WO2017141370A1 - Object detection apparatus, object detection method, and object detection program - Google Patents

Object detection apparatus, object detection method, and object detection program Download PDF

Info

Publication number
WO2017141370A1
WO2017141370A1 PCT/JP2016/054543 JP2016054543W WO2017141370A1 WO 2017141370 A1 WO2017141370 A1 WO 2017141370A1 JP 2016054543 W JP2016054543 W JP 2016054543W WO 2017141370 A1 WO2017141370 A1 WO 2017141370A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
moving body
acoustic signal
unit
distance
Prior art date
Application number
PCT/JP2016/054543
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/054543 priority Critical patent/WO2017141370A1/en
Priority to JP2016568980A priority patent/JPWO2017141370A1/en
Publication of WO2017141370A1 publication Critical patent/WO2017141370A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track

Definitions

  • This invention relates to a technique for detecting an object existing around a moving body.
  • a technique for detecting an object existing around a moving body for example, there is a technique for detecting surrounding vehicles existing around the vehicle. By detecting an object around the moving body, it is possible to control the moving body so as to avoid a collision with the detected object.
  • Patent Document 1 describes that an object is detected using an ultrasonic sensor.
  • An object of the present invention is to make it possible to accurately detect an object using an acoustic signal even when a Doppler shift occurs.
  • the object detection device is: A reception unit that receives a reflected wave signal generated by reflecting an acoustic signal radiated from a moving object, which is an acoustic signal composed of a plurality of waves having different frequencies, And a detection unit that detects the object by calculating a correlation value between the reception signal and a reference signal using the reflected wave signal received by the reception unit as a reception signal.
  • an object is detected using an acoustic signal formed by superposing a plurality of waves having different frequencies. Therefore, even if a Doppler shift occurs, an object can be detected with high accuracy.
  • FIG. 3 is an explanatory diagram of a situation between the moving body 100 according to the first embodiment and the object 200 existing around the moving body 100.
  • 3 is a flowchart showing an overall operation of the object detection apparatus 10 according to the first embodiment.
  • 5 is a flowchart showing the operation of step ST1 according to the first embodiment.
  • FIG. 6 Explanatory drawing of the transmission signal generation method which concerns on Embodiment 1.
  • FIG. 6 is a flowchart showing the operation of step ST2 according to the first embodiment. 6 is a flowchart showing the operation of step ST3 according to the first embodiment.
  • FIG. 10 is a flowchart showing the operation of step ST2 according to the second embodiment.
  • FIG. 10 is a flowchart showing the operation of step ST3 according to the second embodiment.
  • FIG. 6 is a configuration diagram of an object detection device 10 according to a third embodiment. Explanatory drawing of the condition of the mobile body 100 which concerns on Embodiment 3, and the object 200 which exists around the mobile body 100.
  • FIG. 10 is a flowchart showing the operation of step ST1 according to the third embodiment.
  • 10 is a flowchart showing the operation of step ST3 according to the third embodiment.
  • FIG. 6 is a configuration diagram of an object detection apparatus 10 according to a fourth embodiment. 10 is a flowchart showing an overall operation of the object detection apparatus 10 according to the fourth embodiment.
  • Embodiment 1 FIG. *** Explanation of configuration *** With reference to FIG. 1, an example in which the object detection apparatus 10 according to Embodiment 1 is mounted on a moving body will be described.
  • the object detection device 10 is a computer mounted on the moving body 100.
  • the moving body 100 is a vehicle.
  • the moving body 100 may be another type such as a ship.
  • a mounting form for mounting the object detection device 10 it is mounted in a removable or separable form even if it is integrated with the moving body 100 or other illustrated components in a form that is integrated or inseparable. May be.
  • the object detection device 10 includes hardware including a processor 11, a storage device 12, an audio interface 13, and an in-vehicle interface 14.
  • the processor 11 is connected to other hardware via the system bus and controls these other hardware.
  • the processor 11 is an IC (Integrated Circuit) that performs processing. Specific examples of the processor 11 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • a CPU Central Processing Unit
  • DSP Digital Signal Processor
  • GPU Graphics Processing Unit
  • the storage device 12 includes a memory 121 and a storage 122.
  • the memory 121 is, for example, a RAM (Random Access Memory).
  • the storage 122 is an HDD (Hard Disk Drive) as a specific example.
  • the storage 122 may be a portable storage medium such as an SD (Secure Digital) memory card, a CF (CompactFlash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD.
  • SD Secure Digital
  • CF CompactFlash
  • NAND flash NAND flash
  • the audio interface 13 is a device for connecting the acoustic signal output device 21 and the acoustic signal input device 22 mounted on the moving body 100 to the system bus via the audio bus.
  • the audio interface 13 is a USB (Universal Serial Bus), IEEE 1394, or HDMI (registered trademark, High-Definition Multimedia Interface) terminal.
  • the acoustic signal output device 21 is a device that outputs an acoustic signal.
  • the acoustic signal output device 21 is a device including a D / A (digital / analog) converter, a signal amplifier, and a radiation device.
  • the D / A converter is a device that converts a digital signal including transmission signal waveform information transmitted from the audio interface 13 via the audio bus into an analog signal that is an electrical signal.
  • the signal amplifier is a device that amplifies the transmission signal converted into an analog signal by the D / A converter.
  • the radiation device is a device that radiates a transmission signal, which is an analog signal amplified by a signal amplifier, as an acoustic signal.
  • the radiation device is a speaker.
  • the radiating device is not limited to a speaker, but may be a device that can radiate an analog signal having a plurality of frequency peaks.
  • the radiating device may be a device in which a plurality of ultrasonic sensors having different resonance frequencies are assembled.
  • the acoustic signal input device 22 is a device that collects an acoustic signal including a reflected wave reflected by an object from the acoustic signal radiated from the acoustic signal output device 21.
  • the acoustic signal input device 22 is a device including a collection device, a signal amplifier, and an A / D (analog / digital) converter.
  • the collection device is a device that converts an acoustic signal from the outside of the device into an analog signal that is an electrical signal and collects the signal.
  • the signal amplifier is a device that amplifies the analog signal collected by the collecting device.
  • the A / D converter is a device that converts the analog signal amplified by the signal amplifier into a digital signal including received signal waveform information and transmits the digital signal to the audio interface 13 via the audio bus.
  • the collection device is a microphone as a specific example.
  • the collecting device is not limited to a microphone, but may be any device that can collect acoustic signals having a plurality of frequency peaks.
  • the collecting device may be a device in which a plurality of ultrasonic sensors having different resonance frequencies are assembled.
  • the in-vehicle interface 14 is a device for connecting the vehicle information ECU 23 and the sensor ECU 24 mounted on the moving body 100 to the system bus via the in-vehicle bus.
  • the in-vehicle interface 14 is, as a specific example, a USB, IEEE 1394, or HDMI (registered trademark) terminal.
  • the in-vehicle bus is, as a specific example, a CAN (Control Area Network).
  • the vehicle information ECU 23 is a device that acquires information such as time and the speed of the moving body 100.
  • the sensor ECU 24 is a device that acquires external environment information, which is information about the environment outside the moving body 100 such as temperature and wind speed. External environment information is used to correct the acoustic velocity V s. Therefore, temperatures as external environment information is not limited to wind speed, humidity, atmospheric pressure, specific heat, may be any parameters available for the correction of density such acoustic velocity V s.
  • the object detection device 10 includes, as functional components, a time synchronization unit 111, a transmission signal generation unit 112, a reception signal generation unit 113, a vehicle signal generation unit 114, an environmental signal generation unit 115, a detection unit 116, A radiation unit 131, a reception unit 132, a time acquisition unit 141, a vehicle information acquisition unit 142, and an environment information acquisition unit 143 are provided.
  • the functions of the time synchronization unit 111, the transmission signal generation unit 112, the reception signal generation unit 113, the vehicle signal generation unit 114, the environment signal generation unit 115, and the detection unit 116 are realized by software.
  • the storage 122 of the storage device 12 stores a program that realizes the function of each unit realized by software.
  • This program is read into the memory 121 by the processor 11 and executed by the processor 11.
  • the functions of the radiation unit 131 and the reception unit 132 are realized by the audio interface 13.
  • the functions of the time acquisition unit 141, the vehicle information acquisition unit 142, and the environment information acquisition unit 143 are realized by the in-vehicle interface 14.
  • Information, data, signal values, and variable values indicating the results of processing of the functions of the respective units of the object detection device 10 are stored in the memory 121, the register in the processor 11, or the cache memory. In the following description, it is assumed that information, data, signal values, and variable values indicating the processing results of the functions of the respective units of the object detection apparatus 10 are stored in the memory 121.
  • this program may be stored in a portable storage medium such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD.
  • a portable storage medium such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD.
  • FIG. 1 only one processor 11 is shown. However, a plurality of processors 11 may be provided, and a plurality of processors 11 may execute programs that realize each function in cooperation with each other.
  • the operation of the object detection apparatus 10 according to the first embodiment corresponds to the object detection method according to the first embodiment.
  • the operation of the object detection apparatus 10 according to the first embodiment corresponds to the processing of the object detection program according to the first embodiment.
  • the object 200 is a vehicle that travels in front of the moving body 100.
  • FIG. 2 shows a moving body 100 on which an acoustic signal output device 21 and an acoustic signal input device 22 are installed, and an object 200.
  • the acoustic signal output device 21 and the acoustic signal input device 22 are disposed at positions close to each other on the front side of the moving body 100.
  • the shortest path length from the acoustic signal output device 21 to the object 200 and the shortest path length from the reflected wave generation source to the acoustic signal input device 22 are almost equal to the distance d.
  • the generation source of the reflected wave is a position where the transmission signal output from the acoustic signal output device 21 reaches the object 200 in the shortest time.
  • the mobile 100 is traveling at a speed v s
  • the object 200 travels at a speed v o.
  • the time synchronization unit 111 generates a synchronization signal based on the time acquired by the time acquisition unit 141 from the vehicle information ECU 23, and receives the transmission signal generation unit 112 and the reception.
  • the signal is transmitted to the signal generator 113, the vehicle signal generator 114, and the environment signal generator 115.
  • the transmission signal generation unit 112 transmits a transmission signal to the radiation unit 131 every predetermined time T seconds based on the synchronization signal transmitted by the time synchronization unit 111.
  • the radiating unit 131 transmits the received transmission signal to the acoustic signal output device 21.
  • the acoustic signal output device 21 radiates the received transmission signal as an acoustic signal.
  • the reception unit 132 receives a reception signal that is an acoustic signal converted into a digital signal by the acoustic signal input device 22.
  • the acoustic signal (transmission signal) radiated by the acoustic signal output device 21 in step ST1 is reflected by the object 200.
  • the signal component corresponding to the reflected wave generated by is included.
  • the received signal may contain noise other than the signal component corresponding to the reflected wave.
  • the reception signal generation unit 113 transmits the reception signal for the latest T seconds received by the reception unit 132 to the detection unit 116 every fixed time T1 seconds.
  • the time T1 is equal to or less than the time T.
  • the vehicle signal generation unit 114 acquires the speed of the moving body 100 via the vehicle information acquisition unit 142 and transmits it to the detection unit 116.
  • the environment signal generation unit 115 acquires external environment information via the environment information acquisition unit 143 and transmits the external environment information to the detection unit 116.
  • the reception signal generation unit 113, the vehicle signal generation unit 114, and the environment signal generation unit 115 are synchronized with the timing at which transmission of the transmission signal is started in step ST1, based on the synchronization signal transmitted by the time synchronization unit 111. Works.
  • the detection unit 116 detects the object 200 present around the moving body 100 based on the reception signal transmitted by the reception signal generation unit 113 in step ST2. In addition, when the object 200 is detected, the detection unit 116 converts the speed transmitted by the vehicle signal generation unit 114 in step ST2 and the external environment information transmitted by the environment signal generation unit 115 together with the reception signal. Based on this, the relative distance d and the relative speed ⁇ v of the object 200 are estimated.
  • step ST1 ** Detailed operation of step ST1 ** With reference to FIG. 4, the operation of step ST1 according to the first embodiment will be described in detail.
  • the transmission signal generation unit 112 measures the elapsed time from the transmission time at which the previous transmission signal was transmitted, based on the synchronization signal transmitted by the time synchronization unit 111. If T seconds have elapsed from the transmission time, the transmission signal generation unit 112 proceeds to step ST12, and if T seconds have not elapsed from the transmission time, the transmission signal generation unit 112 executes step ST11 again.
  • the transmission signal generation unit 112 reads a signal waveform stored in the memory 121 in advance, and transmits the read signal waveform to the radiation unit 131 as a transmission signal. And the radiation
  • the transmission signal radiated as an acoustic signal is a signal configured by superposing a plurality of waves having different frequencies.
  • the transmission signal is preferably a signal obtained by superposing a plurality of waves whose frequencies increase according to the geometric sequence.
  • the transmission signal is desirably a signal obtained by superposing a plurality of waves having different initial phases for each frequency.
  • the frequency of each wave that is a component of the transmission signal is preferably in the frequency band of sound waves or low-frequency ultrasonic waves, specifically in the range of 16 kHz to 100 kHz. That is, it is desirable that the acoustic signal as the transmission signal is a signal obtained by superimposing a plurality of waves having a frequency within one of the frequency bands of the sound wave and the low frequency ultrasonic wave.
  • the transmission signal includes the first signal and the phase of the first signal. And a second signal obtained by inverting.
  • the transmission signal includes q ( ⁇ 2) types of frequency components, the frequency increases in a geometric series, and the frequency and the initial phase correspond one-to-one.
  • a signal is available. That is, as a specific example, the signal u (t, T 0 ) shown in Equation 1 can be used as the transmission signal.
  • p (> 0) is a constant corresponding to the bandwidth.
  • f 0 (> 0) is a constant representing the lowest frequency.
  • T 0 (> 0) is a constant related to the initial phase.
  • a k is a constant corresponding to the amplitude of each frequency.
  • This signal has frequencies f 0 , p 1 / q f 0 , p 2 / q f 0 ,. .
  • the initial phase at the frequency (p k / q f 0 ) for each integer k is 2 ⁇ T 0 ⁇ p k / q f 0 , and the frequency and the initial phase have a one-to-one correspondence.
  • a signal whose frequency is continuously distributed within a certain bandwidth can be used as the transmission signal. This corresponds to reducing the frequency increase rate p 1 / q until the peak of each frequency cannot be distinguished on the frequency amplitude characteristic in the signal u (t, T 0 ).
  • the signal w (t) shown in FIG. 3 can also be used as a transmission signal.
  • the transmission signal generation unit 112 uses the signal waveform read from the memory 121 as the transmission signal. However, in step ST12, the transmission signal generation unit 112 may generate a signal waveform and use it as a transmission signal.
  • the object detection apparatus 10 stores a signal waveform such as white noise or pink noise in the memory 121 as a reference waveform as shown in FIG. deep. Then, in step ST12, the transmission signal generation unit 112 reads the reference waveform from the memory 121, and passes the read reference waveform through a bandpass filter having a reference bandwidth as a pass band, thereby generating a signal waveform that becomes a transmission signal. Generate.
  • the passband f is, for example, f 0 ⁇ f ⁇ f q ⁇ 1 .
  • the transmission signal generation unit 112 may perform various other signal processing such as changing the frequency phase characteristics through the all-pass filter on the signal waveform after passing as necessary.
  • the object detection apparatus 10 stores information such as a random number seed necessary for generating the reference waveform in the memory 121 instead of the reference waveform, and the transmission signal generation unit 112 is stored in the memory 121 in step ST12.
  • a reference waveform may be generated from the obtained information.
  • step ST2 ** Detailed operation of step ST2 ** With reference to FIG. 7, the operation of step ST2 according to the first embodiment will be described in detail.
  • the reception unit 132 stores the reception signals for the latest T seconds among the reception signals constantly collected by the acoustic signal input device 22 based on the synchronization signal transmitted by the time synchronization unit 111.
  • the reception unit 132 writes the reception signal collected by the acoustic signal input device 22 to the memory 121 and erases the reception signal that has passed T seconds from the collection from the memory 121.
  • the reception signal generation unit 113 measures the elapsed time from the transmission time at which the previous reception signal was transmitted based on the synchronization signal transmitted by the time synchronization unit 111.
  • the reception signal generation unit 113 advances the process to step ST23 when T1 seconds have elapsed from the transmission time, and returns the process to step ST21 when T1 seconds have not elapsed since the transmission time.
  • the reception signal generation unit 113 reads the reception signal for the latest T seconds stored in the memory 121 and transmits the read reception signal to the detection unit 116.
  • the vehicle signal generation unit 114 acquires the speed of the moving body 100 via the vehicle information acquisition unit 142 and transmits it to the detection unit 116.
  • the environment signal generation unit 115 acquires external environment information via the environment information acquisition unit 143 and transmits the external environment information to the detection unit 116.
  • step ST3 the detection unit 116 calculates cross-correlation functions for the reception signal transmitted by the reception signal generation unit 113 in step ST2 and each of at least two types of reference signals.
  • the detection unit 116 reads the two types of reference signals 1 and 2 from the memory 121 and calculates a cross-correlation function for each of the received signal and the reference signals 1 and 2.
  • the detection unit 116 writes the calculated cross-correlation functions in the memory 121.
  • the reference signal may be a signal that has a peak in the cross-correlation function with the received signal.
  • a transmission signal can be used as a reference signal.
  • an ideal reception signal when the Doppler shift does not occur has a signal waveform similar to a signal obtained by delaying the transmission signal by a time due to the relative distance.
  • the cross-correlation function between the reference signal and the received signal is a peak of the auto-correlation function of the transmission signal shifted by the delay time.
  • the peak position is further shifted accordingly.
  • the reference signal is not limited to the transmission signal, and a signal having a frequency characteristic equivalent to that of the transmission signal can be used.
  • the transmission signal is the signal w (t) shown in Equation 3
  • the signal u (t, T 0 ) and the signal U ( t) can be used as a reference signal.
  • the detection unit 116 determines whether or not there is a peak in each cross-correlation function calculated in step ST31. Specifically, the detection unit 116 reads each cross-correlation function calculated in step ST31 from the memory 121. Then, the detection unit 116 specifies, as a peak, the time at which the value of each cross-correlation function is higher than the surrounding value by a reference value or more. The detection unit 116 determines that there is a peak when there is a time specified as a peak, and determines that there is no peak when there is no time specified as a peak. If there is a peak, the detection unit 116 proceeds to step ST34, and if there is no peak, the process proceeds to step ST35.
  • the detection unit 116 calculates a cross-correlation function in step ST31, determines the presence of a peak, writes the determination result to the memory 121, and reads the determination result from the memory in step ST32 to determine whether a correlation peak exists. It may be determined.
  • the determination result is a peak position when a peak is present, and a flag indicating that no peak is present when no peak is present, that is, no object is detected. In this way, the usage amount of the memory 121 can be reduced.
  • T p is the Celsius temperature. Therefore, the detection unit 116 calculates the sound speed by substituting the air temperature indicated by the external environment information into the approximate expression. When the wind is blowing, the wind speed is added to or subtracted from the sound speed. Therefore, the detection unit 116 calculates the sound speed using the wind speed indicated by the external environment information.
  • the detection part 116 is good also considering a sound speed as a constant like 340 m / s.
  • the detecting unit 116 may measure the speed of sound V s by such sensor.
  • the detection unit 116 determines that the object 200 is detected around the moving body 100 because the peak exists in step ST32, and the relative distance d between the moving body 100 and the detected object 200 is detected. Is estimated. In addition, the detection unit 116 estimates the Doppler shift rate ⁇ . The detection unit 116 estimates the relative distance d and the Doppler shift rate ⁇ by determining how much the maximum peak position of the cross-correlation function between the received signal and the reference signal is shifted from the standard peak position. The detection unit 116 writes the estimated values of the relative distance d and the Doppler shift rate ⁇ in the memory 121.
  • a method for estimating the relative distance d will be described.
  • the signal w (t) shown in Equation 3 is used as a transmission signal and the signal U (t) shown in Equation 4 is used as a reference signal.
  • the transmission path until the transmission signal is received is as follows: acoustic signal output device 21 ⁇ object 200 (source of reflected wave) ⁇ acoustic signal input device 22. Therefore, the path length is d + d.
  • the signal expands and contracts when a Doppler shift occurs.
  • FIG. 9 shows a case where ⁇ > 1. Therefore, as shown in FIG. 10, the maximum peak position ty, U of the cross-correlation function between the received signal y (t) and the reference signal U (t) is the transmission signal w (t) and the reference signal U (t). as the maximum peak position t w, relative to the U of the cross-correlation function between, shifted by the sum of the minute amount and the Doppler shift of the time delay corresponding to the relative distance. Therefore, the shift amount ⁇ t U is expressed by Equation 5.
  • the maximum peak position ty, V of the cross-correlation function between the reception signal y (t) and the reference signal V (t) is the transmission signal w. Shift is performed in the same manner as the maximum peak position ty, U with reference to the maximum peak position tw, V of the cross-correlation function between (t) and the reference signal V (t).
  • the shift amount ⁇ t V is expressed by Equation 6.
  • the detection unit 116 estimates the relative distance d using Equation 8.
  • Equation 9 A method for estimating the Doppler shift rate will be described.
  • the signal w (t) shown in Equation 3 is used as a transmission signal and the signal U (t) and signal V (t) shown in Equation 4 are used as reference signals.
  • the peak shift caused by the Doppler shift has the same distance and the opposite direction, and the peak shift caused by the relative distance has the same distance and the same direction regardless of the reference signal.
  • the peak shift caused by factors other than the Doppler shift can be canceled by taking the difference between the respective peak shift amounts. Therefore, the distance between the maximum peak position ty, U and the maximum peak position ty, V is expressed by Equation 9.
  • Equation 9 the distance between the maximum peak position ty, U and the maximum peak position ty, V is expressed by Equation 9.
  • the detection unit 116 estimates the Doppler shift rate ⁇ using Equation 10.
  • the transmission signal may be a signal including the first signal and the second signal obtained by inverting the first signal.
  • the reference signal may be a signal including the first signal component and a signal including the second signal.
  • the Doppler shift or the peak shift caused by the time delay corresponding to the relative distance d can be canceled.
  • components other than the component included in the reference signal in the transmission signal are signals that do not hinder the cross-correlation peak detection.
  • the signal that does not interfere with the cross-correlation peak detection is, for example, a signal that is uncorrelated with each reference signal.
  • a signal obtained by separating two types of reference signals, the signal U (t) and the signal V (t) by a known different time around the origin of the time axis can be used as a transmission signal.
  • a signal including a signal other than the signal w (t) can also be used as a transmission signal.
  • step ST35 it is assumed that the detection unit 116 does not detect the object 200 around the moving body 100 because no peak exists in step ST32.
  • the detection unit 116 writes a flag indicating that the object 200 is not detected in the memory 121, or stores a special value when the object 200 is not detected as an estimated value of the relative distance d and the relative speed ⁇ v. 121 is written.
  • the detection unit 116 estimates the relative speed ⁇ v between the moving body 100 and the object 200 from the estimated value of the Doppler shift rate ⁇ estimated in step ST34.
  • the detection unit 116 writes the estimated value of the relative speed ⁇ v in the memory 121.
  • the detection unit 116 calculates the relative speed ⁇ v by using the speed v s transmitted by the vehicle signal generation unit 114 in step ST2 and the sound speed V s calculated in step ST33.
  • the relative velocity ⁇ v can be approximated as in Expression 13.
  • the velocity v s transmitted by the vehicle signal generation unit 114 at step ST2 the it is possible to estimate the relative velocity ⁇ v more accurately.
  • step ST38 when the object 200 is detected, the detection unit 116 uses the estimated value of the relative distance d estimated in step ST34 and the estimated value of the relative speed ⁇ v estimated in step ST36. Read from the memory 121. Then, the detection unit 116 outputs the estimated values of the read relative distance d and relative speed ⁇ v. On the other hand, when the object 200 is not detected, the detection unit 116 reads the flag written in the memory 121 in step ST35 or the estimated values of the relative distance d and the relative speed ⁇ v. Then, the detection unit 116 outputs the read flag or estimated values of the relative distance d and the relative speed ⁇ v.
  • the object detection apparatus 10 uses a signal configured by superimposing a plurality of waves having different frequencies as a transmission signal.
  • S / N ratio signal to noise ratio
  • the object 200 at a long distance can be detected.
  • the relative distance d and the relative speed ⁇ v between the moving body 100 and the object 200 can be estimated.
  • an ultrasonic sensor As an apparatus for detecting the object 200 using sound waves, an ultrasonic sensor is known and may be mounted on a moving object for the purpose of detecting an obstacle at a short distance.
  • the ultrasonic sensor transmits and receives a signal having a single frequency component such as 40 kHz. More precisely, the ultrasonic sensor transmits and receives a signal including a frequency component of several percent before and after the center frequency with a single frequency as the center frequency.
  • a signal that can be used as a transmission signal is a pulse signal with a single frequency or a signal (amplitude modulation signal, phase modulation signal, frequency modulation signal) whose amplitude, phase, frequency, etc. are modulated by a specific code.
  • a pulse signal for example, a method is used in which the time when the amplitude of the reception signal exceeds a certain threshold is regarded as the reception time, and the relative distance from the time and speed of sound required for transmission / reception to the obstacle is used. It is done. While this method does not require complicated signal processing, it has a drawback of being vulnerable to noise.
  • a signal having a different frequency, amplitude, phase, or the like assigned to a code pattern such as a modulated signal (M-sequence (maximum length sequence)) is used as a transmission signal.
  • M-sequence maximum length sequence
  • FIG. 11 shows a case where a frequency modulation signal is used as a transmission signal. While this method can improve the S / N ratio by correlation processing, the S / N ratio is improved according to the code length, so that the signal length becomes long to measure a long distance. There is. Furthermore, when at least one of the moving body 100 and the object 200 is moving, a frequency shift due to the Doppler effect (hereinafter referred to as Doppler shift) occurs, so that the frequency modulation signal is not suitable for correlation processing.
  • Doppler shift a frequency shift due to the Doppler effect
  • the S / N ratio can be improved as compared with the case of using a single frequency signal even if the signal length is the same. That is, the object 200 at a long distance can be detected while suppressing an increase in signal length. Further, the reception time can be obtained from the maximum peak position of the cross-correlation function, the relative distance d can be estimated, and the Doppler shift amount can also be estimated from the peak position deviation amount.
  • the object detection apparatus 10 uses a signal obtained by superimposing a plurality of waves whose frequencies increase according to a geometric sequence as a transmission signal. Thereby, the object 200 at a long distance can be detected with higher accuracy. In addition, the relative distance d and the relative speed ⁇ v between the moving body 100 and the object 200 can be estimated with higher accuracy.
  • the Doppler shift works in a multiplicative way. That is, all frequency components are increased or decreased at the same magnification. Therefore, an ideal received signal is obtained by using an attenuation rate ⁇ ( ⁇ 1) due to air, a Doppler shift rate ⁇ , a relative distance d between the moving body 100 and the object 200, and a sound velocity V s. ⁇ (t ⁇ 2d) / V s ).
  • the object 200 can be detected with high accuracy, and the relative distance d and the relative speed ⁇ v between the moving body 100 and the object 200 can be estimated with high accuracy.
  • the object detection apparatus 10 uses a signal obtained by superimposing a plurality of waves having different initial phases for each frequency as a transmission signal. Thereby, the object 200 at a long distance can be detected with higher accuracy. In addition, the relative distance d and the relative speed ⁇ v between the moving body 100 and the object 200 can be estimated with higher accuracy.
  • the object detection apparatus 10 uses a signal obtained by superimposing a plurality of waves having a frequency within either frequency band of a sound wave and a low-frequency ultrasonic wave as a transmission signal. Thereby, the object 200 at a long distance can be detected with higher accuracy. In addition, the relative distance d and the relative speed ⁇ v between the moving body 100 and the object 200 can be estimated with higher accuracy.
