WO2018030173A1 - Bonding composition and method for preparing same - Google Patents

Bonding composition and method for preparing same Download PDF

Info

Publication number
WO2018030173A1
WO2018030173A1 PCT/JP2017/027390 JP2017027390W WO2018030173A1 WO 2018030173 A1 WO2018030173 A1 WO 2018030173A1 JP 2017027390 W JP2017027390 W JP 2017027390W WO 2018030173 A1 WO2018030173 A1 WO 2018030173A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver nanoparticles
acid
bonding
carboxylic acid
silver
Prior art date
Application number
PCT/JP2017/027390
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 久保田
尚耶 中島
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2017540287A priority Critical patent/JP6267835B1/en
Publication of WO2018030173A1 publication Critical patent/WO2018030173A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to a joining composition used for joining members to be joined such as metal parts and a manufacturing method thereof.
  • solder a conductive adhesive, a silver paste, an anisotropic conductive film, or the like is used to mechanically, electrically, or thermally join members to be joined such as metal parts.
  • the members to be joined include not only metal parts but also ceramic parts or resin parts, and different kinds of members to be joined may be joined.
  • light emitting elements such as LEDs are bonded to a substrate
  • applications in which a semiconductor chip is bonded to a substrate or applications in which these substrates are further bonded to a heat dissipation member.
  • solder containing Pb is also widely used as a bonding material for bonding the members to be bonded.
  • Pb-free has been demanded from the viewpoint of environmental protection and RoHS regulation, and since solder has a low melting point, it is difficult to apply it to power devices such as silicon carbide and gallium nitride having high operating temperatures. there were.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-073011
  • Patent Document 2 Japanese Patent Laid-Open No. 2015-232181
  • Patent Document 3 Japanese Patent Laid-Open No. 2011-240406
  • Patent Document 1 “providing a bonding technique capable of increasing the bonding strength while leaving the spacer in the bonding layer in the bonding technique using metal nanoparticles” 1, a second member 12, and a bonding layer 13 in which these members 11 and 12 are bonded together while being pressed, and a plastically deformed spacer 14 remains in the bonding layer 13.
  • Patent Document 1 “providing a bonding technique capable of increasing the bonding strength while leaving the spacer in the bonding layer in the bonding technique using metal nanoparticles” 1, a second member 12, and a bonding layer 13 in which these members 11 and 12 are bonded together while being pressed, and a plastically deformed spacer 14 remains in the bonding layer 13.
  • an object is to “provide a bonding metal paste that can secure bonding strength and reduce unevenness in bonding strength even with the simplest possible structure”.
  • Metal submicron particles having a primary particle diameter (D50 diameter) of 0.5 to 3.0 ⁇ m, metal nanoparticles having an average primary particle diameter of 1 to 200 nm and coated with a fatty acid having 6 to 8 carbon atoms, and A metal bonding paste (bonding material) composed of a dispersion medium in which is dispersed is proposed.
  • Patent Document 3 an object is to “provide a paste containing a flux component capable of forming a metal phase even under an inert atmosphere”, and “average primary particle diameter is 1 to 200 nm, There has been proposed a “joining material composed of silver nanoparticles coated with an organic substance having 8 or less carbon atoms, a flux component having at least two carboxyl groups, and a dispersion medium”.
  • JP 2011-073011 A Japanese Patent Laying-Open No. 2015-232181 JP 2011-240406 A
  • Patent Document 1 and Patent Document 2 a sufficient bonding state cannot be obtained unless pressure is applied during firing bonding. In the firing under pressure, there are problems such as a decrease in yield due to chip breakage and complication of the production process. In this respect, development of a mounting technique by pressureless bonding is strongly demanded.
  • Patent Document 3 can join a small object to be joined having a size of 2 mm ⁇ 2 mm, it must be joined under no pressure under nitrogen and has a large size exceeding 5 mm ⁇ 5 mm.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to perform air firing or inert atmosphere firing, or plating-substrate joining without requiring pressure during firing joining. Alternatively, it is an object of the present invention to provide a bonding composition and a method for producing the same for obtaining a bonding layer having a low void ratio, a high bonding strength, and excellent heat resistance reliability, regardless of substrate bonding without plating.
  • the present inventor does not require pressurization during firing bonding, regardless of atmospheric firing or inert atmosphere firing, or plating-bonded substrate bonding or non-plating substrate bonding.
  • the type of carboxylic acid to be attached to the surface of the silver fine particles is specified, and further, the carboxylic acid contained in the dispersion medium It has been found that specifying the type of is extremely effective in achieving the above object, and the present invention has been achieved.
  • the present invention Silver nanoparticles, A dispersion medium; A first carboxylic acid containing an O atom in a carbon chain attached to at least a portion of the surface of the silver nanoparticles; A bonding composition characterized by comprising:
  • an organic substance adheres to and coats at least a part of the surface of the silver nanoparticles in order to prevent the aggregation by maintaining the dispersion stability of the silver nanoparticles. is doing. If this adhered (coating) organic substance remains during firing, it will need to evaporate or decompose during firing in order to inhibit the fusion of silver nanoparticles.
  • the evaporation temperature or decomposition temperature is in the vicinity of the firing temperature, the sintering start temperature of the silver nanoparticles and the densification rate of the sintered layer can be increased, and a denser bonding layer can be formed.
  • carboxylic acid (1st carboxylic acid) with comparatively large adsorption energy with respect to the surface of a silver nanoparticle is used as an organic substance attached to the surface of a silver nanoparticle.
  • This carboxylic acid not only contributes to the stabilization of the silver nanoparticles, but also exhibits an effect as a flux, and thus works advantageously for solid Cu bonding.
  • the present invention includes silver nanoparticles and a first carboxylic acid containing an O atom in a carbon chain attached to at least a part of the surface of the silver nanoparticles. This also relates to silver nanoparticles (coated silver nanoparticles) themselves.
  • the first carboxylic acid in the present invention contains an O atom having a high electronegativity in the carbon chain.
  • the O atom of the carbon chain means an O atom other than the O atom contained in the carboxyl group (—COOH).
  • an ether group (—O—) for example, an ether group (—O—), a methoxy group (—OCH 3), an ethoxy group (—OCH 2 CH 3).
  • the silver nanoparticles contain O atoms, the wettability with the member to be bonded is increased, and a strong bond with the member to be bonded is formed.
  • Specific examples of the first carboxylic acid include levulinic acid, methoxyacetic acid, ethoxyacetic acid, and 3-ethoxypropionic acid.
  • the carboxylic acid preferably has 5 or less carbon atoms.
  • the dispersion stability of the silver nanoparticles improves.
  • the volume of the coating organic matter in the silver nanoparticles increases, which increases the density of the bonding layer formed of the bonding composition. It will be disadvantageous.
  • the average primary particle size of the silver nanoparticles is preferably 10 to 100 nm.
  • the particle size and shape of the silver nanoparticles are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver nanoparticles can be used. Specifically, silver nanoparticles having an average primary particle size of less than 1 ⁇ m can be used, and a preferable average particle size is 10 to 100 nm. If the average primary particle diameter of the silver nanoparticles is 10 nm or more, the silver nanoparticles have good low-temperature sinterability, and the production of silver nanoparticles is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of a silver nanoparticle hardly changes with time, and it is preferable.
  • the dispersion medium contains a second carboxylic acid.
  • the second carboxylic acid is preferably a monocarboxylic acid, more preferably ricinoleic acid or oleic acid.
  • the carboxylic acid acts as a flux, so that it is possible to join a solid Cu joined member.
  • the flux effect is higher.
  • a monocarboxylic acid such as ricinoleic acid or oleic acid is sufficiently effective, and a solid Cu bonded member can be bonded well. it can.
  • the bonding composition of the present invention may include silver microparticles having an average particle diameter of 1 to 15 ⁇ m.
  • the particle size and shape of the silver nanoparticles are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver nanoparticles can be used. Specifically, silver nanoparticles having an average primary particle size of less than 1 ⁇ m can be used, and a preferable average particle size is 10 to 100 nm. If the average primary particle diameter of the silver nanoparticles is 10 nm or more, the silver nanoparticles have good low-temperature sinterability, and the production of silver nanoparticles is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of a silver nanoparticle hardly changes with time, and it is preferable.
  • the particle size of the silver nanoparticles may not be constant.
  • the average primary particle diameter of the silver nanoparticles is preferably 100 nm or less, but the bonding composition does not cause aggregation and the effect of the present invention is not significantly impaired.
  • Silver nanoparticles having an average average primary particle size may be included.
  • silver microparticles having an average particle diameter of 1 to 15 ⁇ m may be added.
  • the present invention also relates to a method for producing the above-described bonding composition of the present invention, A first step of producing silver nanoparticles by a silver oxalate complex decomposition method, The carboxylic acid is added to at least a part of the surface of the silver nanoparticle by heating the silver nanoparticle obtained in the first step by adding a first carboxylic acid containing an O atom to a portion other than the carboxyl group. A second step of attaching It is characterized by including.
  • the above-described bonding composition of the present invention can be suitably produced.
  • a bonding composition that realizes a bonding layer having heat resistance reliability and a method for manufacturing the same can be provided.
  • the bonding composition of the present embodiment includes silver nanoparticles, a dispersion medium, and carbon atoms that are attached to at least a part of the surface of the silver nanoparticles and contain O atoms. It is the composition for joining characterized by including one carboxylic acid.
  • each of these components will be described.
  • the particle size and shape of the silver nanoparticles are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver nanoparticles can be used. Specifically, silver nanoparticles having an average primary particle size of less than 1 ⁇ m can be used, and a preferable average particle size is 10 to 100 nm. If the average primary particle diameter of the silver nanoparticles is 10 nm or more, the silver nanoparticles have good low-temperature sinterability, and the production of silver nanoparticles is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of a silver nanoparticle hardly changes with time, and it is preferable.
  • the average primary particle size of the silver nanoparticles is too small, the effect of the increase in volume occupied by the coating organic matter becomes large, and if the average primary particle size of the silver nanoparticles is too large, the fusion temperature is increased and the sintered layer is increased. This is because the densification rate of the film is reduced.
  • the particle size of the silver nanoparticles in the bonding composition of the present embodiment may not be constant.
  • the average primary particle diameter of the silver nanoparticles is preferably 100 nm or less, but the bonding composition does not cause aggregation and the effect of the present invention is not significantly impaired.
  • Silver nanoparticles having an average average primary particle size may be included.
  • inorganic microparticles such as silver microparticles having an average particle diameter of 1 to 15 ⁇ m may be added.
  • a favorable conductive path can be obtained by causing the nanometer-sized silver nanoparticles to drop in melting point around the micron-sized inorganic microparticles.
  • the particle diameters of the silver nanoparticles and the inorganic microparticles in the bonding composition of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method.
  • the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate.
  • RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2 ⁇ in the range of 30 to 80 ° by the diffraction method.
  • the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center.
  • the crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
  • D K ⁇ / Bcos ⁇
  • K Scherrer constant (0.9)
  • wavelength of X-ray
  • B half width of diffraction line
  • Bragg angle.
  • the particle size of the inorganic microparticle is not particularly limited as long as it is larger than the particle size of the silver nanoparticle, but the average particle size is preferably 1 to 50 ⁇ m.
  • the average particle size of the inorganic microparticles By setting the average particle size of the inorganic microparticles to 1 ⁇ m or more, it is possible to ensure good dispersibility of the inorganic microparticles and to sufficiently increase the average particle size difference from the silver nanoparticles. Densification by mixing can be achieved. Moreover, it can prevent that a joining layer becomes too thick because the average particle diameter of an inorganic microparticle shall be 50 micrometers or less.
  • constituent elements of the inorganic microparticles in the bonding composition of the present embodiment include gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum). At least one of them can be mentioned.
  • the constituent element is preferably at least one selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or a platinum group element, and further has a smaller ionization tendency than copper or copper ( It is preferably a noble metal, ie, at least one of gold, platinum, silver and copper, and most preferably silver. These elements may be used singly or in combination of two or more. The methods of using these elements in combination include the case of using alloy particles containing a plurality of metals, the metal having a core-shell structure or a multilayer structure. Particles may be used.
  • the conductivity of the adhesive layer formed using the bonding composition of this embodiment is good, but silver and other metals are considered in consideration of migration problems.
  • the bonding composition comprising: migration can be made difficult to occur.
  • the “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
  • the combination of the inorganic microparticles and the silver nanoparticles in the bonding composition of the present embodiment is not particularly limited as long as the effects of the present invention are not impaired, and the silver nanoparticles and the inorganic microparticles having a low temperature sintering property Can be combined. Two or more kinds of silver nanoparticles and inorganic microparticles may be combined.
  • first carboxylic acid organic substance
  • an organic substance “first carboxylic acid containing an O atom in a carbon chain” is attached to at least a part of the surface of the silver nanoparticles, and the first carboxylic acid The acid partially or totally covers the surface of the silver nanoparticles.
  • the first carboxylic acid substantially constitutes colloidal silver particles together with the silver nanoparticles as a so-called dispersant in the bonding composition of the present embodiment.
  • the carboxyl group in one molecule of the first carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
  • the compound adhering to the surface of the silver nanoparticles is a trace amount of organic matter contained as impurities from the beginning of the silver nanoparticles, adhering to the silver nanoparticles by mixing in the manufacturing process described later. It is a concept that does not include trace organic substances, organic substances adhered to silver nanoparticles, such as residual reducing agents and residual dispersants that could not be removed in the cleaning process.
  • the “trace amount” is specifically intended to be less than 1% by mass in the silver colloid particles.
  • the first carboxylic acid is an organic substance capable of covering silver nanoparticles to prevent aggregation of the silver nanoparticles and forming silver colloidal particles, and the form of the coating is not particularly defined.
  • a coating organic substance for example, an amine
  • ions derived from these coated organic substances are used. And the like are also included in the above-mentioned coated organic matter.
  • Such an amine may be linear or branched, and may have a side chain.
  • Diamines such as 5-pentanediamine, pentanolamine, aminoisobutanol, alkoxyamines, aminoalcohols, as well as alkylamines such as propylamine, butylamine, pentylamine, hexylamine (linear alkylamines, with side chains) ), Cycloalkylamines such as cyclopentylamine and cyclohexylamine, primary amines such as aniline and allylamine, secondary amines such as dipropylamine, dibutylamine, piperidine and hexamethyleneimine, and tripropylamine , Dimethyl group
  • the amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the 1st carboxylic acid contains O atom with high electronegativity in a carbon chain.
  • This O atom means an O atom other than the O atom contained in the carboxyl group (—COOH).
  • —COOH carboxyl group
  • an ether group (—O—) a methoxy group (—OCH 3 ), an ethoxy group (—OCH 2 CH 3).
  • —COCH 3 an O atom contained in an acetyl group
  • the carboxylic acid has 5 or less carbon atoms.
  • the number of carbons increases, the dispersion stability of the silver nanoparticles improves.
  • the volume of the coating organic matter in the silver nanoparticles increases, which increases the density of the bonding layer formed of the bonding composition. It will be disadvantageous.
  • first carboxylic acid examples include monomethyl malonate, levulinic acid, methoxyacetic acid, ethoxyacetic acid, and 3-ethoxypropionic acid. Of these, levulinic acid, methoxyacetic acid, ethoxyacetic acid or 3-ethoxypropionic acid is preferable.
  • the content of the coating organic substance (first carboxylic acid) in the silver colloid in the bonding composition of the present embodiment is preferably 0.1 to 50% by mass. If the organic matter content is 0.1% by mass or more, the storage stability of the resulting bonding composition tends to be improved, and if it is 50% by mass or less, the conductivity of the bonding composition tends to be good. is there. A more preferable content of the organic substance is 0.3 to 30% by mass, and a more preferable content is 0.5 to 15% by mass.
  • the bonding composition of the present embodiment may contain various dispersion media as long as the effects of the present invention are not impaired, but preferably contains a second carboxylic acid in the dispersion medium. .
  • the second carboxylic acid works as a flux, and therefore, it is more suitable for bonding of a pure Cu bonded member.
  • the second carboxylic acid may be a monocarboxylic acid different from the first carboxylic acid as long as it does not adhere to the surface of the silver nanoparticles and satisfies the condition that the boiling point is 200 ° C. or higher. Furthermore, it is preferable that the second carboxylic acid is ricinoleic acid or oleic acid.
  • hydrocarbons for example, hydrocarbons, alcohols, ethers and esters can be used.
  • hydrocarbon include aliphatic hydrocarbons, cyclic hydrocarbons and alicyclic hydrocarbons, and each may be used alone or in combination of two or more.
  • hydrocarbon examples include aliphatic hydrocarbons, cyclic hydrocarbons, alicyclic hydrocarbons and unsaturated hydrocarbons, and each may be used alone or in combination of two or more.
  • aliphatic hydrocarbon examples include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
  • cyclic hydrocarbon examples include toluene and xylene.
  • Alicyclic hydrocarbons include, for example, limonene, dipentene, terpinene, nesol, sinene, orange flavor, terpinolene, ferrandlene, mentadiene, teleben, cymen, dihydrocymene, moslen, kautssin, cajeptene, pinene, turpentine, menthane, pinan. Terpene, cyclohexane and the like.
  • Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, 1-hexene, 1-octene, 4-vinylcyclohexene, terpene alcohol, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, petrothelic acid, oleic acid, and elaidin.
  • Examples include acid, thianic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, and salicylic acid.
  • unsaturated hydrocarbons having a hydroxyl group are preferred.
  • the hydroxyl group is easily coordinated to the surface of the silver nanoparticle, and aggregation of the silver nanoparticle can be suppressed.
  • the unsaturated hydrocarbon having a hydroxyl group include terpene alcohol, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, and salicylic acid.
  • it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid and salicylic acid.
  • the unsaturated hydrocarbon is preferably ricinoleic acid.
