソプロピル,ブチル,ペンチル,ヘキシル,シクロヘキシル,ジシクロペンタジエニル,デカリニル,アダマンチル,ブテニル,ヘキセニル,シクロヘキセニル,デシルその他,側鎖の炭素数の限度範囲内で種々の直鎖状,分枝鎖状,単環状,縮合環状の基が挙げられるが,これらに限定されない。それ等の各基は,末端に位置していない場合には,他の基との結合関係に応じて2価以上の基であってよい。芳香族基の例としては,フェニル,ビフェニリル,ナフチル等のような単素環式芳香族基(単環基及び縮合環基),及びピリジル,ピリミジニル,キノリニル,トリアジニル等のヘテロ芳香族基(単環基及び縮合環基)が挙げられ,各芳香族基についても,末端に位置していない場合には,他の基との結合関係に応じて2価以上の基であってよい。なお本明細書において,芳香環部分と共に環を形成する飽和又は不飽和の炭化水素鎖部分とを有する基(例えば,テトラヒドロナフチル又はジヒドロナフチル)は,芳香族基と飽和又は不飽和の炭化水素基との結合と捉える。 In the above, examples of saturated or unsaturated hydrocarbon groups include methyl, ethyl, n-propyl, isopropyl, butyl, pentyl, hexyl, cyclohexyl, dicyclopentadienyl, decalinyl, adamantyl, butenyl, hexenyl, cyclohexenyl. , Decyl, and the like, and various linear, branched, monocyclic, and condensed cyclic groups within the limit of the carbon number of the side chain may be mentioned. When these groups are not located at the terminal, they may be divalent or higher groups depending on the bonding relationship with other groups. Examples of aromatic groups include monocyclic aromatic groups (monocyclic and condensed ring groups) such as phenyl, biphenylyl, naphthyl, and heteroaromatic groups (monocyclic, pyridinyl, quinolinyl, triazinyl, etc.) In the case where each aromatic group is not located at the terminal, it may be a divalent or higher valent group depending on the bonding relationship with other groups. In the present specification, a group having a saturated or unsaturated hydrocarbon chain part that forms a ring together with an aromatic ring part (for example, tetrahydronaphthyl or dihydronaphthyl) is an aromatic group and a saturated or unsaturated hydrocarbon group. Think of it as a combination.
 本発明において,アルコール性第二級又は第三級ヒドロキシル基は,上記側鎖を構成する飽和又は不飽和の炭化水素基の何れかの第2級又は第3級炭素原子上の水素原子を置換したヒドロキシル基である。 In the present invention, the alcoholic secondary or tertiary hydroxyl group replaces a hydrogen atom on either the secondary or tertiary carbon atom of the saturated or unsaturated hydrocarbon group constituting the side chain. Hydroxyl group.
 本発明における鎖状ポリマーのアルコール性第二級又は第三級ヒドロキシル基を有する好ましい側鎖には次のものが含まれるが,そのようなヒドロキシ基を有すればよいから,挙げたものは飽くまでも例示であり,それらに限定されない。
 (1a) A-O-CO-型(Aは側鎖の残部を示す。以下同様。)側鎖:2-ヒドロキシエトキシカルボニル,2-ヒドロキシプロポキシカルボニル,4-(ヒドロキシメチル)シクロヘキシルメトキシカルボニル,2-ヒドロキシ-3-(シクロヘキシルカルボニルオキシ)プロポキシカルボニル,3-ベンゾイルオキシ-2-ヒドロキシプロポキシカルボニル,4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメトキシカルボニル,3-ヒドロキシ-1-アダマンチルオキシカルボニル,2-ヒドロキシシクロヘキシルオキシカルボニル,4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシルメトキシカルボニル,4-ブタノイルオキシ-3-ヒドロキシシクロヘキシルメトキシカルボニル等。
 (2a) A-CO-O-型側鎖:2-ヒドロキシプロピルカルボニルオキシ,2-ヒドロキシ-3-(シクロヘキシルカルボニルオキシ)プロピルカルボニルオキシ,3-ベンゾイルオキシ-2-ヒドロキシプロピルカルボニルオキシ,4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメチルカルボニルオキシ,3-ヒドロキシ-1-アダマンチルカルボニルオキシ,2-ヒドロキシシクロヘキシロキシルカルボニルオキシ,4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシルメチルカルボニルオキシ,4-ブタノイルオキシ-3-ヒドロキシシクロヘキシルメチルカルボニルオキシ等。
 (3a) A-O-型側鎖:2-ヒドロキシプロポキシ,2-ヒドロキシ-3-(シクロヘキシルカルボニルオキシ)プロポキシ,3-ベンゾイルオキシ-2-ヒドロキシプロポキシ,4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメトキシ,3-ヒドロキシ-1-アダマンチルオキシ,2-ヒドロキシシクロヘキシロキシ,4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシルメトキシ,4-ブタノイルオキシ-3-ヒドロキシシクロヘキシルメトキシ等。
 (4a) その他:2-ヒドロキシプロピル,2-ヒドロキシ-3-(シクロヘキシルカルボニルオキシ)プロピル,3-ベンゾイルオキシ-2-ヒドロキシプロピル,4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメチル,3-ヒドロキシ-1-アダマンチル,2-ヒドロキシシクロヘキシル,4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシルメチル,4-ブタノイルオキシ-3-ヒドロキシシクロヘキシルメチル等。
The preferred side chain having an alcoholic secondary or tertiary hydroxyl group of the chain polymer in the present invention includes the following, but since it is only necessary to have such a hydroxy group, the mentioned ones are not tired. It is an illustration and it is not limited to them.
(1a) AO-CO-type (A represents the remainder of the side chain, the same shall apply hereinafter) Side chain: 2-hydroxyethoxycarbonyl, 2-hydroxypropoxycarbonyl, 4- (hydroxymethyl) cyclohexylmethoxycarbonyl, 2 -Hydroxy-3- (cyclohexylcarbonyloxy) propoxycarbonyl, 3-benzoyloxy-2-hydroxypropoxycarbonyl, 4-benzoyloxy-3-hydroxycyclohexylmethoxycarbonyl, 3-hydroxy-1-adamantyloxycarbonyl, 2-hydroxycyclohexyl Oxycarbonyl, 4-undecanoyloxy-3-hydroxycyclohexylmethoxycarbonyl, 4-butanoyloxy-3-hydroxycyclohexylmethoxycarbonyl, and the like.
(2a) A-CO-O-type side chain: 2-hydroxypropylcarbonyloxy, 2-hydroxy-3- (cyclohexylcarbonyloxy) propylcarbonyloxy, 3-benzoyloxy-2-hydroxypropylcarbonyloxy, 4-benzoyl Oxy-3-hydroxycyclohexylmethylcarbonyloxy, 3-hydroxy-1-adamantylcarbonyloxy, 2-hydroxycyclohexyloxycarbonyloxy, 4-undecanoyloxy-3-hydroxycyclohexylmethylcarbonyloxy, 4-butanoyloxy- 3-hydroxycyclohexylmethylcarbonyloxy and the like.
(3a) AO-type side chain: 2-hydroxypropoxy, 2-hydroxy-3- (cyclohexylcarbonyloxy) propoxy, 3-benzoyloxy-2-hydroxypropoxy, 4-benzoyloxy-3-hydroxycyclohexylmethoxy, 3-hydroxy-1-adamantyloxy, 2-hydroxycyclohexyloxy, 4-undecanoyloxy-3-hydroxycyclohexylmethoxy, 4-butanoyloxy-3-hydroxycyclohexylmethoxy and the like.
(4a) Other: 2-hydroxypropyl, 2-hydroxy-3- (cyclohexylcarbonyloxy) propyl, 3-benzoyloxy-2-hydroxypropyl, 4-benzoyloxy-3-hydroxycyclohexylmethyl, 3-hydroxy-1- Adamantyl, 2-hydroxycyclohexyl, 4-undecanoyloxy-3-hydroxycyclohexylmethyl, 4-butanoyloxy-3-hydroxycyclohexylmethyl, and the like.
 鎖状ポリマーにこれらの側鎖を与えるモノマーの好ましい例としては次のものが挙げられるが,それらに限定されない。
 (1b) 2-ヒドロキシプロピル(メタ)アクリレート,2-ヒドロキシ-3-(シクロヘキシルカルボニルオキシ)プロピル(メタ)アクリレート,3-ベンゾイルオキシ-2-ヒドロキシプロピル(メタ)アクリレート,4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメチル(メタ)アクリレート,1,3-アダマンチルジオールモノ(メタ)アクリレート,及び2-ヒドロキシシクロヘキシル(メタ)アクリレート,4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシルメチル(メタ)アクリレート,4-ブタノイルオキシ-3-ヒドロキシシクロヘキシルメチル(メタ)アクリレート等の(メタ)アクリレート。
 (2b) 2-ヒドロキシブタン酸ビニルエステル,2-ヒドロキシ-3-(シクロヘキシルカルボニルオキシ)ブタン酸ビニルエステル,3-ベンゾイルオキシ-2-ヒドロキシブタン酸ビニルエステル,4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシル酢酸ビニルエステル,3-ヒドロキシ-1-アダマンチルカルボン酸ビニルエステル,2-ヒドロキシシクロヘキシロキシルカルボン酸ビニルエステル,4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシル酢酸ビニルエステル,4-ブタノイルオキシ-3-ヒドロキシシクロヘキシル酢酸ビニルエステル等のビニルエステル。
 (3b) 2-ヒドロキシプロピルビニルエーテル,2-ヒドロキシ-3-(シクロヘキシルカルボニルオキシ)プロピルビニルエーテル,3-ベンゾイルオキシ-2-ヒドロキシプロピルビニルエーテル,4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメチルビニルエーテル,3-ヒドロキシ-1-アダマンチルビニルエーテル,2-ヒドロキシシクロヘキシルビニルエーテル,4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシルメチルエーテル,4-ブタノイルオキシ-3-ヒドロキシシクロヘキシルメチルエーテル等のビニルエーテル。
 (4b) 1-ペンテン-4-オール,4-ヒドロキシ-5-(シクロヘキシルカルボニルオキシ)-1-ペンテン,5-ベンゾイルオキシ-4-ヒドロキシ-1-ペンテン,3-(4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシル)-1-プロペン,(3-ヒドロキシ-1-アダマンチル)エテン,(2-ヒドロキシシクロヘキシル)エテン,3-(4-ウンデカノイルオキシ-3-ヒドロキシシクロヘキシル)-1-プロペン,3-(4-ブタノイルオキシ-3-ヒドロキシシクロヘキシル)-1-プロペン等のビニルモノマー。
 (5b)上記(1a)~(4a)をそれぞれ置換基として有する無水マレイン酸及びマレイミド。
Preferred examples of the monomer that gives these side chains to the chain polymer include, but are not limited to, the following.
(1b) 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3- (cyclohexylcarbonyloxy) propyl (meth) acrylate, 3-benzoyloxy-2-hydroxypropyl (meth) acrylate, 4-benzoyloxy-3- Hydroxycyclohexylmethyl (meth) acrylate, 1,3-adamantyl diol mono (meth) acrylate, and 2-hydroxycyclohexyl (meth) acrylate, 4-undecanoyloxy-3-hydroxycyclohexylmethyl (meth) acrylate, 4-buta (Meth) acrylates such as noyloxy-3-hydroxycyclohexylmethyl (meth) acrylate.