  • the object detection apparatus 10 can detect an object 200 at a long distance by suppressing attenuation of energy by using a sound wave in a frequency band lower than this as a transmission signal.
  • signals in the frequency band below 16 kHz are generally within the human audible range. Therefore, it is desirable not to use a frequency band of less than 16 kHz from the viewpoint of health and noise problems.
  • the object 200 can be detected not only within the range of 16 kHz to 40 kHz but also using a signal in a higher frequency band. Therefore, the object detection apparatus 10 uses sound waves or low frequency ultrasonic waves in the range of 16 kHz to 100 kHz.
  • the object detection apparatus 10 calculates the sound speed V s based on the external environment information acquired via the environment information acquisition unit 143. Thereby, the relative speed ⁇ v between the moving body 100 and the object 200 can be calculated with high accuracy.
  • the object detection apparatus 10 has many functions in order to increase the detection accuracy of the object 200 and to increase the estimation accuracy of the relative distance d and the relative speed ⁇ v between the moving body 100 and the object 200.
  • the functional components may be simplified although there is a possibility that the accuracy may be slightly reduced as compared with the first embodiment.
  • the first modification will be described with respect to differences from the first embodiment.
  • the object detection device 10 includes hardware including a processor 11, a storage device 12, and an audio interface 13.
  • the object detection apparatus 10 includes a time synchronization unit 111, a detection unit 116, and a reception unit 132 as functional components.
  • the reception unit 132 receives a reception signal including a reflected wave reflected by an object from the acoustic signal output device 21 mounted on the moving body 100 via the acoustic signal input device 22 mounted on the moving body 100. And accept.
  • the time synchronization unit 111 synchronizes the operations of the acoustic signal output device 21 and the acoustic signal input device 22, and enables time measurement until the sound wave emitted from the acoustic signal output device 21 is received by the acoustic signal input device 22. To do.
  • the detection unit 116 detects the object 200 based on the reception signal received by the reception unit 132 and estimates the relative distance d and the relative speed ⁇ v between the moving body 100 and the object 200.
  • object detection apparatus 10 may have some hardware and functions shown in FIG. 1 added to the configuration shown in FIG. 1 added to the configuration shown in FIG. 1
  • the functions of the time synchronization unit 111, the transmission signal generation unit 112, the reception signal generation unit 113, the vehicle signal generation unit 114, the environment signal generation unit 115, and the detection unit 116 are software.
  • the functions of these units may be realized by hardware. The second modification will be described with respect to differences from the first embodiment.
  • the object detection device 10 includes a processing circuit 15 instead of the processor 11 and the storage device 12.
  • the processing circuit 15 is a dedicated electronic circuit that realizes the functions of each unit of the object detection device 10 and the function of the storage device 12.
  • the processing circuit 15 is assumed to be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). Is done.
  • the function of each part may be realized by one processing circuit 15, or the function of each part may be realized by being distributed to a plurality of processing circuits 15.
  • ⁇ Modification 3> As a third modification, some functions of the time synchronization unit 111, the transmission signal generation unit 112, the reception signal generation unit 113, the vehicle signal generation unit 114, the environment signal generation unit 115, and the detection unit 116 are hard. It may be realized by hardware, and other functions may be realized by software. That is, some of the functions of the object detection device 10 may be realized by hardware, and other functions may be realized by software.
  • the processor 11, the storage device 12, the audio interface 13, the in-vehicle interface 14, and the processing circuit 15 are collectively referred to as “processing circuitries”. That is, the function of each part is realized by a processing circuit.
  • the acoustic signal output device 21 and the acoustic signal input device 22 are arranged at positions close to each other on the front side of the moving body 100 and are objects that are vehicles traveling in front of the moving body 100.
  • An example of detecting 200 has been described.
  • the present invention is not limited to this, and the acoustic signal output device 21 and the acoustic signal input device 22 are arranged at close positions on the rear side of the moving body 100 to detect the object 200 that is a vehicle traveling behind the moving body 100.
  • the acoustic signal output device 21 and the acoustic signal input device 22 may be arranged on both the front side and the rear side of the moving body 100 to detect the object 200 that is a vehicle traveling forward and backward.
  • the object 200 is not limited to a vehicle, and may be other types such as a pedestrian and a building-like structure whose moving speed is equal to or lower than the sound speed.
  • the acoustic signal input device 22 Even if the acoustic signal output device 21 and the acoustic signal input device 22 are not close to each other, the acoustic signal input device 22 generates a reflected wave generated by reflecting the output signal radiated from the acoustic signal output device 21 to the object 200. It only needs to be arranged at a position where it can be collected. In the situation shown in FIG. 2, one acoustic signal input device 22 is disposed on the front side of the moving body 100. However, the number of acoustic signal input devices 22 is not limited to one and may be two or more.
  • the detection unit 116 synthesizes estimation results for reception signals collected by the acoustic signal input devices 22.
  • the estimation results is to take the average of the respective estimated values as a specific example. Thereby, estimation accuracy can be improved.
  • Embodiment 2 When the object 200 is positioned on the oblique side of the moving body 100, the relative velocity ⁇ v estimated from the received signal from one acoustic signal input device 22 becomes an oblique component of the relative velocity ⁇ v of the object 200.
  • the second embodiment is different from the first embodiment in that the object 200 is detected using at least two acoustic signal input devices 22. Thus, in the second embodiment, it is possible to estimate the relative speed ⁇ v even when the object 200 is located obliquely to the moving body 100. In the second embodiment, this different point will be described.
  • the object detection device 10 includes at least two acoustic signal input devices 22.
  • the object detection device 10 includes an acoustic signal input device 22A and an acoustic signal input device 22B.
  • the object detection device 10 includes a reception unit 132 corresponding to each acoustic signal input device 22.
  • the object detection device 10 includes a reception unit 132A corresponding to the acoustic signal input device 22A and a reception unit 132B corresponding to the acoustic signal input device 22B.
  • the operation of the object detection apparatus 10 according to the second embodiment will be described with reference to FIGS. 15 to 17.
  • the operation of the object detection apparatus 10 according to the second embodiment corresponds to the object detection method according to the second embodiment.
  • the operation of the object detection apparatus 10 according to the second embodiment corresponds to the processing of the object detection program according to the second embodiment.
  • the object 200 is a vehicle that runs on the left side of the moving body 100.
  • FIG. 15 shows a moving body 100 in which an acoustic signal output device 21 and two acoustic signal input devices 22 are installed on the left side, and an object 200.
  • the acoustic signal input device 22 ⁇ / b> A is disposed at a position close to the acoustic signal output device 21, and the acoustic signal input device 22 ⁇ / b> B is disposed at a position away from the acoustic signal output device 21.
  • an acoustic signal output device 21 and an audio signal input device 22A, between the acoustic signal input device 22B is the distance d 12.
  • the shortest path length and the shortest path length from the acoustic signal output device 21 to the object 200, the source of the reflected wave to the acoustic signal input device 22A are both becomes substantially equal distance d 1.
  • the generation source of the reflected wave is a position where the transmission signal output from the acoustic signal output device 21 reaches the object 200 in the shortest time.
  • the shortest path length to the audio signal input device 22B from the source of the reflected wave is a distance d 2.
  • the angles formed by the acoustic signal output device 21 and the acoustic signal input device 22A and the reflected wave generation source are almost equal to ⁇ 1 .
  • step ST1 Since the overall operation and the detailed operation in step ST1 are the same as those in the first embodiment, description thereof is omitted.
  • step ST2 ** Detailed operation of step ST2 ** With reference to FIG. 16, the operation in step ST2 according to the second embodiment will be described in detail.
  • the process of step ST22 is the same as the process of step ST22 of FIG.
  • the reception unit 132A stores the reception signal 1 for the latest T seconds in the memory 121 among the reception signals 1 that are always collected by the acoustic signal input device 22A.
  • the reception unit 132B stores the reception signal 2 for the latest T seconds in the memory 121 among the reception signals 2 that are always collected by the acoustic signal input device 22B.
  • the reception signal generation unit 113 reads the reception signals 1 and 2 for the latest T seconds stored in the memory 121, and transmits the read reception signals 1 and 2 to the detection unit 116.
  • the vehicle signal generation unit 114 acquires the speed of the moving body 100 via the vehicle information acquisition unit 142 and transmits it to the detection unit 116.
  • the environment signal generation unit 115 acquires external environment information via the environment information acquisition unit 143 and transmits the external environment information to the detection unit 116.
  • step ST3 ** Detailed operation of step ST3 ** With reference to FIG. 17, the operation in step ST3 according to the second embodiment will be described in detail.
  • the processing from step ST32 to step ST33 is the same as the processing from step ST32 to step ST33 in FIG.
  • the process of step ST35 is the same as the process of step ST35 of FIG.
  • the detection unit 116 calculates a cross-correlation function for each of the reception signals 1 and 2 transmitted by the reception signal generation unit 113 in step ST2 and each of at least two types of reference signals 1 and 2. To do.
  • the detection unit 116 reads the two types of reference signals 1 and 2 from the memory 121 and calculates a cross-correlation function for each of the received signals 1 and 2 and each of the reference signals 1 and 2. The detection unit 116 writes the calculated cross-correlation functions in the memory 121.
  • the detection unit 116 estimates the relative distance d between the moving body 100 and the detected object 200 and the Doppler shift rate ⁇ .
  • the detection unit 116 writes the estimated values of the relative distance d and the Doppler shift rate ⁇ in the memory 121.
  • the detection unit 116 calculates the average peak shift amount according to Equation 7 for each of the received signals 1 and 2 by the same process as the process of step ST34 in FIG. Using the average peak shift amount ⁇ t 1 ⁇ calculated for the received signal 1 and the average peak shift amount ⁇ t 2 ⁇ calculated for the received signal 2, the detection unit 116 calculates the relative distance d 1 , to estimate the d 2.
  • the relative distance d 1 the transmission path to the transmission signal is received, the audio signal output device 21 ⁇ the object 200 (the source of the reflected wave) ⁇ acoustic signal input device 22A. Therefore, the path length is d 1 + d 1 .
  • the estimated value of the relative distance d 1 is calculated by 1/2 a value obtained by converting the time required for transmission and reception distance.
  • the path length is d. a 1 + d 2. Therefore, estimates of the relative distance d 2 is calculated by subtracting the relative distance d 1 from the value obtained by converting the time required for transmission and reception distance.
  • the detection unit 116 estimates the Doppler shift rate ⁇ according to Equation 10 for each of the received signals 1 and 2 by the same process as the process of step ST34 of FIG. In the situation shown in FIG. 15, an estimate of the Doppler shift rate [rho calculated from the received signals collected by the audio signal input unit 22A and [rho 1, were calculated from the received signals collected by the audio signal input device 22B Doppler the estimated value of the shift rate ⁇ and ⁇ 2.
  • detector 116 In the second calculation process in step ST36B, detector 116, along with the estimates from the estimated value [rho 1 of the Doppler shift rate estimated [rho relative speed Delta] v 1 in step ST34B, estimating the relative velocity Delta] v 2 from the estimated value [rho 2 To do.
  • the estimated values ⁇ 1 and ⁇ 2 are each expressed by Expression 16.
  • the values of cos ⁇ 1 and cos ⁇ 2 can be calculated based on the principle of triangulation from the triangles of three sides d 12 , d 1 , and d 2 in FIG.
  • the distance d 12 because of the distance between the acoustic signal input unit 22A and the acoustic signal input unit 22B, a known value.
  • the relative distance d 1 and the relative distance d 2 can be used an estimate of the calculated relative distance in step ST34B.
  • the detection unit 116 calculates cos ⁇ 1 and cos ⁇ 2 by Expression 17 from the values of the distance d 12 , the relative distance d 1, and the relative distance d 2 .
  • the detection unit 116 substitutes the velocity v s of the moving body 100, the sound velocity V s, and the calculated values of cos ⁇ 1 and cos ⁇ 2 in the respective equations of the estimated values ⁇ 1 and ⁇ 2 of Equation 16, and the velocity Solve for vo .
  • the detection unit 116 estimates the relative speed ⁇ v by integrating the estimated values ⁇ v 1 and ⁇ v 2 corresponding to the acoustic signal input devices 22A and 22B estimated in step ST36B. Specifically, in Embodiment 2, the detection unit 116 estimates the relative speed ⁇ v by calculating the average of the estimated values ⁇ v 1 and ⁇ v 2 . The detection unit 116 writes the estimated relative speed ⁇ v in the memory 121. Note that the detection unit 116 performs a method of setting the mode of the distribution of the estimated values ⁇ v 1 and ⁇ v 2 as a relative velocity ⁇ v, or performs an outlier determination process, and calculates the relative velocity ⁇ v using only an estimation result that is not an outlier. The relative speed ⁇ v may be calculated by another method such as.
  • step ST38B when the object 200 is detected, the detection unit 116 calculates the estimated values of the relative distances d 1 and d 2 estimated in step ST34B and the relative velocity ⁇ v estimated in step ST37B. The estimated value is read from the memory 121. Then, the detection unit 116 outputs the estimated values of the read relative distances d 1 and d 2 and the relative speed ⁇ v. On the other hand, when the object 200 is not detected, the detection unit 116 reads the flag written in the memory 121 in step ST35 or the estimated values of the relative distances d 1 and d 2 and the relative speed ⁇ v. Then, the detecting unit 116 outputs the read flag or the estimated values of the relative distances d 1 and d 2 and the relative speed ⁇ v.
  • the detection unit 116 may calculate the relative position coordinates of the object 200 from the estimated relative distance values d 1 and d 2 and the known distance d 12 according to the principle of triangulation and output the calculated coordinates. .
  • the object detection apparatus 10 applies the principle of triangulation to estimation results obtained from a plurality of received signals. Thereby, even when the object 200 exists on the side of the moving body 100 and the transmission path of the transmission signal has an angle, the relative distance d and the relative speed ⁇ v can be estimated.
  • the relative distance d and the relative speed can be obtained by arranging one acoustic signal input device 22 on the side of the moving body 100 as in the first embodiment. ⁇ v can be estimated.
  • two acoustic signal input devices 22 ⁇ / b> A and 22 ⁇ / b> B are arranged on the left side of the moving body 100. Thereby, the object 200 existing on the left side of the moving body 100 is detected.
  • two acoustic signal input devices 22 may be arranged on the right side of the moving body 100 to detect the object 200 present on the right side of the moving body 100.
  • two acoustic signal input devices 22 may be disposed on both the left and right sides of the moving body 100 to detect the object 200 present on both the left and right sides of the moving body 100.
  • ⁇ Modification 6> In the second embodiment, two acoustic signal input devices 22 are arranged. However, as a sixth modification, three or more acoustic signal input devices 22 may be arranged. When three or more acoustic signal input devices 22 are arranged, the detection unit 116 estimates the relative distance d and the Doppler shift rate ⁇ for each acoustic signal input device 22 in step ST34B. Further, in step ST36B to step ST37B, the detection unit 116 calculates the relative speed ⁇ v corresponding to each acoustic signal input device 22, and integrates the calculated relative speed ⁇ v. By using three or more acoustic signal input devices 22, triangulation is performed a plurality of times, and the estimation accuracy between the relative velocity ⁇ v and the relative position coordinates of the object 200 can be increased.
  • Embodiment 3 At a distance where the reflected wave reflected by the object 200 and the direct sound transmitted from the acoustic signal output device 21 and not reflected by the object 200 overlap, the cross-correlation function does not peak and the object 200 may not be detected.
  • the third embodiment is different from the second embodiment in that the object 200 is detected using at least two acoustic signal output devices 21.
  • the cross-correlation function has a peak even at a distance where the reflected wave and the direct sound overlap, and the object 200 can be detected with high accuracy. In the third embodiment, this different point will be described.
  • the object detection device 10 includes at least two acoustic signal output devices 21.
  • the object detection device 10 includes an acoustic signal output device 21A and an acoustic signal output device 21B.
  • the object detection device 10 includes a radiation unit 131 corresponding to each acoustic signal output device 21.
  • the object detection device 10 includes a radiation unit 131A corresponding to the acoustic signal output device 21A and a radiation unit 131B corresponding to the acoustic signal output device 21B.
  • the operation of the object detection apparatus 10 according to the third embodiment will be described with reference to FIGS.
  • the operation of the object detection apparatus 10 according to the third embodiment corresponds to the object detection method according to the third embodiment.
  • the operation of the object detection apparatus 10 according to the third embodiment corresponds to the processing of the object detection program according to the third embodiment.
  • FIG. 19 shows a moving body 100 in which two acoustic signal output devices 21 and two acoustic signal input devices 22 are installed on the left side, and an object 200.
  • the acoustic signal input device 22A is disposed at a position close to the acoustic signal output device 21A
  • the acoustic signal input device 22B is disposed at a position close to the acoustic signal output device 21B.
  • the audio signal output device 21B and the audio signal input unit 22B is the distance d 12. Further, the shortest path length from the acoustic signal output device 21A to the object 200 and the shortest path length from the reflected wave generation source of the transmission signal output from the acoustic signal output device 21A to the acoustic signal input device 22A are almost all.
  • the distance d A1 is equal.
  • the shortest path length from the acoustic signal output device 21B to the object 200 and the shortest path length from the reflected wave generation source of the transmission signal output from the acoustic signal output device 21B to the acoustic signal input device 22B are almost all.
  • the distance is equal to d B1 .
  • the shortest path length from the reflected wave generation source to the acoustic signal input device 22A is the distance dB2 .
  • the angles formed by the acoustic signal output device 21A and the acoustic signal input device 22A and the generation source of the reflected wave of the transmission signal output from the acoustic signal output device 21A are substantially equal to ⁇ A1 .
  • the angle formed between the acoustic signal input device 22B and the generation source of the reflected wave is ⁇ A2 .
  • the angles formed by the acoustic signal output device 21B and the acoustic signal input device 22B and the generation source of the reflected wave of the transmission signal output from the acoustic signal output device 21B are substantially equal to ⁇ B1 .
  • the angle formed by the acoustic signal input device 22A and the source of the reflected wave is ⁇ B2 .
  • the moving body 100 travels at a speed v s
  • the object 200 travels at a speed v o.
  • step ST2 Since the overall operation and the detailed operation in step ST2 are the same as those in the second embodiment, description thereof is omitted.
  • step ST1 ** Detailed operation of step ST1 ** Referring to FIG. 20, the operation of step ST1 according to Embodiment 3 will be described in detail.
  • the process of step ST11 is the same as the process of step ST11 of FIG.
  • the transmission signal generation unit 112 reads a signal waveform stored in advance in the memory 121, and transmits the read signal waveform to the radiation units 131A and 131B as a transmission signal.
  • the radiating units 131 ⁇ / b> A and 131 ⁇ / b> B radiate the transmission signal as an acoustic signal via the acoustic signal output device 21.
  • the transmission signal radiated from the radiating unit 131A is referred to as a transmission signal A
  • the transmission signal radiated from the radiating unit 131B is referred to as a transmission signal B.
  • the transmission signals A and B transmitted from the acoustic signal output devices 21A and 21B are different signals. Specifically, the transmission signals A and B are uncorrelated with each other. That is, no peak appears in the cross-correlation function between the transmission signals A and B.
  • step ST3 ** Detailed operation of step ST3 ** With reference to FIG. 21, the operation of step ST3 according to Embodiment 3 will be described in detail.
  • the processing from step ST32 to step ST33 is the same as the processing from step ST32 to step ST33 in FIG.
  • the process of step ST35 is the same as the process of step ST35 of FIG.
  • the detection unit 116 performs the reception signals 1 and 2 transmitted by the reception signal generation unit 113 in step ST2 and at least four types of reference signals A1, A2, B1, and B2, respectively. Calculate the cross-correlation function.
  • the reference signals A1 and A2 are two types of reference signals corresponding to the transmission signal A.
  • the reference signals B1 and B2 are two types of reference signals corresponding to the transmission signal B.
  • the detection unit 116 reads four types of reference signals A1, A2, B1, and B2 from the memory 121, and calculates cross-correlation functions for the received signals 1 and 2 and the reference signals A1, A2, B1, and B2, respectively. calculate.
  • both the received signal 1 and the received signal 2 are a mixture of a reflected wave corresponding to the transmission signal A and a reflected wave corresponding to the transmission signal B.
  • calculating the cross-correlation function with the reference signals A1 and A2 for the reception signals 1 and 2 respectively corresponds to the reflected wave of the transmission signal A. Only the correlation peak stands.
  • the cross-correlation function between the received signals 1 and 2 and the reference signals B1 and B2 is calculated, only a correlation peak corresponding to the reflected wave of the transmission signal B is generated.
  • the detection unit 116 estimates the relative distance d and the Doppler shift rate ⁇ for each of the transmission signals A and B by the same process as in step ST34B in FIG.
  • the detection unit 116 writes the estimated values of the relative distance d and the Doppler shift rate ⁇ in the memory 121.
  • the estimated values of the relative distance d from each acoustic signal input device 22 to the object 200 corresponding to the transmission signal A are respectively estimated values d A1 and d A2
  • the estimated values of the Doppler shift rate ⁇ are respectively estimated values ⁇ . A1, and ⁇ A2.
  • the estimated values of the relative distance d from each acoustic signal input device 22 to the object 200 corresponding to the transmission signal B are respectively estimated values d B1 and d B2, and the estimated values of the Doppler shift rate ⁇ are respectively estimated values ⁇ B1. , ⁇ B2 .
  • the detection unit 116 estimates the relative speed ⁇ v A1 from the estimated value ⁇ A1 of the Doppler shift rate ⁇ estimated in step ST34C by the same process as in step ST36B in FIG. estimating the relative velocity Delta] v A2 from the value [rho A2, it estimates the relative velocity Delta] v B1 from the estimated value [rho B1, estimates the relative velocity Delta] v B2 from the estimated value [rho B2.
  • Equation 18 A method for estimating the relative speed ⁇ v will be described.
  • the estimated values ⁇ A1 , ⁇ A2 , ⁇ B1 , and ⁇ B2 are each expressed by Equation 18.
  • Detector 116 similar to the values of cos [theta] 1 and cos [theta] 2 in step ST36B shown in FIG. 17, based on the principle of trilateration to compute the number 19 the value of cos [theta] A1 and cos [theta] A2 and cos [theta] B1 and cos [theta] B2 .
  • the detecting unit 116 calculates the velocity v s of the moving body 100, the sound velocity V s, and the calculated values of cos ⁇ A1 , cos ⁇ A2 , cos ⁇ B1, and cos ⁇ B2 from the estimated values ⁇ A1 , ⁇ A2 , ⁇ of Equation 18.
  • B1, ⁇ B2 is assigned to each of the equation, solving for velocity v o.
  • detector 116, the transmission signal A, B and the acoustic signal input device 22A, the relative speed corresponding to each combination of the 22B ⁇ v v o -v s estimate ⁇ v A1, ⁇ v A2, ⁇ v B1 , ⁇ v Get B2 .
  • the detection unit 116 combines the estimated values d A1 and d B1 estimated in step ST34C to estimate the relative distance d 1 , and the estimated values d A2 and d B2 to estimate the distance d 2.
  • the detection unit 116 estimates the relative speed ⁇ v by combining the estimated values ⁇ v A1 , ⁇ v A2 , ⁇ v B1 , ⁇ v B2 estimated in step ST36C.
  • the detecting unit 116 calculates the average of the estimated values d A1 and d B2 to estimate the relative distance d 1 and calculates the average of the estimated values d A2 and d B2. by estimates a relative distance d 2.
  • the detection unit 116 estimates the relative velocity ⁇ v by calculating the average of the estimated values ⁇ v A1 , ⁇ v A2 , ⁇ v B1 , ⁇ v B2 .
  • the detection unit 116 writes the estimated relative speed ⁇ v in the memory 121.
  • the detection unit 116 performs a method of setting the mode of the distribution of the estimated values ⁇ v A1 , ⁇ v A2 , ⁇ v B1 , ⁇ v B2 as a relative velocity ⁇ v, or performs an outlier determination process, and uses only an estimation result that is not an outlier.
  • the relative speed ⁇ v may be calculated by another method such as calculating the relative speed ⁇ v.
  • step ST38C when the object 200 is detected, the detection unit 116 reads the estimated values of the relative distances d 1 and d 2 and the estimated value of the relative velocity ⁇ v estimated in step ST37C from the memory 121. . Then, the detection unit 116 outputs the estimated values of the read relative distances d 1 and d 2 and the relative speed ⁇ v. On the other hand, when the object 200 is not detected, the detection unit 116 reads the flag written in the memory 121 in step ST35 or the estimated values of the relative distances d 1 and d 2 and the relative speed ⁇ v. Then, the detecting unit 116 outputs the read flag or the estimated values of the relative distances d 1 and d 2 and the relative speed ⁇ v.
  • the detection unit 116 may calculate and output the relative position coordinates of the object 200 from the estimated relative distance values d 1 and d 2 and the known distance d 12 according to the principle of triangulation. .
  • the object detection apparatus 10 detects the object 200 using a plurality of transmission signals. Thereby, even in the distance where the reflected wave and the direct sound overlap, the cross-correlation function has a peak, and the object 200 can be detected with high accuracy.
  • two acoustic signal output devices 21 ⁇ / b> A and 21 ⁇ / b> B and two acoustic signal input devices 22 ⁇ / b> A and 22 ⁇ / b> B are arranged on the left side of the moving body 100. Thereby, the object 200 existing on the left side of the moving body 100 is detected.
  • two acoustic signal output devices 21 and two acoustic signal input devices 22 may be arranged on the right side of the moving body 100 to detect the object 200 present on the right side of the moving body 100.
  • two acoustic signal output devices 21 and two acoustic signal input devices 22 are arranged on the left and right sides of the moving body 100 to detect the object 200 existing on both the left and right sides of the moving body 100. Good.
  • ⁇ Modification 8> In the third embodiment, two acoustic signal output devices 21 are arranged. However, as a modified example 8, three or more acoustic signal output devices 21 may be arranged.
  • the detection unit 116 estimates the relative distance d and the Doppler shift rate ⁇ for each acoustic signal output device 21 in step ST34C.
  • the detection unit 116 calculates the relative speed ⁇ v corresponding to each acoustic signal output device 21.
  • step ST37C the detection unit 116 combines the calculated relative distance d and relative speed ⁇ v.
  • ⁇ Modification 9> In the third embodiment, two acoustic signal output devices 21 that radiate different transmission signals are arranged. However, as a ninth modification, a transmission signal obtained by superimposing uncorrelated signals from one acoustic signal output device 21 may be transmitted. As a result, as in the third embodiment, the cross-correlation function has a peak even at the distance where the reflected wave and the direct sound overlap, and the object 200 can be detected with high accuracy. Note that the degree of decorrelation does not necessarily have to be completely uncorrelated, as long as it satisfies the detection accuracy or measurement performance required for the object detection apparatus 10.
  • Embodiment 4 FIG.
  • the object 200 existing around the moving body 100 is detected.
  • the fourth embodiment is different from the first to third embodiments in that the moving body 100 is controlled based on the detected result. In the fourth embodiment, this different point will be described. In the fourth embodiment, a case where a function is added to the first embodiment will be described. However, it is possible to add functions to the second and third embodiments.
  • the in-vehicle interface 14 is connected to the vehicle control ECU 25.
  • the vehicle control ECU 25 is a device that controls control devices such as a brake, an accelerator, and a steering wheel.
  • the object detection apparatus 10 includes a control unit 117 as a functional component.
  • the function of the control unit 117 is realized by software, similar to the detection unit 116 and the like.
  • the operation of the object detection apparatus 10 according to the fourth embodiment corresponds to the object detection method according to the fourth embodiment.
  • the operation of the object detection apparatus 10 according to the fourth embodiment corresponds to the processing of the object detection program according to the fourth embodiment.
  • the object detection device 10 detects the object 200 existing around the moving body 100 and estimates the relative distance d and the relative speed ⁇ v by the method described in the first embodiment.
  • step ST42 when the object 200 is detected in step ST41, the control unit 117 sends a control signal for controlling the moving body 100 based on the output relative distance d and relative speed ⁇ v to the in-vehicle interface 14. To the vehicle control ECU 25. Thereby, the control unit 117 controls the operation of the moving body 100.
  • the control unit 117 transmits a control signal for controlling the brake to the vehicle control ECU 25.
  • the brake is controlled, the moving body 100 is decelerated, and the moving body 100 is prevented from colliding with the object 200.
  • the object 200 in the lateral direction is detected, and if there is no object 200 at the planned destination location, the steering wheel is controlled so that the lane is changed. Control the handle etc. so that it does not change. This prevents the object 200 from colliding with the lane change.
  • the functions of the respective units of the object detection device 10 are realized by software.
  • the function of each unit of the object detection device 10 may be realized by hardware.
  • the object detection device 10 may have some functions realized by hardware and other functions realized by software.
  • the first embodiment has described that the object 200 existing in the front-rear direction of the moving body 100 is detected.
  • the detection of the object 200 that exists in the left-right direction of the moving body 100 has been described. These may be combined so that the object 200 existing in the front-rear and left-right directions of the moving body 100 can be detected.
  • the acoustic signal output device 21 and the acoustic signal input device 22 may be arranged on the bottom side of the moving body 100 to detect the object 200 present on the road surface on which the moving body 100 travels. Further, the acoustic signal output device 21 and the acoustic signal input device 22 may be arranged on the upper side of the moving body 100 to detect the object 200 existing on the upper side of the moving body 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