  • Ricinoleic acid has a carboxyl group and a hydroxyl group and is adsorbed on the surface of the inorganic particles to uniformly disperse the inorganic particles and promote fusion of the inorganic particles.
  • Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced
  • Examples of the aliphatic alcohol include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), nonanol, decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, isotridecanol. And saturated or unsaturated C6-30 aliphatic alcohols such as 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
  • Examples of the cyclic alcohol include cresol and eugenol.
  • alicyclic alcohol for example, cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol, tersolve (MTPH) and the like.
  • cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof)
  • terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol,
  • the content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 masses. % Is preferred.
  • the content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within a range that is easy to use as a bonding composition.
  • a more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass.
  • there is too much content of a dispersion medium there exists a possibility that many voids resulting from volatilization of a dispersion medium may generate
  • the bonding composition of the present embodiment has an appropriate viscosity, adhesiveness, and drying property in accordance with the intended use within a range not impairing the effects of the present invention.
  • a polymer dispersant for example, an oligomer component that serves as a binder, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), an interface.
  • Such optional components are not particularly limited.
  • polymer dispersant a commercially available polymer dispersant can be used.
  • examples of the commercially available polymer dispersant include, for example, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 27000, Solsperse.
  • Solsperse 28000 From the viewpoint of stability, DISPERBYK-102, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, it is preferable to use Solsperse 28000.
  • the content of the polymer dispersant is preferably 0.1 to 15% by mass.
  • the content of the polymer dispersant is 0.1% or more, the dispersion stability of the resulting bonding composition is improved. However, when the content is too large, the dispersion stability is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and still more preferable content is 0.05 to 2% by mass.
  • the resin component examples include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
  • the member to be joined is, for example, polyethylene terephthalate (PET), as the resin component, polyvinyl alcohol, polyvinyl pyrrolidone, vinyl chloride-vinyl acetate copolymer having good adhesion to the PET itself.
  • PET polyethylene terephthalate
  • polyvinyl alcohol polyvinyl pyrrolidone
  • vinyl chloride-vinyl acetate copolymer having good adhesion to the PET itself.
  • Polyvinyl acetoacetal and polyvinyl butyral
  • examples of such ketone-formaldehyde condensates and hydrogenated products thereof include Evonik Degussa Japan Co., Ltd. TEGO (registered trademark) VariPlus series (SK, AP, etc.)
  • vinyl chloride-vinyl acetate copolymers include Nisshin Chemical.
  • Solvain (registered trademark) series (Solvine AL, etc.) manufactured by Kogo Oil Co., Ltd. is used as polyvinyl acetoacetal and polyvinyl butyral. Etc.).
  • polyvinylpyrrolidone is preferably used because it has high solubility in highly polar polyhydric alcohols (particularly diol solvents) and can be dissolved well in solvents such as esters and ketones.
  • the thickener examples include clay minerals such as clay, bentonite or hectorite, for example, polyester emulsion resin, acrylic emulsion resin, polyurethane emulsion resin or emulsion such as blocked isocyanate, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.
  • a surfactant different from the above organic substance may be added.
  • the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying.
  • a surfactant By adding a surfactant to the bonding composition of the present embodiment, these disadvantages can be suppressed, and a bonding composition that can form a uniform conductive film is obtained.
  • the surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.
  • the bonding composition of the present embodiment includes silver colloid particles in which silver nanoparticles are colloided as a main component.
  • the form of the silver colloid particles for example, the surface of the silver nanoparticles is used.
  • Silver colloidal particles composed of a part of the first carboxylic acid attached silver colloidal particles composed of the above-mentioned silver nanoparticles as a core and the surface of which is coated with the first carboxylic acid, Examples thereof include silver colloidal particles that are mixed, but are not particularly limited. Of these, silver colloidal particles having silver nanoparticles as a core and the surface thereof being coated with a first carboxylic acid are preferred.
  • a person skilled in the art can appropriately prepare silver colloid particles having the above-described form using a well-known technique in the art.
  • the bonding composition of the present embodiment is composed of the silver nanoparticles, the first carboxylic acid, and the dispersion medium.
  • the silver nanoparticles, the first carboxylic acid, and the dispersion medium are used.
  • an organic component that does not constitute silver colloidal particles, a residual reducing agent, and the like may be included.
  • the viscosity of the bonding composition of the present embodiment may be adjusted as appropriate within the range where the solid content does not impair the effects of the present invention.
  • the viscosity may be in the range of 0.01 to 5000 Pa ⁇ S, and may be 0.
  • a viscosity range of 1 to 1000 Pa ⁇ S is more preferable, and a viscosity range of 1 to 100 Pa ⁇ S is particularly preferable.
  • a wide method is applicable as a method of apply
  • Examples of the method for applying the bonding composition on the substrate include dipping, screen printing, spray method, bar coating method, spin coating method, ink jet method, dispenser method, pin transfer method, application method by brush, casting Method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method and the like can be appropriately selected and employed. From the viewpoint of viscosity, a dispenser method, a pin transfer method, screen printing, or the like is particularly preferable.
  • Viscosity is adjusted by adjusting the particle size of silver nanoparticles, adjusting the content of organic matter, adjusting the amount of dispersion medium and other components added, adjusting the blending ratio of each component, and adding a thickener. Can do.
  • the viscosity of the bonding composition can be measured, for example, with a cone plate viscometer (for example, a rheometer MCR301 manufactured by Anton Paar).
  • silver nanoparticles (silver colloid particles) coated with the first carboxylic acid as the main component are used. Prepare.
  • the first carboxylic acid, the dispersion medium, other components, and the weight reduction rate are not particularly limited, but it is easy to adjust by heating. Moreover, you may carry out by adjusting the quantity of the 1st carboxylic acid etc. which are added when producing a silver nanoparticle, and you may change the washing conditions and frequency
  • Heating can be performed with an oven or an evaporator.
  • the heating temperature may be in the range of about 50 to 300 ° C., and the heating time may be several minutes to several hours.
  • Heating may be performed under reduced pressure.
  • the amount of the first carboxylic acid can be adjusted at a lower temperature. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Further, the first carboxylic acid, amine or the like can be added later for fine adjustment of the organic matter amount.
  • the method for preparing silver nanoparticles coated with the first carboxylic acid of the present embodiment is not particularly limited.
  • a dispersion containing silver nanoparticles is prepared, and then the dispersion is washed. Methods and the like.
  • a step of preparing a dispersion containing silver nanoparticles for example, a metal salt (or metal ion) dissolved in a solvent may be reduced as described below.
  • a reduction procedure a chemical reduction method is used. A procedure based on this may be adopted.
  • the silver nanoparticles coated with the first carboxylic acid as described above include a silver salt constituting the silver nanoparticles, a first carboxylic acid as a dispersant, a dispersion medium (basically toluene or the like). And may contain water)), and may be prepared by reducing a raw material liquid (some of the components may be dispersed without being dissolved). By this reduction, silver colloidal particles in which the first carboxylic acid as a dispersant is attached to at least a part of the surface of the silver nanoparticles are obtained.
  • the bonding composition of the present invention can be obtained by adding the silver colloidal particles to the dispersion medium in the step described later.
  • various known metal salts or hydrates thereof can be used, for example, silver nitrate, silver sulfate, silver chloride, silver oxide.
  • Silver salts such as silver acetate, silver oxalate, silver formate, silver nitrite, silver chlorate and silver sulfide; for example, gold salts such as chloroauric acid, potassium gold chloride and sodium gold chloride;
  • Platinum salts such as platinum, platinum oxide, potassium chloroplatinate; for example, palladium salts such as palladium nitrate, palladium acetate, palladium chloride, palladium oxide, palladium sulfate, etc. can be dissolved in a suitable dispersion medium, And if it is reducible, it will not specifically limit. These may be used alone or in combination.
  • the method for reducing these metal salts in the raw material liquid is not particularly limited, and examples thereof include a method using a reducing agent, a method of irradiating light such as ultraviolet rays, electron beams, ultrasonic waves, or thermal energy.
  • a method using a reducing agent is preferable from the viewpoint of easy operation.
  • Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide.
  • amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine
  • hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas
  • carbon monoxide for example, carbon monoxide.
  • Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid
  • Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • light and / or heat may be added to promote the reduction reaction.
  • organic component, solvent and reducing agent for example, the above metal salt is used as an organic solvent (for example, toluene).
  • organic solvent for example, toluene.
  • a metal salt solution is prepared by dissolving in, and an organic substance as a dispersant is added to the metal salt solution, and then a solution in which the reducing agent is dissolved is gradually added dropwise.
  • the dispersant in addition to the silver nanoparticles, the metal salt counterion, the reducing agent residue, There is a dispersant, and the electrolyte concentration in the whole liquid tends to be high. Since the liquid in such a state has high electrical conductivity, the silver nanoparticles are likely to coagulate and precipitate easily. Alternatively, even if precipitation does not occur, the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing silver nanoparticles to remove excess residues, silver nanoparticles coated with the first carboxylic acid can be reliably obtained.
  • washing method for example, a dispersion containing silver nanoparticles coated with the first carboxylic acid is allowed to stand for a certain period of time, and the resulting supernatant is removed, and then alcohol (methanol or the like) is added and again. Desalting by a method of repeating the process of removing the supernatant liquid generated by stirring the mixture and allowing to stand for a certain period of time, a method of centrifuging instead of the above-mentioned standing, an ultrafiltration device, an ion exchange device, etc. Methods and the like. By removing the organic solvent by such washing, the silver nanoparticles coated with the first carboxylic acid of this embodiment can be obtained.
  • the bonding composition of the present embodiment can be obtained by mixing the silver nanoparticles coated with the first carboxylic acid obtained above and the dispersion medium described in the present embodiment.
  • the method for mixing the silver nanoparticles coated with the first carboxylic acid and the dispersion medium is not particularly limited, and can be performed by a conventionally known method using a stirrer or a stirrer. An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like.
  • the production method is not particularly limited.
  • the above first carboxylic acid dispersion liquid is used.
  • a dispersion containing silver nanoparticles and a dispersion containing other metal nanoparticles may be produced separately and then mixed, and a silver ion solution and other The metal ion solution may be mixed and then reduced.
  • the inventor uses the above-described bonding composition of the present embodiment as the bonding composition in the bonding composition application step. It was found that the member to be joined can be more reliably joined with high joining strength (a joined body is obtained).
  • “application” of the bonding composition of the present embodiment is a concept including both the case where the bonding composition is applied in a planar shape and the case where the bonding composition is applied (drawn) in a linear shape.
  • the shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the joined body of this embodiment after firing by heating, the joining composition is a concept that includes both a planar joining layer and a linear joining layer.
  • the bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.
  • the first member to be bonded and the second member to be bonded that can be used in the present embodiment are not particularly limited as long as they can be bonded by applying a bonding composition and baking by heating. However, it is preferable that the member has a heat resistance that is not damaged by the temperature at the time of joining.
  • Examples of the material constituting such a member to be joined include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN).
  • Examples thereof include polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, metal and the like, and among them, a metal joined member is preferable.
  • the metal member to be joined is preferable because it is excellent in heat resistance and in affinity with the joining composition of the present invention in which the silver nanoparticles are metal.
  • the member to be joined may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible.
  • the thickness of the substrate can also be selected as appropriate.
  • a member on which a surface layer is formed or a member subjected to a surface treatment such as a hydrophilic treatment may be used.
  • various methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, spin coating, and inkjet It can be used by appropriately selecting from a formula, a dispenser type, a pin transfer method, a brush application method, a casting method, a flexo method, a gravure method, a syringe method, and the like.
  • the coated film after coating as described above is baked by heating to a temperature of 300 ° C. or less, for example, within a range that does not damage the member to be bonded, and the bonded body of this embodiment can be obtained.
  • a bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded is obtained, and a strong bonding strength is more reliably ensured. can get.
  • the binder component when the bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and the bonding strength between the bonded members.
  • the main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all the binder component.
  • the method for performing the firing is not particularly limited.
  • the temperature of the bonding composition applied or drawn on a member to be bonded using a conventionally known oven or the like is, for example, 300 ° C. or lower. It can join by baking.
  • the lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the members to be joined can be joined and does not impair the effects of the present invention.
  • the remaining amount of the organic matter is preferably small, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.
  • the 1st carboxylic acid which is organic substance is contained in the joining composition of this invention, unlike what used the thermosetting of the conventional epoxy resin etc., for example, after baking by the effect
  • the bonding strength is not obtained, and sufficient bonding strength can be obtained by fusing the silver nanoparticles fused as described above. For this reason, even after bonding, even if the remaining organic matter is deteriorated or decomposed / dissipated in a use environment higher than the bonding temperature, there is no risk of the bonding strength being lowered, and therefore the heat resistance is excellent. Yes.
  • the members to be bonded are relatively heat-sensitive. Can be joined.
  • the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.
  • the surface of the member to be bonded may be subjected to a surface treatment.
  • the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.
  • Example 1 A total of 50 mmoles of 40 mmol of 3-ethoxypropylamine and 10 mmol of dodecylamine were mixed and sufficiently stirred with a magnetic stirrer. While stirring, 10 mmol of silver oxalate prepared separately was added to increase the viscosity. The resulting viscous material was placed in a 120 ° C. constant temperature bath and reacted for about 15 minutes to obtain a reaction product. Thereafter, 100 mmol of methoxyacetic acid was added to the reaction product, which was again placed in a constant temperature bath at 100 ° C. and stirred for 15 minutes.
  • the average primary particle size was calculated using a particle image photographed by SEM (S-4800, manufactured by Hitachi, Ltd.). When the primary particle size was measured using image processing software (MITANI CORPORATION, Win ROOF) for a total of 200 or more particles from 5 or more SEM images at different shooting points, the average primary particle size was calculated by arithmetic average. It was 40 nm.
  • Example 2 A joining composition was prepared and evaluated in the same manner as in Example 1 except that ricinoleic acid was removed from the dispersion medium. The results are shown in Table 1.
  • Example 3 A joining composition was prepared and evaluated in the same manner as in Example 1 except that ethoxyacetic acid was added instead of methoxyacetic acid. The results are shown in Table 1. The following evaluation test was also conducted.
  • Example 4 A joining composition was prepared and evaluated in the same manner as in Example 1 except that 3-ethoxypropionic acid was added instead of methoxyacetic acid. The results are shown in Table 1.
  • Example 5 A joining composition was prepared and evaluated in the same manner as in Example 1 except that levulinic acid was added instead of methoxyacetic acid. The results are shown in Table 1.
  • Example 6 A joining composition was prepared and evaluated in the same manner as in Example 1 except that levulinic acid was added instead of methoxyacetic acid and ricinoleic acid was removed from the dispersion medium. The results are shown in Table 1.
  • Comparative Example 5 A joining composition was prepared and evaluated in the same manner as in Example 1 except that 2- (2-aminoethoxy) ethanol was added instead of methoxyacetic acid and ricinoleic acid was removed from the dispersion medium. The results are shown in Table 1.
  • Comparative Example 6 A joining composition was prepared and evaluated in the same manner as in Example 1 except that 2- (2-aminoethylamino) ethanol was added instead of methoxyacetic acid and ricinoleic acid was removed from the dispersion medium. . The results are shown in Table 1.
  • Example 7 A joining composition was prepared and evaluated in the same manner as in Example 1 except that the amount of ricinoleic acid added in the dispersion medium was 0.025 g. The results are shown in Table 2. However, the following evaluation tests 2 and 3 were also performed here using a 5 mm ⁇ 5 mm Si chip.
  • Example 8 Levulinic acid was used instead of methoxyacetic acid, the amount of ricinoleic acid added in the dispersion medium was 0.025 g, and firing was performed using an oxygen-free copper substrate without plating (1 min ultrasonic treatment in 10 wt% sulfuric acid aqueous solution). A bonding composition was prepared and evaluated in the same manner as in Example 1 except that was performed in a nitrogen atmosphere. The results are shown in Table 2.
  • Example 9 Except that levulinic acid was used instead of methoxyacetic acid, ricinol in the dispersion medium was changed to 0.025 g of oleic acid, and the calcination treatment was performed in a nitrogen atmosphere using an oxygen-free copper substrate without plating. A bonding composition was prepared and evaluated. The results are shown in Table 2.
  • Comparative Example 7 A bonding composition was prepared and evaluated in the same manner as in Example 1 except that 3-ethoxypropylamine was used in place of methoxyacetic acid, and a non-plated oxygen-free copper substrate was used for the firing treatment in a nitrogen atmosphere. Went. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided is a bonding composition for obtaining a bonded layer which has a low void rate and a high bonding strength, and excellent heat-resistant reliability, regardless of whether baking is performed in the atmosphere or in an inert atmosphere, and whether plated or unplated substrates are bonded. The bonding composition of the present invention is characterized by including silver nanoparticles, a dispersion medium, and a first carboxylic acid which is attached to at least a portion of the surfaces of the silver nanoparticles and includes an O atom in a carbon chain.