(2b) 2-hydroxybutanoic acid vinyl ester, 2-hydroxy-3- (cyclohexylcarbonyloxy) butanoic acid vinyl ester, 3-benzoyloxy-2-hydroxybutanoic acid vinyl ester, 4-benzoyloxy-3-hydroxycyclohexyl acetic acid Vinyl ester, 3-hydroxy-1-adamantylcarboxylic acid vinyl ester, 2-hydroxycyclohexyloxycarboxylic acid vinyl ester, 4-undecanoyloxy-3-hydroxycyclohexyl acetic acid vinyl ester, 4-butanoyloxy-3-hydroxy Vinyl esters such as cyclohexyl acetic acid vinyl ester.
(3b) 2-hydroxypropyl vinyl ether, 2-hydroxy-3- (cyclohexylcarbonyloxy) propyl vinyl ether, 3-benzoyloxy-2-hydroxypropyl vinyl ether, 4-benzoyloxy-3-hydroxycyclohexyl methyl vinyl ether, 3-hydroxy- Vinyl ethers such as 1-adamantyl vinyl ether, 2-hydroxycyclohexyl vinyl ether, 4-undecanoyloxy-3-hydroxycyclohexyl methyl ether, 4-butanoyloxy-3-hydroxycyclohexyl methyl ether.
(4b) 1-penten-4-ol, 4-hydroxy-5- (cyclohexylcarbonyloxy) -1-pentene, 5-benzoyloxy-4-hydroxy-1-pentene, 3- (4-benzoyloxy-3- Hydroxycyclohexyl) -1-propene, (3-hydroxy-1-adamantyl) ethene, (2-hydroxycyclohexyl) ethene, 3- (4-undecanoyloxy-3-hydroxycyclohexyl) -1-propene, 3- ( Vinyl monomers such as 4-butanoyloxy-3-hydroxycyclohexyl) -1-propene.
(5b) Maleic anhydride and maleimide each having the above (1a) to (4a) as substituents.
 本発明における鎖状ポリマーは,上記のアルコール性第二級又は第三級ヒドロキシル基を有するモノマーに加えて,ヒドロキシル基を有さず側鎖の炭素数が1~15である,(メタ)アクリル系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種を,追加のモノマー単位として含んでなるものであることができる。そのような追加のモノマー単位は,好ましくは,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,〔ここにR,R及びRは,互いに独立して,炭素原子1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕,CH=CH-0-R,CH=CH-R10〔ここにR,及びR10は,互いに独立して,炭素原子3~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕,CHO-R11,及びCNO-R12〔ここにCHO-は無水マレイン酸基を表し,CNO-はマレイミド基を表し,R11,及びR12は,互いに独立して,水素原子であるか又は炭素原子数1~15個を有し,アルコール性第二級又は第三級ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕で示される化合物よりなる群より選ぶことができる。 The chain polymer in the present invention is a (meth) acrylic polymer having no hydroxyl group and having 1 to 15 carbon atoms in the side chain in addition to the above-mentioned monomer having an alcoholic secondary or tertiary hydroxyl group. Any one of a monomer, a vinyl ester monomer, a vinyl ether monomer, and a vinyl monomer other than these monomers may be included as an additional monomer unit. Such additional monomer units are preferably CH 2 ═CH—COO—R 6 , CH 2 ═C (CH 3 ) —COO—R 7 , CH 2 ═CH—O—CO—R 8 , wherein In which R 6 , R 7 and R 8 independently of one another have 1 to 15 carbon atoms, have no hydroxyl groups and comprise at least one saturated or unsaturated hydrocarbon group , Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. The hydrogen group or aromatic group can have an amino group. ], CH 2 = CH-0-R 9 , CH 2 = CH-R 10 [wherein R 9 and R 10 independently of one another have 3 to 15 carbon atoms and have a hydroxyl group -COO-, -O-, and -CO, which contain at least one saturated or unsaturated hydrocarbon group, or further contain at least one aromatic group and connect carbon atoms A bond selected from the group consisting of — and the hydrocarbon group or aromatic group may have an amino group; ], C 4 HO 3 -R 11 , and C 4 H 2 NO 2 -R 12 [where C 4 HO 3- represents a maleic anhydride group, C 4 H 2 NO 2- represents a maleimide group, R 11 and R 12 , independently of one another, are hydrogen atoms or have 1 to 15 carbon atoms, have no alcoholic secondary or tertiary hydroxyl groups, and are at least one saturated Or an unsaturated hydrocarbon group, or at least one aromatic group, and selected from the group consisting of —COO—, —O—, and —CO— that connect carbon atoms It can have a bond, and the hydrocarbon group or aromatic group can have an amino group. ] Can be selected from the group consisting of compounds represented by
 上記のヒドロキシル基を有しないモノマー単位の好ましい例としては,次のものが挙げられるが,それらに限定されない。
 (1)メチル(メタ)アクリレート,プロピル(メタ)アクリレート,グリシジル(メタ)アクリレート,ブチル(メタ)アクリレート,エトキシエチル(メタ)アクリレート,ペンチル(メタ)アクリレート,テトラヒドロフルフリル(メタ)アクリレート,シクロヘキシル(メタ)アクリレート,フェニル(メタ)アクリレート,ジシクロペンタジエニル(メタ)アクリレート,オクチル(メタ)アクリレート,ベンジル(メタ)アクリレート,N,N-ジメチルアミノエチル(メタ)アクリレート,N,N-ジメチルアミノプロピル(メタ)アクリレート等の(メタ)アクリレート。
 (2)酢酸ビニルエステル,ブタン酸ビニルエステル,ペンタン酸ビニルエステル,ヘキサン酸ビニルエステル,シクロヘキサンカルボン酸ビニルエステル,安息香酸ビニルエステル,シクロペンタジエニルカルボン酸ビニルエステル,ノナン酸ビニルエステル等のビニルエステル。
 (3)プロピルビニルエーテル,ブチルビニルエーテル,エトキシエチルビニルエーテル,グリシジルビニルエーテル,ペンチルビニルエーテル,テトラヒドロフルフリルビニルエーテル,シクロヘキシルビニルエーテル,フェニルビニルエーテル,シクロペンタジエニルビニルエーテル,オクチルビニルエーテル,ベンジルビニルエーテル,2-(ビニルオキシ)エチルジメチルアミン,3-(ビニルオキシ)プロピルジメチルアミン等のビニルエーテル。
 (4)1-ブテン,4-エトキシ-1-ブテン,1-ペンテン,1-ヘキセン,ビニルシクロヘキサン,スチレン,ビニルトルエン,1-ノネン,3-フェニルプロペン等のビニル誘導体。
 (5)マレイン酸無水物,メチルマレイン酸無水物,ブチルマレイン酸無水物,ヘキシルマレイン酸無水物,シクロヘキシルマレイン酸無水物,フェニルマレイン酸無水物,オクチルマレイン酸無水物等のマレイン酸無水物誘導体。
 (6)マレイミド,メチルマレイミド,エチルマレイミド,ブチルマレイミド,ヘキシルマレイミド,シクロヘキシルマレイミド,フェニルマレイミド,ベンジルマレイミド,オクチルマレイミド等のマレイミド誘導体。
Preferable examples of the monomer unit having no hydroxyl group include, but are not limited to, the following.
(1) Methyl (meth) acrylate, propyl (meth) acrylate, glycidyl (meth) acrylate, butyl (meth) acrylate, ethoxyethyl (meth) acrylate, pentyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, cyclohexyl ( (Meth) acrylate, phenyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, octyl (meth) acrylate, benzyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylamino (Meth) acrylates such as propyl (meth) acrylate.
(2) Vinyl esters such as vinyl acetate, butanoic acid vinyl ester, pentanoic acid vinyl ester, hexanoic acid vinyl ester, cyclohexanecarboxylic acid vinyl ester, benzoic acid vinyl ester, cyclopentadienylcarboxylic acid vinyl ester, and nonanoic acid vinyl ester .
(3) Propyl vinyl ether, butyl vinyl ether, ethoxyethyl vinyl ether, glycidyl vinyl ether, pentyl vinyl ether, tetrahydrofurfuryl vinyl ether, cyclohexyl vinyl ether, phenyl vinyl ether, cyclopentadienyl vinyl ether, octyl vinyl ether, benzyl vinyl ether, 2- (vinyloxy) ethyldimethylamine , Vinyl ethers such as 3- (vinyloxy) propyldimethylamine.
(4) Vinyl derivatives such as 1-butene, 4-ethoxy-1-butene, 1-pentene, 1-hexene, vinylcyclohexane, styrene, vinyltoluene, 1-nonene and 3-phenylpropene.
(5) Maleic anhydride derivatives such as maleic anhydride, methylmaleic anhydride, butylmaleic anhydride, hexylmaleic anhydride, cyclohexylmaleic anhydride, phenylmaleic anhydride, octylmaleic anhydride .
(6) Maleimide derivatives such as maleimide, methylmaleimide, ethylmaleimide, butylmaleimide, hexylmaleimide, cyclohexylmaleimide, phenylmaleimide, benzylmaleimide and octylmaleimide.
 本発明における鎖状ポリマー中,アルコール性第二級又は第三級ヒドロキシル基を有するモノマー単位が占める割合は,好ましくは30~100モル%,より好ましくは50~100モル%,より好ましくは60~100モル%,更に好ましくは80~100モル%,特に好ましくは90~100モル%である。 The proportion of the monomer unit having an alcoholic secondary or tertiary hydroxyl group in the chain polymer in the present invention is preferably 30 to 100 mol%, more preferably 50 to 100 mol%, more preferably 60 to It is 100 mol%, more preferably 80 to 100 mol%, particularly preferably 90 to 100 mol%.
 本発明において鎖状ポリマーは,その原料モノマーを用いて,常法で,例えば,2,2’-アゾビスイソブチロニトリル(AIBN)等の慣用のラジカル重合触媒を用いて,重合反応を行わせることにより,製造することができる。鎖状ポリマーの分子量は,10000~100000の範囲(ゲル濾過クロマトグラフィー法による測定)であることが通常好ましいが,特にこの範囲に限定されるものではない。 In the present invention, the chain polymer is subjected to a polymerization reaction using a raw material monomer in a conventional manner, for example, using a conventional radical polymerization catalyst such as 2,2′-azobisisobutyronitrile (AIBN). Can be manufactured. The molecular weight of the chain polymer is usually preferably in the range of 10,000 to 100,000 (measured by gel filtration chromatography), but is not particularly limited to this range.
