WO2018008422A1 - Inductor with esd protection function - Google Patents

Inductor with esd protection function Download PDF

Info

Publication number
WO2018008422A1
WO2018008422A1 PCT/JP2017/023067 JP2017023067W WO2018008422A1 WO 2018008422 A1 WO2018008422 A1 WO 2018008422A1 JP 2017023067 W JP2017023067 W JP 2017023067W WO 2018008422 A1 WO2018008422 A1 WO 2018008422A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
inductor
coil
esd protection
main surface
Prior art date
Application number
PCT/JP2017/023067
Other languages
French (fr)
Japanese (ja)
Inventor
宣夫 坂井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201790000576.5U priority Critical patent/CN208143194U/en
Publication of WO2018008422A1 publication Critical patent/WO2018008422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks

Definitions

  • the present invention relates to an inductor having an ESD protection function, and more particularly to an inductor with an ESD protection function including an inductor and a diode.
  • the ESD protection circuit is a circuit for escaping ESD to the ground or the like and protecting the electronic circuit in the subsequent stage from ESD, and is disposed, for example, between the signal line and the ground (ground).
  • Patent Document 1 discloses an electronic device in which a filter circuit having an ESD protection function is provided in the vicinity of an antenna terminal for ESD protection.
  • An object of the present invention is to provide an inductor with an ESD protection function capable of reducing a required mounting area and suppressing variation in electrical characteristics.
  • the inductor with an ESD protection function of the present invention is A base material having a first main surface which is a mounting surface; a coil formed on the base material; a first input / output electrode formed on the first main surface and connected to a first end of the coil; A second input / output electrode formed on the first main surface and connected to a second end of the coil; a ground electrode formed on the first main surface; and a first connection electrode connected to the coil; A LGA type chip inductor having a second connection electrode connected to the ground electrode; A diode having a semiconductor substrate, a diode that functions as an ESD protection element, formed on the semiconductor substrate, and a first terminal electrode and a second terminal electrode that are respectively connected to a first end and a second end of the diode Chips, With The diode chip is mounted on the LGA type chip inductor, The first terminal electrode and the second terminal electrode of the diode chip are connected to the first connection electrode and the second connection electrode of the LGA chip inductor, respectively.
  • the mounting area required for the circuit configuration can be reduced as compared with the case where the inductor chip and the diode chip, which are discrete components, are mounted on a mounting substrate or the like. Further, with this configuration, the wiring length between the diode and the coil can be shortened as compared with the case where the discrete component is mounted on a mounting board or the like. Therefore, the conductor resistance and parasitic inductance in the wiring between the diode and the coil are reduced, the ESD suppression voltage is low, and an inductor with an ESD protection function with high response can be realized.
  • the base material has a second main surface facing the first main surface, and the first connection electrode and the second connection electrode are formed on the second main surface.
  • the diode chip is preferably mounted on the second main surface of the base material. With this configuration, it is possible to reduce the mounting area (especially, the area on the plane) of the inductor with an ESD protection function as compared with the case where the diode chip is mounted on the end face or the like of the base material.
  • the diode chip overlaps the coil in a plan view of the first main surface and the second main surface.
  • the distance between the diode chip and the coil on the plane is shorter than the structure in which the diode chip does not overlap the coil when the first main surface and the second main surface are viewed in plan.
  • the wiring length between the two is further shortened. Therefore, the conductor resistance and parasitic inductance in the wiring between the diode and the coil can be further reduced.
  • the base material may be a laminate of a plurality of insulating base material layers.
  • a low-pass filter may be configured by an inductance component of the LGA chip inductor and a capacitance component of the diode.
  • a first interlayer connection conductor formed on the base material is provided, and the first connection electrode is connected to the coil via the first interlayer connection conductor. It may be connected.
  • the base material is a magnetic member, and includes a routing conductor formed on an outer surface of the base material, and the ground electrode is interposed through the routing conductor. It is preferable to be connected to the second connection electrode.
  • an inductor with an ESD protection function that can reduce a required mounting area and suppress fluctuations in electrical characteristics.
  • FIG. 1A is a perspective view of an inductor 101 with an ESD protection function according to the first embodiment
  • FIG. 1B is a perspective view of an LGA type chip inductor 1.
  • 2A is a front view of the inductor 101 with an ESD protection function
  • FIG. 2B is a plan view of the inductor 101 with an ESD protection function.
  • 3A is a plan view of the LGA type chip inductor 1
  • FIG. 3B is a cross-sectional view taken along line AA in FIG. 2A
  • FIG. 3C is a bottom view of the LGA type chip inductor 1.
  • FIG. FIG. FIG. 4 is a perspective view showing conductors and electrodes included in the LGA type chip inductor 1.
  • FIG. 5A is a bottom view of the diode chip 2
  • FIG. 5B is a longitudinal sectional view of the diode chip 2.
  • FIG. 6 is a circuit diagram of the inductor 101 with an ESD protection function.
  • FIG. 7A is a perspective view of the inductor 102 with an ESD protection function according to the second embodiment
  • FIG. 7B is a front view of the inductor 102 with an ESD protection function.
  • 8A is a plan view of the LGA type chip inductor 1A
  • FIG. 8B is a cross-sectional view taken along the line BB in FIG. 7B
  • FIG. 8C is a bottom view of the LGA type chip inductor 1A.
  • FIG. 9 is a perspective view showing conductors and electrodes of the LGA type chip inductor 1A.
  • FIG. 10 is a circuit diagram of the inductor 102 with an ESD protection function.
  • FIG. 11A is a perspective view of the inductor 103 with an ESD protection function according to the third embodiment, and FIG. 11B is a front view of the inductor 103 with an ESD protection function.
  • 12A is a plan view of the LGA type chip inductor 1B
  • FIG. 12B is a cross-sectional view taken along the line CC in FIG. 11B
  • FIG. 12C is a bottom view of the LGA type chip inductor 1B.
  • FIG. 13 is a perspective view showing conductors and electrodes of the LGA type chip inductor 1B.
  • FIG. 14 is a circuit diagram of the inductor 103 with an ESD protection function.
  • FIG. 15 is a perspective view of the inductor 104 with an ESD protection function according to the fourth embodiment.
  • FIG. 16A is a perspective view of an LGA type chip inductor 1C
  • FIG. 16B is a perspective view showing conductors and electrodes of the LGA type chip inductor 1C.
  • FIG. 17 is a circuit diagram of the inductor 104 with an ESD protection function.
  • FIG. 1A is a perspective view of an inductor 101 with an ESD protection function according to the first embodiment
  • FIG. 1B is a perspective view of an LGA type chip inductor 1.
  • 2A is a front view of the inductor 101 with an ESD protection function
  • FIG. 2B is a plan view of the inductor 101 with an ESD protection function.
  • the first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are indicated by broken lines.
  • the coil 31, the conductor 41, and the interlayer connection conductors V1, V2, and V5 are indicated by broken lines.
  • the inductor 101 with an ESD protection function includes an LGA chip inductor 1 and a diode chip 2 mounted on the LGA chip inductor 1.
  • the “LGA type chip inductor” in the present invention is an electrode for mounting on a mounting substrate or the like (“first input / output electrode” described in detail later) only on the mounting surface (“first main surface of the base material described in detail later”). , Second input / output electrode and ground electrode "), and a chip inductor having no mounting electrodes on the end face and the top face.
  • FIG. 3A is a plan view of the LGA type chip inductor 1
  • FIG. 3B is a cross-sectional view taken along line AA in FIG. 2A
  • FIG. 3C is a bottom view of the LGA type chip inductor 1.
  • FIG. FIG. 4 is a perspective view showing conductors and electrodes included in the LGA type chip inductor 1.
  • the LGA type chip inductor 1 includes a base material 10, a coil 31 formed inside the base material 10, a conductor 41, a first input / output electrode P1, a second input / output electrode P2, a ground electrode GP, a first connection electrode CP1, A second connection electrode CP2 and interlayer connection conductors V1, V2, V3, V4, and V5 are provided.
  • the base material 10 is a rectangular parallelepiped insulator flat plate having a first main surface VS1 and a second main surface VS2 facing each other and having a longitudinal direction coinciding with the X-axis direction. Both the first main surface VS1 and the second main surface VS2 are surfaces orthogonal to the Z-axis direction and parallel to the XY plane.
  • the substrate 10 according to this embodiment is a laminate of a plurality of insulating substrate layers.
  • the first main surface VS1 of the base material 10 is a mounting surface on a mounting substrate or the like.
  • the base material 10 is a dielectric ceramic such as, for example, low temperature co-fired ceramics (LTCC: Low Temperature Co-fired Ceramics).
  • the coil 31 is a two-turn spiral conductor formed inside the substrate 10 and has a winding axis in the thickness direction (Z-axis direction).
  • the coil 31 is a conductor pattern made of Cu paste or the like formed on an insulating base material layer constituting the base material 10, for example.
  • the number of turns of the coil 31 is not limited to more than 2 turns, and may be 1 turn or 3 turns or more.
  • the conductor 41 is an L-shaped conductor formed inside the base material 10.
  • the conductor 41 is a conductor pattern made of Cu paste or the like formed on, for example, an insulating base layer (an insulating base layer different from the insulating base layer on which the coil 31 is formed).
  • the first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are conductors formed on the first main surface VS1 of the base material 10.
  • the first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are rectangular conductors whose longitudinal direction coincides with the Y-axis direction.
  • the second input / output electrode P2, the ground electrode GP, and the first input / output electrode They are arranged in the X-axis direction in the order of P1.
  • the first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are conductor patterns such as Cu paste, for example.
  • the first connection electrode CP1 and the second connection electrode CP2 are rectangular conductors formed on the second main surface VS2 of the base material 10.
  • the first connection electrode CP1 and the second connection electrode CP2 are arranged near the center of the second main surface VS2 in the X-axis direction and arranged in the Y-axis direction.
  • the first connection electrode CP1 and the second connection electrode CP2 are conductor patterns such as Cu paste, for example.
  • Interlayer connection conductors V1, V2, V3, V4, and V5 are columnar conductors formed inside the substrate 10.
  • the interlayer connection conductors V1, V2, V3, V4, and V5 are, for example, via conductors or through holes that are formed by filling a through hole that penetrates the base material 10 in the thickness direction (Z-axis direction) with a conductive paste.
  • the interlayer connection conductors V4 and V5 correspond to the “first interlayer connection conductor” in the present invention.
  • the first input / output electrode P1 is connected to the first end E1 of the coil 31 via the interlayer connection conductor V1.
  • the second input / output electrode P2 is connected to the second end of the coil 31 through the conductor 41 and the interlayer connection conductors V2 and V5.
  • the first connection electrode CP1 is connected to the second end E2 of the coil 31 through the conductor 41 and the interlayer connection conductors V4 and V5.
  • the second connection electrode CP2 is connected to the ground electrode GP via the interlayer connection conductor V3.
  • FIG. 5A is a bottom view of the diode chip 2
  • FIG. 5B is a vertical cross-sectional view of the diode chip 2.
  • the diode chip 2 includes a semiconductor substrate 20, a diode (described later in detail) formed on the semiconductor substrate 20, a first terminal electrode EP1, and a second terminal electrode EP2.
  • the semiconductor substrate 20 is a rectangular parallelepiped semiconductor substrate having an element formation surface S1 and having a longitudinal direction coinciding with the Y-axis direction.
  • the semiconductor substrate 20 is, for example, a Si substrate.
  • a semiconductor element portion 21 is formed in a region of the semiconductor substrate 20 on the element formation surface S1 side.
  • an n-type semiconductor layer (n-type well) having a predetermined depth is formed on the element formation surface S 1 side of the semiconductor substrate 20, and two p-type semiconductor portions are formed in the n-type semiconductor. Are formed apart from each other.
  • the two p-type semiconductor portions are exposed on the element formation surface S1.
  • the portions where the two p-type semiconductor portions are exposed on the element formation surface S1 are the first end and the second end of the diode formed on the semiconductor element portion 21 (semiconductor substrate 20).
  • this diode chip 2 functions as an ESD protection element.
  • Insulating layers 3 and 4 and electrodes 51 and 52 are formed on the element formation surface S1 of the semiconductor substrate 20.
  • the insulating layer 4 and the insulating layer 3 are formed in this order from the element formation surface S1 side.
  • the electrode 51 is connected to one p-type semiconductor portion exposed on the element formation surface S1. A part of the electrode 51 is exposed to the outside through a hole formed in the insulating layer 3.
  • the electrode 52 is connected to the other p-type semiconductor part exposed on the element formation surface S1. A part of the electrode 52 is exposed to the outside through a hole formed in the insulating layer 3.
  • the electrodes 51 and 52 are, for example, Al films, and the insulating layer 3 is, for example, a SiO 2 film.
  • the portion where the electrode 51 is exposed is the first terminal electrode EP1 of the diode chip 2, and the portion where the electrode 52 is exposed is the second terminal electrode EP2 of the diode chip 2.
  • the first terminal electrode EP1 and the second terminal electrode EP2 are formed on the element formation surface S1 of the semiconductor substrate 20, and the first end and the second end of the diode formed on the semiconductor element portion 21 (semiconductor substrate 20). Connected to each end.
  • the exposed surfaces of the electrode 51 and the electrode 52 may be plated.
  • Au plating based on Ni can be used.
  • the diode chip 2 is mounted on the second main surface VS2 of the base 10 so that the second main surface VS2 of the base 10 and the element formation surface S1 of the semiconductor substrate 20 face each other. Is done. Thereby, the first terminal electrode EP1 and the second terminal electrode EP2 of the diode chip 2 are connected to the first connection electrode CP1 and the second connection electrode CP2 of the LGA type chip inductor 1, respectively.
  • the diode chip 2 overlaps the coil 31 when the first main surface VS1 and the second main surface VS2 are viewed in plan (viewed from the Z-axis direction).
  • FIG. 6 is a circuit diagram of the inductor 101 with an ESD protection function.
  • the coil 31 is represented by a coil L1
  • the Zener diode formed on the semiconductor substrate 20 shown in FIG. 5B is represented by a diode D1.
  • the inductor 101 with ESD protection function includes a coil L1 connected between the first input / output electrode P1 and the second input / output electrode P2, and the second input / output electrode P2 and the ground electrode GP.
  • a diode D1 is connected between them.
  • the first input / output electrode P1 is connected to the first end of the coil L1
  • the second input / output electrode P2 is connected to the second end of the coil L1.
  • the second input / output electrode P2 is connected to the first end of the diode via the first connection electrode CP1 and the first terminal electrode EP1.
  • the ground electrode GP is connected to the second end of the diode D1 through the second connection electrode CP2 and the second terminal electrode EP2.
  • the ground electrode GP is connected to the ground.
  • the ground electrode GP is connected to the ground.
  • a low-pass filter is constituted by the inductance component (coil L1) of the LGA type chip inductor 1 and the capacitance component of the diode D1.
  • the inductor 101 with an ESD protection function according to this embodiment has the following effects.
  • the inductor 101 with an ESD protection function has a structure in which the diode chip 2 is mounted on the LGA type chip inductor 1. Therefore, the mounting area required for the circuit configuration can be reduced as compared with the case where the inductor chip and the diode chip, which are discrete components, are mounted on a mounting substrate or the like. Further, with this configuration, the wiring length between the diode and the coil can be shortened as compared with the case where the discrete component is mounted on a mounting board or the like. Therefore, the conductor resistance and parasitic inductance in the wiring between the diode and the coil are reduced, the ESD suppression voltage is low, and an inductor with an ESD protection function with high response can be realized.
  • the diode chip 2 is mounted on the second main surface VS2 of the substrate 10.
  • the mounting area (especially, the area on the XY plane) of the inductor 101 with an ESD protection function can be reduced as compared with the case where the diode chip 2 is mounted on the end face or the like of the substrate 10.
  • the diode chip 2 overlaps the coil 31 as viewed from the Z-axis direction.
  • the distance between the diode chip 2 and the coil 31 on the plane (XY plane) is shorter than the structure in which the diode chip 2 does not overlap the coil 31 when viewed from the Z-axis direction.
  • the wiring length between the two is further shortened. Therefore, the conductor resistance and parasitic inductance in the wiring between the diode and the coil can be further reduced.
  • the inductor 101 with an ESD protection function is manufactured by, for example, the following processes (1) to (5).
  • a base material 10 on which V4 and V5 are formed is prepared.
  • the base material 10 is obtained by laminating a plurality of insulating base material layers on which coils 31 and the like and interlayer connection conductors are formed and press-bonding, and then firing at a temperature of 800 ° C. or higher.
  • the insulating base layer before firing is a green sheet such as non-magnetic ferrite such as low temperature co-fired ceramics (LTCC).
  • a paste-like conductive bonding material is printed on the first connection electrode CP1 and the second connection electrode CP2 of the substrate 10.
  • solder is used as the conductive bonding material
  • a solder paste is printed on the first connection electrode CP1 and the second connection electrode CP2 formed on the second main surface VS2 of the substrate 10.
  • the diode chip 2 is prepared, and the diode chip 2 is disposed on the substrate 10. Specifically, the first terminal electrode EP1 and the second terminal electrode EP2 of the diode chip 2 are respectively opposed to the first connection electrode CP1 and the second connection electrode CP2 formed on the second main surface VS2 of the base material 10. Thus, the diode chip 2 is disposed on the second main surface VS2 by the mounter.
  • the first terminal electrode EP1 and the second terminal electrode EP2 may be preliminarily printed with a solder paste and semi-cured.
  • connection electrode CP1 and the first terminal electrode EP1 are connected by a conductive bonding material
  • second connection electrode CP2 and the second terminal electrode EP2 are connected by a conductive bonding material.