Description

接合用組成物及びその製造方法Bonding composition and method for producing the same
 本発明は、金属部品等の被接合部材を接合するために用いる接合用組成物及びその製造方法に関する。 The present invention relates to a joining composition used for joining members to be joined such as metal parts and a manufacturing method thereof.
 金属部品等の被接合部材同士を機械的、電気的又は熱的に接合するために、従来より、はんだ、導電性接着剤、銀ペースト又は異方導電性フィルム等が用いられている。この被接合部材には、金属部品だけでなく、セラミック部品又は樹脂部品等も含まれ、異なる種類の被接合部材を接合することもある。例えば、LED等の発光素子を基板に接合する用途、半導体チップを基板に接合する用途、又はそれらの基板をさらに放熱部材に接合する用途等がある。 Conventionally, solder, a conductive adhesive, a silver paste, an anisotropic conductive film, or the like is used to mechanically, electrically, or thermally join members to be joined such as metal parts. The members to be joined include not only metal parts but also ceramic parts or resin parts, and different kinds of members to be joined may be joined. For example, there are applications in which light emitting elements such as LEDs are bonded to a substrate, applications in which a semiconductor chip is bonded to a substrate, or applications in which these substrates are further bonded to a heat dissipation member.
 なかでも、被接合部材を接合するための接合材として、Pbを含むはんだも広く使用されている。しかし、近年環境保全やRoHS規制の観点からPbフリーが求められており、また、はんだでは融点が低いため動作温度の高い炭化ケイ素や窒化ガリウム等のパワーデバイスへの適用は困難であるという問題があった。 Among them, solder containing Pb is also widely used as a bonding material for bonding the members to be bonded. However, in recent years, Pb-free has been demanded from the viewpoint of environmental protection and RoHS regulation, and since solder has a low melting point, it is difficult to apply it to power devices such as silicon carbide and gallium nitride having high operating temperatures. there were.
 そのため、耐熱性の高い新しい接合材として金属ナノ粒子の焼結を利用した金属ペーストが接合材料として注目されており、銀ナノ粒子を接合材として用いて低温焼結する技術が知られている(例えば、特許文献1:特開2011-071301号公報、特許文献2: 特開2015-232181号公報、及び特許文献3:特開2011-240406号公報)。 Therefore, metal paste using metal nanoparticle sintering has attracted attention as a new bonding material with high heat resistance as a bonding material, and a technique for low-temperature sintering using silver nanoparticles as a bonding material is known ( For example, Patent Document 1: Japanese Patent Laid-Open No. 2011-073011, Patent Document 2: Japanese Patent Laid-Open No. 2015-232181, and Patent Document 3: Japanese Patent Laid-Open No. 2011-240406).
 より具体的には、特許文献1では、「金属ナノ粒子を用いた接合技術において、スペーサを接合層に残しつつ、接合強度を高めることができる接合技術を提供すること」を課題とし、「第1の部材11と、第2の部材12と、これらの部材11、12とを加圧しつつ接合した接合層13とからなり、接合層13に塑性変形されたスペーサ14が残されている接合体。」が提案されている。 More specifically, in Patent Document 1, “providing a bonding technique capable of increasing the bonding strength while leaving the spacer in the bonding layer in the bonding technique using metal nanoparticles” 1, a second member 12, and a bonding layer 13 in which these members 11 and 12 are bonded together while being pressed, and a plastically deformed spacer 14 remains in the bonding layer 13. Has been proposed.
 また、特許文献2では、「可能な限り単純な構成であっても接合強度が確保され、かつ接合強度のムラを低減させうる、接合用金属ペーストの提供を図ること」を課題とし、「平均一次粒径(D50径)0.5~3.0μmである金属サブミクロン粒子と、平均一次粒子径が1~200nmであって炭素数6~8の脂肪酸で被覆された金属ナノ粒子と、これらを分散させる分散媒で構成した金属接合用ペースト(接合材)」が提案されている。 Further, in Patent Document 2, an object is to “provide a bonding metal paste that can secure bonding strength and reduce unevenness in bonding strength even with the simplest possible structure”. Metal submicron particles having a primary particle diameter (D50 diameter) of 0.5 to 3.0 μm, metal nanoparticles having an average primary particle diameter of 1 to 200 nm and coated with a fatty acid having 6 to 8 carbon atoms, and A metal bonding paste (bonding material) composed of a dispersion medium in which is dispersed is proposed.
 また、特許文献3では、「不活性雰囲気下であっても金属相が形成できるようなフラックス成分を含んだペーストを提供する」ことを課題とし、「平均一次粒子径1~200nmであって、炭素数8以下の有機物質で被覆されている銀ナノ粒子と、少なくとも二つのカルボキシル基を有するフラックス成分および分散媒から構成される接合材」が提案されている。 Further, in Patent Document 3, an object is to “provide a paste containing a flux component capable of forming a metal phase even under an inert atmosphere”, and “average primary particle diameter is 1 to 200 nm, There has been proposed a “joining material composed of silver nanoparticles coated with an organic substance having 8 or less carbon atoms, a flux component having at least two carboxyl groups, and a dispersion medium”.
特開2011-071301号公報JP 2011-073011 A 特開2015-232181号公報Japanese Patent Laying-Open No. 2015-232181 特開2011-240406号公報JP 2011-240406 A
 しかしながら、上記特許文献1及び特許文献2で提案されている技術では、焼成接合時に加圧しないと十分な接合状態が得られない。加圧下での焼成では、チップの破壊による歩留まりの低下や生産工程の煩雑化といった問題があり、この点、無加圧接合による実装技術の開発が強く求められている。また、上記特許文献3で提案されている技術は、2mm×2mmの小型の被接合体の接合は可能であるが、窒素下無加圧で接合しなければならず、5mm×5mmを超える大型の被接合体の接合や、大気中での被接合体の接合については、十分な接合強度という観点からは、未だ改善の余地があった。 However, with the techniques proposed in Patent Document 1 and Patent Document 2, a sufficient bonding state cannot be obtained unless pressure is applied during firing bonding. In the firing under pressure, there are problems such as a decrease in yield due to chip breakage and complication of the production process. In this respect, development of a mounting technique by pressureless bonding is strongly demanded. Moreover, although the technique proposed in the above-mentioned Patent Document 3 can join a small object to be joined having a size of 2 mm × 2 mm, it must be joined under no pressure under nitrogen and has a large size exceeding 5 mm × 5 mm. However, there is still room for improvement from the viewpoint of sufficient bonding strength for bonding of the objects to be bonded and bonding of the objects to be bonded in the air.
 そこで、本発明は上記従来技術の有する課題に鑑みてなされたものであり、本発明の目的は、焼成接合時に加圧を要することなく、大気焼成若しくは不活性雰囲気焼成、又は、めっき有基板接合若しくはめっき無し基板接合に関わらず、低ボイド率で接合強度が強く、優れた耐熱信頼性を有する接合層を得るための接合用組成物及びその製造方法を提供することにある。 Therefore, the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to perform air firing or inert atmosphere firing, or plating-substrate joining without requiring pressure during firing joining. Alternatively, it is an object of the present invention to provide a bonding composition and a method for producing the same for obtaining a bonding layer having a low void ratio, a high bonding strength, and excellent heat resistance reliability, regardless of substrate bonding without plating.
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、焼成接合時に加圧を要することなく、大気焼成若しくは不活性雰囲気焼成、又は、めっき有基板接合若しくはめっき無し基板接合に関わらず、低ボイド率で接合強度が強く、優れた耐熱信頼性を有する接合層を得るためには、銀微粒子の表面に付着させるカルボン酸の種類を特定し、更には、分散媒に含まれるカルボン酸の種類を特定することが、上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。 As a result of earnest research to achieve the above object, the present inventor does not require pressurization during firing bonding, regardless of atmospheric firing or inert atmosphere firing, or plating-bonded substrate bonding or non-plating substrate bonding. In order to obtain a bonding layer having a low void ratio and strong bonding strength and excellent heat resistance reliability, the type of carboxylic acid to be attached to the surface of the silver fine particles is specified, and further, the carboxylic acid contained in the dispersion medium It has been found that specifying the type of is extremely effective in achieving the above object, and the present invention has been achieved.
 即ち、本発明は、
 銀ナノ粒子と、
 分散媒と、
 前記銀ナノ粒子の表面の少なくとも一部に付着している、炭素鎖にO原子を含む第一のカルボン酸と、
 を含むこと、を特徴とする接合用組成物、を提供する。
That is, the present invention
Silver nanoparticles,
A dispersion medium;
A first carboxylic acid containing an O atom in a carbon chain attached to at least a portion of the surface of the silver nanoparticles;
A bonding composition characterized by comprising:
 上記のような構成を有する本発明の接合用組成物においては、銀ナノ粒子の分散安定性を保持して凝集を防ぐため、当該銀ナノ粒子の表面の少なくとも一部に有機物が付着して被覆している。この付着(被覆)有機物が焼成時に残存すると、銀ナノ粒子同士の融着を阻害するため、焼成時に蒸発又は分解する必要がある。蒸発温度又は分解温度が焼成温度近傍であると、銀ナノ粒子の焼結開始温度、及び、焼結層の高密度化速度を高めることができ、より緻密な接合層を形成できる。そのため、本発明では、銀ナノ粒子の表面に付着させる有機物として、銀ナノ粒子の表面に対しての吸着エネルギーが比較的大きいカルボン酸(第一のカルボン酸)を用いる。このカルボン酸は、銀ナノ粒子の安定化に寄与するだけでなくフラックスとしての効果も発揮するため、無垢Cu接合に有利に働く。なお、本発明は、銀ナノ粒子と、前記銀ナノ粒子の表面の少なくとも一部に付着している、炭素鎖にO原子を含む第一のカルボン酸と、を含むこと、を特徴とする上記の銀ナノ粒子(被覆銀ナノ粒子)そのものにも関する。 In the bonding composition of the present invention having the above-described configuration, an organic substance adheres to and coats at least a part of the surface of the silver nanoparticles in order to prevent the aggregation by maintaining the dispersion stability of the silver nanoparticles. is doing. If this adhered (coating) organic substance remains during firing, it will need to evaporate or decompose during firing in order to inhibit the fusion of silver nanoparticles. When the evaporation temperature or decomposition temperature is in the vicinity of the firing temperature, the sintering start temperature of the silver nanoparticles and the densification rate of the sintered layer can be increased, and a denser bonding layer can be formed. Therefore, in this invention, carboxylic acid (1st carboxylic acid) with comparatively large adsorption energy with respect to the surface of a silver nanoparticle is used as an organic substance attached to the surface of a silver nanoparticle. This carboxylic acid not only contributes to the stabilization of the silver nanoparticles, but also exhibits an effect as a flux, and thus works advantageously for solid Cu bonding. The present invention includes silver nanoparticles and a first carboxylic acid containing an O atom in a carbon chain attached to at least a part of the surface of the silver nanoparticles. This also relates to silver nanoparticles (coated silver nanoparticles) themselves.
 また、本発明における第一のカルボン酸は、炭素鎖に電気陰性度の高いO原子を含んでいる。この炭素鎖のO原子とは、カルボキシル基(-COOH)に含まれるO原子以外のO原子を意味し、例えば、エーテル基(-O-)、メトキシ基(-OCH3)、エトキシ基(-OCH2CH3)、及びアセチル基(-COCH3)等に含まれるO原子を意味している。銀ナノ粒子がO原子を含むことで被接合部材との濡れ性が増加し、被接合部材との強固な接合が形成される。具体的な第一のカルボン酸としては、レブリン酸、メトキシ酢酸、エトキシ酢酸又は3-エトキシプロピオン酸が挙げられる。 In addition, the first carboxylic acid in the present invention contains an O atom having a high electronegativity in the carbon chain. The O atom of the carbon chain means an O atom other than the O atom contained in the carboxyl group (—COOH). For example, an ether group (—O—), a methoxy group (—OCH 3), an ethoxy group (—OCH 2 CH 3). ), And an O atom contained in an acetyl group (—COCH 3) or the like. When the silver nanoparticles contain O atoms, the wettability with the member to be bonded is increased, and a strong bond with the member to be bonded is formed. Specific examples of the first carboxylic acid include levulinic acid, methoxyacetic acid, ethoxyacetic acid, and 3-ethoxypropionic acid.
 上記の本発明の接合用組成物においては、前記カルボン酸の炭素数が5以下であること、が好ましい。 In the above bonding composition of the present invention, the carboxylic acid preferably has 5 or less carbon atoms.
 炭素数が多くなると銀ナノ粒子の分散安定性が向上するが、多くなり過ぎると銀ナノ粒子中に占める被覆有機物の体積が増加し、接合組成物で形成される接合層の高密度化には不利になるためである。 When the number of carbons increases, the dispersion stability of the silver nanoparticles improves. However, when the number of carbons increases, the volume of the coating organic matter in the silver nanoparticles increases, which increases the density of the bonding layer formed of the bonding composition. It will be disadvantageous.
 また、上記の本発明の接合用組成物においては、前記銀ナノ粒子の平均一次粒径は10~100nmであること、が好ましい。 In the bonding composition of the present invention, the average primary particle size of the silver nanoparticles is preferably 10 to 100 nm.
 銀ナノ粒子の粒径及び形状については、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の銀ナノ粒子を用いることができる。具体的には、平均一次粒径が1μm未満の銀ナノ粒子を用いることができ、好ましい平均粒径は10~100nmである。銀ナノ粒子の平均一次粒径が10nm以上であれば、銀ナノ粒子が良好な低温焼結性を具備すると共に銀ナノ粒子製造がコスト高とならず実用的である。また、100nm以下であれば、銀ナノ粒子の分散性が経時的に変化し難く、好ましい。 The particle size and shape of the silver nanoparticles are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver nanoparticles can be used. Specifically, silver nanoparticles having an average primary particle size of less than 1 μm can be used, and a preferable average particle size is 10 to 100 nm. If the average primary particle diameter of the silver nanoparticles is 10 nm or more, the silver nanoparticles have good low-temperature sinterability, and the production of silver nanoparticles is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of a silver nanoparticle hardly changes with time, and it is preferable.
 また、上記の本発明の接合用組成物においては、前記分散媒中に第二のカルボン酸を含むこと、が好ましい。かかる第二のカルボン酸は、モノカルボン酸であること、更には、リシノール酸又はオレイン酸であること、が好ましい。 In the bonding composition of the present invention, it is preferable that the dispersion medium contains a second carboxylic acid. The second carboxylic acid is preferably a monocarboxylic acid, more preferably ricinoleic acid or oleic acid.
 分散媒中にカルボン酸が含まれると当該カルボン酸はフラックスとして働くため、無垢Cu被接合部材の接合が可能となる。カルボキシル基が多いほどフラックス効果が高いが、本発明の接合用組成物では、リシノール酸又はオレイン酸等のモノカルボン酸でも十分に効果が発揮され、無垢Cu被接合部材を良好に接合することができる。 When a carboxylic acid is contained in the dispersion medium, the carboxylic acid acts as a flux, so that it is possible to join a solid Cu joined member. As the number of carboxyl groups increases, the flux effect is higher. However, in the bonding composition of the present invention, a monocarboxylic acid such as ricinoleic acid or oleic acid is sufficiently effective, and a solid Cu bonded member can be bonded well. it can.
 また、上記の本発明の接合用組成物は、平均粒径1~15μmの銀マイクロ粒子を含んでもよい。 The bonding composition of the present invention may include silver microparticles having an average particle diameter of 1 to 15 μm.
 銀ナノ粒子の粒径及び形状については、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の銀ナノ粒子を用いることができる。具体的には、平均一次粒径が1μm未満の銀ナノ粒子を用いることができ、好ましい平均粒径は10~100nmである。銀ナノ粒子の平均一次粒径が10nm以上であれば、銀ナノ粒子が良好な低温焼結性を具備すると共に銀ナノ粒子製造がコスト高とならず実用的である。また、100nm以下であれば、銀ナノ粒子の分散性が経時的に変化し難く、好ましい。 The particle size and shape of the silver nanoparticles are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver nanoparticles can be used. Specifically, silver nanoparticles having an average primary particle size of less than 1 μm can be used, and a preferable average particle size is 10 to 100 nm. If the average primary particle diameter of the silver nanoparticles is 10 nm or more, the silver nanoparticles have good low-temperature sinterability, and the production of silver nanoparticles is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of a silver nanoparticle hardly changes with time, and it is preferable.
 ここで、銀ナノ粒子の粒径は一定でなくてもよい。銀ナノ粒子の平均一次粒径は、上述のとおり、100nm以下であることが好ましいが、接合用組成物が凝集を生じたりせず、本発明の効果を著しく損なわない成分であれば、かかる100nm超の平均一次粒径を有する銀ナノ粒子を含んでもよい。加えて、必要に応じて、例えば平均粒径1~15μmの銀マイクロ粒子を添加してもよい。 Here, the particle size of the silver nanoparticles may not be constant. As described above, the average primary particle diameter of the silver nanoparticles is preferably 100 nm or less, but the bonding composition does not cause aggregation and the effect of the present invention is not significantly impaired. Silver nanoparticles having an average average primary particle size may be included. In addition, if necessary, silver microparticles having an average particle diameter of 1 to 15 μm may be added.
 また、本発明は、上記の本発明の接合用組成物の製造方法に関し、当該製造方法は、
 シュウ酸銀錯体分解法で銀ナノ粒子を製造する第一工程と、
 前記第一工程で得た銀ナノ粒子に、カルボキシル基以外の部分にO原子を含む第一のカルボン酸を添加して加熱することにより、前記銀ナノ粒子の表面の少なくとも一部に前記カルボン酸を付着させる第二工程と、
 を含むこと、を特徴とする。
The present invention also relates to a method for producing the above-described bonding composition of the present invention,
A first step of producing silver nanoparticles by a silver oxalate complex decomposition method,
The carboxylic acid is added to at least a part of the surface of the silver nanoparticle by heating the silver nanoparticle obtained in the first step by adding a first carboxylic acid containing an O atom to a portion other than the carboxyl group. A second step of attaching