 本発明の硬化性樹脂組成物における架橋剤としては,トリアジン系架橋剤又はグリコールウリル系架橋剤が好ましい。これらの架橋剤の好ましい具体例としては,完全又は部分アルコキシ(例えばメトキシ,エトキシ)メチル化メラミン,完全又は部分アルコキシ(例えばメトキシ,エトキシ)メチル化グアナミン,完全又は部分アルコキシ(例えばメトキシ,エトキシ)メチル化アセトグアナミン,完全又は部分アルコキシメチル化ベンゾグアナミン,完全又は部分アルコキシ(例えばメトキシ,エトキシ)メチル化グリコールウリルが挙げられる。ここに「アルコキシ」は,炭素数1~4であることが好ましい。そのような架橋剤として,より具体的には,例えば,ヘキサメトキシメチルメラミン,ヘキサエトキシメチルメラミン,テトラメトキシメチルメチロールメラミン,テトラメトキシメチルメラミン,ヘキサブトキシメチルメラミン,テトラメトキシメチルグアナミン,テトラメトキシメチルアセトグアナミン,テトラメトキシメチルベンゾグアナミン,トリメトキシメチルベンゾグアナミン,テトラエトキシメチルベンゾグアナミン,テトラメチロールベンゾグアナミン,1,3,4,6-テトラキス(メトキシメチル)グリコールウリル,1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル等が挙げられるが,これらに限定されない。 As the crosslinking agent in the curable resin composition of the present invention, a triazine-based crosslinking agent or a glycoluril-based crosslinking agent is preferable. Preferred examples of these cross-linking agents include fully or partially alkoxy (eg methoxy, ethoxy) methylated melamine, fully or partially alkoxy (eg methoxy, ethoxy) methylated guanamine, fully or partially alkoxy (eg methoxy, ethoxy) methyl. Acetoguanamine, fully or partially alkoxymethylated benzoguanamine, fully or partially alkoxy (eg methoxy, ethoxy) methylated glycoluril. Here, the “alkoxy” preferably has 1 to 4 carbon atoms. More specifically, as such a crosslinking agent, for example, hexamethoxymethyl melamine, hexaethoxymethyl melamine, tetramethoxymethyl methylol melamine, tetramethoxymethyl melamine, hexabutoxymethyl melamine, tetramethoxymethyl guanamine, tetramethoxymethyl acetoamine. Guanamine, tetramethoxymethylbenzoguanamine, trimethoxymethylbenzoguanamine, tetraethoxymethylbenzoguanamine, tetramethylolbenzoguanamine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) Although glycoluril etc. are mentioned, it is not limited to these.
 本発明において,硬化性樹脂組成物は,溶剤により適宜の濃度に希釈されたものであることができる。沸点が過度に低い又は高い等により硬化性樹脂組成物をガラス製等の基板に硬化性樹脂組成物を塗布した後の乾燥による均一な塗膜形成に不都合がない限り,慣用の非プロトン溶媒を適宜選んで用いることができる。例えば,プロピレングリコールモノメチルエーテルは適した溶剤であるが,これに限定されない。溶剤による稀釈は,モノマーの重合反応時や,架橋剤,触媒を加えた硬化性樹脂組成物の塗布時等における取扱いの便のためであるから,稀釈度合いに特段の上限,下限はない。 In the present invention, the curable resin composition can be diluted to an appropriate concentration with a solvent. Unless the boiling point is excessively low or high, a conventional aprotic solvent may be used unless there is an inconvenience in forming a uniform coating film by drying after applying the curable resin composition to a substrate such as glass. It can be selected and used as appropriate. For example, propylene glycol monomethyl ether is a suitable solvent, but is not limited thereto. Dilution with a solvent is for convenience of handling at the time of polymerization reaction of a monomer, application of a curable resin composition to which a cross-linking agent and a catalyst are added, and there is no particular upper limit or lower limit for the degree of dilution.
 本発明の硬化性樹脂組成物における鎖状ポリマーと架橋剤との質量比は,好ましくは,1:0.05~1:1,より好ましくは1:0.1~1:0.5,更に好ましくは1:0.1~1:0.3である。 The mass ratio of the chain polymer to the crosslinking agent in the curable resin composition of the present invention is preferably 1: 0.05 to 1: 1, more preferably 1: 0.1 to 1: 0.5, Preferably, it is 1: 0.1 to 1: 0.3.
 以下,実施例を参照して本発明を更に詳細に説明するが,本発明がそれらの実施例に限定されることは意図しない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not intended to be limited to these examples.
 1.硬化性樹脂組成物の構成要素として重合体の製造
 硬化性樹脂組成物の構成要素として,以下に示すようにて重合体を製造した。
1. Production of polymer as constituent of curable resin composition A polymer was produced as shown below as a constituent of the curable resin composition.
〔製造例1〕 重合体A-1の製造
 次式(1-1),
[Production Example 1] Production of polymer A-1 The following formula (1-1),
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
の2-ヒドロキシプロピルメタクリレートをモノマーとして用い,その100質量部をプロピレングリコールモノメチルエーテル(PGME)に30質量%になるように溶解させた。得られた溶液に窒素ガスを吹き込みながら80℃まで昇温し2,2’-アゾビスイソブチロニトリル(AIBN)をモノマー総量に対して5モル%添加した後,80℃で8時間反応を行って重合体A-1を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,25000であった。 2-hydroxypropyl methacrylate was used as a monomer, and 100 parts by mass thereof was dissolved in propylene glycol monomethyl ether (PGME) so as to be 30% by mass. The resulting solution was heated to 80 ° C. while blowing nitrogen gas, and 5 mol% of 2,2′-azobisisobutyronitrile (AIBN) was added to the total amount of monomers, and then reacted at 80 ° C. for 8 hours. And polymer A-1 was obtained. It was 25000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
〔製造例2〕 重合体A-2の製造
 次式(1-2),
[Production Example 2] Production of polymer A-2 The following formula (1-2),
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
の3-ベンゾイルオキシ-2-ヒドロキシプロピルメタクリレートをモノマーとして用いた以外は実施例1と同様にして,重合体A-2を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,22000であった。 Polymer A-2 was obtained in the same manner as in Example 1 except that 3-benzoyloxy-2-hydroxypropyl methacrylate was used as a monomer. The average molecular weight (MW) of the polymer was measured by gel filtration chromatography and found to be 22,000.
〔製造例3〕 重合体A-3の製造
 次式(1-3),
[Production Example 3] Production of polymer A-3 The following formula (1-3),
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
の4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメチルメタクリレートをモノマーとして用いた以外は実施例1と同様にして,重合体A-3を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,32000であった。 Polymer A-3 was obtained in the same manner as in Example 1 except that 4-benzoyloxy-3-hydroxycyclohexylmethyl methacrylate was used as a monomer. When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 32,000.
〔製造例4〕 重合体A-4の製造
 次式(1-4),
[Production Example 4] Production of polymer A-4 The following formula (1-4),
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
の1,3-アダマンチルジオールモノメタクリレートをモノマーとして用いた以外は実施例1と同様にして,重合体A-4を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,18000であった。 A polymer A-4 was obtained in the same manner as in Example 1 except that 1,3-adamantyldiol monomethacrylate was used as a monomer. It was 18000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
〔製造例5〕 重合体A-5
 次式(1-5)
[Production Example 5] Polymer A-5
The following formula (1-5)
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
の2-ヒドロキシシクロヘキシルメタクリレートをモノマーとして用いた以外は実施例1と同様にして,重合体A-5を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,36000であった。 Polymer A-5 was obtained in the same manner as in Example 1 except that 2-hydroxycyclohexyl methacrylate was used as a monomer. When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 36000.
〔製造例6〕 重合体A-6の製造
 次式(1-6),
[Production Example 6] Production of polymer A-6 The following formula (1-6),
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
の2-ヒドロキシエチルメタクリレートをモノマーとして用いた以外は実施例1と同様にして重合体A-6を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,42000であった。 Polymer A-6 was obtained in the same manner as in Example 1 except that 2-hydroxyethyl methacrylate was used as a monomer. When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 42,000.
〔製造例7〕 重合体A-7の製造
 次式(1-7),
[Production Example 7] Production of polymer A-7 The following formula (1-7),
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
の4-(ヒドロキシメチル)シクロヘキシルメチルメタクリレートをモノマーとして用いた以外は実施例1と同様にして,重合体A-7を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,18000であった。 Polymer A-7 was obtained in the same manner as in Example 1 except that 4- (hydroxymethyl) cyclohexylmethyl methacrylate was used as a monomer. It was 18000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