An object detection apparatus (10) is mounted on a mobile body (100). A radiation unit (131) radiates an acoustic signal generated through superposition of a plurality of waves different in frequency by an acoustic signal output apparatus (21) mounted on the mobile body (100). A reception unit (132) receives a reflection wave signal generated as a result of the acoustic signal, which has been radiated from the radiation unit (131) mounted on the mobile body (100), being reflected on an object. A detection unit (116) detects the object present around the mobile body (100) by calculating a correlation value between a reference signal and a reception signal, the reception signal being the reflection wave signal received by the reception unit (132).

Description

物体検出装置、物体検出方法及び物体検出プログラムObject detection apparatus, object detection method, and object detection program
 この発明は、移動体の周囲に存在する物体を検出する技術に関する。 This invention relates to a technique for detecting an object existing around a moving body.
 移動体の周囲に存在する物体を検出する技術として、例えば車両の周囲に存在する周辺車両を検出する技術がある。移動体の周囲にある物体を検出することにより、検出された物体との衝突を避けるように移動体を制御するといったことが可能になる。 As a technique for detecting an object existing around a moving body, for example, there is a technique for detecting surrounding vehicles existing around the vehicle. By detecting an object around the moving body, it is possible to control the moving body so as to avoid a collision with the detected object.
 特許文献1には、超音波センサを用いて物体を検出することが記載されている。 Patent Document 1 describes that an object is detected using an ultrasonic sensor.
特表2013-518333号公報Special table 2013-518333 gazette
 超音波センサを用いる場合のように、音響信号を用いて物体を検出する場合、移動体と物体との少なくともいずれかが移動していると、ドップラーシフトと呼ばれる周波数偏移が生じ、物体の検出精度が落ちてしまう。
 この発明は、ドップラーシフトが生じる場合にも、音響信号を用いて精度よく物体を検出可能とすることを目的とする。
When detecting an object using an acoustic signal, such as when using an ultrasonic sensor, if at least one of the moving object and the object is moving, a frequency shift called a Doppler shift occurs, and the object is detected. The accuracy will drop.
An object of the present invention is to make it possible to accurately detect an object using an acoustic signal even when a Doppler shift occurs.
 この発明に係る物体検出装置は、
 周波数の異なる複数の波の重ね合わせで構成される音響信号であって移動体から放射された音響信号が物体で反射することによって生じる反射波の信号を受け付ける受付部と、
 前記受付部によって受け付けられた前記反射波の信号を受信信号として、前記受信信号と参照信号との相関値を計算することにより、前記物体を検出する検出部と
を備える。
The object detection device according to the present invention is:
A reception unit that receives a reflected wave signal generated by reflecting an acoustic signal radiated from a moving object, which is an acoustic signal composed of a plurality of waves having different frequencies,
And a detection unit that detects the object by calculating a correlation value between the reception signal and a reference signal using the reflected wave signal received by the reception unit as a reception signal.
 この発明では、周波数の異なる複数の波の重ね合わせで構成される音響信号を用いて物体を検出する。これにより、ドップラーシフトが生じた場合であっても精度よく物体を検出可能である。 In the present invention, an object is detected using an acoustic signal formed by superposing a plurality of waves having different frequencies. Thereby, even if a Doppler shift occurs, an object can be detected with high accuracy.
実施の形態1に係る物体検出装置10が移動体に搭載された場合の構成図。The block diagram when the object detection apparatus 10 which concerns on Embodiment 1 is mounted in a mobile body. 実施の形態1に係る移動体100と、移動体100の周囲に存在する物体200との状況の説明図。FIG. 3 is an explanatory diagram of a situation between the moving body 100 according to the first embodiment and the object 200 existing around the moving body 100. 実施の形態1に係る物体検出装置10の全体的な動作を示すフローチャート。3 is a flowchart showing an overall operation of the object detection apparatus 10 according to the first embodiment. 実施の形態1に係るステップST1の動作を示すフローチャート。5 is a flowchart showing the operation of step ST1 according to the first embodiment. 実施の形態1に係る送信信号を生成方法の説明図。Explanatory drawing of the transmission signal generation method which concerns on Embodiment 1. FIG. 実施の形態1に係る送信信号を生成方法の説明図。Explanatory drawing of the transmission signal generation method which concerns on Embodiment 1. FIG. 実施の形態1に係るステップST2の動作を示すフローチャート。6 is a flowchart showing the operation of step ST2 according to the first embodiment. 実施の形態1に係るステップST3の動作を示すフローチャート。6 is a flowchart showing the operation of step ST3 according to the first embodiment. 実施の形態1に係る相対距離d及びドップラーシフト量の説明図。Explanatory drawing of relative distance d and Doppler shift amount which concerns on Embodiment 1. FIG. 実施の形態1に係る相対距離d及びドップラーシフト量の説明図。Explanatory drawing of relative distance d and Doppler shift amount which concerns on Embodiment 1. FIG. 実施の形態1に係る相互相関関数の説明図。Explanatory drawing of the cross correlation function which concerns on Embodiment 1. FIG. 変形例1に係る物体検出装置10の構成図。The block diagram of the object detection apparatus 10 which concerns on the modification 1. FIG. 変形例2に係る物体検出装置10の構成図。The block diagram of the object detection apparatus 10 which concerns on the modification 2. FIG. 実施の形態2に係る物体検出装置10の構成図。FIG. 3 is a configuration diagram of an object detection device 10 according to a second embodiment. 実施の形態2に係る移動体100と、移動体100の周囲に存在する物体200との状況の説明図。Explanatory drawing of the condition of the mobile body 100 which concerns on Embodiment 2, and the object 200 which exists around the mobile body 100. FIG. 実施の形態2に係るステップST2の動作を示すフローチャート。10 is a flowchart showing the operation of step ST2 according to the second embodiment. 実施の形態2に係るステップST3の動作を示すフローチャート。10 is a flowchart showing the operation of step ST3 according to the second embodiment. 実施の形態3に係る物体検出装置10の構成図。FIG. 6 is a configuration diagram of an object detection device 10 according to a third embodiment. 実施の形態3に係る移動体100と、移動体100の周囲に存在する物体200との状況の説明図。Explanatory drawing of the condition of the mobile body 100 which concerns on Embodiment 3, and the object 200 which exists around the mobile body 100. FIG. 実施の形態3に係るステップST1の動作を示すフローチャート。10 is a flowchart showing the operation of step ST1 according to the third embodiment. 実施の形態3に係るステップST3の動作を示すフローチャート。10 is a flowchart showing the operation of step ST3 according to the third embodiment. 実施の形態4に係る物体検出装置10の構成図。FIG. 6 is a configuration diagram of an object detection apparatus 10 according to a fourth embodiment. 実施の形態4に係る物体検出装置10の全体的な動作を示すフローチャート。10 is a flowchart showing an overall operation of the object detection apparatus 10 according to the fourth embodiment.
 実施の形態1.
 ***構成の説明***
 図1を参照して、実施の形態1に係る物体検出装置10が移動体に搭載された場合の例を説明する。
 物体検出装置10は、移動体100に搭載されるコンピュータである。実施の形態1では、移動体100は車両であるものとして説明する。しかし、移動体100は、船といった他の種類であってもよい。また、物体検出装置10の搭載の実装形態としては、移動体100または図示した他の構成要素と、一体化してまたは分離不可能な形態で実装しても、取り外し可能または分離可能な形態で実装してもよい。
 物体検出装置10は、プロセッサ11と、記憶装置12と、オーディオインタフェース13と、車載インタフェース14とのハードウェアを備える。プロセッサ11は、システムバスを介して他のハードウェアと接続され、これら他のハードウェアを制御する。
Embodiment 1 FIG.
*** Explanation of configuration ***
With reference to FIG. 1, an example in which the object detection apparatus 10 according to Embodiment 1 is mounted on a moving body will be described.
The object detection device 10 is a computer mounted on the moving body 100. In the first embodiment, it is assumed that the moving body 100 is a vehicle. However, the moving body 100 may be another type such as a ship. In addition, as a mounting form for mounting the object detection device 10, it is mounted in a removable or separable form even if it is integrated with the moving body 100 or other illustrated components in a form that is integrated or inseparable. May be.
The object detection device 10 includes hardware including a processor 11, a storage device 12, an audio interface 13, and an in-vehicle interface 14. The processor 11 is connected to other hardware via the system bus and controls these other hardware.
 プロセッサ11は、プロセッシングを行うIC(Integrated Circuit)である。プロセッサ11は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。 The processor 11 is an IC (Integrated Circuit) that performs processing. Specific examples of the processor 11 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
 記憶装置12は、メモリ121と、ストレージ122とを備える。メモリ121は、具体例としては、RAM(Random Access Memory)である。ストレージ122は、具体例としては、HDD(Hard Disk Drive)である。また、ストレージ122は、SD(Secure Digital)メモリカード、CF(CompactFlash)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬記憶媒体であってもよい。 The storage device 12 includes a memory 121 and a storage 122. The memory 121 is, for example, a RAM (Random Access Memory). The storage 122 is an HDD (Hard Disk Drive) as a specific example. The storage 122 may be a portable storage medium such as an SD (Secure Digital) memory card, a CF (CompactFlash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD.
 オーディオインタフェース13は、移動体100に搭載された音響信号出力装置21及び音響信号入力装置22をオーディオバスを介してシステムバスに接続するための装置である。オーディオインタフェース13は、具体例としては、USB(Universal Serial Bus)、IEEE1394、HDMI(登録商標、High-Definition Multimedia Interface)の端子である。
 音響信号出力装置21は、音響信号を出力する装置である。音響信号出力装置21は、具体例としては、D/A(デジタル/アナログ)変換器と、信号増幅器と、放射装置とを備える装置である。D/A変換器は、オーディオバスを介してオーディオインタフェース13から送信された送信信号波形情報を含むデジタル信号を、電気信号であるアナログ信号に変換する装置である。信号増幅器は、D/A変換器によってアナログ信号に変換された送信信号を増幅する装置である。放射装置は、信号増幅器で増幅されたアナログ信号である送信信号を、音響信号として放射する装置である。放射装置は、具体例としてはスピーカである。なお、放射装置は、スピーカではなく、周波数のピークが複数存在するアナログ信号を放射できる装置であればよく、例えば、共振周波数が異なる超音波センサを複数個集合させた装置でもよい。
 音響信号入力装置22は、音響信号出力装置21から放射された音響信号が物体で反射した反射波を含む音響信号を収集する装置である。音響信号入力装置22は、具体例としては、収集装置と、信号増幅器と、A/D(アナログ/デジタル)変換器とを備える装置である。収集装置は、装置外部からの音響信号を、電気信号であるアナログ信号に変換して収集する装置である。信号増幅器は、収集装置で収集されたアナログ信号を増幅する装置である。A/D変換器は、信号増幅器で増幅されたアナログ信号を、受信信号波形情報を含むデジタル信号に変換して、オーディオバスを介してオーディオインタフェース13に送信する装置である。収集装置は、具体例としてはマイクロホンである。なお、収集装置は、マイクロホンではなく、周波数のピークが複数存在する音響信号を収集できる装置であればよく、例えば、共振周波数が異なる超音波センサを複数個集合させた装置でもよい。
The audio interface 13 is a device for connecting the acoustic signal output device 21 and the acoustic signal input device 22 mounted on the moving body 100 to the system bus via the audio bus. As a specific example, the audio interface 13 is a USB (Universal Serial Bus), IEEE 1394, or HDMI (registered trademark, High-Definition Multimedia Interface) terminal.
The acoustic signal output device 21 is a device that outputs an acoustic signal. As a specific example, the acoustic signal output device 21 is a device including a D / A (digital / analog) converter, a signal amplifier, and a radiation device. The D / A converter is a device that converts a digital signal including transmission signal waveform information transmitted from the audio interface 13 via the audio bus into an analog signal that is an electrical signal. The signal amplifier is a device that amplifies the transmission signal converted into an analog signal by the D / A converter. The radiation device is a device that radiates a transmission signal, which is an analog signal amplified by a signal amplifier, as an acoustic signal. As a specific example, the radiation device is a speaker. The radiating device is not limited to a speaker, but may be a device that can radiate an analog signal having a plurality of frequency peaks. For example, the radiating device may be a device in which a plurality of ultrasonic sensors having different resonance frequencies are assembled.
The acoustic signal input device 22 is a device that collects an acoustic signal including a reflected wave reflected by an object from the acoustic signal radiated from the acoustic signal output device 21. As a specific example, the acoustic signal input device 22 is a device including a collection device, a signal amplifier, and an A / D (analog / digital) converter. The collection device is a device that converts an acoustic signal from the outside of the device into an analog signal that is an electrical signal and collects the signal. The signal amplifier is a device that amplifies the analog signal collected by the collecting device. The A / D converter is a device that converts the analog signal amplified by the signal amplifier into a digital signal including received signal waveform information and transmits the digital signal to the audio interface 13 via the audio bus. The collection device is a microphone as a specific example. The collecting device is not limited to a microphone, but may be any device that can collect acoustic signals having a plurality of frequency peaks. For example, the collecting device may be a device in which a plurality of ultrasonic sensors having different resonance frequencies are assembled.
 車載インタフェース14は、移動体100に搭載された車両情報ECU23及びセンサECU24を車載バスを介してシステムバスに接続するための装置である。車載インタフェース14は、具体例としては、USB、IEEE1394、HDMI(登録商標)の端子である。車載バスは、具体例としては、CAN(Control Area Network)である。
 車両情報ECU23は、時刻と、移動体100の速度といった情報を取得する装置である。
 センサECU24は、気温、風速といった移動体100の外部の環境についての情報である外部環境情報を、取得する装置である。外部環境情報は、音速Vを補正するために利用される。そのため、外部環境情報としては気温、風速に限らず、湿度、気圧、比熱、密度といった音速Vの補正に利用可能なパラメータであればよい。
The in-vehicle interface 14 is a device for connecting the vehicle information ECU 23 and the sensor ECU 24 mounted on the moving body 100 to the system bus via the in-vehicle bus. The in-vehicle interface 14 is, as a specific example, a USB, IEEE 1394, or HDMI (registered trademark) terminal. The in-vehicle bus is, as a specific example, a CAN (Control Area Network).
The vehicle information ECU 23 is a device that acquires information such as time and the speed of the moving body 100.
The sensor ECU 24 is a device that acquires external environment information, which is information about the environment outside the moving body 100 such as temperature and wind speed. External environment information is used to correct the acoustic velocity V s. Therefore, temperatures as external environment information is not limited to wind speed, humidity, atmospheric pressure, specific heat, may be any parameters available for the correction of density such acoustic velocity V s.
 物体検出装置10は、機能構成要素として、時刻同期部111と、送信信号生成部112と、受信信号生成部113と、車両信号生成部114と、環境信号生成部115と、検出部116と、放射部131と、受付部132と、時刻取得部141と、車両情報取得部142と、環境情報取得部143とを備える。
 時刻同期部111と、送信信号生成部112と、受信信号生成部113と、車両信号生成部114と、環境信号生成部115と、検出部116との各部の機能は、ソフトウェアにより実現される。記憶装置12のストレージ122には、ソフトウェアによって実現される各部の機能を実現するプログラムが記憶されている。このプログラムは、プロセッサ11によりメモリ121に読み込まれ、プロセッサ11によって実行される。
 放射部131と、受付部132との各部の機能は、オーディオインタフェース13によって実現される。
 時刻取得部141と、車両情報取得部142と、環境情報取得部143との機能は、車載インタフェース14によって実現される。
The object detection device 10 includes, as functional components, a time synchronization unit 111, a transmission signal generation unit 112, a reception signal generation unit 113, a vehicle signal generation unit 114, an environmental signal generation unit 115, a detection unit 116, A radiation unit 131, a reception unit 132, a time acquisition unit 141, a vehicle information acquisition unit 142, and an environment information acquisition unit 143 are provided.
The functions of the time synchronization unit 111, the transmission signal generation unit 112, the reception signal generation unit 113, the vehicle signal generation unit 114, the environment signal generation unit 115, and the detection unit 116 are realized by software. The storage 122 of the storage device 12 stores a program that realizes the function of each unit realized by software. This program is read into the memory 121 by the processor 11 and executed by the processor 11.
The functions of the radiation unit 131 and the reception unit 132 are realized by the audio interface 13.
The functions of the time acquisition unit 141, the vehicle information acquisition unit 142, and the environment information acquisition unit 143 are realized by the in-vehicle interface 14.
 物体検出装置10の各部の機能の処理の結果を示す情報とデータと信号値と変数値は、メモリ121、又は、プロセッサ11内のレジスタ又はキャッシュメモリに記憶される。以下の説明では、物体検出装置10の各部の機能の処理の結果を示す情報とデータと信号値と変数値は、メモリ121に記憶されるものとする。 Information, data, signal values, and variable values indicating the results of processing of the functions of the respective units of the object detection device 10 are stored in the memory 121, the register in the processor 11, or the cache memory. In the following description, it is assumed that information, data, signal values, and variable values indicating the processing results of the functions of the respective units of the object detection apparatus 10 are stored in the memory 121.
 ソフトウェアによって実現される各機能を実現するプログラムは、記憶装置12に記憶されているとした。しかし、このプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬記憶媒体に記憶されてもよい。 It is assumed that a program for realizing each function realized by software is stored in the storage device 12. However, this program may be stored in a portable storage medium such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD.
 図1では、プロセッサ11は、1つだけ示されていた。しかし、プロセッサ11は、複数であってもよく、複数のプロセッサ11が、各機能を実現するプログラムを連携して実行してもよい。 In FIG. 1, only one processor 11 is shown. However, a plurality of processors 11 may be provided, and a plurality of processors 11 may execute programs that realize each function in cooperation with each other.
 ***動作の説明***
 図2から図10を参照して、実施の形態1に係る物体検出装置10の動作を説明する。
 実施の形態1に係る物体検出装置10の動作は、実施の形態1に係る物体検出方法に相当する。また、実施の形態1に係る物体検出装置10の動作は、実施の形態1に係る物体検出プログラムの処理に相当する。
*** Explanation of operation ***
With reference to FIG. 2 to FIG. 10, the operation of the object detection apparatus 10 according to the first embodiment will be described.
The operation of the object detection apparatus 10 according to the first embodiment corresponds to the object detection method according to the first embodiment. The operation of the object detection apparatus 10 according to the first embodiment corresponds to the processing of the object detection program according to the first embodiment.
 図2を参照して、実施の形態1に係る移動体100と、移動体100の周囲に存在する物体200との状況を説明する。実施の形態1では、物体200は、移動体100の前方を走行する車両とする。
 図2には、音響信号出力装置21及び音響信号入力装置22が設置された移動体100と、物体200とが示されている。図2では、音響信号出力装置21と音響信号入力装置22とが移動体100の前側の近接した位置に配置されている。
 この状況では、音響信号出力装置21から物体200までの最短経路長と、反射波の発生源から音響信号入力装置22までの最短経路長とは、いずれもほぼ等しく距離dとなる。反射波の発生源は、音響信号出力装置21から出力された送信信号が物体200に最短で到達する位置である。
 また、図2に示すように、移動体100は速度vで走行し、物体200は速度vで走行する。この状況において、物体検出装置10は、物体200を検出するとともに、相対距離d及び相対速度Δv=v―vの推定を行う。
With reference to FIG. 2, the situation of the moving body 100 according to Embodiment 1 and the object 200 existing around the moving body 100 will be described. In the first embodiment, the object 200 is a vehicle that travels in front of the moving body 100.
FIG. 2 shows a moving body 100 on which an acoustic signal output device 21 and an acoustic signal input device 22 are installed, and an object 200. In FIG. 2, the acoustic signal output device 21 and the acoustic signal input device 22 are disposed at positions close to each other on the front side of the moving body 100.
In this situation, the shortest path length from the acoustic signal output device 21 to the object 200 and the shortest path length from the reflected wave generation source to the acoustic signal input device 22 are almost equal to the distance d. The generation source of the reflected wave is a position where the transmission signal output from the acoustic signal output device 21 reaches the object 200 in the shortest time.
Further, as shown in FIG. 2, the mobile 100 is traveling at a speed v s, the object 200 travels at a speed v o. In this situation, the object detection apparatus 10 detects the object 200 and estimates the relative distance d and the relative speed Δv = v o −v s .
 **全体的な動作**
 図3を用いて、実施の形態1に係る物体検出装置の全体的な動作を説明する。
 図3に示す処理の前提として、図1に示すように、時刻同期部111は、時刻取得部141が車両情報ECU23から取得した時刻に基づき、同期信号を生成し、送信信号生成部112と受信信号生成部113と車両信号生成部114と環境信号生成部115とに送信している。
** Overall operation **
The overall operation of the object detection apparatus according to the first embodiment will be described with reference to FIG.
As a premise of the process shown in FIG. 3, as shown in FIG. 1, the time synchronization unit 111 generates a synchronization signal based on the time acquired by the time acquisition unit 141 from the vehicle information ECU 23, and receives the transmission signal generation unit 112 and the reception. The signal is transmitted to the signal generator 113, the vehicle signal generator 114, and the environment signal generator 115.
 ステップST1の放射処理では、送信信号生成部112は、時刻同期部111によって送信された同期信号に基づき、一定時間T秒毎に送信信号を放射部131に送信する。放射部131は、送信信号生成部112から送信信号が送信されると、受信した送信信号を音響信号出力装置21に送信する。音響信号出力装置21は、受信した送信信号を音響信号として放射する。 In the radiation processing of step ST1, the transmission signal generation unit 112 transmits a transmission signal to the radiation unit 131 every predetermined time T seconds based on the synchronization signal transmitted by the time synchronization unit 111. When the transmission signal is transmitted from the transmission signal generation unit 112, the radiating unit 131 transmits the received transmission signal to the acoustic signal output device 21. The acoustic signal output device 21 radiates the received transmission signal as an acoustic signal.
 ステップST2の受付処理では、受付部132は、音響信号入力装置22によりデジタル信号に変換された音響信号である受信信号を受け付ける。受付部132によって受け付けられる受信信号には、移動体100の周囲に物体200がある場合には、ステップST1で音響信号出力装置21により放射された音響信号(送信信号)が物体200で反射することによって生じる反射波に対応した、信号成分が含まれる。また、受信信号には、反射波に対応した信号成分以外にもノイズが含まれる場合がある。
 受信信号生成部113は、受付部132によって受け付けられた最新T秒間の受信信号を検出部116に、一定時間T1秒毎に送信する。ここで、時間T1は、時間T以下である。
 また、車両信号生成部114は、車両情報取得部142を介して移動体100の速度を取得して、検出部116に送信する。
 また、環境信号生成部115は、環境情報取得部143を介して外部環境情報を取得して、検出部116に送信する。
 なお、受信信号生成部113と車両信号生成部114と環境信号生成部115とは、時刻同期部111によって送信された同期信号に基づき、ステップST1で送信信号の送信が開始されたタイミングと同期して動作する。
In the reception process of step ST2, the reception unit 132 receives a reception signal that is an acoustic signal converted into a digital signal by the acoustic signal input device 22. In the reception signal received by the reception unit 132, when the object 200 exists around the moving body 100, the acoustic signal (transmission signal) radiated by the acoustic signal output device 21 in step ST1 is reflected by the object 200. The signal component corresponding to the reflected wave generated by is included. The received signal may contain noise other than the signal component corresponding to the reflected wave.
The reception signal generation unit 113 transmits the reception signal for the latest T seconds received by the reception unit 132 to the detection unit 116 every fixed time T1 seconds. Here, the time T1 is equal to or less than the time T.
In addition, the vehicle signal generation unit 114 acquires the speed of the moving body 100 via the vehicle information acquisition unit 142 and transmits it to the detection unit 116.
The environment signal generation unit 115 acquires external environment information via the environment information acquisition unit 143 and transmits the external environment information to the detection unit 116.
The reception signal generation unit 113, the vehicle signal generation unit 114, and the environment signal generation unit 115 are synchronized with the timing at which transmission of the transmission signal is started in step ST1, based on the synchronization signal transmitted by the time synchronization unit 111. Works.
 ステップST3の検出処理では、検出部116は、ステップST2で受信信号生成部113によって送信された受信信号に基づき、移動体100の周囲に存在する物体200を検出する。
 また、検出部116は、物体200が検出された場合には、受信信号とともに、ステップST2で車両信号生成部114によって送信された速度と、環境信号生成部115によって送信された外部環境情報とに基づき、物体200の相対距離d及び相対速度Δvを推定する。
In the detection process of step ST3, the detection unit 116 detects the object 200 present around the moving body 100 based on the reception signal transmitted by the reception signal generation unit 113 in step ST2.
In addition, when the object 200 is detected, the detection unit 116 converts the speed transmitted by the vehicle signal generation unit 114 in step ST2 and the external environment information transmitted by the environment signal generation unit 115 together with the reception signal. Based on this, the relative distance d and the relative speed Δv of the object 200 are estimated.
 **ステップST1の詳細動作**
 図4を参照して、実施の形態1に係るステップST1の動作を詳細に説明する。
 ステップST11の経過時間判定処理では、送信信号生成部112は、時刻同期部111によって送信された同期信号に基づき、前回送信信号を送信した送信時刻からの経過時間を計測する。
 送信信号生成部112は、送信時刻からT秒経過した場合には、処理をステップST12に進め、送信時刻からT秒経過していない場合には、再びステップST11を実行する。
** Detailed operation of step ST1 **
With reference to FIG. 4, the operation of step ST1 according to the first embodiment will be described in detail.
In the elapsed time determination process in step ST11, the transmission signal generation unit 112 measures the elapsed time from the transmission time at which the previous transmission signal was transmitted, based on the synchronization signal transmitted by the time synchronization unit 111.
If T seconds have elapsed from the transmission time, the transmission signal generation unit 112 proceeds to step ST12, and if T seconds have not elapsed from the transmission time, the transmission signal generation unit 112 executes step ST11 again.
 ステップST12の送信処理では、送信信号生成部112は、予めメモリ121に記憶しておいた信号波形を読み出し、読み出された信号波形を送信信号として放射部131に送信する。そして、放射部131は、音響信号出力装置21を介して、送信信号を音響信号として放射する。 In the transmission process of step ST12, the transmission signal generation unit 112 reads a signal waveform stored in the memory 121 in advance, and transmits the read signal waveform to the radiation unit 131 as a transmission signal. And the radiation | emission part 131 radiates | transmits a transmission signal as an acoustic signal via the acoustic signal output device 21. FIG.
 ここで、音響信号として放射される送信信号は、周波数の異なる複数の波の重ね合わせで構成される信号である。送信信号は、周波数が等比数列に従い増加する複数の波を重ね合わせた信号であることが望ましい。送信信号は、周波数毎に初期位相が異なる複数の波を重ね合わせた信号であることが望ましい。
 また、送信信号の構成要素である各々の波の周波数は、いずれも音波あるいは低周波超音波の周波数帯域内、具体的には16kHzから100kHzの範囲内にあることが望ましい。つまり、送信信号である音響信号は、音波と低周波超音波とのいずれかの周波数帯域内の周波数の複数の波を重ね合わせた信号であることが望ましい。
Here, the transmission signal radiated as an acoustic signal is a signal configured by superposing a plurality of waves having different frequencies. The transmission signal is preferably a signal obtained by superposing a plurality of waves whose frequencies increase according to the geometric sequence. The transmission signal is desirably a signal obtained by superposing a plurality of waves having different initial phases for each frequency.
The frequency of each wave that is a component of the transmission signal is preferably in the frequency band of sound waves or low-frequency ultrasonic waves, specifically in the range of 16 kHz to 100 kHz. That is, it is desirable that the acoustic signal as the transmission signal is a signal obtained by superimposing a plurality of waves having a frequency within one of the frequency bands of the sound wave and the low frequency ultrasonic wave.
 また、ステップST3で物体200を検出するだけでなく、移動体100と物体200との相対距離d及び相対速度Δvを推定する場合には、送信信号は、第1信号と、第1信号の位相を反転させた第2信号とを含む信号である。 When not only detecting the object 200 in step ST3 but also estimating the relative distance d and the relative speed Δv between the moving body 100 and the object 200, the transmission signal includes the first signal and the phase of the first signal. And a second signal obtained by inverting.
 具体的には、送信信号としては、q(≧2)種類の周波数成分を含み、かつ、その周波数が等比級数で増加し、かつ、周波数と初期位相とが1対1で対応するような信号が利用できる。すなわち、具体例としては、送信信号として、数1に示す信号u(t,T)を用いることができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、p(>0)は帯域幅に対応する定数である。f(>0)は、最低周波数を表す定数である。T(>0)は、初期位相に関する定数である。aは各周波数の振幅に対応する定数である。
 この信号は、周波数がf,p1/q,p2/q,...,p(q-1)/qとp1/q倍ずつ増加している。また、この信号は、各整数kについての周波数(pk/q)における初期位相は2πT・pk/qとなり、周波数と初期位相とが1対1で対応している。
Specifically, the transmission signal includes q (≧ 2) types of frequency components, the frequency increases in a geometric series, and the frequency and the initial phase correspond one-to-one. A signal is available. That is, as a specific example, the signal u (t, T 0 ) shown in Equation 1 can be used as the transmission signal.
Figure JPOXMLDOC01-appb-M000001
Here, p (> 0) is a constant corresponding to the bandwidth. f 0 (> 0) is a constant representing the lowest frequency. T 0 (> 0) is a constant related to the initial phase. a k is a constant corresponding to the amplitude of each frequency.
This signal has frequencies f 0 , p 1 / q f 0 , p 2 / q f 0 ,. . . , P (q−1) / q f 0 and p 1 / q times. In this signal, the initial phase at the frequency (p k / q f 0 ) for each integer k is 2πT 0 · p k / q f 0 , and the frequency and the initial phase have a one-to-one correspondence.
 また、送信信号としては、ある帯域幅内で周波数が連続的に分布する信号も利用できる。これは、信号u(t,T)において、周波数振幅特性上で各周波数のピークが区別できなくなるまで周波数の増加率p1/qを小さくすることに対応している。 Further, as the transmission signal, a signal whose frequency is continuously distributed within a certain bandwidth can be used. This corresponds to reducing the frequency increase rate p 1 / q until the peak of each frequency cannot be distinguished on the frequency amplitude characteristic in the signal u (t, T 0 ).
 また、送信信号としては信号u(t,T)の一部区間を窓関数で切り出した信号、切り出した信号同士の重ねあわせ等、元の信号u(t,T)と同等の周波数特性を有する信号も利用できる。具体例としては、区間t≦t≦tを切り出す矩形窓をrect[t,t]とすると、数2に示す2つの信号と、数2に示す2つの信号を重ねあわせた数3に示す信号w(t)とも送信信号として利用できる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Further, as a transmission signal, a frequency characteristic equivalent to that of the original signal u (t, T 0 ), such as a signal obtained by cutting out a partial section of the signal u (t, T 0 ) with a window function, and overlapping of the cut out signals. A signal having As a specific example, assuming that a rectangular window that cuts out the section t 1 ≦ t ≦ t 2 is rect [t 1 , t 2 ], the number obtained by superimposing the two signals shown in Equation 2 and the two signals shown in Equation 2 The signal w (t) shown in FIG. 3 can also be used as a transmission signal.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記説明では、送信信号生成部112は、メモリ121から読み出した信号波形を送信信号として用いた。しかし、ステップST12で送信信号生成部112は、信号波形を生成して送信信号としてもよい。
 具体例としては、信号u(t,T)を用いる場合には、図5に示すように、物体検出装置10は、送信信号の構成要素となる複数の周波数の正弦波波形をメモリ121に記憶しておく。そして、ステップST12で送信信号生成部112は、メモリ121から複数の周波数の正弦波波形を読み出し、読み出された複数の周波数の正弦波波形を足し合わせることにより、送信信号となる信号波形を生成する。なお、図5では、k=0,...,q-1の各整数kについて、f=pk/qf0であり、φ=2πfである。
 また、周波数が連続的に分布する信号を送信信号として用いる場合には、図6に示すように、物体検出装置10は、ホワイトノイズやピンクノイズといった信号波形を基準波形としてメモリ121に記憶しておく。そして、ステップST12で送信信号生成部112は、メモリ121から基準波形を読み出し、読み出された基準波形に基準帯域幅を通過帯域とするバンドパスフィルタを通すことにより、送信信号となる信号波形を生成する。通過帯域fは、例えば、f≦f≦fq-1である。この場合、送信信号生成部112は、必要に応じて、通過後の信号波形にオールパスフィルタを通して周波数位相特性を変更するといった、その他種々の信号処理を施してもよい。なお、物体検出装置10は、基準波形に代えて、基準波形の生成に必要となる乱数のシードといった情報をメモリ121に記憶しておき、ステップST12で送信信号生成部112がメモリ121に記憶された情報から基準波形を生成してもよい。
In the above description, the transmission signal generation unit 112 uses the signal waveform read from the memory 121 as the transmission signal. However, in step ST12, the transmission signal generation unit 112 may generate a signal waveform and use it as a transmission signal.