It is characterized by including.
 このような構成を有する本発明の接合用組成物の製造方法によれば、上記のような本発明の接合用組成物を好適に製造することができる。 According to the method for producing a bonding composition of the present invention having such a configuration, the above-described bonding composition of the present invention can be suitably produced.
 本発明によれば、焼成接合時に加圧を要することなく、大気焼成若しくは不活性雰囲気焼成、又は、めっき有基板接合若しくはめっき無し基板接合に関わらず、低ボイド率で接合強度が強く、優れた耐熱信頼性を有する接合層を実現する接合用組成物及びその製造方法を提供することができる。 According to the present invention, there is no need for pressure at the time of firing joining, regardless of air firing or inert atmosphere firing, or plating-bonded substrate bonding or non-plating substrate bonding. A bonding composition that realizes a bonding layer having heat resistance reliability and a method for manufacturing the same can be provided.
 以下、(1)本発明の接合用組成物の好適な一実施形態、(2)本発明の接合用組成物の製造方法の好適な一実施形態、(3)本発明の接合用組成物を用いた被接合部材の接合方法(接合体の製造方法)の好適な一実施形態について詳細に説明する。なお、以下の説明では重複する説明は省略することがある。 Hereinafter, (1) one preferred embodiment of the bonding composition of the present invention, (2) one preferred embodiment of the method for producing the bonding composition of the present invention, and (3) the bonding composition of the present invention. A preferred embodiment of a method for joining the members to be joined (a method for producing a joined body) will be described in detail. In the following description, overlapping description may be omitted.
(1)接合用組成物
 本実施形態の接合用組成物は、銀ナノ粒子と、分散媒と、前記銀ナノ粒子の表面の少なくとも一部に付着している、炭素鎖にO原子を含む第一のカルボン酸と、を含むこと、を特徴とする接合用組成物である。以下において、これら各成分等について説明する。
(1) Bonding composition The bonding composition of the present embodiment includes silver nanoparticles, a dispersion medium, and carbon atoms that are attached to at least a part of the surface of the silver nanoparticles and contain O atoms. It is the composition for joining characterized by including one carboxylic acid. Hereinafter, each of these components will be described.
(1-1)銀ナノ粒子
 銀ナノ粒子の粒径及び形状については、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の銀ナノ粒子を用いることができる。具体的には、平均一次粒径が1μm未満の銀ナノ粒子を用いることができ、好ましい平均粒径は10~100nmである。銀ナノ粒子の平均一次粒径が10nm以上であれば、銀ナノ粒子が良好な低温焼結性を具備すると共に銀ナノ粒子製造がコスト高とならず実用的である。また、100nm以下であれば、銀ナノ粒子の分散性が経時的に変化し難く、好ましい。
(1-1) Silver Nanoparticles The particle size and shape of the silver nanoparticles are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver nanoparticles can be used. Specifically, silver nanoparticles having an average primary particle size of less than 1 μm can be used, and a preferable average particle size is 10 to 100 nm. If the average primary particle diameter of the silver nanoparticles is 10 nm or more, the silver nanoparticles have good low-temperature sinterability, and the production of silver nanoparticles is practical without increasing the cost. Moreover, if it is 100 nm or less, the dispersibility of a silver nanoparticle hardly changes with time, and it is preferable.
 銀ナノ粒子の平均一次粒径が小さくなり過ぎると、被覆有機物の占める体積の増加の影響が大きくなり、銀ナノ粒子の平均一次粒径が大きくなり過ぎると、融着温度の上昇及び焼結層の高密度化速度が低下してしまうからである。 If the average primary particle size of the silver nanoparticles is too small, the effect of the increase in volume occupied by the coating organic matter becomes large, and if the average primary particle size of the silver nanoparticles is too large, the fusion temperature is increased and the sintered layer is increased. This is because the densification rate of the film is reduced.
 なお、本発明の接合用組成物を用いて形成される接合層のマイグレーションの問題を考慮して、イオン化列が水素より貴である金属、即ち金、銅、白金、パラジウム等の粒子を、本発明の効果を損なわない範囲で添加してもよい。 In consideration of the problem of migration of the bonding layer formed using the bonding composition of the present invention, particles such as gold, copper, platinum, palladium, etc., in which the ionization column is more noble than hydrogen, You may add in the range which does not impair the effect of invention.
 また、本実施形態の接合用組成物における銀ナノ粒子の粒径は、一定でなくてもよい。銀ナノ粒子の平均一次粒径は、上述のとおり、100nm以下であることが好ましいが、接合用組成物が凝集を生じたりせず、本発明の効果を著しく損なわない成分であれば、かかる100nm超の平均一次粒径を有する銀ナノ粒子を含んでもよい。 Moreover, the particle size of the silver nanoparticles in the bonding composition of the present embodiment may not be constant. As described above, the average primary particle diameter of the silver nanoparticles is preferably 100 nm or less, but the bonding composition does not cause aggregation and the effect of the present invention is not significantly impaired. Silver nanoparticles having an average average primary particle size may be included.
 加えて、必要に応じて、例えば平均粒径1~15μmの銀マイクロ粒子等の無機マイクロ粒子(無機粗粒子)を添加してもよい。そのような場合は、ナノメートルサイズの銀ナノ粒子がミクロンサイズの無機マイクロ粒子の周囲で融点降下することにより、良好な導電パスを得ることができる。 In addition, if necessary, inorganic microparticles (inorganic coarse particles) such as silver microparticles having an average particle diameter of 1 to 15 μm may be added. In such a case, a favorable conductive path can be obtained by causing the nanometer-sized silver nanoparticles to drop in melting point around the micron-sized inorganic microparticles.
 ここで、本実施形態の接合用組成物における銀ナノ粒子及び無機マイクロ粒子の粒径は、動的光散乱法、小角X線散乱法、広角X線回折法で測定することができる。ナノサイズの銀微粒子の融点降下を示すためには、広角X線回折法で求めた結晶子径が適当である。例えば広角X線回折法では、より具体的には、理学電機(株)製のRINT-UltimaIIIを用いて、回折法で2θが30~80°の範囲で測定することができる。この場合、試料は、中央部に深さ0.1~1mm程度の窪みのあるガラス板に表面が平坦になるように薄くのばして測定すればよい。また、理学電機(株)製のJADEを用い、得られた回折スペクトルの半値幅を下記のシェラー式に代入することにより算出された結晶子径(D)を粒径とすればよい。
  D=Kλ/Bcosθ
 ここで、K:シェラー定数(0.9)、λ:X線の波長、B:回折線の半値幅、θ:ブラッグ角である。
Here, the particle diameters of the silver nanoparticles and the inorganic microparticles in the bonding composition of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method. In order to show the melting point drop of nano-sized silver fine particles, the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate. For example, in the wide-angle X-ray diffraction method, more specifically, RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2θ in the range of 30 to 80 ° by the diffraction method. In this case, the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center. The crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
D = Kλ / Bcos θ
Here, K: Scherrer constant (0.9), λ: wavelength of X-ray, B: half width of diffraction line, θ: Bragg angle.
 無機マイクロ粒子の粒径は、銀ナノ粒子の粒径よりも大きければ特に限定されないが、平均粒径が1~50μmであること、が好ましい。無機マイクロ粒子の平均粒径を1μm以上とすることで、無機マイクロ粒子の良好な分散性を確保すると共に、銀ナノ粒子との平均粒径の差を十分大きくすることができ、いわゆる微粒粗粒混合による緻密化を図ることができる。また、無機マイクロ粒子の平均粒径を50μm以下とすることで、接合層が厚くなり過ぎることを防止することができる。 The particle size of the inorganic microparticle is not particularly limited as long as it is larger than the particle size of the silver nanoparticle, but the average particle size is preferably 1 to 50 μm. By setting the average particle size of the inorganic microparticles to 1 μm or more, it is possible to ensure good dispersibility of the inorganic microparticles and to sufficiently increase the average particle size difference from the silver nanoparticles. Densification by mixing can be achieved. Moreover, it can prevent that a joining layer becomes too thick because the average particle diameter of an inorganic microparticle shall be 50 micrometers or less.
 本実施形態の接合用組成物における無機マイクロ粒子の構成元素としては、例えば金、銀、銅、ニッケル、ビスマス、スズ、鉄並びに白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)のうちの少なくとも1種が挙げられる。上記構成元素としては、金、銀、銅、ニッケル、ビスマス、スズ又は白金族元素よりなる群から選択される少なくとも1種であることが好ましく、更には、銅又は銅よりもイオン化傾向が小さい(貴な)金属、即ち、金、白金、銀及び銅のうちの少なくとも1種であるのが好ましく、銀とすることが最も好ましい。これらの元素は単独で用いても、2種以上を併用して用いてもよく、併用する方法としては、複数の金属を含む合金粒子を用いる場合や、コア-シェル構造や多層構造を有する金属粒子を用いる場合がある。 Examples of constituent elements of the inorganic microparticles in the bonding composition of the present embodiment include gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum). At least one of them can be mentioned. The constituent element is preferably at least one selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or a platinum group element, and further has a smaller ionization tendency than copper or copper ( It is preferably a noble metal, ie, at least one of gold, platinum, silver and copper, and most preferably silver. These elements may be used singly or in combination of two or more. The methods of using these elements in combination include the case of using alloy particles containing a plurality of metals, the metal having a core-shell structure or a multilayer structure. Particles may be used.
 例えば、無機マイクロ粒子として銀マイクロ粒子を用いる場合、本実施形態の接合用組成物を用いて形成した接着層の導電率は良好となるが、マイグレーションの問題を考慮して、銀及びその他の金属からなる接合用組成物を用いることによって、マイグレーションを起こりにくくすることができる。当該「その他の金属」としては、上述のイオン化列が水素より貴である金属、即ち金、銅、白金、パラジウムが好ましい。 For example, when silver microparticles are used as the inorganic microparticles, the conductivity of the adhesive layer formed using the bonding composition of this embodiment is good, but silver and other metals are considered in consideration of migration problems. By using the bonding composition comprising: migration can be made difficult to occur. The “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
 なお、本実施形態の接合用組成物における無機マイクロ粒子と銀ナノ粒子との組み合わせは、本発明の効果を損なわない限りにおいて特に限定されず、低温焼結性を有する銀ナノ粒子と無機マイクロ粒子とを組み合わせればよい。また、2種類以上の銀ナノ粒子と無機マイクロ粒子とを組み合わせてもよい。 The combination of the inorganic microparticles and the silver nanoparticles in the bonding composition of the present embodiment is not particularly limited as long as the effects of the present invention are not impaired, and the silver nanoparticles and the inorganic microparticles having a low temperature sintering property Can be combined. Two or more kinds of silver nanoparticles and inorganic microparticles may be combined.
(1-2)第一のカルボン酸(有機物)
 本実施形態の接合用組成物において、銀ナノ粒子の表面の少なくとも一部には、有機物である「炭素鎖にO原子を含む第一のカルボン酸」が付着しており、当該第一のカルボン酸が銀ナノ粒子の表面を部分的又は全体的に被覆している。当該第一のカルボン酸は、本実施形態の接合用組成物においていわゆる分散剤として上記銀ナノ粒子とともに実質的に銀コロイド粒子を構成する。第一のカルボン酸の一分子内におけるカルボキシル基が、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、カルボキシル基は、酸性的性質を示し易い。
(1-2) First carboxylic acid (organic substance)
In the bonding composition of the present embodiment, an organic substance “first carboxylic acid containing an O atom in a carbon chain” is attached to at least a part of the surface of the silver nanoparticles, and the first carboxylic acid The acid partially or totally covers the surface of the silver nanoparticles. The first carboxylic acid substantially constitutes colloidal silver particles together with the silver nanoparticles as a so-called dispersant in the bonding composition of the present embodiment. The carboxyl group in one molecule of the first carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
 なお、銀ナノ粒子の表面に付着する化合物は、当該第一のカルボン酸に加えて、銀ナノ粒子に最初から不純物として含まれる微量有機物、後述する製造過程で混入して銀ナノ粒子に付着した微量有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、銀ナノ粒子に微量付着した有機物等は含まれない概念である。なお、上記「微量」とは、具体的には、銀コロイド粒子中1質量%未満が意図される。 In addition to the first carboxylic acid, the compound adhering to the surface of the silver nanoparticles is a trace amount of organic matter contained as impurities from the beginning of the silver nanoparticles, adhering to the silver nanoparticles by mixing in the manufacturing process described later. It is a concept that does not include trace organic substances, organic substances adhered to silver nanoparticles, such as residual reducing agents and residual dispersants that could not be removed in the cleaning process. The “trace amount” is specifically intended to be less than 1% by mass in the silver colloid particles.
 上記第一のカルボン酸は、銀ナノ粒子を被覆して当該銀ナノ粒子の凝集を防止するとともに銀コロイド粒子を形成することが可能な有機物であり、被覆の形態については特に規定しないが、本実施形態においては、分散性及び導電性等の観点から、本発明の効果を損なわない範囲で、第一のカルボン酸以外の被覆有機物(例えばアミン)を含んでもよい。なお、これらの有機物は、銀ナノ粒子と化学的又は物理的に結合している場合、アニオンやカチオンに変化していることも考えられ、本実施形態においては、これらの被覆有機物に由来するイオンや錯体等も上記被覆有機物に含まれる。 The first carboxylic acid is an organic substance capable of covering silver nanoparticles to prevent aggregation of the silver nanoparticles and forming silver colloidal particles, and the form of the coating is not particularly defined. In the embodiment, from the viewpoint of dispersibility, conductivity, and the like, a coating organic substance (for example, an amine) other than the first carboxylic acid may be included within a range not impairing the effects of the present invention. In addition, when these organic substances are chemically or physically bonded to the silver nanoparticles, it is considered that the organic substances are changed to anions and cations. In this embodiment, ions derived from these coated organic substances are used. And the like are also included in the above-mentioned coated organic matter.
 かかるアミンとしては、直鎖状であっても分岐鎖状であってもよく、また、側鎖を有していてもよい。例えば、N-(3-メトキシプロピル)プロパン-1,3-ジアミン、1,2-エタンジアミン、2-メトキシエチルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、ペンタノールアミン、アミノイソブタノール等のジアミンやアルコキシアミン、アミノアルコールに加えプロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン等のアルキルアミン(直鎖状アルキルアミン、側鎖を有していてもよい。)、シクロペンチルアミン、シクロヘキシルアミン等のシクロアルキルアミン、アニリン、アリルアミン等の第1級アミン、ジプロピルアミン、ジブチルアミン、ピペリジン、ヘキサメチレンイミン等の第2級アミン、トリプロピルアミン、ジメチルプロパンジアミン、シクロヘキシルジメチルアミン、ピリジン、キノリン等の第3級アミン等が挙げられる。 Such an amine may be linear or branched, and may have a side chain. For example, N- (3-methoxypropyl) propane-1,3-diamine, 1,2-ethanediamine, 2-methoxyethylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 1,4-butanediamine, , Diamines such as 5-pentanediamine, pentanolamine, aminoisobutanol, alkoxyamines, aminoalcohols, as well as alkylamines such as propylamine, butylamine, pentylamine, hexylamine (linear alkylamines, with side chains) ), Cycloalkylamines such as cyclopentylamine and cyclohexylamine, primary amines such as aniline and allylamine, secondary amines such as dipropylamine, dibutylamine, piperidine and hexamethyleneimine, and tripropylamine , Dimethyl group Bread diamine, cyclohexyldimethylamine, pyridine, tertiary amines such as quinoline.
 上記アミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含む化合物であってもよい。また、上記アミンは、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常圧での沸点が300℃以下、更には250℃以下であることが好ましい。 The amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
 ここで、第一のカルボン酸は、炭素鎖に電気陰性度の高いO原子を含んでいる。このO原子は、カルボキシル基(-COOH)に含まれるO原子以外のO原子を意味し、例えば、エーテル基(-O-)、メトキシ基(-OCH)、エトキシ基(-OCHCH)、及びアセチル基(-COCH)等に含まれるO原子を意味する。銀ナノ粒子がO原子を含むことで被接合部材との濡れ性が増加し、被接合部材との強固な接合が形成される。 Here, the 1st carboxylic acid contains O atom with high electronegativity in a carbon chain. This O atom means an O atom other than the O atom contained in the carboxyl group (—COOH). For example, an ether group (—O—), a methoxy group (—OCH 3 ), an ethoxy group (—OCH 2 CH 3). ), And an O atom contained in an acetyl group (—COCH 3 ) and the like. When the silver nanoparticles contain O atoms, the wettability with the member to be bonded is increased, and a strong bond with the member to be bonded is formed.
 更に、本実施形態の接合用組成物においては、前記カルボン酸の炭素数が5以下であること、が好ましい。炭素数が多くなると銀ナノ粒子の分散安定性が向上するが、多くなり過ぎると銀ナノ粒子中に占める被覆有機物の体積が増加し、接合組成物で形成される接合層の高密度化には不利になるためである。 Furthermore, in the bonding composition of the present embodiment, it is preferable that the carboxylic acid has 5 or less carbon atoms. When the number of carbons increases, the dispersion stability of the silver nanoparticles improves. However, when the number of carbons increases, the volume of the coating organic matter in the silver nanoparticles increases, which increases the density of the bonding layer formed of the bonding composition. It will be disadvantageous.
 具体的な第一のカルボン酸としては、例えば、マロン酸モノメチル、レブリン酸、メトキシ酢酸、エトキシ酢酸又は3-エトキシプロピオン酸が挙げられる。なかでも、レブリン酸、メトキシ酢酸、エトキシ酢酸又は3-エトキシプロピオン酸が好ましい。 Specific examples of the first carboxylic acid include monomethyl malonate, levulinic acid, methoxyacetic acid, ethoxyacetic acid, and 3-ethoxypropionic acid. Of these, levulinic acid, methoxyacetic acid, ethoxyacetic acid or 3-ethoxypropionic acid is preferable.