〔製造例8〕 重合体A-8の製造
 式(1-1)の2-ヒドロキシプロピルメタクリレート及びn-ブチルアクリレートをモノマーとして用い,それらの50質量部ずつをプロピレングリコールモノメチルエーテル(PGME)に合計で30質量%になるように溶解させた。得られた溶液に窒素ガスを吹き込みながら80℃まで昇温し2,2’-アゾビスイソブチロニトリル(AIBN)をモノマー総量に対して5モル%添加した後,80℃で8時間反応を行って重合体A-8を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,18000であった。
[Production Example 8] Production of polymer A-8 Using 2-hydroxypropyl methacrylate and n-butyl acrylate of formula (1-1) as monomers, 50 parts by mass of each in total with propylene glycol monomethyl ether (PGME) To 30% by mass. The resulting solution was heated to 80 ° C. while blowing nitrogen gas, and 5 mol% of 2,2′-azobisisobutyronitrile (AIBN) was added to the total amount of monomers, and then reacted at 80 ° C. for 8 hours. And polymer A-8 was obtained. It was 18000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
〔製造例9〕 重合体A-9の製造
 式(1-1)の2-ヒドロキシプロピルメタクリレート及びメチルメタクリレートをモノマーとして用いた以外は実施例8と同様にして,重合体A-9を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,25000であった。
[Production Example 9] Production of polymer A-9 Polymer A-9 was obtained in the same manner as in Example 8, except that 2-hydroxypropyl methacrylate and methyl methacrylate of formula (1-1) were used as monomers. . It was 25000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
〔製造例10〕 重合体A-10の製造
 式(1-1)の2-ヒドロキシプロピルメタクリレート及びスチレンをモノマーとして用いた以外は実施例8と同様にして,重合体A-10を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,22000であった。
[Production Example 10] Production of polymer A-10 Polymer A-10 was obtained in the same manner as in Example 8, except that 2-hydroxypropyl methacrylate of formula (1-1) and styrene were used as monomers. The average molecular weight (MW) of the polymer was measured by gel filtration chromatography and found to be 22,000.
〔製造例11〕 重合体A-11の製造
 式(1-3)の4-ベンゾイルオキシ-3-ヒドロキシシクロヘキシルメチルメタクリレート及びジシクロペンタジエニルメタクリレートをモノマーとして用いた以外は実施例8と同様にして,重合体A-11を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,35000であった。
[Production Example 11] Production of polymer A-11 As in Example 8 except that 4-benzoyloxy-3-hydroxycyclohexylmethyl methacrylate and dicyclopentadienyl methacrylate of the formula (1-3) were used as monomers. Thus, a polymer A-11 was obtained. When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 35000.
〔製造例12〕 重合体A-12の製造
 式(1-5)の2-ヒドロキシシクロヘキシルメタクリレート及びジシクロペンタジエニルメタクリレートをモノマーとして用いた以外は実施例8と同様にして,重合体A-12を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,25000であった。
[Production Example 12] Production of polymer A-12 Polymer A- 12 was prepared in the same manner as in Example 8, except that 2-hydroxycyclohexyl methacrylate and dicyclopentadienyl methacrylate represented by the formula (1-5) were used as monomers. 12 was obtained. It was 25000 when the average molecular weight (MW) of this polymer was measured by the gel filtration chromatography.
〔製造例13〕 重合体A-13の製造
 式(1-6)の2-ヒドロキシエチルメタクリレート及びブチルアクリレートをモノマーとして用いた以外は実施例8と同様にして,重合体A-13を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,38000であった。
[Production Example 13] Production of polymer A-13 Polymer A-13 was obtained in the same manner as in Example 8, except that 2-hydroxyethyl methacrylate and butyl acrylate of formula (1-6) were used as monomers. . When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 38000.
〔製造例14〕 重合体A-14の製造
 式(1-6)の2-ヒドロキシエチルメタクリレート及びメチルメタクリレートをモノマーとして用いた以外は実施例8と同様にして,重合体A-14を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,36000であった。
[Production Example 14] Production of polymer A-14 Polymer A-14 was obtained in the same manner as in Example 8, except that 2-hydroxyethyl methacrylate and methyl methacrylate represented by formula (1-6) were used as monomers. . When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 36000.
〔製造例15〕 重合体A-15の製造
 式(1-6)の2-ヒドロキシエチルメタクリレート及びジシクロペンタジエニルメタクリレートをモノマーとして用いた以外は実施例8と同様にして,重合体A-15を得た。ゲル濾過クロマトグラフィーによりこの重合体の平均分子量(MW)を測定したところ,39000であった。
[Production Example 15] Production of polymer A-15 Polymer A- 15 was prepared in the same manner as in Example 8 except that 2-hydroxyethyl methacrylate and dicyclopentadienyl methacrylate represented by the formula (1-6) were used as monomers. 15 was obtained. When the average molecular weight (MW) of this polymer was measured by gel filtration chromatography, it was 39000.
 2.硬化性樹脂組成物の製造
 本発明の各種の硬化性樹脂組成物を以下に示すようにして製造し,2種のガラス基板上に塗布し加熱硬化させて成膜した。
2. Production of Curable Resin Composition Various curable resin compositions of the present invention were produced as described below, applied onto two types of glass substrates, and cured by heating to form a film.
〔実施例1〕
 重合体A-1の4.4質量部,架橋剤として次式(B-1),
[Example 1]
4.4 parts by mass of polymer A-1 and the following formula (B-1) as a crosslinking agent:
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
のヘキサメトキシメチルメラミン(ニカラックMW-30,(株)三和ケミカル)の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を0.7mm厚のソーダガラス及び0.5mm厚の無アルカリガラス(EAGLE-XG,コーニング社)上にそれぞれスピンコーティングにより塗布し,150℃以上で30分間加熱処理して,約300nmの膜厚を成膜した。 Of 0.4 parts by mass of hexamethoxymethylmelamine (Nicarac MW-30, Sanwa Chemical Co., Ltd.) and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst were mixed with propylene glycol monomethyl ether (PGME). ) It was dissolved in 95 parts by mass. This solution was applied by spin coating on 0.7 mm thick soda glass and 0.5 mm non-alkali glass (EAGLE-XG, Corning), respectively, and heat-treated at 150 ° C. or higher for 30 minutes to obtain about 300 nm A film thickness was formed.
〔実施例2〕
 重合体A-1の3.2質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.8質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
[Example 2]
3.2 parts by weight of polymer A-1, 0.8 parts by weight of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by weight of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例3〕
 重合体A-1の2.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の2.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 3
2.4 parts by mass of polymer A-1, 2.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例4〕
 重合体A-2の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 4
4.4 parts by mass of polymer A-2, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例5〕
 重合体A-3の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 5
4.4 parts by mass of polymer A-3, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例6〕
 重合体A-4の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 6
4.4 parts by mass of polymer A-4, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例7〕
 重合体A-5の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 7
4.4 parts by mass of polymer A-5, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例8〕
 重合体A-8の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 8
4.4 parts by mass of polymer A-8, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例9〕
 重合体A-9の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 9
4.4 parts by mass of polymer A-9, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例10〕
 重合体A-10の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 10
4.4 parts by mass of polymer A-10, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例11〕
 重合体A-11の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 11
4.4 parts by mass of polymer A-11, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例12〕
 重合体A-12の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 12
4.4 parts by mass of polymer A-12, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例13〕