  • Second Embodiment the structure and circuit of the coil formed in a base material show an example different from 1st Embodiment.
  • FIG. 7A is a perspective view of the inductor 102 with an ESD protection function according to the second embodiment
  • FIG. 7B is a front view of the inductor 102 with an ESD protection function.
  • the coil 32 and the interlayer connection conductors V1, V2, and V3 are indicated by broken lines for easy understanding of the structure.
  • the inductor 102 with an ESD protection function includes an LGA chip inductor 1A and a diode chip 2 mounted on the LGA chip inductor 1A.
  • the inductor 102 with ESD protection function is the same as the inductor 101 with ESD protection function according to the first embodiment except for the structure of the LGA chip inductor 1A.
  • a different part from the inductor 101 with an ESD protection function which concerns on 1st Embodiment is demonstrated.
  • FIG. 8A is a plan view of the LGA type chip inductor 1A
  • FIG. 8B is a cross-sectional view taken along the line BB in FIG. 7B
  • FIG. 8C is a bottom view of the LGA type chip inductor 1A
  • FIG. 9 is a perspective view showing conductors and electrodes of the LGA type chip inductor 1A.
  • the LGA type chip inductor 1A includes a base material 10A, a coil 32 formed inside the base material 10A, a first input / output electrode P1, a second input / output electrode P2, a ground electrode GP, a first connection electrode CP1, and a second connection. It has an electrode CP2 and interlayer connection conductors V1, V2, V3, V4, V5.
  • the base material 10A is a rectangular parallelepiped insulator plate having a first main surface VS1 and a second main surface VS2 facing each other and having a longitudinal direction coinciding with the X-axis direction.
  • the base material 10A according to the present embodiment is a laminate of a plurality of insulating base material layers.
  • the coil 32 is a loop-shaped conductor of about 1 turn formed inside the base material 10 and has a winding axis in the thickness direction (Z-axis direction).
  • the coil 32 includes coils 32A and 32C formed on the insulating base layer, coils 32B formed on the insulating base layer (insulating base layer different from the insulating base layer on which the coils 32A and 32C are formed), and the like. Composed.
  • the coils 32A, 32B, and 32C are connected to each other via an interlayer connection conductor formed on the insulating base material layer.
  • the number of turns of the coil 32 is not limited to about 1 turn, and may be a plurality of turns.
  • the coil 32 is not limited to a loop shape, and may be a helical shape or a spiral shape.
  • the configurations of the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, and the second connection electrode CP2 are substantially the same as those in the first embodiment.
  • the first input / output electrode P1 is connected to the first end E1 of the coil 32 via the interlayer connection conductor V1.
  • the second input / output electrode P2 is connected to the second end E2 of the coil 32 via the interlayer connection conductor V2.
  • the first connection electrode CP1 is connected to a third end E3 formed near the center of the loop of the coil 32 via the interlayer connection conductor V5.
  • the second connection electrode CP2 is connected to the ground electrode GP via the interlayer connection conductor V3.
  • FIG. 10 is a circuit diagram of the inductor 102 with an ESD protection function.
  • the coil 32 is represented by a coil L2
  • the diode chip 2 shown in FIGS. 7A and 7B is represented by a diode D1.
  • the inductor 102 with ESD protection function includes a coil L2 connected between the first input / output electrode P1 and the second input / output electrode P2, and between the center of the coil L2 and the ground electrode GP.
  • This is a circuit to which a diode D1 is connected.
  • the first input / output electrode P1 is connected to the first end of the coil L2, and the second input / output electrode P2 is connected to the second end of the coil L2.
  • the first end of the diode D1 is connected to the center of the coil L2 via the first connection electrode CP1 and the first terminal electrode EP1.
  • the second end of the diode D1 is connected to the ground electrode GP through the second connection electrode CP2 and the second terminal electrode EP2.
  • the ground electrode GP is connected to the ground.
  • the diode D1 is connected to the ground from the center of the coil L2, and a T-type low-pass filter having symmetry with respect to the input and output is configured. That is, an inductor with an ESD protection function having the same characteristics can be realized even if the input / output electrodes (first input / output electrode P1 and second input / output electrode P2) are mounted in reverse.
  • the diode may be connected in the middle of the coil.
  • a circuit in which the diode D1 is connected to the ground from the center of the coil L2 is shown, but the present invention is not limited to this configuration.
  • the diode D1 may be connected between a position other than the center of the coil L2 and the ground.
  • the third embodiment shows an example in which two diode chips are mounted on an LGA type chip inductor.
  • FIG. 11A is a perspective view of the inductor 103 with an ESD protection function according to the third embodiment
  • FIG. 11B is a front view of the inductor 103 with an ESD protection function.
  • the coil 33 and the interlayer connection conductors V1, V2, V3, V4, and V5 are indicated by broken lines.
  • the inductor 103 with an ESD protection function includes an LGA chip inductor 1B and two diode chips 2A and 2B mounted on the LGA chip inductor 1B.
  • the diode chips 2A and 2B are the same as the diode chip 2 shown in the first embodiment. Hereinafter, a different part from the inductor 101 with an ESD protection function which concerns on 1st Embodiment is demonstrated.
  • FIG. 12A is a plan view of the LGA type chip inductor 1B
  • FIG. 12B is a cross-sectional view taken along the line CC in FIG. 11B
  • FIG. 12C is a bottom view of the LGA type chip inductor 1B
  • FIG. FIG. 13 is a perspective view showing conductors and electrodes of the LGA type chip inductor 1B.
  • the LGA type chip inductor 1B includes a base material 10B, a coil 33 formed inside the base material 10B, a first input / output electrode P1, a second input / output electrode P2, a ground electrode GP, first connection electrodes CP1A and CP1B, Two connection electrodes CP2 and interlayer connection conductors V1, V2, V3, V4, and V5 are provided.
  • the base material 10 ⁇ / b> B is a rectangular parallelepiped insulator plate having a first main surface VS ⁇ b> 1 and a second main surface VS ⁇ b> 2 that face each other and whose longitudinal direction coincides with the X-axis direction.
  • the base material 10B according to the present embodiment is a laminate of a plurality of insulating base material layers.
  • the coil 33 is a loop-shaped conductor of about 1 turn formed inside the base material 10B.
  • the coil 33 includes coils 33A and 33C formed on the insulating base layer, coils 33B formed on the insulating base layer (an insulating base layer different from the insulating base layer on which the coils 33A and 33C are formed), and the like. Composed.
  • the coils 33A, 33B, and 33C are connected to each other via an interlayer connection conductor formed on the insulating base material layer. Note that the number of turns of the coil 33 is not limited to about one turn, and may be a plurality of turns.
  • the coil 33 is not limited to a loop shape, and may be a helical shape or a spiral shape.
  • the first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are conductors formed on the first main surface VS1 of the base material 10B.
  • the first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are rectangular conductors whose longitudinal direction coincides with the Y-axis direction.
  • the second input / output electrode P2, the ground electrode GP, and the first input / output electrode They are arranged in the X-axis direction in the order of P1. As shown in FIG. 12C, the width of the ground electrode GP in the X-axis direction is larger than the width of the first input / output electrode P1 and the second input / output electrode P2 in the X-axis direction.
  • the first connection electrodes CP1A and CP1B are rectangular conductors arranged near the first side (the upper side of the base material 10B in FIG. 12C) of the second main surface VS2 of the base material 10B.
  • the first connection electrodes CP1A and CP1B are arranged near the center of the second main surface VS2 in the X-axis direction and aligned in the X-axis direction.
  • the second connection electrode CP2 is a rectangular conductor disposed near the second side (the lower side of the base material 10B in FIG. 12C) of the second main surface VS2 of the base material 10B.
  • the second connection electrode CP2 is disposed in the X-axis direction of the second main surface VS2.
  • the first input / output electrode P1 is connected to the first end E1 of the coil 33 via the interlayer connection conductor V1.
  • the second input / output electrode P2 is connected to the second end E2 of the coil 33 via the interlayer connection conductor V2.
  • the first connection electrode CP1A is connected to the third end E3 of the coil 33 via the interlayer connection conductor V4.
  • the first connection electrode CP1B is connected to the fourth end E4 of the coil 33 via the interlayer connection conductor V5.
  • the second connection electrode CP2 is connected to the ground electrode GP via the interlayer connection conductor V3.
  • the diode chips 2A and 2B are mounted on the second main surface VS2 of the base material 10B so that the second main surface VS2 of the base material 10B and the element formation surface S1 of the semiconductor substrate 20 face each other.
  • the first terminal electrode (EP1) and the second terminal electrode (EP2) of the diode chip 2A are connected to the first connection electrode CP1A and the second connection electrode CP2 of the LGA type chip inductor 1B, respectively.
  • the first terminal electrode (EP1) and the second terminal electrode (EP2) of the diode chip 2B are connected to the first connection electrode CP1B and the second connection electrode CP2 of the LGA type chip inductor 1B, respectively.
  • FIG. 14 is a circuit diagram of the inductor 103 with an ESD protection function.
  • the coil 33 is represented by a coil L3
  • the diodes formed on the semiconductor substrate 20 illustrated in FIGS. 11A and 11B are represented by diodes D1A and D1B.
  • the inductor 103 with ESD protection function includes a coil L3 connected between the first input / output electrode P1 and the second input / output electrode P2, and the first and second ends of the coil L3 and the ground.
  • diodes D1A and D1B are connected to the electrode GP, respectively.
  • the first input / output electrode P1 is connected to the first end of the coil L3, and the second input / output electrode P2 is connected to the second end of the coil L3.
  • the first end of the diode D1A is connected to the first end of the coil L3 via the first connection electrode CP1A and the first terminal electrode EP1.
  • the second end of the diode D1A is connected to the ground electrode GP through the second connection electrode CP2 and the second terminal electrode EP2.
  • the first end of the diode D1B is connected to the second end of the coil L3 via the first connection electrode CP1B and the first terminal electrode EP1.
  • the second end of the diode D1B is connected to the ground electrode GP through the second connection electrode CP2 and the second terminal electrode EP2. As shown in FIG. 14, the ground electrode GP is connected to the ground.
  • This configuration constitutes a low-pass filter in which the diodes D1A and D1B are connected to the ground from both ends of the coil L3. Also, with this configuration, it is possible to obtain an inductor with an ESD protection function having a circuit configuration having a contrast to input / output.
  • a plurality of diode chips may be mounted on the LGA type chip inductor.
  • FIG. 15 is a perspective view of the inductor 104 with an ESD protection function according to the fourth embodiment.
  • the inductor 104 with an ESD protection function includes an LGA chip inductor 1C and a diode chip 2 mounted on the LGA chip inductor 1C.
  • the inductor 102 with the ESD protection function is the same as the inductor 101 with the ESD protection function according to the first embodiment except for the structure of the LGA chip inductor 1C.
  • the inductor 101 with an ESD protection function which concerns on 1st Embodiment is demonstrated.
  • FIG. 16A is a perspective view of an LGA type chip inductor 1C
  • FIG. 16B is a perspective view showing conductors and electrodes of the LGA type chip inductor 1C.
  • the LGA chip inductor 1C includes a base material 10C, a coil 31 formed inside the base material 10C, a first input / output electrode P1, a second input / output electrode P2, a ground electrode GP, a first connection electrode CP1, and a second connection. It has an electrode CP2, interlayer connection conductors V1, V2, V4, V5 and a lead conductor V3P.
  • the base material 10 ⁇ / b> C is a rectangular parallelepiped insulator plate having a first main surface VS ⁇ b> 1 and a second main surface VS ⁇ b> 2 that face each other and whose longitudinal direction matches the X-axis direction.
  • the base material 10C is, for example, a magnetic member (magnetic ferrite), and is a laminate of a plurality of insulating base material layers made of magnetic ferrite.
  • the configuration of the coil 31, the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, the second connection electrode CP2, and the interlayer connection conductors V1, V2, V4, V5 is the first configuration. This is substantially the same as the embodiment.
  • the lead conductor V3P is a semi-cylindrical conductor formed on the outer surface of the base material 10C.
  • the lead conductor V3P is, for example, cut in the thickness direction (Z-axis direction) together with the substrate along a line passing through the center of a cylindrical via conductor or a through hole extending in the thickness direction (Z-axis direction).
  • the first input / output electrode P1 is connected to the first end E1 of the coil 31 via the interlayer connection conductor V1.
  • the second input / output electrode P2 is connected to the second end of the coil 31 through the conductor 41 and the interlayer connection conductors V2 and V5.
  • the first connection electrode CP1 is connected to the second end E2 of the coil 31 through the conductor 41 and the interlayer connection conductors V4 and V5.
  • the second connection electrode CP2 is connected to the ground electrode GP through the lead conductor V3P.
  • the diode chip 2 is mounted on the second main surface VS2 of the substrate 10C.
  • the first terminal electrode (EP1) and the second terminal electrode (EP2) of the diode chip 2 are connected to the first connection electrode CP1 and the second connection electrode CP2 of the LGA type chip inductor 1C, respectively.
  • FIG. 17 is a circuit diagram of the inductor 104 with an ESD protection function.
  • the coil 31 is represented by a coil L1
  • the diode formed on the semiconductor substrate 20 illustrated in FIGS. 16A and 16B is represented by a diode D1.
  • the low-pass filter is configured by the inductance component (coil L1) of the LGA chip inductor 1C and the capacitance component of the diode D1.
  • the inductor 104 with an ESD protection function has the following effects.
  • the base material 10C is a magnetic member.
  • the lead conductor V3P which is a wiring between the diode D1 and the ground electrode GP (ground) shown in FIG. 17, is formed on the outer surface of the base material 10C that is a magnetic member.
  • the parasitic inductor generated in the wiring between the diode D1 and the ground electrode GP is suppressed as compared with the case where the wiring between the diode D1 and the ground electrode GP is formed inside the magnetic body member (base material). it can. Therefore, this configuration improves the ESD protection function (removal function) of the inductor 104 with ESD protection function and the attenuation characteristic of the filter. This effect is particularly remarkable at high frequencies.
  • the semi-cylindrical routing conductor V3P is shown, but the routing conductor is not limited to this configuration.
  • the lead conductor may be a conductor pattern formed on the outer surface of the substrate.
  • planar shape of the base material is a rectangular parallelepiped
  • the present invention is not limited to this configuration.
  • the shape of the base material can be changed as appropriate within the range where the functions and effects of the present invention are exhibited.
  • the planar shape of the substrate may be, for example, a polygon, a circle, an ellipse, an L shape, a crank shape, a T shape, a Y shape, or the like.
  • the base material is a laminated body of a plurality of insulating base material layers is shown, but the present invention is not limited to this configuration.
  • the substrate may be a single layer.
  • the base material is a dielectric ceramic such as low temperature co-fired ceramics (LTCC) or a magnetic ferrite is shown, but the present invention is not limited to this configuration.
  • the base material may be a resin molded body made of, for example, a thermosetting resin.
  • a loop-shaped coil of about 1 turn or a spiral of about 2 turns having a winding axis in the thickness direction (Z-axis direction) is shown, but the present invention is limited to this configuration. It is not a thing.
  • the shape of the coil and the number of turns can be changed as appropriate within the range where the functions and effects of the present invention are exhibited.
  • the coil may be a helical conductor.
  • the winding axis of the coil can be appropriately changed within the range where the operation and effect of the present invention are exhibited, and may be along the X-axis direction or the Y-axis direction.
  • a part or all of a coil may be formed in the end surface (surface) etc. of a base material. .
  • an example of an inductor with an ESD protection function in which a low-pass filter is configured has been described, but the present invention is not limited to this configuration.
  • the circuit configured in the inductor with an ESD protection function can be changed as appropriate.
  • the components mounted on the LGA type chip inductor can be changed by a circuit configured as an inductor with an ESD protection function.
  • a chip capacitor or the like other than the diode chip may be mounted on the LGA type chip inductor.
  • the diode chip is mounted on the second main surface VS2 of the base material.
  • the present invention is not limited to this configuration.
  • the components mounted on the LGA type chip inductor may be formed other than the first main surface VS1 and the second main surface VS2, for example, may be mounted on an end surface or the like.
  • the first connection electrode CP1 and the second connection electrode CP2 may be formed other than the first main surface VS1 and the second main surface VS2.
  • first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, and the second connection electrode CP2 are rectangular conductors. It is not limited to this configuration.
  • the shapes of the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, and the second connection electrode CP2 can be changed as appropriate. Further, the arrangement and number of the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, and the second connection electrode CP2 can be appropriately changed depending on the circuit configuration of the inductor with the ESD protection function. It is.
  • first terminal electrode EP1 and the second terminal electrode EP2 of the diode chip are configured by the conductor pattern formed on the element formation surface S1 of the semiconductor substrate 20 . It is not limited.
  • the first terminal electrode EP1 and the second terminal electrode EP2 may be configured by forming a rewiring layer on the element formation surface S1 of the semiconductor substrate 20.
  • the diode chip is shown as a configuration example in which the first main surface VS1 and the second main surface VS2 of the base material are planarly viewed and overlapped with the coil.
  • the present invention is not limited to this. Absent.
  • the diode chip does not have to overlap the coil in plan view of the first main surface VS1 and the second main surface VS2 of the base material.
  • Base material VS1 First main surface VS2 of base material ... of base material
  • Second main surface GP ground electrode
  • CP1, CP1A, CP1B ... first connection electrode CP2 ... second connection electrodes V1, V2, V3, V4, V5 ... interlayer connection Conductor V3P ... Leading conductor 31, 32, 32A, 32B, 32C, 33, 33A, 33B, 33C ...
  • Coil E1 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