 本実施形態の接合用組成物における銀コロイド中の被覆有機物(第一のカルボン酸)の含有量は、0.1~50質量%であることが好ましい。有機物含有量が0.1質量%以上であれば、得られる接合用組成物の貯蔵安定性が良くなる傾向があり、50質量%以下であれば、接合用組成物の導電性が良い傾向がある。有機物のより好ましい含有量は0.3~30質量%であり、更に好ましい含有量は0.5~15質量%である。 The content of the coating organic substance (first carboxylic acid) in the silver colloid in the bonding composition of the present embodiment is preferably 0.1 to 50% by mass. If the organic matter content is 0.1% by mass or more, the storage stability of the resulting bonding composition tends to be improved, and if it is 50% by mass or less, the conductivity of the bonding composition tends to be good. is there. A more preferable content of the organic substance is 0.3 to 30% by mass, and a more preferable content is 0.5 to 15% by mass.
(1-3)分散媒
 本実施形態の接合用組成物には、本発明の効果を損なわない範囲で種々の分散媒を含み得るが、分散媒中に第二のカルボン酸を含むことが好ましい。分散媒中に第二のカルボン酸が含まれると当該第二のカルボン酸はフラックスとして働くため、無垢Cu被接合部材の接合により好適となる。カルボキシル基が多いほどフラックス効果が高いが、本実施形態の接合用組成物では、リシノール酸又はオレイン酸等のモノカルボン酸でも十分に効果が発揮され、無垢Cu被接合部材を良好に接合することができる。
(1-3) Dispersion medium The bonding composition of the present embodiment may contain various dispersion media as long as the effects of the present invention are not impaired, but preferably contains a second carboxylic acid in the dispersion medium. . When the second carboxylic acid is contained in the dispersion medium, the second carboxylic acid works as a flux, and therefore, it is more suitable for bonding of a pure Cu bonded member. The more the carboxyl groups, the higher the flux effect, but the bonding composition of the present embodiment is sufficiently effective even with monocarboxylic acids such as ricinoleic acid or oleic acid, and bonds solid Cu-bonded members well. Can do.
 かかる第二のカルボン酸としては、上記の第一のカルボン酸と異なるモノカルボン酸であって、銀ナノ粒子の表面に付着せず、沸点が200℃以上という条件を満たすものであればよい。更には、第二のカルボン酸がリシノール酸又はオレイン酸であること、が好ましい。 The second carboxylic acid may be a monocarboxylic acid different from the first carboxylic acid as long as it does not adhere to the surface of the silver nanoparticles and satisfies the condition that the boiling point is 200 ° C. or higher. Furthermore, it is preferable that the second carboxylic acid is ricinoleic acid or oleic acid.
 当該分散媒としては、例えば炭化水素、アルコール、エーテル及びエステル等を用いることができる。炭化水素としては、脂肪族炭化水素、環状炭化水素及び脂環式炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。 As the dispersion medium, for example, hydrocarbons, alcohols, ethers and esters can be used. Examples of the hydrocarbon include aliphatic hydrocarbons, cyclic hydrocarbons and alicyclic hydrocarbons, and each may be used alone or in combination of two or more.
 炭化水素としては、脂肪族炭化水素、環状炭化水素、脂環式炭化水素及び不飽和炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。
 環状炭化水素としては、例えば、トルエン、キシレン等が挙げられる。
 脂環式炭化水素としては、例えば、リモネン、ジペンテン、テルピネン、ネソール、シネン、オレンジフレーバー、テルピノレン、フェランドレン、メンタジエン、テレベン、サイメン、ジヒドロサイメン、モスレン、カウツシン、カジェプテン、ピネン、テレビン、メンタン、ピナン、テルペン、シクロヘキサン等が挙げられる。
Examples of the hydrocarbon include aliphatic hydrocarbons, cyclic hydrocarbons, alicyclic hydrocarbons and unsaturated hydrocarbons, and each may be used alone or in combination of two or more.
Examples of the aliphatic hydrocarbon include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
Examples of the cyclic hydrocarbon include toluene and xylene.
Alicyclic hydrocarbons include, for example, limonene, dipentene, terpinene, nesol, sinene, orange flavor, terpinolene, ferrandlene, mentadiene, teleben, cymen, dihydrocymene, moslen, kautssin, cajeptene, pinene, turpentine, menthane, pinan. Terpene, cyclohexane and the like.
 不飽和炭化水素としては、例えば、エチレン、アセチレン、ベンゼン、1-ヘキセン、1-オクテン、4-ビニルシクロヘキセン、テルペン系アルコール、アリルアルコール、オレイルアルコール、2-パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、チアンシ酸、リシノール酸、リノール酸、リノエライジン酸、リノレン酸、アラキドン酸、アクリル酸、メタクリル酸、没食子酸及びサリチル酸等が挙げられる。 Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, 1-hexene, 1-octene, 4-vinylcyclohexene, terpene alcohol, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, petrothelic acid, oleic acid, and elaidin. Examples include acid, thianic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, and salicylic acid.
 これらのなかでも、水酸基を有する不飽和炭化水素が好ましい。水酸基は銀ナノ粒子の表面に配位しやすく、当該銀ナノ粒子の凝集を抑制することができる。水酸基を有する不飽和炭化水素としては、例えば、テルペン系アルコール、アリルアルコール、オレイルアルコール、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。好ましくは、水酸基を有する不飽和脂肪酸であり、例えば、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。 Of these, unsaturated hydrocarbons having a hydroxyl group are preferred. The hydroxyl group is easily coordinated to the surface of the silver nanoparticle, and aggregation of the silver nanoparticle can be suppressed. Examples of the unsaturated hydrocarbon having a hydroxyl group include terpene alcohol, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, and salicylic acid. Preferably, it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid and salicylic acid.
 前記不飽和炭化水素はリシノール酸であることが好ましい。リシノール酸はカルボキシル基とヒドロキシル基とを有し、無機粒子の表面に吸着して当該無機粒子を均一に分散させると共に、無機粒子の融着を促進する。 The unsaturated hydrocarbon is preferably ricinoleic acid. Ricinoleic acid has a carboxyl group and a hydroxyl group and is adsorbed on the surface of the inorganic particles to uniformly disperse the inorganic particles and promote fusion of the inorganic particles.
 また、アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール及び脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。 Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced | guided | derived to the acetoxy group etc. in the range which does not impair the effect of this invention.
 脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1-オクタノール、2-オクタノール、3-オクタノール等)、ノナノール、デカノール(1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、イソトリデカノール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6-30脂肪族アルコール等が挙げられる。
 環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。
Examples of the aliphatic alcohol include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), nonanol, decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, isotridecanol. And saturated or unsaturated C6-30 aliphatic alcohols such as 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
Examples of the cyclic alcohol include cresol and eugenol.
 更に、脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ベルベノール、テルソルブ(MTPH)等が挙げられる。 Further, as the alicyclic alcohol, for example, cycloalkanol such as cyclohexanol, terpineol (including α, β, γ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol, tersolve (MTPH) and the like.
 本実施形態の接合用組成物中に分散媒を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良く、接合用組成物中の分散媒の含有量は、1~30質量%であるのが好ましい。分散媒の含有量が1~30質量%であれば、接合性組成物として使いやすい範囲で粘度を調整する効果を得ることができる。分散媒のより好ましい含有量は1~20質量%であり、更に好ましい含有量は1~15質量%である。なお、分散媒の含有量が多過ぎると、分散媒の揮発に起因するボイドが接合層に多く発生するおそれがある。 The content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 masses. % Is preferred. When the content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within a range that is easy to use as a bonding composition. A more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass. In addition, when there is too much content of a dispersion medium, there exists a possibility that many voids resulting from volatilization of a dispersion medium may generate | occur | produce in a joining layer.
(1-4)その他の成分
 本実施形態の接合用組成物には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、高分子分散剤、例えばバインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。
(1-4) Other components In addition to the above components, the bonding composition of the present embodiment has an appropriate viscosity, adhesiveness, and drying property in accordance with the intended use within a range not impairing the effects of the present invention. Alternatively, in order to impart functions such as printability, a polymer dispersant, for example, an oligomer component that serves as a binder, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), an interface. You may add arbitrary components, such as an activator, a thickener, or a surface tension modifier. Such optional components are not particularly limited.
 上記高分子分散剤としては、市販されている高分子分散剤を使用することができる。市販の高分子分散剤としては、例えば、上記市販品としては、例えば、ソルスパース(SOLSPERSE)11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000(日本ルーブリゾール(株)製);DISPERBYK-102、110、111、170、190.194N、2015、2090、2096(ビックケミー・ジャパン(株)製);EFKA-46、EFKA-47、EFKA-48、EFKA-49(EFKAケミカル社製);ポリマー100、ポリマー120、ポリマー150、ポリマー400、ポリマー401、ポリマー402、ポリマー403、ポリマー450、ポリマー451、ポリマー452、ポリマー453(EFKAケミカル社製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(味の素社製);フローレンDOPA-15B、フローレンDOPA-22、フローレンDOPA-17、フローレンTG-730W、フローレンG-700、フローレンTG-720W(共栄社化学工業(株)製)、ビックケミー社DISPERBYKシリーズでは等が挙げられ、エボニック社のTEGODispersシリーズでは610、610S、630、651、655、750W、755W等が挙げられ、楠本化成のディスパロンシリーズではDA-375、DA-1200等が挙げられ、低温焼結性及び分散安定性の観点からは、DISPERBYK-102、ソルスパース11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース28000を用いることが好ましい。 As the polymer dispersant, a commercially available polymer dispersant can be used. Examples of the commercially available polymer dispersant include, for example, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 27000, Solsperse. 28000 (manufactured by Nippon Lubrizol Corporation); DISPERBYK-102, 110, 111, 170, 190.194N, 2015, 2090, 2096 (manufactured by Big Chemie Japan Co., Ltd.); EFKA-46, EFKA-47, EFKA- 48, EFKA-49 (manufactured by EFKA Chemical); polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 02, polymer 403, polymer 450, polymer 451, polymer 452, polymer 453 (manufactured by EFKA Chemical); Ajisper PB711, Azisper PA111, Azisper PB811, Azisper PW911 (manufactured by Ajinomoto Co.); Examples include Floren DOPA-17, Floren TG-730W, Floren G-700, Floren TG-720W (manufactured by Kyoeisha Chemical Industry Co., Ltd.), Big Chemie's DISPERBYK series, and 610, 610S, and 630 , 651, 655, 750 W, 755 W, etc., and the Disparon series of Enomoto Kasei includes DA-375, DA-1200, etc. From the viewpoint of stability, DISPERBYK-102, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, it is preferable to use Solsperse 28000.
 高分子分散剤の含有量は0.1~15質量%であることが好ましい。高分子分散剤の含有量が0.1%以上であれば得られる接合用組成物の分散安定性が良くなるが、含有量が多過ぎる場合は分散安定性が低下することとなる。このような観点から、高分子分散剤のより好ましい含有量は0.03~3質量%であり、更に好ましい含有量は0.05~2質量%である。 The content of the polymer dispersant is preferably 0.1 to 15% by mass. When the content of the polymer dispersant is 0.1% or more, the dispersion stability of the resulting bonding composition is improved. However, when the content is too large, the dispersion stability is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and still more preferable content is 0.05 to 2% by mass.
 樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂又はテルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the resin component include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
 ここで、被接合部材が、例えば、ポリエチレンテレフタレート(PET)である場合、樹脂成分としては、それ自体のPETへの密着性が良好であるポリビニルアルコール、ポリビニルピロリドン、塩化ビニル-酢酸ビニル共重合体、ポリビニルアセトアセタール、ポリビニルブチラールからなる群から選ばれるものを用いるとよい。このようなケトン-ホルムアルデヒド縮合体やその水素添加物としては、エボニックデグサジャパン(株)TEGO(登録商標)VariPlusシリーズ(SK,APなど)、塩化ビニル-酢酸ビニル共重合体としては、日信化学工御油株式会社製のソルバイン(登録商標)シリーズ(ソルバインALなど)が、ポリビニルアセトアセタール、ポリビニルブチラールとしては、積水化学工業株式会社製のエスレック(登録商標)シリーズ(エスレックKS-1、BL-1など)が挙げられる。その中でもポリビニルピロリドンは高極性な多価アルコール(特にジオール溶媒)への溶解性も高く、エステル、ケトン等の溶媒にも良好に溶解可能である為、好適に用いることができる。 Here, when the member to be joined is, for example, polyethylene terephthalate (PET), as the resin component, polyvinyl alcohol, polyvinyl pyrrolidone, vinyl chloride-vinyl acetate copolymer having good adhesion to the PET itself. , Polyvinyl acetoacetal, and polyvinyl butyral may be used. Examples of such ketone-formaldehyde condensates and hydrogenated products thereof include Evonik Degussa Japan Co., Ltd. TEGO (registered trademark) VariPlus series (SK, AP, etc.), and vinyl chloride-vinyl acetate copolymers include Nisshin Chemical. Solvain (registered trademark) series (Solvine AL, etc.) manufactured by Kogo Oil Co., Ltd. is used as polyvinyl acetoacetal and polyvinyl butyral. Etc.). Among them, polyvinylpyrrolidone is preferably used because it has high solubility in highly polar polyhydric alcohols (particularly diol solvents) and can be dissolved well in solvents such as esters and ketones.
 増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the thickener include clay minerals such as clay, bentonite or hectorite, for example, polyester emulsion resin, acrylic emulsion resin, polyurethane emulsion resin or emulsion such as blocked isocyanate, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.
 上記有機物とは異なる界面活性剤を添加してもよい。多成分溶媒系の無機コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の接合用組成物に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる接合用組成物が得られる。本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。少量の添加量で効果が得られるので、フッ素系界面活性剤が好ましい。 A surfactant different from the above organic substance may be added. In a multi-component solvent-based inorganic colloidal dispersion, the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying. By adding a surfactant to the bonding composition of the present embodiment, these disadvantages can be suppressed, and a bonding composition that can form a uniform conductive film is obtained. The surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.
 ここで、本実施形態の接合用組成物には、主成分として、銀ナノ粒子がコロイド化した銀コロイド粒子が含まれるが、かかる銀コロイド粒子の形態に関しては、例えば、銀ナノ粒子の表面の一部に第一のカルボン酸が付着して構成されている銀コロイド粒子、上記銀ナノ粒子をコアとして、その表面が第一のカルボン酸で被覆されて構成されている銀コロイド粒子、それらが混在して構成されている銀コロイド粒子等が挙げられるが、特に限定されない。なかでも、銀ナノ粒子をコアとして、その表面が第一のカルボン酸で被覆されて構成されている銀コロイド粒子が好ましい。当業者は、上述した形態を有する銀コロイド粒子を、当該分野における周知技術を用いて適宜調製することができる。 Here, the bonding composition of the present embodiment includes silver colloid particles in which silver nanoparticles are colloided as a main component. Regarding the form of the silver colloid particles, for example, the surface of the silver nanoparticles is used. Silver colloidal particles composed of a part of the first carboxylic acid attached, silver colloidal particles composed of the above-mentioned silver nanoparticles as a core and the surface of which is coated with the first carboxylic acid, Examples thereof include silver colloidal particles that are mixed, but are not particularly limited. Of these, silver colloidal particles having silver nanoparticles as a core and the surface thereof being coated with a first carboxylic acid are preferred. A person skilled in the art can appropriately prepare silver colloid particles having the above-described form using a well-known technique in the art.
 本実施形態の接合用組成物は、上述のように、銀ナノ粒子、第一のカルボン酸及び分散媒で構成されるが、銀ナノ粒子、第一のカルボン酸及び分散媒(及びその他の任意成分)のほかに、銀コロイド粒子を構成しない有機成分及び残留還元剤等を含んでいてもよい。 As described above, the bonding composition of the present embodiment is composed of the silver nanoparticles, the first carboxylic acid, and the dispersion medium. However, the silver nanoparticles, the first carboxylic acid, and the dispersion medium (and other optional components) are used. In addition to (component), an organic component that does not constitute silver colloidal particles, a residual reducing agent, and the like may be included.
 本実施形態の接合用組成物の粘度は、固形分の濃度は本発明の効果を損なわない範囲で適宜調整すればよいが、例えば0.01~5000Pa・Sの粘度範囲であればよく、0.1~1000Pa・Sの粘度範囲がより好ましく、1~100Pa・Sの粘度範囲であることが特に好ましい。当該粘度範囲とすることにより、基材上に接合用組成物を塗布する方法として幅広い方法を適用することができる。 The viscosity of the bonding composition of the present embodiment may be adjusted as appropriate within the range where the solid content does not impair the effects of the present invention. For example, the viscosity may be in the range of 0.01 to 5000 Pa · S, and may be 0. A viscosity range of 1 to 1000 Pa · S is more preferable, and a viscosity range of 1 to 100 Pa · S is particularly preferable. By setting it as the said viscosity range, a wide method is applicable as a method of apply | coating the composition for joining on a base material.