 重合体A-1の4.4質量部,架橋剤として次式(B-2),
Example 13
4.4 parts by mass of polymer A-1 and the following formula (B-2) as a crosslinking agent:
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
の1,3,4,6-テトラキス(メトキシメチル)グリコールウリルの0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。 Of 1,3,4,6-tetrakis (methoxymethyl) glycoluril and 0.2 part by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst were added to propylene glycol monomethyl ether (PGME) 95 Dissolved in parts by mass. Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例14〕
 重合体A-1の4.4質量部,架橋剤として次式(B-3),
Example 14
4.4 parts by mass of polymer A-1 and the following formula (B-3) as a crosslinking agent:
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
のテトラメトキシメチルベンゾグアナミンの0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。 Of tetramethoxymethylbenzoguanamine and 0.2 part by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst were dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例15〕
 重合体A-1の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてドデシルベンゼンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 15
4.4 parts by mass of polymer A-1, 0.4 parts by mass of the cross-linking agent hexamethoxymethylmelamine (formula (B-1)) and 0.2 parts by mass of dodecylbenzenesulfonic acid as a polymerization catalyst It was dissolved in 95 parts by mass of glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔実施例16〕
 重合体A-1の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒として熱酸発生剤サンエイドSI-100L(三新化学工業(株))の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
Example 16
4.4 parts by mass of polymer A-1, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and thermal acid generator Sun-Aid SI-100L (Sanshin Chemical) as a polymerization catalyst 0.2 parts by mass of (Co.) was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔比較例1〕
 重合体A-6の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
[Comparative Example 1]
4.4 parts by mass of polymer A-6, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔比較例2〕
 重合体A-7の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
[Comparative Example 2]
4.4 parts by mass of polymer A-7, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔比較例3〕
 重合体A-13の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
[Comparative Example 3]
4.4 parts by mass of polymer A-13, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔比較例4〕
 重合体A-14の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
[Comparative Example 4]
4.4 parts by mass of polymer A-14, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔比較例5〕
 重合体A-15の4.4質量部,架橋剤ヘキサメトキシメチルメラミン(式(B-1))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
[Comparative Example 5]
4.4 parts by mass of polymer A-15, 0.4 parts by mass of cross-linking agent hexamethoxymethylmelamine (formula (B-1)), and 0.2 parts by mass of pyridinium-p-toluenesulfonic acid as a polymerization catalyst Was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
〔比較例6〕
 重合体A-1の4.4質量部,イソシアヌレート系架橋剤としてデュラネートTPA-100(旭化成(株))の0.4質量部,及び重合触媒としてピリジニウム-p-トルエンスルホン酸の0.2質量部を,プロピレングリコールモノメチルエーテル(PGME)95質量部に溶解させた。この溶液を用い,実施例1と同様にしてソーダガラス及び無アルカリガラス上にそれぞれ塗布,熱処理して,約300nmの膜厚を成膜した。
[Comparative Example 6]
4.4 parts by mass of polymer A-1, 0.4 parts by mass of Duranate TPA-100 (Asahi Kasei Co., Ltd.) as the isocyanurate-based crosslinking agent, and 0.2 parts of pyridinium-p-toluenesulfonic acid as the polymerization catalyst Part by mass was dissolved in 95 parts by mass of propylene glycol monomethyl ether (PGME). Using this solution, coating and heat treatment were performed on soda glass and non-alkali glass in the same manner as in Example 1 to form a film thickness of about 300 nm.
 3.性能の評価
 (1)硬化樹脂薄膜についての剥離力の評価
 上記実施例及び比較例の各々でガラス基板上に作製された硬化樹脂薄膜につき,それらをガラス基板から剥離させるのに要する力の大きさ(剥離力)を,次に示す方法により定量的に評価した。即ち,測定装置としてTENSILON RTG-1310((株)エー・アンド・デイ),ロードセルとしてUR-100N-D型を用い,測定は,ガラス基板上の硬化樹脂薄膜にニチバンテープ(24mm幅)を貼り付け,ガラス基板に対し剥離角度90°にて300mm/分の一定速度で引きながら剥離に要する力(剥離力)の大きさを上記装置で計測することにより行った。結果を表1に示す。
3. Evaluation of performance (1) Evaluation of peel force for cured resin thin film About the cured resin thin film prepared on the glass substrate in each of the above examples and comparative examples, the magnitude of the force required to peel them from the glass substrate (Peeling force) was quantitatively evaluated by the following method. In other words, TENSILON RTG-1310 (A & D Co., Ltd.) was used as the measuring device, and UR-100N-D type was used as the load cell. Nichiban tape (24 mm width) was applied to the cured resin thin film on the glass substrate. The measurement was performed by measuring the magnitude of the force (peeling force) required for peeling while pulling the glass substrate at a constant speed of 300 mm / min at a peeling angle of 90 °. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 表1に示すように,比較例1~6の硬化樹脂薄膜での剥離力が2.2~8.7 N/mm(ソーダガラス基板)及び3.2~9.2(EAGLE-XG基板)あったのに対し,実施例1~16でのそれは,0.013~0.078(ソーダガラス基板)及び0.028~0.085((EAGLE-XG基板)と,2桁も小さいことが判明した。実際に,比較例の各硬化樹脂薄膜は剥離力の値が高くそのため膜や基板が破壊されてしまうものが見られたのに対し,実施例の各硬化樹脂薄膜は何れも,無理なく容易に剥がすことができた。
 (2)焼成後の硬化樹脂薄膜についての剥離力の評価
 硬化樹脂薄膜上へのフォトリソグラフィ法や印刷法を用いたパターニングによる回路作製での焼成工程を想定し,硬化樹脂薄膜を焼成した場合の剥離力の計測を行った。即ち,実施例1及び7並びに比較例1及び2について,ソーダガラス基板上に形成された硬化樹脂薄膜を230℃で1時間又は3時間焼成し,上記(1)に記載した装置及び方法によりそれぞれの剥離力を計測した。結果を,それらの実施例及び比較例での焼成前の剥離力(初期剥離力)の値と共に,表2に示す。
As shown in Table 1, the peel strengths of the cured resin thin films of Comparative Examples 1 to 6 were 2.2 to 8.7 N / mm 2 (soda glass substrate) and 3.2 to 9.2 (EAGLE-XG substrate). However, in Examples 1 to 16, it is 0.013 to 0.078 (soda glass substrate) and 0.028 to 0.085 ((EAGLE-XG substrate)), which is two orders of magnitude smaller. Actually, each cured resin thin film of the comparative example had a high peel force value, and thus the film and the substrate were destroyed. It could be easily removed without difficulty.
(2) Evaluation of peel strength for cured resin thin film after firing Assuming a firing process in circuit fabrication by patterning using photolithography method or printing method on cured resin thin film, when cured resin thin film is fired The peel force was measured. That is, for Examples 1 and 7 and Comparative Examples 1 and 2, the cured resin thin film formed on the soda glass substrate was baked at 230 ° C. for 1 hour or 3 hours, and the apparatus and method described in (1) above were used. The peel force was measured. The results are shown in Table 2 together with the values of the peel force before firing (initial peel force) in those examples and comparative examples.
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 表2に見られるとおり,実施例1及び7の硬化樹脂薄膜は230℃で1時間又は3時間焼成した後も,焼成前の比較例1及び2に比べて2桁低い水準に止まっており,無理なく容易に剥がすことができた。比較例1及び2の硬化樹脂薄膜は,焼成前よりも一層強くガラス基板に接着していた。 As seen in Table 2, the cured resin thin films of Examples 1 and 7 remained at a level two orders of magnitude lower than those of Comparative Examples 1 and 2 before firing even after firing at 230 ° C. for 1 hour or 3 hours. It could be easily removed without difficulty. The cured resin thin films of Comparative Examples 1 and 2 were more strongly bonded to the glass substrate than before firing.
 本発明は,ガラス等の基板に極めて薄く塗布でき,塗布後に乾燥し硬化させることにより極めて薄い硬化樹脂薄膜を成膜でき,その上にパターニング等により回路を作製する工程での焼成において230℃の高温に耐久性を有し,しかもそのような高温にさらされた後も基板から無理なく剥離することのできる硬化性樹脂組成物として,フィルム型電気・電子回路部品の製造に有用である。
 