An inductor (101) with an ESD protection function is provided with an LGA-type chip inductor (1) and a diode chip (2). The LGA-type chip inductor (1) has: a base material (10) having a first main surface (VS1), i.e., a mounting surface; a coil formed in the base material (10); a first input/output electrode (P1) and a second input/output electrode (P2), which are connected to the coil; a ground electrode (GP); a first connecting electrode (CP1) connected to the coil; and a second connecting electrode (CP2) connected to the ground electrode (GP). The first input/output electrode (P1), the second input/output electrode (P2), and the ground conductor (GP) are formed on the first main surface (VS1). The diode chip (2) is mounted on the (LGA)-type chip inductor (1), and the first connecting electrode (CP1) and the second connecting electrode (CP2) of the LGA-type chip inductor (1) are connected to a diode that functions as an ESD protection element.

Description

ESD保護機能付きインダクタInductor with ESD protection function
 本発明は、ESD保護機能を有するインダクタに関し、特にインダクタとダイオードとを備えるESD保護機能付きインダクタに関するものである。 The present invention relates to an inductor having an ESD protection function, and more particularly to an inductor with an ESD protection function including an inductor and a diode.
 従来、ESD(Electro-Static Discharge;静電気放電)による電子機器の損傷や誤作動等を防止するため、各種ESD保護回路が利用されている。ESD保護回路は、ESDをグランド等に逃がし、後段の電子回路をESDから保護するための回路であって、例えば信号線路とグランド(接地)との間に配置される。 Conventionally, various ESD protection circuits have been used to prevent electronic devices from being damaged or malfunctioning due to ESD (Electro-Static Discharge). The ESD protection circuit is a circuit for escaping ESD to the ground or the like and protecting the electronic circuit in the subsequent stage from ESD, and is disposed, for example, between the signal line and the ground (ground).
 例えば、特許文献1には、ESD保護対策のため、アンテナ端子の近傍にESD保護機能を有するフィルタ回路が設けられた電子機器が開示されている。 For example, Patent Document 1 discloses an electronic device in which a filter circuit having an ESD protection function is provided in the vicinity of an antenna terminal for ESD protection.
特開2008-54055号公報JP 2008-54055 A
 しかし、特許文献1に示されるようなESD保護機能を有する回路を構成するために、複数のディスクリート部品を実装基板上に配置すると、実装面積が大きくなってしまうという問題がある。また、ディスクリート部品を接続するための配線を実装基板に形成するため、配線長が長くなって必要な特性が得られない虞もある。 However, when a plurality of discrete components are arranged on a mounting board in order to configure a circuit having an ESD protection function as disclosed in Patent Document 1, there is a problem that a mounting area becomes large. In addition, since the wiring for connecting the discrete components is formed on the mounting substrate, the wiring length becomes long, and the necessary characteristics may not be obtained.
 本発明の目的は、必要な実装面積の低減を可能とし、且つ、電気的特性の変動を抑制したESD保護機能付きインダクタを提供することにある。 An object of the present invention is to provide an inductor with an ESD protection function capable of reducing a required mounting area and suppressing variation in electrical characteristics.
(1)本発明のESD保護機能付きインダクタは、
 実装面である第1主面を有する基材と、前記基材に形成されるコイルと、前記第1主面に形成され、前記コイルの第1端に接続される第1入出力電極と、前記第1主面に形成され、前記コイルの第2端に接続される第2入出力電極と、前記第1主面に形成されるグランド電極と、前記コイルに接続される第1接続電極と、前記グランド電極に接続される第2接続電極と、を有するLGA型チップインダクタと、
 半導体基板と、ESD保護素子として機能し、前記半導体基板に形成されるダイオードと、前記ダイオードの第1端および第2端にそれぞれ接続される第1端子電極および第2端子電極と、を有するダイオードチップと、
 を備え、
 前記ダイオードチップは、前記LGA型チップインダクタに搭載され、
 前記ダイオードチップの前記第1端子電極および前記第2端子電極は、前記LGA型チップインダクタの前記第1接続電極および前記第2接続電極にそれぞれ接続されることを特徴とする。
(1) The inductor with an ESD protection function of the present invention is
A base material having a first main surface which is a mounting surface; a coil formed on the base material; a first input / output electrode formed on the first main surface and connected to a first end of the coil; A second input / output electrode formed on the first main surface and connected to a second end of the coil; a ground electrode formed on the first main surface; and a first connection electrode connected to the coil; A LGA type chip inductor having a second connection electrode connected to the ground electrode;
A diode having a semiconductor substrate, a diode that functions as an ESD protection element, formed on the semiconductor substrate, and a first terminal electrode and a second terminal electrode that are respectively connected to a first end and a second end of the diode Chips,
With
The diode chip is mounted on the LGA type chip inductor,
The first terminal electrode and the second terminal electrode of the diode chip are connected to the first connection electrode and the second connection electrode of the LGA chip inductor, respectively.
 この構成により、ディスクリート部品であるインダクタチップおよびダイオードチップを実装基板等に搭載する場合に比べて、回路構成に必要な実装面積を低減することができる。また、この構成により、ディスクリート部品を実装基板等に搭載する場合に比べて、ダイオードとコイルとの間の配線長を短くできる。そのため、ダイオードとコイルとの間の配線における導体抵抗や寄生インダクタンスが小さくなり、ESD抑制電圧が低く、応答性の高いESD保護機能付きインダクタを実現できる。 With this configuration, the mounting area required for the circuit configuration can be reduced as compared with the case where the inductor chip and the diode chip, which are discrete components, are mounted on a mounting substrate or the like. Further, with this configuration, the wiring length between the diode and the coil can be shortened as compared with the case where the discrete component is mounted on a mounting board or the like. Therefore, the conductor resistance and parasitic inductance in the wiring between the diode and the coil are reduced, the ESD suppression voltage is low, and an inductor with an ESD protection function with high response can be realized.
(2)上記(1)において、前記基材は、前記第1主面に対向する第2主面を有し、前記第1接続電極および前記第2接続電極は、前記第2主面に形成され、前記ダイオードチップは、前記基材の前記第2主面に搭載されることが好ましい。この構成により、基材の端面等にダイオードチップを搭載した場合と比べて、ESD保護機能付きインダクタの実装面積(特に平面上の面積)を低減できる。 (2) In the above (1), the base material has a second main surface facing the first main surface, and the first connection electrode and the second connection electrode are formed on the second main surface. The diode chip is preferably mounted on the second main surface of the base material. With this configuration, it is possible to reduce the mounting area (especially, the area on the plane) of the inductor with an ESD protection function as compared with the case where the diode chip is mounted on the end face or the like of the base material.
(3)上記(2)において、前記ダイオードチップは、前記第1主面および前記第2主面を平面視して、前記コイルに重なることが好ましい。この構成では、第1主面および第2主面を平面視してダイオードチップがコイルに重なっていない構造に比べて、ダイオードチップとコイルとの平面上での距離が短くなるため、ダイオードとコイルとの間の配線長がさらに短くなる。したがって、ダイオードとコイルとの間の配線における導体抵抗や寄生インダクタンスをさらに小さくできる。 (3) In the above (2), it is preferable that the diode chip overlaps the coil in a plan view of the first main surface and the second main surface. In this configuration, the distance between the diode chip and the coil on the plane is shorter than the structure in which the diode chip does not overlap the coil when the first main surface and the second main surface are viewed in plan. The wiring length between the two is further shortened. Therefore, the conductor resistance and parasitic inductance in the wiring between the diode and the coil can be further reduced.
(4)上記(1)から(3)のいずれかにおいて、前記基材は、複数の絶縁基材層の積層体であってもよい。 (4) In any one of (1) to (3), the base material may be a laminate of a plurality of insulating base material layers.
(5)上記(1)から(4)のいずれかにおいて、前記LGA型チップインダクタのインダクタンス成分と、前記ダイオードが有する容量成分とでローパスフィルタを構成してもよい。 (5) In any one of the above (1) to (4), a low-pass filter may be configured by an inductance component of the LGA chip inductor and a capacitance component of the diode.
(6)上記(1)から(5)のいずれかにおいて、前記基材に形成される第1層間接続導体を備え、前記第1接続電極は、前記第1層間接続導体を介して前記コイルに接続されていてもよい。 (6) In any one of the above (1) to (5), a first interlayer connection conductor formed on the base material is provided, and the first connection electrode is connected to the coil via the first interlayer connection conductor. It may be connected.
(7)上記(1)から(6)のいずれかにおいて、前記基材は磁性体部材であり、前記基材の外面に形成される引き回し導体を備え、前記グランド電極は、前記引き回し導体を介して前記第2接続電極に接続されることが好ましい。この構成により、ダイオードとグランド電極との間の配線を磁性体部材の内部に形成する場合に比べて、ダイオードとグランド電極との間の配線に生じる寄生インダクタを抑制できる。したがって、ESD保護機能付きインダクタのESD保護機能(除去機能)やフィルタの減衰特性が向上する。 (7) In any one of the above (1) to (6), the base material is a magnetic member, and includes a routing conductor formed on an outer surface of the base material, and the ground electrode is interposed through the routing conductor. It is preferable to be connected to the second connection electrode. With this configuration, it is possible to suppress the parasitic inductor generated in the wiring between the diode and the ground electrode, compared to the case where the wiring between the diode and the ground electrode is formed inside the magnetic member. Therefore, the ESD protection function (removal function) of the inductor with an ESD protection function and the attenuation characteristic of the filter are improved.
 本発明によれば、必要な実装面積の低減を可能とし、且つ、電気的特性の変動を抑制したESD保護機能付きインダクタを実現できる。 According to the present invention, it is possible to realize an inductor with an ESD protection function that can reduce a required mounting area and suppress fluctuations in electrical characteristics.
図1(A)は第1の実施形態に係るESD保護機能付きインダクタ101の斜視図であり、図1(B)はLGA型チップインダクタ1の斜視図である。FIG. 1A is a perspective view of an inductor 101 with an ESD protection function according to the first embodiment, and FIG. 1B is a perspective view of an LGA type chip inductor 1. 図2(A)はESD保護機能付きインダクタ101の正面図であり、図2(B)はESD保護機能付きインダクタ101の平面図である。2A is a front view of the inductor 101 with an ESD protection function, and FIG. 2B is a plan view of the inductor 101 with an ESD protection function. 図3(A)はLGA型チップインダクタ1の平面図であり、図3(B)は図2(A)におけるA-A断面図であり、図3(C)はLGA型チップインダクタ1の底面図である。3A is a plan view of the LGA type chip inductor 1, FIG. 3B is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 3C is a bottom view of the LGA type chip inductor 1. FIG. FIG. 図4は、LGA型チップインダクタ1が有する導体および電極を示す斜視図である。FIG. 4 is a perspective view showing conductors and electrodes included in the LGA type chip inductor 1. 図5(A)はダイオードチップ2の底面図であり、図5(B)はダイオードチップ2の縦断面図である。FIG. 5A is a bottom view of the diode chip 2, and FIG. 5B is a longitudinal sectional view of the diode chip 2. 図6はESD保護機能付きインダクタ101の回路図である。FIG. 6 is a circuit diagram of the inductor 101 with an ESD protection function. 図7(A)は、第2の実施形態に係るESD保護機能付きインダクタ102の斜視図であり、図7(B)はESD保護機能付きインダクタ102の正面図である。FIG. 7A is a perspective view of the inductor 102 with an ESD protection function according to the second embodiment, and FIG. 7B is a front view of the inductor 102 with an ESD protection function. 図8(A)はLGA型チップインダクタ1Aの平面図であり、図8(B)は図7(B)におけるB-B断面図であり、図8(C)はLGA型チップインダクタ1Aの底面図である。8A is a plan view of the LGA type chip inductor 1A, FIG. 8B is a cross-sectional view taken along the line BB in FIG. 7B, and FIG. 8C is a bottom view of the LGA type chip inductor 1A. FIG. 図9は、LGA型チップインダクタ1Aが有する導体および電極を示す斜視図である。FIG. 9 is a perspective view showing conductors and electrodes of the LGA type chip inductor 1A. 図10はESD保護機能付きインダクタ102の回路図である。FIG. 10 is a circuit diagram of the inductor 102 with an ESD protection function. 図11(A)は第3の実施形態に係るESD保護機能付きインダクタ103の斜視図であり、図11(B)はESD保護機能付きインダクタ103の正面図である。FIG. 11A is a perspective view of the inductor 103 with an ESD protection function according to the third embodiment, and FIG. 11B is a front view of the inductor 103 with an ESD protection function. 図12(A)はLGA型チップインダクタ1Bの平面図であり、図12(B)は図11(B)におけるC-C断面図であり、図12(C)はLGA型チップインダクタ1Bの底面図である。12A is a plan view of the LGA type chip inductor 1B, FIG. 12B is a cross-sectional view taken along the line CC in FIG. 11B, and FIG. 12C is a bottom view of the LGA type chip inductor 1B. FIG. 図13は、LGA型チップインダクタ1Bが有する導体および電極を示す斜視図である。FIG. 13 is a perspective view showing conductors and electrodes of the LGA type chip inductor 1B. 図14はESD保護機能付きインダクタ103の回路図である。FIG. 14 is a circuit diagram of the inductor 103 with an ESD protection function. 図15は第4の実施形態に係るESD保護機能付きインダクタ104の斜視図である。FIG. 15 is a perspective view of the inductor 104 with an ESD protection function according to the fourth embodiment. 図16(A)はLGA型チップインダクタ1Cの斜視図であり、図16(B)はLGA型チップインダクタ1Cが有する導体および電極を示す斜視図である。FIG. 16A is a perspective view of an LGA type chip inductor 1C, and FIG. 16B is a perspective view showing conductors and electrodes of the LGA type chip inductor 1C. 図17はESD保護機能付きインダクタ104の回路図である。FIG. 17 is a circuit diagram of the inductor 104 with an ESD protection function.
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Hereinafter, several specific examples will be given with reference to the drawings to show a plurality of modes for carrying out the present invention. In each figure, the same reference numerals are assigned to the same portions. In consideration of ease of explanation or understanding of the main points, the embodiments are shown separately for convenience, but the components shown in different embodiments can be partially replaced or combined. In the second and subsequent embodiments, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.
 《第1の実施形態》
 図1(A)は第1の実施形態に係るESD保護機能付きインダクタ101の斜視図であり、図1(B)はLGA型チップインダクタ1の斜視図である。図2(A)はESD保護機能付きインダクタ101の正面図であり、図2(B)はESD保護機能付きインダクタ101の平面図である。図1(B)では、第1入出力電極P1、第2入出力電極P2およびグランド電極GPを破線で示している。また、図2(A)および図2(B)では、コイル31、導体41および層間接続導体V1,V2,V5を破線で示している。
<< First Embodiment >>
FIG. 1A is a perspective view of an inductor 101 with an ESD protection function according to the first embodiment, and FIG. 1B is a perspective view of an LGA type chip inductor 1. 2A is a front view of the inductor 101 with an ESD protection function, and FIG. 2B is a plan view of the inductor 101 with an ESD protection function. In FIG. 1B, the first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are indicated by broken lines. 2A and 2B, the coil 31, the conductor 41, and the interlayer connection conductors V1, V2, and V5 are indicated by broken lines.
 ESD保護機能付きインダクタ101は、LGA型チップインダクタ1、LGA型チップインダクタ1に搭載されるダイオードチップ2を備える。 The inductor 101 with an ESD protection function includes an LGA chip inductor 1 and a diode chip 2 mounted on the LGA chip inductor 1.
 本発明における「LGA型チップインダクタ」とは、実装面(後に詳述する「基材の第1主面」)のみに実装基板等への実装用電極(後に詳述する「第1入出力電極、第2入出力電極およびグランド電極」)を備え、端面および天面には実装用電極を備えていないチップインダクタを言う。 The “LGA type chip inductor” in the present invention is an electrode for mounting on a mounting substrate or the like (“first input / output electrode” described in detail later) only on the mounting surface (“first main surface of the base material described in detail later”). , Second input / output electrode and ground electrode "), and a chip inductor having no mounting electrodes on the end face and the top face.
 図3(A)はLGA型チップインダクタ1の平面図であり、図3(B)は図2(A)におけるA-A断面図であり、図3(C)はLGA型チップインダクタ1の底面図である。図4は、LGA型チップインダクタ1が有する導体および電極を示す斜視図である。 3A is a plan view of the LGA type chip inductor 1, FIG. 3B is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 3C is a bottom view of the LGA type chip inductor 1. FIG. FIG. FIG. 4 is a perspective view showing conductors and electrodes included in the LGA type chip inductor 1.
 LGA型チップインダクタ1は、基材10、基材10の内部に形成されるコイル31、導体41、第1入出力電極P1、第2入出力電極P2、グランド電極GP、第1接続電極CP1、第2接続電極CP2および層間接続導体V1,V2,V3,V4,V5を有する。 The LGA type chip inductor 1 includes a base material 10, a coil 31 formed inside the base material 10, a conductor 41, a first input / output electrode P1, a second input / output electrode P2, a ground electrode GP, a first connection electrode CP1, A second connection electrode CP2 and interlayer connection conductors V1, V2, V3, V4, and V5 are provided.
 基材10は、互いに対向する第1主面VS1および第2主面VS2を有し、長手方向がX軸方向に一致する直方体の絶縁体平板である。第1主面VS1および第2主面VS2は、ともにZ軸方向に直交し、XY平面に平行な面である。本実施形態に係る基材10は、複数の絶縁基材層の積層体である。基材10の第1主面VS1は、実装基板等への実装面である。基材10は、例えば低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)のような誘電体セラミックである。 The base material 10 is a rectangular parallelepiped insulator flat plate having a first main surface VS1 and a second main surface VS2 facing each other and having a longitudinal direction coinciding with the X-axis direction. Both the first main surface VS1 and the second main surface VS2 are surfaces orthogonal to the Z-axis direction and parallel to the XY plane. The substrate 10 according to this embodiment is a laminate of a plurality of insulating substrate layers. The first main surface VS1 of the base material 10 is a mounting surface on a mounting substrate or the like. The base material 10 is a dielectric ceramic such as, for example, low temperature co-fired ceramics (LTCC: Low Temperature Co-fired Ceramics).