As a specific example, when the signal u (t, T 0 ) is used, as shown in FIG. 5, the object detection device 10 stores a plurality of sine wave waveforms as constituent elements of the transmission signal in the memory 121. Remember. In step ST12, the transmission signal generation unit 112 reads a sine wave waveform having a plurality of frequencies from the memory 121, and adds the read sine wave waveforms having the plurality of frequencies to generate a signal waveform that becomes a transmission signal. To do. In FIG. 5, k = 0,. . . , Q−1, f k = p k / q f0 and φ k = 2πf k T 0 .
Further, when a signal having a continuously distributed frequency is used as a transmission signal, the object detection apparatus 10 stores a signal waveform such as white noise or pink noise in the memory 121 as a reference waveform as shown in FIG. deep. Then, in step ST12, the transmission signal generation unit 112 reads the reference waveform from the memory 121, and passes the read reference waveform through a bandpass filter having a reference bandwidth as a pass band, thereby generating a signal waveform that becomes a transmission signal. Generate. The passband f is, for example, f 0 ≦ f ≦ f q−1 . In this case, the transmission signal generation unit 112 may perform various other signal processing such as changing the frequency phase characteristics through the all-pass filter on the signal waveform after passing as necessary. The object detection apparatus 10 stores information such as a random number seed necessary for generating the reference waveform in the memory 121 instead of the reference waveform, and the transmission signal generation unit 112 is stored in the memory 121 in step ST12. A reference waveform may be generated from the obtained information.
 **ステップST2の詳細動作**
 図7を参照して、実施の形態1に係るステップST2の動作を詳細に説明する。
 ステップST21の受付処理では、受付部132は、時刻同期部111によって送信された同期信号に基づき、音響信号入力装置22によって常時収集される受信信号のうち、最新T秒間分の受信信号をメモリ121に記憶しておく。具体的には、受付部132は、音響信号入力装置22によって収集された受信信号をメモリ121に書き込み、収集されてからT秒経過した受信信号をメモリ121から消去する。
** Detailed operation of step ST2 **
With reference to FIG. 7, the operation of step ST2 according to the first embodiment will be described in detail.
In the reception process of step ST21, the reception unit 132 stores the reception signals for the latest T seconds among the reception signals constantly collected by the acoustic signal input device 22 based on the synchronization signal transmitted by the time synchronization unit 111. Remember it. Specifically, the reception unit 132 writes the reception signal collected by the acoustic signal input device 22 to the memory 121 and erases the reception signal that has passed T seconds from the collection from the memory 121.
 ステップST22の経過時間判定処理では、受信信号生成部113は、時刻同期部111によって送信された同期信号に基づき、前回受信信号を送信した送信時刻からの経過時間を計測する。
 受信信号生成部113は、送信時刻からT1秒経過した場合には、処理をステップST23に進め、送信時刻からT1秒経過していない場合には、処理をステップST21に戻す。
In the elapsed time determination process in step ST22, the reception signal generation unit 113 measures the elapsed time from the transmission time at which the previous reception signal was transmitted based on the synchronization signal transmitted by the time synchronization unit 111.
The reception signal generation unit 113 advances the process to step ST23 when T1 seconds have elapsed from the transmission time, and returns the process to step ST21 when T1 seconds have not elapsed since the transmission time.
 ステップST23の送信処理では、受信信号生成部113は、メモリ121に記憶された最新T秒間分の受信信号を読み出し、読み出された受信信号を検出部116に送信する。
 また、この際、車両信号生成部114は、車両情報取得部142を介して移動体100の速度を取得して、検出部116に送信する。
 また 、環境信号生成部115は、環境情報取得部143を介して外部環境情報を取得して、検出部116に送信する。
In the transmission process of step ST <b> 23, the reception signal generation unit 113 reads the reception signal for the latest T seconds stored in the memory 121 and transmits the read reception signal to the detection unit 116.
At this time, the vehicle signal generation unit 114 acquires the speed of the moving body 100 via the vehicle information acquisition unit 142 and transmits it to the detection unit 116.
In addition, the environment signal generation unit 115 acquires external environment information via the environment information acquisition unit 143 and transmits the external environment information to the detection unit 116.
 **ステップST3の詳細動作***
 図8を参照して、実施の形態1に係るステップST3の動作を詳細に説明する。
 ステップST31の相関処理では、検出部116は、ステップST2で受信信号生成部113によって送信された受信信号と、少なくとも2種類の参照信号それぞれとについて、相互相関関数を計算する。
 実施の形態1では、2種類の参照信号1,2がメモリ121に記憶されているとする。そして、検出部116は、2種類の参照信号1,2をメモリ121から読み出して、受信信号と参照信号1,2それぞれとについて、相互相関関数を計算する。検出部116は、計算された各相互相関関数をメモリ121に書き込む。
** Detailed operation of step ST3 ***
With reference to FIG. 8, the operation of step ST3 according to the first embodiment will be described in detail.
In the correlation processing in step ST31, the detection unit 116 calculates cross-correlation functions for the reception signal transmitted by the reception signal generation unit 113 in step ST2 and each of at least two types of reference signals.
In the first embodiment, it is assumed that two types of reference signals 1 and 2 are stored in the memory 121. Then, the detection unit 116 reads the two types of reference signals 1 and 2 from the memory 121 and calculates a cross-correlation function for each of the received signal and the reference signals 1 and 2. The detection unit 116 writes the calculated cross-correlation functions in the memory 121.
 参照信号は、受信信号との相互相関関数にピークが立つような信号であればよい。具体例としては、参照信号として送信信号が利用できる。このとき、ドップラーシフトが生じない場合の理想的な受信信号は、送信信号が相対距離に起因する時間だけ遅延した信号と相似の信号波形となる。そのため、参照信号と受信信号との相互相関関数は、送信信号の自己相関関数が遅延時間だけシフトしたものになり、ピークが生じる。また、ドップラーシフトが生じる場合は、それに応じてさらにピーク位置がシフトする。
 参照信号は、送信信号に限らず、送信信号と同等の周波数特性を有する信号も利用できる。具体例としては、送信信号を数3に示す信号w(t)としたとき、送信信号である信号w(t)以外にも、信号u(t,T)、数4に示す信号U(t)、数4に示す信号V(t)を参照信号として利用できる。
Figure JPOXMLDOC01-appb-M000004
The reference signal may be a signal that has a peak in the cross-correlation function with the received signal. As a specific example, a transmission signal can be used as a reference signal. At this time, an ideal reception signal when the Doppler shift does not occur has a signal waveform similar to a signal obtained by delaying the transmission signal by a time due to the relative distance. For this reason, the cross-correlation function between the reference signal and the received signal is a peak of the auto-correlation function of the transmission signal shifted by the delay time. In addition, when a Doppler shift occurs, the peak position is further shifted accordingly.
The reference signal is not limited to the transmission signal, and a signal having a frequency characteristic equivalent to that of the transmission signal can be used. As a specific example, when the transmission signal is the signal w (t) shown in Equation 3, in addition to the signal w (t) that is the transmission signal, the signal u (t, T 0 ) and the signal U ( t), the signal V (t) shown in Equation 4 can be used as a reference signal.
Figure JPOXMLDOC01-appb-M000004
 ステップST32のピーク判定処理では、検出部116は、ステップST31で計算された各相互相関関数にピークが存在するか否かを判定する。
 具体的には、検出部116は、ステップST31で計算された各相互相関関数をメモリ121から読み出す。そして、検出部116は、各相互相関関数について、周囲よりも値が基準値以上高くなる時刻をピークとして特定する。検出部116は、ピークとして特定された時刻がある場合には、ピークが存在すると判定し、ピークとして特定された時刻がない場合には、ピークが存在しないと判定する。
 検出部116は、ピークが存在する場合には、処理をステップST34に進め、ピークが存在しない場合には、処理をステップST35に進める。
In the peak determination process in step ST32, the detection unit 116 determines whether or not there is a peak in each cross-correlation function calculated in step ST31.
Specifically, the detection unit 116 reads each cross-correlation function calculated in step ST31 from the memory 121. Then, the detection unit 116 specifies, as a peak, the time at which the value of each cross-correlation function is higher than the surrounding value by a reference value or more. The detection unit 116 determines that there is a peak when there is a time specified as a peak, and determines that there is no peak when there is no time specified as a peak.
If there is a peak, the detection unit 116 proceeds to step ST34, and if there is no peak, the process proceeds to step ST35.
 なお、検出部116は、ステップST31で相互相関関数を計算して、ピークの存在判定をし、判定結果をメモリ121に書き込み、ステップST32で判定結果をメモリから読み出して相関ピークが存在するか否かを判定してもよい。ここで、判定結果は、ピークが存在する場合はそのピーク位置であり、ピークがしない場合はピークが存在しない、つまり物体不検出であることを表すフラグ等である。このようにすることで、メモリ121の使用量を減らすことができる。 Note that the detection unit 116 calculates a cross-correlation function in step ST31, determines the presence of a peak, writes the determination result to the memory 121, and reads the determination result from the memory in step ST32 to determine whether a correlation peak exists. It may be determined. Here, the determination result is a peak position when a peak is present, and a flag indicating that no peak is present when no peak is present, that is, no object is detected. In this way, the usage amount of the memory 121 can be reduced.
 ステップST33の音速計算処理では、検出部116は、ステップST31及びステップST32と並行して、音速を計算する。
 具体的には、1気圧の乾燥空気の音速V(m(メートル)/s(秒))は、V=331.5+0.61Tと近似できる。ここで、Tは摂氏温度である。そこで、検出部116は、外部環境情報が示す気温を、上記近似式に代入することにより、音速を計算する。また、風が吹いている場合には、風速が音速に加算あるいは減算される。そこで、検出部116は、外部環境情報が示す風速を用いて、音速を計算する。
 なお、検出部116は、音速を340m/sのように定数としてもよい。また、検出部116は、センサ等によって音速Vを測定してもよい。
In the sound speed calculation process in step ST33, the detection unit 116 calculates the sound speed in parallel with step ST31 and step ST32.
Specifically, the sound velocity V s (m (meter) / s (second)) of dry air at 1 atm can be approximated as V s = 331.5 + 0.61T p . Here, T p is the Celsius temperature. Therefore, the detection unit 116 calculates the sound speed by substituting the air temperature indicated by the external environment information into the approximate expression. When the wind is blowing, the wind speed is added to or subtracted from the sound speed. Therefore, the detection unit 116 calculates the sound speed using the wind speed indicated by the external environment information.
In addition, the detection part 116 is good also considering a sound speed as a constant like 340 m / s. The detecting unit 116 may measure the speed of sound V s by such sensor.
 ステップST34の第1計算処理では、検出部116は、ステップST32でピークが存在したため、移動体100の周囲に物体200が検出されたとして、移動体100と検出された物体200との相対距離dを推定する。また、検出部116は、ドップラーシフト率ρを推定する。
 検出部116は、相対距離d及びドップラーシフト率ρを、受信信号と参照信号との相互相関関数の最大ピーク位置が基準のピーク位置からどれだけシフトしたかを求めることで推定する。検出部116は、相対距離d及びドップラーシフト率ρの推定値をメモリ121に書き込む。
In the first calculation process of step ST34, the detection unit 116 determines that the object 200 is detected around the moving body 100 because the peak exists in step ST32, and the relative distance d between the moving body 100 and the detected object 200 is detected. Is estimated. In addition, the detection unit 116 estimates the Doppler shift rate ρ.
The detection unit 116 estimates the relative distance d and the Doppler shift rate ρ by determining how much the maximum peak position of the cross-correlation function between the received signal and the reference signal is shifted from the standard peak position. The detection unit 116 writes the estimated values of the relative distance d and the Doppler shift rate ρ in the memory 121.
 相対距離dの推定方法を説明する。
 具体例として、数3に示す信号w(t)を送信信号とし、数4に示す信号U(t)を参照信号として利用した場合を考える。
 このとき、図9に示すように、もしドップラーシフトが生じなければ、つまりρ=1であれば、受信信号y(t)は相対距離に対応する時間(d+d)/Vだけ遅延が生じる。ここで、図2の状況において、送信信号が受信されるまでの伝送経路は、音響信号出力装置21→物体200(反射波の発生源)→音響信号入力装置22となる。そのため、経路長はd+dとなる。
 ところが、図9の最下段に示すように、ドップラーシフトが生じている場合には信号が伸縮する。図9ではρ>1の場合を示している。そのため、図10に示すように、受信信号y(t)と参照信号U(t)との相互相関関数の最大ピーク位置ty,Uは、送信信号w(t)と参照信号U(t)との相互相関関数の最大ピーク位置tw,Uを基準として、相対距離に対応する時間遅延の分とドップラーシフトの分との合算だけシフトする。そのため、シフト量Δtは数5によって表される。
Figure JPOXMLDOC01-appb-M000005
 また、数4に示す信号V(t)を参照信号として利用すれば、受信信号y(t)と参照信号V(t)との相互相関関数の最大ピーク位置ty,Vは、送信信号w(t)と参照信号V(t)との相互相関関数の最大ピーク位置tw,Vを基準として、最大ピーク位置ty,Uと同様にシフトする。但し、図9の最下段に示すように、信号の伸縮は信号中心に対して左右に等距離で生じるため、ドップラーシフトに起因するピークシフトはU(t)を参照信号とした場合と距離が等しく逆向きになる。従って、シフト量Δtは数6によって表される。
Figure JPOXMLDOC01-appb-M000006
 そのため、ドップラーシフトに起因するピークシフトは、数7に示すように各々のピークシフト量の平均をとることで相殺でき、相対距離に対応する時間遅延量Δtが得られる。
Figure JPOXMLDOC01-appb-M000007
 そこで、検出部116は、相対距離dを数8により推定する。
Figure JPOXMLDOC01-appb-M000008
A method for estimating the relative distance d will be described.
As a specific example, consider the case where the signal w (t) shown in Equation 3 is used as a transmission signal and the signal U (t) shown in Equation 4 is used as a reference signal.
At this time, as shown in FIG. 9, if the Doppler shift does not occur, that is, if ρ = 1, the received signal y (t) is delayed by a time (d + d) / V s corresponding to the relative distance. Here, in the situation of FIG. 2, the transmission path until the transmission signal is received is as follows: acoustic signal output device 21 → object 200 (source of reflected wave) → acoustic signal input device 22. Therefore, the path length is d + d.
However, as shown at the bottom of FIG. 9, the signal expands and contracts when a Doppler shift occurs. FIG. 9 shows a case where ρ> 1. Therefore, as shown in FIG. 10, the maximum peak position ty, U of the cross-correlation function between the received signal y (t) and the reference signal U (t) is the transmission signal w (t) and the reference signal U (t). as the maximum peak position t w, relative to the U of the cross-correlation function between, shifted by the sum of the minute amount and the Doppler shift of the time delay corresponding to the relative distance. Therefore, the shift amount Δt U is expressed by Equation 5.
Figure JPOXMLDOC01-appb-M000005
Further, if the signal V (t) shown in Equation 4 is used as a reference signal, the maximum peak position ty, V of the cross-correlation function between the reception signal y (t) and the reference signal V (t) is the transmission signal w. Shift is performed in the same manner as the maximum peak position ty, U with reference to the maximum peak position tw, V of the cross-correlation function between (t) and the reference signal V (t). However, as shown in the lowermost stage of FIG. 9, the signal expansion and contraction occurs at equal distances from side to side with respect to the signal center. Equally reverse. Therefore, the shift amount Δt V is expressed by Equation 6.
Figure JPOXMLDOC01-appb-M000006
Therefore, the peak shift caused by the Doppler shift can be canceled by taking the average of the respective peak shift amounts as shown in Equation 7, and a time delay amount Δt corresponding to the relative distance can be obtained.
Figure JPOXMLDOC01-appb-M000007
Therefore, the detection unit 116 estimates the relative distance d using Equation 8.
Figure JPOXMLDOC01-appb-M000008
 ドップラーシフト率の推定方法を説明する。
 引き続き、具体例として、数3に示す信号w(t)を送信信号とし、数4に示す信号U(t)及び信号V(t)を参照信号として利用した場合を考える。
 上述したようにドップラーシフトに起因するピークシフトは距離が等しく逆向きになり、相対距離に起因するピークシフトは参照信号によらず距離が等しく同じ向きになる。そのため、ドップラーシフト以外の要因に起因するピークシフトは、各々のピークシフト量の差をとることで相殺できる。
 従って、最大ピーク位置ty,Uと最大ピーク位置ty,Vとの間の距離は、数9によって表される。ここで、図10に示すように、tw,V-tw,U=2Tである。
Figure JPOXMLDOC01-appb-M000009
 従って、これをドップラーシフト率ρについて解くと、数10となる。検出部116は、ドップラーシフト率ρを数10により推定する。
Figure JPOXMLDOC01-appb-M000010
A method for estimating the Doppler shift rate will be described.
As a specific example, consider the case where the signal w (t) shown in Equation 3 is used as a transmission signal and the signal U (t) and signal V (t) shown in Equation 4 are used as reference signals.
As described above, the peak shift caused by the Doppler shift has the same distance and the opposite direction, and the peak shift caused by the relative distance has the same distance and the same direction regardless of the reference signal. For this reason, the peak shift caused by factors other than the Doppler shift can be canceled by taking the difference between the respective peak shift amounts.
Therefore, the distance between the maximum peak position ty, U and the maximum peak position ty, V is expressed by Equation 9. Here, as shown in FIG. 10, t w, V -t w , a U = 2T i.
Figure JPOXMLDOC01-appb-M000009
Therefore, when this is solved with respect to the Doppler shift rate ρ, the following equation is obtained. The detection unit 116 estimates the Doppler shift rate ρ using Equation 10.
Figure JPOXMLDOC01-appb-M000010
 なお、上述した具体例では、波形が対称な2種類の信号U(t)及び信号V(t)を参照信号とした。また、信号U(t)及び信号V(t)を原点から等距離の位置に配置した信号w(t)を送信信号とした。そして、これらの参照信号及び送信信号を用いることにより、ドップラーシフト、あるいは、相対距離dに対応する時間遅延に起因するピークシフトを相殺した。
 しかし、送信信号は、第1信号と、第1信号を反転させた第2信号とを含む信号であればよい。この場合、参照信号は、第1信号の成分を含む信号と、第2信号を含む信号とにすればよい。このような送信信号及び参照信号を用いれば、ドップラーシフト、あるいは、相対距離dに対応する時間遅延に起因するピークシフトを相殺できる。
 但し、送信信号のうち、参照信号に含まれる成分以外の成分は、相互相関のピーク検出時の妨げにならないような信号であることが望ましい。相互相関のピーク検出時の妨げにならないような信号とは、例えば、各参照信号と互いに無相関な信号である。
 具体例としては、2種類の参照信号である信号U(t)及び信号V(t)を、時間軸原点を中心に既知の異なる時間だけ離した信号も、送信信号として利用できる。また、信号w(t)以外の信号が含まれた信号も、送信信号として利用できる。
In the specific example described above, two types of signals U (t) and signals V (t) having symmetrical waveforms are used as reference signals. In addition, a signal w (t) in which the signal U (t) and the signal V (t) are arranged at the same distance from the origin is used as a transmission signal. Then, by using these reference signals and transmission signals, the Doppler shift or the peak shift caused by the time delay corresponding to the relative distance d was canceled.
However, the transmission signal may be a signal including the first signal and the second signal obtained by inverting the first signal. In this case, the reference signal may be a signal including the first signal component and a signal including the second signal. If such a transmission signal and a reference signal are used, the Doppler shift or the peak shift caused by the time delay corresponding to the relative distance d can be canceled.
However, it is desirable that components other than the component included in the reference signal in the transmission signal are signals that do not hinder the cross-correlation peak detection. The signal that does not interfere with the cross-correlation peak detection is, for example, a signal that is uncorrelated with each reference signal.
As a specific example, a signal obtained by separating two types of reference signals, the signal U (t) and the signal V (t) by a known different time around the origin of the time axis, can be used as a transmission signal. A signal including a signal other than the signal w (t) can also be used as a transmission signal.
 ステップST35の不検出処理では、検出部116は、ステップST32でピークが存在しなかったため、移動体100の周囲に物体200が検出されなかったとする。検出部116は、物体200が検出されなかったことを示すフラグをメモリ121に書き込む、あるいは、相対距離d及び相対速度Δvの推定値として、物体200が検出されなかった場合の特別な値をメモリ121に書き込む。 In the non-detection process of step ST35, it is assumed that the detection unit 116 does not detect the object 200 around the moving body 100 because no peak exists in step ST32. The detection unit 116 writes a flag indicating that the object 200 is not detected in the memory 121, or stores a special value when the object 200 is not detected as an estimated value of the relative distance d and the relative speed Δv. 121 is written.
 ステップST36の第2計算処理では、検出部116は、ステップST34で推定されたドップラーシフト率ρの推定値から移動体100と物体200との相対速度Δvを推定する。検出部116は、相対速度Δvの推定値をメモリ121に書き込む。 In the second calculation process of step ST36, the detection unit 116 estimates the relative speed Δv between the moving body 100 and the object 200 from the estimated value of the Doppler shift rate ρ estimated in step ST34. The detection unit 116 writes the estimated value of the relative speed Δv in the memory 121.
 相対速度Δvの推定方法を説明する。
 図2に示す状況において、ドップラーシフト率ρは、数11によって表される。
Figure JPOXMLDOC01-appb-M000011
 数11を速度vについて解くと、相対速度Δv=v―vは、数12となる。
Figure JPOXMLDOC01-appb-M000012
 そこで、検出部116は、数12に移動体100の速度v及び音速Vの値を代入して相対速度Δvを推定する。
A method for estimating the relative speed Δv will be described.
In the situation shown in FIG. 2, the Doppler shift rate ρ is expressed by Equation 11.
Figure JPOXMLDOC01-appb-M000011
When Equation 11 is solved for the velocity v o , the relative velocity Δv = v o −v s becomes Equation 12.
Figure JPOXMLDOC01-appb-M000012
Therefore, the detection unit 116 substitutes the value of the velocity v s and the sound velocity V s of the moving body 100 to the number 12 to estimate the relative velocity Delta] v.
 ここで、検出部116は、ステップST2で車両信号生成部114によって送信された速度vと、ステップST33で計算された音速Vとを用いて、相対速度Δvを計算する。
 なお、移動体100の速度vと音速Vsの間にV>>vの関係が成り立つ場合は、相対速度Δvを数13のように近似することも可能である。しかし、ステップST2で車両信号生成部114によって送信された速度vを用いることで、より高精度に相対速度Δvを推定することができる。
Figure JPOXMLDOC01-appb-M000013
Here, the detection unit 116 calculates the relative speed Δv by using the speed v s transmitted by the vehicle signal generation unit 114 in step ST2 and the sound speed V s calculated in step ST33.
In addition, when the relationship of V s >> v s is established between the velocity v s of the moving body 100 and the sound velocity Vs, the relative velocity Δv can be approximated as in Expression 13. However, by using the velocity v s transmitted by the vehicle signal generation unit 114 at step ST2, the it is possible to estimate the relative velocity Δv more accurately.
Figure JPOXMLDOC01-appb-M000013
 ステップST38の出力処理では、検出部116は、物体200が検出された場合には、ステップST34で推定された相対距離dの推定値と、ステップST36で推定された相対速度Δvの推定値とをメモリ121から読み出す。そして、検出部116は、読み出された相対距離d及び相対速度Δvの推定値を出力する。
 一方、検出部116は、物体200が検出されなかった場合には、ステップST35でメモリ121に書き込まれたフラグ、あるいは、相対距離d及び相対速度Δvの推定値を読み出す。そして、検出部116は、読み出されたフラグ、あるいは、相対距離d及び相対速度Δvの推定値を出力する。
In the output process of step ST38, when the object 200 is detected, the detection unit 116 uses the estimated value of the relative distance d estimated in step ST34 and the estimated value of the relative speed Δv estimated in step ST36. Read from the memory 121. Then, the detection unit 116 outputs the estimated values of the read relative distance d and relative speed Δv.
On the other hand, when the object 200 is not detected, the detection unit 116 reads the flag written in the memory 121 in step ST35 or the estimated values of the relative distance d and the relative speed Δv. Then, the detection unit 116 outputs the read flag or estimated values of the relative distance d and the relative speed Δv.
 ***実施の形態1の効果***
 以上のように、実施の形態1に係る物体検出装置10は、周波数の異なる複数の波の重ね合わせで構成される信号を送信信号として用いる。これにより、相関処理におけるS/N比(信号対雑音比)を向上できるため、遠距離の物体200を検出できる。また、移動体100と物体200との相対距離d及び相対速度Δvを推定することができる。
*** Effects of Embodiment 1 ***
As described above, the object detection apparatus 10 according to Embodiment 1 uses a signal configured by superimposing a plurality of waves having different frequencies as a transmission signal. Thereby, since the S / N ratio (signal to noise ratio) in the correlation processing can be improved, the object 200 at a long distance can be detected. Further, the relative distance d and the relative speed Δv between the moving body 100 and the object 200 can be estimated.
 周波数の異なる複数の波の重ね合わせで構成される信号を送信信号として用いることの効果を説明する。
 音波を用いて物体200を検出する装置としては、超音波センサが知られており、近距離の障害物を検出することを目的として、移動体に搭載されている場合がある。ここで、超音波センサは、40kHzといった単一の周波数成分を有する信号を送受信する。より正確には、超音波センサは、単一の周波数を中心周波数として、中心周波数の前後数%の周波数成分を含む信号を送受信する。そのため、送信信号として利用できる信号は、単一周波数によるパルス信号か、あるいは特定の符号によって振幅、位相、周波数等を変調させた信号(振幅変調信号、位相変調信号、周波数変調信号)となる。
 送信信号としてパルス信号を用いる場合には、例えば受信信号の振幅がある閾値を超えた時刻を受信時刻とみなして、送受信に要した時間と音速から障害物までの相対距離を推定する方式が用いられる。この方式は複雑な信号処理が不要である一方で、雑音に弱いという欠点がある。
The effect of using a signal formed by superposing a plurality of waves having different frequencies as a transmission signal will be described.
As an apparatus for detecting the object 200 using sound waves, an ultrasonic sensor is known and may be mounted on a moving object for the purpose of detecting an obstacle at a short distance. Here, the ultrasonic sensor transmits and receives a signal having a single frequency component such as 40 kHz. More precisely, the ultrasonic sensor transmits and receives a signal including a frequency component of several percent before and after the center frequency with a single frequency as the center frequency. Therefore, a signal that can be used as a transmission signal is a pulse signal with a single frequency or a signal (amplitude modulation signal, phase modulation signal, frequency modulation signal) whose amplitude, phase, frequency, etc. are modulated by a specific code.
When using a pulse signal as the transmission signal, for example, a method is used in which the time when the amplitude of the reception signal exceeds a certain threshold is regarded as the reception time, and the relative distance from the time and speed of sound required for transmission / reception to the obstacle is used. It is done. While this method does not require complicated signal processing, it has a drawback of being vulnerable to noise.
 また、送信信号として変調信号(M系列(maximal length sequence))等の符号パターンに対して、異なる周波数、振幅、位相等を割り当てた信号)を用いる場合がある。この場合には、図11に示すように、受け付けられた受信信号と送信信号との数14に示す相互相関関数を計算し、その最大ピーク位置のずれから送受信に要した時間を求め、相対距離を推定する方式が用いられる。図11では、送信信号として周波数変調信号を用いた場合を示している。
Figure JPOXMLDOC01-appb-M000014
 この方式は、相関処理によりS/N比を向上することができる一方で、符号長に応じてS/N比が向上するために、遠距離を測定するためには信号長が長くなるという欠点がある。さらに、移動体100と物体200との少なくともいずれかが移動している場合には、ドップラー効果による周波数偏移(以下、ドップラーシフトと呼ぶ)が生じるため、周波数変調信号は相関処理に適さない。
In some cases, a signal having a different frequency, amplitude, phase, or the like assigned to a code pattern such as a modulated signal (M-sequence (maximum length sequence)) is used as a transmission signal. In this case, as shown in FIG. 11, the cross-correlation function shown in the equation 14 between the received signal and the transmitted signal is calculated, and the time required for transmission / reception is obtained from the deviation of the maximum peak position. Is used. FIG. 11 shows a case where a frequency modulation signal is used as a transmission signal.
Figure JPOXMLDOC01-appb-M000014
While this method can improve the S / N ratio by correlation processing, the S / N ratio is improved according to the code length, so that the signal length becomes long to measure a long distance. There is. Furthermore, when at least one of the moving body 100 and the object 200 is moving, a frequency shift due to the Doppler effect (hereinafter referred to as Doppler shift) occurs, so that the frequency modulation signal is not suitable for correlation processing.
 これに対して、周波数の異なる複数の波の重ね合わせで構成される信号を送信信号として用いると、信号長が同一でも、単一周波数の信号を用いるよりもS/N比を向上できる。つまり、信号長の増加を抑えつつ、遠距離の物体200を検出できる。また、相互相関関数の最大ピーク位置から受信時刻を求め、相対距離dを推定できるとともに、ピーク位置のずれ量からドップラーシフト量を推定することもできる。 On the other hand, when a signal formed by superposing a plurality of waves having different frequencies is used as a transmission signal, the S / N ratio can be improved as compared with the case of using a single frequency signal even if the signal length is the same. That is, the object 200 at a long distance can be detected while suppressing an increase in signal length. Further, the reception time can be obtained from the maximum peak position of the cross-correlation function, the relative distance d can be estimated, and the Doppler shift amount can also be estimated from the peak position deviation amount.
 また、実施の形態1に係る物体検出装置10は、周波数が等比数列に従い増加する複数の波を重ね合わせた信号を送信信号として用いる。これにより、より精度よく遠距離の物体200を検出できる。また、より精度よく移動体100と物体200との相対距離d及び相対速度Δvを推定することができる。 Further, the object detection apparatus 10 according to Embodiment 1 uses a signal obtained by superimposing a plurality of waves whose frequencies increase according to a geometric sequence as a transmission signal. Thereby, the object 200 at a long distance can be detected with higher accuracy. In addition, the relative distance d and the relative speed Δv between the moving body 100 and the object 200 can be estimated with higher accuracy.
 周波数が等比数列に従い増加する複数の波を重ね合わせた信号を送信信号として用いることの効果を説明する。
 ドップラーシフトは乗法的に作用する。つまり、全ての周波数成分が等しい倍率で増減する。そのため、理想的な受信信号は、空気による減衰率α(<1)と、ドップラーシフト率ρと、移動体100と物体200との相対距離dと、音速Vとを用いてα・u(ρ(t-2d)/V)によって表される。
 そのため、各周波数が等比級数で増加するような信号を用いることで、ドップラーシフトが生じた場合にも、送信信号と受信信号の周波数振幅特性の重なりが大きくなる。したがって、送信信号と受信信号との相互相関関数に大きなピークが立ちやすくなる。その結果、精度よく物体200を検出することができるとともに、精度よく移動体100と物体200との相対距離d及び相対速度Δvを推定することができる。
The effect of using, as a transmission signal, a signal in which a plurality of waves whose frequencies increase according to a geometric sequence will be superimposed will be described.
The Doppler shift works in a multiplicative way. That is, all frequency components are increased or decreased at the same magnification. Therefore, an ideal received signal is obtained by using an attenuation rate α (<1) due to air, a Doppler shift rate ρ, a relative distance d between the moving body 100 and the object 200, and a sound velocity V s. ρ (t−2d) / V s ).
For this reason, by using a signal in which each frequency increases in a geometric series, even when a Doppler shift occurs, the overlap between the frequency amplitude characteristics of the transmission signal and the reception signal increases. Therefore, a large peak tends to occur in the cross-correlation function between the transmission signal and the reception signal. As a result, the object 200 can be detected with high accuracy, and the relative distance d and the relative speed Δv between the moving body 100 and the object 200 can be estimated with high accuracy.
 実施の形態1に係る物体検出装置10は、周波数毎に初期位相が異なる複数の波を重ね合わせた信号を送信信号として用いる。これにより、より精度よく遠距離の物体200を検出できる。また、より精度よく移動体100と物体200との相対距離d及び相対速度Δvを推定することができる。 The object detection apparatus 10 according to Embodiment 1 uses a signal obtained by superimposing a plurality of waves having different initial phases for each frequency as a transmission signal. Thereby, the object 200 at a long distance can be detected with higher accuracy. In addition, the relative distance d and the relative speed Δv between the moving body 100 and the object 200 can be estimated with higher accuracy.
 周波数毎に初期位相が異なる複数の波を重ね合わせた信号を送信信号として用いることの効果を説明する。
 ドップラーシフトが生じているとき、周波数と初期位相とが1対1で対応していると、送信信号と受信信号とに同じ周波数成分が含まれる場合に、その周波数に対応する位相が両者で一致する。そのため、各周波数に対応する相互相関関数のピーク位置が一致し、大きなピークが立ちやすくなる。その結果、精度よく物体200を検出することができるとともに、精度よく移動体100と物体200との相対距離d及び相対速度Δvを推定することができる。
The effect of using a signal obtained by superposing a plurality of waves having different initial phases for each frequency as a transmission signal will be described.
When Doppler shift occurs, if the frequency and initial phase have a one-to-one correspondence, and the same frequency component is included in the transmitted signal and the received signal, the phase corresponding to that frequency is the same for both To do. For this reason, the peak positions of the cross-correlation functions corresponding to the respective frequencies coincide with each other, and a large peak is easily formed. As a result, the object 200 can be detected with high accuracy, and the relative distance d and the relative speed Δv between the moving body 100 and the object 200 can be estimated with high accuracy.
 実施の形態1に係る物体検出装置10は、音波と低周波超音波とのいずれかの周波数帯域内の周波数の複数の波を重ね合わせた信号を送信信号として用いる。これにより、より精度よく遠距離の物体200を検出できる。また、より精度よく移動体100と物体200との相対距離d及び相対速度Δvを推定することができる。 The object detection apparatus 10 according to the first embodiment uses a signal obtained by superimposing a plurality of waves having a frequency within either frequency band of a sound wave and a low-frequency ultrasonic wave as a transmission signal. Thereby, the object 200 at a long distance can be detected with higher accuracy. In addition, the relative distance d and the relative speed Δv between the moving body 100 and the object 200 can be estimated with higher accuracy.
 音波と低周波超音波とのいずれかの周波数帯域を用いることの効果を説明する。
 空気中に放射された音波は、空気の粘性の影響で次第にエネルギーが減衰する。このとき、空気の減衰定数α、音波の伝搬距離zとすると、エネルギー密度はexp(-2αz)に比例する。文献(吉久光一,“屋外の音の伝搬における空気吸収の計算(ISO 9613-1について)”,騒音制御,Vol. 21,No. 3,pp. 130-135 (1997))によると、減衰定数αは、周波数の2乗に概ね比例するため、周波数が高くなるほど減衰が大きくなる。そのため、超音波センサ等の、音波を用いた物体検出装置でよく用いられる周波数である40kHz、200kHz、400kHzといった高周波帯域の信号は遠距離の物体検出には不向きである。物体検出装置10は、これよりも低い周波数帯域の音波を送信信号として用いることで、エネルギーの減衰を抑え、遠距離の物体200の検出が可能である。
The effect of using any frequency band of a sound wave and a low frequency ultrasonic wave is demonstrated.
The sound wave radiated into the air is gradually attenuated by the influence of the viscosity of the air. At this time, the energy density is proportional to exp (−2αz), assuming that the air attenuation constant α and the propagation distance z of the sound wave. According to the literature (Koichi Yoshihisa, “Calculation of Air Absorption in Outdoor Sound Propagation (ISO 9613-1)”, Noise Control, Vol. 21, No. 3, pp. 130-135 (1997)). Since α is approximately proportional to the square of the frequency, the higher the frequency, the greater the attenuation. For this reason, signals in a high frequency band such as 40 kHz, 200 kHz, and 400 kHz, which are frequencies often used in an object detection device using sound waves, such as an ultrasonic sensor, are not suitable for detecting an object at a long distance. The object detection apparatus 10 can detect an object 200 at a long distance by suppressing attenuation of energy by using a sound wave in a frequency band lower than this as a transmission signal.
 但し、16kHz未満の周波数帯域の信号は一般に人間の可聴域内である。そのため、健康面及び騒音問題といった観点から、16kHz未満の周波数帯域は用いないことが望ましい。 However, signals in the frequency band below 16 kHz are generally within the human audible range. Therefore, it is desirable not to use a frequency band of less than 16 kHz from the viewpoint of health and noise problems.
 また、数m程度以下の近距離の場合には、16kHzから40kHzの範囲内に限らず、より高周波帯域の信号を用いても物体200の検出は可能である。従って、物体検出装置10は、16kHzから100kHzの範囲内の音波あるいは低周波超音波を使用する。 In the case of a short distance of about several meters or less, the object 200 can be detected not only within the range of 16 kHz to 40 kHz but also using a signal in a higher frequency band. Therefore, the object detection apparatus 10 uses sound waves or low frequency ultrasonic waves in the range of 16 kHz to 100 kHz.
 また、実施の形態1に係る物体検出装置10は、環境情報取得部143を介して取得された外部環境情報により音速Vを計算する。これにより、精度よく移動体100と物体200との相対速度Δvを計算できる。 In addition, the object detection apparatus 10 according to Embodiment 1 calculates the sound speed V s based on the external environment information acquired via the environment information acquisition unit 143. Thereby, the relative speed Δv between the moving body 100 and the object 200 can be calculated with high accuracy.
 ***他の構成***
 <変形例1>
 実施の形態1では、物体200の検出精度をより高くするとともに、移動体100と物体200との相対距離d及び相対速度Δvの推定精度をより高くするために、物体検出装置10は多くの機能構成要素を備えた。しかし、変形例1として、実施の形態1に比べ、多少の精度低下が起こる可能性はあるものの、機能構成要素を簡略化してもよい。この変形例1について、実施の形態1と異なる点を説明する。
*** Other configurations ***
<Modification 1>
In the first embodiment, the object detection apparatus 10 has many functions in order to increase the detection accuracy of the object 200 and to increase the estimation accuracy of the relative distance d and the relative speed Δv between the moving body 100 and the object 200. With components. However, as a first modification, the functional components may be simplified although there is a possibility that the accuracy may be slightly reduced as compared with the first embodiment. The first modification will be described with respect to differences from the first embodiment.
 図12を参照して、変形例1に係る物体検出装置10の構成を説明する。
 物体検出装置10は、プロセッサ11と、記憶装置12と、オーディオインタフェース13とのハードウェアを備える。
 物体検出装置10は、機能構成要素として、時刻同期部111と、検出部116と、受付部132とを備える。受付部132は、移動体100に搭載された音響信号出力装置21から出力された音響信号が物体で反射した反射波を含む受信信号を、移動体100に搭載された音響信号入力装置22を介して受け付ける。時刻同期部111は、音響信号出力装置21と音響信号入力装置22との動作を同期させ、音響信号出力装置21から放射された音波が音響信号入力装置22により受け付けられるまでの時間計測を可能とする。検出部116は、受付部132によって受け付けられた受信信号に基づき、物体200を検出するとともに、移動体100と物体200との相対距離d及び相対速度Δvを推定する。
With reference to FIG. 12, the structure of the object detection apparatus 10 which concerns on the modification 1 is demonstrated.
The object detection device 10 includes hardware including a processor 11, a storage device 12, and an audio interface 13.
The object detection apparatus 10 includes a time synchronization unit 111, a detection unit 116, and a reception unit 132 as functional components. The reception unit 132 receives a reception signal including a reflected wave reflected by an object from the acoustic signal output device 21 mounted on the moving body 100 via the acoustic signal input device 22 mounted on the moving body 100. And accept. The time synchronization unit 111 synchronizes the operations of the acoustic signal output device 21 and the acoustic signal input device 22, and enables time measurement until the sound wave emitted from the acoustic signal output device 21 is received by the acoustic signal input device 22. To do. The detection unit 116 detects the object 200 based on the reception signal received by the reception unit 132 and estimates the relative distance d and the relative speed Δv between the moving body 100 and the object 200.
 なお、物体検出装置10は、図12に示す構成に、図1に示す一部のハードウェアと機能とを追加されてもよい。 Note that the object detection apparatus 10 may have some hardware and functions shown in FIG. 1 added to the configuration shown in FIG.
 <変形例2>
 実施の形態1では、時刻同期部111と、送信信号生成部112と、受信信号生成部113と、車両信号生成部114と、環境信号生成部115と、検出部116との各部の機能がソフトウェアで実現された。しかし、変形例2として、これらの各部の機能はハードウェアで実現されてもよい。この変形例2について、実施の形態1と異なる点を説明する。
<Modification 2>
In the first embodiment, the functions of the time synchronization unit 111, the transmission signal generation unit 112, the reception signal generation unit 113, the vehicle signal generation unit 114, the environment signal generation unit 115, and the detection unit 116 are software. Was realized. However, as a second modification, the functions of these units may be realized by hardware. The second modification will be described with respect to differences from the first embodiment.
 図13を参照して、変形例2に係る物体検出装置10の構成を説明する。
 各部の機能がハードウェアで実現される場合、物体検出装置10は、プロセッサ11と記憶装置12とに代えて、処理回路15を備える。処理回路15は、物体検出装置10の各部の機能及び記憶装置12の機能を実現する専用の電子回路である。
With reference to FIG. 13, the structure of the object detection apparatus 10 which concerns on the modification 2 is demonstrated.
When the functions of the respective units are realized by hardware, the object detection device 10 includes a processing circuit 15 instead of the processor 11 and the storage device 12. The processing circuit 15 is a dedicated electronic circuit that realizes the functions of each unit of the object detection device 10 and the function of the storage device 12.
 処理回路15は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)が想定される。
 各部の機能を1つの処理回路15で実現してもよいし、各部の機能を複数の処理回路15に分散させて実現してもよい。
The processing circuit 15 is assumed to be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). Is done.
The function of each part may be realized by one processing circuit 15, or the function of each part may be realized by being distributed to a plurality of processing circuits 15.
 <変形例3>
 変形例3として、時刻同期部111と、送信信号生成部112と、受信信号生成部113と、車両信号生成部114と、環境信号生成部115と、検出部116との一部の機能がハードウェアで実現され、他の機能がソフトウェアで実現されてもよい。つまり、物体検出装置10の各部のうち、一部の機能がハードウェアで実現され、他の機能がソフトウェアで実現されてもよい。
<Modification 3>
As a third modification, some functions of the time synchronization unit 111, the transmission signal generation unit 112, the reception signal generation unit 113, the vehicle signal generation unit 114, the environment signal generation unit 115, and the detection unit 116 are hard. It may be realized by hardware, and other functions may be realized by software. That is, some of the functions of the object detection device 10 may be realized by hardware, and other functions may be realized by software.
 プロセッサ11と記憶装置12とオーディオインタフェース13と車載インタフェース14と処理回路15とを、総称して「プロセッシングサーキットリー」という。つまり、各部の機能は、プロセッシングサーキットリーにより実現される。 The processor 11, the storage device 12, the audio interface 13, the in-vehicle interface 14, and the processing circuit 15 are collectively referred to as “processing circuitries”. That is, the function of each part is realized by a processing circuit.
 <変形例4>
 実施の形態1では、図2に示すように、音響信号出力装置21と音響信号入力装置22を移動体100の前側の近接した位置に配置し、移動体100の前方を走行する車両である物体200を検出する例を説明した。しかし、これに限られず、音響信号出力装置21と音響信号入力装置22を移動体100の後側の近接した位置に配置して、移動体100の後方を走行する車両である物体200を検出することもできる。また、音響信号出力装置21と音響信号入力装置22を移動体100の前方側と後方側との両方に配置し、前方及び後方を走行する車両である物体200を検出するようにしてもよい。
 また、物体200は、車両に限らず、歩行者、建物のような構造物といった移動速度が音速以下の他の種類であってもよい。
<Modification 4>
In the first embodiment, as shown in FIG. 2, the acoustic signal output device 21 and the acoustic signal input device 22 are arranged at positions close to each other on the front side of the moving body 100 and are objects that are vehicles traveling in front of the moving body 100. An example of detecting 200 has been described. However, the present invention is not limited to this, and the acoustic signal output device 21 and the acoustic signal input device 22 are arranged at close positions on the rear side of the moving body 100 to detect the object 200 that is a vehicle traveling behind the moving body 100. You can also Further, the acoustic signal output device 21 and the acoustic signal input device 22 may be arranged on both the front side and the rear side of the moving body 100 to detect the object 200 that is a vehicle traveling forward and backward.
Further, the object 200 is not limited to a vehicle, and may be other types such as a pedestrian and a building-like structure whose moving speed is equal to or lower than the sound speed.
 また、音響信号出力装置21と音響信号入力装置22とは近接していなくても、音響信号入力装置22は音響信号出力装置21から放射した出力信号が物体200に反射して発生する反射波を収集できる位置に配置されていればよい。
 また、図2に示す状況では、音響信号入力装置22は移動体100の前側に1個配置されていた。しかし、音響信号入力装置22の個数は1個に限られず、2個以上配置されてもよい。音響信号入力装置22が複数個配置された場合、検出部116は、音響信号入力装置22それぞれで収集された受信信号に対する推定結果を総合する。
推定結果を総合するとは、具体例としては、それぞれの推定値の平均をとるといったことである。これにより、推定精度を向上されることができる。
Even if the acoustic signal output device 21 and the acoustic signal input device 22 are not close to each other, the acoustic signal input device 22 generates a reflected wave generated by reflecting the output signal radiated from the acoustic signal output device 21 to the object 200. It only needs to be arranged at a position where it can be collected.
In the situation shown in FIG. 2, one acoustic signal input device 22 is disposed on the front side of the moving body 100. However, the number of acoustic signal input devices 22 is not limited to one and may be two or more. When a plurality of acoustic signal input devices 22 are arranged, the detection unit 116 synthesizes estimation results for reception signals collected by the acoustic signal input devices 22.
To summarize the estimation results is to take the average of the respective estimated values as a specific example. Thereby, estimation accuracy can be improved.
 実施の形態2.
 物体200が移動体100の斜め側方に位置する場合、1個の音響信号入力装置22による受信信号から推定される相対速度Δvは、物体200の相対速度Δvの斜め方向成分になってしまう。
 実施の形態2は、少なくとも2つの音響信号入力装置22を利用して物体200を検出する点が実施の形態1と異なる。これにより、実施の形態2では、物体200が移動体100の斜め側方に位置する場合にも、相対速度Δvを推定可能になる。実施の形態2では、この異なる点を説明する。
Embodiment 2. FIG.
When the object 200 is positioned on the oblique side of the moving body 100, the relative velocity Δv estimated from the received signal from one acoustic signal input device 22 becomes an oblique component of the relative velocity Δv of the object 200.
The second embodiment is different from the first embodiment in that the object 200 is detected using at least two acoustic signal input devices 22. Thus, in the second embodiment, it is possible to estimate the relative speed Δv even when the object 200 is located obliquely to the moving body 100. In the second embodiment, this different point will be described.
 ***構成の説明***
 図14を参照して、実施の形態2に係る物体検出装置10の構成を説明する。
 物体検出装置10は、少なくとも2つの音響信号入力装置22を備える。実施の形態2では、物体検出装置10は、音響信号入力装置22Aと、音響信号入力装置22Bとを備える。
 また、物体検出装置10は、各音響信号入力装置22に対応する受付部132を備える。実施の形態2では、物体検出装置10は、音響信号入力装置22Aに対応する受付部132Aと、音響信号入力装置22Bに対応する受付部132Bとを備える。
*** Explanation of configuration ***
With reference to FIG. 14, the structure of the object detection apparatus 10 which concerns on Embodiment 2 is demonstrated.
The object detection device 10 includes at least two acoustic signal input devices 22. In the second embodiment, the object detection device 10 includes an acoustic signal input device 22A and an acoustic signal input device 22B.
Further, the object detection device 10 includes a reception unit 132 corresponding to each acoustic signal input device 22. In the second embodiment, the object detection device 10 includes a reception unit 132A corresponding to the acoustic signal input device 22A and a reception unit 132B corresponding to the acoustic signal input device 22B.
 ***動作の説明***
 図15から図17を参照して、実施の形態2に係る物体検出装置10の動作を説明する。
 実施の形態2に係る物体検出装置10の動作は、実施の形態2に係る物体検出方法に相当する。また、実施の形態2に係る物体検出装置10の動作は、実施の形態2に係る物体検出プログラムの処理に相当する。
*** Explanation of operation ***
The operation of the object detection apparatus 10 according to the second embodiment will be described with reference to FIGS. 15 to 17.
The operation of the object detection apparatus 10 according to the second embodiment corresponds to the object detection method according to the second embodiment. The operation of the object detection apparatus 10 according to the second embodiment corresponds to the processing of the object detection program according to the second embodiment.
 図15を参照して、実施の形態2に係る移動体100と、移動体100の周囲に存在する物体200との状況を説明する。実施の形態2では、物体200は、移動体100の左側方を走行する車両とする。
 図15には、音響信号出力装置21及び2つの音響信号入力装置22が左側方に設置された移動体100と、物体200とが示されている。図15では、音響信号入力装置22Aは音響信号出力装置21と近接した位置に配置され、音響信号入力装置22Bは音響信号出力装置21と離れた位置に配置されている。
 この状況では、音響信号出力装置21及び音響信号入力装置22Aと、音響信号入力装置22Bとの間は、距離d12である。また、音響信号出力装置21から物体200までの最短経路長と、反射波の発生源から音響信号入力装置22Aまでの最短経路長は、いずれもほぼ等しく距離dとなる。反射波の発生源は、音響信号出力装置21から出力された送信信号が物体200に最短で到達する位置である。さらに、反射波の発生源から音響信号入力装置22Bまでの最短経路長は、距離dとなる。
 また、音響信号出力装置21及び音響信号入力装置22Aと、反射波の発生源とのなす角はいずれもほぼ等しくθとなる。また、音響信号入力装置22Bと反射波の発生源とのなす角はθとなる。なお、角度は移動体100の前方を0°、後方を180°として反時計回りに定義される。
 また、図15に示すように、移動体100は速度vで走行し、物体200は速度vで走行する。この状況において、相対距離d及び相対距離dと、相対速度Δv=v―vとの推定を行う。
With reference to FIG. 15, the situation of the moving body 100 according to Embodiment 2 and the object 200 existing around the moving body 100 will be described. In the second embodiment, the object 200 is a vehicle that runs on the left side of the moving body 100.
FIG. 15 shows a moving body 100 in which an acoustic signal output device 21 and two acoustic signal input devices 22 are installed on the left side, and an object 200. In FIG. 15, the acoustic signal input device 22 </ b> A is disposed at a position close to the acoustic signal output device 21, and the acoustic signal input device 22 </ b> B is disposed at a position away from the acoustic signal output device 21.
In this situation, an acoustic signal output device 21 and an audio signal input device 22A, between the acoustic signal input device 22B is the distance d 12. Also, the shortest path length and the shortest path length from the acoustic signal output device 21 to the object 200, the source of the reflected wave to the acoustic signal input device 22A are both becomes substantially equal distance d 1. The generation source of the reflected wave is a position where the transmission signal output from the acoustic signal output device 21 reaches the object 200 in the shortest time. Further, the shortest path length to the audio signal input device 22B from the source of the reflected wave is a distance d 2.
Further, the angles formed by the acoustic signal output device 21 and the acoustic signal input device 22A and the reflected wave generation source are almost equal to θ 1 . Further, the angle between the acoustic signal input unit 22B and the source of the reflected wave becomes theta 2. Note that the angle is defined counterclockwise with 0 ° for the front of the moving body 100 and 180 ° for the rear.
Further, as shown in FIG. 15, the moving body 100 travels at a speed v s, the object 200 travels at a speed v o. In this situation, the relative distance d 1 and the relative distance d 2 and the relative speed Δv = v o −v s are estimated.
 全体的な動作と、ステップST1の詳細動作とは、実施の形態1と同じであるため、説明を省略する。 Since the overall operation and the detailed operation in step ST1 are the same as those in the first embodiment, description thereof is omitted.
 **ステップST2の詳細動作**
 図16を参照して、実施の形態2に係るステップST2の動作を詳細に説明する。
 ステップST22の処理は、図7のステップST22の処理と同じである。
** Detailed operation of step ST2 **
With reference to FIG. 16, the operation in step ST2 according to the second embodiment will be described in detail.
The process of step ST22 is the same as the process of step ST22 of FIG.
 ステップST21Bの受付処理では、受付部132Aは、音響信号入力装置22Aによって常時収集される受信信号1のうち、最新T秒間分の受信信号1をメモリ121に記憶しておく。同様に、受付部132Bは、音響信号入力装置22Bによって常時収集される受信信号2のうち、最新T秒間分の受信信号2をメモリ121に記憶しておく。 In the reception process of step ST21B, the reception unit 132A stores the reception signal 1 for the latest T seconds in the memory 121 among the reception signals 1 that are always collected by the acoustic signal input device 22A. Similarly, the reception unit 132B stores the reception signal 2 for the latest T seconds in the memory 121 among the reception signals 2 that are always collected by the acoustic signal input device 22B.
 ステップST23Bの送信処理では、受信信号生成部113は、メモリ121に記憶された最新T秒間分の受信信号1,2を読み出し、読み出された受信信号1,2を検出部116に送信する。また、この際、車両信号生成部114は、車両情報取得部142を介して移動体100の速度を取得して、検出部116に送信する。同様に、環境信号生成部115は、環境情報取得部143を介して外部環境情報を取得して、検出部116に送信する。 In the transmission process of step ST23B, the reception signal generation unit 113 reads the reception signals 1 and 2 for the latest T seconds stored in the memory 121, and transmits the read reception signals 1 and 2 to the detection unit 116. At this time, the vehicle signal generation unit 114 acquires the speed of the moving body 100 via the vehicle information acquisition unit 142 and transmits it to the detection unit 116. Similarly, the environment signal generation unit 115 acquires external environment information via the environment information acquisition unit 143 and transmits the external environment information to the detection unit 116.
 **ステップST3の詳細動作**
 図17を参照して、実施の形態2に係るステップST3の動作を詳細に説明する。
 ステップST32からステップST33の処理は、図8のステップST32からステップST33の処理と同じである。また、ステップST35の処理は、図8のステップST35の処理と同じである。
** Detailed operation of step ST3 **
With reference to FIG. 17, the operation in step ST3 according to the second embodiment will be described in detail.
The processing from step ST32 to step ST33 is the same as the processing from step ST32 to step ST33 in FIG. Moreover, the process of step ST35 is the same as the process of step ST35 of FIG.
 ステップST31Bの相関処理では、検出部116は、ステップST2で受信信号生成部113によって送信された受信信号1,2それぞれと、少なくとも2種類の参照信号1,2それぞれとについて、相互相関関数を計算する。
 実施の形態2では、2種類の参照信号1,2がメモリ121に記憶されているとする。そして、検出部116は、2種類の参照信号1,2をメモリ121から読み出して、受信信号1,2それぞれと参照信号1,2それぞれとについて、相互相関関数を計算する。検出部116は、計算された各相互相関関数をメモリ121に書き込む。
In the correlation process in step ST31B, the detection unit 116 calculates a cross-correlation function for each of the reception signals 1 and 2 transmitted by the reception signal generation unit 113 in step ST2 and each of at least two types of reference signals 1 and 2. To do.
In the second embodiment, it is assumed that two types of reference signals 1 and 2 are stored in the memory 121. Then, the detection unit 116 reads the two types of reference signals 1 and 2 from the memory 121 and calculates a cross-correlation function for each of the received signals 1 and 2 and each of the reference signals 1 and 2. The detection unit 116 writes the calculated cross-correlation functions in the memory 121.
 ステップST34Bの第1計算処理では、検出部116は、移動体100と検出された物体200との相対距離d及びドップラーシフト率ρを推定する。検出部116は、相対距離d及びドップラーシフト率ρの推定値をメモリ121に書き込む。 In the first calculation process of step ST34B, the detection unit 116 estimates the relative distance d between the moving body 100 and the detected object 200 and the Doppler shift rate ρ. The detection unit 116 writes the estimated values of the relative distance d and the Doppler shift rate ρ in the memory 121.
 相対距離dの推定方法を説明する。
 検出部116は、受信信号1,2それぞれについて、図8のステップST34の処理と同じ処理により、数7に従いピークシフト量の平均を計算する。受信信号1について計算されたピークシフト量の平均Δt と、受信信号2について計算されたピークシフト量の平均Δt とを用いて、検出部116は、数15により相対距離d,dを推定する。
Figure JPOXMLDOC01-appb-M000015
 ここで、相対距離dに関しては、送信信号が受信されるまでの伝送経路は、音響信号出力装置21→物体200(反射波の発生源)→音響信号入力装置22Aとなる。そのため、経路長はd+dとなる。したがって、相対距離dの推定値は、送受信に要する時間を距離に換算した値を1/2倍して計算される。
 また、相対距離dに関しては、送信信号が受信されるまでの伝送経路は、音響信号出力装置21→物体200(反射波の発生源)→音響信号入力装置22Bとなるため、経路長はd+dとなる。そのため、相対距離dの推定値は、送受信に要する時間を距離に換算した値から相対距離dを減算して計算される。
A method for estimating the relative distance d will be described.
The detection unit 116 calculates the average peak shift amount according to Equation 7 for each of the received signals 1 and 2 by the same process as the process of step ST34 in FIG. Using the average peak shift amount Δt 1 calculated for the received signal 1 and the average peak shift amount Δt 2 calculated for the received signal 2, the detection unit 116 calculates the relative distance d 1 , to estimate the d 2.
Figure JPOXMLDOC01-appb-M000015
Here, with respect to the relative distance d 1, the transmission path to the transmission signal is received, the audio signal output device 21 → the object 200 (the source of the reflected wave) → acoustic signal input device 22A. Therefore, the path length is d 1 + d 1 . Therefore, the estimated value of the relative distance d 1 is calculated by 1/2 a value obtained by converting the time required for transmission and reception distance.
Regarding the relative distance d 2 , since the transmission path until the transmission signal is received is the acoustic signal output device 21 → the object 200 (source of reflected wave) → the acoustic signal input device 22B, the path length is d. a 1 + d 2. Therefore, estimates of the relative distance d 2 is calculated by subtracting the relative distance d 1 from the value obtained by converting the time required for transmission and reception distance.
 ドップラーシフト率ρの推定方法を説明する。
 検出部116は、受信信号1,2それぞれについて、図8のステップST34の処理と同じ処理により、数10に従いドップラーシフト率ρを推定する。図15に示す状況において、音響信号入力装置22Aで収集された受信信号から計算されたドップラーシフト率ρの推定値をρとし、音響信号入力装置22Bで収集された受信信号から計算されたドップラーシフト率ρの推定値をρとする。
A method for estimating the Doppler shift rate ρ will be described.
The detection unit 116 estimates the Doppler shift rate ρ according to Equation 10 for each of the received signals 1 and 2 by the same process as the process of step ST34 of FIG. In the situation shown in FIG. 15, an estimate of the Doppler shift rate [rho calculated from the received signals collected by the audio signal input unit 22A and [rho 1, were calculated from the received signals collected by the audio signal input device 22B Doppler the estimated value of the shift rate ρ and ρ 2.
 ステップST36Bの第2計算処理では、検出部116は、ステップST34Bで推定されたドップラーシフト率ρの推定値ρから相対速度Δvを推定するとともに、推定値ρから相対速度Δvを推定する。 In the second calculation process in step ST36B, detector 116, along with the estimates from the estimated value [rho 1 of the Doppler shift rate estimated [rho relative speed Delta] v 1 in step ST34B, estimating the relative velocity Delta] v 2 from the estimated value [rho 2 To do.
 相対速度Δvの推定方法を説明する。
 図15に示す状況において、推定値ρ,ρはそれぞれ数16によって表される。
Figure JPOXMLDOC01-appb-M000016
 ここで、cosθ及びcosθの値は、図15における、3辺の長さがd12、d、dの三角形から三辺測量の原理により計算することができる。距離d12は音響信号入力装置22Aと音響信号入力装置22Bとの間の距離のため、既知の値である。また、相対距離d及び相対距離dは、ステップST34Bで計算された相対距離の推定値を用いることができる。
 そこで、検出部116は、距離d12と、相対距離dと、相対距離dとの値から、cosθ及びcosθを数17により計算する。
Figure JPOXMLDOC01-appb-M000017
 検出部116は、移動体100の速度vと、音速Vと、計算されたcosθ及びcosθの値とを、数16の推定値ρ,ρそれぞれの式に代入し、速度vについて解く。これにより、検出部116は、音響信号入力装置22A,22Bそれぞれに対応した相対速度Δv=v―vの推定値Δv,Δvを得る。
A method for estimating the relative speed Δv will be described.
In the situation shown in FIG. 15, the estimated values ρ 1 and ρ 2 are each expressed by Expression 16.
Figure JPOXMLDOC01-appb-M000016
Here, the values of cos θ 1 and cos θ 2 can be calculated based on the principle of triangulation from the triangles of three sides d 12 , d 1 , and d 2 in FIG. The distance d 12 because of the distance between the acoustic signal input unit 22A and the acoustic signal input unit 22B, a known value. Further, the relative distance d 1 and the relative distance d 2 can be used an estimate of the calculated relative distance in step ST34B.
Therefore, the detection unit 116 calculates cos θ 1 and cos θ 2 by Expression 17 from the values of the distance d 12 , the relative distance d 1, and the relative distance d 2 .
Figure JPOXMLDOC01-appb-M000017
The detection unit 116 substitutes the velocity v s of the moving body 100, the sound velocity V s, and the calculated values of cos θ 1 and cos θ 2 in the respective equations of the estimated values ρ 1 and ρ 2 of Equation 16, and the velocity Solve for vo . Thus, the detection unit 116 obtains the acoustic signal input device 22A, the estimated value Delta] v 1 relative velocity Δv = v o -v s corresponding to each 22B, a Delta] v 2.
 ステップST37Bの総合処理では、検出部116は、ステップST36Bで推定された音響信号入力装置22A,22Bそれぞれに対応した推定値Δv,Δvを総合して、相対速度Δvを推定する。
 具体的には、実施の形態2では、検出部116は、推定値Δv,Δvの平均を計算することにより、相対速度Δvを推定する。検出部116は、推定された相対速度Δvをメモリ121に書き込む。
 なお、検出部116は、推定値Δv,Δvの分布の最頻値を相対速度Δvとする方法や、外れ値判定処理を行い、外れ値でない推定結果だけを用いて相対速度Δvを計算するといった、他の方法により、相対速度Δvを計算してもよい。
In the overall processing in step ST37B, the detection unit 116 estimates the relative speed Δv by integrating the estimated values Δv 1 and Δv 2 corresponding to the acoustic signal input devices 22A and 22B estimated in step ST36B.
Specifically, in Embodiment 2, the detection unit 116 estimates the relative speed Δv by calculating the average of the estimated values Δv 1 and Δv 2 . The detection unit 116 writes the estimated relative speed Δv in the memory 121.
Note that the detection unit 116 performs a method of setting the mode of the distribution of the estimated values Δv 1 and Δv 2 as a relative velocity Δv, or performs an outlier determination process, and calculates the relative velocity Δv using only an estimation result that is not an outlier. The relative speed Δv may be calculated by another method such as.
 ステップST38Bの出力処理では、検出部116は、物体200が検出された場合には、ステップST34Bで推定された相対距離d,dの推定値と、ステップST37Bで推定された相対速度Δvの推定値とをメモリ121から読み出す。そして、検出部116は、読み出された相対距離d,d及び相対速度Δvの推定値を出力する。
 一方、検出部116は、物体200が検出されなかった場合には、ステップST35でメモリ121に書き込まれたフラグ、あるいは、相対距離d,d及び相対速度Δvの推定値を読み出す。そして、検出部116は、読み出されたフラグ、あるいは、相対距離d,d及び相対速度Δvの推定値を出力する。
In the output process of step ST38B, when the object 200 is detected, the detection unit 116 calculates the estimated values of the relative distances d 1 and d 2 estimated in step ST34B and the relative velocity Δv estimated in step ST37B. The estimated value is read from the memory 121. Then, the detection unit 116 outputs the estimated values of the read relative distances d 1 and d 2 and the relative speed Δv.
On the other hand, when the object 200 is not detected, the detection unit 116 reads the flag written in the memory 121 in step ST35 or the estimated values of the relative distances d 1 and d 2 and the relative speed Δv. Then, the detecting unit 116 outputs the read flag or the estimated values of the relative distances d 1 and d 2 and the relative speed Δv.
 なお、ステップST38Bでは、検出部116は、相対距離の推定値d,d及び既知の距離d12から、三辺測量の原理により物体200の相対位置座標を計算し、出力してもよい。 In step ST38B, the detection unit 116 may calculate the relative position coordinates of the object 200 from the estimated relative distance values d 1 and d 2 and the known distance d 12 according to the principle of triangulation and output the calculated coordinates. .
 ***実施の形態2の効果***
 以上のように、実施の形態2に係る物体検出装置10は、複数の受信信号から得た推定結果に三辺測量の原理を適用する。これにより、物体200が移動体100の側方に存在し、かつ、送信信号の伝送経路に角度が付いている場合にも、相対距離d及び相対速度Δvを推定することができる。
 なお、物体200が移動体100の真横に存在する場合には、実施の形態1と同様に、音響信号入力装置22を移動体100の側方に1個配置することで相対距離d及び相対速度Δvの推定が可能である。
*** Effects of Embodiment 2 ***
As described above, the object detection apparatus 10 according to Embodiment 2 applies the principle of triangulation to estimation results obtained from a plurality of received signals. Thereby, even when the object 200 exists on the side of the moving body 100 and the transmission path of the transmission signal has an angle, the relative distance d and the relative speed Δv can be estimated.
When the object 200 is present beside the moving body 100, the relative distance d and the relative speed can be obtained by arranging one acoustic signal input device 22 on the side of the moving body 100 as in the first embodiment. Δv can be estimated.
 ***他の構成***
 <変形例5>
 実施の形態2では、図15に示すように、移動体100の左側に2つの音響信号入力装置22A,22Bが配置された。これにより、移動体100の左側に存在する物体200が検出された。変形例5として、移動体100の右側に2つの音響信号入力装置22を配置して、移動体100の右側に存在する物体200を検出してもよい。また、移動体100の左右両側にそれぞれ2つの音響信号入力装置22を配置して、移動体100の左右両側に存在する物体200を検出するようにしてもよい。
*** Other configurations ***
<Modification 5>
In the second embodiment, as shown in FIG. 15, two acoustic signal input devices 22 </ b> A and 22 </ b> B are arranged on the left side of the moving body 100. Thereby, the object 200 existing on the left side of the moving body 100 is detected. As a fifth modification, two acoustic signal input devices 22 may be arranged on the right side of the moving body 100 to detect the object 200 present on the right side of the moving body 100. Alternatively, two acoustic signal input devices 22 may be disposed on both the left and right sides of the moving body 100 to detect the object 200 present on both the left and right sides of the moving body 100.
 <変形例6>
 実施の形態2では、2つの音響信号入力装置22を配置するとした。しかし、変形例6として、3つ以上の音響信号入力装置22が配置されてもよい。
 3つ以上の音響信号入力装置22が配置された場合には、ステップST34Bで検出部116は、各音響信号入力装置22についての相対距離d及びドップラーシフト率ρを推定する。また、ステップST36BからステップST37Bで検出部116は、各音響信号入力装置22に対応した相対速度Δvを計算し、計算された相対速度Δvを総合する。
 3つ以上の音響信号入力装置22を用いることにより、3辺測量を複数回行うことになり、相対速度Δvと物体200の相対位置座標との推定精度を高めることが可能になる。
<Modification 6>
In the second embodiment, two acoustic signal input devices 22 are arranged. However, as a sixth modification, three or more acoustic signal input devices 22 may be arranged.
When three or more acoustic signal input devices 22 are arranged, the detection unit 116 estimates the relative distance d and the Doppler shift rate ρ for each acoustic signal input device 22 in step ST34B. Further, in step ST36B to step ST37B, the detection unit 116 calculates the relative speed Δv corresponding to each acoustic signal input device 22, and integrates the calculated relative speed Δv.
By using three or more acoustic signal input devices 22, triangulation is performed a plurality of times, and the estimation accuracy between the relative velocity Δv and the relative position coordinates of the object 200 can be increased.
 実施の形態3.
 物体200で反射した反射波と、音響信号出力装置21から送信され、物体200で反射していない直接音とが重なる距離では、相互相関関数にピークが立たず、物体200が検出されない場合がある。
 実施の形態3は、少なくとも2つの音響信号出力装置21を利用して物体200を検出する点が実施の形態2と異なる。これにより、実施の形態3では、反射波と直接音とが重なる距離でも、相互相関関数にピークが立ち、物体200を精度よく検出可能になる。実施の形態3では、この異なる点を説明する。
Embodiment 3 FIG.
At a distance where the reflected wave reflected by the object 200 and the direct sound transmitted from the acoustic signal output device 21 and not reflected by the object 200 overlap, the cross-correlation function does not peak and the object 200 may not be detected. .
The third embodiment is different from the second embodiment in that the object 200 is detected using at least two acoustic signal output devices 21. As a result, in the third embodiment, the cross-correlation function has a peak even at a distance where the reflected wave and the direct sound overlap, and the object 200 can be detected with high accuracy. In the third embodiment, this different point will be described.
 ***構成の説明***
 図18を参照して、実施の形態3に係る物体検出装置10の構成を説明する。
 物体検出装置10は、少なくとも2つの音響信号出力装置21を備える。実施の形態3では、物体検出装置10は、音響信号出力装置21Aと、音響信号出力装置21Bとを備える。
 また、物体検出装置10は、各音響信号出力装置21に対応する放射部131を備える。実施の形態3では、物体検出装置10は、音響信号出力装置21Aに対応する放射部131Aと、音響信号出力装置21Bに対応する放射部131Bとを備える。
*** Explanation of configuration ***
With reference to FIG. 18, the structure of the object detection apparatus 10 which concerns on Embodiment 3 is demonstrated.
The object detection device 10 includes at least two acoustic signal output devices 21. In the third embodiment, the object detection device 10 includes an acoustic signal output device 21A and an acoustic signal output device 21B.
Further, the object detection device 10 includes a radiation unit 131 corresponding to each acoustic signal output device 21. In the third embodiment, the object detection device 10 includes a radiation unit 131A corresponding to the acoustic signal output device 21A and a radiation unit 131B corresponding to the acoustic signal output device 21B.
 ***動作の説明***
 図19から図21を参照して、実施の形態3に係る物体検出装置10の動作を説明する。
 実施の形態3に係る物体検出装置10の動作は、実施の形態3に係る物体検出方法に相当する。また、実施の形態3に係る物体検出装置10の動作は、実施の形態3に係る物体検出プログラムの処理に相当する。
*** Explanation of operation ***
The operation of the object detection apparatus 10 according to the third embodiment will be described with reference to FIGS.
The operation of the object detection apparatus 10 according to the third embodiment corresponds to the object detection method according to the third embodiment. The operation of the object detection apparatus 10 according to the third embodiment corresponds to the processing of the object detection program according to the third embodiment.
 図19を参照して、実施の形態3に係る移動体100と、移動体100の周囲に存在する物体200との状況を説明する。実施の形態3では、物体200は、移動体100の左側方を走行する車両とする。
 図19には、2つの音響信号出力装置21及び2つの音響信号入力装置22が左側方に設置された移動体100と、物体200とが示されている。図19では、音響信号入力装置22Aは音響信号出力装置21Aと近接した位置に配置され、音響信号入力装置22Bは音響信号出力装置21Bと近接した位置に配置されている。
 この状況では、音響信号出力装置21A及び音響信号入力装置22Aと、音響信号出力装置21B及び音響信号入力装置22Bとの間は、距離d12である。また、音響信号出力装置21Aから物体200までの最短経路長と、音響信号出力装置21Aから出力された送信信号の反射波の発生源から音響信号入力装置22Aまでの最短経路長は、いずれもほぼ等しく距離dA1となる。この反射波の発生源から音響信号入力装置22Bまでの最短経路長は、距離dA2となる。また、音響信号出力装置21Bから物体200までの最短経路長と、音響信号出力装置21Bから出力された送信信号の反射波の発生源から音響信号入力装置22Bまでの最短経路長は、いずれもほぼ等しく距離dB1となる。この反射波の発生源から音響信号入力装置22Aまでの最短経路長は、距離dB2となる。
 また、音響信号出力装置21A及び音響信号入力装置22Aと、音響信号出力装置21Aから出力された送信信号の反射波の発生源とのなす角はいずれもほぼ等しくθA1となる。音響信号入力装置22Bとこの反射波の発生源とのなす角はθA2となる。また、音響信号出力装置21B及び音響信号入力装置22Bと、音響信号出力装置21Bから出力された送信信号の反射波の発生源とのなす角はいずれもほぼ等しくθB1となる。音響信号入力装置22Aとこの反射波の発生源とのなす角はθB2となる。
 また、図19に示すように、移動体100は速度vで走行し、物体200は速度vで走行する。この状況において、相対距離d及び相対距離dと、相対速度Δv=v―vとの推定を行う。
Referring to FIG. 19, the situation of moving body 100 according to Embodiment 3 and object 200 existing around moving body 100 will be described. In the third embodiment, the object 200 is a vehicle traveling on the left side of the moving body 100.
FIG. 19 shows a moving body 100 in which two acoustic signal output devices 21 and two acoustic signal input devices 22 are installed on the left side, and an object 200. In FIG. 19, the acoustic signal input device 22A is disposed at a position close to the acoustic signal output device 21A, and the acoustic signal input device 22B is disposed at a position close to the acoustic signal output device 21B.
In this situation, between the acoustic signal output device 21A and the audio signal input device 22A, the audio signal output device 21B and the audio signal input unit 22B is the distance d 12. Further, the shortest path length from the acoustic signal output device 21A to the object 200 and the shortest path length from the reflected wave generation source of the transmission signal output from the acoustic signal output device 21A to the acoustic signal input device 22A are almost all. The distance d A1 is equal. The shortest path length to the audio signal input device 22B from the source of the reflected wave, the distance d A2. In addition, the shortest path length from the acoustic signal output device 21B to the object 200 and the shortest path length from the reflected wave generation source of the transmission signal output from the acoustic signal output device 21B to the acoustic signal input device 22B are almost all. The distance is equal to d B1 . The shortest path length from the reflected wave generation source to the acoustic signal input device 22A is the distance dB2 .
Further, the angles formed by the acoustic signal output device 21A and the acoustic signal input device 22A and the generation source of the reflected wave of the transmission signal output from the acoustic signal output device 21A are substantially equal to θ A1 . The angle formed between the acoustic signal input device 22B and the generation source of the reflected wave is θ A2 . In addition, the angles formed by the acoustic signal output device 21B and the acoustic signal input device 22B and the generation source of the reflected wave of the transmission signal output from the acoustic signal output device 21B are substantially equal to θ B1 . The angle formed by the acoustic signal input device 22A and the source of the reflected wave is θ B2 .
Further, as shown in FIG. 19, the moving body 100 travels at a speed v s, the object 200 travels at a speed v o. In this situation, the relative distance d 1 and the relative distance d 2 and the relative speed Δv = v o −v s are estimated.
 全体的な動作と、ステップST2の詳細動作とは、実施の形態2と同じであるため、説明を省略する。 Since the overall operation and the detailed operation in step ST2 are the same as those in the second embodiment, description thereof is omitted.
 **ステップST1の詳細動作**
 図20を参照して、実施の形態3に係るステップST1の動作を詳細に説明する。
 ステップST11の処理は、図4のステップST11の処理と同じである。
** Detailed operation of step ST1 **
Referring to FIG. 20, the operation of step ST1 according to Embodiment 3 will be described in detail.
The process of step ST11 is the same as the process of step ST11 of FIG.
 ステップST12Cの送信処理では、送信信号生成部112は、予めメモリ121に記憶しておいた信号波形を読み出し、読み出された信号波形を送信信号として放射部131A,131Bに送信する。そして、放射部131A,131Bは、音響信号出力装置21を介して、送信信号を音響信号として放射する。ここでは、放射部131Aが放射する送信信号を送信信号Aとし、放射部131Bが放射する送信信号を送信信号Bとする。
 ここで、音響信号出力装置21A,21Bから送信される送信信号A,Bは、異なる信号である。具体的には、送信信号A,Bは互いに無相関である。つまり、送信信号A,B同士の相互相関関数にピークが立たない。
In the transmission process of step ST12C, the transmission signal generation unit 112 reads a signal waveform stored in advance in the memory 121, and transmits the read signal waveform to the radiation units 131A and 131B as a transmission signal. The radiating units 131 </ b> A and 131 </ b> B radiate the transmission signal as an acoustic signal via the acoustic signal output device 21. Here, the transmission signal radiated from the radiating unit 131A is referred to as a transmission signal A, and the transmission signal radiated from the radiating unit 131B is referred to as a transmission signal B.
Here, the transmission signals A and B transmitted from the acoustic signal output devices 21A and 21B are different signals. Specifically, the transmission signals A and B are uncorrelated with each other. That is, no peak appears in the cross-correlation function between the transmission signals A and B.
 **ステップST3の詳細動作**
 図21を参照して、実施の形態3に係るステップST3の動作を詳細に説明する。
 ステップST32からステップST33の処理は、図17のステップST32からステップST33の処理と同じである。また、ステップST35の処理は、図17のステップST35の処理と同じである。
** Detailed operation of step ST3 **
With reference to FIG. 21, the operation of step ST3 according to Embodiment 3 will be described in detail.
The processing from step ST32 to step ST33 is the same as the processing from step ST32 to step ST33 in FIG. Moreover, the process of step ST35 is the same as the process of step ST35 of FIG.
 ステップST31Cの相関処理では、検出部116は、ステップST2で受信信号生成部113によって送信された受信信号1,2のそれぞれと、少なくとも4種類の参照信号A1,A2,B1,B2それぞれとについて、相互相関関数を計算する。参照信号A1,A2は、送信信号Aに対応した2種類の参照信号である。また、参照信号B1,B2は、送信信号Bに対応した2種類の参照信号である。
 実施の形態3では、4種類の参照信号A1,A2,B1,B2がメモリ121に記憶されているとする。そして、検出部116は、4種類の参照信号A1,A2,B1,B2をメモリ121から読み出して、受信信号1,2それぞれと参照信号A1,A2,B1,B2それぞれとについて、相互相関関数を計算する。検出部116は、計算された各相互相関関数をメモリ121に書き込む。
 つまり、検出部116は、音響信号出力装置21の数(2個)×音響信号入力装置22の数(2個)×2=8個の相互相関関数を計算する。
In the correlation process of step ST31C, the detection unit 116 performs the reception signals 1 and 2 transmitted by the reception signal generation unit 113 in step ST2 and at least four types of reference signals A1, A2, B1, and B2, respectively. Calculate the cross-correlation function. The reference signals A1 and A2 are two types of reference signals corresponding to the transmission signal A. The reference signals B1 and B2 are two types of reference signals corresponding to the transmission signal B.
In the third embodiment, it is assumed that four types of reference signals A1, A2, B1, and B2 are stored in the memory 121. Then, the detection unit 116 reads four types of reference signals A1, A2, B1, and B2 from the memory 121, and calculates cross-correlation functions for the received signals 1 and 2 and the reference signals A1, A2, B1, and B2, respectively. calculate. The detection unit 116 writes the calculated cross-correlation functions in the memory 121.
That is, the detection unit 116 calculates the number of acoustic signal output devices 21 (two) × the number of acoustic signal input devices 22 (two) × 2 = 8 cross-correlation functions.
 ここで、受信信号1及び受信信号2は、いずれにも送信信号Aに対応した反射波と、送信信号Bに対応した反射波とが混合されている。このとき、送信信号Aと送信信号Bとが互いに無相関であるので、受信信号1,2それぞれについて、参照信号A1,A2との相互相関関数を計算すると、送信信号Aの反射波に対応した相関ピークのみが立つ。同様に、受信信号1,2それぞれについて、参照信号B1,B2との相互相関関数を計算すると、送信信号Bの反射波に対応した相関ピークのみが立つ。
 そのため、送信信号Aの直接音が送信信号Bの反射波と重なった場合、及び、送信信号Bの直接音が送信信号Aの反射波と重なった場合でも、相互相関関数を計算することで、それぞれの反射波に対応するピークのみを抽出することができる。したがって、送信信号A,Bそれぞれに対応した相対距離d及び相対速度Δvを推定することができる。
Here, both the received signal 1 and the received signal 2 are a mixture of a reflected wave corresponding to the transmission signal A and a reflected wave corresponding to the transmission signal B. At this time, since the transmission signal A and the transmission signal B are uncorrelated with each other, calculating the cross-correlation function with the reference signals A1 and A2 for the reception signals 1 and 2 respectively corresponds to the reflected wave of the transmission signal A. Only the correlation peak stands. Similarly, when the cross-correlation function between the received signals 1 and 2 and the reference signals B1 and B2 is calculated, only a correlation peak corresponding to the reflected wave of the transmission signal B is generated.
Therefore, even when the direct sound of the transmission signal A overlaps with the reflected wave of the transmission signal B and when the direct sound of the transmission signal B overlaps with the reflected wave of the transmission signal A, by calculating the cross-correlation function, Only peaks corresponding to the respective reflected waves can be extracted. Therefore, the relative distance d and the relative speed Δv corresponding to the transmission signals A and B can be estimated.
 ステップST34Cの第1計算処理では、検出部116は、送信信号A、Bそれぞれについて、図17のステップST34Bと同様の処理により、相対距離d及びドップラーシフト率ρを推定する。検出部116は、相対距離d及びドップラーシフト率ρの推定値をメモリ121に書き込む。
 ここで、送信信号Aに対応した、各音響信号入力装置22から物体200までの相対距離dの推定値をそれぞれ推定値dA1,dA2とし、ドップラーシフト率ρの推定値をそれぞれ推定値ρA1,ρA2とする。また、送信信号Bに対応した、各音響信号入力装置22から物体200までの相対距離dの推定値をそれぞれ推定値dB1,dB2とし、ドップラーシフト率ρの推定値をそれぞれ推定値ρB1,ρB2とする。
In the first calculation process in step ST34C, the detection unit 116 estimates the relative distance d and the Doppler shift rate ρ for each of the transmission signals A and B by the same process as in step ST34B in FIG. The detection unit 116 writes the estimated values of the relative distance d and the Doppler shift rate ρ in the memory 121.
Here, the estimated values of the relative distance d from each acoustic signal input device 22 to the object 200 corresponding to the transmission signal A are respectively estimated values d A1 and d A2, and the estimated values of the Doppler shift rate ρ are respectively estimated values ρ. A1, and ρ A2. Further, the estimated values of the relative distance d from each acoustic signal input device 22 to the object 200 corresponding to the transmission signal B are respectively estimated values d B1 and d B2, and the estimated values of the Doppler shift rate ρ are respectively estimated values ρ B1. , Ρ B2 .
 ステップST36Cの第2計算処理では、検出部116は、図17のステップST36Bと同様の処理により、ステップST34Cで推定されたドップラーシフト率ρの推定値ρA1から相対速度ΔvA1を推定し、推定値ρA2から相対速度ΔvA2を推定し、推定値ρB1から相対速度ΔvB1を推定し、推定値ρB2から相対速度ΔvB2を推定する。 In the second calculation process in step ST36C, the detection unit 116 estimates the relative speed Δv A1 from the estimated value ρ A1 of the Doppler shift rate ρ estimated in step ST34C by the same process as in step ST36B in FIG. estimating the relative velocity Delta] v A2 from the value [rho A2, it estimates the relative velocity Delta] v B1 from the estimated value [rho B1, estimates the relative velocity Delta] v B2 from the estimated value [rho B2.
 相対速度Δvの推定方法を説明する。
 図19に示す状況において、推定値ρA1,ρA2,ρB1,ρB2はそれぞれ数18によって表される。
Figure JPOXMLDOC01-appb-M000018
 検出部116は、図17のステップST36Bのcosθとcosθとの値と同様に、三辺測量の原理に基づき、cosθA1とcosθA2とcosθB1とcosθB2の値を数19により計算する。
Figure JPOXMLDOC01-appb-M000019
 検出部116は、移動体100の速度vと、音速Vと、計算されたcosθA1とcosθA2とcosθB1とcosθB2の値とを、数18の推定値ρA1,ρA2,ρB1,ρB2それぞれの式に代入し、速度vについて解く。これにより、検出部116は、送信信号A,Bと音響信号入力装置22A,22Bとの各組合せに対応した相対速度Δv=v―vの推定値ΔvA1,ΔvA2,ΔvB1,ΔvB2を得る。
A method for estimating the relative speed Δv will be described.
In the situation shown in FIG. 19, the estimated values ρ A1 , ρ A2 , ρ B1 , and ρ B2 are each expressed by Equation 18.
Figure JPOXMLDOC01-appb-M000018
Detector 116, similar to the values of cos [theta] 1 and cos [theta] 2 in step ST36B shown in FIG. 17, based on the principle of trilateration to compute the number 19 the value of cos [theta] A1 and cos [theta] A2 and cos [theta] B1 and cos [theta] B2 .
Figure JPOXMLDOC01-appb-M000019
The detecting unit 116 calculates the velocity v s of the moving body 100, the sound velocity V s, and the calculated values of cos θ A1 , cos θ A2 , cos θ B1, and cos θ B2 from the estimated values ρ A1 , ρ A2 , ρ of Equation 18. B1, ρ B2 is assigned to each of the equation, solving for velocity v o. Thus, detector 116, the transmission signal A, B and the acoustic signal input device 22A, the relative speed corresponding to each combination of the 22B Δv = v o -v s estimate Δv A1, Δv A2, Δv B1 , Δv Get B2 .
 ステップST37Cの総合処理では、検出部116は、ステップST34Cで推定された推定値dA1,dB1を総合して相対距離dを推定するとともに、推定値dA2,dB2を総合して相対距離dを推定する。また、検出部116は、ステップST36Cで推定された推定値ΔvA1,ΔvA2,ΔvB1,ΔvB2を総合して、相対速度Δvを推定する。
 具体的には、実施の形態3では、検出部116は、推定値dA1,dB2の平均を計算することにより、相対距離dを推定し、推定値dA2,dB2の平均を計算することにより、相対距離dを推定する。また、検出部116は、推定値ΔvA1,ΔvA2,ΔvB1,ΔvB2の平均を計算することにより、相対速度Δvを推定する。検出部116は、推定された相対速度Δvをメモリ121に書き込む。
 なお、検出部116は、推定値ΔvA1,ΔvA2,ΔvB1,ΔvB2の分布の最頻値を相対速度Δvとする方法や、外れ値判定処理を行い、外れ値でない推定結果だけを用いて相対速度Δvを計算するといった、他の方法により、相対速度Δvを計算してもよい。
In the overall process of step ST37C, the detection unit 116 combines the estimated values d A1 and d B1 estimated in step ST34C to estimate the relative distance d 1 , and the estimated values d A2 and d B2 to estimate the distance d 2. In addition, the detection unit 116 estimates the relative speed Δv by combining the estimated values Δv A1 , Δv A2 , Δv B1 , Δv B2 estimated in step ST36C.
Specifically, in Embodiment 3, the detecting unit 116 calculates the average of the estimated values d A1 and d B2 to estimate the relative distance d 1 and calculates the average of the estimated values d A2 and d B2. by estimates a relative distance d 2. In addition, the detection unit 116 estimates the relative velocity Δv by calculating the average of the estimated values Δv A1 , Δv A2 , Δv B1 , Δv B2 . The detection unit 116 writes the estimated relative speed Δv in the memory 121.
Note that the detection unit 116 performs a method of setting the mode of the distribution of the estimated values Δv A1 , Δv A2 , Δv B1 , Δv B2 as a relative velocity Δv, or performs an outlier determination process, and uses only an estimation result that is not an outlier. The relative speed Δv may be calculated by another method such as calculating the relative speed Δv.
 ステップST38Cの出力処理では、検出部116は、物体200が検出された場合には、ステップST37Cで推定された相対距離d,dの推定値及び相対速度Δvの推定値をメモリ121から読み出す。そして、検出部116は、読み出された相対距離d,d及び相対速度Δvの推定値を出力する。
 一方、検出部116は、物体200が検出されなかった場合には、ステップST35でメモリ121に書き込まれたフラグ、あるいは、相対距離d,d及び相対速度Δvの推定値を読み出す。そして、検出部116は、読み出されたフラグ、あるいは、相対距離d,d及び相対速度Δvの推定値を出力する。
In the output process of step ST38C, when the object 200 is detected, the detection unit 116 reads the estimated values of the relative distances d 1 and d 2 and the estimated value of the relative velocity Δv estimated in step ST37C from the memory 121. . Then, the detection unit 116 outputs the estimated values of the read relative distances d 1 and d 2 and the relative speed Δv.
On the other hand, when the object 200 is not detected, the detection unit 116 reads the flag written in the memory 121 in step ST35 or the estimated values of the relative distances d 1 and d 2 and the relative speed Δv. Then, the detecting unit 116 outputs the read flag or the estimated values of the relative distances d 1 and d 2 and the relative speed Δv.
 なお、ステップST38Cでは、検出部116は、相対距離の推定値d,d及び既知の距離d12から、三辺測量の原理により物体200の相対位置座標を計算し、出力してもよい。 In step ST38C, the detection unit 116 may calculate and output the relative position coordinates of the object 200 from the estimated relative distance values d 1 and d 2 and the known distance d 12 according to the principle of triangulation. .
 ***実施の形態3の効果***
 以上のように、実施の形態3に係る物体検出装置10は、複数の送信信号を用いて物体200を検出する。これにより、反射波と直接音とが重なる距離でも、相互相関関数にピークが立ち、精度よく物体200を検出することができる。
*** Effects of Embodiment 3 ***
As described above, the object detection apparatus 10 according to Embodiment 3 detects the object 200 using a plurality of transmission signals. Thereby, even in the distance where the reflected wave and the direct sound overlap, the cross-correlation function has a peak, and the object 200 can be detected with high accuracy.
 ***他の構成***
 <変形例7>
 実施の形態3では、図19に示すように、移動体100の左側に2つの音響信号出力装置21A,21Bと、2つの音響信号入力装置22A,22Bとが配置された。これにより、移動体100の左側に存在する物体200が検出された。変形例7として、移動体100の右側に2つの音響信号出力装置21と、2つの音響信号入力装置22とを配置して、移動体100の右側に存在する物体200を検出してもよい。また、移動体100の左右両側にそれぞれ2つの音響信号出力装置21と、2つの音響信号入力装置22とを配置して、移動体100の左右両側に存在する物体200を検出するようにしてもよい。
*** Other configurations ***
<Modification 7>
In the third embodiment, as shown in FIG. 19, two acoustic signal output devices 21 </ b> A and 21 </ b> B and two acoustic signal input devices 22 </ b> A and 22 </ b> B are arranged on the left side of the moving body 100. Thereby, the object 200 existing on the left side of the moving body 100 is detected. As a seventh modification, two acoustic signal output devices 21 and two acoustic signal input devices 22 may be arranged on the right side of the moving body 100 to detect the object 200 present on the right side of the moving body 100. Further, two acoustic signal output devices 21 and two acoustic signal input devices 22 are arranged on the left and right sides of the moving body 100 to detect the object 200 existing on both the left and right sides of the moving body 100. Good.
 <変形例8>
 実施の形態3では、2つの音響信号出力装置21を配置するとした。しかし、変形例8として、3つ以上の音響信号出力装置21が配置されてもよい。
 3つ以上の音響信号出力装置21が配置された場合には、ステップST34Cで検出部116は、各音響信号出力装置21についての相対距離d及びドップラーシフト率ρを推定する。また、ステップST36Cで検出部116は、各音響信号出力装置21に対応した相対速度Δvを計算する。そして、ステップST37Cで検出部116は、計算された相対距離d及び相対速度Δvを総合する。
<Modification 8>
In the third embodiment, two acoustic signal output devices 21 are arranged. However, as a modified example 8, three or more acoustic signal output devices 21 may be arranged.
When three or more acoustic signal output devices 21 are arranged, the detection unit 116 estimates the relative distance d and the Doppler shift rate ρ for each acoustic signal output device 21 in step ST34C. In step ST36C, the detection unit 116 calculates the relative speed Δv corresponding to each acoustic signal output device 21. In step ST37C, the detection unit 116 combines the calculated relative distance d and relative speed Δv.
 <変形例9>
 実施の形態3では、異なる送信信号を放射する2つの音響信号出力装置21を配置するとした。しかし、変形例9として、1つの音響信号出力装置21から互いに無相関である信号を重ねあわせた送信信号を送信するようにしてもよい。これにより、実施の形態3と同様に、反射波と直接音とが重なる距離でも、相互相関関数にピークが立ち、精度よく物体200を検出することが可能になる。
 なお、無相関性の程度は必ずしも完全な無相関である必要はなく、物体検出装置10に必要とされる検出精度または測定性能を満足する程度であればよい。
<Modification 9>
In the third embodiment, two acoustic signal output devices 21 that radiate different transmission signals are arranged. However, as a ninth modification, a transmission signal obtained by superimposing uncorrelated signals from one acoustic signal output device 21 may be transmitted. As a result, as in the third embodiment, the cross-correlation function has a peak even at the distance where the reflected wave and the direct sound overlap, and the object 200 can be detected with high accuracy.
Note that the degree of decorrelation does not necessarily have to be completely uncorrelated, as long as it satisfies the detection accuracy or measurement performance required for the object detection apparatus 10.
 実施の形態4.
 実施の形態1~3では、移動体100の周囲に存在する物体200を検出することを説明した。実施の形態4では、検出された結果に基づき、移動体100を制御する点が実施の形態1~3と異なる。実施の形態4では、この異なる点を説明する。
 実施の形態4では、実施の形態1に機能追加した場合を説明する。しかし、実施の形態2,3に機能追加することも可能である。
Embodiment 4 FIG.
In the first to third embodiments, it has been described that the object 200 existing around the moving body 100 is detected. The fourth embodiment is different from the first to third embodiments in that the moving body 100 is controlled based on the detected result. In the fourth embodiment, this different point will be described.
In the fourth embodiment, a case where a function is added to the first embodiment will be described. However, it is possible to add functions to the second and third embodiments.
 ***構成の説明***
 図22を参照して、実施の形態4に係る物体検出装置10の構成を説明する。
 図22では、説明を分かりやすくするために、主に検出部116以外の機能構成要素については省略されている。
 車載インタフェース14は、車両制御ECU25に接続されている。車両制御ECU25は、ブレーキ、アクセル、ハンドルといった制御機器を制御する装置である。
*** Explanation of configuration ***
With reference to FIG. 22, the structure of the object detection apparatus 10 which concerns on Embodiment 4 is demonstrated.
In FIG. 22, functional components other than the detection unit 116 are mainly omitted for easy understanding.
The in-vehicle interface 14 is connected to the vehicle control ECU 25. The vehicle control ECU 25 is a device that controls control devices such as a brake, an accelerator, and a steering wheel.
 物体検出装置10は、機能構成要素として、制御部117を備える。制御部117の機能は、検出部116等と同様に、ソフトウェアによって実現される。 The object detection apparatus 10 includes a control unit 117 as a functional component. The function of the control unit 117 is realized by software, similar to the detection unit 116 and the like.
 ***動作の説明***
 図23を参照して、実施の形態4に係る物体検出装置10の動作を説明する。
 実施の形態4に係る物体検出装置10の動作は、実施の形態4に係る物体検出方法に相当する。また、実施の形態4に係る物体検出装置10の動作は、実施の形態4に係る物体検出プログラムの処理に相当する。
*** Explanation of operation ***
With reference to FIG. 23, operation | movement of the object detection apparatus 10 which concerns on Embodiment 4 is demonstrated.
The operation of the object detection apparatus 10 according to the fourth embodiment corresponds to the object detection method according to the fourth embodiment. The operation of the object detection apparatus 10 according to the fourth embodiment corresponds to the processing of the object detection program according to the fourth embodiment.
 ステップST41の物体検出処理では、物体検出装置10は、実施の形態1で説明した方法により、移動体100の周囲に存在する物体200を検出するとともに、相対距離d及び相対速度Δvを推定する。 In the object detection process in step ST41, the object detection device 10 detects the object 200 existing around the moving body 100 and estimates the relative distance d and the relative speed Δv by the method described in the first embodiment.
 ステップST42の制御処理では、制御部117は、ステップST41で物体200が検出された場合には、出力された相対距離d及び相対速度Δvに基づき移動体100を制御する制御信号を、車載インタフェース14を介して車両制御ECU25に送信する。これにより、制御部117は、移動体100の動作を制御する。
 具体例としては、移動体100の前方に物体200が検出され、相対距離dが基準距離以内であり、かつ、相対速度Δvが基準速度以上である場合には、移動体100が物体200に衝突する恐れがあるとして、制御部117はブレーキを制御する制御信号を車両制御ECU25に送信する。これにより、ブレーキが制御され、移動体100が減速して、移動体100が物体200に衝突することが防止される。
 また、他の具体例としては、車線変更時、横方向の物体200を検出し、移動予定先の場所に物体200がなければ車線変更するようにハンドル等を制御し、物体200があれば車線変更しないようにハンドル等を制御する。これにより、車線変更時に物体200に衝突することが防止される。
In the control process of step ST42, when the object 200 is detected in step ST41, the control unit 117 sends a control signal for controlling the moving body 100 based on the output relative distance d and relative speed Δv to the in-vehicle interface 14. To the vehicle control ECU 25. Thereby, the control unit 117 controls the operation of the moving body 100.
As a specific example, when the object 200 is detected in front of the moving body 100, the relative distance d is within the reference distance, and the relative speed Δv is equal to or higher than the reference speed, the moving body 100 collides with the object 200. Therefore, the control unit 117 transmits a control signal for controlling the brake to the vehicle control ECU 25. Thereby, the brake is controlled, the moving body 100 is decelerated, and the moving body 100 is prevented from colliding with the object 200.
As another specific example, when the lane is changed, the object 200 in the lateral direction is detected, and if there is no object 200 at the planned destination location, the steering wheel is controlled so that the lane is changed. Control the handle etc. so that it does not change. This prevents the object 200 from colliding with the lane change.
 <変形例10>
 実施の形態2~4では、実施の形態1と同じように、物体検出装置10の各部の機能がソフトウェアで実現された。しかし、実施の形態1の変形例2と同じように、物体検出装置10の各部の機能はハードウェアで実現されてもよい。また、実施の形態1の変形例3と同じように、物体検出装置10は、一部の機能がハードウェアで実現され、他の機能がソフトウェアで実現されてもよい。
<Modification 10>
In the second to fourth embodiments, as in the first embodiment, the functions of the respective units of the object detection device 10 are realized by software. However, as in the second modification of the first embodiment, the function of each unit of the object detection device 10 may be realized by hardware. As in the third modification of the first embodiment, the object detection device 10 may have some functions realized by hardware and other functions realized by software.
 以上、本発明の実施の形態について説明した。これらの実施の形態及び変形例のうち、いくつかを組み合わせて実施してもよい。また、いずれか1つ又はいくつかを部分的に実施してもよい。なお、本発明は、以上の実施の形態及び変形例に限定されるものではなく、必要に応じて種々の変更が可能である。 The embodiment of the present invention has been described above. You may implement combining some of these embodiment and modifications. Any one or several of them may be partially implemented. In addition, this invention is not limited to the above embodiment and modification, A various change is possible as needed.
 具体例としては、実施の形態1では、移動体100の前後方向に存在する物体200を検出することを説明した。また、実施の形態2,3では、移動体100の左右方向に存在する物体200を検出することを説明した。これらを組み合わせて、移動体100の前後左右方向に存在する物体200を検出できるように構成してもよい。
 また、音響信号出力装置21及び音響信号入力装置22を移動体100の底側に配置して、移動体100が走行する路面上に存在する物体200を検出してもよい。また、音響信号出力装置21及び音響信号入力装置22を移動体100の上側に配置して、移動体100の上側に存在する物体200を検出してもよい。
As a specific example, the first embodiment has described that the object 200 existing in the front-rear direction of the moving body 100 is detected. In the second and third embodiments, the detection of the object 200 that exists in the left-right direction of the moving body 100 has been described. These may be combined so that the object 200 existing in the front-rear and left-right directions of the moving body 100 can be detected.
Further, the acoustic signal output device 21 and the acoustic signal input device 22 may be arranged on the bottom side of the moving body 100 to detect the object 200 present on the road surface on which the moving body 100 travels. Further, the acoustic signal output device 21 and the acoustic signal input device 22 may be arranged on the upper side of the moving body 100 to detect the object 200 existing on the upper side of the moving body 100.
 10 物体検出装置、11 プロセッサ、12 記憶装置、111 時刻同期部、112 送信信号生成部、113 受信信号生成部、114 車両信号生成部、115 環境信号生成部、116 検出部、12 記憶装置、121 メモリ、122 ストレージ、13 オーディオインタフェース、131 放射部、132 受付部、14 車載インタフェース、141 時刻取得部、142 車両情報取得部、143 環境情報取得部、15 処理回路、21 音響信号出力装置、22 音響信号入力装置、23 車両情報ECU、24 センサECU、100 移動体、200 物体。 10 object detection device, 11 processor, 12 storage device, 111 time synchronization unit, 112 transmission signal generation unit, 113 reception signal generation unit, 114 vehicle signal generation unit, 115 environment signal generation unit, 116 detection unit, 12 storage device, 121 Memory, 122 storage, 13 audio interface, 131 radiation unit, 132 reception unit, 14 in-vehicle interface, 141 time acquisition unit, 142 vehicle information acquisition unit, 143 environment information acquisition unit, 15 processing circuit, 21 acoustic signal output device, 22 acoustic Signal input device, 23 vehicle information ECU, 24 sensor ECU, 100 moving body, 200 object.

Claims (15)

  1.  周波数の異なる複数の波の重ね合わせで構成される音響信号であって移動体から放射された音響信号が物体で反射することによって生じる反射波の信号を受け付ける、受付部と、
     前記受付部によって受け付けられた前記反射波の信号を受信信号として、前記受信信号と参照信号との相関値を計算することにより、前記物体を検出する検出部と
    を備える物体検出装置。
    A reception unit that receives a signal of a reflected wave, which is an acoustic signal composed of a superposition of a plurality of waves having different frequencies, and is generated when the acoustic signal radiated from a moving object is reflected by an object;
    An object detection apparatus comprising: a detection unit that detects the object by calculating a correlation value between the reception signal and a reference signal using the reflected wave signal received by the reception unit as a reception signal.
  2.  前記音響信号は、周波数が等比数列に従い増加する複数の波を重ね合わせた信号である
    請求項1に記載の物体検出装置。
    The object detection apparatus according to claim 1, wherein the acoustic signal is a signal obtained by superposing a plurality of waves whose frequencies increase according to a geometric progression.
  3.  前記音響信号は、周波数毎に初期位相が異なる複数の波を重ね合わせた信号である
    請求項1又は2に記載の物体検出装置。
    The object detection device according to claim 1, wherein the acoustic signal is a signal obtained by superimposing a plurality of waves having different initial phases for each frequency.
  4.  前記音響信号は、音波と低周波超音波とのいずれかの周波数帯域内の周波数の複数の波を重ね合わせた信号である
    請求項1から3までのいずれか1項に記載の物体検出装置。
    The object detection apparatus according to any one of claims 1 to 3, wherein the acoustic signal is a signal obtained by superimposing a plurality of waves having a frequency within a frequency band of either a sound wave or a low-frequency ultrasonic wave.
  5.  前記音響信号は、第1信号と、前記第1信号を反転させた第2信号とを含む信号である
    請求項1から4までのいずれか1項に記載の物体検出装置。
    5. The object detection device according to claim 1, wherein the acoustic signal is a signal including a first signal and a second signal obtained by inverting the first signal. 6.
  6.  前記検出部は、前記受信信号と、前記参照信号である参照信号U(t)及び参照信号V(t)それぞれとの相関値を計算することにより、前記移動体と前記物体との距離と、前記移動体と前記物体との相対速度との少なくともいずれかを推定する
    請求項1から5までのいずれか1項に記載の物体検出装置。
    The detection unit calculates a correlation value between the received signal and each of the reference signal U (t) and the reference signal V (t), which are the reference signals, thereby calculating the distance between the moving body and the object, The object detection apparatus according to claim 1, wherein at least one of a relative speed between the moving body and the object is estimated.
  7.  前記検出部は、前記受信信号と前記参照信号U(t)との相関値のピーク位置の基準位置に対するシフト量Δtと、前記受信信号と前記参照信号V(t)との相関値のピーク位置の基準位置に対するシフト量Δtとの和(Δt+Δt)により相対距離に対応する時間遅延量Δtを計算し、計算された前記時間遅延量Δtから前記移動体と前記物体との距離を推定する
    請求項6に記載の物体検出装置。
    The detection unit includes a shift amount Δt U with respect to a reference position of a peak position of a correlation value between the received signal and the reference signal U (t), and a peak of a correlation value between the received signal and the reference signal V (t). A time delay amount Δt corresponding to a relative distance is calculated by a sum (Δt U + Δt V ) of a shift amount Δt V with respect to a reference position of the position, and the moving body and the object are calculated from the calculated time delay amount Δt −. The object detection apparatus according to claim 6, wherein the distance is estimated.
  8.  前記検出部は、前記受信信号と前記参照信号U(t)との相関値のピーク位置の基準位置に対するシフト量Δtと、前記受信信号と前記参照信号V(t)との相関値のピーク位置の基準位置に対するシフト量Δtとの差(Δt-Δt)によりドップラーシフト量sを計算し、計算されたドップラーシフト量sから前記移動体と前記物体との相対速度を推定する
    請求項6に記載の物体検出装置。
    The detection unit includes a shift amount Δt U with respect to a reference position of a peak position of a correlation value between the received signal and the reference signal U (t), and a peak of a correlation value between the received signal and the reference signal V (t). A Doppler shift amount s is calculated from a difference (Δt V −Δt U ) between a position and a shift amount Δt V with respect to a reference position, and a relative speed between the moving body and the object is estimated from the calculated Doppler shift amount s. Item 7. The object detection device according to Item 6.
  9.  前記物体検出装置は、前記受付部として、前記移動体の異なる位置で受信された前記反射波の信号を受け付ける受付部A及び受付部Bを備え、
     前記検出部は、前記受付部Aによって受け付けられた反射波の信号を受信信号Aとして、前記受信信号Aに基づく前記移動体と前記物体との距離dと、前記受付部Bによって受け付けられた反射波の信号を受信信号Bとして、前記受信信号Bに基づく前記移動体と前記物体との距離dとを計算するとともに、前記受信信号Aと前記受信信号Bとの少なくともいずれかに基づくドップラーシフト量sを計算して、前記受付部Aと前記受付部Bとの間の距離d12と前記距離dと前記距離dと前記ドップラーシフト量sとから、前記移動体と前記物体との相対速度を推定する
    請求項6に記載の物体検出装置。
    The object detection device includes, as the reception unit, a reception unit A and a reception unit B that receive signals of the reflected waves received at different positions of the moving body,
    The detection unit receives a reflected wave signal received by the reception unit A as a reception signal A, and receives the distance d 1 between the moving body and the object based on the reception signal A and the reception unit B. Using a reflected wave signal as a received signal B, the distance d 2 between the moving body and the object based on the received signal B is calculated, and at the same time, the Doppler is based on at least one of the received signal A and the received signal B. the shift amount s by calculating, from said receiving unit a and the distance d 12 between the receiving unit B and the distance d 1 and the distance d 2 between the Doppler shift amount s, the moving body and said object The object detection apparatus according to claim 6, wherein the relative speed of the object is estimated.
  10.  前記検出部は、前記ドップラーシフト量sとして、前記受信信号Aに基づくドップラーシフト量sと、前記受信信号Bに基づくドップラーシフト量sとを計算して、前記受付部Aと前記受付部Bとの間の距離d12と前記距離dと前記距離dと前記ドップラーシフト量sとから相対速度Δv1を計算し、前記受付部Aと前記受付部Bとの間の距離d12と前記距離dと前記距離dと前記ドップラーシフト量sとから相対速度Δv2を計算し、前記相対速度Δv1と前記相対速度Δv2とから、前記移動体と前記物体との相対速度を推定する
    請求項9に記載の物体検出装置。
    The detection unit calculates a Doppler shift amount s 1 based on the reception signal A and a Doppler shift amount s 2 based on the reception signal B as the Doppler shift amount s, and the reception unit A and the reception unit the relative speed Δv1 calculates the distance d 12 between B and the distance d 1 and the distance d 2 from the Doppler shift amount s 1 Tokyo, the distance d 12 between the receiving unit B and the receiving unit a said distance relative velocity Δv2 calculated from d 1 and the distance d 2 between the Doppler shift amount s 2 Prefecture, from said relative speed Δv1 the relative velocity Δv2 Prefecture, estimates the relative velocity between the moving body and the object and The object detection apparatus according to claim 9.
  11.  前記物体検出装置は、さらに、
     前記音響信号として音響信号Aを放射する放射部Aと、前記音響信号として前記音響信号Aと異なる音響信号Bを放射する放射部Bとを備え、
     前記検出部は、前記音響信号A用の前記参照信号と、前記音響信号B用の前記参照信号とのそれぞれについて、前記移動体と前記物体との相対距離と、前記移動体と前記物体との相対速度との少なくともいずれかを推定する
    請求項9又は10に記載の物体検出装置。
    The object detection device further includes:
    A radiation unit A that radiates an acoustic signal A as the acoustic signal, and a radiation unit B that radiates an acoustic signal B different from the acoustic signal A as the acoustic signal,
    The detection unit includes, for each of the reference signal for the acoustic signal A and the reference signal for the acoustic signal B, a relative distance between the moving body and the object, and between the moving body and the object. The object detection apparatus according to claim 9, wherein at least one of the relative velocity is estimated.
  12.  前記検出部は、前記移動体の速度を用いて、前記移動体と前記物体との距離と、前記移動体と前記物体との相対速度との少なくともいずれかを推定する
    請求項6から11までのいずれか1項に記載の物体検出装置。
    12. The detection unit according to claim 6, wherein the detection unit estimates at least one of a distance between the moving body and the object and a relative speed between the moving body and the object using the speed of the moving body. The object detection apparatus of any one of Claims.
  13.  前記検出部は、前記移動体の外部の環境についての外部環境情報から、前記音響信号の速度である音速を計算して、計算された音速を用いて、前記移動体と前記物体との距離と、前記移動体と前記物体との相対速度との少なくともいずれかを推定する
    請求項6から12までのいずれか1項に記載の物体検出装置。
    The detection unit calculates a sound speed that is a speed of the acoustic signal from external environment information about an environment outside the mobile object, and uses the calculated sound speed to calculate a distance between the mobile object and the object. The object detection apparatus according to claim 6, wherein at least one of a relative speed between the moving body and the object is estimated.
  14.  移動体に設けられた受付部が、周波数の異なる複数の波の重ね合わせで構成される音響信号であって、前記移動体から放射された音響信号が物体で反射した反射波の信号を受け付け、
     プロセッサが、前記受付部によって受け付けられた反射波の信号を受信信号として、前記受信信号と参照信号との相関値を計算することにより、前記物体を検出する物体検出方法。
    The reception unit provided in the moving body is an acoustic signal configured by superimposing a plurality of waves having different frequencies, and receives a reflected wave signal reflected from the object by the acoustic signal radiated from the moving body,
    An object detection method in which a processor detects the object by calculating a correlation value between the received signal and a reference signal using a reflected wave signal received by the receiving unit as a received signal.
  15.  周波数の異なる複数の波の重ね合わせで構成される音響信号であって移動体から放射された音響信号が物体で反射することによって生じる反射波の信号を受け付けると、
     前記受付処理によって受け付けられた反射波の信号を受信信号として、前記受信信号と参照信号との相関値を計算することにより、前記物体を検出する検出処理と
    をコンピュータに実行させる物体検出プログラム。
    When an acoustic signal composed of a superposition of a plurality of waves having different frequencies and a reflected wave signal generated by reflection of an acoustic signal radiated from a moving object on an object is received,
    An object detection program for causing a computer to execute a detection process for detecting the object by calculating a correlation value between the reception signal and a reference signal using a reflected wave signal received by the reception process as a reception signal.
PCT/JP2016/054543 2016-02-17 2016-02-17 Object detection apparatus, object detection method, and object detection program WO2017141370A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/054543 WO2017141370A1 (en) 2016-02-17 2016-02-17 Object detection apparatus, object detection method, and object detection program
JP2016568980A JPWO2017141370A1 (en) 2016-02-17 2016-02-17 Object detection apparatus, object detection method, and object detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054543 WO2017141370A1 (en) 2016-02-17 2016-02-17 Object detection apparatus, object detection method, and object detection program