The present invention can be applied to a substrate such as glass very thinly, and can be formed into a very thin cured resin thin film by drying and curing after coating, and baking at a temperature of 230 ° C. in the process of producing a circuit by patterning or the like thereon. As a curable resin composition that has durability at high temperatures and can be easily peeled off from a substrate even after being exposed to such high temperatures, it is useful for the production of film-type electrical / electronic circuit components.

Claims (21)

  1.  アルコール性第二級又は第三級ヒドロキシル基を有する側鎖を備えた鎖状ポリマーと,架橋剤とを含んでなる硬化性樹脂組成物であって,
     (a)該側鎖が,炭素原子3~30個を含んでなるものであり,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又はこれに加えて更に少なくとも1個の芳香族基を含んでなるものであり,且つ炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を含んでいることができ,
     (b)該架橋剤が,トリアジン系架橋剤又はグリコールウリル系架橋剤から選ばれるものである,
    硬化性樹脂組成物。
    A curable resin composition comprising a chain polymer having a side chain having an alcoholic secondary or tertiary hydroxyl group, and a crosslinking agent,
    (A) the side chain comprises 3 to 30 carbon atoms and comprises at least one saturated or unsaturated hydrocarbon group, or in addition to at least one more An aromatic group and a bond selected from the group consisting of —COO—, —O—, and —CO— that connect carbon atoms;
    (B) The crosslinking agent is selected from a triazine-based crosslinking agent or a glycoluril-based crosslinking agent.
    Curable resin composition.
  2.  該鎖状ポリマーが,アルコール性第二級又は第三級ヒドロキシル基を有する該側鎖を備えたモノマー単位であって,(メタ)アクリレート系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種をモノマー単位として含んでなるものである,請求項1の硬化性樹脂組成物。 The chain polymer is a monomer unit having the side chain having an alcoholic secondary or tertiary hydroxyl group, a (meth) acrylate monomer, a vinyl ester monomer, a vinyl ether monomer, and others The curable resin composition according to claim 1, comprising at least one of the vinyl monomers as monomer units.
  3.  該鎖状ポリマーが,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,CH=CH-0-R,及びCH=CH-R〔ここにR,R,R,R,及びRは,互いに独立して,各ビニル基にエステル結合を介して結合している場合は当該エステル結合構成炭素原子を含めて炭素原子3~30個を有し,アルコール性第二級又は第三級ヒドロキシル基を有しており,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕で示される化合物よりなる群より選ばれるモノマー単位を含んでなるものである,請求項1又は2の硬化性樹脂組成物。 The chain polymer is CH 2 ═CH—COO—R 1 , CH 2 ═C (CH 3 ) —COO—R 2 , CH 2 ═CH—O—CO—R 3 , CH 2 ═CH-0—R. 4 and CH 2 ═CH—R 5 [where R 1 , R 2 , R 3 , R 4 , and R 5 are independently of each other when each vinyl group is bonded via an ester bond] It has 3 to 30 carbon atoms including the carbon atoms constituting the ester bond, has an alcoholic secondary or tertiary hydroxyl group, and contains at least one saturated or unsaturated hydrocarbon group Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. . ] The curable resin composition of Claim 1 or 2 which comprises the monomer unit chosen from the group which consists of a compound shown by these.
  4.  該鎖状ポリマーが更に,ヒドロキシル基を有さず側鎖の炭素数が1~15である,(メタ)アクリル系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種を,追加のモノマー単位として含んでなるものである,請求項1~3の何れかの硬化性樹脂組成物。 The chain polymer further has any one of (meth) acrylic monomer, vinyl ester monomer, vinyl ether monomer, and other vinyl monomers having no hydroxyl group and having 1 to 15 carbon atoms in the side chain. The curable resin composition according to any one of claims 1 to 3, comprising at least one kind as an additional monomer unit.
  5.  該追加のモノマー単位が,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,〔ここにR,R及び,Rは,互いに独立して,炭素原子1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕,CH=CH-0-R,CH=CH-R10〔ここにR,及びR10は,互いに独立して,炭素原子3~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕,CHO-R11,及びCNO-R12〔ここにCHO-は無水マレイン酸基を表し,CNO-はマレイミド基を表し,R11,及びR12は,互いに独立して,水素原子であるか又は炭素原子数1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができ,該炭化水素基又は芳香族基はアミノ基を有することができる。〕で示される化合物からなる群より選ばれるものである,請求項1~4の何れかの硬化性樹脂組成物。 The additional monomer units are CH 2 ═CH—COO—R 6 , CH 2 ═C (CH 3 ) —COO—R 7 , CH 2 ═CH—O—CO—R 8 , [where R 6 , R 7 and R 8 independently of one another have 1 to 15 carbon atoms, have no hydroxyl groups, comprise at least one saturated or unsaturated hydrocarbon group, or at least It comprises one aromatic group and can have a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. The group group can have an amino group. ], CH 2 = CH-0-R 9 , CH 2 = CH-R 10 [wherein R 9 and R 10 independently of one another have 3 to 15 carbon atoms and have a hydroxyl group -COO-, -O-, and -CO, which contain at least one saturated or unsaturated hydrocarbon group, or further contain at least one aromatic group and connect carbon atoms A bond selected from the group consisting of — and the hydrocarbon group or aromatic group may have an amino group; ], C 4 HO 3 -R 11 , and C 4 H 2 NO 2 -R 12 [where C 4 HO 3- represents a maleic anhydride group, C 4 H 2 NO 2- represents a maleimide group, R 11 and R 12 are independently of each other a hydrogen atom or have 1 to 15 carbon atoms, have no hydroxyl group, and contain at least one saturated or unsaturated hydrocarbon group. Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. The hydrocarbon group or aromatic group can have an amino group. The curable resin composition according to any one of claims 1 to 4, which is selected from the group consisting of compounds represented by the formula:
  6.  該鎖状ポリマーを構成するモノマー単位におけるアルコール性第二級又は第三級ヒドロキシル基を有するモノマー単位の占める割合が30~100モル%である,請求項1~5の何れかの硬化性樹脂組成物。 6. The curable resin composition according to claim 1, wherein the proportion of the monomer unit having an alcoholic secondary or tertiary hydroxyl group in the monomer unit constituting the chain polymer is 30 to 100 mol%. object.
  7.  該架橋剤が,完全又は部分アルコキシメチル化メラミン,完全又は部分アルコキシメチル化グアナミン,完全又は部分アルコキシメチル化アセトグアナミン,完全又は部分アルコキシメチル化ベンゾグアナミン,及び完全又は部分アルコキシメチル化グリコールウリルからなる群より選ばれるものである,請求項1~6の何れかの硬化性樹脂組成物。 The cross-linking agent is a group consisting of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril The curable resin composition according to any one of claims 1 to 6, which is more selected.
  8.  該組成物中における該直鎖状ポリマーの質量と該架橋剤の質量の比が,1:2~1:0.05である,請求項1~7の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 7, wherein a ratio of a mass of the linear polymer to a mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
  9.  溶剤を含むものである,請求項1~8の何れかの硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 8, which contains a solvent.
  10.  請求項1~9の何れかの硬化性樹脂組成物を硬化させてなる,硬化樹脂膜。 A cured resin film obtained by curing the curable resin composition according to any one of claims 1 to 9.
  11.  請求項1~9の何れかの硬化性樹脂組成物を基板表面に膜状に硬化させてなる,易剥離性硬化樹脂膜。 An easily peelable cured resin film obtained by curing the curable resin composition according to any one of claims 1 to 9 on the surface of a substrate.
  12.  硬化樹脂膜の製造方法であって,
     アルコール性第二級又は第三級ヒドロキシル基を有する側鎖を備えた鎖状ポリマーと架橋剤とを準備するステップと,
     該鎖状ポリマーと該架橋剤とを含む組成物を基板上に塗布し硬化性樹脂組成物塗膜を形成するステップと,
     該硬化性樹脂組成物塗膜において重合反応を行わせ硬化させることにより硬化樹脂膜とするステップとを含み,ここに,
     (a)該側鎖が,炭素原子3~30個を含んでなるものであり,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又はこれに加えて更に少なくとも1個の芳香族基を含んでなるものであり,且つそれらのうち隣接する基の炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を含んでいることができ,
     (b)該架橋剤が,トリアジン系架橋剤又はグリコールウリル系架橋剤から選ばれるものである,
    製造方法。
    A method for producing a cured resin film, comprising:
    Providing a chain polymer with a side chain having an alcoholic secondary or tertiary hydroxyl group and a crosslinking agent;