 コイル31は、基材10の内部に形成される2ターン強のスパイラル状の導体であり、厚み方向(Z軸方向)に巻回軸を有する。コイル31は、例えば基材10を構成する絶縁基材層に形成されたCuペースト等による導体パターンである。なお、コイル31のターン数は2ターン強に限定されず、1ターンであってもよく、3ターン以上であってもよい。 The coil 31 is a two-turn spiral conductor formed inside the substrate 10 and has a winding axis in the thickness direction (Z-axis direction). The coil 31 is a conductor pattern made of Cu paste or the like formed on an insulating base material layer constituting the base material 10, for example. The number of turns of the coil 31 is not limited to more than 2 turns, and may be 1 turn or 3 turns or more.
 導体41は、基材10の内部に形成されるL字形の導体である。導体41は、例えば絶縁基材層(コイル31が形成された絶縁基材層とは異なる絶縁基材層)に形成されたCuペースト等による導体パターンである。 The conductor 41 is an L-shaped conductor formed inside the base material 10. The conductor 41 is a conductor pattern made of Cu paste or the like formed on, for example, an insulating base layer (an insulating base layer different from the insulating base layer on which the coil 31 is formed).
 第1入出力電極P1、第2入出力電極P2およびグランド電極GPは、基材10の第1主面VS1に形成される導体である。第1入出力電極P1、第2入出力電極P2およびグランド電極GPは、長手方向がY軸方向に一致した矩形の導体であり、第2入出力電極P2、グランド電極GP、第1入出力電極P1の順にX軸方向に並べて配置される。第1入出力電極P1、第2入出力電極P2およびグランド電極GPは、例えばCuペースト等の導体パターンである。 The first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are conductors formed on the first main surface VS1 of the base material 10. The first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are rectangular conductors whose longitudinal direction coincides with the Y-axis direction. The second input / output electrode P2, the ground electrode GP, and the first input / output electrode They are arranged in the X-axis direction in the order of P1. The first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are conductor patterns such as Cu paste, for example.
 第1接続電極CP1および第2接続電極CP2は、基材10の第2主面VS2に形成される矩形の導体である。第1接続電極CP1および第2接続電極CP2は、第2主面VS2のX軸方向の中央付近で、且つ、Y軸方向に並べて配置される。第1接続電極CP1および第2接続電極CP2は、例えばCuペースト等の導体パターンである。 The first connection electrode CP1 and the second connection electrode CP2 are rectangular conductors formed on the second main surface VS2 of the base material 10. The first connection electrode CP1 and the second connection electrode CP2 are arranged near the center of the second main surface VS2 in the X-axis direction and arranged in the Y-axis direction. The first connection electrode CP1 and the second connection electrode CP2 are conductor patterns such as Cu paste, for example.
 層間接続導体V1,V2,V3,V4,V5は、基材10の内部に形成される円柱状の導体である。層間接続導体V1,V2,V3,V4,V5は、例えば基材10を厚み方向(Z軸方向)に貫通する貫通孔に導電性ペーストを充填してなるビア導体やスルーホール等である。本実施形態では、層間接続導体V4,V5が本発明における「第1層間接続導体」に相当する。 Interlayer connection conductors V1, V2, V3, V4, and V5 are columnar conductors formed inside the substrate 10. The interlayer connection conductors V1, V2, V3, V4, and V5 are, for example, via conductors or through holes that are formed by filling a through hole that penetrates the base material 10 in the thickness direction (Z-axis direction) with a conductive paste. In the present embodiment, the interlayer connection conductors V4 and V5 correspond to the “first interlayer connection conductor” in the present invention.
 図4に示すように、第1入出力電極P1は、層間接続導体V1を介してコイル31の第1端E1に接続される。第2入出力電極P2は、導体41および層間接続導体V2,V5を介して、コイル31の第2端に接続される。また、第1接続電極CP1は、導体41および層間接続導体V4,V5を介して、コイル31の第2端E2に接続される。また、第2接続電極CP2は、層間接続導体V3を介してグランド電極GPに接続される。 As shown in FIG. 4, the first input / output electrode P1 is connected to the first end E1 of the coil 31 via the interlayer connection conductor V1. The second input / output electrode P2 is connected to the second end of the coil 31 through the conductor 41 and the interlayer connection conductors V2 and V5. The first connection electrode CP1 is connected to the second end E2 of the coil 31 through the conductor 41 and the interlayer connection conductors V4 and V5. The second connection electrode CP2 is connected to the ground electrode GP via the interlayer connection conductor V3.
 図5(A)はダイオードチップ2の底面図であり、図5(B)はダイオードチップ2の縦断面図である。 5A is a bottom view of the diode chip 2, and FIG. 5B is a vertical cross-sectional view of the diode chip 2. FIG.
 ダイオードチップ2は、半導体基板20、半導体基板20に形成されるダイオード(後に詳述する。)、第1端子電極EP1および第2端子電極EP2を有する。 The diode chip 2 includes a semiconductor substrate 20, a diode (described later in detail) formed on the semiconductor substrate 20, a first terminal electrode EP1, and a second terminal electrode EP2.
 半導体基板20は、素子形成面S1を有し、長手方向がY軸方向に一致する直方体の半導体基板である。半導体基板20は例えばSi基板である。 The semiconductor substrate 20 is a rectangular parallelepiped semiconductor substrate having an element formation surface S1 and having a longitudinal direction coinciding with the Y-axis direction. The semiconductor substrate 20 is, for example, a Si substrate.
 図5(B)に示すように、半導体基板20の素子形成面S1側の領域に半導体素子部21が形成されている。半導体素子部21には、半導体基板20の素子形成面S1側に、所定の深さのn型半導体層(n型ウェル)が形成されており、このn型半導体内に2つのp型半導体部が離間して形成されている。2つのp型半導体部は素子形成面S1に露出している。この2つのp型半導体部が素子形成面S1に露出する部分が、半導体素子部21(半導体基板20)に形成されるダイオードの第1端および第2端である。この構成により、アノードがそれぞれ素子形成面S1に露出し、カソードが互いに接続された2つのpn接合ダイオードはツェナー特性を有し、半導体素子部21(半導体基板20)に形成される。そのため、このダイオードチップ2はESD保護素子として機能する。 As shown in FIG. 5B, a semiconductor element portion 21 is formed in a region of the semiconductor substrate 20 on the element formation surface S1 side. In the semiconductor element portion 21, an n-type semiconductor layer (n-type well) having a predetermined depth is formed on the element formation surface S 1 side of the semiconductor substrate 20, and two p-type semiconductor portions are formed in the n-type semiconductor. Are formed apart from each other. The two p-type semiconductor portions are exposed on the element formation surface S1. The portions where the two p-type semiconductor portions are exposed on the element formation surface S1 are the first end and the second end of the diode formed on the semiconductor element portion 21 (semiconductor substrate 20). With this configuration, the two pn junction diodes each having the anode exposed to the element formation surface S1 and the cathode connected to each other have zener characteristics and are formed in the semiconductor element portion 21 (semiconductor substrate 20). Therefore, this diode chip 2 functions as an ESD protection element.
 半導体基板20の素子形成面S1には、絶縁層3,4および電極51,52が形成される。絶縁層4と絶縁層3は、素子形成面S1側からこの順に形成される。図5(B)に示すように、電極51は、素子形成面S1に露出する一方のp型半導体部に接続される。また、電極51の一部は、絶縁層3に形成された孔から外部に露出する。電極52は、素子形成面S1に露出する他方のp型半導体部に接続される。また、電極52の一部は、絶縁層3に形成された孔から外部に露出する。電極51,52は例えばAl膜であり、絶縁層3は例えばSiO膜である。 Insulating layers 3 and 4 and electrodes 51 and 52 are formed on the element formation surface S1 of the semiconductor substrate 20. The insulating layer 4 and the insulating layer 3 are formed in this order from the element formation surface S1 side. As shown in FIG. 5B, the electrode 51 is connected to one p-type semiconductor portion exposed on the element formation surface S1. A part of the electrode 51 is exposed to the outside through a hole formed in the insulating layer 3. The electrode 52 is connected to the other p-type semiconductor part exposed on the element formation surface S1. A part of the electrode 52 is exposed to the outside through a hole formed in the insulating layer 3. The electrodes 51 and 52 are, for example, Al films, and the insulating layer 3 is, for example, a SiO 2 film.
 この電極51が露出する部分が、ダイオードチップ2の第1端子電極EP1であり、電極52が露出する部分が、ダイオードチップ2の第2端子電極EP2である。このように、第1端子電極EP1および第2端子電極EP2は、半導体基板20の素子形成面S1に形成され、半導体素子部21(半導体基板20)に形成されるダイオードの第1端および第2端にそれぞれ接続される。 The portion where the electrode 51 is exposed is the first terminal electrode EP1 of the diode chip 2, and the portion where the electrode 52 is exposed is the second terminal electrode EP2 of the diode chip 2. Thus, the first terminal electrode EP1 and the second terminal electrode EP2 are formed on the element formation surface S1 of the semiconductor substrate 20, and the first end and the second end of the diode formed on the semiconductor element portion 21 (semiconductor substrate 20). Connected to each end.
 なお、電極51および電極52の露出面(第1端子電極EP1および第2端子電極EP2)には、めっき処理が施されていてもよい。例えば、Niを下地としたAuめっき等を用いることができる。 Note that the exposed surfaces of the electrode 51 and the electrode 52 (the first terminal electrode EP1 and the second terminal electrode EP2) may be plated. For example, Au plating based on Ni can be used.
 図2(A)に示すように、基材10の第2主面VS2と半導体基板20の素子形成面S1とが対向するように、ダイオードチップ2は基材10の第2主面VS2に搭載される。これにより、ダイオードチップ2の第1端子電極EP1および第2端子電極EP2は、LGA型チップインダクタ1の第1接続電極CP1および第2接続電極CP2にそれぞれ接続される。 As shown in FIG. 2A, the diode chip 2 is mounted on the second main surface VS2 of the base 10 so that the second main surface VS2 of the base 10 and the element formation surface S1 of the semiconductor substrate 20 face each other. Is done. Thereby, the first terminal electrode EP1 and the second terminal electrode EP2 of the diode chip 2 are connected to the first connection electrode CP1 and the second connection electrode CP2 of the LGA type chip inductor 1, respectively.
 また、図2(B)に示すように、ダイオードチップ2は、第1主面VS1および第2主面VS2を平面視して(Z軸方向から視て)、コイル31に重なる。 As shown in FIG. 2B, the diode chip 2 overlaps the coil 31 when the first main surface VS1 and the second main surface VS2 are viewed in plan (viewed from the Z-axis direction).
 図6はESD保護機能付きインダクタ101の回路図である。図6では、コイル31をコイルL1で表し、図5(B)で示した半導体基板20に形成されるツェナーダイオードをダイオードD1で表している。 FIG. 6 is a circuit diagram of the inductor 101 with an ESD protection function. In FIG. 6, the coil 31 is represented by a coil L1, and the Zener diode formed on the semiconductor substrate 20 shown in FIG. 5B is represented by a diode D1.
 ESD保護機能付きインダクタ101は、図6に示すように、第1入出力電極P1と第2入出力電極P2との間にコイルL1が接続され、第2入出力電極P2とグランド電極GPとの間にダイオードD1が接続された回路である。第1入出力電極P1はコイルL1の第1端に接続され、第2入出力電極P2はコイルL1の第2端に接続される。また、第2入出力電極P2は、第1接続電極CP1および第1端子電極EP1を介して、ダイオードの第1端に接続される。グランド電極GPは、第2接続電極CP2および第2端子電極EP2を介して、ダイオードD1の第2端に接続される。図6に示すように、グランド電極GPはグランドに接続される。図6に示すように、グランド電極GPはグランドに接続される。 As shown in FIG. 6, the inductor 101 with ESD protection function includes a coil L1 connected between the first input / output electrode P1 and the second input / output electrode P2, and the second input / output electrode P2 and the ground electrode GP. In this circuit, a diode D1 is connected between them. The first input / output electrode P1 is connected to the first end of the coil L1, and the second input / output electrode P2 is connected to the second end of the coil L1. The second input / output electrode P2 is connected to the first end of the diode via the first connection electrode CP1 and the first terminal electrode EP1. The ground electrode GP is connected to the second end of the diode D1 through the second connection electrode CP2 and the second terminal electrode EP2. As shown in FIG. 6, the ground electrode GP is connected to the ground. As shown in FIG. 6, the ground electrode GP is connected to the ground.
 本実施形態では、LGA型チップインダクタ1のインダクタンス成分(コイルL1)と、ダイオードD1が有する容量成分とで、ローパスフィルタが構成される。 In this embodiment, a low-pass filter is constituted by the inductance component (coil L1) of the LGA type chip inductor 1 and the capacitance component of the diode D1.
 本実施形態に係るESD保護機能付きインダクタ101によれば、次のような効果を奏する。 The inductor 101 with an ESD protection function according to this embodiment has the following effects.
(a)ESD保護機能付きインダクタ101は、ダイオードチップ2がLGA型チップインダクタ1に搭載される構造である。そのため、ディスクリート部品であるインダクタチップおよびダイオードチップを実装基板等に搭載する場合に比べて、回路構成に必要な実装面積を低減することができる。また、この構成により、ディスクリート部品を実装基板等に搭載する場合に比べて、ダイオードとコイルとの間の配線長を短くできる。そのため、ダイオードとコイルとの間の配線における導体抵抗や寄生インダクタンスが小さくなり、ESD抑制電圧が低く、応答性の高いESD保護機能付きインダクタを実現できる。 (A) The inductor 101 with an ESD protection function has a structure in which the diode chip 2 is mounted on the LGA type chip inductor 1. Therefore, the mounting area required for the circuit configuration can be reduced as compared with the case where the inductor chip and the diode chip, which are discrete components, are mounted on a mounting substrate or the like. Further, with this configuration, the wiring length between the diode and the coil can be shortened as compared with the case where the discrete component is mounted on a mounting board or the like. Therefore, the conductor resistance and parasitic inductance in the wiring between the diode and the coil are reduced, the ESD suppression voltage is low, and an inductor with an ESD protection function with high response can be realized.
(b)また、本実施形態では、ダイオードチップ2が基材10の第2主面VS2に搭載される。この構成により、基材10の端面等にダイオードチップ2を搭載した場合と比べて、ESD保護機能付きインダクタ101の実装面積(特にXY平面上の面積)を低減できる。 (B) In the present embodiment, the diode chip 2 is mounted on the second main surface VS2 of the substrate 10. With this configuration, the mounting area (especially, the area on the XY plane) of the inductor 101 with an ESD protection function can be reduced as compared with the case where the diode chip 2 is mounted on the end face or the like of the substrate 10.
 さらに、本実施形態では、ダイオードチップ2が、Z軸方向から視て、コイル31に重なっている。この構成では、Z軸方向から視てダイオードチップ2がコイル31に重なっていない構造に比べて、ダイオードチップ2とコイル31との平面(XY平面)上での距離が短くなるため、ダイオードとコイルとの間の配線長がさらに短くなる。したがって、ダイオードとコイルとの間の配線における導体抵抗や寄生インダクタンスをさらに小さくできる。 Furthermore, in this embodiment, the diode chip 2 overlaps the coil 31 as viewed from the Z-axis direction. In this configuration, the distance between the diode chip 2 and the coil 31 on the plane (XY plane) is shorter than the structure in which the diode chip 2 does not overlap the coil 31 when viewed from the Z-axis direction. The wiring length between the two is further shortened. Therefore, the conductor resistance and parasitic inductance in the wiring between the diode and the coil can be further reduced.
 ESD保護機能付きインダクタ101は、例えば次の(1)から(5)に述べるような工程で製造する。 The inductor 101 with an ESD protection function is manufactured by, for example, the following processes (1) to (5).
(1)まず、コイル31、導体41、第1入出力電極P1、第2入出力電極P2、グランド電極GP、第1接続電極CP1、第2接続電極CP2および層間接続導体V1,V2,V3,V4,V5が形成された基材10を用意する。基材10は、コイル31等や層間接続導体を形成した複数の絶縁基材層を積層して圧着後、800℃以上の温度で焼成して得る。焼成前の絶縁基材層は、例えば低温同時焼成セラミックス(LTCC)のような非磁性体フェライト等のグリーンシートである。 (1) First, the coil 31, the conductor 41, the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, the second connection electrode CP2, and the interlayer connection conductors V1, V2, V3. A base material 10 on which V4 and V5 are formed is prepared. The base material 10 is obtained by laminating a plurality of insulating base material layers on which coils 31 and the like and interlayer connection conductors are formed and press-bonding, and then firing at a temperature of 800 ° C. or higher. The insulating base layer before firing is a green sheet such as non-magnetic ferrite such as low temperature co-fired ceramics (LTCC).
(2)次に、基材10の第1接続電極CP1および第2接続電極CP2にペースト状の導電性接合材を印刷する。導電性接合材にはんだを用いる場合には、基材10の第2主面VS2に形成された第1接続電極CP1および第2接続電極CP2に、はんだペーストを印刷する。 (2) Next, a paste-like conductive bonding material is printed on the first connection electrode CP1 and the second connection electrode CP2 of the substrate 10. When solder is used as the conductive bonding material, a solder paste is printed on the first connection electrode CP1 and the second connection electrode CP2 formed on the second main surface VS2 of the substrate 10.
(3)次に、ダイオードチップ2を用意し、ダイオードチップ2を基材10に配置する。具体的には、ダイオードチップ2の第1端子電極EP1および第2端子電極EP2が、基材10の第2主面VS2に形成された第1接続電極CP1および第2接続電極CP2にそれぞれ対向するように、マウンターでダイオードチップ2を第2主面VS2上に配置する。なお、第1端子電極EP1および第2端子電極EP2には、予めはんだペーストを印刷し、半硬化させておいてもよい。 (3) Next, the diode chip 2 is prepared, and the diode chip 2 is disposed on the substrate 10. Specifically, the first terminal electrode EP1 and the second terminal electrode EP2 of the diode chip 2 are respectively opposed to the first connection electrode CP1 and the second connection electrode CP2 formed on the second main surface VS2 of the base material 10. Thus, the diode chip 2 is disposed on the second main surface VS2 by the mounter. The first terminal electrode EP1 and the second terminal electrode EP2 may be preliminarily printed with a solder paste and semi-cured.
(4)次に、リフロープロセスにより、導電性接合材によって第1接続電極CP1と第1端子電極EP1と接続し、導電性接合材によって第2接続電極CP2と第2端子電極EP2とを接続する。 (4) Next, by a reflow process, the first connection electrode CP1 and the first terminal electrode EP1 are connected by a conductive bonding material, and the second connection electrode CP2 and the second terminal electrode EP2 are connected by a conductive bonding material. .
(5)なお、上記の工程は、複数のESD保護機能付きインダクタ101が形成された集合基板状態のまま処理される。最後にダイシングを行い、集合基板から個々のESD保護機能付きインダクタ101単位(個片)に分離する。 (5) In addition, said process is processed with the aggregate substrate state in which the several inductor 101 with an ESD protection function was formed. Finally, dicing is performed to separate each inductor 101 unit with ESD protection function (piece) from the collective substrate.