 基材上に接合用組成物を塗布する方法としては、例えば、ディッピング、スクリーン印刷、スプレー方式、バーコート法、スピンコート法、インクジェット法、ディスペンサー法、ピントランスファー法、刷毛による塗布方式、流延法、フレキソ法、グラビア法、オフセット法、転写法、親疎水パターン法、又はシリンジ法等のなかから適宜選択して採用することができるようになる。粘度の観点から、ディスペンサー法、ピントランスファー法又はスクリーン印刷等が特に好ましい。 Examples of the method for applying the bonding composition on the substrate include dipping, screen printing, spray method, bar coating method, spin coating method, ink jet method, dispenser method, pin transfer method, application method by brush, casting Method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method and the like can be appropriately selected and employed. From the viewpoint of viscosity, a dispenser method, a pin transfer method, screen printing, or the like is particularly preferable.
 粘度の調整は、銀ナノ粒子の粒径の調整、有機物の含有量の調整、分散媒及びその他の成分の添加量の調整、各成分の配合比の調整、増粘剤の添加等によって行うことができる。接合用組成物の粘度は、例えば、コーンプレート型粘度計(例えばアントンパール社製のレオメーターMCR301)により測定することができる。 Viscosity is adjusted by adjusting the particle size of silver nanoparticles, adjusting the content of organic matter, adjusting the amount of dispersion medium and other components added, adjusting the blending ratio of each component, and adding a thickener. Can do. The viscosity of the bonding composition can be measured, for example, with a cone plate viscometer (for example, a rheometer MCR301 manufactured by Anton Paar).
(2)接合用組成物の製造
 次に、本実施形態の接合用組成物を製造するためには、主成分としての、第一のカルボン酸で被覆された銀ナノ粒子(銀コロイド粒子)を調製する。
(2) Production of Bonding Composition Next, in order to produce the bonding composition of the present embodiment, silver nanoparticles (silver colloid particles) coated with the first carboxylic acid as the main component are used. Prepare.
 第一のカルボン酸、分散媒及びその他の成分並びに重量減少率は、特に限定しないが、加熱を行って調整するのが簡便である。また、銀ナノ粒子を作製する際に添加する第一のカルボン酸等の量を調整することで行ってもよく、銀ナノ粒子調製後の洗浄条件や回数を変えてもよい。 The first carboxylic acid, the dispersion medium, other components, and the weight reduction rate are not particularly limited, but it is easy to adjust by heating. Moreover, you may carry out by adjusting the quantity of the 1st carboxylic acid etc. which are added when producing a silver nanoparticle, and you may change the washing conditions and frequency | counts after silver nanoparticle preparation.
 加熱はオーブンやエバポレーター等で行うことができる。加熱温度は50~300℃程度の範囲であればよく、加熱時間は数分間~数時間であればよい。加熱は減圧下で行ってもよい。減圧下で加熱することで、より低い温度で第一のカルボン酸の量の調整を行うことができる。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機物量の微調整のために第一のカルボン酸やアミン等を後で加えることもできる。 Heating can be performed with an oven or an evaporator. The heating temperature may be in the range of about 50 to 300 ° C., and the heating time may be several minutes to several hours. Heating may be performed under reduced pressure. By heating under reduced pressure, the amount of the first carboxylic acid can be adjusted at a lower temperature. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Further, the first carboxylic acid, amine or the like can be added later for fine adjustment of the organic matter amount.
 本実施形態の第一のカルボン酸で被覆された銀ナノ粒子を調製する方法としては、特に限定されないが、例えば、銀ナノ粒子を含む分散液を調製し、次いで、その分散液の洗浄を行う方法等が挙げられる。銀ナノ粒子を含む分散液を調製する工程としては、例えば、下記のように、溶媒中に溶解させた金属塩(又は金属イオン)を還元させればよく、還元手順としては、化学還元法に基づく手順を採用すればよい。 The method for preparing silver nanoparticles coated with the first carboxylic acid of the present embodiment is not particularly limited. For example, a dispersion containing silver nanoparticles is prepared, and then the dispersion is washed. Methods and the like. As a step of preparing a dispersion containing silver nanoparticles, for example, a metal salt (or metal ion) dissolved in a solvent may be reduced as described below. As a reduction procedure, a chemical reduction method is used. A procedure based on this may be adopted.
 即ち、上記のような第一のカルボン酸で被覆された銀ナノ粒子は、銀ナノ粒子を構成する銀の塩と、分散剤としての第一のカルボン酸と、分散媒(基本的にトルエン等の有機系であるが、水を含んでいてもよい。)と、を含む原料液(成分の一部が溶解せず分散して
いてもよい。)を還元することにより調製することができる。この還元によって、分散剤としての第一のカルボン酸が銀ナノ粒子の表面の少なくとも一部に付着している銀コロイド粒子が得られる。当該銀コロイド粒子を後述する工程において分散媒に添加することにより、本発明の接合用組成物を得ることができる。
That is, the silver nanoparticles coated with the first carboxylic acid as described above include a silver salt constituting the silver nanoparticles, a first carboxylic acid as a dispersant, a dispersion medium (basically toluene or the like). And may contain water)), and may be prepared by reducing a raw material liquid (some of the components may be dispersed without being dissolved). By this reduction, silver colloidal particles in which the first carboxylic acid as a dispersant is attached to at least a part of the surface of the silver nanoparticles are obtained. The bonding composition of the present invention can be obtained by adding the silver colloidal particles to the dispersion medium in the step described later.
 第一のカルボン酸で被覆された銀ナノ粒子を得るための出発材料としては、種々の公知の金属塩又はその水和物を用いることができ、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢酸銀、シュウ酸銀、ギ酸銀、亜硝酸銀、塩素酸銀、硫化銀等の銀塩;例えば、塩化金酸、塩化金カリウム、塩化金ナトリウム等の金塩;例えば、塩化白金酸、塩化白金、酸化白金、塩化白金酸カリウム等の白金塩;例えば、硝酸パラジウム、酢酸パラジウム、塩化パラジウム、酸化パラジウム、硫酸パラジウム等のパラジウム塩等が挙げられるが、適当な分散媒中に溶解し得、かつ還元可能なものであれば特に限定されない。また、これらは単独で用いても複数併用してもよい。 As a starting material for obtaining silver nanoparticles coated with the first carboxylic acid, various known metal salts or hydrates thereof can be used, for example, silver nitrate, silver sulfate, silver chloride, silver oxide. Silver salts such as silver acetate, silver oxalate, silver formate, silver nitrite, silver chlorate and silver sulfide; for example, gold salts such as chloroauric acid, potassium gold chloride and sodium gold chloride; Platinum salts such as platinum, platinum oxide, potassium chloroplatinate; for example, palladium salts such as palladium nitrate, palladium acetate, palladium chloride, palladium oxide, palladium sulfate, etc. can be dissolved in a suitable dispersion medium, And if it is reducible, it will not specifically limit. These may be used alone or in combination.
 また、上記原料液においてこれらの金属塩を還元する方法は特に限定されず、例えば、還元剤を用いる方法、紫外線等の光、電子線、超音波又は熱エネルギーを照射する方法等が挙げられる。なかでも、操作の容易の観点から、還元剤を用いる方法が好ましい。 In addition, the method for reducing these metal salts in the raw material liquid is not particularly limited, and examples thereof include a method using a reducing agent, a method of irradiating light such as ultraviolet rays, electron beams, ultrasonic waves, or thermal energy. Among these, a method using a reducing agent is preferable from the viewpoint of easy operation.
 上記還元剤としては、例えば、ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、フェニドン、ヒドラジン等のアミン化合物;例えば、水素化ホウ素ナトリウム、ヨウ素化水素、水素ガス等の水素化合物;例えば、一酸化炭素、亜硫酸等の酸化物;例えば、硫酸第一鉄、酸化鉄、フマル酸鉄、乳酸鉄、シュウ酸鉄、硫化鉄、酢酸スズ、塩化スズ、二リン酸スズ、シュウ酸スズ、酸化スズ、硫酸スズ等の低原子価金属塩;例えば、エチレングリコール、グリセリン、ホルムアルデヒド、ハイドロキノン、ピロガロール、タンニン、タンニン酸、サリチル酸、D-グルコース等の糖等が挙げられるが、分散媒に溶解し上記金属塩を還元し得るものであれば特に限定されない。上記還元剤を使用する場合は、光及び/又は熱を加えて還元反応を促進させてもよい。 Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide. Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc. There is no particular limitation as long as it can be reduced. When the reducing agent is used, light and / or heat may be added to promote the reduction reaction.
 上記金属塩、有機成分、溶媒及び還元剤を用いて、第一のカルボン酸で被覆された銀ナノ粒子を調製する具体的な方法としては、例えば、上記金属塩を有機溶媒(例えばトルエン等)に溶かして金属塩溶液を調製し、当該金属塩溶液に分散剤としての有機物を添加し、ついで、ここに還元剤が溶解した溶液を徐々に滴下する方法等が挙げられる。 As a specific method for preparing silver nanoparticles coated with the first carboxylic acid using the above metal salt, organic component, solvent and reducing agent, for example, the above metal salt is used as an organic solvent (for example, toluene). There is a method in which a metal salt solution is prepared by dissolving in, and an organic substance as a dispersant is added to the metal salt solution, and then a solution in which the reducing agent is dissolved is gradually added dropwise.
 上記のようにして得られた分散剤としての第一のカルボン酸で被覆された銀ナノ粒子を含む分散液には、銀ナノ粒子の他に、金属塩の対イオン、還元剤の残留物や分散剤が存在しており、液全体の電解質濃度が高い傾向にある。このような状態の液は、電導度が高いため、銀ナノ粒子の凝析が起こり、沈殿し易い。あるいは、沈殿しなくても、金属塩の対イオン、還元剤の残留物、又は分散に必要な量以上の過剰な分散剤が残留していると、導電性を悪化させるおそれがある。そこで、銀ナノ粒子を含む溶液を洗浄して余分な残留物を取り除くことにより、第一のカルボン酸で被覆された銀ナノ粒子を確実に得ることができる。 In the dispersion containing silver nanoparticles coated with the first carboxylic acid as the dispersant obtained as described above, in addition to the silver nanoparticles, the metal salt counterion, the reducing agent residue, There is a dispersant, and the electrolyte concentration in the whole liquid tends to be high. Since the liquid in such a state has high electrical conductivity, the silver nanoparticles are likely to coagulate and precipitate easily. Alternatively, even if precipitation does not occur, the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing silver nanoparticles to remove excess residues, silver nanoparticles coated with the first carboxylic acid can be reliably obtained.
 上記洗浄方法としては、例えば、第一のカルボン酸で被覆された銀ナノ粒子を含む分散液を一定時間静置し、生じた上澄み液を取り除いた上で、アルコール(メタノール等)を加えて再度撹枠し、更に一定期間静置して生じた上澄み液を取り除く工程を幾度か繰り返す方法、上記の静置の代わりに遠心分離を行う方法、限外濾過装置やイオン交換装置等により脱塩する方法等が挙げられる。このような洗浄によって有機溶媒を除去することにより、本実施形態の第一のカルボン酸で被覆された銀ナノ粒子を得ることができる。 As the washing method, for example, a dispersion containing silver nanoparticles coated with the first carboxylic acid is allowed to stand for a certain period of time, and the resulting supernatant is removed, and then alcohol (methanol or the like) is added and again. Desalting by a method of repeating the process of removing the supernatant liquid generated by stirring the mixture and allowing to stand for a certain period of time, a method of centrifuging instead of the above-mentioned standing, an ultrafiltration device, an ion exchange device, etc. Methods and the like. By removing the organic solvent by such washing, the silver nanoparticles coated with the first carboxylic acid of this embodiment can be obtained.
 本実施形態の接合用組成物は、上記において得た第一のカルボン酸で被覆された銀ナノ粒子と、上記本実施形態で説明した分散媒と、を混合することにより得られる。かかる第一のカルボン酸で被覆された銀ナノ粒子と分散媒との混合方法は特に限定されるものではなく、攪拌機やスターラー等を用いて従来公知の方法によって行うことができる。スパチュラのようなもので撹拌したりして、適当な出力の超音波ホモジナイザーを当ててもよい。 The bonding composition of the present embodiment can be obtained by mixing the silver nanoparticles coated with the first carboxylic acid obtained above and the dispersion medium described in the present embodiment. The method for mixing the silver nanoparticles coated with the first carboxylic acid and the dispersion medium is not particularly limited, and can be performed by a conventionally known method using a stirrer or a stirrer. An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like.
 複数の金属を含む金属コロイド分散液を得る場合、その製造方法としては特に限定されず、例えば、銀とその他の金属とからなる金属コロイド分散液を製造する場合には、上記の第一のカルボン酸で被覆された銀ナノ粒子の調製において、銀ナノ粒子を含む分散液と、その他の金属ナノ粒子を含む分散液とを別々に製造し、その後混合してもよく、銀イオン溶液とその他の金属イオン溶液とを混合し、その後に還元してもよい。 When obtaining a metal colloid dispersion liquid containing a plurality of metals, the production method is not particularly limited. For example, when producing a metal colloid dispersion liquid composed of silver and other metals, the above first carboxylic acid dispersion liquid is used. In the preparation of acid-coated silver nanoparticles, a dispersion containing silver nanoparticles and a dispersion containing other metal nanoparticles may be produced separately and then mixed, and a silver ion solution and other The metal ion solution may be mixed and then reduced.
(3)接合方法
 本実施形態の接合用組成物を用いれば、加熱を伴う部材同士の接合において高い接合強度を得ることができる。即ち、上記接合用組成物を第1の被接合部材と第2の被接合部材との間に塗布する接合用組成物塗布工程と、第1の被接合部材と第2の被接合部材との間に塗布した接合用組成物を、所望の温度(例えば300℃以下)で焼成して接合する接合工程と、により、第1の被接合部材と第2の被接合部材とを接合することができる。この際、加圧することもできるが、特に加圧しなくとも十分な接合強度を得ることができるのも本発明の利点のひとつである。また、焼成を行う際、段階的に温度を上げたり下げたりすることもできる。また、予め被接合部材表面に界面活性剤又は表面活性化剤等を塗布しておくことも可能である。
(3) Joining method If the composition for joining of this embodiment is used, high joining strength can be obtained in joining of the members accompanied by heating. That is, a bonding composition application step of applying the bonding composition between the first bonded member and the second bonded member, and the first bonded member and the second bonded member The first member to be joined and the second member to be joined can be joined by a joining step of firing and joining the joining composition applied between them at a desired temperature (for example, 300 ° C. or lower). it can. At this time, it is possible to apply pressure, but it is also one of the advantages of the present invention that sufficient bonding strength can be obtained without particularly applying pressure. In addition, when firing, the temperature can be raised or lowered stepwise. It is also possible to apply a surfactant or a surface activator to the surface of the member to be joined in advance.
 本発明者は、鋭意検討を重ねた結果、前記接合用組成物塗布工程での接合用組成物として、上述した本実施形態の接合用組成物を用いれば、第1の被接合部材と第2の被接合部材とを、高い接合強度をもってより確実に接合できる(接合体が得られる)ことを見出した。 As a result of intensive studies, the inventor uses the above-described bonding composition of the present embodiment as the bonding composition in the bonding composition application step. It was found that the member to be joined can be more reliably joined with high joining strength (a joined body is obtained).
 ここで、本実施形態の接合用組成物の「塗布」とは、接合用組成物を面状に塗布する場合も線状に塗布(描画)する場合も含む概念である。塗布されて、加熱により焼成される前の状態の接合用組成物からなる塗膜の形状は、所望する形状にすることが可能である。したがって、加熱による焼成後の本実施形態の接合体では、接合用組成物は、面状の接合層及び線状の接合層のいずれも含む概念であり、これら面状の接合層及び線状の接合層は、連続していても不連続であってもよく、連続する部分と不連続の部分とを含んでいてもよい。 Here, “application” of the bonding composition of the present embodiment is a concept including both the case where the bonding composition is applied in a planar shape and the case where the bonding composition is applied (drawn) in a linear shape. The shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the joined body of this embodiment after firing by heating, the joining composition is a concept that includes both a planar joining layer and a linear joining layer. The bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.
 本実施形態において用いることのできる第1の被接合部材及び第2の被接合部材としては、接合用組成物を塗布して加熱により焼成して接合することのできるものであればよく、特に制限はないが、接合時の温度により損傷しない程度の耐熱性を具備した部材であるのが好ましい。 The first member to be bonded and the second member to be bonded that can be used in the present embodiment are not particularly limited as long as they can be bonded by applying a bonding composition and baking by heating. However, it is preferable that the member has a heat resistance that is not damaged by the temperature at the time of joining.
 このような被接合部材を構成する材料としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミクス、ガラス又は金属等を挙げることができるが、なかでも、金属製の被接合部材が好ましい。金属製の被接合部材が好ましいのは、耐熱性に優れているとともに、銀ナノ粒子が金属である本発明の接合用組成物との親和性に優れているからである。 Examples of the material constituting such a member to be joined include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN). Examples thereof include polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, metal and the like, and among them, a metal joined member is preferable. The metal member to be joined is preferable because it is excellent in heat resistance and in affinity with the joining composition of the present invention in which the silver nanoparticles are metal.
 また、被接合部材は、例えば板状又はストリップ状等の種々の形状であってよく、リジッドでもフレキシブルでもよい。基材の厚さも適宜選択することができる。接着性若しくは密着性の向上又はその他の目的ために、表面層が形成された部材や親水化処理等の表面処理を施した部材を用いてもよい。 The member to be joined may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible. The thickness of the substrate can also be selected as appropriate. In order to improve adhesion or adhesion, or for other purposes, a member on which a surface layer is formed or a member subjected to a surface treatment such as a hydrophilic treatment may be used.