    Applying a composition comprising the chain polymer and the crosslinking agent on a substrate to form a curable resin composition coating;
    Including a step of forming a cured resin film by performing a polymerization reaction in the coating film of the curable resin composition to be cured,
    (A) the side chain comprises 3 to 30 carbon atoms and comprises at least one saturated or unsaturated hydrocarbon group, or in addition to at least one more An aromatic group, and a bond selected from the group consisting of —COO—, —O—, and —CO— that connect carbon atoms of adjacent groups among them. ,
    (B) The crosslinking agent is selected from a triazine-based crosslinking agent or a glycoluril-based crosslinking agent.
    Production method.
  13.  該鎖状ポリマーが,アルコール性第二級又は第三級ヒドロキシル基を有する該側鎖を備えたモノマー単位であって,(メタ)アクリレート系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種をモノマー単位として含んでなるものである,請求項12の製造方法。 The chain polymer is a monomer unit having the side chain having an alcoholic secondary or tertiary hydroxyl group, a (meth) acrylate monomer, a vinyl ester monomer, a vinyl ether monomer, and others The production method according to claim 12, comprising at least one of the vinyl monomers as a monomer unit.
  14.  該鎖状ポリマーが,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,CH=CH-0-R,及びCH=CH-R〔ここにR,R,R,R,及びRは,互いに独立して,各ビニル基にエステル結合を介して結合している場合は当該エステル結合構成炭素原子を含めて炭素原子3~30個を有し,アルコール性第二級又は第三級ヒドロキシル基を有しており,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕で示される化合物よりなる群より選ばれるモノマー単位を含んでなるものである,請求項12又は13の製造方法。 The chain polymer is CH 2 ═CH—COO—R 1 , CH 2 ═C (CH 3 ) —COO—R 2 , CH 2 ═CH—O—CO—R 3 , CH 2 ═CH-0—R. 4 and CH 2 ═CH—R 5 [where R 1 , R 2 , R 3 , R 4 , and R 5 are independently of each other when each vinyl group is bonded via an ester bond] It has 3 to 30 carbon atoms including the carbon atoms constituting the ester bond, has an alcoholic secondary or tertiary hydroxyl group, and contains at least one saturated or unsaturated hydrocarbon group Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. . The production method according to claim 12 or 13, comprising a monomer unit selected from the group consisting of compounds represented by the formula:
  15.  該鎖状ポリマーが更に,ヒドロキシル基を有さず側鎖の炭素数が1~15である,(メタ)アクリル系モノマー,ビニルエステル系モノマー,ビニルエーテル系モノマー,及びこれら以外のビニル系モノマーの何れか少なくとも1種を,追加のモノマー単位として含んでなるものである,請求項12~14の何れかの製造方法。 The chain polymer further has any one of (meth) acrylic monomer, vinyl ester monomer, vinyl ether monomer, and other vinyl monomers having no hydroxyl group and having 1 to 15 carbon atoms in the side chain. The production method according to any one of claims 12 to 14, comprising at least one kind as an additional monomer unit.
  16.  該追加のモノマー単位が,CH=CH-COO-R,CH=C(CH)-COO-R,CH=CH-O-CO-R,〔ここにR,R,及びRは,互いに独立して,炭素原子1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕,CH=CH-0-R,CH=CH-R10〔ここにR,及びR10は,互いに独立して,炭素原子3~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕,CHO-R11,及びCNO-R12〔ここにCHO-は無水マレイン酸基を表し,CNO-はマレイミド基を表し,R11,及びR12は,互いに独立して,水素原子であるか又は炭素原子数1~15個を有し,ヒドロキシル基を有さず,少なくとも1個の飽和又は不飽和の炭化水素基を含んでなるか,又は更に少なくとも1個の芳香族基を含んでなり,炭素原子間を繋ぐ-COO-,-O-,及び-CO-よりなる群から選ばれる結合を有していることができる。〕で示される化合物からなる群より選ばれるものである,請求項12~15の何れかの製造方法。 The additional monomer units are CH 2 ═CH—COO—R 6 , CH 2 ═C (CH 3 ) —COO—R 7 , CH 2 ═CH—O—CO—R 8 , [where R 6 , R 7 and R 8 independently of one another have 1 to 15 carbon atoms, have no hydroxyl group, comprise at least one saturated or unsaturated hydrocarbon group, or at least It may contain a bond selected from the group consisting of —COO—, —O—, and —CO—, which contains one aromatic group and connects carbon atoms. ], CH 2 = CH-0-R 9 , CH 2 = CH-R 10 [wherein R 9 and R 10 independently of one another have 3 to 15 carbon atoms and have a hydroxyl group -COO-, -O-, and -CO, which contain at least one saturated or unsaturated hydrocarbon group, or further contain at least one aromatic group and connect carbon atoms A bond selected from the group consisting of: ], C 4 HO 3 -R 11 , and C 4 H 2 NO 2 -R 12 [where C 4 HO 3- represents a maleic anhydride group, C 4 H 2 NO 2- represents a maleimide group, R 11 and R 12 are independently of each other a hydrogen atom or have 1 to 15 carbon atoms, have no hydroxyl group, and contain at least one saturated or unsaturated hydrocarbon group. Or further comprising at least one aromatic group and having a bond selected from the group consisting of —COO—, —O—, and —CO— connecting carbon atoms. . The production method according to any one of claims 12 to 15, which is selected from the group consisting of compounds represented by the formula:
  17.  該鎖状ポリマーを構成するモノマー単位におけるアルコール性第二級又は第三級ヒドロキシル基を有するモノマー単位の占める割合が30~100モル%である,請求項12~16の何れかの製造方法。 The production method according to any one of claims 12 to 16, wherein the proportion of the monomer unit having an alcoholic secondary or tertiary hydroxyl group in the monomer unit constituting the chain polymer is 30 to 100 mol%.
  18.  該架橋剤が,完全又は部分アルコキシメチル化メラミン,完全又は部分アルコキシメチル化グアナミン,完全又は部分アルコキシメチル化アセトグアナミン,又は完全又は部分アルコキシメチル化ベンゾグアナミン,及び完全又は部分アルコキシメチル化グリコールウリルからなる群より選ばれるものである,請求項12~17の何れかの製造方法。 The cross-linking agent consists of fully or partially alkoxymethylated melamine, fully or partially alkoxymethylated guanamine, fully or partially alkoxymethylated acetoguanamine, or fully or partially alkoxymethylated benzoguanamine, and fully or partially alkoxymethylated glycoluril The production method according to any one of claims 12 to 17, which is selected from the group.
  19.  該組成物中の該直鎖状ポリマーの質量と該架橋剤の質量の比が,1:2~1:0.05である,請求項12~18の何れかの製造方法。 The production method according to any one of claims 12 to 18, wherein a ratio of a mass of the linear polymer to a mass of the crosslinking agent in the composition is 1: 2 to 1: 0.05.
  20.  該組成物が溶剤を含むものである,請求項12~19の何れかの製造方法。 The method according to any one of claims 12 to 19, wherein the composition contains a solvent.
  21.  該基板上に形成されている該硬化樹脂膜を該基板から剥離するステップを更に含む,請求項12~20の何れかの硬化樹脂膜の製造方法。 21. The method for producing a cured resin film according to claim 12, further comprising a step of peeling the cured resin film formed on the substrate from the substrate.
PCT/JP2016/074180 2016-08-19 2016-08-19 Curable resin composition for forming easily strippable film, and process for producing same WO2018033995A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2016/074180 WO2018033995A1 (en) 2016-08-19 2016-08-19 Curable resin composition for forming easily strippable film, and process for producing same
KR1020197004839A KR102442826B1 (en) 2016-08-19 2017-08-18 Curable resin composition for easy release film formation and manufacturing method thereof
PCT/JP2017/029635 WO2018034342A1 (en) 2016-08-19 2017-08-18 Curable resin composition for forming easily-peelable film, and method for producing same
CN201780058468.8A CN109790391B (en) 2016-08-19 2017-08-18 Curable resin composition for forming easily peelable film and method for producing same
JP2018534435A JP7008627B2 (en) 2016-08-19 2017-08-18 Curable resin composition for forming an easily peelable film and its manufacturing method
TW106128164A TW201825531A (en) 2016-08-19 2017-08-18 Curable resin composition for forming easily peeled film and manufacturing method thereof wherein the cured resin thin film can withstand firing at 230 DEG C and can be easily peeled off from the substrate without difficulty