 《第2の実施形態》
 第2の実施形態では、基材に形成されるコイルの構造および回路が第1の実施形態とは異なる例を示す。
<< Second Embodiment >>
In 2nd Embodiment, the structure and circuit of the coil formed in a base material show an example different from 1st Embodiment.
 図7(A)は、第2の実施形態に係るESD保護機能付きインダクタ102の斜視図であり、図7(B)はESD保護機能付きインダクタ102の正面図である。図7(B)では、構造を解りやすくするため、コイル32および層間接続導体V1,V2,V3を破線で示している。 7A is a perspective view of the inductor 102 with an ESD protection function according to the second embodiment, and FIG. 7B is a front view of the inductor 102 with an ESD protection function. In FIG. 7B, the coil 32 and the interlayer connection conductors V1, V2, and V3 are indicated by broken lines for easy understanding of the structure.
 ESD保護機能付きインダクタ102は、LGA型チップインダクタ1A、LGA型チップインダクタ1Aに搭載されるダイオードチップ2を備える。 The inductor 102 with an ESD protection function includes an LGA chip inductor 1A and a diode chip 2 mounted on the LGA chip inductor 1A.
 ESD保護機能付きインダクタ102は、LGA型チップインダクタ1Aの構造が第1の実施形態に係るESD保護機能付きインダクタ101と異なり、その他は同じである。以下、第1の実施形態に係るESD保護機能付きインダクタ101と異なる部分について説明する。 The inductor 102 with ESD protection function is the same as the inductor 101 with ESD protection function according to the first embodiment except for the structure of the LGA chip inductor 1A. Hereinafter, a different part from the inductor 101 with an ESD protection function which concerns on 1st Embodiment is demonstrated.
 図8(A)はLGA型チップインダクタ1Aの平面図であり、図8(B)は図7(B)におけるB-B断面図であり、図8(C)はLGA型チップインダクタ1Aの底面図である。図9は、LGA型チップインダクタ1Aが有する導体および電極を示す斜視図である。 8A is a plan view of the LGA type chip inductor 1A, FIG. 8B is a cross-sectional view taken along the line BB in FIG. 7B, and FIG. 8C is a bottom view of the LGA type chip inductor 1A. FIG. FIG. 9 is a perspective view showing conductors and electrodes of the LGA type chip inductor 1A.
 LGA型チップインダクタ1Aは、基材10A、基材10Aの内部に形成されるコイル32、第1入出力電極P1、第2入出力電極P2、グランド電極GP、第1接続電極CP1、第2接続電極CP2および層間接続導体V1,V2,V3,V4,V5を有する。 The LGA type chip inductor 1A includes a base material 10A, a coil 32 formed inside the base material 10A, a first input / output electrode P1, a second input / output electrode P2, a ground electrode GP, a first connection electrode CP1, and a second connection. It has an electrode CP2 and interlayer connection conductors V1, V2, V3, V4, V5.
 基材10Aは、互いに対向する第1主面VS1および第2主面VS2を有し、長手方向がX軸方向に一致する直方体の絶縁体平板である。本実施形態に係る基材10Aは、複数の絶縁基材層の積層体である。 The base material 10A is a rectangular parallelepiped insulator plate having a first main surface VS1 and a second main surface VS2 facing each other and having a longitudinal direction coinciding with the X-axis direction. The base material 10A according to the present embodiment is a laminate of a plurality of insulating base material layers.
 コイル32は、基材10の内部に形成される約1ターンのループ状の導体であり、厚み方向(Z軸方向)に巻回軸を有する。コイル32は、絶縁基材層に形成されるコイル32A,32C、絶縁基材層(コイル32A,32Cが形成された絶縁基材層とは異なる絶縁基材層)に形成されるコイル32B等で構成される。コイル32A,32B,32Cは、絶縁基材層に形成される層間接続導体を介して互いに接続される。なお、コイル32のターン数は約1ターンに限定されず、複数ターンであってもよい。また、コイル32はループ状に限定されず、ヘリカル状またはスパイラル状でもよい。 The coil 32 is a loop-shaped conductor of about 1 turn formed inside the base material 10 and has a winding axis in the thickness direction (Z-axis direction). The coil 32 includes coils 32A and 32C formed on the insulating base layer, coils 32B formed on the insulating base layer (insulating base layer different from the insulating base layer on which the coils 32A and 32C are formed), and the like. Composed. The coils 32A, 32B, and 32C are connected to each other via an interlayer connection conductor formed on the insulating base material layer. The number of turns of the coil 32 is not limited to about 1 turn, and may be a plurality of turns. The coil 32 is not limited to a loop shape, and may be a helical shape or a spiral shape.
 第1入出力電極P1、第2入出力電極P2、グランド電極GP、第1接続電極CP1および第2接続電極CP2の構成については、第1の実施形態と実質的に同じである。 The configurations of the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, and the second connection electrode CP2 are substantially the same as those in the first embodiment.
 図9に示すように、第1入出力電極P1は、層間接続導体V1を介してコイル32の第1端E1に接続される。第2入出力電極P2は、層間接続導体V2を介して、コイル32の第2端E2に接続される。第1接続電極CP1は、層間接続導体V5を介して、コイル32のループの中央付近に形成された第3端E3に接続される。また、第2接続電極CP2は、層間接続導体V3を介してグランド電極GPに接続される。 As shown in FIG. 9, the first input / output electrode P1 is connected to the first end E1 of the coil 32 via the interlayer connection conductor V1. The second input / output electrode P2 is connected to the second end E2 of the coil 32 via the interlayer connection conductor V2. The first connection electrode CP1 is connected to a third end E3 formed near the center of the loop of the coil 32 via the interlayer connection conductor V5. The second connection electrode CP2 is connected to the ground electrode GP via the interlayer connection conductor V3.
 図10はESD保護機能付きインダクタ102の回路図である。図10では、コイル32をコイルL2で表し、図7(A)および図7(B)で示したダイオードチップ2をダイオードD1で表している。 FIG. 10 is a circuit diagram of the inductor 102 with an ESD protection function. In FIG. 10, the coil 32 is represented by a coil L2, and the diode chip 2 shown in FIGS. 7A and 7B is represented by a diode D1.
 ESD保護機能付きインダクタ102は、図10に示すように、第1入出力電極P1と第2入出力電極P2との間にコイルL2が接続され、コイルL2の中央とグランド電極GPとの間にダイオードD1が接続された回路である。第1入出力電極P1はコイルL2の第1端に接続され、第2入出力電極P2はコイルL2の第2端に接続される。ダイオードD1の第1端は、第1接続電極CP1および第1端子電極EP1を介して、コイルL2の中央に接続される。ダイオードD1の第2端は、第2接続電極CP2および第2端子電極EP2を介して、グランド電極GPに接続される。図10に示すように、グランド電極GPはグランドに接続される。 As shown in FIG. 10, the inductor 102 with ESD protection function includes a coil L2 connected between the first input / output electrode P1 and the second input / output electrode P2, and between the center of the coil L2 and the ground electrode GP. This is a circuit to which a diode D1 is connected. The first input / output electrode P1 is connected to the first end of the coil L2, and the second input / output electrode P2 is connected to the second end of the coil L2. The first end of the diode D1 is connected to the center of the coil L2 via the first connection electrode CP1 and the first terminal electrode EP1. The second end of the diode D1 is connected to the ground electrode GP through the second connection electrode CP2 and the second terminal electrode EP2. As shown in FIG. 10, the ground electrode GP is connected to the ground.
 この構成により、コイルL2の中央からダイオードD1がグランドに接続され、入出力に対して対称性を有するT型のローパスフィルタが構成される。すなわち、入出力電極(第1入出力電極P1および第2入出力電極P2)を逆に実装しても同じ特性を有するESD保護機能付きインダクタを実現できる。 With this configuration, the diode D1 is connected to the ground from the center of the coil L2, and a T-type low-pass filter having symmetry with respect to the input and output is configured. That is, an inductor with an ESD protection function having the same characteristics can be realized even if the input / output electrodes (first input / output electrode P1 and second input / output electrode P2) are mounted in reverse.
 本実施形態で示したように、ダイオードはコイルの途中に接続されていてもよい。なお、本実施形態では、コイルL2の中央からダイオードD1がグランドに接続された回路を示したが、この構成に限定されるものではない。ダイオードD1は、コイルL2の中央以外の位置とグランドとの間に接続されていてもよい。 As shown in this embodiment, the diode may be connected in the middle of the coil. In the present embodiment, a circuit in which the diode D1 is connected to the ground from the center of the coil L2 is shown, but the present invention is not limited to this configuration. The diode D1 may be connected between a position other than the center of the coil L2 and the ground.
 《第3の実施形態》
 第3の実施形態では、LGA型チップインダクタに2つのダイオードチップを搭載した例を示す。
<< Third Embodiment >>
The third embodiment shows an example in which two diode chips are mounted on an LGA type chip inductor.
 図11(A)は第3の実施形態に係るESD保護機能付きインダクタ103の斜視図であり、図11(B)はESD保護機能付きインダクタ103の正面図である。図11(B)では、コイル33および層間接続導体V1,V2,V3,V4,V5を破線で示している。 FIG. 11A is a perspective view of the inductor 103 with an ESD protection function according to the third embodiment, and FIG. 11B is a front view of the inductor 103 with an ESD protection function. In FIG. 11B, the coil 33 and the interlayer connection conductors V1, V2, V3, V4, and V5 are indicated by broken lines.
 ESD保護機能付きインダクタ103は、LGA型チップインダクタ1B、LGA型チップインダクタ1Bに搭載される2つのダイオードチップ2A,2Bを備える。 The inductor 103 with an ESD protection function includes an LGA chip inductor 1B and two diode chips 2A and 2B mounted on the LGA chip inductor 1B.
 ダイオードチップ2A,2Bは、第1の実施形態で示したダイオードチップ2と同じものである。以下、第1の実施形態に係るESD保護機能付きインダクタ101と異なる部分について説明する。 The diode chips 2A and 2B are the same as the diode chip 2 shown in the first embodiment. Hereinafter, a different part from the inductor 101 with an ESD protection function which concerns on 1st Embodiment is demonstrated.
 図12(A)はLGA型チップインダクタ1Bの平面図であり、図12(B)は図11(B)におけるC-C断面図であり、図12(C)はLGA型チップインダクタ1Bの底面図である。図13は、LGA型チップインダクタ1Bが有する導体および電極を示す斜視図である。 12A is a plan view of the LGA type chip inductor 1B, FIG. 12B is a cross-sectional view taken along the line CC in FIG. 11B, and FIG. 12C is a bottom view of the LGA type chip inductor 1B. FIG. FIG. 13 is a perspective view showing conductors and electrodes of the LGA type chip inductor 1B.
 LGA型チップインダクタ1Bは、基材10B、基材10Bの内部に形成されるコイル33、第1入出力電極P1、第2入出力電極P2、グランド電極GP、第1接続電極CP1A,CP1B、第2接続電極CP2および層間接続導体V1,V2,V3,V4,V5を有する。 The LGA type chip inductor 1B includes a base material 10B, a coil 33 formed inside the base material 10B, a first input / output electrode P1, a second input / output electrode P2, a ground electrode GP, first connection electrodes CP1A and CP1B, Two connection electrodes CP2 and interlayer connection conductors V1, V2, V3, V4, and V5 are provided.
 基材10Bは、互いに対向する第1主面VS1および第2主面VS2を有し、長手方向がX軸方向に一致する直方体の絶縁体平板である。本実施形態に係る基材10Bは、複数の絶縁基材層の積層体である。 The base material 10 </ b> B is a rectangular parallelepiped insulator plate having a first main surface VS <b> 1 and a second main surface VS <b> 2 that face each other and whose longitudinal direction coincides with the X-axis direction. The base material 10B according to the present embodiment is a laminate of a plurality of insulating base material layers.
 コイル33は、基材10Bの内部に形成される約1ターンのループ状の導体である。コイル33は、絶縁基材層に形成されるコイル33A,33C、絶縁基材層(コイル33A,33Cが形成された絶縁基材層とは異なる絶縁基材層)に形成されるコイル33B等で構成される。コイル33A,33B,33Cは、絶縁基材層に形成される層間接続導体を介して互いに接続される。なお、コイル33のターン数は約1ターンに限定されず、複数ターンであってもよい。また、コイル33はループ状に限定されず、ヘリカル状またはスパイラル状でもよい。 The coil 33 is a loop-shaped conductor of about 1 turn formed inside the base material 10B. The coil 33 includes coils 33A and 33C formed on the insulating base layer, coils 33B formed on the insulating base layer (an insulating base layer different from the insulating base layer on which the coils 33A and 33C are formed), and the like. Composed. The coils 33A, 33B, and 33C are connected to each other via an interlayer connection conductor formed on the insulating base material layer. Note that the number of turns of the coil 33 is not limited to about one turn, and may be a plurality of turns. The coil 33 is not limited to a loop shape, and may be a helical shape or a spiral shape.
 第1入出力電極P1、第2入出力電極P2およびグランド電極GPは、基材10Bの第1主面VS1に形成される導体である。第1入出力電極P1、第2入出力電極P2およびグランド電極GPは、長手方向がY軸方向に一致した矩形の導体であり、第2入出力電極P2、グランド電極GP、第1入出力電極P1の順にX軸方向に並べて配置される。図12(C)に示すように、グランド電極GPのX軸方向の幅は、第1入出力電極P1および第2入出力電極P2のX軸方向の幅よりも大きい。 The first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are conductors formed on the first main surface VS1 of the base material 10B. The first input / output electrode P1, the second input / output electrode P2, and the ground electrode GP are rectangular conductors whose longitudinal direction coincides with the Y-axis direction. The second input / output electrode P2, the ground electrode GP, and the first input / output electrode They are arranged in the X-axis direction in the order of P1. As shown in FIG. 12C, the width of the ground electrode GP in the X-axis direction is larger than the width of the first input / output electrode P1 and the second input / output electrode P2 in the X-axis direction.
 第1接続電極CP1A,CP1Bは、基材10Bの第2主面VS2の第1辺(図12(C)における基材10Bの上辺)付近に配置される矩形の導体である。第1接続電極CP1A,CP1Bは、第2主面VS2のX軸方向の中央付近で、且つ、X軸方向に並べて配置される。第2接続電極CP2は、基材10Bの第2主面VS2の第2辺(図12(C)における基材10Bの下辺)付近に配置される矩形の導体である。第2接続電極CP2は、第2主面VS2のX軸方向に配置される。 The first connection electrodes CP1A and CP1B are rectangular conductors arranged near the first side (the upper side of the base material 10B in FIG. 12C) of the second main surface VS2 of the base material 10B. The first connection electrodes CP1A and CP1B are arranged near the center of the second main surface VS2 in the X-axis direction and aligned in the X-axis direction. The second connection electrode CP2 is a rectangular conductor disposed near the second side (the lower side of the base material 10B in FIG. 12C) of the second main surface VS2 of the base material 10B. The second connection electrode CP2 is disposed in the X-axis direction of the second main surface VS2.
 図13に示すように、第1入出力電極P1は、層間接続導体V1を介してコイル33の第1端E1に接続される。第2入出力電極P2は、層間接続導体V2を介して、コイル33の第2端E2に接続される。第1接続電極CP1Aは、層間接続導体V4を介して、コイル33の第3端E3に接続される。第1接続電極CP1Bは、層間接続導体V5を介して、コイル33の第4端E4に接続される。また、第2接続電極CP2は、層間接続導体V3を介してグランド電極GPに接続される。 As shown in FIG. 13, the first input / output electrode P1 is connected to the first end E1 of the coil 33 via the interlayer connection conductor V1. The second input / output electrode P2 is connected to the second end E2 of the coil 33 via the interlayer connection conductor V2. The first connection electrode CP1A is connected to the third end E3 of the coil 33 via the interlayer connection conductor V4. The first connection electrode CP1B is connected to the fourth end E4 of the coil 33 via the interlayer connection conductor V5. The second connection electrode CP2 is connected to the ground electrode GP via the interlayer connection conductor V3.
 図11に示すように、基材10Bの第2主面VS2と半導体基板20の素子形成面S1とが対向するように、ダイオードチップ2A,2Bは基材10Bの第2主面VS2に搭載される。これにより、ダイオードチップ2Aの第1端子電極(EP1)および第2端子電極(EP2)は、LGA型チップインダクタ1Bの第1接続電極CP1Aおよび第2接続電極CP2にそれぞれ接続される。また、ダイオードチップ2Bの第1端子電極(EP1)および第2端子電極(EP2)は、LGA型チップインダクタ1Bの第1接続電極CP1Bおよび第2接続電極CP2にそれぞれ接続される。 As shown in FIG. 11, the diode chips 2A and 2B are mounted on the second main surface VS2 of the base material 10B so that the second main surface VS2 of the base material 10B and the element formation surface S1 of the semiconductor substrate 20 face each other. The Accordingly, the first terminal electrode (EP1) and the second terminal electrode (EP2) of the diode chip 2A are connected to the first connection electrode CP1A and the second connection electrode CP2 of the LGA type chip inductor 1B, respectively. The first terminal electrode (EP1) and the second terminal electrode (EP2) of the diode chip 2B are connected to the first connection electrode CP1B and the second connection electrode CP2 of the LGA type chip inductor 1B, respectively.
 図14はESD保護機能付きインダクタ103の回路図である。図14では、コイル33をコイルL3で表し、図11(A)および図11(B)で示した半導体基板20に形成されるダイオードをダイオードD1A,D1Bで表している。 FIG. 14 is a circuit diagram of the inductor 103 with an ESD protection function. In FIG. 14, the coil 33 is represented by a coil L3, and the diodes formed on the semiconductor substrate 20 illustrated in FIGS. 11A and 11B are represented by diodes D1A and D1B.
 ESD保護機能付きインダクタ103は、図14に示すように、第1入出力電極P1と第2入出力電極P2との間にコイルL3が接続され、コイルL3の第1端および第2端とグランド電極GPとの間にそれぞれダイオードD1A,D1Bが接続された回路である。第1入出力電極P1はコイルL3の第1端に接続され、第2入出力電極P2はコイルL3の第2端に接続される。ダイオードD1Aの第1端は、第1接続電極CP1Aおよび第1端子電極EP1を介して、コイルL3の第1端に接続される。ダイオードD1Aの第2端は、第2接続電極CP2および第2端子電極EP2を介して、グランド電極GPに接続される。ダイオードD1Bの第1端は、第1接続電極CP1Bおよび第1端子電極EP1を介して、コイルL3の第2端に接続される。ダイオードD1Bの第2端は、第2接続電極CP2および第2端子電極EP2を介して、グランド電極GPに接続される。図14に示すように、グランド電極GPはグランドに接続される。 As shown in FIG. 14, the inductor 103 with ESD protection function includes a coil L3 connected between the first input / output electrode P1 and the second input / output electrode P2, and the first and second ends of the coil L3 and the ground. In this circuit, diodes D1A and D1B are connected to the electrode GP, respectively. The first input / output electrode P1 is connected to the first end of the coil L3, and the second input / output electrode P2 is connected to the second end of the coil L3. The first end of the diode D1A is connected to the first end of the coil L3 via the first connection electrode CP1A and the first terminal electrode EP1. The second end of the diode D1A is connected to the ground electrode GP through the second connection electrode CP2 and the second terminal electrode EP2. The first end of the diode D1B is connected to the second end of the coil L3 via the first connection electrode CP1B and the first terminal electrode EP1. The second end of the diode D1B is connected to the ground electrode GP through the second connection electrode CP2 and the second terminal electrode EP2. As shown in FIG. 14, the ground electrode GP is connected to the ground.
