WO2016067599A1 - Bonding composition - Google Patents

Bonding composition Download PDF

Info

Publication number
WO2016067599A1
WO2016067599A1 PCT/JP2015/005395 JP2015005395W WO2016067599A1 WO 2016067599 A1 WO2016067599 A1 WO 2016067599A1 JP 2015005395 W JP2015005395 W JP 2015005395W WO 2016067599 A1 WO2016067599 A1 WO 2016067599A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding composition
bonding
inorganic particles
particles
organic
Prior art date
Application number
PCT/JP2015/005395
Other languages
French (fr)
Japanese (ja)
Inventor
美紀 松居
尚耶 中島
賢治 下山
正史 武居
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2016556355A priority Critical patent/JPWO2016067599A1/en
Publication of WO2016067599A1 publication Critical patent/WO2016067599A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a bonding composition containing inorganic particles as a main component and an organic component as a subcomponent.
  • solder a conductive adhesive, a silver paste, an anisotropic conductive film, and the like are used for mechanically and / or electrically and / or thermally joining metal parts and metal parts.
  • These conductive adhesives, silver pastes, anisotropic conductive films, and the like may be used when joining not only metal parts but also ceramic parts and resin parts.
  • bonding of light emitting elements such as LEDs to a substrate, bonding of a semiconductor chip to a substrate, bonding of these substrates to a heat dissipation member, and the like can be given.
  • adhesives, pastes, and films containing conductive fillers made of solder and metal are used for joining parts that require electrical connection. Furthermore, since metals generally have high thermal conductivity, adhesives, pastes, and films containing these solders and conductive fillers may be used to increase heat dissipation.
  • a high-luminance lighting device or a light-emitting device is manufactured using a light-emitting element such as an LED
  • a semiconductor device is manufactured using a semiconductor element that operates at a high temperature and is called a power device.
  • the amount of heat generation tends to increase. Attempts have been made to improve the efficiency of devices and elements to reduce heat generation. However, at present, sufficient results have not been achieved, and the operating temperature of devices and elements has risen.
  • the bonding material for bonding devices and elements is required to have heat resistance that can withstand the increase in operating temperature due to the operation of the device after bonding and maintain sufficient bonding strength as the bonding temperature decreases.
  • conventional bonding materials are not sufficient.
  • solder joins members through a process of heating the metal to the melting point or higher (reflow process).
  • the melting point is inherent to the composition, so heating (joining) when trying to increase the heat-resistant temperature. The temperature will rise.
  • solder when several layers of elements and substrates are bonded using solder, it is necessary to go through the heating process for the number of layers to be overlapped. In order to prevent melting of the already bonded portions, the solder used for the next bonding It is necessary to lower the melting point (joining temperature) of the solder, and the number of types of solder composition is required by the number of layers to be overlaid, which makes handling complicated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-63688 proposes fine particles that can be used as a main material of a bonding material so that higher bonding strength can be obtained when bonded members are bonded to each other. The problem of decomposition and deterioration of the resin component at the time of use temperature rise has not been solved.
  • solder containing lead has been conventionally used as a high-temperature solder used at a high operating temperature. Since lead is toxic, the trend toward solder-free solder is remarkable. Since there is no other good alternative material for high-temperature solder, lead solder is still used, but from the viewpoint of environmental problems, a bonding material that does not use lead is eagerly desired.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-178911
  • a bonding composition comprising a precursor and a reducing agent comprising an organic substance, wherein the content of the metal particle precursor is more than 50 parts by mass and 99 parts by mass or less in the total mass part in the bonding material.
  • the joining material it is shown that good metal joining is possible by setting the reduction in thermal weight of the reducing agent to 400 ° C. to 99% or more.
  • the bonding composition when the bonding composition is actually used as a bonding application for an electronic device or the like, it may take time to apply the bonding composition on the surface to be bonded and then place the member to be bonded and fire it. If the characteristics of the bonding composition are changed (for example, if necessary organic substances are volatilized, etc.), the desired bonding strength cannot be realized. That is, a bonding composition that can be used in a mass production line has a long working time (time allowed from the application to the bonded surface to the bonding process by heating) in addition to the low bonding temperature and high bonding strength. There is a need to.
  • Patent Document 2 the pot life is not taken into consideration at all, and there is no bonding composition having all the above requirements.
  • the object of the present invention is to obtain a high bonding strength by bonding at a relatively low temperature, and after applying the bonding composition to the surfaces to be bonded, the time until the bonding step by heating (
  • An object of the present invention is to provide a bonding composition capable of obtaining a good bonded body even when the pot life is long.
  • the present inventor has found that the weight reduction due to the organic component etc. is related to the bonding composition having the organic component as a subcomponent. The inventors have found that optimizing the value is extremely effective in achieving the above object, and have reached the present invention.
  • a bonding composition comprising inorganic particles and an organic component
  • the weight loss when the bonding composition is left in the atmosphere at room temperature for 6 hours is 1.5% by mass or less (weight reduction requirement 1)
  • the weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min in the air atmosphere is 3.0% by mass or less (weight reduction requirement 2);
  • a bonding composition is provided.
  • the weight reduction of the bonding composition of the present invention satisfies the above-described requirements, the volatilization of components when left in the atmosphere at room temperature is reduced, and the change in viscosity over time can be suppressed. . As a result, drying of the bonding composition applied to the surfaces to be bonded can be prevented, and the pot life of the bonding composition can be increased.
  • the weight loss when the bonding composition is left in the air at room temperature for 6 hours exceeds 1.5% by mass, the viscosity increases due to volatilization of the components, and the handling property of the bonding composition deteriorates. Become. In order to maintain the printability (coating property) of the bonding composition for a long time, it is more preferable that the weight loss when left in the air at room temperature for 6 hours is 1.0% by mass or less.
  • the weight loss when the bonding composition is heated from room temperature to 100 ° C. in the air atmosphere at a heating rate of 10 ° C./min is larger than 3.0% by mass, the components volatilize violently at room temperature and the viscosity changes. Therefore, the handling property of the bonding composition is deteriorated.
  • the weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min in an air atmosphere is more preferably 2.0% by mass or less, and 1.0% by mass or less. More preferably.
  • the particle size of the inorganic particles constituting the bonding composition of the present invention is suitably a nanometer size that desirably causes a melting point drop, desirably 1 to 200 nm, but if necessary, particles of a micrometer size are added. It is also possible. In this case, bonding is achieved by the nanometer sized particles dropping in melting point around the micrometer sized particles.
  • the bonding composition of the present invention preferably has a weight loss of 20.0% by mass or less when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a heating rate of 10 ° C./min. (Weight reduction requirement 3).
  • the weight loss of the bonding composition is too small, the dispersion stability in the colloidal state is impaired. Therefore, when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere.
  • the weight loss is preferably 0.1 to 20.0 mass%, more preferably 0.5 to 18.0 mass%.
  • the inorganic particles are metal particles composed of at least one metal selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, and a platinum group element. It is preferable. By using a bonding composition having such a configuration, excellent bonding strength and heat resistance can be obtained.
  • the organic component contains an amine and / or a carboxylic acid.
  • An amino group in one molecule of the amine has a relatively high polarity and is likely to cause an interaction due to hydrogen bonding, but a portion other than these functional groups has a relatively low polarity. Furthermore, each amino group tends to exhibit alkaline properties. Therefore, when the amine is localized (attached) to at least a part of the surface of the inorganic particle (that is, coats at least a part of the surface of the inorganic particle) in the bonding composition of the present invention, The inorganic particles can be made to have sufficient affinity, and aggregation between the inorganic particles can be prevented (dispersibility is improved).
  • the functional group of amine is adsorbed on the surface of the inorganic metal particles with an appropriate strength and prevents mutual contact between the inorganic metal particles, thereby contributing to the stability of the inorganic metal particles in the storage state.
  • the bonding temperature between inorganic metal particles and the bonding between the inorganic metal particles and the base material are promoted by moving and / or volatilizing from the surface of the inorganic metal particles at the bonding temperature.
  • a carboxyl group in one molecule of carboxylic acid has a relatively high polarity and easily causes an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
  • the carboxylic acid is localized (attached) to at least a part of the surface of the inorganic particles (that is, covers at least a part of the surface of the inorganic particles) in the bonding composition of the present invention, the organic component And the inorganic particles can be sufficiently made to adhere to each other, and aggregation of the inorganic particles can be prevented (dispersibility is improved).
  • the carboxyl group is easily coordinated on the surface of the inorganic particles, and the aggregation suppressing effect between the inorganic particles can be enhanced. Moreover, the coexistence of the hydrophobic group and the hydrophilic group also has an effect of dramatically increasing the wettability between the bonding composition and the bonding substrate.
  • the organic component acts as a dispersant, so that the dispersion state of the inorganic particles in the dispersion medium is remarkably improved. That is, according to the bonding composition of the present invention, the inorganic metal particles are less likely to aggregate, the dispersibility of the inorganic metal particles is good even in the coating film, and uniform bonding is achieved to obtain a strong bonding strength.
  • the bonding composition of the present invention is more specifically a composition mainly composed of colloidal particles composed of inorganic particles and organic components, but further contains a dispersion medium. It may be.
  • the “dispersion medium” is used to disperse the colloidal particles in a dispersion, but some of the constituent components of the colloidal particles may be dissolved in the “dispersion medium”.
  • the “main component” means a component having the highest content among the constituent components.
  • an organic substance having an SP value of 10 or more is removed under reduced pressure.
  • the SP value is a value of a solubility parameter, and roughly indicates the strength with which molecules are gathered.
  • components with low boiling points are removed under reduced pressure, some of the components added for the purpose of protecting the inorganic particles are also removed, but the main purpose is to use them to precipitate and agglomerate inorganic particles in the production process of inorganic particles.
  • the organic compound having an SP value of 10 or more is removed.
  • the “organic matter having an SP value of 10 or more” in the bonding composition of the present invention is preferably approximately 0.5% by mass or less.
  • high bonding strength can be obtained by bonding at a relatively low temperature, and the time until the bonding process by heating (potential time) is long after the bonding composition is applied to the surfaces to be bonded. Even if it exists, the composition for joining which can obtain a favorable joined body can be provided.
  • the bonding composition of the present embodiment includes inorganic particles as a main component and an organic component as a subcomponent. These components will be described below.
  • the inorganic particles of the bonding composition of the present embodiment are not particularly limited, but the conductivity of the adhesive layer obtained using the bonding composition of the present embodiment is good. Therefore, it is preferable that the metal particles are composed of a (noble) metal having a smaller ionization tendency than zinc.
  • the metal examples include at least one of gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum).
  • the metal is preferably particles of at least one metal selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or platinum group elements, and more preferably has a tendency to ionize than copper or copper.
  • Is preferably a small (noble) metal, that is, at least one of gold, platinum, silver and copper.
  • These metals may be used singly or in combination of two or more. Methods for using these metals in combination include the use of alloy particles containing a plurality of metals, metals having a core-shell structure or a multilayer structure. Particles may be used.
  • the conductivity of the adhesive layer formed using the bonding composition of the present embodiment is good, but silver is considered in consideration of migration problems. Further, by using a bonding composition made of other metals, migration can be made difficult to occur.
  • the “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
  • the average particle diameter of the inorganic particles (or inorganic colloidal particles) in the bonding composition of the present embodiment is not particularly limited as long as it does not impair the effects of the present invention. It preferably has an average particle diameter, and may be, for example, 1 to 200 nm. Further, it is preferably 2 to 100 nm. If the average particle diameter of the inorganic particles is 1 nm or more, a bonding composition capable of forming a good adhesive layer is obtained, and the production of the inorganic particles is practical without increasing the cost. Moreover, if it is 200 nm or less, the dispersibility of an inorganic particle does not change easily with time, and it is preferable.
  • the nanometer-sized inorganic particles can be bonded by dropping the melting point around the micrometer-sized inorganic particles.
  • the particle size of the inorganic particles in the bonding composition of the present embodiment may not be constant.
  • the bonding composition includes, as an optional component, a dispersion medium, a polymer dispersant, a resin component, an organic solvent, a thickener, a surface tension adjuster, or the like, which will be described later, an inorganic colloid having an average particle size of more than 200 nm
  • the particle component having an average particle diameter exceeding 200 nm may be included as long as the component does not cause aggregation and does not significantly impair the effects of the present invention.
  • the particle size of the inorganic particles in the bonding composition (inorganic colloidal dispersion) of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method.
  • the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate.
  • RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2 ⁇ in the range of 30 to 80 ° by the diffraction method.
  • the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center.
  • the crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
  • D K ⁇ / Bcos ⁇
  • K Scherrer constant (0.9)
  • wavelength of X-ray
  • B half width of diffraction line
  • Bragg angle.
  • the organic component adhering to at least a part of the surface of the inorganic particles that is, the “organic component” in the inorganic colloidal particles is used as a so-called dispersant.
  • the inorganic particles substantially constitute inorganic colloidal particles.
  • the organic components include trace organic substances contained in the metal as impurities from the beginning, trace organic substances adhering to the metal components mixed in the manufacturing process described later, residual reducing agents that could not be removed in the cleaning process, residual dispersants, etc. As described above, it is a concept that does not include an organic substance or the like adhered to a minute amount of inorganic particles.
  • the “trace amount” is specifically intended to be less than 1% by mass in the inorganic colloidal particles.
  • the organic component is an organic substance that can coat inorganic particles to prevent aggregation of the inorganic particles and form inorganic colloidal particles, and the form of the coating is not particularly defined, but in this embodiment, From the viewpoints of dispersibility and conductivity, an amine and a carboxylic acid are included. In addition, when these organic components are chemically or physically bonded to the inorganic particles, it is considered that they are changed to anions and cations. In this embodiment, ions derived from these organic components are used. And organic complexes are also included in the organic components.
  • the amine may be linear or branched, and may have a side chain.
  • alkylamines such as butylamine, pentylamine, hexylamine, and hexylamine (which may have a linear alkylamine or a side chain)
  • cycloalkylamines such as cyclopentylamine and cyclohexylamine, aniline, and allylamine
  • Secondary amines such as primary amines, dipropylamine, dibutylamine, piperidine and hexamethyleneimine, and tertiary amines such as tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, pyridine and quinoline. .
  • the amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the bonding composition of the present embodiment may contain a carboxylic acid in addition to the above amine as long as the effects of the present invention are not impaired.
  • the carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
  • the organic compound is organic.
  • the component and the inorganic particles can be made sufficiently compatible to prevent aggregation of the inorganic particles (improve dispersibility).
  • carboxylic acid compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid.
  • a part of carboxyl groups of the carboxylic acid may form a salt with a metal ion.
  • 2 or more types of metal ions may be contained.
  • the carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
  • the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups.
  • the said carboxylic acid may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • amines and carboxylic acids form amides. Since the amide group is also adsorbed moderately on the surface of the silver particle, the organic component may contain an amide group.
  • the content of the organic component in the inorganic colloid in the bonding composition of the present embodiment is preferably 0.5 to 50% by mass. If the organic component content is 0.5% by mass or more, the storage stability of the resulting bonding composition tends to be improved, and if it is 50% by mass or less, the conductivity of the bonding composition tends to be good. There is. A more preferable content of the organic component is 1 to 30% by mass, and a more preferable content is 2 to 15% by mass.
  • composition ratio (mass) when the amine and carboxylic acid are used in combination can be arbitrarily selected within the range of 1/99 to 99/1, preferably 20/80 to 98/2, The ratio is preferably 30/70 to 97/3.
  • amine or carboxylic acid a plurality of types of amines or carboxylic acids may be used.
  • the bonding composition of the present embodiment is provided with functions such as appropriate viscosity, adhesion, drying properties, and printability according to the intended use within a range that does not impair the effects of the present invention.
  • a dispersion medium a polymer dispersant, for example, an oligomer component that serves as a binder, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), a surfactant, a thickening agent.
  • the dispersion medium of the optional components various types can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols. From the viewpoint of maintaining the pot life for a long time (that is, from the viewpoint of being less volatile at room temperature), those having a boiling point of 200 ° C. or higher are preferred. However, as long as the content is 1.0% or less, a dispersion medium having a boiling point of 200 ° C. or less may be included.
  • hydrocarbon examples include aliphatic hydrocarbons, cyclic hydrocarbons, alicyclic hydrocarbons, unsaturated hydrocarbons, and the like, and each may be used alone or in combination of two or more.
  • aliphatic hydrocarbon examples include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
  • cyclic hydrocarbons examples include toluene and xylene.
  • Examples of the alicyclic hydrocarbons include limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferrandylene, mentadiene, teleben, cymene, Examples include dihydrocymene, mossene, kautssin, cajeptene, oilimene, pinene, turpentine, menthane, pinane, terpene, cyclohexane and the like.
  • Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, 1-hexene, 1-octene, 4-vinylcyclohexene, terpene alcohol, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, petrothelic acid, oleic acid, and elaidin.
  • Examples include acid, thianic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, and salicylic acid.
  • unsaturated hydrocarbons having a hydroxyl group are preferred. Hydroxyl groups are easily coordinated on the surface of the inorganic particles, and aggregation of the inorganic particles can be suppressed.
  • the unsaturated hydrocarbon having a hydroxyl group include terpene alcohol, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, and salicylic acid.
  • it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid and salicylic acid.
  • the unsaturated hydrocarbon is preferably ricinoleic acid.
  • Ricinoleic acid has a carboxyl group and a hydroxyl group and is adsorbed on the surface of the inorganic particles to uniformly disperse the inorganic particles and promote fusion of the inorganic particles.
  • Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced
  • aliphatic alcohol examples include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), nonanol, decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, isotridecanol. And saturated or unsaturated C 6-30 aliphatic alcohols such as 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
  • cyclic alcohols examples include cresol and eugenol.
  • alicyclic alcohol for example, cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol and the like.
  • cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof)
  • terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol and the like.
  • the content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 masses. % Is preferred. When the content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within a range that is easy to use as a bonding composition. A more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass.
  • polymer dispersant a commercially available polymer dispersant can be used.
  • examples of the commercially available polymer dispersant include, for example, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 21000, Solsperse 24000, Solsperse 26000, Solsperse.
  • Solsperse 11200 From the viewpoints of low-temperature sinterability and dispersion stability, it is preferable to use Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 28000, Dispersic 142 or Dispersic 2155.
  • the content of the polymer dispersant is preferably 0.1 to 15% by mass. If the content of the polymer dispersant is 0.1% or more, the dispersion stability of the resulting bonding composition is improved. However, if the content is too large, the bonding property is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and still more preferable content is 0.05 to 2% by mass.
  • the resin component examples include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
  • organic solvent other than those mentioned as the above dispersion medium examples include, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, , 4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, N Methyl-2-pyrrolidone, N, N- dimethylacetamide, glycerin, or acetone and the like may be used each of which alone or in combination of two or more.
  • the thickener examples include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.
  • clay minerals such as clay, bentonite or hectorite
  • emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose.
  • Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysacc
  • a surfactant different from the above organic components may be added.
  • the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying.
  • the surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.
  • heating can be performed with an oven or an evaporator, and may be performed under reduced pressure. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Further, the amine (and carboxylic acid) can be added later for fine adjustment of the amount of organic components.
  • the bonding composition of the present embodiment includes inorganic colloid particles in which inorganic particles are colloided as a main component.
  • an organic component is formed on a part of the surface of the inorganic particles.
  • inorganic colloidal particles having inorganic particles as a core and the surface thereof being coated with an organic component are preferable.
  • a person skilled in the art can appropriately prepare the inorganic colloidal particles having the above-described form using a well-known technique in this field.
  • an organic substance having an SP value of 10 or more is removed under reduced pressure.
  • the content of the organic substance having an SP value of 10 or more may be 0.5% by mass or less.
  • organic substances having an SP value of 10 or more include methanol (SP value: 14.8), ethanol (SP value: 12.7), acetone (SP value: 10.0), isopropyl alcohol (SP value: 11. 5) etc. can be illustrated.
  • the SP value is based on the regular solution theory that the force acting between the solvent and the solute is only the intermolecular force.
  • the present invention is based on the design concept of ensuring a long pot life by adjusting the content of low-boiling organic substances in the bonding composition in advance.
  • the remaining amount of the component having an SP value of 10 or more after the treatment is preferably 0% by mass because there is no element that is positive for the dispersibility and strength of the bonding composition, but in consideration of inevitable impurities, If it is 0.5% or less, it is suitable.
  • an organic substance having an SP value of 10 or more is used for precipitating and agglomerating inorganic particles in the production process of inorganic particles. If the SP value is 10 or more, only the excess dispersant can be removed while leaving the dispersant necessary for dispersing the inorganic particles. In the case of such inorganic particles, if the inorganic particles are precipitated and aggregated using an organic material having an SP value of less than 10, the dispersant necessary for dispersion is removed, and the dispersibility of the inorganic particles is remarkably increased. It will be damaged.
  • inorganic particles inorganic colloid
  • an operation of removing methanol or the like used for cleaning by a reduced pressure treatment may be performed, but in the bonding composition of the present embodiment, not only the cleaning solvent, All organic matter in the inorganic colloid is the object to be removed, and their suitable residual amount is specified.
  • the bonding composition of this embodiment is a fluid mainly composed of colloidal particles composed of inorganic particles and organic components.
  • the inorganic colloidal particles May contain an organic component, a dispersion medium, a residual reducing agent, or the like that does not constitute a component.
  • the viscosity of the bonding composition of the present embodiment may be adjusted as appropriate within the range where the solid content does not impair the effects of the present invention.
  • the viscosity may be in the range of 0.01 to 5000 Pa ⁇ S, and may be 0.
  • a viscosity range of 1 to 1000 Pa ⁇ S is more preferable, and a viscosity range of 1 to 100 Pa ⁇ S is particularly preferable.
  • a wide method is applicable as a method of apply
  • Examples of the method for applying the bonding composition on the substrate include dipping, screen printing, spray method, bar coating method, spin coating method, ink jet method, dispenser method, pin transfer method, application method by brush, casting Method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method and the like can be appropriately selected and employed.
  • Viscosity can be adjusted by adjusting the particle size of inorganic particles, adjusting the content of organic substances, adjusting the amount of dispersion medium and other components, adjusting the blending ratio of each component, and adding a thickener. .
  • the viscosity of the bonding composition can be measured, for example, with a cone plate viscometer (for example, a rheometer MCR301 manufactured by Anton Paar).
  • the bonding composition of the present embodiment has optimized properties as a bonding composition by controlling weight reduction in each situation.
  • the bonding composition of this embodiment has a weight loss of 1.5% by mass or less when left in air at room temperature for 6 hours (weight reduction requirement 1), and the rate of temperature increase from room temperature to 100 ° C. in the air atmosphere. Weight loss when heated at 10 ° C./min is 3.0% by mass or less (weight reduction requirement 2).
  • the weight loss when the bonding composition is left in the atmosphere at room temperature for 6 hours exceeds 1.5% by mass, the viscosity increases due to volatilization of the components. This may cause deterioration of handling properties.
  • the weight loss when left in the atmosphere at room temperature for 6 hours is 1.0% by mass or less.
  • the weight loss when the bonding composition is left in the air at room temperature for 6 hours is mainly caused by volatilization of organic substances having SP values of 10 or more and organic substances used as a dispersant.
  • the content of low-boiling components remaining in it is reduced.
  • it can be suitably controlled by performing a process such as removal with an evaporator.
  • the weight reduction requirement 2 when the weight reduction when the bonding composition is heated from room temperature to 100 ° C. in the air atmosphere at a heating rate of 10 ° C./min is larger than 3.0 mass%, it is intense at room temperature. Since the components are volatilized and the viscosity is changed, the handling property of the bonding composition is deteriorated.
  • the weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min in an air atmosphere is more preferably 2.0% by mass or less, and 1.0% by mass or less. More preferably.
  • the weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min is mainly due to the organic substance having an SP value of 10 or more and the organic substance used as a dispersant.
  • the content of low-boiling components remaining in it is reduced. For example, it can be suitably controlled by performing a process such as removal with an evaporator.
  • the bonding composition preferably has a weight loss of 20.0% by mass or less when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere ( Weight reduction requirement 3).
  • High firing layer (bonding layer) can be obtained.
  • the weight loss of the bonding composition is too small, the dispersion stability in the colloidal state is impaired. Therefore, when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere. Is preferably 0.1% by mass or more, and more preferably 0.5 to 18.0% by mass.
  • the weight loss when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min is mainly due to the total organic components contained in the bonding composition. It can control suitably by controlling a kind and quantity.
  • inorganic particles inorganic colloidal particles that are main components coated with an organic component that is a subcomponent are prepared.
  • the adjustment method of the amount of organic components and weight reduction is not specifically limited, it is easy to adjust by performing heating and pressure reduction. Moreover, you may carry out by adjusting the quantity of the organic component added when producing an inorganic particle, and you may change the washing conditions and frequency
  • the weight loss when the bonding composition was left in the air at room temperature for 6 hours was 1.5% by mass or less, and it was heated from room temperature to 100 ° C. in the air atmosphere at a heating rate of 10 ° C./min.
  • the weight loss at that time is 3.0% by mass or less, the bonding composition of the present embodiment can be obtained.
  • the weight loss when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a rate of temperature increase of 10 ° C./min is 20.0 mass% or less.
  • the method for preparing the inorganic particles coated with the organic component of the present embodiment is not particularly limited, and examples thereof include a method of preparing a dispersion containing inorganic particles and then washing the dispersion. .
  • a step of preparing a dispersion containing inorganic particles for example, a metal salt (or metal ion) dissolved in a solvent may be reduced as described below, and the reduction procedure is based on a chemical reduction method. A procedure may be adopted.
  • the inorganic particles coated with the organic components as described above are composed of metal salts of the metal constituting the inorganic particles, organic substances as dispersants, and solvents (basically organic systems such as toluene, but water And a raw material liquid (a part of the components may be dispersed without being dissolved).
  • inorganic colloidal particles in which an organic component as a dispersant is attached to at least a part of the surface of the inorganic particles can be obtained.
  • These inorganic colloidal particles can be used alone as the bonding composition of the present embodiment. If necessary, the inorganic colloidal particles can be added to a dispersion medium in a process described later, thereby bonding the inorganic colloidal particles. It can also be obtained as a composition for use.
  • various known metal salts or hydrates thereof can be used.
  • the method for reducing these metal salts in the raw material liquid is not particularly limited, and examples thereof include a method using a reducing agent, a method of irradiating light such as ultraviolet rays, electron beams, ultrasonic waves, or thermal energy.
  • a method using a reducing agent is preferable from the viewpoint of easy operation.
  • Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide.
  • amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine
  • hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas
  • carbon monoxide for example, carbon monoxide.
  • Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid
  • Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • light and / or heat may be added to promote the reduction reaction.
  • the metal salt is used in an organic solvent (for example, toluene).
  • an organic solvent for example, toluene.
  • a metal salt solution is prepared by dissolution, an organic substance as a dispersant is added to the metal salt solution, and then a solution in which the reducing agent is dissolved is gradually added dropwise.
  • the dispersion liquid containing inorganic particles coated with organic components as a dispersant obtained as described above contains a counter ion of a metal salt, a reducing agent residue and a dispersant. Therefore, the electrolyte concentration of the whole liquid tends to be high. Since the liquid in such a state has high electrical conductivity, the inorganic particles are likely to coagulate and precipitate. Alternatively, even if precipitation does not occur, the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing the inorganic particles to remove excess residues, it is possible to reliably obtain the inorganic particles coated with the organic matter.
  • washing method for example, a dispersion liquid containing inorganic particles coated with an organic component is allowed to stand for a certain period of time, and after removing the resulting supernatant, alcohol (methanol or the like) is added and stirred again. Furthermore, a method of repeating the process of removing the supernatant liquid generated by standing for a certain period of time, a method of performing centrifugation instead of the above standing, a method of desalting with an ultrafiltration device or an ion exchange device, etc. It is done. By removing the organic solvent by such washing, inorganic particles coated with the organic component of the present embodiment can be obtained.
  • the inorganic colloid dispersion liquid is obtained by mixing the inorganic particles coated with the organic component obtained above and the dispersion medium described in the present embodiment.
  • the mixing method of the inorganic metal particles coated with the organic component and the dispersion medium is not particularly limited, and can be performed by a conventionally known method using a stirrer or a stirrer.
  • An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like. That is, the bonding composition of the present invention is prepared by washing inorganic particles (colloid), adding a dispersion medium to form a paste, and then drying under reduced pressure.
  • the production method is not particularly limited.
  • an inorganic colloidal dispersion composed of silver and other metals it is coated with the above organic matter.
  • a dispersion containing inorganic particles and a dispersion containing other inorganic particles may be produced separately and then mixed, or a silver ion solution and another metal ion solution may be mixed. Thereafter, reduction may be performed.
  • the bonding composition of the present embodiment when used, a good bonded body can be obtained even when the bonding composition is applied to the surfaces to be bonded and the time until the bonding step by heating is long. it can. Therefore, the bonding composition of the present embodiment can be suitably used for mass production lines such as electronic devices.
  • the inventor uses the above-described bonding composition of the present embodiment as the bonding composition in the bonding composition application step. It was found that the member to be joined can be more reliably joined with high joining strength (a joined body is obtained).
  • “application” of the bonding composition of the present embodiment is a concept including both the case where the bonding composition is applied in a planar shape and the case where the bonding composition is applied (drawn) in a linear shape.
  • the shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the joined body of this embodiment after firing by heating, the joining composition is a concept that includes both a planar joining layer and a linear joining layer.
  • the bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.
  • the first member to be bonded and the second member to be bonded that can be used in the present embodiment are not particularly limited as long as they can be bonded by applying a bonding composition and baking by heating. However, it is preferable that the member has a heat resistance that is not damaged by the temperature at the time of joining.
  • Examples of the material constituting such a member to be joined include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN).
  • Examples thereof include polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, metal and the like, and among them, a metal joined member is preferable.
  • the metal member to be joined is preferable because it is excellent in heat resistance and in affinity with the bonding composition of the present invention in which the inorganic particles are metal.
  • the member to be joined may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible.
  • the thickness of the substrate can also be selected as appropriate.
  • a member on which a surface layer is formed or a member subjected to a surface treatment such as a hydrophilic treatment may be used.
  • various methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, spin coating, and inkjet It can be used by appropriately selecting from a formula, a dispenser type, a pin transfer method, a brush application method, a casting method, a flexo method, a gravure method, a syringe method, and the like.
  • the coated film after coating as described above is baked by heating to a temperature of 300 ° C. or less, for example, within a range that does not damage the member to be bonded, and the bonded body of this embodiment can be obtained.
  • a bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded is obtained, and a strong bonding strength is more reliably ensured. can get.
  • the binder component when the bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and the bonding strength between the bonded members.
  • the main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all the binder component.
  • the method for performing the firing is not particularly limited.
  • the temperature of the bonding composition applied or drawn on a member to be bonded using a conventionally known oven or the like is, for example, 300 ° C. or lower. It can join by baking.
  • the lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the members to be joined can be joined and does not impair the effects of the present invention.
  • the remaining amount of the organic matter is preferably small, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.
  • the organic substance is contained in the bonding composition of the present invention, it does not obtain the bonding strength after firing by the action of the organic substance, unlike the conventional one using thermosetting such as epoxy resin.
  • thermosetting such as epoxy resin.
  • sufficient bonding strength can be obtained by fusing the fused inorganic metal particles. For this reason, even after bonding, even if the remaining organic matter is deteriorated or decomposed / dissipated in a use environment higher than the bonding temperature, there is no risk of the bonding strength being lowered, and therefore the heat resistance is excellent. Yes.
  • the bonding composition of the present embodiment it is possible to realize a bonding having a bonding layer that exhibits high conductivity even by firing at a low temperature of, for example, about 150 to 200 ° C. Members can be joined together.
  • the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.
  • the surface of the member to be bonded may be subjected to a surface treatment.
  • the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.
  • the inorganic metal colloid dispersion liquid using metal particles as the inorganic particles has been described.
  • metal particles for example, tin-doped indium oxide and alumina excellent in conductivity, thermal conductivity, dielectric property, ion conductivity, etc.
  • Inorganic particles such as barium titanate and iron iron phosphate can also be used.
  • Example 1 To 200 mL of toluene (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 15 g of hexylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred well with a magnetic stirrer. While stirring, 10 g of silver nitrate (special grade reagent manufactured by Toyo Chemical Industry Co., Ltd.) was added. When silver nitrate was dissolved, 10 g of hexanoic acid (special grade grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was sequentially added, and a toluene solution of silver nitrate Was prepared.
  • toluene first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • the obtained laminate was put into a hot air circulation oven adjusted to 200 ° C., and subjected to a baking treatment by heating for 120 minutes in an air atmosphere.
  • a bond strength test (share height: 10 microns from the substrate, share tool speed: 0.01 mm / sec) was performed using a bond tester (PTR-1101 manufactured by Reska) at room temperature. It was. The bonding strength at the time of peeling was converted to the bottom area of the chip, and the results obtained are shown in Table 1.
  • Viscosity measurement The viscosity of the bonding composition 1 was measured using a cone plate viscometer (Rheometer manufactured by Anton Paar, MCR301). The measurement conditions were: measurement mode: shear mode, shear rate: 10 s ⁇ 1 , measurement jig: cone plate (CP-50-2; diameter 50 mm, angle 2 °, gap 0.045 mm), measurement temperature: 25 ° C. . The obtained results are shown in Table 1.
  • Example 2 >> 0.20 g of oleic acid (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 6.0 g dodecylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and butylamine (reagent manufactured by Wako Pure Chemical Industries, Ltd.) First grade) 2.0 g was mixed and sufficiently stirred with a magnetic stirrer. Here, 6.0 g of silver oxalate was added and thickened while stirring.
  • the obtained viscous substance was put in a constant temperature bath at 100 ° C. and reacted for about 15 minutes.
  • 10 mL of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) is added to the suspension and stirred, and then silver fine particles are precipitated and separated by centrifugation.
  • 10 mL of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was again added to the separated silver fine particles, and silver fine particles were precipitated and separated by stirring and centrifuging.
  • the resultant silver fine particles (6 g) were kneaded by adding 0.83 g of isotridecanol and 0.2 g of ricinoleic acid as a dispersion medium. This was treated at 100 hPa for 60 minutes at 40 ° C. using a rotary evaporator to obtain a bonding composition 2. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
  • Example 1 A comparative bonding composition 1 was obtained in the same manner as in Example 1 except that the amount of hexanoic acid was 20 g, and no pressure reduction treatment was performed with a desiccator. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
  • Example 2 A comparative bonding composition 2 was obtained in the same manner as in Example 2 except that the heat treatment under reduced pressure by the rotary evaporator was not performed. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
  • Example 3 To 200 mL of toluene (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 15 g of hexylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred well with a magnetic stirrer. While stirring, 10 g of silver nitrate (special grade reagent manufactured by Toyo Chemical Industry Co., Ltd.) was added. When silver nitrate was dissolved, 10 g of hexanoic acid (special grade grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was sequentially added, and a toluene solution of silver nitrate Was prepared.
  • toluene first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • the obtained laminate was put into a hot air circulation oven adjusted to 200 ° C., and subjected to a baking treatment by heating for 120 minutes in an air atmosphere.
  • a bond strength test (share height: 10 microns from the substrate, share tool speed: 0.01 mm / sec) was performed at room temperature using a bond tester (PTR-1101 manufactured by Reska). It was.
  • the bonding strength at the time of peeling was converted to the chip bottom area, and the obtained results are shown in Table 2.
  • Viscosity measurement The viscosity of the bonding composition 1 was measured using a cone plate viscometer (Rheometer manufactured by Anton Paar, MCR301). The measurement conditions were: measurement mode: shear mode, shear rate: 10 s ⁇ 1 , measurement jig: cone plate (CP-50-2; diameter 50 mm, angle 2 °, gap 0.045 mm), measurement temperature: 25 ° C. . The obtained results are shown in Table 2.
  • Example 4 0.20 g of oleic acid (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 0.60 g dodecylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and hexylamine (made by Wako Pure Chemical Industries, Ltd.) Reagent grade 1) 8.0 g was mixed and sufficiently stirred with a magnetic stirrer. Here, 6.0 g of silver oxalate was added and thickened while stirring.
  • the obtained viscous substance was put in a constant temperature bath at 100 ° C. and reacted for about 15 minutes.
  • 10 mL of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) is added to the suspension and stirred, and then silver fine particles are precipitated and separated by centrifugation.
  • 10 mL of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was again added to the separated silver fine particles, and silver fine particles were precipitated and separated by stirring and centrifuging.
  • Example 5 A bonding composition 5 was obtained in the same manner as in Example 4 except that Solsperse 17000 (manufactured by Nippon Lubrizol Co., Ltd.) was added instead of oleic acid. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
  • Example 6 Implemented except that Dispervic 140 (manufactured by Big Chemie Japan) was added instead of oleic acid and 0.70 g of diethylene glycol dibutyl ether (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added as a dispersion medium
  • Dispervic 140 manufactured by Big Chemie Japan
  • diethylene glycol dibutyl ether first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 7 The joining composition 5 was obtained in the same manner as in Example 4 except that Solsperse 11200 (manufactured by Nippon Lubrizol Co., Ltd.) was added instead of oleic acid and 0.90 g of isotridecanol as a dispersion medium was added. It was. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
  • Example 8 A joining composition 8 was obtained in the same manner as in Example 5 except that 0.30 g of isotridecanol and 0.30 g of decanol (manufactured by Wako Pure Chemical Industries, Ltd.) were added as dispersion media. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
  • Example 9 A joining composition 9 was obtained in the same manner as in Example 7 except that 0.72 g of isotridecanol and 0.18 g of 1,3-butylene glycol (manufactured by Kyowa Hakko Neochem) were added as dispersion media. . The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
  • Comparative Example 4 A comparative bonding composition 4 was obtained in the same manner as in Example 3, except that the amount of hexanoic acid was 20 g, and no pressure reduction treatment was performed with a desiccator. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
  • Comparative Example 5 >> A comparative bonding composition 5 was obtained in the same manner as in Example 4 except that the heat treatment under reduced pressure by the rotary evaporator was not performed. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
  • Comparative Example 7 A comparative bonding composition 6 was obtained in the same manner as in Example 5 except that tetradecane (a first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as the dispersion medium.
  • tetradecane a first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • Comparative Example 8 A comparative bonding composition 7 was obtained in the same manner as in Example 5 except that nonanol (a reagent first grade manufactured by Wako Pure Chemical Industries, Ltd.) was used as a dispersion medium.
  • nonanol a reagent first grade manufactured by Wako Pure Chemical Industries, Ltd.
  • the bonding temperature is as low as 200 ° C., and high bonding strength of 20 MPa or more is shown in spite of non-pressure bonding (bonding) Composition 1 and bonding composition 2).
  • the bonding strength is extremely low under the same bonding conditions (Comparative bonding composition 1).
  • the bonding strength of the comparative bonding composition 2 shows a high value of 20 Pa, it is not preferable in that the pot life is extremely short due to the large weight loss up to 100 ° C.
  • the weight reduction rate when heated from room temperature to 200 ° C. was 74 for bonding compositions 1 and 2, respectively. 0.9% and 79.1%.
  • the weight decreasing rates when heated from 200 ° C. to 300 ° C. were 11.7% and 12.4% for the bonding compositions 1 and 2, respectively.
  • the weight reduction rates when heated from 300 ° C. to 500 ° C. were 13.4% and 8.5% for the bonding compositions 1 and 2, respectively.
  • the value of the weight decrease rate when heated from room temperature to 200 ° C. is the ratio of the weight decrease Y when heated from room temperature to 200 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)

Abstract

Provided is a bonding composition with which high bonding strength can be obtained by bonding at a comparatively low temperature and a good bonded body can be obtained even in the event that the time after the application of the bonding composition to a surface to be bonded until a step of bonding using heat is long. This bonding composition, in which inorganic particles are used as a main component and an organic component is used as an auxiliary component, is characterized in that the weight reduction when the bonding composition is left for 6 hours in a room temperature atmosphere is 1.5 mass% or less, and the weight reduction when the bonding composition is heated in the atmosphere from room temperature to 100 °C at a heating rate of 10 °C/minute is 3.0 mass% or less.