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074180 WO2018033995A1 (en) 2016-08-19 2016-08-19 Curable resin composition for forming easily strippable film, and process for producing same

Publications (1)

Publication Number Publication Date
WO2018033995A1 true WO2018033995A1 (en) 2018-02-22

Family

ID=61197206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074180 WO2018033995A1 (en) 2016-08-19 2016-08-19 Curable resin composition for forming easily strippable film, and process for producing same

Country Status (2)

Country Link
CN (1) CN109790391B (en)
WO (1) WO2018033995A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203074A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Low-temperature curable resin composition
CN112534015A (en) * 2018-09-03 2021-03-19 昭和电工株式会社 Adhesive composition and adhesive sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829291B1 (en) * 1968-08-13 1973-09-08
JPS4866632A (en) * 1971-12-16 1973-09-12
JPS4915743A (en) * 1972-05-31 1974-02-12
JPH07165833A (en) * 1993-10-18 1995-06-27 Asahi Chem Ind Co Ltd Acrylate polymer and thermosetting composition containing the same
JP2000281729A (en) * 1999-03-30 2000-10-10 Nec Corp Polymer containing diol structure, negative resist composition using it and pattern formation method
JP2002323771A (en) * 2001-02-22 2002-11-08 Nissan Chem Ind Ltd Composition for forming antireflection film for lithography
JP2004315623A (en) * 2003-04-15 2004-11-11 Nippon Paint Co Ltd Water-based coating composition
WO2014098025A1 (en) * 2012-12-18 2014-06-26 日産化学工業株式会社 Bottom layer film-forming composition of self-organizing film containing styrene structure
JP2014137546A (en) * 2013-01-18 2014-07-28 Nissan Chem Ind Ltd Composition for forming resist underlay film
JP2015524573A (en) * 2012-06-29 2015-08-24 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Developable bottom antireflection film composition and pattern forming method using the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209570A (en) * 1988-02-17 1989-08-23 Ricoh Co Ltd Generating method for japanese word
JP3055617B2 (en) * 1997-08-27 2000-06-26 日本電気株式会社 Negative photoresist composition and pattern forming method using the same
JP3237702B2 (en) * 1998-10-09 2001-12-10 日本電気株式会社 Negative photoresist composition using polymer having 1,2-diol structure and pattern forming method using the same
JP3783670B2 (en) * 2002-09-09 2006-06-07 日本電気株式会社 Negative photoresist composition and pattern forming method
US8037818B2 (en) * 2005-04-11 2011-10-18 Goss International Americas, Inc. Print unit with single motor drive permitting autoplating
JP2008225385A (en) * 2007-03-15 2008-09-25 Kyocera Mita Corp Image forming apparatus
JP5367324B2 (en) * 2008-07-25 2013-12-11 株式会社ダイセル Curable copolymer and curable resin composition
JP5520590B2 (en) * 2009-10-06 2014-06-11 富士フイルム株式会社 Pattern forming method, chemically amplified resist composition, and resist film
JP5450114B2 (en) * 2010-01-08 2014-03-26 富士フイルム株式会社 Pattern forming method, chemically amplified resist composition, and resist film
JP5593075B2 (en) * 2010-01-13 2014-09-17 富士フイルム株式会社 Pattern forming method, pattern, chemically amplified resist composition, and resist film
JP5707281B2 (en) * 2010-08-27 2015-04-30 富士フイルム株式会社 Pattern forming method and rinsing liquid used in the method
SG11201404363QA (en) * 2011-12-26 2014-10-30 Tokuyama Corp Photochromic composition
JP5891090B2 (en) * 2012-03-29 2016-03-22 富士フイルム株式会社 Underlayer film composition for imprint and pattern forming method using the same
CN103351581B (en) * 2013-07-19 2015-11-25 广东生益科技股份有限公司 A kind of high-k resin combination and uses thereof
JP2016033945A (en) * 2014-07-31 2016-03-10 住友化学株式会社 Composition and organic thin film transistor arranged by use thereof
JP2018072358A (en) * 2015-03-02 2018-05-10 富士フイルム株式会社 Active light sensitive or radiation sensitive resin composition, and active light sensitive or radiation sensitive film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829291B1 (en) * 1968-08-13 1973-09-08
JPS4866632A (en) * 1971-12-16 1973-09-12
JPS4915743A (en) * 1972-05-31 1974-02-12
JPH07165833A (en) * 1993-10-18 1995-06-27 Asahi Chem Ind Co Ltd Acrylate polymer and thermosetting composition containing the same
JP2000281729A (en) * 1999-03-30 2000-10-10 Nec Corp Polymer containing diol structure, negative resist composition using it and pattern formation method
JP2002323771A (en) * 2001-02-22 2002-11-08 Nissan Chem Ind Ltd Composition for forming antireflection film for lithography
JP2004315623A (en) * 2003-04-15 2004-11-11 Nippon Paint Co Ltd Water-based coating composition
JP2015524573A (en) * 2012-06-29 2015-08-24 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Developable bottom antireflection film composition and pattern forming method using the same
WO2014098025A1 (en) * 2012-12-18 2014-06-26 日産化学工業株式会社 Bottom layer film-forming composition of self-organizing film containing styrene structure
JP2014137546A (en) * 2013-01-18 2014-07-28 Nissan Chem Ind Ltd Composition for forming resist underlay film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534015A (en) * 2018-09-03 2021-03-19 昭和电工株式会社 Adhesive composition and adhesive sheet
CN112534015B (en) * 2018-09-03 2022-02-25 昭和电工株式会社 Adhesive composition and adhesive sheet
WO2020203074A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Low-temperature curable resin composition
JPWO2020203074A1 (en) * 2019-03-29 2020-10-08
KR20210148100A (en) * 2019-03-29 2021-12-07 닛산 가가쿠 가부시키가이샤 Low-temperature curable resin composition
JP7208593B2 (en) 2019-03-29 2023-01-19 日産化学株式会社 Low temperature curing resin composition
KR102574725B1 (en) 2019-03-29 2023-09-06 닛산 가가쿠 가부시키가이샤 Low Temperature Curable Resin Composition

Also Published As

Publication number Publication date
CN109790391B (en) 2022-04-12
CN109790391A (en) 2019-05-21

Similar Documents

Publication Publication Date Title
TWI684033B (en) Polarizing plate and image display device comprising the same
JP6598220B2 (en) Modified polyimide and curable resin composition containing the same
TWI495694B (en) Ink composition for forming organic insulator in roll printing method
CN105068376B (en) Solvent-containing dry film and method for applying dry film on substrate
TW201107437A (en) Adhesive compositions and adhesive, adhesive for optical members and optical member with adhesive layer using it
TWI452108B (en) Adhesive composition for polarizing plate and polarizing plate including the same
CN103992751B (en) Pressure-sensitive-adhesive composition, contact adhesive and pressure sensitive adhesion sheet
JP6637480B2 (en) Polyimide precursor composition and use thereof
TW200907567A (en) Photosensitive polyamic ester composition
TWI677757B (en) Photosensitive resin composition
TW200832063A (en) Photosensitive resin composition for flexible wiring circuit boards, and flexible wiring circuit board obtained using the same
JP7160411B2 (en) Adhesive composition, adhesive layer containing the same, and foldable display containing the same
WO2018033995A1 (en) Curable resin composition for forming easily strippable film, and process for producing same
TWI811423B (en) Photosensitive resin composition and method for forming resist pattern
US11859034B2 (en) Curable composition, method of preparing curable composition, cured material of curable composition, method of preparing cured material, and electronic device including cured material
KR20110082333A (en) Polarizing plate and liquid crystal display comprising the same
TW201806749A (en) Color filter and image display device including the same
KR102042617B1 (en) Adhesive composition and adhesive pattern formed therfrom
TW201912708A (en) Thermosetting composition, cured film, and color filter
TWI809178B (en) Thermosetting compositions, cured film, and color filter
KR101842249B1 (en) Adhesive composition, adhesive layer and polarizing plate using the same
TW201823863A (en) Water soluble photosensitive resin composition, film and circuit board using the same
TWI794468B (en) Thermosetting compositions, cured film and color filter
JP2022136498A (en) Release layer-forming composition and release layer
JP6630088B2 (en) Photosensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16913523

Country of ref document: EP

Kind code of ref document: A1