 この構成により、コイルL3の両端からダイオードD1A,D1Bがそれぞれグランドに接続されたローパスフィルタが構成される。また、この構成により、入出力に対して対照性を有する回路構成のESD保護機能付きインダクタを得ることができる。 This configuration constitutes a low-pass filter in which the diodes D1A and D1B are connected to the ground from both ends of the coil L3. Also, with this configuration, it is possible to obtain an inductor with an ESD protection function having a circuit configuration having a contrast to input / output.
 本実施形態で示したように、LGA型チップインダクタに搭載されるダイオードチップの数は複数でもよい。 As shown in the present embodiment, a plurality of diode chips may be mounted on the LGA type chip inductor.
 《第4の実施形態》
 第4の実施形態では、基材が磁性体部材であり、グランド電極と第2接続電極CP2との間の配線が第1から第3の実施形態とは異なる例を示す。
<< Fourth Embodiment >>
In the fourth embodiment, an example is shown in which the base material is a magnetic member, and the wiring between the ground electrode and the second connection electrode CP2 is different from the first to third embodiments.
 図15は第4の実施形態に係るESD保護機能付きインダクタ104の斜視図である。 FIG. 15 is a perspective view of the inductor 104 with an ESD protection function according to the fourth embodiment.
 ESD保護機能付きインダクタ104は、LGA型チップインダクタ1C、LGA型チップインダクタ1Cに搭載されるダイオードチップ2を備える。 The inductor 104 with an ESD protection function includes an LGA chip inductor 1C and a diode chip 2 mounted on the LGA chip inductor 1C.
 ESD保護機能付きインダクタ102は、LGA型チップインダクタ1Cの構造が第1の実施形態に係るESD保護機能付きインダクタ101と異なり、その他は同じである。以下、第1の実施形態に係るESD保護機能付きインダクタ101と異なる部分について説明する。 The inductor 102 with the ESD protection function is the same as the inductor 101 with the ESD protection function according to the first embodiment except for the structure of the LGA chip inductor 1C. Hereinafter, a different part from the inductor 101 with an ESD protection function which concerns on 1st Embodiment is demonstrated.
 図16(A)はLGA型チップインダクタ1Cの斜視図であり、図16(B)はLGA型チップインダクタ1Cが有する導体および電極を示す斜視図である。 16A is a perspective view of an LGA type chip inductor 1C, and FIG. 16B is a perspective view showing conductors and electrodes of the LGA type chip inductor 1C.
 LGA型チップインダクタ1Cは、基材10C、基材10Cの内部に形成されるコイル31、第1入出力電極P1、第2入出力電極P2、グランド電極GP、第1接続電極CP1、第2接続電極CP2および層間接続導体V1,V2,V4,V5および引き回し導体V3Pを有する。 The LGA chip inductor 1C includes a base material 10C, a coil 31 formed inside the base material 10C, a first input / output electrode P1, a second input / output electrode P2, a ground electrode GP, a first connection electrode CP1, and a second connection. It has an electrode CP2, interlayer connection conductors V1, V2, V4, V5 and a lead conductor V3P.
 基材10Cは、互いに対向する第1主面VS1および第2主面VS2を有し、長手方向がX軸方向に一致する直方体の絶縁体平板である。本実施形態では、基材10Cは例えば磁性体部材(磁性体フェライト)であり、磁性体フェライトからなる複数の絶縁基材層の積層体である。 The base material 10 </ b> C is a rectangular parallelepiped insulator plate having a first main surface VS <b> 1 and a second main surface VS <b> 2 that face each other and whose longitudinal direction matches the X-axis direction. In the present embodiment, the base material 10C is, for example, a magnetic member (magnetic ferrite), and is a laminate of a plurality of insulating base material layers made of magnetic ferrite.
 コイル31、第1入出力電極P1、第2入出力電極P2、グランド電極GP、第1接続電極CP1、第2接続電極CP2および層間接続導体V1,V2,V4,V5の構成は、第1の実施形態と実質的に同じである。 The configuration of the coil 31, the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, the second connection electrode CP2, and the interlayer connection conductors V1, V2, V4, V5 is the first configuration. This is substantially the same as the embodiment.
 引き回し導体V3Pは、基材10Cの外面に形成される半円柱状の導体である。引き回し導体V3Pは、例えば厚み方向(Z軸方向)に延伸する円柱状のビア導体やスルーホール等の中央を通るラインで基材ごと厚み方向(Z軸方向)に切断したものである。 The lead conductor V3P is a semi-cylindrical conductor formed on the outer surface of the base material 10C. The lead conductor V3P is, for example, cut in the thickness direction (Z-axis direction) together with the substrate along a line passing through the center of a cylindrical via conductor or a through hole extending in the thickness direction (Z-axis direction).
 図16(B)に示すように、第1入出力電極P1は、層間接続導体V1を介してコイル31の第1端E1に接続される。第2入出力電極P2は、導体41および層間接続導体V2,V5を介して、コイル31の第2端に接続される。また、第1接続電極CP1は、導体41および層間接続導体V4,V5を介して、コイル31の第2端E2に接続される。また、第2接続電極CP2は、引き回し導体V3Pを介してグランド電極GPに接続される。 As shown in FIG. 16B, the first input / output electrode P1 is connected to the first end E1 of the coil 31 via the interlayer connection conductor V1. The second input / output electrode P2 is connected to the second end of the coil 31 through the conductor 41 and the interlayer connection conductors V2 and V5. The first connection electrode CP1 is connected to the second end E2 of the coil 31 through the conductor 41 and the interlayer connection conductors V4 and V5. The second connection electrode CP2 is connected to the ground electrode GP through the lead conductor V3P.
 図15に示すように、ダイオードチップ2は基材10Cの第2主面VS2に搭載される。これにより、ダイオードチップ2の第1端子電極(EP1)および第2端子電極(EP2)は、LGA型チップインダクタ1Cの第1接続電極CP1および第2接続電極CP2にそれぞれ接続される。 As shown in FIG. 15, the diode chip 2 is mounted on the second main surface VS2 of the substrate 10C. Thus, the first terminal electrode (EP1) and the second terminal electrode (EP2) of the diode chip 2 are connected to the first connection electrode CP1 and the second connection electrode CP2 of the LGA type chip inductor 1C, respectively.
 図17はESD保護機能付きインダクタ104の回路図である。図17では、コイル31をコイルL1で表し、図16(A)および図16(B)で示した半導体基板20に形成されるダイオードをダイオードD1で表している。 FIG. 17 is a circuit diagram of the inductor 104 with an ESD protection function. In FIG. 17, the coil 31 is represented by a coil L1, and the diode formed on the semiconductor substrate 20 illustrated in FIGS. 16A and 16B is represented by a diode D1.
 このように、第1の実施形態と同様に、LGA型チップインダクタ1Cのインダクタンス成分(コイルL1)と、ダイオードD1が有する容量成分とで、ローパスフィルタが構成される。 Thus, as in the first embodiment, the low-pass filter is configured by the inductance component (coil L1) of the LGA chip inductor 1C and the capacitance component of the diode D1.
 本実施形態に係るESD保護機能付きインダクタ104によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。 In addition to the effects described in the first embodiment, the inductor 104 with an ESD protection function according to the present embodiment has the following effects.
(c)本実施形態では、基材10Cが磁性体部材である。この構成により、コイル31を大型化することなく(または、コイル31のターン数を増やすことなく)、所定のインダクタンス値を有するチップインダクタが得られる。 (C) In this embodiment, the base material 10C is a magnetic member. With this configuration, a chip inductor having a predetermined inductance value can be obtained without increasing the size of the coil 31 (or without increasing the number of turns of the coil 31).
(d)本実施形態では、図17に示すダイオードD1とグランド電極GP(グランド)との間の配線である引き回し導体V3Pが、磁性体部材である基材10Cの外面に形成される。この構成により、ダイオードD1とグランド電極GPとの間の配線を磁性体部材(基材)の内部に形成する場合に比べて、ダイオードD1とグランド電極GPとの間の配線に生じる寄生インダクタを抑制できる。したがって、この構成により、ESD保護機能付きインダクタ104のESD保護機能(除去機能)やフィルタの減衰特性が向上する。なお、この効果は特に高周波において顕著である。 (D) In the present embodiment, the lead conductor V3P, which is a wiring between the diode D1 and the ground electrode GP (ground) shown in FIG. 17, is formed on the outer surface of the base material 10C that is a magnetic member. With this configuration, the parasitic inductor generated in the wiring between the diode D1 and the ground electrode GP is suppressed as compared with the case where the wiring between the diode D1 and the ground electrode GP is formed inside the magnetic body member (base material). it can. Therefore, this configuration improves the ESD protection function (removal function) of the inductor 104 with ESD protection function and the attenuation characteristic of the filter. This effect is particularly remarkable at high frequencies.
 なお、本実施形態では、半円柱状の引き回し導体V3Pを示したが、引き回し導体はこの構成に限定されるものではない。引き回し導体は、基材の外面に形成される導体パターン等であってもよい。 In the present embodiment, the semi-cylindrical routing conductor V3P is shown, but the routing conductor is not limited to this configuration. The lead conductor may be a conductor pattern formed on the outer surface of the substrate.
 《その他の実施形態》
 以上に示した各実施形態では、基材の平面形状が矩形の直方体である例を示したが、この構成に限定されるものではない。基材の形状は、本発明の作用・効果を奏する範囲において適宜変更可能である。基材の平面形状は、例えば多角形、円形、楕円形、L字形、クランク形、T字形、Y字形等であってもよい。
<< Other Embodiments >>
In each of the embodiments described above, an example in which the planar shape of the base material is a rectangular parallelepiped has been shown, but the present invention is not limited to this configuration. The shape of the base material can be changed as appropriate within the range where the functions and effects of the present invention are exhibited. The planar shape of the substrate may be, for example, a polygon, a circle, an ellipse, an L shape, a crank shape, a T shape, a Y shape, or the like.
 以上に示した各実施形態では、基材が複数の絶縁基材層の積層体である例を示したが、この構成に限定されるものではない。基材は、単層であってもよい。また、以上に示した各実施形態では、基材が低温同時焼成セラミックス(LTCC)のような誘電体セラミック、または磁性体フェライトである例を示したが、この構成に限定されるものではない。基材は例えば熱硬化性樹脂からなる樹脂成型体であってもよい。 In each of the embodiments described above, an example in which the base material is a laminated body of a plurality of insulating base material layers is shown, but the present invention is not limited to this configuration. The substrate may be a single layer. Further, in each of the embodiments described above, an example in which the base material is a dielectric ceramic such as low temperature co-fired ceramics (LTCC) or a magnetic ferrite is shown, but the present invention is not limited to this configuration. The base material may be a resin molded body made of, for example, a thermosetting resin.
 以上に示した各実施形態では、厚み方向(Z軸方向)に巻回軸を有する約1ターンのループ状または約2ターンのスパイラル状のコイルの例を示したが、この構成に限定されるものではない。コイルの形状、巻回数は本発明の作用・効果を奏する範囲において適宜変更可能である。コイルは例えばヘリカル状の導体であってもよい。また、コイルの巻回軸についても、本発明の作用・効果を奏する範囲において適宜変更可能であり、X軸方向またはY軸方向に沿っていてもよい。また、以上に示した各実施形態では、基材の内部にコイルが形成される例を示したが、例えばコイルの一部または全部が基材の端面(表面)等に形成されていてもよい。 In each of the embodiments described above, an example of a loop-shaped coil of about 1 turn or a spiral of about 2 turns having a winding axis in the thickness direction (Z-axis direction) is shown, but the present invention is limited to this configuration. It is not a thing. The shape of the coil and the number of turns can be changed as appropriate within the range where the functions and effects of the present invention are exhibited. For example, the coil may be a helical conductor. Also, the winding axis of the coil can be appropriately changed within the range where the operation and effect of the present invention are exhibited, and may be along the X-axis direction or the Y-axis direction. Moreover, in each embodiment shown above, although the example in which a coil was formed in the inside of a base material was shown, for example, a part or all of a coil may be formed in the end surface (surface) etc. of a base material. .
 また、以上に示した各実施形態では、ローパスフィルタが構成されたESD保護機能付きインダクタの例を示したが、この構成に限定されるものではない。ESD保護機能付きインダクタに構成される回路は、適宜変更可能である。また、LGA型チップインダクタに搭載される部品は、ESD保護機能付きインダクタに構成される回路によって変更可能である。例えば、ダイオードチップ以外にチップコンデンサ等が、LGA型チップインダクタに搭載されていてもよい。 In each of the embodiments described above, an example of an inductor with an ESD protection function in which a low-pass filter is configured has been described, but the present invention is not limited to this configuration. The circuit configured in the inductor with an ESD protection function can be changed as appropriate. The components mounted on the LGA type chip inductor can be changed by a circuit configured as an inductor with an ESD protection function. For example, a chip capacitor or the like other than the diode chip may be mounted on the LGA type chip inductor.
 以上に示した各実施形態では、ダイオードチップを基材の第2主面VS2に搭載した例を示したが、この構成に限定されるものではない。LGA型チップインダクタに搭載される部品は、第1主面VS1および第2主面VS2以外に形成されていてもよく、例えば端面等に搭載されていてもよい。同様に、第1接続電極CP1および第2接続電極CP2は、第1主面VS1および第2主面VS2以外に形成されていてもよい。 In each of the embodiments described above, the example in which the diode chip is mounted on the second main surface VS2 of the base material has been described. However, the present invention is not limited to this configuration. The components mounted on the LGA type chip inductor may be formed other than the first main surface VS1 and the second main surface VS2, for example, may be mounted on an end surface or the like. Similarly, the first connection electrode CP1 and the second connection electrode CP2 may be formed other than the first main surface VS1 and the second main surface VS2.
 以上に示した各実施形態では、第1入出力電極P1,第2入出力電極P2、グランド電極GP、第1接続電極CP1および第2接続電極CP2が矩形の導体である例について示したが、この構成に限定されるものではない。第1入出力電極P1,第2入出力電極P2、グランド電極GP、第1接続電極CP1および第2接続電極CP2の形状は適宜変更可能である。また、第1入出力電極P1,第2入出力電極P2、グランド電極GP、第1接続電極CP1および第2接続電極CP2の配置・個数についても、ESD保護機能付きインダクタの回路構成によって適宜変更可能である。 In each of the embodiments described above, an example in which the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, and the second connection electrode CP2 are rectangular conductors has been described. It is not limited to this configuration. The shapes of the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, and the second connection electrode CP2 can be changed as appropriate. Further, the arrangement and number of the first input / output electrode P1, the second input / output electrode P2, the ground electrode GP, the first connection electrode CP1, and the second connection electrode CP2 can be appropriately changed depending on the circuit configuration of the inductor with the ESD protection function. It is.
 以上に示した各実施形態では、ダイオードチップの第1端子電極EP1および第2端子電極EP2を、半導体基板20の素子形成面S1に形成した導体パターンによって構成する例を示したが、この構成に限定されるものではない。第1端子電極EP1および第2端子電極EP2は、半導体基板20の素子形成面S1に再配線層を形成して構成してもよい。 In each of the embodiments described above, an example in which the first terminal electrode EP1 and the second terminal electrode EP2 of the diode chip are configured by the conductor pattern formed on the element formation surface S1 of the semiconductor substrate 20 has been described. It is not limited. The first terminal electrode EP1 and the second terminal electrode EP2 may be configured by forming a rewiring layer on the element formation surface S1 of the semiconductor substrate 20.
 以上に示した各実施形態では、ダイオードチップが、基材の第1主面VS1および第2主面VS2を平面視して、コイルに重なる構成例を示したが、これに限定されるものではない。ダイオードチップは、基材の第1主面VS1および第2主面VS2を平面視して、コイルに重なっていなくてもよい。 In each of the embodiments described above, the diode chip is shown as a configuration example in which the first main surface VS1 and the second main surface VS2 of the base material are planarly viewed and overlapped with the coil. However, the present invention is not limited to this. Absent. The diode chip does not have to overlap the coil in plan view of the first main surface VS1 and the second main surface VS2 of the base material.
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。 Finally, the description of the above embodiment is illustrative in all respects and not restrictive. Modifications and changes can be made as appropriate by those skilled in the art. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope equivalent to the claims.
L1,L2,L3…コイル
D1,D1A,D1B…ダイオード
1,1A,1B,1C…LGA型チップインダクタ
10,10A,10B,10C…基材
VS1…基材の第1主面
VS2…基材の第2主面
GP…グランド電極
P1…第1入出力電極
P2…第2入出力電極
CP1,CP1A,CP1B…第1接続電極
CP2…第2接続電極
V1,V2,V3,V4,V5…層間接続導体
V3P…引き回し導体
31,32,32A,32B,32C,33,33A,33B,33C…コイル
E1…コイルの第1端
E2…コイルの第2端
E3…コイルの第3端
E4…コイルの第4端
41…導体
2,2A,2B…ダイオードチップ
EP1…第1端子電極
EP2…第2端子電極
20…半導体基板
21…半導体素子部
S1…半導体基板の素子形成面
3,4…絶縁層
51,52…電極
101,102,103,104…ESD保護機能付きインダクタ
L1, L2, L3 ... Coils D1, D1A, D1B ... Diodes 1, 1A, 1B, 1C ... LGA type chip inductors 10, 10A, 10B, 10C ... Base material VS1 ... First main surface VS2 of base material ... of base material Second main surface GP ... ground electrode P1 ... first input / output electrode P2 ... second input / output electrodes CP1, CP1A, CP1B ... first connection electrode CP2 ... second connection electrodes V1, V2, V3, V4, V5 ... interlayer connection Conductor V3P ... Leading conductor 31, 32, 32A, 32B, 32C, 33, 33A, 33B, 33C ... Coil E1 ... First end E2 of coil ... Second end E3 of coil ... Third end E4 of coil ... Third of coil 4 ends 41 ... conductors 2, 2A, 2B ... diode chip EP1 ... first terminal electrode EP2 ... second terminal electrode 20 ... semiconductor substrate 21 ... semiconductor element part S1 ... element formation surfaces 3, 4 ... insulation of the semiconductor substrate Layers 51, 52 ... electrodes 101, 102, 103, 104 ... ESD protection function inductor