Description

接合用組成物Bonding composition
 本発明は、無機粒子を主成分、有機成分を副成分とする接合用組成物に関する。 The present invention relates to a bonding composition containing inorganic particles as a main component and an organic component as a subcomponent.
 金属部品と金属部品を機械的及び/又は電気的及び又は熱的に接合するために、従来より、はんだ、導電性接着剤、銀ペースト及び異方導電性フィルム等が用いられている。これら導電性接着剤、銀ペースト及び異方導電性フィルム等は、金属部品だけでなく、セラミック部品や樹脂部品等を接合する場合に用いられることもある。例えば、LED等の発光素子の基板への接合、半導体チップの基板への接合、及びこれらの基板の更に放熱部材への接合等が挙げられる。 Conventionally, solder, a conductive adhesive, a silver paste, an anisotropic conductive film, and the like are used for mechanically and / or electrically and / or thermally joining metal parts and metal parts. These conductive adhesives, silver pastes, anisotropic conductive films, and the like may be used when joining not only metal parts but also ceramic parts and resin parts. For example, bonding of light emitting elements such as LEDs to a substrate, bonding of a semiconductor chip to a substrate, bonding of these substrates to a heat dissipation member, and the like can be given.
 なかでも、はんだ並びに金属からなる導電フィラーを含む接着剤、ペースト及びフィルムは、電気的な接続を必要とする部分の接合に用いられている。更には、金属は一般的に熱伝導性が高いため、これらはんだ並びに導電フィラーを含む接着剤、ペースト及びフィルムは、放熱性を上げるために使用される場合もある。 Among them, adhesives, pastes, and films containing conductive fillers made of solder and metal are used for joining parts that require electrical connection. Furthermore, since metals generally have high thermal conductivity, adhesives, pastes, and films containing these solders and conductive fillers may be used to increase heat dissipation.
 一方、例えば、LED等の発光素子を用いて高輝度の照明デバイスや発光デバイスを作製する場合、或いは、パワーデバイスと言われる高温で高効率の動作をする半導体素子を用いて半導体デバイスを作製する場合等には、発熱量が上がる傾向にある。デバイスや素子の効率を向上させて発熱を減らす試みも行われているが、現状では十分な成果が出ておらず、デバイスや素子の使用温度が上がっているのが実情である。 On the other hand, for example, when a high-luminance lighting device or a light-emitting device is manufactured using a light-emitting element such as an LED, or a semiconductor device is manufactured using a semiconductor element that operates at a high temperature and is called a power device. In some cases, the amount of heat generation tends to increase. Attempts have been made to improve the efficiency of devices and elements to reduce heat generation. However, at present, sufficient results have not been achieved, and the operating temperature of devices and elements has risen.
 また、接合時におけるデバイスの損傷を防ぐという観点からは、低い接合温度(例えば300℃以下)で十分な接合強度を確保できる接合材が求められている。したがって、デバイスや素子等を接合するための接合材に対しては、接合温度の低下とともに、接合後におけるデバイスの動作による使用温度の上昇に耐えて十分な接合強度を維持できる耐熱性が求められているが、従来からの接合材では十分な対応ができないことが多い。例えば、はんだは、金属を融点以上に加熱する工程(リフロー工程)を経て部材同士を接合するが、一般的に融点はその組成に固有であるため、耐熱温度を上げようとすると加熱(接合)温度も上がってしまう。 Also, from the viewpoint of preventing device damage during bonding, there is a demand for a bonding material that can ensure sufficient bonding strength at a low bonding temperature (for example, 300 ° C. or lower). Therefore, the bonding material for bonding devices and elements is required to have heat resistance that can withstand the increase in operating temperature due to the operation of the device after bonding and maintain sufficient bonding strength as the bonding temperature decreases. However, there are many cases where conventional bonding materials are not sufficient. For example, solder joins members through a process of heating the metal to the melting point or higher (reflow process). Generally, the melting point is inherent to the composition, so heating (joining) when trying to increase the heat-resistant temperature. The temperature will rise.
 更に、はんだを用いて素子や基板を数層重ね合わせて接合する場合、重ね合わせる層の数だけ加熱工程を経る必要があり、既に接合した部分の溶融を防ぐためには、次の接合に用いるはんだの融点(接合温度)を下げる必要があり、また、重ね合わせる層の数だけはんだ組成の種類が必要になり、取扱いが煩雑になる。 Furthermore, when several layers of elements and substrates are bonded using solder, it is necessary to go through the heating process for the number of layers to be overlapped. In order to prevent melting of the already bonded portions, the solder used for the next bonding It is necessary to lower the melting point (joining temperature) of the solder, and the number of types of solder composition is required by the number of layers to be overlaid, which makes handling complicated.
 他方、導電性接着剤、銀ペースト及び異方導電性フィルムでは、含有するエポキシ樹脂等の熱硬化を利用して部材同士を接合するが、得られたデバイスや素子の使用温度が上がると樹脂成分が分解、劣化することがある。例えば、特許文献1(特開2008-63688号公報)においては、接合材の主材として用いて被接合部材同士を接合した時により高い接合強度が得られるようにした微粒子が提案されているが、使用温度上昇時における樹脂成分の分解、劣化の問題は解消されていない。 On the other hand, in the conductive adhesive, silver paste and anisotropic conductive film, the members are joined together by using thermosetting such as epoxy resin contained, but when the use temperature of the obtained device or element rises, the resin component May decompose and deteriorate. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-63688) proposes fine particles that can be used as a main material of a bonding material so that higher bonding strength can be obtained when bonded members are bonded to each other. The problem of decomposition and deterioration of the resin component at the time of use temperature rise has not been solved.
 また、高い使用温度において用いられる高温はんだには、従来より鉛を含むはんだが用いられている。鉛は有毒性があるため、はんだは鉛フリー化への流れが顕著である。高温はんだには他に良い代替材料が存在しないため、依然として鉛はんだが使用されているが、環境問題の観点から、鉛を使用しない接合材が切望されている。 In addition, a solder containing lead has been conventionally used as a high-temperature solder used at a high operating temperature. Since lead is toxic, the trend toward solder-free solder is remarkable. Since there is no other good alternative material for high-temperature solder, lead solder is still used, but from the viewpoint of environmental problems, a bonding material that does not use lead is eagerly desired.
 近年、高温はんだの代替材料として、銀、金などの貴金属を中心とする金属ナノ粒子を用いた接合材が開発されている。例えば、特許文献2(特開2008-178911号公報)においては、平均粒径が1nm以上50μm以下の金属酸化物、金属炭酸塩、又はカルボン酸金属塩の粒子から選ばれる1種以上の金属粒子前駆体と有機物からなる還元剤とを含み、金属粒子前駆体の含有量が接合用材料中における全質量部において50質量部を超えて99質量部以下であることを特徴とする接合用組成物が開示され、当該接合用材料に関し、還元剤の400℃までの加熱における熱重量減少を99%以上とすることで、良好な金属接合が可能であるということが示されている。 In recent years, bonding materials using metal nanoparticles centered on precious metals such as silver and gold have been developed as alternative materials for high-temperature solder. For example, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-178911), one or more metal particles selected from metal oxide, metal carbonate, or carboxylic acid metal salt particles having an average particle diameter of 1 nm to 50 μm. A bonding composition comprising a precursor and a reducing agent comprising an organic substance, wherein the content of the metal particle precursor is more than 50 parts by mass and 99 parts by mass or less in the total mass part in the bonding material. Is disclosed, and regarding the joining material, it is shown that good metal joining is possible by setting the reduction in thermal weight of the reducing agent to 400 ° C. to 99% or more.
 しかしながら、実際に接合用組成物を電子デバイス等の接合用途として用いる場合、被接合面に接合用組成物を塗布してから接合する部材を載せて焼成するまでに時間を要することもあり、その間に接合用組成物の特性が変化すると(例えば、必要な有機物等が揮発等すると)、所望の接合強度を実現することができない。即ち、量産ラインで使用可能な接合用組成物は、低い接合温度及び高い接合強度に加え、長い可使時間(被接合面に塗布してから加熱による接合工程までに許容される時間)を具備する必要がある。ここで、上記特許文献2では、可使時間については全く考慮されておらず、上記要件を全て具備する接合用組成物は存在しないのが実情である。 However, when the bonding composition is actually used as a bonding application for an electronic device or the like, it may take time to apply the bonding composition on the surface to be bonded and then place the member to be bonded and fire it. If the characteristics of the bonding composition are changed (for example, if necessary organic substances are volatilized, etc.), the desired bonding strength cannot be realized. That is, a bonding composition that can be used in a mass production line has a long working time (time allowed from the application to the bonded surface to the bonding process by heating) in addition to the low bonding temperature and high bonding strength. There is a need to. Here, in Patent Document 2, the pot life is not taken into consideration at all, and there is no bonding composition having all the above requirements.
特開2008-63688号公報JP 2008-63688 A 特開2008-178911号公報JP 2008-178911 A
 以上のような状況に鑑み、本発明の目的は、比較的低温での接合によって高い接合強度が得られると共に、被接合面へ接合用組成物を塗布した後、加熱による接合工程までの時間(可使時間)が長い場合であっても、良好な接合体を得ることができる接合用組成物を提供することにある。 In view of the situation as described above, the object of the present invention is to obtain a high bonding strength by bonding at a relatively low temperature, and after applying the bonding composition to the surfaces to be bonded, the time until the bonding step by heating ( An object of the present invention is to provide a bonding composition capable of obtaining a good bonded body even when the pot life is long.
 本発明者は、上記目的を達成すべく接合用組成物の重量減少及び組成等について鋭意研究を重ねた結果、有機成分を副成分とする接合用組成物に関し、有機成分等に起因する重量減少を最適化することが、上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。 As a result of intensive research on the weight reduction and composition etc. of the bonding composition to achieve the above object, the present inventor has found that the weight reduction due to the organic component etc. is related to the bonding composition having the organic component as a subcomponent. The inventors have found that optimizing the value is extremely effective in achieving the above object, and have reached the present invention.
 即ち、本発明は、
 無機粒子及び有機成分を含む接合用組成物であって、
 前記接合用組成物を室温の大気中に6時間放置した際の重量減少が1.5質量%以下であり(重量減少要件1)、
 前記接合用組成物を大気雰囲気で室温から100℃まで昇温速度10℃/分で加熱したときの重量減少が3.0質量%以下であること(重量減少要件2)、
 を特徴とする接合用組成物を提供する。
That is, the present invention
A bonding composition comprising inorganic particles and an organic component,
The weight loss when the bonding composition is left in the atmosphere at room temperature for 6 hours is 1.5% by mass or less (weight reduction requirement 1),
The weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min in the air atmosphere is 3.0% by mass or less (weight reduction requirement 2);
A bonding composition is provided.
 本発明の接合用組成物の重量減少が上記の要件を具備することで、室温下の大気中で放置した際の成分の揮発が少なくなり、継時的な粘度の変化を抑制することができる。その結果、被接合面に塗布した接合用組成物の乾燥を防止することができ、接合用組成物の可使時間を長くすることができる。 Since the weight reduction of the bonding composition of the present invention satisfies the above-described requirements, the volatilization of components when left in the atmosphere at room temperature is reduced, and the change in viscosity over time can be suppressed. . As a result, drying of the bonding composition applied to the surfaces to be bonded can be prevented, and the pot life of the bonding composition can be increased.
 接合用組成物を室温の大気中に6時間放置した際の重量減少が1.5質量%を超える場合は、成分の揮発により粘度が上昇し、接合用組成物のハンドリング性が劣化する原因となる。なお、接合用組成物の印刷性(塗布性)を長く保持するためには、室温の大気中に6時間放置した際の重量減少を1.0質量%以下とすることがより好ましい。 If the weight loss when the bonding composition is left in the air at room temperature for 6 hours exceeds 1.5% by mass, the viscosity increases due to volatilization of the components, and the handling property of the bonding composition deteriorates. Become. In order to maintain the printability (coating property) of the bonding composition for a long time, it is more preferable that the weight loss when left in the air at room temperature for 6 hours is 1.0% by mass or less.
 接合用組成物を大気雰囲気で室温から100℃まで昇温速度10℃/分で加熱したときの重量減少が3.0質量%よりも大きな場合、室温で激しく成分が揮発して粘度が変化するため、接合用組成物のハンドリング性が悪くなる。ここで、接合用組成物を大気雰囲気で室温から100℃まで昇温速度10℃/分で加熱したときの重量減少は2.0質量%以下であることがより好ましく、1.0質量%以下であることが更に好ましい。 When the weight loss when the bonding composition is heated from room temperature to 100 ° C. in the air atmosphere at a heating rate of 10 ° C./min is larger than 3.0% by mass, the components volatilize violently at room temperature and the viscosity changes. Therefore, the handling property of the bonding composition is deteriorated. Here, the weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min in an air atmosphere is more preferably 2.0% by mass or less, and 1.0% by mass or less. More preferably.
 本発明の接合用組成物を構成する無機粒子の粒径は、融点降下が生じるようなナノメートルサイズ、望ましくは1~200nmが適切であるが、必要に応じてミクロンメートルサイズの粒子を添加することも可能である。この場合、ナノメートルサイズの粒子がミクロンメートルサイズの粒子の周囲で融点降下することにより、接合が達成される。 The particle size of the inorganic particles constituting the bonding composition of the present invention is suitably a nanometer size that desirably causes a melting point drop, desirably 1 to 200 nm, but if necessary, particles of a micrometer size are added. It is also possible. In this case, bonding is achieved by the nanometer sized particles dropping in melting point around the micrometer sized particles.
 本発明の接合用組成物は、前記接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少が20.0質量%以下であること、が好ましい(重量減少要件3)。 The bonding composition of the present invention preferably has a weight loss of 20.0% by mass or less when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a heating rate of 10 ° C./min. (Weight reduction requirement 3).
 接合用組成物を大気雰囲気で500℃まで加熱すると、有機物等が酸化分解され、大部分はガス化されて消失する。接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少が20質量%を超える場合、焼成後に有機物が焼成層(接合層)中に残存して空隙を生じるため、接合強度の低下及び焼成層(接合層)の導電性を低下させる原因となる。これに対し、接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少を20質量%以下とすることで、200℃程度の低温接合によって導電性の高い焼成層(接合層)を得ることができる。一方で、接合用組成物の重量減少が小さ過ぎるとコロイド状態での分散安定性が損なわれるため、接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少は0.1~20.0質量%であることが好ましく、0.5~18.0質量%であることがより好ましい。 When the bonding composition is heated to 500 ° C. in an air atmosphere, organic substances and the like are oxidized and decomposed, and most of them are gasified and lost. When the weight loss when the bonding composition is heated from room temperature to 500 ° C. in the air atmosphere at a heating rate of 10 ° C./min exceeds 20% by mass, the organic matter remains in the fired layer (bonding layer) after firing. Since voids are generated, it causes a decrease in bonding strength and a decrease in the conductivity of the fired layer (bonding layer). On the other hand, by reducing the weight loss when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a heating rate of 10 ° C./min. High firing layer (bonding layer) can be obtained. On the other hand, when the weight loss of the bonding composition is too small, the dispersion stability in the colloidal state is impaired. Therefore, when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere. The weight loss is preferably 0.1 to 20.0 mass%, more preferably 0.5 to 18.0 mass%.
 また、本発明の接合用組成物は、前記無機粒子が、金、銀、銅、ニッケル、ビスマス、スズ及び白金族元素よりなる群から選択される少なくとも1種類の金属で構成される金属粒子であること、が好ましい。このような構成による接合用組成物を用いれば、優れた接合強度や耐熱性を得ることができる。 In the bonding composition of the present invention, the inorganic particles are metal particles composed of at least one metal selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, and a platinum group element. It is preferable. By using a bonding composition having such a configuration, excellent bonding strength and heat resistance can be obtained.
 また、本発明の接合用組成物は、前記有機成分が、アミン及び/又はカルボン酸を含むこと、が好ましい。アミンの一分子内におけるアミノ基は、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、アミノ基は、それぞれアルカリ性的性質を示し易い。したがって、アミンは、本発明の接合用組成物中で、無機粒子の表面の少なくとも一部に局在化(付着)すると(即ち、無機粒子の表面の少なくとも一部を被覆すると)、有機成分と無機粒子とを十分に親和させることができ、無機粒子同士の凝集を防ぐことができる(分散性を向上させる)。即ち、アミンは官能基が無機金属粒子の表面に適度の強さで吸着し、無機金属粒子同士の相互の接触を妨げるため、保管状態での無機金属粒子の安定性に寄与する。また、接合温度においては無機金属粒子の表面から移動及び又は揮発することにより、無機金属粒子同士の融着や無機金属粒子と基材との接合を促進するものと考えられる。 In the bonding composition of the present invention, it is preferable that the organic component contains an amine and / or a carboxylic acid. An amino group in one molecule of the amine has a relatively high polarity and is likely to cause an interaction due to hydrogen bonding, but a portion other than these functional groups has a relatively low polarity. Furthermore, each amino group tends to exhibit alkaline properties. Therefore, when the amine is localized (attached) to at least a part of the surface of the inorganic particle (that is, coats at least a part of the surface of the inorganic particle) in the bonding composition of the present invention, The inorganic particles can be made to have sufficient affinity, and aggregation between the inorganic particles can be prevented (dispersibility is improved). That is, the functional group of amine is adsorbed on the surface of the inorganic metal particles with an appropriate strength and prevents mutual contact between the inorganic metal particles, thereby contributing to the stability of the inorganic metal particles in the storage state. In addition, it is considered that the bonding temperature between inorganic metal particles and the bonding between the inorganic metal particles and the base material are promoted by moving and / or volatilizing from the surface of the inorganic metal particles at the bonding temperature.
 また、カルボン酸の一分子内におけるカルボキシル基は、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、カルボキシル基は、酸性的性質を示し易い。また、カルボン酸は、本発明の接合用組成物中で、無機粒子の表面の少なくとも一部に局在化(付着)すると(即ち、無機粒子の表面の少なくとも一部を被覆すると)、有機成分と無機粒子とを十分に親和させることができ、無機粒子同士の凝集を防ぐことができる(分散性を向上させる)。カルボキシル基は無機粒子の表面に配位しやすく、当該無機粒子同士の凝集抑制効果を高めることができる。また、疎水基と親水基が共存することで、接合用組成物と接合基材との濡れ性を飛躍的に高める効果も存在する。 In addition, a carboxyl group in one molecule of carboxylic acid has a relatively high polarity and easily causes an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties. In addition, when the carboxylic acid is localized (attached) to at least a part of the surface of the inorganic particles (that is, covers at least a part of the surface of the inorganic particles) in the bonding composition of the present invention, the organic component And the inorganic particles can be sufficiently made to adhere to each other, and aggregation of the inorganic particles can be prevented (dispersibility is improved). The carboxyl group is easily coordinated on the surface of the inorganic particles, and the aggregation suppressing effect between the inorganic particles can be enhanced. Moreover, the coexistence of the hydrophobic group and the hydrophilic group also has an effect of dramatically increasing the wettability between the bonding composition and the bonding substrate.
 また、必要に応じて分散媒が添加された場合においても、有機成分が分散剤の作用をするため、分散媒中における無機粒子の分散状態が著しく向上する。即ち、本発明の接合用組成物によれば、無機金属粒子が凝集しにくく、塗膜中でも無機金属粒子の分散性がよく、均一に融着して強い接合強度が得られる。 Further, even when a dispersion medium is added as necessary, the organic component acts as a dispersant, so that the dispersion state of the inorganic particles in the dispersion medium is remarkably improved. That is, according to the bonding composition of the present invention, the inorganic metal particles are less likely to aggregate, the dispersibility of the inorganic metal particles is good even in the coating film, and uniform bonding is achieved to obtain a strong bonding strength.
 ここで、本発明の接合用組成物は、より具体的には、無機粒子と有機成分とで構成されるコロイド粒子を主成分とする組成物であるが、更に分散媒とを含むコロイド分散液であってもよい。「分散媒」は上記コロイド粒子を分散液中に分散させるものであるが、上記コロイド粒子の構成成分の一部は「分散媒」に溶解していてもよい。なお、「主成分」とは、構成成分のうちの最も含有量の多い成分のことをいう。 Here, the bonding composition of the present invention is more specifically a composition mainly composed of colloidal particles composed of inorganic particles and organic components, but further contains a dispersion medium. It may be. The “dispersion medium” is used to disperse the colloidal particles in a dispersion, but some of the constituent components of the colloidal particles may be dissolved in the “dispersion medium”. The “main component” means a component having the highest content among the constituent components.
 また、本発明の接合用組成物は、SP値が10以上の有機物が減圧下で除去されていること、が好ましい。SP値とは、溶解パラメーター(Solubility Parameter)の値であり、大まかには分子の集まる強さを示している。減圧下で低沸点成分を除去すると、無機粒子を保護する目的で添加される成分も一部除去されるが、主な目的は、無機粒子の製造工程において無機粒子を沈降・凝集させるために用いられるSP値が10以上の有機物を除去することである。なお、本発明の接合用組成物における「SP値が10以上の有機物」は、概ね0.5質量%以下であることが好ましい。 Further, in the bonding composition of the present invention, it is preferable that an organic substance having an SP value of 10 or more is removed under reduced pressure. The SP value is a value of a solubility parameter, and roughly indicates the strength with which molecules are gathered. When components with low boiling points are removed under reduced pressure, some of the components added for the purpose of protecting the inorganic particles are also removed, but the main purpose is to use them to precipitate and agglomerate inorganic particles in the production process of inorganic particles. The organic compound having an SP value of 10 or more is removed. The “organic matter having an SP value of 10 or more” in the bonding composition of the present invention is preferably approximately 0.5% by mass or less.
 本発明によれば、比較的低温での接合によって高い接合強度が得られると共に、被接合面へ接合用組成物を塗布した後、加熱による接合工程までの時間(可使時間)が長い場合であっても、良好な接合体を得ることができる接合用組成物を提供することができる。 According to the present invention, high bonding strength can be obtained by bonding at a relatively low temperature, and the time until the bonding process by heating (potential time) is long after the bonding composition is applied to the surfaces to be bonded. Even if it exists, the composition for joining which can obtain a favorable joined body can be provided.
 以下、本発明の接合用組成物の好適な一実施形態について詳細に説明する。なお、以下の説明では、本発明の一実施形態を示すに過ぎず、これらによって本発明が限定されるものではなく、また、重複する説明は省略することがある。 Hereinafter, a preferred embodiment of the bonding composition of the present invention will be described in detail. In addition, in the following description, only one embodiment of the present invention is shown, and the present invention is not limited by these, and redundant description may be omitted.
(1)接合用組成物
 本実施形態の接合用組成物は、無機粒子を主成分、有機成分を副成分とする。以下においてこれら各成分について説明する。
(1) Bonding composition The bonding composition of the present embodiment includes inorganic particles as a main component and an organic component as a subcomponent. These components will be described below.
(1-1)無機粒子
 本実施形態の接合用組成物の無機粒子としては、特に限定されるものではないが、本実施形態の接合用組成物を用いて得られる接着層の導電性を良好にすることができるため、亜鉛よりもイオン化傾向が小さい(貴な)金属で構成される金属粒子であるのが好ましい。
(1-1) Inorganic particles The inorganic particles of the bonding composition of the present embodiment are not particularly limited, but the conductivity of the adhesive layer obtained using the bonding composition of the present embodiment is good. Therefore, it is preferable that the metal particles are composed of a (noble) metal having a smaller ionization tendency than zinc.
 かかる金属としては、例えば金、銀、銅、ニッケル、ビスマス、スズ、鉄並びに白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)のうちの少なくとも1種が挙げられる。上記金属としては、金、銀、銅、ニッケル、ビスマス、スズ又は白金族元素よりなる群から選択される少なくとも1種の金属の粒子であることが好ましく、更には、銅又は銅よりもイオン化傾向が小さい(貴な)金属、即ち、金、白金、銀及び銅のうちの少なくとも1種であるのが好ましい。これらの金属は単独で用いても、2種以上を併用して用いてもよく、併用する方法としては、複数の金属を含む合金粒子を用いる場合や、コア-シェル構造や多層構造を有する金属粒子を用いる場合がある。 Examples of the metal include at least one of gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum). The metal is preferably particles of at least one metal selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or platinum group elements, and more preferably has a tendency to ionize than copper or copper. Is preferably a small (noble) metal, that is, at least one of gold, platinum, silver and copper. These metals may be used singly or in combination of two or more. Methods for using these metals in combination include the use of alloy particles containing a plurality of metals, metals having a core-shell structure or a multilayer structure. Particles may be used.
 例えば、上記接合用組成物の無機粒子として銀粒子を用いる場合、本実施形態の接合用組成物を用いて形成した接着層の導電率は良好となるが、マイグレーションの問題を考慮して、銀及びその他の金属からなる接合用組成物を用いることによって、マイグレーションを起こりにくくすることができる。当該「その他の金属」としては、上述のイオン化列が水素より貴である金属、即ち金、銅、白金、パラジウムが好ましい。 For example, when silver particles are used as the inorganic particles of the bonding composition, the conductivity of the adhesive layer formed using the bonding composition of the present embodiment is good, but silver is considered in consideration of migration problems. Further, by using a bonding composition made of other metals, migration can be made difficult to occur. The “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
 本実施形態の接合用組成物における無機粒子(乃至は無機コロイド粒子)の平均粒径は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、融点降下が生じるような平均粒径を有するのが好ましく、例えば、1~200nmであればよい。更には、2~100nmであるのが好ましい。無機粒子の平均粒径が1nm以上であれば、良好な接着層を形成可能な接合用組成物が得られ、無機粒子製造がコスト高とならず実用的である。また、200nm以下であれば、無機粒子の分散性が経時的に変化しにくく、好ましい。 The average particle diameter of the inorganic particles (or inorganic colloidal particles) in the bonding composition of the present embodiment is not particularly limited as long as it does not impair the effects of the present invention. It preferably has an average particle diameter, and may be, for example, 1 to 200 nm. Further, it is preferably 2 to 100 nm. If the average particle diameter of the inorganic particles is 1 nm or more, a bonding composition capable of forming a good adhesive layer is obtained, and the production of the inorganic particles is practical without increasing the cost. Moreover, if it is 200 nm or less, the dispersibility of an inorganic particle does not change easily with time, and it is preferable.
 また、必要に応じてミクロンメートルサイズの無機粒子を併用して添加することも可能である。そのような場合は、ナノメートルサイズの無機粒子がミクロンメートルサイズの無機粒子の周囲で融点降下することにより、接合できる。 Also, if necessary, it is possible to add micrometer-sized inorganic particles in combination. In such a case, the nanometer-sized inorganic particles can be bonded by dropping the melting point around the micrometer-sized inorganic particles.
 なお、本実施形態の接合用組成物における無機粒子の粒径は、一定でなくてもよい。また、接合用組成物が、任意成分として、後述する分散媒、高分子分散剤、樹脂成分、有機溶剤、増粘剤又は表面張力調整剤等を含む場合、平均粒径が200nm超の無機コロイド粒子成分を含む場合があるが、凝集を生じたりせず、本発明の効果を著しく損なわない成分であればかかる200nm超の平均粒径を有する粒子成分を含んでもよい。 Note that the particle size of the inorganic particles in the bonding composition of the present embodiment may not be constant. In addition, when the bonding composition includes, as an optional component, a dispersion medium, a polymer dispersant, a resin component, an organic solvent, a thickener, a surface tension adjuster, or the like, which will be described later, an inorganic colloid having an average particle size of more than 200 nm Although a particle component may be included, the particle component having an average particle diameter exceeding 200 nm may be included as long as the component does not cause aggregation and does not significantly impair the effects of the present invention.
 ここで、本実施形態の接合用組成物(無機コロイド分散液)における無機粒子の粒径は、動的光散乱法、小角X線散乱法、広角X線回折法で測定することができる。ナノサイズの金属粒子の融点降下を示すためには、広角X線回折法で求めた結晶子径が適当である。例えば広角X線回折法では、より具体的には、理学電機(株)製のRINT-UltimaIIIを用いて、回折法で2θが30~80°の範囲で測定することができる。この場合、試料は、中央部に深さ0.1~1mm程度の窪みのあるガラス板に表面が平坦になるように薄くのばして測定すればよい。また、理学電機(株)製のJADEを用い、得られた回折スペクトルの半値幅を下記のシェラー式に代入することにより算出された結晶子径(D)を粒径とすればよい。
  D=Kλ/Bcosθ
ここで、K:シェラー定数(0.9)、λ:X線の波長、B:回折線の半値幅、θ:ブラッグ角である。
Here, the particle size of the inorganic particles in the bonding composition (inorganic colloidal dispersion) of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method. In order to show the melting point drop of the nano-sized metal particles, the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate. For example, in the wide-angle X-ray diffraction method, more specifically, RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2θ in the range of 30 to 80 ° by the diffraction method. In this case, the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center. The crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
D = Kλ / Bcosθ
Here, K: Scherrer constant (0.9), λ: wavelength of X-ray, B: half width of diffraction line, θ: Bragg angle.
(1-2)有機成分
 本実施形態の接合用組成物において、無機粒子の表面の少なくとも一部に付着している有機成分、即ち、無機コロイド粒子中の「有機成分」は、いわゆる分散剤として上記無機粒子とともに実質的に無機コロイド粒子を構成する。当該有機成分には、金属中に最初から不純物として含まれる微量有機物、後述する製造過程で混入して金属成分に付着した微量有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、無機粒子に微量付着した有機物等は含まれない概念である。なお、上記「微量」とは、具体的には、無機コロイド粒子中1質量%未満が意図される。
(1-2) Organic Component In the bonding composition of the present embodiment, the organic component adhering to at least a part of the surface of the inorganic particles, that is, the “organic component” in the inorganic colloidal particles is used as a so-called dispersant. The inorganic particles substantially constitute inorganic colloidal particles. The organic components include trace organic substances contained in the metal as impurities from the beginning, trace organic substances adhering to the metal components mixed in the manufacturing process described later, residual reducing agents that could not be removed in the cleaning process, residual dispersants, etc. As described above, it is a concept that does not include an organic substance or the like adhered to a minute amount of inorganic particles. The “trace amount” is specifically intended to be less than 1% by mass in the inorganic colloidal particles.
 上記有機成分は、無機粒子を被覆して当該無機粒子の凝集を防止するとともに無機コロイド粒子を形成することが可能な有機物であり、被覆の形態については特に規定しないが、本実施形態においては、分散性および導電性等の観点から、アミン及びカルボン酸を含む。なお、これらの有機成分は、無機粒子と化学的あるいは物理的に結合している場合、アニオンやカチオンに変化していることも考えられ、本実施形態においては、これらの有機成分に由来するイオンや錯体等も上記有機成分に含まれる。 The organic component is an organic substance that can coat inorganic particles to prevent aggregation of the inorganic particles and form inorganic colloidal particles, and the form of the coating is not particularly defined, but in this embodiment, From the viewpoints of dispersibility and conductivity, an amine and a carboxylic acid are included. In addition, when these organic components are chemically or physically bonded to the inorganic particles, it is considered that they are changed to anions and cations. In this embodiment, ions derived from these organic components are used. And organic complexes are also included in the organic components.
 アミンとしては、直鎖状であっても分岐鎖状であってもよく、また、側鎖を有していてもよい。例えば、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘキシルアミン等のアルキルアミン(直鎖状アルキルアミン、側鎖を有していてもよい。)、シクロペンチルアミン、シクロヘキシルアミン等のシクロアルキルアミン、アニリン、アリルアミン等の第1級アミン、ジプロピルアミン、ジブチルアミン、ピペリジン、ヘキサメチレンイミン等の第2級アミン、トリプロピルアミン、ジメチルプロパンジアミン、シクロヘキシルジメチルアミン、ピリジン、キノリン等の第3級アミン等が挙げられる。 The amine may be linear or branched, and may have a side chain. For example, alkylamines such as butylamine, pentylamine, hexylamine, and hexylamine (which may have a linear alkylamine or a side chain), cycloalkylamines such as cyclopentylamine and cyclohexylamine, aniline, and allylamine Secondary amines such as primary amines, dipropylamine, dibutylamine, piperidine and hexamethyleneimine, and tertiary amines such as tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, pyridine and quinoline. .
 上記アミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含む化合物であってもよい。また、上記アミンは、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常温での沸点が300℃以下、更には250℃以下であることが好ましい。 The amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
 本実施形態の接合用組成物は、本発明の効果を損なわない範囲であれは、上記のアミンに加えて、カルボン酸を含んでいてもよい。カルボン酸の一分子内におけるカルボキシル基が、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、カルボキシル基は、酸性的性質を示し易い。また、カルボン酸は、本実施形態の接合用組成物中で、無機粒子の表面の少なくとも一部に局在化(付着)すると(即ち、無機粒子の表面の少なくとも一部を被覆すると)、有機成分と無機粒子とを十分に親和させることができ、無機粒子同士の凝集を防ぐ(分散性を向上させる。)。 The bonding composition of the present embodiment may contain a carboxylic acid in addition to the above amine as long as the effects of the present invention are not impaired. The carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties. In addition, when the carboxylic acid is localized (attached) to at least a part of the surface of the inorganic particles (that is, covers at least a part of the surface of the inorganic particles) in the bonding composition of the present embodiment, the organic compound is organic. The component and the inorganic particles can be made sufficiently compatible to prevent aggregation of the inorganic particles (improve dispersibility).
 カルボン酸としては、少なくとも1つのカルボキシル基を有する化合物を広く用いることができ、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、オレイン酸等が挙げられる。カルボン酸の一部のカルボキシル基が金属イオンと塩を形成していてもよい。なお、当該金属イオンについては、2種以上の金属イオンが含まれていてもよい。 As the carboxylic acid, compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid. A part of carboxyl groups of the carboxylic acid may form a salt with a metal ion. In addition, about the said metal ion, 2 or more types of metal ions may be contained.
 上記カルボン酸は、例えば、アミノ基、ヒドロキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、カルボキシル基以外の官能基を含む化合物であってもよい。この場合、カルボキシル基の数が、カルボキシル基以外の官能基の数以上であることが好ましい。また、上記カルボン酸は、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常温での沸点が300℃以下、更には250℃以下であることが好ましい。また、アミンとカルボン酸はアミドを形成する。当該アミド基も銀粒子表面に適度に吸着するため、有機成分にはアミド基が含まれていてもよい。 The carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. In this case, the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups. Moreover, the said carboxylic acid may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower. Also, amines and carboxylic acids form amides. Since the amide group is also adsorbed moderately on the surface of the silver particle, the organic component may contain an amide group.
 本実施形態の接合用組成物中における無機コロイド中の有機成分の含有量は、0.5~50質量%であることが好ましい。有機成分含有量が0.5質量%以上であれば、得られる接合用組成物の貯蔵安定性が良くなる傾向があり、50質量%以下であれば、接合用組成物の導電性が良い傾向がある。有機成分のより好ましい含有量は1~30質量%であり、更に好ましい含有量は2~15質量%である。 The content of the organic component in the inorganic colloid in the bonding composition of the present embodiment is preferably 0.5 to 50% by mass. If the organic component content is 0.5% by mass or more, the storage stability of the resulting bonding composition tends to be improved, and if it is 50% by mass or less, the conductivity of the bonding composition tends to be good. There is. A more preferable content of the organic component is 1 to 30% by mass, and a more preferable content is 2 to 15% by mass.
 アミンとカルボン酸とを併用する場合の組成比(質量)としては、1/99~99/1の範囲で任意に選択することができるが、好ましくは20/80~98/2であり、更に好ましくは30/70~97/3である。なお、アミン又はカルボン酸は、それぞれ複数種類のアミン又はカルボン酸を用いてもよい。 The composition ratio (mass) when the amine and carboxylic acid are used in combination can be arbitrarily selected within the range of 1/99 to 99/1, preferably 20/80 to 98/2, The ratio is preferably 30/70 to 97/3. As the amine or carboxylic acid, a plurality of types of amines or carboxylic acids may be used.
 本実施形態の接合用組成物には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、分散媒、高分子分散剤、例えばバインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。 In addition to the components described above, the bonding composition of the present embodiment is provided with functions such as appropriate viscosity, adhesion, drying properties, and printability according to the intended use within a range that does not impair the effects of the present invention. In order to do so, a dispersion medium, a polymer dispersant, for example, an oligomer component that serves as a binder, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), a surfactant, a thickening agent. You may add arbitrary components, such as an agent or a surface tension regulator. Such optional components are not particularly limited.
 任意成分のうちの分散媒としては、本発明の効果を損なわない範囲で種々のものを使用可能であり、例えば炭化水素及びアルコール等が挙げられる。可使時間を長く維持するという観点(即ち室温で揮発しにくいという観点)から、沸点が200℃以上のものが好ましい。但し、1.0%以下の含有量であれば、沸点が200℃以下の分散媒を含んでもよい。 As the dispersion medium of the optional components, various types can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols. From the viewpoint of maintaining the pot life for a long time (that is, from the viewpoint of being less volatile at room temperature), those having a boiling point of 200 ° C. or higher are preferred. However, as long as the content is 1.0% or less, a dispersion medium having a boiling point of 200 ° C. or less may be included.
 炭化水素としては、脂肪族炭化水素、環状炭化水素、脂環式炭化水素及び不飽和炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the hydrocarbon include aliphatic hydrocarbons, cyclic hydrocarbons, alicyclic hydrocarbons, unsaturated hydrocarbons, and the like, and each may be used alone or in combination of two or more.
 脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。 Examples of the aliphatic hydrocarbon include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
 環状炭化水素としては、例えば、トルエン、キシレン等が挙げられる。 Examples of cyclic hydrocarbons include toluene and xylene.
 脂環式炭化水素としては、例えば、リモネン、ジペンテン、テルピネン、ターピネン(テルピネンともいう。)、ネソール、シネン、オレンジフレーバー、テルピノレン、ターピノレン(テルピノレンともいう。)、フェランドレン、メンタジエン、テレベン、サイメン、ジヒドロサイメン、モスレン、カウツシン、カジェプテン、オイリメン、ピネン、テレビン、メンタン、ピナン、テルペン、シクロヘキサン等が挙げられる。 Examples of the alicyclic hydrocarbons include limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferrandylene, mentadiene, teleben, cymene, Examples include dihydrocymene, mossene, kautssin, cajeptene, oilimene, pinene, turpentine, menthane, pinane, terpene, cyclohexane and the like.
 不飽和炭化水素としては、例えば、エチレン、アセチレン、ベンゼン、1-ヘキセン、1-オクテン、4-ビニルシクロヘキセン、テルペン系アルコール、アリルアルコール、オレイルアルコール、2-パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、チアンシ酸、リシノール酸、リノール酸、リノエライジン酸、リノレン酸、アラキドン酸、アクリル酸、メタクリル酸、没食子酸及びサリチル酸等が挙げられる。 Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, 1-hexene, 1-octene, 4-vinylcyclohexene, terpene alcohol, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, petrothelic acid, oleic acid, and elaidin. Examples include acid, thianic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, and salicylic acid.
 これらのなかでも、水酸基を有する不飽和炭化水素が好ましい。水酸基は無機粒子の表面に配位しやすく、当該無機粒子の凝集を抑制することができる。水酸基を有する不飽和炭化水素としては、例えば、テルペン系アルコール、アリルアルコール、オレイルアルコール、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。好ましくは、水酸基を有する不飽和脂肪酸であり、例えば、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。 Of these, unsaturated hydrocarbons having a hydroxyl group are preferred. Hydroxyl groups are easily coordinated on the surface of the inorganic particles, and aggregation of the inorganic particles can be suppressed. Examples of the unsaturated hydrocarbon having a hydroxyl group include terpene alcohol, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, and salicylic acid. Preferably, it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid and salicylic acid.
 前記不飽和炭化水素はリシノール酸であることが好ましい。リシノール酸はカルボキシル基とヒドロキシル基とを有し、無機粒子の表面に吸着して当該無機粒子を均一に分散させると共に、無機粒子の融着を促進する。 The unsaturated hydrocarbon is preferably ricinoleic acid. Ricinoleic acid has a carboxyl group and a hydroxyl group and is adsorbed on the surface of the inorganic particles to uniformly disperse the inorganic particles and promote fusion of the inorganic particles.
 また、アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール及び脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。 Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced | guided | derived to the acetoxy group etc. in the range which does not impair the effect of this invention.
 脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1-オクタノール、2-オクタノール、3-オクタノール等)、ノナノール、デカノール(1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、イソトリデカノール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6-30脂肪族アルコール等が挙げられる。 Examples of the aliphatic alcohol include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), nonanol, decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, isotridecanol. And saturated or unsaturated C 6-30 aliphatic alcohols such as 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
 環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。 Examples of cyclic alcohols include cresol and eugenol.
 更に、脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ベルベノール等が挙げられる。 Further, as the alicyclic alcohol, for example, cycloalkanol such as cyclohexanol, terpineol (including α, β, γ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol and the like.
 本実施形態の接合用組成物中に分散媒を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良く、接合用組成物中の分散媒の含有量は、1~30質量%であるのが好ましい。分散媒の含有量が1~30質量%であれば、接合性組成物として使いやすい範囲で粘度を調整する効果を得ることができる。分散媒のより好ましい含有量は1~20質量%であり、更に好ましい含有量は1~15質量%である。 The content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 masses. % Is preferred. When the content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within a range that is easy to use as a bonding composition. A more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass.
 上記高分子分散剤としては、市販されている高分子分散剤を使用することができる。市販の高分子分散剤としては、例えば、上記市販品としては、例えば、ソルスパース(SOLSPERSE)11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース21000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000(日本ルーブリゾール(株)製);ディスパービック(DISPERBYK)142;ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190、ディスパービック2155(ビックケミー・ジャパン(株)製);EFKA-46、EFKA-47、EFKA-48、EFKA-49(EFKAケミカル社製);ポリマー100、ポリマー120、ポリマー150、ポリマー400、ポリマー401、ポリマー402、ポリマー403、ポリマー450、ポリマー451、ポリマー452、ポリマー453(EFKAケミカル社製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(味の素社製);フローレンDOPA-15B、フローレンDOPA-22、フローレンDOPA-17、フローレンTG-730W、フローレンG-700、フローレンTG-720W(共栄社化学工業(株)製)等を挙げることができる。低温焼結性及び分散安定性の観点からは、ソルスパース11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース28000、ディスパービック142又はディスパービック2155を用いることが好ましい。 As the polymer dispersant, a commercially available polymer dispersant can be used. Examples of the commercially available polymer dispersant include, for example, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 21000, Solsperse 24000, Solsperse 26000, Solsperse. 27000, Solsperse 28000 (manufactured by Nippon Lubrizol Co., Ltd.); DISPERBYK 142; Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 166, Dispersic 170, Dispersic 180, Dispers Big 182, Disperbic 184, Disperbic 190, Ispervik 2155 (manufactured by BYK Japan); EFKA-46, EFKA-47, EFKA-48, EFKA-49 (manufactured by EFKA Chemical); polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 402, polymer 403, polymer 450, polymer 451, polymer 452, polymer 453 (manufactured by EFKA Chemical); Ajisper PB711, Ajisper PA111, Ajisper PB811, Ajisper PW911 (manufactured by Ajinomoto Co.); Florene DOPA-15B, Florene DOPA-22, Examples include florene DOPA-17, florene TG-730W, florene G-700, and florene TG-720W (manufactured by Kyoeisha Chemical Industry Co., Ltd.). From the viewpoints of low-temperature sinterability and dispersion stability, it is preferable to use Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 28000, Dispersic 142 or Dispersic 2155.
 高分子分散剤の含有量は0.1~15質量%であることが好ましい。高分子分散剤の含有量が0.1%以上であれば得られる接合用組成物の分散安定性が良くなるが、含有量が多過ぎる場合は接合性が低下することとなる。このような観点から、高分子分散剤のより好ましい含有量は0.03~3質量%であり、更に好ましい含有量は0.05~2質量%である。 The content of the polymer dispersant is preferably 0.1 to 15% by mass. If the content of the polymer dispersant is 0.1% or more, the dispersion stability of the resulting bonding composition is improved. However, if the content is too large, the bonding property is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and still more preferable content is 0.05 to 2% by mass.
 樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂又はテルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the resin component include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
 有機溶剤としては、上記の分散媒として挙げられたものを除き、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、2-プロピルアルコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,2,6-ヘキサントリオール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、重量平均分子量が200以上1,000以下の範囲内であるポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、重量平均分子量が300以上1,000以下の範囲内であるポリプロピレングリコール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、グリセリン又はアセトン等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the organic solvent other than those mentioned as the above dispersion medium include, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, , 4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, N Methyl-2-pyrrolidone, N, N- dimethylacetamide, glycerin, or acetone and the like may be used each of which alone or in combination of two or more.
 増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the thickener include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.
 上記有機成分とは異なる界面活性剤を添加してもよい。多成分溶媒系の無機コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の接合用組成物に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる接合用組成物が得られる。 A surfactant different from the above organic components may be added. In a multi-component solvent-based inorganic colloidal dispersion, the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying. By adding a surfactant to the bonding composition of the present embodiment, these disadvantages can be suppressed, and a bonding composition that can form a uniform conductive film is obtained.
 本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。少量の添加量で効果が得られるので、フッ素系界面活性剤が好ましい。 The surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.
 なお、有機成分量を所定の範囲に調整する方法は、加熱を行って調整するのが簡便である。また、無機粒子を作製する際に添加する有機成分の量を調整することで行ってもよく、無機粒子調整後の洗浄条件や回数を変えてもよい。加熱はオーブンやエバポレーターなどで行うことができ、減圧下で行ってもよい。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機成分量の微調整のために、上記アミン(及びカルボン酸)を後で加えることもできる。 In addition, it is easy to adjust the method of adjusting the amount of organic components within a predetermined range by heating. Moreover, you may carry out by adjusting the quantity of the organic component added when producing an inorganic particle, and you may change the washing conditions and frequency | counts after inorganic particle adjustment. Heating can be performed with an oven or an evaporator, and may be performed under reduced pressure. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Further, the amine (and carboxylic acid) can be added later for fine adjustment of the amount of organic components.
 本実施形態の接合用組成物には、主成分として、無機粒子がコロイド化した無機コロイド粒子が含まれるが、かかる無機コロイド粒子の形態に関しては、例えば、無機粒子の表面の一部に有機成分が付着して構成されている無機コロイド粒子、上記無機粒子をコアとして、その表面が有機成分で被覆されて構成されている無機コロイド粒子、それらが混在して構成されている無機コロイド粒子等が挙げられるが、特に限定されない。なかでも、無機粒子をコアとして、その表面が有機成分で被覆されて構成されている無機コロイド粒子が好ましい。当業者は、上述した形態を有する無機コロイド粒子を、当該分野における周知技術を用いて適宜調製することができる。 The bonding composition of the present embodiment includes inorganic colloid particles in which inorganic particles are colloided as a main component. Regarding the form of the inorganic colloid particles, for example, an organic component is formed on a part of the surface of the inorganic particles. Inorganic colloidal particles composed of adhering, inorganic colloidal particles composed of the above inorganic particles as a core and coated with organic components on the surface, inorganic colloidal particles composed of a mixture of these, etc. Although it is mentioned, it is not specifically limited. Among these, inorganic colloidal particles having inorganic particles as a core and the surface thereof being coated with an organic component are preferable. A person skilled in the art can appropriately prepare the inorganic colloidal particles having the above-described form using a well-known technique in this field.
 本実施形態の接合用組成物においては、SP値が10以上の有機物が減圧下で除去されていることが好ましい。具体的には、SP値が10以上の有機物の含有量が、0.5質量%以下であればよい。減圧下で低沸点成分を除去することで、主として無機粒子の製造工程において無機粒子を沈降・凝集させるために用いられるSP値が10以上の有機物を除去することができる。SP値が10以上の有機物としては、例えば、メタノール(SP値:14.8)、エタノール(SP値:12.7)、アセトン(SP値:10.0)、イソプロピルアルコール(SP値:11.5)等を例示することができる。なお、SP値は、溶媒-溶質間に作用する力は分子間力のみであるとする正則溶液理論に基づき、1cm3の液体が蒸発するために必要な蒸発熱の平方根(cal/cm31/2により計算される。 In the bonding composition of the present embodiment, it is preferable that an organic substance having an SP value of 10 or more is removed under reduced pressure. Specifically, the content of the organic substance having an SP value of 10 or more may be 0.5% by mass or less. By removing the low-boiling components under reduced pressure, it is possible to remove organic substances having an SP value of 10 or more, which are mainly used for sedimentation and aggregation of inorganic particles in the production process of inorganic particles. Examples of organic substances having an SP value of 10 or more include methanol (SP value: 14.8), ethanol (SP value: 12.7), acetone (SP value: 10.0), isopropyl alcohol (SP value: 11. 5) etc. can be illustrated. The SP value is based on the regular solution theory that the force acting between the solvent and the solute is only the intermolecular force. The square root of the heat of vaporization (cal / cm 3 ) required for the evaporation of 1 cm 3 of liquid. Calculated by 1/2 .
 ここで、上記に挙げたSP値が10以上の低沸点有機物が残存していると、常温常圧下で接合用組成物を静置している際の揮発速度が速く、接合用組成物中の有機分含量の変化(重量減少)が大きくなる傾向にある。その結果、粘度が変わり易くなる(=可使時間が短くなる方向)。そのため、本発明は、予め接合用組成物中の低沸点有機物の含量を調節することで長い可使時間を確保するという設計思想に基づいている。したがって、処理後のSP値10以上の成分の残存量としては、接合用組成物の分散性や強度へプラスとなる要素はないため、0質量%が最も好ましいが、不可避不純物も考慮して、0.5%質量以下であれば好適である。 Here, when the low boiling point organic substance having an SP value of 10 or more as described above remains, the volatilization rate when the bonding composition is allowed to stand under normal temperature and normal pressure is high, and the bonding composition contains Changes in organic content (weight loss) tend to increase. As a result, the viscosity is easily changed (= direction in which the pot life is shortened). For this reason, the present invention is based on the design concept of ensuring a long pot life by adjusting the content of low-boiling organic substances in the bonding composition in advance. Therefore, the remaining amount of the component having an SP value of 10 or more after the treatment is preferably 0% by mass because there is no element that is positive for the dispersibility and strength of the bonding composition, but in consideration of inevitable impurities, If it is 0.5% or less, it is suitable.
 前述のとおり、本発明においては、SP値が10以上の有機物は無機粒子の製造工程において無機粒子を沈降・凝集させるために用いられる。SP値が10以上であれば、無機粒子が分散するのに必要となる分散剤は残しながら、過剰な分散剤のみを除くことができる。このような無機粒子の場合、SP値が10未満の有機物を用いて無機粒子を沈降・凝集させようとすると、分散に必要となる分散剤までが除かれてしまい、無機粒子の分散性が著しく損なわれることとなる。 As described above, in the present invention, an organic substance having an SP value of 10 or more is used for precipitating and agglomerating inorganic particles in the production process of inorganic particles. If the SP value is 10 or more, only the excess dispersant can be removed while leaving the dispersant necessary for dispersing the inorganic particles. In the case of such inorganic particles, if the inorganic particles are precipitated and aggregated using an organic material having an SP value of less than 10, the dispersant necessary for dispersion is removed, and the dispersibility of the inorganic particles is remarkably increased. It will be damaged.
 無機粒子(無機コロイド)の製造過程において、洗浄用に用いたメタノール等を減圧処理により除去する操作が行われることがあるが、本実施形態の接合用組成物においては、洗浄溶媒のみならず、無機コロイド中の全有機物が除去の対象であり、さらにそれらの好適な残存量が規定されている。 In the production process of inorganic particles (inorganic colloid), an operation of removing methanol or the like used for cleaning by a reduced pressure treatment may be performed, but in the bonding composition of the present embodiment, not only the cleaning solvent, All organic matter in the inorganic colloid is the object to be removed, and their suitable residual amount is specified.
 本実施形態の接合用組成物は、無機粒子と有機成分とで構成されるコロイド粒子を主成分とする流動体であり、無機粒子、無機コロイド粒子を構成する有機成分のほかに、無機コロイド粒子を構成しない有機成分、分散媒または残留還元剤等を含んでいてもよい。 The bonding composition of this embodiment is a fluid mainly composed of colloidal particles composed of inorganic particles and organic components. In addition to the inorganic particles and the organic components constituting the inorganic colloidal particles, the inorganic colloidal particles May contain an organic component, a dispersion medium, a residual reducing agent, or the like that does not constitute a component.
 本実施形態の接合用組成物の粘度は、固形分の濃度は本発明の効果を損なわない範囲で適宜調整すればよいが、例えば0.01~5000Pa・Sの粘度範囲であればよく、0.1~1000Pa・Sの粘度範囲がより好ましく、1~100Pa・Sの粘度範囲であることが特に好ましい。当該粘度範囲とすることにより、基材上に接合用組成物を塗布する方法として幅広い方法を適用することができる。 The viscosity of the bonding composition of the present embodiment may be adjusted as appropriate within the range where the solid content does not impair the effects of the present invention. For example, the viscosity may be in the range of 0.01 to 5000 Pa · S, and may be 0. A viscosity range of 1 to 1000 Pa · S is more preferable, and a viscosity range of 1 to 100 Pa · S is particularly preferable. By setting it as the said viscosity range, a wide method is applicable as a method of apply | coating the composition for joining on a base material.
 基材上に接合用組成物を塗布する方法としては、例えば、ディッピング、スクリーン印刷、スプレー方式、バーコート法、スピンコート法、インクジェット法、ディスペンサー法、ピントランスファー法、刷毛による塗布方式、流延法、フレキソ法、グラビア法、オフセット法、転写法、親疎水パターン法、又はシリンジ法等のなかから適宜選択して採用することができるようになる。 Examples of the method for applying the bonding composition on the substrate include dipping, screen printing, spray method, bar coating method, spin coating method, ink jet method, dispenser method, pin transfer method, application method by brush, casting Method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method and the like can be appropriately selected and employed.
 粘度の調整は、無機粒子の粒径の調整、有機物の含有量の調整、分散媒その他の成分の添加量の調整、各成分の配合比の調整、増粘剤の添加等によって行うことができる。接合用組成物の粘度は、例えば、コーンプレート型粘度計(例えばアントンパール社製のレオメーターMCR301)により測定することができる。 Viscosity can be adjusted by adjusting the particle size of inorganic particles, adjusting the content of organic substances, adjusting the amount of dispersion medium and other components, adjusting the blending ratio of each component, and adding a thickener. . The viscosity of the bonding composition can be measured, for example, with a cone plate viscometer (for example, a rheometer MCR301 manufactured by Anton Paar).
(1-3)接合用組成物の重量減少
 本実施形態の接合用組成物は、各状況における重量減少の制御によって、接合用組成物としての特性が最適化されている。
(1-3) Weight reduction of bonding composition The bonding composition of the present embodiment has optimized properties as a bonding composition by controlling weight reduction in each situation.
 本実施形態の接合用組成物は、室温の大気中に6時間放置した際の重量減少が1.5質量%以下であり(重量減少要件1)、大気雰囲気で室温から100℃まで昇温速度10℃/分で加熱したときの重量減少が3.0質量%以下である(重量減少要件2)。 The bonding composition of this embodiment has a weight loss of 1.5% by mass or less when left in air at room temperature for 6 hours (weight reduction requirement 1), and the rate of temperature increase from room temperature to 100 ° C. in the air atmosphere. Weight loss when heated at 10 ° C./min is 3.0% by mass or less (weight reduction requirement 2).
 上記重量減少要件1に関し、接合用組成物を室温の大気中に6時間放置した際の重量減少が1.5質量%を超える場合は、成分の揮発により粘度が上昇し、接合用組成物のハンドリング性が劣化する原因となる。なお、接合用組成物の印刷性を長く保持するためには、室温の大気中に6時間放置した際の重量減少を1.0質量%以下とすることがより好ましい。 Regarding the weight reduction requirement 1, when the weight loss when the bonding composition is left in the atmosphere at room temperature for 6 hours exceeds 1.5% by mass, the viscosity increases due to volatilization of the components. This may cause deterioration of handling properties. In order to maintain the printability of the bonding composition for a long time, it is more preferable that the weight loss when left in the atmosphere at room temperature for 6 hours is 1.0% by mass or less.
 接合用組成物を室温の大気中に6時間放置した際の重量減少は、主に、SP値が10以上の有機物及び分散剤として使用する有機物等の揮発に起因することから、接合用組成物中に残存する低沸点成分の含有量を低減させる。例えば、エバポレーターで取り除く等の処理をすることで好適に制御することができる。 The weight loss when the bonding composition is left in the air at room temperature for 6 hours is mainly caused by volatilization of organic substances having SP values of 10 or more and organic substances used as a dispersant. The content of low-boiling components remaining in it is reduced. For example, it can be suitably controlled by performing a process such as removal with an evaporator.
 また、上記重量減少要件2に関し、接合用組成物を大気雰囲気で室温から100℃まで昇温速度10℃/分で加熱したときの重量減少が3.0質量%よりも大きな場合、室温で激しく成分が揮発して粘度が変化するため、接合用組成物のハンドリング性が悪くなる。ここで、接合用組成物を大気雰囲気で室温から100℃まで昇温速度10℃/分で加熱したときの重量減少は2.0質量%以下であることがより好ましく、1.0質量%以下であることが更に好ましい。 Further, regarding the weight reduction requirement 2, when the weight reduction when the bonding composition is heated from room temperature to 100 ° C. in the air atmosphere at a heating rate of 10 ° C./min is larger than 3.0 mass%, it is intense at room temperature. Since the components are volatilized and the viscosity is changed, the handling property of the bonding composition is deteriorated. Here, the weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min in an air atmosphere is more preferably 2.0% by mass or less, and 1.0% by mass or less. More preferably.
 接合用組成物を室温から100℃まで昇温速度10℃/分で加熱した時の重量減少は主に、SP値が10以上の有機物及び分散剤として使用した有機物に起因し、接合用組成物中に残存する低沸点成分の含有量を低減させる。例えば、エバポレーターで取り除く等の処理をすることで好適に制御することができる。 The weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min is mainly due to the organic substance having an SP value of 10 or more and the organic substance used as a dispersant. The content of low-boiling components remaining in it is reduced. For example, it can be suitably controlled by performing a process such as removal with an evaporator.
 更に、接合用組成物は、前記接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少が20.0質量%以下であること、が好ましい(重量減少要件3)。 Further, the bonding composition preferably has a weight loss of 20.0% by mass or less when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere ( Weight reduction requirement 3).
 上述のとおり、接合用組成物を大気雰囲気で500℃まで加熱すると、有機物等が酸化分解され、大部分はガス化されて消失する。接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少が20質量%を超える場合、焼成後に有機物が焼成層(接合層)中に残存して空隙を生じるため、接合強度の低下及び焼成層(接合層)の導電性を低下させる原因となる。これに対し、接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少を20質量%以下とすることで、200℃程度の低温接合によって導電性の高い焼成層(接合層)を得ることができる。一方で、接合用組成物の重量減少が小さ過ぎるとコロイド状態での分散安定性が損なわれるため、接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少は0.1質量%以上であることが好ましく、0.5~18.0質量%であることがより好ましい。 As described above, when the bonding composition is heated to 500 ° C. in an air atmosphere, organic substances and the like are oxidized and decomposed, and most of them are gasified and lost. When the weight loss when the bonding composition is heated from room temperature to 500 ° C. in the air atmosphere at a heating rate of 10 ° C./min exceeds 20% by mass, the organic matter remains in the fired layer (bonding layer) after firing. Since voids are generated, it causes a decrease in bonding strength and a decrease in the conductivity of the fired layer (bonding layer). On the other hand, by reducing the weight loss when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a heating rate of 10 ° C./min. High firing layer (bonding layer) can be obtained. On the other hand, when the weight loss of the bonding composition is too small, the dispersion stability in the colloidal state is impaired. Therefore, when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere. Is preferably 0.1% by mass or more, and more preferably 0.5 to 18.0% by mass.
 接合用組成物を室温から500℃まで昇温速度10℃/分で加熱した時の重量減少は主に、接合用組成物中に含まれる全有機成分に起因し、材料として使用する有機成分の種類及び量を制御することで好適に制御することができる。 The weight loss when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min is mainly due to the total organic components contained in the bonding composition. It can control suitably by controlling a kind and quantity.
(2)接合用組成物の製造
 本実施形態の接合用組成物を製造するためには、副成分である有機成分で被覆された主成分である無機粒子(無機コロイド粒子)を調製する。
(2) Production of Bonding Composition In order to produce the bonding composition of the present embodiment, inorganic particles (inorganic colloidal particles) that are main components coated with an organic component that is a subcomponent are prepared.
 なお、有機成分量及び重量減少の調整方法は、特に限定されないが、加熱及び減圧を行って調整するのが簡便である。また、無機粒子を作製する際に添加する有機成分の量を調整することで行ってもよく、無機粒子調整後の洗浄条件や回数を変えてもよい。加熱はオーブンやエバポレーター等で行うことができる。加熱温度は50~300℃程度の範囲であればよく、加熱時間は数分間~数時間であればよい。減圧下で加熱することで、より低い温度で有機物量の調整を行うことができる。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機分量の微調整のためにアミンやカルボン酸を後で加えることもできる。 In addition, although the adjustment method of the amount of organic components and weight reduction is not specifically limited, it is easy to adjust by performing heating and pressure reduction. Moreover, you may carry out by adjusting the quantity of the organic component added when producing an inorganic particle, and you may change the washing conditions and frequency | counts after inorganic particle adjustment. Heating can be performed with an oven or an evaporator. The heating temperature may be in the range of about 50 to 300 ° C., and the heating time may be several minutes to several hours. By heating under reduced pressure, the amount of organic matter can be adjusted at a lower temperature. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Furthermore, amines and carboxylic acids can be added later for fine adjustment of the organic content.
 上記調整の結果、接合用組成物を室温の大気中に6時間放置した際の重量減少を1.5質量%以下とし、大気雰囲気で室温から100℃まで昇温速度10℃/分で加熱したときの重量減少を3.0質量%以下とすることで、本実施形態の接合用組成物を得ることができる。また、接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少を20.0質量%以下とすることが好ましい。 As a result of the above adjustment, the weight loss when the bonding composition was left in the air at room temperature for 6 hours was 1.5% by mass or less, and it was heated from room temperature to 100 ° C. in the air atmosphere at a heating rate of 10 ° C./min. When the weight loss at that time is 3.0% by mass or less, the bonding composition of the present embodiment can be obtained. In addition, it is preferable that the weight loss when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a rate of temperature increase of 10 ° C./min is 20.0 mass% or less.
 本実施形態の有機成分で被覆された無機粒子を調製する方法としては、特に限定されないが、例えば、無機粒子を含む分散液を調製し、次いで、その分散液の洗浄を行う方法等が挙げられる。無機粒子を含む分散液を調製する工程としては、例えば、下記のように、溶媒中に溶解させた金属塩(又は金属イオン)を還元させればよく、還元手順としては、化学還元法に基づく手順を採用すればよい。 The method for preparing the inorganic particles coated with the organic component of the present embodiment is not particularly limited, and examples thereof include a method of preparing a dispersion containing inorganic particles and then washing the dispersion. . As a step of preparing a dispersion containing inorganic particles, for example, a metal salt (or metal ion) dissolved in a solvent may be reduced as described below, and the reduction procedure is based on a chemical reduction method. A procedure may be adopted.
 即ち、上記のような有機成分で被覆された無機粒子は、無機粒子を構成する金属の金属塩と、分散剤としての有機物と、溶媒(基本的にトルエン等の有機系であるが、水を含んでいてもよい。)と、を含む原料液(成分の一部が溶解せず分散していてもよい。)を還元することにより調製することができる。 That is, the inorganic particles coated with the organic components as described above are composed of metal salts of the metal constituting the inorganic particles, organic substances as dispersants, and solvents (basically organic systems such as toluene, but water And a raw material liquid (a part of the components may be dispersed without being dissolved).
 この還元によって、分散剤としての有機成分が無機粒子の表面の少なくとも一部に付着している無機コロイド粒子が得られる。この無機コロイド粒子は、それのみで本実施形態の接合用組成物として供することができるが、必要に応じて、これを後述する工程において分散媒に添加することにより、無機コロイド分散液からなる接合用組成物として得ることもできる。 By this reduction, inorganic colloidal particles in which an organic component as a dispersant is attached to at least a part of the surface of the inorganic particles can be obtained. These inorganic colloidal particles can be used alone as the bonding composition of the present embodiment. If necessary, the inorganic colloidal particles can be added to a dispersion medium in a process described later, thereby bonding the inorganic colloidal particles. It can also be obtained as a composition for use.
 有機物で被覆された無機粒子を得るための出発材料としては、種々の公知の金属塩又はその水和物を用いることができ、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢酸銀、シュウ酸銀、ギ酸銀、亜硝酸銀、塩素酸銀、硫化銀等の銀塩;例えば、塩化金酸、塩化金カリウム、塩化金ナトリウム等の金塩;例えば、塩化白金酸、塩化白金、酸化白金、塩化白金酸カリウム等の白金塩;例えば、硝酸パラジウム、酢酸パラジウム、塩化パラジウム、酸化パラジウム、硫酸パラジウム等のパラジウム塩等が挙げられるが、適当な分散媒中に溶解し得、かつ還元可能なものであれば特に限定されない。また、これらは単独で用いても複数併用してもよい。 As a starting material for obtaining inorganic particles coated with organic matter, various known metal salts or hydrates thereof can be used. For example, silver nitrate, silver sulfate, silver chloride, silver oxide, silver acetate, Silver salts such as silver oxalate, silver formate, silver nitrite, silver chlorate and silver sulfide; for example, gold salts such as chloroauric acid, potassium gold chloride and sodium gold chloride; for example, chloroplatinic acid, platinum chloride, platinum oxide, Platinum salts such as potassium chloroplatinate; for example, palladium salts such as palladium nitrate, palladium acetate, palladium chloride, palladium oxide, palladium sulfate, etc., which can be dissolved in a suitable dispersion medium and can be reduced If it is, it will not specifically limit. These may be used alone or in combination.
 また、上記原料液においてこれらの金属塩を還元する方法は特に限定されず、例えば、還元剤を用いる方法、紫外線等の光、電子線、超音波又は熱エネルギーを照射する方法等が挙げられる。なかでも、操作の容易の観点から、還元剤を用いる方法が好ましい。 In addition, the method for reducing these metal salts in the raw material liquid is not particularly limited, and examples thereof include a method using a reducing agent, a method of irradiating light such as ultraviolet rays, electron beams, ultrasonic waves, or thermal energy. Among these, a method using a reducing agent is preferable from the viewpoint of easy operation.
 上記還元剤としては、例えば、ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、フェニドン、ヒドラジン等のアミン化合物;例えば、水素化ホウ素ナトリウム、ヨウ素化水素、水素ガス等の水素化合物;例えば、一酸化炭素、亜硫酸等の酸化物;例えば、硫酸第一鉄、酸化鉄、フマル酸鉄、乳酸鉄、シュウ酸鉄、硫化鉄、酢酸スズ、塩化スズ、二リン酸スズ、シュウ酸スズ、酸化スズ、硫酸スズ等の低原子価金属塩;例えば、エチレングリコール、グリセリン、ホルムアルデヒド、ハイドロキノン、ピロガロール、タンニン、タンニン酸、サリチル酸、D-グルコース等の糖等が挙げられるが、分散媒に溶解し上記金属塩を還元し得るものであれば特に限定されない。上記還元剤を使用する場合は、光及び/又は熱を加えて還元反応を促進させてもよい。 Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide. Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc. There is no particular limitation as long as it can be reduced. When the reducing agent is used, light and / or heat may be added to promote the reduction reaction.
 上記金属塩、有機成分、溶媒及び還元剤を用いて、有機物で被覆された金属粒子(無機粒子)を調製する具体的な方法としては、例えば、上記金属塩を有機溶媒(例えばトルエン等)に溶かして金属塩溶液を調製し、当該金属塩溶液に分散剤としての有機物を添加し、ついで、ここに還元剤が溶解した溶液を徐々に滴下する方法等が挙げられる。 As a specific method for preparing metal particles (inorganic particles) coated with an organic substance using the metal salt, organic component, solvent and reducing agent, for example, the metal salt is used in an organic solvent (for example, toluene). There is a method in which a metal salt solution is prepared by dissolution, an organic substance as a dispersant is added to the metal salt solution, and then a solution in which the reducing agent is dissolved is gradually added dropwise.
 上記のようにして得られた分散剤としての有機成分で被覆された無機粒子を含む分散液には、無機金属粒子の他に、金属塩の対イオン、還元剤の残留物や分散剤が存在しており、液全体の電解質濃度が高い傾向にある。このような状態の液は、電導度が高いため、無機粒子の凝析が起こり、沈殿し易い。あるいは、沈殿しなくても、金属塩の対イオン、還元剤の残留物、又は分散に必要な量以上の過剰な分散剤が残留していると、導電性を悪化させるおそれがある。そこで、上記無機粒子を含む溶液を洗浄して余分な残留物を取り除くことにより、有機物で被覆された無機粒子を確実に得ることができる。 In addition to inorganic metal particles, the dispersion liquid containing inorganic particles coated with organic components as a dispersant obtained as described above contains a counter ion of a metal salt, a reducing agent residue and a dispersant. Therefore, the electrolyte concentration of the whole liquid tends to be high. Since the liquid in such a state has high electrical conductivity, the inorganic particles are likely to coagulate and precipitate. Alternatively, even if precipitation does not occur, the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing the inorganic particles to remove excess residues, it is possible to reliably obtain the inorganic particles coated with the organic matter.
 上記洗浄方法としては、例えば、有機成分で被覆された無機粒子を含む分散液を一定時間静置し、生じた上澄み液を取り除いた上で、アルコール(メタノール等)を加えて再度撹枠し、更に一定期間静置して生じた上澄み液を取り除く工程を幾度か繰り返す方法、上記の静置の代わりに遠心分離を行う方法、限外濾過装置やイオン交換装置等により脱塩する方法等が挙げられる。このような洗浄によって有機溶媒を除去することにより、本実施形態の有機成分で被覆された無機粒子を得ることができる。 As the washing method, for example, a dispersion liquid containing inorganic particles coated with an organic component is allowed to stand for a certain period of time, and after removing the resulting supernatant, alcohol (methanol or the like) is added and stirred again. Furthermore, a method of repeating the process of removing the supernatant liquid generated by standing for a certain period of time, a method of performing centrifugation instead of the above standing, a method of desalting with an ultrafiltration device or an ion exchange device, etc. It is done. By removing the organic solvent by such washing, inorganic particles coated with the organic component of the present embodiment can be obtained.
 本実施形態のうち、無機コロイド分散液は、上記において得た有機成分で被覆された無機粒子と、上記本実施形態で説明した分散媒と、を混合することにより得られる。かかる有機成分で被覆された無機金属粒子と分散媒との混合方法は特に限定されるものではなく、撹拌機やスターラー等を用いて従来公知の方法によって行うことができる。スパチュラのようなもので撹拌したりして、適当な出力の超音波ホモジナイザーを当ててもよい。即ち、本発明の接合用組成物は、無機粒子(コロイド)を洗浄して、分散媒を加えてペースト化し、その後に減圧乾燥して調製する。 Among the present embodiments, the inorganic colloid dispersion liquid is obtained by mixing the inorganic particles coated with the organic component obtained above and the dispersion medium described in the present embodiment. The mixing method of the inorganic metal particles coated with the organic component and the dispersion medium is not particularly limited, and can be performed by a conventionally known method using a stirrer or a stirrer. An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like. That is, the bonding composition of the present invention is prepared by washing inorganic particles (colloid), adding a dispersion medium to form a paste, and then drying under reduced pressure.
 複数の金属を含む無機コロイド分散液を得る場合、その製造方法としては特に限定されず、例えば、銀とその他の金属とからなる無機コロイド分散液を製造する場合には、上記の有機物で被覆された無機粒子の調製において、無機粒子を含む分散液と、その他の無機粒子を含む分散液とを別々に製造し、その後混合してもよく、銀イオン溶液とその他の金属イオン溶液とを混合し、その後に還元してもよい。 When obtaining an inorganic colloidal dispersion containing a plurality of metals, the production method is not particularly limited. For example, when producing an inorganic colloidal dispersion composed of silver and other metals, it is coated with the above organic matter. In the preparation of inorganic particles, a dispersion containing inorganic particles and a dispersion containing other inorganic particles may be produced separately and then mixed, or a silver ion solution and another metal ion solution may be mixed. Thereafter, reduction may be performed.
(3)接合方法
 本実施形態の接合用組成物を用いれば、加熱を伴う部材同士の接合において比較的低い接合温度で高い接合強度を得ることができる。即ち、上記接合用組成物を第1の被接合部材と第2の被接合部材との間に塗布する接合用組成物塗布工程と、第1の被接合部材と第2の被接合部材との間に塗布した接合用組成物を、所望の温度(例えば300℃以下、好ましくは150~200℃)で焼成して接合する接合工程と、により、第1の被接合部材と第2の被接合部材とを接合することができる。この際、加圧することもできるが、特に加圧しなくとも十分な接合強度を得ることができるのも本発明の利点のひとつである。また、焼成を行う際、段階的に温度を上げたり下げたりすることもできる。また、予め被接合部材表面に界面活性剤又は表面活性化剤等を塗布しておくことも可能である。
(3) Joining method If the composition for joining of this embodiment is used, high joining strength can be obtained at a relatively low joining temperature in joining members with heating. That is, a bonding composition application step of applying the bonding composition between the first bonded member and the second bonded member, and the first bonded member and the second bonded member A first bonding member and a second bonded member by a bonding step in which the bonding composition applied therebetween is baked and bonded at a desired temperature (for example, 300 ° C. or less, preferably 150 to 200 ° C.). The member can be joined. At this time, it is possible to apply pressure, but it is also one of the advantages of the present invention that sufficient bonding strength can be obtained without particularly applying pressure. In addition, when firing, the temperature can be raised or lowered stepwise. It is also possible to apply a surfactant or a surface activator to the surface of the member to be joined in advance.
 また、本実施形態の接合用組成物を用いれば、被接合面へ接合用組成物を塗布した後、加熱による接合工程までの時間が長い場合であっても、良好な接合体を得ることができる。よって、本実施形態の接合用組成物は、電子デバイス等の量産ラインに好適に用いることができる。 In addition, when the bonding composition of the present embodiment is used, a good bonded body can be obtained even when the bonding composition is applied to the surfaces to be bonded and the time until the bonding step by heating is long. it can. Therefore, the bonding composition of the present embodiment can be suitably used for mass production lines such as electronic devices.
 本発明者は、鋭意検討を重ねた結果、前記接合用組成物塗布工程での接合用組成物として、上述した本実施形態の接合用組成物を用いれば、第1の被接合部材と第2の被接合部材とを、高い接合強度をもってより確実に接合できる(接合体が得られる)ことを見出した。 As a result of intensive studies, the inventor uses the above-described bonding composition of the present embodiment as the bonding composition in the bonding composition application step. It was found that the member to be joined can be more reliably joined with high joining strength (a joined body is obtained).
 ここで、本実施形態の接合用組成物の「塗布」とは、接合用組成物を面状に塗布する場合も線状に塗布(描画)する場合も含む概念である。塗布されて、加熱により焼成される前の状態の接合用組成物からなる塗膜の形状は、所望する形状にすることが可能である。したがって、加熱による焼成後の本実施形態の接合体では、接合用組成物は、面状の接合層及び線状の接合層のいずれも含む概念であり、これら面状の接合層及び線状の接合層は、連続していても不連続であってもよく、連続する部分と不連続の部分とを含んでいてもよい。 Here, “application” of the bonding composition of the present embodiment is a concept including both the case where the bonding composition is applied in a planar shape and the case where the bonding composition is applied (drawn) in a linear shape. The shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the joined body of this embodiment after firing by heating, the joining composition is a concept that includes both a planar joining layer and a linear joining layer. The bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.
 本実施形態において用いることのできる第1の被接合部材及び第2の被接合部材としては、接合用組成物を塗布して加熱により焼成して接合することのできるものであればよく、特に制限はないが、接合時の温度により損傷しない程度の耐熱性を具備した部材であるのが好ましい。 The first member to be bonded and the second member to be bonded that can be used in the present embodiment are not particularly limited as long as they can be bonded by applying a bonding composition and baking by heating. However, it is preferable that the member has a heat resistance that is not damaged by the temperature at the time of joining.
 このような被接合部材を構成する材料としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミクス、ガラス又は金属等を挙げることができるが、なかでも、金属製の被接合部材が好ましい。金属製の被接合部材が好ましいのは、耐熱性に優れているとともに、無機粒子が金属である本発明の接合用組成物との親和性に優れているからである。 Examples of the material constituting such a member to be joined include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN). Examples thereof include polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, metal and the like, and among them, a metal joined member is preferable. The metal member to be joined is preferable because it is excellent in heat resistance and in affinity with the bonding composition of the present invention in which the inorganic particles are metal.
 また、被接合部材は、例えば板状又はストリップ状等の種々の形状であってよく、リジッドでもフレキシブルでもよい。基材の厚さも適宜選択することができる。接着性若しくは密着性の向上又はその他の目的ために、表面層が形成された部材や親水化処理等の表面処理を施した部材を用いてもよい。 The member to be joined may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible. The thickness of the substrate can also be selected as appropriate. In order to improve adhesion or adhesion, or for other purposes, a member on which a surface layer is formed or a member subjected to a surface treatment such as a hydrophilic treatment may be used.
 接合用組成物を被接合部材に塗布する工程では、種々の方法を用いることが可能であるが、上述のように、例えば、ディッピング、スクリーン印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、又はシリンジ式等のなかから適宜選択して用いることができる。 In the step of applying the bonding composition to the members to be bonded, various methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, spin coating, and inkjet It can be used by appropriately selecting from a formula, a dispenser type, a pin transfer method, a brush application method, a casting method, a flexo method, a gravure method, a syringe method, and the like.
 上記のように塗布した後の塗膜を、被接合部材を損傷させない範囲で、例えば300℃以下の温度に加熱することにより焼成し、本実施形態の接合体を得ることができる。本実施形態においては、先に述べたように、本実施形態の接合用組成物を用いるため、被接合部材に対して優れた密着性を有する接合層が得られ、強い接合強度がより確実に得られる。 The coated film after coating as described above is baked by heating to a temperature of 300 ° C. or less, for example, within a range that does not damage the member to be bonded, and the bonded body of this embodiment can be obtained. In the present embodiment, as described above, since the bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded is obtained, and a strong bonding strength is more reliably ensured. can get.
 本実施形態においては、接合用組成物がバインダー成分を含む場合は、接合層の強度向上及び被接合部材間の接合強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために接合用組成物の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。 In the present embodiment, when the bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and the bonding strength between the bonded members. The main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all the binder component.
 上記焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、被接合部材上に塗布または描画した上記接合用組成物の温度が、例えば300℃以下となるように焼成することによって接合することができる。上記焼成の温度の下限は必ずしも限定されず、被接合部材同士を接合できる温度であって、かつ、本発明の効果を損なわない範囲の温度であることが好ましい。ここで、上記焼成後の接合用組成物においては、なるべく高い接合強度を得るという点で、有機物の残存量は少ないほうがよいが、本発明の効果を損なわない範囲で有機物の一部が残存していても構わない。 The method for performing the firing is not particularly limited. For example, the temperature of the bonding composition applied or drawn on a member to be bonded using a conventionally known oven or the like is, for example, 300 ° C. or lower. It can join by baking. The lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the members to be joined can be joined and does not impair the effects of the present invention. Here, in the bonding composition after firing, in order to obtain as high a bonding strength as possible, the remaining amount of the organic matter is preferably small, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.
 なお、本発明の接合用組成物には、有機物が含まれているが、従来の例えばエポキシ樹脂等の熱硬化を利用したものと異なり、有機物の作用によって焼成後の接合強度を得るものではなく、前述したように融着した無機金属粒子の融着によって十分な接合強度が得られるものである。このため、接合後において、接合温度よりも高温の使用環境に置かれて残存した有機物が劣化ないし分解・消失した場合であっても、接合強度の低下するおそれはなく、したがって耐熱性に優れている。 In addition, although the organic substance is contained in the bonding composition of the present invention, it does not obtain the bonding strength after firing by the action of the organic substance, unlike the conventional one using thermosetting such as epoxy resin. As described above, sufficient bonding strength can be obtained by fusing the fused inorganic metal particles. For this reason, even after bonding, even if the remaining organic matter is deteriorated or decomposed / dissipated in a use environment higher than the bonding temperature, there is no risk of the bonding strength being lowered, and therefore the heat resistance is excellent. Yes.
 本実施形態の接合用組成物によれば、例えば150~200℃程度の低温加熱による焼成でも高い導電性を発現する接合層を有する接合を実現することができるため、比較的熱に弱い被接合部材同士を接合することができる。また、焼成時間は特に限定されるものではなく、焼成温度に応じて、接合できる焼成時間であればよい。 According to the bonding composition of the present embodiment, it is possible to realize a bonding having a bonding layer that exhibits high conductivity even by firing at a low temperature of, for example, about 150 to 200 ° C. Members can be joined together. Further, the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.
 本実施形態においては、上記被接合部材と接合層との密着性を更に高めるため、上記被接合部材の表面処理を行ってもよい。上記表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法、基材上にあらかじめプライマー層や導電性ペースト受容層を設ける方法等が挙げられる。 In this embodiment, in order to further improve the adhesion between the member to be bonded and the bonding layer, the surface of the member to be bonded may be subjected to a surface treatment. Examples of the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではない。例えば、上記実施形態においては、無機粒子として金属粒子を採用した無機金属コロイド分散液について説明したが、例えば、導電性、熱伝導性、誘電性、イオン伝導性等に優れたスズドープ酸化インジウム、アルミナ、チタン酸バリウム、鉄リン酸リチウム等の無機粒子を用いることもできる。 As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these. For example, in the above-described embodiment, the inorganic metal colloid dispersion liquid using metal particles as the inorganic particles has been described. For example, tin-doped indium oxide and alumina excellent in conductivity, thermal conductivity, dielectric property, ion conductivity, etc. Inorganic particles such as barium titanate and iron iron phosphate can also be used.
 以下、実施例において本発明の接合用組成物について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, although the bonding composition of the present invention will be further described in Examples, the present invention is not limited to these Examples.
≪実施例1≫
 トルエン(和光純薬工業(株)製試薬一級)200mLにヘキシルアミン(和光純薬工業(株)製試薬一級)15gを加え、マグネティックスターラーにてよく撹拌した。撹拌を行いながら、硝酸銀(東洋化学工業(株)製試薬特級)10gを加え、硝酸銀が溶解したところでヘキサン酸(和光純薬工業(株)製試薬特級)10gを順次添加し、硝酸銀のトルエン溶液を調製した。
Example 1
To 200 mL of toluene (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 15 g of hexylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred well with a magnetic stirrer. While stirring, 10 g of silver nitrate (special grade reagent manufactured by Toyo Chemical Industry Co., Ltd.) was added. When silver nitrate was dissolved, 10 g of hexanoic acid (special grade grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was sequentially added, and a toluene solution of silver nitrate Was prepared.
 十分に撹拌し熱を取った後、この硝酸銀のトルエン溶液に、イオン交換水50mLに水素化ホウ素ナトリウム(和光純薬工業(株)製化学用)1gを添加して調製した0.02g/mLの水素化ホウ素ナトリウム水溶液を滴下し、撹拌を一時間続けて銀微粒子を生成させた。その後、メタノール(和光純薬工業(株)製試薬特級)を200mL加えて銀微粒子を凝集、沈降させた。更に、遠心分離にて銀微粒子を完全に沈降させた後、上澄みであるトルエン及びメタノールを除去し、過剰の有機物を除去して銀微粒子約6gを得た。 After sufficiently stirring and removing heat, 0.02 g / mL prepared by adding 1 g of sodium borohydride (for chemicals manufactured by Wako Pure Chemical Industries, Ltd.) to 50 mL of ion-exchanged water in this toluene solution of silver nitrate. The aqueous sodium borohydride solution was added dropwise, and stirring was continued for 1 hour to produce silver fine particles. Thereafter, 200 mL of methanol (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added to aggregate and precipitate the silver fine particles. Furthermore, after the silver fine particles were completely settled by centrifugation, the supernatant toluene and methanol were removed, and excess organic substances were removed to obtain about 6 g of silver fine particles.
 得られた銀微粒子1gに分散媒としてジヒドロターピニルアセテート(日本テルペン化学(株)製)0.21gを添加し、混合(ペースト化)した。これを厚み3mmに広げ、デシケーターに入れた。100hPaで3時間減圧し、接合用組成物1を得た。 0.21 g of dihydroterpinyl acetate (manufactured by Nippon Terpene Chemical Co., Ltd.) as a dispersion medium was added to 1 g of the obtained silver fine particles, and mixed (pasted). This was spread to a thickness of 3 mm and placed in a desiccator. The pressure was reduced at 100 hPa for 3 hours to obtain a bonding composition 1.
[評価試験]
(1)重量減少量の測定
(1-1)室温
 直径50mmの皿上に接合用組成物1を5g乗せ、均一に広げた。室温環境下で静置し、重量変化を1時間毎に6時間後まで測定した。得られた結果を表1に示した。また、可使時間の特定するため、上記評価において、重量変化率が0.5%となった点を可使時間とし、記録した。
[Evaluation test]
(1) Measurement of weight loss (1-1) Room temperature 5 g of the bonding composition 1 was placed on a 50 mm diameter dish and spread uniformly. The mixture was allowed to stand in a room temperature environment, and the weight change was measured every hour until 6 hours later. The obtained results are shown in Table 1. Further, in order to specify the pot life, in the above evaluation, the point at which the weight change rate became 0.5% was recorded as the pot life.
(1-2)室温~100℃
 接合用組成物1の室温~100℃における重量減少量を、熱重量分析法にて測定した。具体的には、接合用組成物1の固形分を大気中で10℃/分の昇温速度で加熱し、室温~100℃の重量減少率を測定した。得られた結果を表1に示した。
(1-2) Room temperature to 100 ° C
The amount of weight loss of the bonding composition 1 from room temperature to 100 ° C. was measured by thermogravimetric analysis. Specifically, the solid content of the bonding composition 1 was heated in the atmosphere at a heating rate of 10 ° C./min, and the weight loss rate from room temperature to 100 ° C. was measured. The obtained results are shown in Table 1.
(1-3)室温~500℃(有機分測定)
 接合用組成物1に含まれる有機成分の含有率を、熱重量分析法にて測定した。具体的には、接合用組成物1の固形分を大気中で10℃/分の昇温速度で加熱し、室温~500℃の重量減少率として有機成分の含有量を特定した。得られた結果を表1に示した。
(1-3) Room temperature to 500 ° C (measurement of organic content)
The content of the organic component contained in the bonding composition 1 was measured by thermogravimetric analysis. Specifically, the solid content of the bonding composition 1 was heated in the atmosphere at a heating rate of 10 ° C./min, and the content of the organic component was specified as a weight reduction rate from room temperature to 500 ° C. The obtained results are shown in Table 1.
(2)接合強度測定
 ダイボンダー(ハイソル社製)を用い、表面に金めっきを施したアルミナ板(50mm角)に接合用組成物1を少量塗布し、その上に市販の青色LEDチップ(ジェネライツ社製、底面積600ミクロン×600ミクロン)を積層した。その際、外力を加えて青色LEDチップを加圧することはしなかった。
(2) Bonding strength measurement Using a die bonder (manufactured by Hisol), a small amount of the bonding composition 1 was applied to an alumina plate (50 mm square) whose surface was plated with gold, and a commercially available blue LED chip (Generites Co., Ltd.) was applied thereto. Manufactured, bottom area 600 microns × 600 microns). At that time, an external force was not applied to pressurize the blue LED chip.
 その後、得られた積層体を、200℃に調整した熱風循環式オーブンに入れ、大気雰囲気下で、120分間の加熱による焼成処理を行った。積層体を取り出して空冷した後、常温にてボンドテスター(レスカ社製PTR-1101)を用いて接合強度試験(シェア高さ:基板より10ミクロン、シェアツール速度:0.01mm/sec)を行った。剥離時の接合強度をチップの底面積で換算し、得られた結果を表1に示した。 Thereafter, the obtained laminate was put into a hot air circulation oven adjusted to 200 ° C., and subjected to a baking treatment by heating for 120 minutes in an air atmosphere. After taking out the laminate and air-cooling, a bond strength test (share height: 10 microns from the substrate, share tool speed: 0.01 mm / sec) was performed using a bond tester (PTR-1101 manufactured by Reska) at room temperature. It was. The bonding strength at the time of peeling was converted to the bottom area of the chip, and the results obtained are shown in Table 1.
(3)粘度測定
 接合用組成物1の粘度を、コーンプレート型粘度計(アントンパール社製レオメーター,MCR301)を用いて測定した。測定条件は、測定モード:せん断モード、せん断速度:10s-1、測定治具:コーンプレート(CP-50-2;直径50mm,アングル2°,ギャップ0.045mm)、測定温度:25℃とした。得られた結果を表1に示した。
(3) Viscosity measurement The viscosity of the bonding composition 1 was measured using a cone plate viscometer (Rheometer manufactured by Anton Paar, MCR301). The measurement conditions were: measurement mode: shear mode, shear rate: 10 s −1 , measurement jig: cone plate (CP-50-2; diameter 50 mm, angle 2 °, gap 0.045 mm), measurement temperature: 25 ° C. . The obtained results are shown in Table 1.
≪実施例2≫
 オレイン酸(和光純薬工業(株)製試薬一級)を0.20gと、ドデシルアミン(和光純薬工業(株)製試薬一級)6.0gと、ブチルアミン(和光純薬工業(株)製試薬一級)2.0gと、を混合してマグネティックスターラーで十分に撹拌した。ここに、撹拌を行いながらシュウ酸銀6.0gを添加して増粘させた。
<< Example 2 >>
0.20 g of oleic acid (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 6.0 g dodecylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and butylamine (reagent manufactured by Wako Pure Chemical Industries, Ltd.) First grade) 2.0 g was mixed and sufficiently stirred with a magnetic stirrer. Here, 6.0 g of silver oxalate was added and thickened while stirring.
 次に、得られた粘性物質を100℃の恒温槽に入れ、約15分反応させた。反応後の懸濁液の分散媒を置換するため、メタノール(和光純薬工業(株)製試薬一級)10mLを当該懸濁液に加えて撹拌後、遠心分離によって銀微粒子を沈殿させて分離し、分離した銀微粒子に対して再度メタノール(和光純薬工業(株)製試薬一級)10mLを加え、撹拌及び遠心分離を行うことで銀微粒子を沈殿させて分離した。 Next, the obtained viscous substance was put in a constant temperature bath at 100 ° C. and reacted for about 15 minutes. In order to replace the dispersion medium of the suspension after the reaction, 10 mL of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) is added to the suspension and stirred, and then silver fine particles are precipitated and separated by centrifugation. Then, 10 mL of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was again added to the separated silver fine particles, and silver fine particles were precipitated and separated by stirring and centrifuging.
 得られた銀微粒子6gに分散媒としてイソトリデカノール0.83g及びリシノール酸0.2gを加えて捏和した。これをロータリーエバポレータ―を用いて40℃において60分間100hPaで処理し、接合用組成物2を得た。実施例1と同様の評価を行い、結果を表1に示した。 The resultant silver fine particles (6 g) were kneaded by adding 0.83 g of isotridecanol and 0.2 g of ricinoleic acid as a dispersion medium. This was treated at 100 hPa for 60 minutes at 40 ° C. using a rotary evaporator to obtain a bonding composition 2. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
≪比較例1≫
 ヘキサン酸の量を20gにし、デシケーターでの減圧処理をしなかったこと以外は、実施例1と同様にして比較接合用組成物1を得た。実施例1と同様の評価を行い、結果を表1に示した。
≪Comparative example 1≫
A comparative bonding composition 1 was obtained in the same manner as in Example 1 except that the amount of hexanoic acid was 20 g, and no pressure reduction treatment was performed with a desiccator. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
≪比較例2≫
 ロータリーエバポレータ―による減圧加熱処理を実施しなかったこと以外は、実施例2と同様にして比較接合用組成物2を得た。実施例1と同様の評価を行い、結果を表1に示した。
≪Comparative example 2≫
A comparative bonding composition 2 was obtained in the same manner as in Example 2 except that the heat treatment under reduced pressure by the rotary evaporator was not performed. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
≪比較例3≫
 洗浄溶媒としてメタノールではなくヘキサン(SP値:7.3)を用いたこと以外は、実施例2と同様にして操作を行ったが、溶媒に分散せず、接合用組成物を得ることができなかった。
«Comparative Example 3»
The operation was carried out in the same manner as in Example 2 except that hexane (SP value: 7.3) was used instead of methanol as the cleaning solvent, but it was not dispersed in the solvent and a bonding composition could be obtained. There wasn't.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
≪実施例3≫
 トルエン(和光純薬工業(株)製試薬一級)200mLにヘキシルアミン(和光純薬工業(株)製試薬一級)15gを加え、マグネティックスターラーにてよく撹拌した。撹拌を行いながら、硝酸銀(東洋化学工業(株)製試薬特級)10gを加え、硝酸銀が溶解したところでヘキサン酸(和光純薬工業(株)製試薬特級)10gを順次添加し、硝酸銀のトルエン溶液を調製した。
Example 3
To 200 mL of toluene (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 15 g of hexylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred well with a magnetic stirrer. While stirring, 10 g of silver nitrate (special grade reagent manufactured by Toyo Chemical Industry Co., Ltd.) was added. When silver nitrate was dissolved, 10 g of hexanoic acid (special grade grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was sequentially added, and a toluene solution of silver nitrate Was prepared.
 十分に撹拌し熱を取った後、この硝酸銀のトルエン溶液に、イオン交換水50mLに水素化ホウ素ナトリウム(和光純薬工業(株)製化学用)1gを添加して調製した0.02g/mLの水素化ホウ素ナトリウム水溶液を滴下し、撹拌を一時間続けて銀微粒子を生成させた。その後、メタノール(和光純薬工業(株)製試薬特級)を200mL加えて銀微粒子を凝集、沈降させた。更に、遠心分離にて銀微粒子を完全に沈降させた後、上澄みであるトルエン及びメタノールを除去し、過剰の有機物を除去して銀微粒子約6gを得た。 After sufficiently stirring and removing heat, 0.02 g / mL prepared by adding 1 g of sodium borohydride (for chemicals manufactured by Wako Pure Chemical Industries, Ltd.) to 50 mL of ion-exchanged water in this toluene solution of silver nitrate. The aqueous sodium borohydride solution was added dropwise, and stirring was continued for 1 hour to produce silver fine particles. Thereafter, 200 mL of methanol (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added to aggregate and precipitate the silver fine particles. Furthermore, after the silver fine particles were completely settled by centrifugation, the supernatant toluene and methanol were removed, and excess organic substances were removed to obtain about 6 g of silver fine particles.
 得られた銀微粒子1gに分散媒としてジエチレングリコールジブチルエーテル(和光純薬工業(株)製試薬一級)0.21gを添加し、捏和した。これを厚み3mmに広げ、デシケーターに入れた。100hPaで3時間減圧し、接合用組成物3を得た。 0.21 g of diethylene glycol dibutyl ether (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersion medium was added to 1 g of the obtained silver fine particles and kneaded. This was spread to a thickness of 3 mm and placed in a desiccator. The pressure was reduced at 100 hPa for 3 hours to obtain a bonding composition 3.
[評価試験]
(1)重量減少量の測定
(1-1)室温
 スライドガラス上に接合用組成物1を幅1cm、厚み30μmになるように均一に広げた。これを室温環境下で静置し、重量変化を1時間毎に6時間後まで測定した。得られた結果を表2に示した。上記評価において、重量変化率が1.0%となった点を可使時間とし、記録した。
[Evaluation test]
(1) Measurement of weight loss (1-1) Room temperature The bonding composition 1 was uniformly spread on a slide glass so as to have a width of 1 cm and a thickness of 30 μm. This was left still in a room temperature environment, and the weight change was measured every 6 hours until 6 hours later. The obtained results are shown in Table 2. In the above evaluation, the point at which the rate of weight change was 1.0% was recorded as the pot life.
(1-2)室温~100℃
 接合用組成物1の室温~100℃における重量減少率を、熱重量分析法にて測定した。具体的には、接合用組成物1を大気中で10℃/分の昇温速度で加熱し、室温~100℃の重量減少率を測定した。得られた結果を表2に示した。
(1-2) Room temperature to 100 ° C
The weight loss rate of the bonding composition 1 from room temperature to 100 ° C. was measured by thermogravimetric analysis. Specifically, the bonding composition 1 was heated in the atmosphere at a temperature rising rate of 10 ° C./min, and the weight loss rate from room temperature to 100 ° C. was measured. The obtained results are shown in Table 2.
(1-3)室温~500℃(有機分測定)
 接合用組成物1に含まれる有機成分の含有率を、熱重量分析法にて測定した。具体的には、接合用組成物1を大気中で10℃/分の昇温速度で加熱し、室温~500℃の重量減少率として有機成分の含有量を特定した。得られた結果を表2に示した。
(1-3) Room temperature to 500 ° C (measurement of organic content)
The content of the organic component contained in the bonding composition 1 was measured by thermogravimetric analysis. Specifically, the bonding composition 1 was heated in the air at a rate of temperature increase of 10 ° C./min, and the content of the organic component was specified as a weight reduction rate from room temperature to 500 ° C. The obtained results are shown in Table 2.
(2)接合強度測定
 ダイボンダー(ハイソル社製)を用い、表面に金めっきを施したアルミナ板(50mm角)に接合用組成物1を少量塗布し、その上に市販の青色LEDチップ(ジェネライツ社製、底面積600ミクロン×600ミクロン)を積層した。その際、外力を加えて青色LEDチップを加圧することはしなかった。
(2) Bonding strength measurement Using a die bonder (manufactured by Hisol), a small amount of the bonding composition 1 was applied to an alumina plate (50 mm square) whose surface was plated with gold, and a commercially available blue LED chip (Generites Co., Ltd.) was applied thereto. Manufactured, bottom area 600 microns × 600 microns). At that time, an external force was not applied to pressurize the blue LED chip.
 その後、得られた積層体を、200℃に調整した熱風循環式オーブンに入れ、大気雰囲気下で、120分間の加熱による焼成処理を行った。積層体を取り出して空冷した後、常温にてボンドテスター(レスカ社製PTR-1101)を用いて接合強度試験(シェア高さ:基板より10ミクロン、シェアツール速度:0.01mm/sec)を行った。剥離時の接合強度をチップの底面積で換算し、得られた結果を表2に示した。 Thereafter, the obtained laminate was put into a hot air circulation oven adjusted to 200 ° C., and subjected to a baking treatment by heating for 120 minutes in an air atmosphere. After taking out the laminate and air-cooling, a bond strength test (share height: 10 microns from the substrate, share tool speed: 0.01 mm / sec) was performed at room temperature using a bond tester (PTR-1101 manufactured by Reska). It was. The bonding strength at the time of peeling was converted to the chip bottom area, and the obtained results are shown in Table 2.
(3)粘度測定
 接合用組成物1の粘度を、コーンプレート型粘度計(アントンパール社製レオメーター,MCR301)を用いて測定した。測定条件は、測定モード:せん断モード、せん断速度:10s-1、測定治具:コーンプレート(CP-50-2;直径50mm,アングル2°,ギャップ0.045mm)、測定温度:25℃とした。得られた結果を表2に示した。
(3) Viscosity measurement The viscosity of the bonding composition 1 was measured using a cone plate viscometer (Rheometer manufactured by Anton Paar, MCR301). The measurement conditions were: measurement mode: shear mode, shear rate: 10 s −1 , measurement jig: cone plate (CP-50-2; diameter 50 mm, angle 2 °, gap 0.045 mm), measurement temperature: 25 ° C. . The obtained results are shown in Table 2.
≪実施例4≫
 オレイン酸(和光純薬工業(株)製試薬一級)を0.20gと、ドデシルアミン(和光純薬工業(株)製試薬一級)0.60gと、ヘキシルアミン(和光純薬工業(株)製試薬一級)8.0gと、を混合してマグネティックスターラーで十分に撹拌した。ここに、撹拌を行いながらシュウ酸銀6.0gを添加して増粘させた。
Example 4
0.20 g of oleic acid (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 0.60 g dodecylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and hexylamine (made by Wako Pure Chemical Industries, Ltd.) Reagent grade 1) 8.0 g was mixed and sufficiently stirred with a magnetic stirrer. Here, 6.0 g of silver oxalate was added and thickened while stirring.
 次に、得られた粘性物質を100℃の恒温槽に入れ、約15分反応させた。反応後の懸濁液の分散媒を置換するため、メタノール(和光純薬工業(株)製試薬一級)10mLを当該懸濁液に加えて撹拌後、遠心分離によって銀微粒子を沈殿させて分離し、分離した銀微粒子に対して再度メタノール(和光純薬工業(株)製試薬一級)10mLを加え、撹拌及び遠心分離を行うことで銀微粒子を沈殿させて分離した。 Next, the obtained viscous substance was put in a constant temperature bath at 100 ° C. and reacted for about 15 minutes. In order to replace the dispersion medium of the suspension after the reaction, 10 mL of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) is added to the suspension and stirred, and then silver fine particles are precipitated and separated by centrifugation. Then, 10 mL of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was again added to the separated silver fine particles, and silver fine particles were precipitated and separated by stirring and centrifuging.
 得られた銀微粒子6gに分散媒としてイソトリデカノール0.60g及びリシノール酸0.10gを加えて捏和した。これをロータリーエバポレータ―を用いて40℃において60分間100hPaで処理し、接合用組成物4を得た。実施例3と同様の評価を行い、結果を表2に示した。 To 6 g of the obtained silver fine particles, 0.60 g of isotridecanol and 0.10 g of ricinoleic acid were added as a dispersion medium and kneaded. This was processed at 100 hPa for 60 minutes at 40 ° C. using a rotary evaporator to obtain a bonding composition 4. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
≪実施例5≫
 オレイン酸の代わりにソルスパース17000(日本ルーブリゾール(株)製)を加えたこと以外は実施例4と同様にして接合用組成物5を得た。実施例3と同様の評価を行い、結果を表2に示した。
Example 5
A bonding composition 5 was obtained in the same manner as in Example 4 except that Solsperse 17000 (manufactured by Nippon Lubrizol Co., Ltd.) was added instead of oleic acid. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
≪実施例6≫
 オレイン酸の代わりにディスパービック140(ビッグケミー・ジャパン(株)製)を加えたことと分散媒としてジエチレングリコールジブチルエーテル(和光純薬工業(株)製試薬一級)0.70gを加えたこと以外は実施例4と同様にして接合用組成物6を得た。実施例3と同様の評価を行い、結果を表2に示した。
Example 6
Implemented except that Dispervic 140 (manufactured by Big Chemie Japan) was added instead of oleic acid and 0.70 g of diethylene glycol dibutyl ether (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added as a dispersion medium In the same manner as in Example 4, a bonding composition 6 was obtained. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
≪実施例7≫
 オレイン酸の代わりにソルスパース11200(日本ルーブリゾール(株)製)を加えたことと分散媒のイソトリデカノールを0.90g加えたことは実施例4と同様にして接合用組成物5を得た。実施例3と同様の評価を行い、結果を表2に示した。
Example 7
The joining composition 5 was obtained in the same manner as in Example 4 except that Solsperse 11200 (manufactured by Nippon Lubrizol Co., Ltd.) was added instead of oleic acid and 0.90 g of isotridecanol as a dispersion medium was added. It was. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
≪実施例8≫
 分散媒としてイソトリデカノール0.30gとデカノール0.30g(和光純薬工業(株)製)を加えたこと以外は実施例5と同様にして接合用組成物8を得た。実施例3と同様の評価を行い、結果を表2に示した。
Example 8
A joining composition 8 was obtained in the same manner as in Example 5 except that 0.30 g of isotridecanol and 0.30 g of decanol (manufactured by Wako Pure Chemical Industries, Ltd.) were added as dispersion media. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
≪実施例9≫
 分散媒としてイソトリデカノール0.72gと1,3-ブチレングリコール0.18g(協和発酵ネオケム(株)製)を加えたこと以外は実施例7と同様にして接合用組成物9を得た。実施例3と同様の評価を行い、結果を表2に示した。
Example 9
A joining composition 9 was obtained in the same manner as in Example 7 except that 0.72 g of isotridecanol and 0.18 g of 1,3-butylene glycol (manufactured by Kyowa Hakko Neochem) were added as dispersion media. . The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
≪比較例4≫
 ヘキサン酸の量を20gにし、デシケーターでの減圧処理をしなかったこと以外は、実施例3と同様にして比較接合用組成物4を得た。実施例3と同様の評価を行い、結果を表2に示した。
<< Comparative Example 4 >>
A comparative bonding composition 4 was obtained in the same manner as in Example 3, except that the amount of hexanoic acid was 20 g, and no pressure reduction treatment was performed with a desiccator. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
≪比較例5≫
 ロータリーエバポレータ―による減圧加熱処理を実施しなかったこと以外は、実施例4と同様にして比較接合用組成物5を得た。実施例3と同様の評価を行い、結果を表2に示した。
<< Comparative Example 5 >>
A comparative bonding composition 5 was obtained in the same manner as in Example 4 except that the heat treatment under reduced pressure by the rotary evaporator was not performed. The same evaluation as in Example 3 was performed, and the results are shown in Table 2.
≪比較例6≫
 洗浄溶媒としてメタノールではなくヘキサン(SP値:7.3)を用いたこと以外は、実施例4と同様にして操作を行ったが、溶媒に分散せず、接合用組成物を得ることができなかった。
<< Comparative Example 6 >>
The operation was carried out in the same manner as in Example 4 except that hexane (SP value: 7.3) was used instead of methanol as the cleaning solvent. However, it was not dispersed in the solvent, and a bonding composition could be obtained. There wasn't.
≪比較例7≫
 分散媒としてテトラデカン(和光純薬工業(株)製試薬一級)を用いたこと以外は、実施例5と同様にして比較接合用組成物6を得た。
<< Comparative Example 7 >>
A comparative bonding composition 6 was obtained in the same manner as in Example 5 except that tetradecane (a first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as the dispersion medium.
≪比較例8≫
 分散媒としてノナノール(和光純薬工業(株)製試薬一級)を用いたこと以外は、実施例5と同様にして比較接合用組成物7を得た。
«Comparative Example 8»
A comparative bonding composition 7 was obtained in the same manner as in Example 5 except that nonanol (a reagent first grade manufactured by Wako Pure Chemical Industries, Ltd.) was used as a dispersion medium.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示す結果から、本発明の実施例においては接合温度が200℃と低温で、無加圧による接合であるにもかかわらず、20MPa以上の高い接合強度を示している(接合用組成物1及び接合用組成物2)。一方で、本発明の構成を具備しない接合用組成物を用いた場合、同様の接合条件において、極めて低い接合強度となっている(比較接合用組成物1)。また、比較接合用組成物2の接合強度は20Paと高い値を示しているものの、100℃までの重量減少が大きいため可使時間が極めて短くなっているという点で好ましくない。 From the results shown in Tables 1 and 2, in the examples of the present invention, the bonding temperature is as low as 200 ° C., and high bonding strength of 20 MPa or more is shown in spite of non-pressure bonding (bonding) Composition 1 and bonding composition 2). On the other hand, when a bonding composition that does not have the configuration of the present invention is used, the bonding strength is extremely low under the same bonding conditions (Comparative bonding composition 1). Further, although the bonding strength of the comparative bonding composition 2 shows a high value of 20 Pa, it is not preferable in that the pot life is extremely short due to the large weight loss up to 100 ° C.
 なお、接合用組成物を10℃/分の昇温速度で加熱して重量減少を測定したところ、室温から200℃まで加熱した場合の重量減少率は、接合用組成物1及び2についてそれぞれ74.9%及び79.1%であった。また200℃から300℃まで加熱した場合の重量減少率は、接合用組成物1及び2についてそれぞれ11.7%及び12.4%であった。更に、300℃から500℃まで加熱した場合の重量減少率は、接合用組成物1及び2についてそれぞれ13.4%及び8.5%であった。ここで、室温から200℃まで加熱した場合の重量減少率の値は、室温から500℃まで加熱したときの重量減少Xのうち、室温から200℃まで加熱したときの重量減少Yが占める割合という意味であり、200℃から300℃まで加熱したときの重量減少率の値および300℃から500℃まで加熱したときの重量減少率の値についても同様である。 When the weight loss was measured by heating the bonding composition at a heating rate of 10 ° C./min, the weight reduction rate when heated from room temperature to 200 ° C. was 74 for bonding compositions 1 and 2, respectively. 0.9% and 79.1%. Moreover, the weight decreasing rates when heated from 200 ° C. to 300 ° C. were 11.7% and 12.4% for the bonding compositions 1 and 2, respectively. Furthermore, the weight reduction rates when heated from 300 ° C. to 500 ° C. were 13.4% and 8.5% for the bonding compositions 1 and 2, respectively. Here, the value of the weight decrease rate when heated from room temperature to 200 ° C. is the ratio of the weight decrease Y when heated from room temperature to 200 ° C. among the weight decrease X when heated from room temperature to 500 ° C. The same applies to the value of the weight reduction rate when heated from 200 ° C. to 300 ° C. and the value of the weight reduction rate when heated from 300 ° C. to 500 ° C.

Claims (5)

  1.  無機粒子及び有機成分を含む接合用組成物であって、
     前記接合用組成物を室温の大気中に6時間放置した際の重量減少が1.5質量%以下であり、
     前記接合用組成物を大気雰囲気で室温から100℃まで昇温速度10℃/分で加熱したときの重量減少が3.0質量%以下であること、
     を特徴とする接合用組成物。
    A bonding composition comprising inorganic particles and an organic component,
    The weight loss when the bonding composition is left in the air at room temperature for 6 hours is 1.5% by mass or less,
    A weight loss when the bonding composition is heated from room temperature to 100 ° C. in an air atmosphere at a heating rate of 10 ° C./min is 3.0% by mass or less;
    A bonding composition characterized by the above.
  2.  前記接合用組成物を大気雰囲気で室温から500℃まで昇温速度10℃/分で加熱したときの重量減少が20.0質量%以下であること、
     を特徴とする請求項1に記載の接合用組成物。
    The weight loss when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a heating rate of 10 ° C./min is 20.0 mass% or less,
    The bonding composition according to claim 1, wherein:
  3.  前記無機粒子が、金、銀、銅、ニッケル、ビスマス、スズ及び白金族元素よりなる群から選択される少なくとも1種類の金属で構成される金属粒子であること、
     を特徴とする請求項1又は2に記載の接合用組成物。
    The inorganic particles are metal particles composed of at least one metal selected from the group consisting of gold, silver, copper, nickel, bismuth, tin and a platinum group element;
    The bonding composition according to claim 1 or 2, wherein:
  4.  前記有機成分が、アミン及び/又はカルボン酸を含むこと、
     を特徴とする請求項1又は2に記載の接合用組成物。
    The organic component comprises an amine and / or a carboxylic acid;
    The bonding composition according to claim 1 or 2, wherein:
  5.  SP値が10以上の有機物が減圧下で除去されていること、
     を特徴とする請求項1又は2に記載の接合用組成物。
    Organic substances having an SP value of 10 or more are removed under reduced pressure,
    The bonding composition according to claim 1 or 2, wherein:
PCT/JP2015/005395 2014-10-31 2015-10-27 Bonding composition WO2016067599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016556355A JPWO2016067599A1 (en) 2014-10-31 2015-10-27 Bonding composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014222834 2014-10-31
JP2014-222834 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016067599A1 true WO2016067599A1 (en) 2016-05-06

Family

ID=55856965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005395 WO2016067599A1 (en) 2014-10-31 2015-10-27 Bonding composition

Country Status (3)

Country Link
JP (1) JPWO2016067599A1 (en)
TW (1) TW201615785A (en)
WO (1) WO2016067599A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085909A1 (en) * 2015-11-16 2017-05-26 バンドー化学株式会社 Bonding composition
JP6267835B1 (en) * 2016-08-10 2018-01-24 バンドー化学株式会社 Bonding composition and method for producing the same
WO2018030173A1 (en) * 2016-08-10 2018-02-15 バンドー化学株式会社 Bonding composition and method for preparing same
JP7015415B1 (en) * 2020-08-26 2022-02-02 バンドー化学株式会社 Bonding composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074171A (en) * 2007-08-30 2009-04-09 Mitsuboshi Belting Ltd Metal colloidal particle and fluid dispersion thereof
JP2011094223A (en) * 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2012046779A (en) * 2010-08-25 2012-03-08 Toyota Central R&D Labs Inc Surface-coated metal nanoparticle, method for producing the same, and metal nanoparticle paste containing the same
JP2013159830A (en) * 2012-02-06 2013-08-19 Toyota Central R&D Labs Inc Surface-coated metal nanoparticle, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074171A (en) * 2007-08-30 2009-04-09 Mitsuboshi Belting Ltd Metal colloidal particle and fluid dispersion thereof
JP2011094223A (en) * 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2012046779A (en) * 2010-08-25 2012-03-08 Toyota Central R&D Labs Inc Surface-coated metal nanoparticle, method for producing the same, and metal nanoparticle paste containing the same
JP2013159830A (en) * 2012-02-06 2013-08-19 Toyota Central R&D Labs Inc Surface-coated metal nanoparticle, and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085909A1 (en) * 2015-11-16 2017-05-26 バンドー化学株式会社 Bonding composition
JP6163616B1 (en) * 2015-11-16 2017-07-12 バンドー化学株式会社 Bonding composition
JP6267835B1 (en) * 2016-08-10 2018-01-24 バンドー化学株式会社 Bonding composition and method for producing the same
WO2018030173A1 (en) * 2016-08-10 2018-02-15 バンドー化学株式会社 Bonding composition and method for preparing same
JP7015415B1 (en) * 2020-08-26 2022-02-02 バンドー化学株式会社 Bonding composition
WO2022044696A1 (en) * 2020-08-26 2022-03-03 バンドー化学株式会社 Joining composition
CN115916431A (en) * 2020-08-26 2023-04-04 阪东化学株式会社 Bonding composition

Also Published As

Publication number Publication date
JPWO2016067599A1 (en) 2017-08-10
TW201615785A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
JP6349310B2 (en) Metal bonding composition
JP6021816B2 (en) Bonding composition
JP6262139B2 (en) Bonding composition
JP2017155166A (en) Joining composition
WO2015162881A1 (en) Composition for bonding and metal bonded body using same
JP6163616B1 (en) Bonding composition
WO2016067599A1 (en) Bonding composition
WO2018030173A1 (en) Bonding composition and method for preparing same
JP6669420B2 (en) Bonding composition
JP6267835B1 (en) Bonding composition and method for producing the same
WO2015159480A1 (en) Bonding composition and metal bonded body using same
JP6085724B2 (en) Bonding composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556355

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854005

Country of ref document: EP

Kind code of ref document: A1