Publications (1)

Publication Number Publication Date
WO2017141370A1 true WO2017141370A1 (en) 2017-08-24

Family

ID=59624887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054543 WO2017141370A1 (en) 2016-02-17 2016-02-17 Object detection apparatus, object detection method, and object detection program

Country Status (2)

Country Link
JP (1) JPWO2017141370A1 (en)
WO (1) WO2017141370A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113360A (en) * 2017-12-21 2019-07-11 アイシン精機株式会社 Distance measuring device
US20210055397A1 (en) * 2018-05-11 2021-02-25 Denso Corporation Object detection device
WO2021130818A1 (en) * 2019-12-23 2021-07-01 三菱電機株式会社 Detection device, detection method, and detection program
JP2022040288A (en) * 2017-12-21 2022-03-10 株式会社アイシン Distance measurement apparatus
WO2022224355A1 (en) * 2021-04-20 2022-10-27 三菱電機株式会社 Object detection device, object detection method, and object detection program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073586A (en) * 1973-10-31 1975-06-17
JPS5356061A (en) * 1976-10-30 1978-05-22 Kanji Satake Obstacle detector using ultrasonic wave
JP2008209321A (en) * 2007-02-27 2008-09-11 Fujitsu Ltd Detection ranging device and detection ranging program
JP2012137340A (en) * 2010-12-24 2012-07-19 Research Organization Of Information & Systems Doppler radar system, doppler radar transmission device, and method for optimizing transmission wave
JP2015017942A (en) * 2013-07-12 2015-01-29 大学共同利用機関法人情報・システム研究機構 Doppler imaging signal transmission device, doppler imaging signal reception device, doppler imaging system and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994412B2 (en) * 2009-03-30 2012-08-08 三菱電機株式会社 Radar equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073586A (en) * 1973-10-31 1975-06-17
JPS5356061A (en) * 1976-10-30 1978-05-22 Kanji Satake Obstacle detector using ultrasonic wave
JP2008209321A (en) * 2007-02-27 2008-09-11 Fujitsu Ltd Detection ranging device and detection ranging program
JP2012137340A (en) * 2010-12-24 2012-07-19 Research Organization Of Information & Systems Doppler radar system, doppler radar transmission device, and method for optimizing transmission wave
JP2015017942A (en) * 2013-07-12 2015-01-29 大学共同利用機関法人情報・システム研究機構 Doppler imaging signal transmission device, doppler imaging signal reception device, doppler imaging system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUSHIGE MAEDA: "Theory and Implementation of Ultrasonic Doppler Imaging Using Log-step Multicarrier Signals",", THESIS THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES GAKUI RONBUN, March 2014 (2014-03-01), School of Multidisciplinary Sciences, XP055600498, Retrieved from the Internet <URL:https://www.nii.ac.jp/graduate/wp-content/themes/nii_original/assets/pdf/students_thesis/26/maeda_Dr_thesis.pdf> *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113360A (en) * 2017-12-21 2019-07-11 アイシン精機株式会社 Distance measuring device
JP2022040288A (en) * 2017-12-21 2022-03-10 株式会社アイシン Distance measurement apparatus
JP7197030B2 (en) 2017-12-21 2022-12-27 株式会社アイシン Distance measuring device
US20210055397A1 (en) * 2018-05-11 2021-02-25 Denso Corporation Object detection device
WO2021130818A1 (en) * 2019-12-23 2021-07-01 三菱電機株式会社 Detection device, detection method, and detection program
JPWO2021130818A1 (en) * 2019-12-23 2021-12-23 三菱電機株式会社 Detection device, detection method, and detection program
WO2022224355A1 (en) * 2021-04-20 2022-10-27 三菱電機株式会社 Object detection device, object detection method, and object detection program
JPWO2022224355A1 (en) * 2021-04-20 2022-10-27
JP7278519B2 (en) 2021-04-20 2023-05-19 三菱電機株式会社 OBJECT DETECTION DEVICE, OBJECT DETECTION METHOD, AND OBJECT DETECTION PROGRAM

Also Published As

Publication number Publication date
JPWO2017141370A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2017141370A1 (en) Object detection apparatus, object detection method, and object detection program
US9939522B2 (en) Systems and methods for 4-dimensional radar tracking
US10386462B1 (en) Systems and methods for stereo radar tracking
JP6333412B2 (en) Obstacle detection device
JP2021511488A (en) Systems and methods for virtual aperture radar tracking
US20160161609A1 (en) Object detection device, velocity detection device, and vehicle
JP7460968B2 (en) Driving assistance device, vehicle, and driving assistance method
JP2022516864A (en) Ultrasonic echo processing when there is Doppler shift
JP6611994B2 (en) Object detection apparatus, object detection method, and object detection program
JP2021162347A (en) Object detection system and object detection device
US11768287B2 (en) Object detection apparatus
JP2019002863A (en) Surroundings monitoring radar device
JP5388997B2 (en) Speed measuring device
JP6410390B2 (en) Radio wave sensor and detection method
JP2009192427A (en) Radar system
JP5564244B2 (en) Observation signal processor
JP3213143B2 (en) Radar equipment
JP7230619B2 (en) object detector
JP6544273B2 (en) In-vehicle device
JP5061879B2 (en) FMCW radar equipment
JP2007286034A (en) Radio detector and method
JP6610224B2 (en) Bistatic active sonar device and its receiver
JP7207932B2 (en) Radar device and signal processing method
WO2020208705A1 (en) Obstacle detection device
JP2011257158A (en) Radar device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016568980

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890512

Country of ref document: EP

Kind code of ref document: A1