Claims (7)

  1.  実装面である第1主面を有する基材と、前記基材に形成されるコイルと、前記第1主面に形成され、前記コイルの第1端に接続される第1入出力電極と、前記第1主面に形成され、前記コイルの第2端に接続される第2入出力電極と、前記第1主面に形成されるグランド電極と、前記コイルに接続される第1接続電極と、前記グランド電極に接続される第2接続電極と、を有するLGA型チップインダクタと、
     半導体基板と、ESD保護素子として機能し、前記半導体基板に形成されるダイオードと、前記ダイオードの第1端および第2端にそれぞれ接続される第1端子電極および第2端子電極と、を有するダイオードチップと、
     を備え、
     前記ダイオードチップは、前記LGA型チップインダクタに搭載され、
     前記ダイオードチップの前記第1端子電極および前記第2端子電極は、前記LGA型チップインダクタの前記第1接続電極および前記第2接続電極にそれぞれ接続される、ESD保護機能付きインダクタ。
    A base material having a first main surface which is a mounting surface; a coil formed on the base material; a first input / output electrode formed on the first main surface and connected to a first end of the coil; A second input / output electrode formed on the first main surface and connected to a second end of the coil; a ground electrode formed on the first main surface; and a first connection electrode connected to the coil; A LGA type chip inductor having a second connection electrode connected to the ground electrode;
    A diode having a semiconductor substrate, a diode that functions as an ESD protection element, formed on the semiconductor substrate, and a first terminal electrode and a second terminal electrode that are respectively connected to a first end and a second end of the diode Chips,
    With
    The diode chip is mounted on the LGA type chip inductor,
    The inductor with an ESD protection function, wherein the first terminal electrode and the second terminal electrode of the diode chip are connected to the first connection electrode and the second connection electrode of the LGA chip inductor, respectively.
  2.  前記基材は、前記第1主面に対向する第2主面を有し、
     前記第1接続電極および前記第2接続電極は、前記第2主面に形成され、
     前記ダイオードチップは、前記基材の前記第2主面に搭載される、請求項1に記載のESD保護機能付きインダクタ。
    The base has a second main surface facing the first main surface;
    The first connection electrode and the second connection electrode are formed on the second main surface,
    The inductor with an ESD protection function according to claim 1, wherein the diode chip is mounted on the second main surface of the base material.
  3.  前記ダイオードチップは、前記第1主面および前記第2主面を平面視して、前記コイルに重なる、請求項2に記載のESD保護機能付きインダクタ。 3. The inductor with an ESD protection function according to claim 2, wherein the diode chip overlaps the coil in a plan view of the first main surface and the second main surface.
  4.  前記基材は、複数の絶縁基材層の積層体である、請求項1から3のいずれかに記載のESD保護機能付きインダクタ。 The inductor with an ESD protection function according to any one of claims 1 to 3, wherein the base material is a laminate of a plurality of insulating base material layers.
  5.  前記LGA型チップインダクタのインダクタンス成分と、前記ダイオードが有する容量成分とでローパスフィルタを構成する、請求項1から4のいずれかに記載のESD保護機能付きインダクタ。 The inductor with an ESD protection function according to any one of claims 1 to 4, wherein a low-pass filter is constituted by an inductance component of the LGA type chip inductor and a capacitance component of the diode.
  6.  前記基材に形成される第1層間接続導体を備え、
     前記第1接続電極は、前記第1層間接続導体を介して前記コイルに接続される、請求項1から5のいずれかに記載のESD保護機能付きインダクタ。
    Comprising a first interlayer connection conductor formed on the substrate;
    The inductor with an ESD protection function according to claim 1, wherein the first connection electrode is connected to the coil via the first interlayer connection conductor.
  7.  前記基材は磁性体部材であり、
     前記基材の外面に形成される引き回し導体を備え、
     前記グランド電極は、前記引き回し導体を介して前記第2接続電極に接続される、請求項1から6のいずれかに記載のESD保護機能付きインダクタ。
    The substrate is a magnetic member;
    A routing conductor formed on the outer surface of the base material,
    The inductor with an ESD protection function according to claim 1, wherein the ground electrode is connected to the second connection electrode via the lead conductor.
PCT/JP2017/023067 2016-07-06 2017-06-22 Inductor with esd protection function WO2018008422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790000576.5U CN208143194U (en) 2016-07-06 2017-06-22 Inductor with ESD defencive function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-133867 2016-07-06
JP2016133867 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018008422A1 true WO2018008422A1 (en) 2018-01-11