 接合用組成物を被接合部材に塗布する工程では、種々の方法を用いることが可能であるが、上述のように、例えば、ディッピング、スクリーン印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、又はシリンジ式等のなかから適宜選択して用いることができる。 In the step of applying the bonding composition to the members to be bonded, various methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, spin coating, and inkjet It can be used by appropriately selecting from a formula, a dispenser type, a pin transfer method, a brush application method, a casting method, a flexo method, a gravure method, a syringe method, and the like.
 上記のように塗布した後の塗膜を、被接合部材を損傷させない範囲で、例えば300℃以下の温度に加熱することにより焼成し、本実施形態の接合体を得ることができる。本実施形態においては、先に述べたように、本実施形態の接合用組成物を用いるため、被接合部材に対して優れた密着性を有する接合層が得られ、強い接合強度がより確実に得られる。 The coated film after coating as described above is baked by heating to a temperature of 300 ° C. or less, for example, within a range that does not damage the member to be bonded, and the bonded body of this embodiment can be obtained. In the present embodiment, as described above, since the bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded is obtained, and a strong bonding strength is more reliably ensured. can get.
 本実施形態においては、接合用組成物がバインダー成分を含む場合は、接合層の強度向上及び被接合部材間の接合強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために接合用組成物の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。 In the present embodiment, when the bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and the bonding strength between the bonded members. The main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all the binder component.
 上記焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、被接合部材上に塗布または描画した上記接合用組成物の温度が、例えば300℃以下となるように焼成することによって接合することができる。上記焼成の温度の下限は必ずしも限定されず、被接合部材同士を接合できる温度であって、かつ、本発明の効果を損なわない範囲の温度であることが好ましい。ここで、上記焼成後の接合用組成物においては、なるべく高い接合強度を得るという点で、有機物の残存量は少ないほうがよいが、本発明の効果を損なわない範囲で有機物の一部が残存していても構わない。 The method for performing the firing is not particularly limited. For example, the temperature of the bonding composition applied or drawn on a member to be bonded using a conventionally known oven or the like is, for example, 300 ° C. or lower. It can join by baking. The lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the members to be joined can be joined and does not impair the effects of the present invention. Here, in the bonding composition after firing, in order to obtain as high a bonding strength as possible, the remaining amount of the organic matter is preferably small, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.
 なお、本発明の接合用組成物には、有機物である第一のカルボン酸が含まれているが、従来の例えばエポキシ樹脂等の熱硬化を利用したものと異なり、有機物の作用によって焼成後の接合強度を得るものではなく、前述したように融着した銀ナノ粒子の融着によって十分な接合強度が得られるものである。このため、接合後において、接合温度よりも高温の使用環境に置かれて残存した有機物が劣化ないし分解・消失した場合であっても、接合強度の低下するおそれはなく、したがって耐熱性に優れている。 In addition, although the 1st carboxylic acid which is organic substance is contained in the joining composition of this invention, unlike what used the thermosetting of the conventional epoxy resin etc., for example, after baking by the effect | action of organic substance The bonding strength is not obtained, and sufficient bonding strength can be obtained by fusing the silver nanoparticles fused as described above. For this reason, even after bonding, even if the remaining organic matter is deteriorated or decomposed / dissipated in a use environment higher than the bonding temperature, there is no risk of the bonding strength being lowered, and therefore the heat resistance is excellent. Yes.
 本実施形態の接合用組成物によれば、例えば300℃程度の低温加熱による焼成でも高い導電性を発現する接合層を有する接合を実現することができるため、比較的熱に弱い被接合部材同士を接合することができる。また、焼成時間は特に限定されるものではなく、焼成温度に応じて、接合できる焼成時間であればよい。 According to the bonding composition of the present embodiment, since it is possible to realize a bonding having a bonding layer that exhibits high conductivity even by baking at a low temperature of about 300 ° C., the members to be bonded are relatively heat-sensitive. Can be joined. Further, the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.
 本実施形態においては、上記被接合部材と接合層との密着性を更に高めるため、上記被接合部材の表面処理を行ってもよい。上記表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法、基材上にあらかじめプライマー層や導電性ペースト受容層を設ける方法等が挙げられる。 In this embodiment, in order to further improve the adhesion between the member to be bonded and the bonding layer, the surface of the member to be bonded may be subjected to a surface treatment. Examples of the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではない。以下においては、実施例において本発明の接合用組成物について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these. In the following, the bonding composition of the present invention will be further described in Examples, but the present invention is not limited to these Examples.
≪実施例1≫
 3-エトキシプロピルアミン40mmolとドデシルアミン10 mmolの計50 mmolを混合し、マグネティックススターラーで十分に撹拌した。ここに、撹拌を行いながら、別途準備したシュウ酸銀10mmolを添加し、増粘させた。得られた粘性物質を120℃の恒温槽に入れ、約15分間反応させ反応物を得た。その後メトキシ酢酸100mmolを該反応物に加え、再度100℃の恒温槽に入れ15分間撹拌した。メタノール10mlを加えて撹拌後、遠心分離により金属銀ナノ粒子を沈殿させて分離し、上澄みを捨てた。この操作をもう一度繰り返し、金属銀ナノ粒子を得た。
 平均一次粒径は、SEM((株)日立製のS-4800型)にて撮影した粒子画像を使用し算出した。異なる撮影点のSEM像5点以上から、合計200個以上の粒子を画像処理ソフト(MITANI CORPORATION、 Win ROOF)を使用し一次粒径を測定し、算術平均で平均一次粒径を算出したところ、40nmであった。
 また、得られた金属銀ナノ粒子2gに、ミクロン銀粒子(D50=2.5μm, 福田金属箔粉工業(株)製)1g、分散媒としてイソトリデカノール0.3g、リシノール酸0.002gを所定量加えて撹拌混合し、接合用組成物を得た。そして、以下の評価試験を行い、結果を表1に示した。
Example 1
A total of 50 mmoles of 40 mmol of 3-ethoxypropylamine and 10 mmol of dodecylamine were mixed and sufficiently stirred with a magnetic stirrer. While stirring, 10 mmol of silver oxalate prepared separately was added to increase the viscosity. The resulting viscous material was placed in a 120 ° C. constant temperature bath and reacted for about 15 minutes to obtain a reaction product. Thereafter, 100 mmol of methoxyacetic acid was added to the reaction product, which was again placed in a constant temperature bath at 100 ° C. and stirred for 15 minutes. After stirring by adding 10 ml of methanol, metallic silver nanoparticles were precipitated and separated by centrifugation, and the supernatant was discarded. This operation was repeated once more to obtain metallic silver nanoparticles.
The average primary particle size was calculated using a particle image photographed by SEM (S-4800, manufactured by Hitachi, Ltd.). When the primary particle size was measured using image processing software (MITANI CORPORATION, Win ROOF) for a total of 200 or more particles from 5 or more SEM images at different shooting points, the average primary particle size was calculated by arithmetic average. It was 40 nm.
In addition, 2 g of the obtained metal silver nanoparticles were added to 1 g of micron silver particles (D50 = 2.5 μm, manufactured by Fukuda Metal Foil Powder Co., Ltd.), 0.3 g of isotridecanol as a dispersion medium, and 0.002 g of ricinoleic acid. A predetermined amount was added and mixed by stirring to obtain a bonding composition. And the following evaluation tests were done and the results are shown in Table 1.
[評価試験1]接合強度測定
 該接合用組成物を、銀メッキ層(20mm角、厚さ1mm)に、メタルマスクを用いて1mm角に塗布し、その上に、金メッキを施したSiチップ(1mm角)を積層した。得られた積層体を、リフロー炉((株)シンアペックス製)に入れ、大気雰囲気で昇温から取り出しまでトータル時間60分間、最大温度280℃にて焼成処理を行った。焼成処理の際、加圧は行わず無加圧で行った。積層体を取り出した後、常温にてボンドテスター((株)レスカ製)を用いて接合強度(シェア強度)試験を行った。
[Evaluation Test 1] Measurement of Bonding Strength The bonding composition was applied to a silver-plated layer (20 mm square, 1 mm thick) using a metal mask to a 1 mm square, and a gold-plated Si chip ( 1 mm square) was laminated. The obtained laminate was placed in a reflow furnace (manufactured by Shin Apex Co., Ltd.), and calcination was performed at a maximum temperature of 280 ° C. for 60 minutes in total from the temperature rise to the removal in the air atmosphere. During the firing treatment, no pressure was applied and no pressure was applied. After taking out the laminate, a bonding strength (shear strength) test was performed using a bond tester (manufactured by Reska Co., Ltd.) at room temperature.
≪実施例2≫
 分散媒からリシノール酸を除いたこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
<< Example 2 >>
A joining composition was prepared and evaluated in the same manner as in Example 1 except that ricinoleic acid was removed from the dispersion medium. The results are shown in Table 1.
≪実施例3≫
 メトキシ酢酸の代わりに、エトキシ酢酸を添加したこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。また、下記の評価試験も行った。
Example 3
A joining composition was prepared and evaluated in the same manner as in Example 1 except that ethoxyacetic acid was added instead of methoxyacetic acid. The results are shown in Table 1. The following evaluation test was also conducted.
≪実施例4≫
 メトキシ酢酸の代わりに、3-エトキシプロピオン酸を添加したこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
Example 4
A joining composition was prepared and evaluated in the same manner as in Example 1 except that 3-ethoxypropionic acid was added instead of methoxyacetic acid. The results are shown in Table 1.
≪実施例5≫
 メトキシ酢酸の代わりに、レブリン酸を添加したこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
Example 5
A joining composition was prepared and evaluated in the same manner as in Example 1 except that levulinic acid was added instead of methoxyacetic acid. The results are shown in Table 1.
≪実施例6≫
 メトキシ酢酸の代わりにレブリン酸を添加し、分散媒からリシノール酸を除いたこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
Example 6
A joining composition was prepared and evaluated in the same manner as in Example 1 except that levulinic acid was added instead of methoxyacetic acid and ricinoleic acid was removed from the dispersion medium. The results are shown in Table 1.
≪比較例1≫
 メトキシ酢酸の代わりに3-エトキシプロピルアミンを添加したこと以外は、実施例1と同様に接合用組成物を調製し、評価を行った。結果を表1に示した。
≪Comparative example 1≫
A joining composition was prepared and evaluated in the same manner as in Example 1 except that 3-ethoxypropylamine was added instead of methoxyacetic acid. The results are shown in Table 1.
≪比較例2≫
 メトキシ酢酸の代わりに3-エトキシプロピルアミンを添加し、分散媒からリシノール酸を除いたこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
≪Comparative example 2≫
A joining composition was prepared and evaluated in the same manner as in Example 1 except that 3-ethoxypropylamine was added instead of methoxyacetic acid and ricinoleic acid was removed from the dispersion medium. The results are shown in Table 1.
≪比較例3≫
 メトキシ酢酸の代わりに3-エトキシプロピルアミン及びヘキシルアミン混合物(モル比=1:1)を添加したこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
«Comparative Example 3»
A bonding composition was prepared and evaluated in the same manner as in Example 1 except that a mixture of 3-ethoxypropylamine and hexylamine (molar ratio = 1: 1) was added instead of methoxyacetic acid. The results are shown in Table 1.
≪比較例4≫
 メトキシ酢酸の代わりに3-エトキシプロピルアミン及びヘキシルアミン混合物(モル比=1:1)を添加し、分散媒からリシノール酸を除いたこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
<< Comparative Example 4 >>
A bonding composition was prepared in the same manner as in Example 1 except that 3-ethoxypropylamine and hexylamine mixture (molar ratio = 1: 1) was added instead of methoxyacetic acid, and ricinoleic acid was removed from the dispersion medium. Prepared and evaluated. The results are shown in Table 1.
≪比較例5≫
 メトキシ酢酸の代わりに2-(2-アミノエトキシ)エタノールを添加し、分散媒からリシノール酸を除いたこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
<< Comparative Example 5 >>
A joining composition was prepared and evaluated in the same manner as in Example 1 except that 2- (2-aminoethoxy) ethanol was added instead of methoxyacetic acid and ricinoleic acid was removed from the dispersion medium. The results are shown in Table 1.
≪比較例6≫
 メトキシ酢酸の代わりに2-(2-アミノエチルアミノ)エタノールを添加し、分散媒からリシノール酸を除いたこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表1に示した。
<< Comparative Example 6 >>
A joining composition was prepared and evaluated in the same manner as in Example 1 except that 2- (2-aminoethylamino) ethanol was added instead of methoxyacetic acid and ricinoleic acid was removed from the dispersion medium. . The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
≪実施例7≫
 分散媒中のリシノール酸添加量を0.025gにしたこと以外は、実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表2に示した。ただし、ここでは5mm×5mmSiチップを用い、下記の評価試験2及び3も行った。
Example 7
A joining composition was prepared and evaluated in the same manner as in Example 1 except that the amount of ricinoleic acid added in the dispersion medium was 0.025 g. The results are shown in Table 2. However, the following evaluation tests 2 and 3 were also performed here using a 5 mm × 5 mm Si chip.
[評価試験2]ボイド率測定
 焼成処理を行った積層体を日本クラウトクレーマー(株)製の超音波探傷装置(探触子80MHz・φ3mm・PF=10mm)にてボイドを評価した。接合界面での反射ピークが最も高くなるところに微調整し、材質音速=Si:9600mm/sとして測定した。ボイド率は反射強度の閾値55%とし、それ以上をボイドとみなした。
[Evaluation Test 2] Measurement of Void Ratio Voids of the laminate subjected to the firing treatment were evaluated with an ultrasonic flaw detector (probe 80 MHz, φ3 mm, PF = 10 mm) manufactured by Nippon Kraut Kramer Co., Ltd. Fine adjustment was made so that the reflection peak at the bonding interface was the highest, and the measurement was performed with the material sound velocity = Si: 9600 mm / s. The void ratio was set to a threshold value of 55% of the reflection intensity, and more than that was regarded as a void.
[評価試験3]高温信頼性
 上記[評価試験1]で焼成した積層体を冷熱衝撃試験機((株)ヒューテック製)に入れ、大気雰囲気で-40℃と200℃でそれぞれ10分間キープするサイクルを、任意のサイクル数で取り出した。20サイクル後に0サイクルに対してボイド率が5%以上増加しなかった場合を「○」、0.5%以上増加した場合を「×」とした。
[Evaluation Test 3] High Temperature Reliability Cycle in which the laminate fired in the above [Evaluation Test 1] is placed in a thermal shock tester (manufactured by Hutec Co., Ltd.) and kept at −40 ° C. and 200 ° C. for 10 minutes respectively in the air atmosphere Were removed at any number of cycles. The case where the void ratio did not increase by 5% or more with respect to 0 cycle after 20 cycles was indicated as “◯”, and the case where the void ratio increased by 0.5% or more was indicated as “X”.
≪実施例8≫
 メトキシ酢酸の代わりにレブリン酸を用い、分散媒中のリシノール酸添加量を0.025gにし、めっき無し無酸素銅基板(10wt%硫酸水溶液中で1min超音波処理をした。)を用いて焼成処理を窒素雰囲気中で行ったこと以外は実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表2に示した。
Example 8
Levulinic acid was used instead of methoxyacetic acid, the amount of ricinoleic acid added in the dispersion medium was 0.025 g, and firing was performed using an oxygen-free copper substrate without plating (1 min ultrasonic treatment in 10 wt% sulfuric acid aqueous solution). A bonding composition was prepared and evaluated in the same manner as in Example 1 except that was performed in a nitrogen atmosphere. The results are shown in Table 2.
≪実施例9≫
 メトキシ酢酸の代わりにレブリン酸を用い、分散媒中のリシノールをオレイン酸0.025gにし、めっき無し無酸素銅基板を用いて焼成処理を窒素雰囲気中で行ったこと以外は実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表2に示した。
Example 9
Except that levulinic acid was used instead of methoxyacetic acid, ricinol in the dispersion medium was changed to 0.025 g of oleic acid, and the calcination treatment was performed in a nitrogen atmosphere using an oxygen-free copper substrate without plating. A bonding composition was prepared and evaluated. The results are shown in Table 2.
≪比較例7≫
 メトキシ酢酸の代わりに3-エトキシプロピルアミンを用い、めっき無し無酸素銅基板を用いて焼成処理を窒素雰囲気中で行ったこと以外は実施例1と同様にして接合用組成物を調製し、評価を行った。結果を表2に示した。
<< Comparative Example 7 >>
A bonding composition was prepared and evaluated in the same manner as in Example 1 except that 3-ethoxypropylamine was used in place of methoxyacetic acid, and a non-plated oxygen-free copper substrate was used for the firing treatment in a nitrogen atmosphere. Went. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から、本発明の接合用組成物を使用すれば、焼成接合時に加圧を要することなく、シェア強度が40MPa以上の十分な接合強度の接合層が得られることがわかる。また、表2から、本発明の接合用組成物を使用すれば、焼成接合時に加圧を要することなく、大気焼成若しくは不活性雰囲気焼成、又は、めっき有基板接合若しくはめっき無し基板接合に関わらず、低ボイド率で接合強度が強く、優れた耐熱信頼性を有する接合層が得られることがわかる。
 

 
It can be seen from Table 1 that if the bonding composition of the present invention is used, a bonding layer having a sufficient bonding strength with a shear strength of 40 MPa or more can be obtained without requiring pressure during firing bonding. Also, from Table 2, if the bonding composition of the present invention is used, no pressure is required during firing bonding, regardless of air firing or inert atmosphere firing, or plating-bonded substrate bonding or non-plating substrate bonding. It can be seen that a bonding layer having a low void ratio and strong bonding strength and excellent heat reliability can be obtained.


Claims (11)

  1.  銀ナノ粒子と、
     分散媒と、
     前記銀ナノ粒子の表面の少なくとも一部に付着している、炭素鎖にO原子を含む第一のカルボン酸と、
     を含むこと、を特徴とする接合用組成物。
    Silver nanoparticles,
    A dispersion medium;
    A first carboxylic acid containing an O atom in a carbon chain attached to at least a portion of the surface of the silver nanoparticles;
    A bonding composition characterized by comprising:
  2.  前記カルボン酸の炭素数が5以下であること、を特徴とする請求項1に記載の接合用組成物。 The bonding composition according to claim 1, wherein the carboxylic acid has 5 or less carbon atoms.
  3.  前記銀ナノ粒子の平均一次粒径は10~100nmであること、を特徴とする請求項1又は2に記載の接合用組成物。 The bonding composition according to claim 1 or 2, wherein the silver nanoparticles have an average primary particle size of 10 to 100 nm.
  4.  前記分散媒中に第二のカルボン酸を含むこと、を特徴とする請求項1~3のうちのいずれかに記載の接合用組成物。 The bonding composition according to claim 1, wherein the dispersion medium contains a second carboxylic acid.
  5.  前記第二のカルボン酸がモノカルボン酸であること、を特徴とする請求項4に記載の接合用組成物。 The bonding composition according to claim 4, wherein the second carboxylic acid is a monocarboxylic acid.
  6.  前記第二のカルボン酸がリシノール酸又はオレイン酸であること、を特徴とする請求項5に記載の接合用組成物。 The bonding composition according to claim 5, wherein the second carboxylic acid is ricinoleic acid or oleic acid.
  7.  前記第一のカルボン酸がレブリン酸、メトキシ酢酸、エトキシ酢酸又は3-エトキシプロピオン酸であること、を特徴とする請求項1~6のうちのいずれかに記載の接合用組成物。 The bonding composition according to any one of claims 1 to 6, wherein the first carboxylic acid is levulinic acid, methoxyacetic acid, ethoxyacetic acid or 3-ethoxypropionic acid.
  8.  更に平均粒径1~15μmの無機マイクロ粒子を含むこと、を特徴とする請求項1~7のうちのいずれかに記載の接合用組成物。 The bonding composition according to any one of claims 1 to 7, further comprising inorganic microparticles having an average particle diameter of 1 to 15 µm.
  9.  第一の被接合部材と、第二の被接合部材と、前記第一の被接合部材と前記第二の被接合部材とを接合する請求項1~8のうちのいずれかに記載の接合用組成物で構成された接合層と、を有すること、を特徴とする接合体。 The bonding member according to any one of claims 1 to 8, wherein the first bonded member, the second bonded member, and the first bonded member and the second bonded member are bonded. And a bonding layer comprising a composition.
  10.  シュウ酸銀錯体分解法で銀ナノ粒子を製造する第一工程と、
     前記第一工程で得た銀ナノ粒子に、カルボキシル基以外の部分にO原子を含む第一のカルボン酸を添加して加熱することにより、前記銀ナノ粒子の表面の少なくとも一部に前記カルボン酸を付着させる第二工程と、
     を含むこと、を特徴とする接合用組成物の製造方法。
    A first step of producing silver nanoparticles by a silver oxalate complex decomposition method,
    The carboxylic acid is added to at least a part of the surface of the silver nanoparticle by heating the silver nanoparticle obtained in the first step by adding a first carboxylic acid containing an O atom to a portion other than the carboxyl group. A second step of attaching
    The manufacturing method of the composition for joining characterized by including.
  11.  銀ナノ粒子と、
     前記銀ナノ粒子の表面の少なくとも一部に付着している、炭素鎖にO原子を含む第一のカルボン酸と、
     を含むこと、を特徴とする被覆銀ナノ粒子。
     

     
    Silver nanoparticles,
    A first carboxylic acid containing an O atom in a carbon chain attached to at least a portion of the surface of the silver nanoparticles;
    Coated silver nanoparticles characterized by comprising:


PCT/JP2017/027390 2016-08-10 2017-07-28 Bonding composition and method for preparing same WO2018030173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017540287A JP6267835B1 (en) 2016-08-10 2017-07-28 Bonding composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-158258 2016-08-10
JP2016158258 2016-08-10

Publications (1)

Publication Number Publication Date
WO2018030173A1 true WO2018030173A1 (en) 2018-02-15

Family

ID=61162452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027390 WO2018030173A1 (en) 2016-08-10 2017-07-28 Bonding composition and method for preparing same

Country Status (2)

Country Link
TW (1) TWI744372B (en)
WO (1) WO2018030173A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643841A (en) * 2021-08-05 2021-11-12 江苏正能电子科技有限公司 Acetate-resistant back silver, preparation method thereof and PERC battery comprising acetate-resistant back silver
JP2022016511A (en) * 2017-10-10 2022-01-21 Dic株式会社 Method for producing silver fine particle ink for offset printing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958434B2 (en) * 2018-03-06 2021-11-02 三菱マテリアル株式会社 Metal particle agglomerates and a method for producing the same, and a paste-like metal particle agglomerate composition and a method for producing a bonded body using the same.
EP3852507A4 (en) * 2018-09-14 2021-11-10 Showa Denko Materials Co., Ltd. Electronic component and method for manufacturing electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038128A (en) * 2009-08-06 2011-02-24 Dowa Electronics Materials Co Ltd Metal nanoparticle dispersion, method for producing the same, metal nanoparticle aggregate, and method for producing the same
WO2014204013A1 (en) * 2013-06-21 2014-12-24 Dowaエレクトロニクス株式会社 Joining material and joining method using same
WO2015190076A1 (en) * 2014-06-11 2015-12-17 バンドー化学株式会社 Fine silver particle dispersion, fine silver particles, and method for producing same
WO2016067599A1 (en) * 2014-10-31 2016-05-06 バンドー化学株式会社 Bonding composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504702B (en) * 2011-04-28 2015-10-21 Fujifilm Corp Electroconductive member, method for manufacturing the same, touch panel, solar cell and composition containing metal nanowire
JP5888976B2 (en) * 2011-09-28 2016-03-22 富士フイルム株式会社 Conductive composition, conductive member and method for producing the same, touch panel and solar cell
JP6140189B2 (en) * 2012-11-30 2017-05-31 ナミックス株式会社 Conductive paste and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038128A (en) * 2009-08-06 2011-02-24 Dowa Electronics Materials Co Ltd Metal nanoparticle dispersion, method for producing the same, metal nanoparticle aggregate, and method for producing the same
WO2014204013A1 (en) * 2013-06-21 2014-12-24 Dowaエレクトロニクス株式会社 Joining material and joining method using same
WO2015190076A1 (en) * 2014-06-11 2015-12-17 バンドー化学株式会社 Fine silver particle dispersion, fine silver particles, and method for producing same
WO2016067599A1 (en) * 2014-10-31 2016-05-06 バンドー化学株式会社 Bonding composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022016511A (en) * 2017-10-10 2022-01-21 Dic株式会社 Method for producing silver fine particle ink for offset printing
CN113643841A (en) * 2021-08-05 2021-11-12 江苏正能电子科技有限公司 Acetate-resistant back silver, preparation method thereof and PERC battery comprising acetate-resistant back silver
CN113643841B (en) * 2021-08-05 2023-03-14 江苏正能电子科技有限公司 Acetate-resistant back silver, preparation method thereof and PERC battery comprising acetate-resistant back silver

Also Published As

Publication number Publication date
TW201805391A (en) 2018-02-16
TWI744372B (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP6349310B2 (en) Metal bonding composition
JP6262139B2 (en) Bonding composition
JP6021816B2 (en) Bonding composition
JP6766160B2 (en) Composition for metal bonding
JPWO2015162881A1 (en) Bonding composition and metal bonded body using the same
WO2018030173A1 (en) Bonding composition and method for preparing same
JP6736782B2 (en) Composition for bonding
TWI734797B (en) Conductive paste and forming method of conductive pattern
JP6467114B1 (en) Method for producing metal bonded laminate
JP2017155166A (en) Joining composition
JP6163616B1 (en) Bonding composition
WO2017006531A1 (en) Joining composition and joining method
JP7025603B1 (en) Method for manufacturing a bonding composition
WO2016067599A1 (en) Bonding composition
JP6267835B1 (en) Bonding composition and method for producing the same
JP6669420B2 (en) Bonding composition
WO2015159480A1 (en) Bonding composition and metal bonded body using same
JP6085724B2 (en) Bonding composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017540287

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839246

Country of ref document: EP

Kind code of ref document: A1