Family

ID=60901347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023067 WO2018008422A1 (en) 2016-07-06 2017-06-22 Inductor with esd protection function

Country Status (2)

Country Link
CN (1) CN208143194U (en)
WO (1) WO2018008422A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202774A1 (en) * 2018-04-16 2019-10-24 株式会社村田製作所 Esd protective element
US11444078B2 (en) 2018-04-16 2022-09-13 Murata Manufacturing Co., Ltd. ESD protection element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059025U (en) * 1991-07-08 1993-02-05 株式会社村田製作所 Noise filter with varistor function
JP2007060892A (en) * 2005-07-25 2007-03-08 Tdk Corp Surge absorbing circuit
WO2007029615A1 (en) * 2005-09-07 2007-03-15 Matsushita Electric Industrial Co., Ltd. Composite electronic device
JP2012209767A (en) * 2011-03-30 2012-10-25 Tdk Corp Laminated band-pass filter
JP2014022426A (en) * 2012-07-13 2014-02-03 Panasonic Corp Laminated inductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059025U (en) * 1991-07-08 1993-02-05 株式会社村田製作所 Noise filter with varistor function
JP2007060892A (en) * 2005-07-25 2007-03-08 Tdk Corp Surge absorbing circuit
WO2007029615A1 (en) * 2005-09-07 2007-03-15 Matsushita Electric Industrial Co., Ltd. Composite electronic device
JP2012209767A (en) * 2011-03-30 2012-10-25 Tdk Corp Laminated band-pass filter
JP2014022426A (en) * 2012-07-13 2014-02-03 Panasonic Corp Laminated inductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202774A1 (en) * 2018-04-16 2019-10-24 株式会社村田製作所 Esd protective element
US11444078B2 (en) 2018-04-16 2022-09-13 Murata Manufacturing Co., Ltd. ESD protection element

Also Published As

Publication number Publication date
CN208143194U (en) 2018-11-23

Similar Documents

Publication Publication Date Title
US10770451B2 (en) Thin-film ESD protection device
US10109576B2 (en) Capacitor mounting structure
US9633989B2 (en) ESD protection device
US10916938B2 (en) ESD-protective surface-mount composite component
US10886730B2 (en) Filter having an ESD protection device
US10560066B2 (en) Electronic component
US20180226391A1 (en) Thin film lc component and mounting structure of same
US10790792B2 (en) LC composite device, processor, and method for manufacturing LC composite device
WO2018150881A1 (en) Common mode choke coil, module component, and electronic device
US10645798B2 (en) Composite component-embedded circuit board and composite component
US10855074B2 (en) Filter component having ESD protection function
WO2018008422A1 (en) Inductor with esd protection function
US10497510B2 (en) Electronic component
JP6102770B2 (en) High frequency module
CN104578753A (en) Composite electronic component and board for mounting the same
US20050134405A1 (en) Electronic device and semiconductor device
US11469593B2 (en) Thin-film ESD protection device with compact size
KR102004783B1 (en) Composite electronic component and board for mounting the same
JP6256575B2 (en) High frequency module
WO2021049399A1 (en) Electronic component module
JP2010278602A (en) Laminated dielectric filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP