WO2017109983A1 - Analysis method and analysis system for faint light-emitting sample - Google Patents

Analysis method and analysis system for faint light-emitting sample Download PDF

Info

Publication number
WO2017109983A1
WO2017109983A1 PCT/JP2015/086387 JP2015086387W WO2017109983A1 WO 2017109983 A1 WO2017109983 A1 WO 2017109983A1 JP 2015086387 W JP2015086387 W JP 2015086387W WO 2017109983 A1 WO2017109983 A1 WO 2017109983A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
weak light
dimensional
opening diameter
aperture
Prior art date
Application number
PCT/JP2015/086387
Other languages
French (fr)
Japanese (ja)
Inventor
大橋 陽子
太朗 林
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017557655A priority Critical patent/JP6655632B2/en
Priority to PCT/JP2015/086387 priority patent/WO2017109983A1/en
Publication of WO2017109983A1 publication Critical patent/WO2017109983A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention relates to an analysis method and an analysis system for a weakly luminescent sample.
  • a three-dimensional image may be reconstructed.
  • a three-dimensional image is reconstructed by capturing a plurality of two-dimensional images while moving the focusing position in the optical axis direction and stacking these images.
  • the three-dimensional image obtained in this way has three-dimensional information and can be used effectively for analysis of a three-dimensional sample.
  • Japanese Patent No. 5424528 discloses the following technology. That is, in this technique, the analysis target is a sample having a thickness such as a live embryo or tissue that generates bioluminescence as weak light. This sample is provided with a plurality of measurement target parts. In this technique, a thick sample is regarded as a solid, a weak light signal is acquired from a different angle for each measurement target site, and analysis on each measurement site is performed using the signal. The faint light signal acquired from different angles includes certain depth information from the surface of the thick sample, and includes separate three-dimensional information for each measurement site.
  • Japanese Patent Application Laid-Open No. 2014-119762 discloses a technology related to the following system. That is, this system is a system for analyzing cells and the like. This system can capture bright field images and luminescent or fluorescent images while changing the focus position.
  • the number of 2D images used for 3D reconstruction is large. Further, the depth of focus of the two-dimensional image should be reasonably shallow according to the number of two-dimensional images.
  • the present invention provides an analysis method and an analysis system for a weakly luminescent sample in which an image with an adjusted depth of focus is acquired in an analysis of a three-dimensional sample having a thickness prepared so as to emit weak light. With the goal.
  • a method for analyzing a weakly luminescent sample acquires a weak light image of a weakly luminescent sample as a three-dimensional sample prepared to emit weak light and including a plurality of analysis objects.
  • An image acquisition process and an analysis process for analyzing the three-dimensional sample based on the acquired weak light image, wherein the image acquisition process acquires the weak light image based on a predetermined condition.
  • the aperture diameter includes the analysis target existing at a position different in the optical axis direction of the optical system within the depth of focus. It is determined to be a value.
  • an analysis system includes an objective optical system, an optical aperture provided in the objective optical system, and an aperture determination unit that determines an aperture diameter of the optical aperture based on a predetermined condition. , An aperture drive unit for setting the aperture diameter of the optical aperture to a determined value, and a plurality of analysis objects prepared to emit weak light in a state where the optical aperture is the determined aperture diameter And an imaging device that captures a weak light image of the weak luminescent sample as a three-dimensional sample through the objective optical system.
  • an analysis method and an analysis system for a weakly luminescent sample in which an image with an adjusted focal depth is acquired in an analysis of a three-dimensional sample having a thickness prepared so as to emit weak light. it can.
  • FIG. 1 is a diagram illustrating an outline of a configuration example of an analysis system according to an embodiment.
  • FIG. 2 is a schematic diagram for explaining the relationship between the aperture diameter of the diaphragm and the obtained image.
  • FIG. 3 is a flowchart illustrating an outline of an example of the analysis method according to the embodiment.
  • FIG. 4 is a flowchart illustrating an outline of an example of an image acquisition process according to an embodiment.
  • FIG. 5 is a diagram for explaining an example of shooting timing according to the first mode.
  • FIG. 6 is a flowchart illustrating an outline of an example of the opening diameter determination process according to the first mode.
  • FIG. 7 is a flowchart illustrating an outline of an example of image generation processing according to the first mode.
  • FIG. 1 is a diagram illustrating an outline of a configuration example of an analysis system according to an embodiment.
  • FIG. 2 is a schematic diagram for explaining the relationship between the aperture diameter of the diaphragm and the obtained image.
  • FIG. 3 is
  • FIG. 8 is a diagram for explaining an example of shooting timing according to the second mode.
  • FIG. 9 is a flowchart illustrating an outline of an example of the opening diameter determination process according to the third mode.
  • FIG. 10 is a flowchart illustrating an outline of an example of analysis processing according to an embodiment.
  • FIG. 11 is a diagram illustrating an outline of a configuration example of an analysis system according to a modification of the embodiment.
  • FIG. 12 is a diagram illustrating an example of an observation result of a triangular pyramid made of graph paper.
  • FIG. 13 is a diagram illustrating an example of observation results of porous silica beads.
  • FIG. 14 is a diagram showing an example of observation results of femurs of mice knocked in with the clock gene Per2 :: luciferase.
  • the analysis system according to the present embodiment can be used for analysis of a three-dimensional sample having a thickness prepared so as to emit faint light.
  • three-dimensional samples include small animal organs and organs such as mice, embryoid bodies, spheroids, gels, or three-dimensional cell samples cultured in a carrier.
  • the analysis system includes a microscope for acquiring an image.
  • This analysis system can acquire a two-dimensional image of a sample. That is, a two-dimensional weak light image can be acquired for a three-dimensional sample that emits weak light.
  • the analysis system can acquire a plurality of two-dimensional images for a plurality of different focal planes.
  • This analysis system can generate a three-dimensional image by synthesizing at least one set of two-dimensional images including a plurality of obtained two-dimensional images. That is, a three-dimensional weak light image of a three-dimensional sample that emits weak light can be acquired.
  • an analysis is performed based on a weak light image such as a two-dimensional image or a three-dimensional image generated in this way. In the analysis, for example, the luminance in the image is obtained.
  • an optical aperture having a variable aperture diameter is provided in an optical system of a microscope such as an objective lens portion. By changing the aperture diameter of this stop, the depth of focus changes.
  • the analysis system according to the present embodiment adjusts the aperture diameter of the diaphragm and adjusts the depth of focus of the obtained image.
  • the analysis system 1 includes an observation apparatus 100 for observing the sample 900 that is the above-described three-dimensional sample, and a data processing apparatus 200 that controls the operation of the observation apparatus 100 and performs image processing. Furthermore, the analysis system 1 includes a display device 310 for displaying an image processed by the data processing device 200 and an input device 320 used when a user inputs a command to the data processing device 200.
  • the observation apparatus 100 is an apparatus that can acquire a bright field image while illuminating the sample 900, or can acquire a light emission image of the sample 900 under dark conditions. When the observation apparatus 100 and the data processing apparatus 200 cooperate, the sample 900 can be observed.
  • the observation apparatus 100 includes a stage 110 on which a container 910 containing a sample 900 is placed, a photographing unit 130 for photographing the sample 900, and an illumination unit 160 for illuminating the sample 900.
  • the container 910 stores the sample 900.
  • a petri dish, a glass slide, a microplate, a gel support, a fine particle carrier, and the like can be used as the container 910.
  • an upright light emitting microscope is used for the photographing unit 130.
  • the photographing unit 130 includes an objective lens 131, an optical aperture 132, an imaging lens 133, and an imaging device 134.
  • the objective lens 131, the optical aperture 132, the imaging lens 133, and the like form part of the objective optical system.
  • the imaging device 134 captures a light emission image or a bright field image of the sample 900.
  • the imaging device 134 has a solid-state imaging device such as a CCD image sensor or a CMOS image sensor.
  • the imaging device 134 generates image data by photoelectrically converting an image formed on the imaging surface of the solid-state imaging device.
  • the imaging device 134 outputs the generated image data to the data processing device 200.
  • a cooled CCD camera can be used.
  • the cooling CCD for example, a cooling CCD of 0 ° C. or lower can be used.
  • a cooling CCD preferably ⁇ 80 ° C. to ⁇ 30 ° C., particularly a cooling CCD of about ⁇ 60 ° C. can be used.
  • the objective lens 131 and the imaging lens 133 form an image of the sample 900 on the imaging surface of the imaging device of the imaging device 134.
  • the diaphragm 132 is provided behind the objective lens 131.
  • the diaphragm 132 is configured such that the opening diameter can be changed.
  • the diaphragm 132 may be inserted at another position in the photographing unit 130.
  • the observation apparatus 100 is provided with a diaphragm driving unit 142 that changes the aperture diameter of the diaphragm 132 under the control of the data processing apparatus 200. Further, the photographing unit 130 is provided with a lens moving mechanism 136 that moves the objective lens 131 along its optical axis (Z axis) in order to change the focal plane. The observation apparatus 100 is provided with an objective lens driving unit 144 that operates the lens moving mechanism 136 under the control of the data processing apparatus 200.
  • the stage 110 can move in a plane perpendicular to the optical axis of the photographing unit 130 (in the XY plane).
  • the observation apparatus 100 is provided with a stage drive unit 120 that moves the stage 110 under the control of the data processing apparatus 200.
  • the stage drive unit 120 moves the stage 110 two-dimensionally.
  • the illumination unit 160 irradiates the sample 900 with light for bright field observation (for example, white light).
  • the illumination unit 160 includes a light source 161, a shutter 162, and an illumination optical system 163.
  • the light source 161 includes a halogen lamp that emits light for bright field observation.
  • the shutter 162 is a shutter that switches whether the sample 900 is irradiated with light for bright field observation.
  • the observation apparatus 100 is provided with a shutter driving unit 170 that drives the shutter 162 under the control of the data processing apparatus 200.
  • the illumination optical system 163 includes a collector lens 164 and an illumination fiber 165.
  • the incident end of the illumination fiber 165 is provided at the condensing position of the collector lens 164.
  • the exit end of the illumination fiber 165 is on the objective lens 131 side of the stage 110 (above the sample 900 in the illustrated upright light emission microscope), and the exit direction of the illumination light is the direction of the sample 900 (or the container 910).
  • Less than 90 degrees with respect to the optical axis of the objective lens 131 preferably 30 to 65 degrees so that the optical axis is inclined toward the vicinity of the center of the bottom surface and the incidence on the objective lens 131 is minimized. It is provided with an acute angle inclination.
  • the light from the light source 161 condensed by the collector lens 164 is emitted from the exit end of the illumination fiber 165 at a predetermined angle, so that the sample 900 can be irradiated almost uniformly from the objective lens 131 side. it can. In this way, by illuminating from the objective lens 131 side, a bright field image with good line of sight can be obtained without causing a shadow for a thick sample.
  • the data processing device 200 includes an arithmetic circuit 210 and a storage device 280.
  • the arithmetic circuit 210 is a circuit that performs various calculations.
  • the storage device 280 includes a storage device that stores various programs and various parameters used in the arithmetic circuit 210.
  • the storage device 280 stores information such as the obtained image and analysis results.
  • the storage device 280 may include a RAM that temporarily stores information used when the arithmetic circuit 210 performs an operation.
  • the storage device 280 can include, for example, a semiconductor memory, a hard disk, various ROMs, and the like.
  • FIG. 1 shows functional blocks of the arithmetic circuit 210. That is, the arithmetic circuit 210 includes an imaging control unit 222, an aperture determination unit 224, an imaging device control unit 232, an aperture control unit 234, a position control unit 236, a shutter control unit 238, an image processing unit 242, The image synthesizing unit 244, the image analyzing unit 246, and the display control unit 248 are provided.
  • the imaging control unit 222 controls overall operations such as an operation related to image acquisition using the observation apparatus 100, an operation related to display of the acquired image, and an analysis based on the acquired image.
  • the aperture determination unit 224 determines the aperture diameter of the aperture 132 based on the information acquired from the imaging control unit 222.
  • the aperture determination unit 224 transmits the determined aperture diameter to the aperture control unit 234.
  • the aperture control unit 234 controls the operation of the aperture 132 so that the aperture diameter of the aperture 132 becomes the aperture diameter acquired from the aperture determination unit 224 under the instruction of the imaging control unit 222. That is, the aperture controller 234 outputs a control signal to the aperture driver 142.
  • the imaging device control unit 232 controls the operation of the imaging device 134 under the instruction of the imaging control unit 222.
  • the imaging device control unit 232 controls, for example, imaging timing, exposure time, and the like.
  • the position control unit 236 controls the position of the objective lens 131 and the position of the stage 110 under the instruction of the imaging control unit 222. That is, the position control unit 236 outputs a control signal to the objective lens driving unit 144 and the stage driving unit 120.
  • the shutter control unit 238 controls the operation of the shutter 162 under the instruction of the shooting control unit 222. That is, the shutter control unit 238 outputs a control signal to the shutter driving unit 170. For example, the shutter control unit 238 opens the shutter 162 when acquiring a bright field image, and closes the shutter 162 when acquiring a light emission image.
  • the image processing unit 242 acquires image data from the imaging device 134 under the control of the imaging control unit 222 and performs image processing on the image data. For example, the image processing unit 242 creates two-dimensional image data.
  • the image processing unit 242 transmits the image data after the image processing to the image synthesis unit 244, the image analysis unit 246, or the display control unit 248.
  • the image processing unit 242 causes the storage device 280 to record the processed image.
  • the image composition unit 244 synthesizes a three-dimensional image based on the two-dimensional image acquired from the image processing unit 242 under the control of the imaging control unit 222.
  • the image composition unit 244 transmits the created three-dimensional image to the image analysis unit 246 or the display control unit 248.
  • the image composition unit 244 records the created three-dimensional image in the storage device 280.
  • the image analysis unit 246 performs analysis using the two-dimensional image acquired from the image processing unit 242 or the three-dimensional image acquired from the image composition unit 244 under the control of the imaging control unit 222. For example, the image analysis unit 246 calculates the light emission amount of the three-dimensional sample based on the image data. The image analysis unit 246 transmits the analysis result to the display control unit 248 in a necessary format as necessary. In addition, the image analysis unit 246 records the analysis result in the storage device 280.
  • the display control unit 248 causes the display device 310 to display an image based on information acquired from the image processing unit 242, the image synthesis unit 244, or the image analysis unit 246 under the control of the imaging control unit 222.
  • the arithmetic circuit 210 includes an integrated circuit such as a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), or a Field Programmable Gate Array (FPGA).
  • the arithmetic circuit 210 may be configured by one integrated circuit or the like, or may be configured by combining a plurality of integrated circuits or the like provided for each functional block, for example. The operations of these integrated circuits are performed in accordance with, for example, a program recorded in the storage device 280 or a recording area in the integrated circuit.
  • the display device 310 is a general display device such as a liquid crystal display or an organic EL display.
  • the display device 310 displays various images under the control of the display control unit 248.
  • a printer that prints display content on paper may be provided.
  • the input device 320 is a general input device such as a keyboard, a mouse, a touch panel, and a switch.
  • the input device 320 transmits input from the user to the data processing device 200.
  • the three-dimensional sample examples include a small animal organ or organ such as a mouse, a living tissue, an embryoid body, a spheroid, or a three-dimensional cell sample cultured in a gel or a carrier as described above.
  • the present embodiment includes obtaining a light emission image of a three-dimensional sample that emits weak light. For this reason, for example, a photoprotein gene is introduced into the cells constituting the sample.
  • a photoprotein for example, luciferase can be used.
  • luciferase When luciferase is used as the photoprotein, luciferin, which is a luminescent substrate, is introduced into the sample.
  • a cell into which a photoprotein gene has been introduced only emits bioluminescence with an extremely weak luminance of 1/100 or less as compared with a fluorescent protein, and it is difficult to image at a video rate.
  • photoproteins produce bioluminescence that is highly correlated with the level of gene expression in the cell, so by measuring faint light over a long period of time, we can accurately capture weak changes in expression level. be able to.
  • Such faint light that makes imaging at a video rate difficult is very suitable for quantifying faint biological activity.
  • a microscope-based luminescence imaging system (luminescence microscope) that can acquire faint light such as bioluminescence with high sensitivity is in the process of development, and neither a technique nor an apparatus that is applied to various biological activities has been studied.
  • luciferase When investigating the strength of gene expression, which is an example of biological activity, using luciferase activity as an index, luciferase is introduced into a living cell as a reporter gene.
  • the target DNA fragment is connected upstream or downstream of the luciferase gene, the influence of the DNA fragment on transcription can be examined in time series.
  • a gene such as a transcription factor that is thought to affect transcription to an expression vector and co-expressing it with the reporter gene, the effect of the gene product on the expression of the reporter gene can be examined.
  • FIG. 2 the left column shows a case where a two-dimensional image is obtained, and the right column shows a case where a three-dimensional image is obtained.
  • the upper stage shows a case where the aperture diameter of the diaphragm 132 is large, and the lower stage shows a case where the aperture diameter of the diaphragm 132 is small.
  • each column shows the plane including the optical axis. That is, these drawings show schematic views of the sample 900 on the bottom surface of the container 910 as viewed from the side.
  • Each white rectangle 810 in the drawing schematically shows a region where an image can be obtained by one imaging. That is, the height of each rectangle 810 schematically indicates the depth of focus.
  • one two-dimensional image is acquired, and thus one rectangle 810 is shown.
  • a plurality of two-dimensional images are obtained while moving the objective lens 131 along its optical axis by the lens moving mechanism 136, and thus a plurality of rectangles 810 are shown.
  • the lower figure in the 2D image column schematically shows the obtained 2D image 820.
  • These two-dimensional images 820 are images representing a plane perpendicular to the optical axis, and are images representing a cross section of the sample 900 related to the region indicated by the rectangle 810.
  • the lower figure in the three-dimensional image column schematically shows a cross-sectional image 830 for a plane including the optical axis of the obtained three-dimensional image.
  • the obtained two-dimensional image 820 includes information on the sample in a narrow range related to the in-focus plane, and does not include information on the sample in the area outside the in-focus plane.
  • the first structure 901 in the sample 900 is represented in the two-dimensional image 820, but the second structure 902 is not represented in the two-dimensional image 820.
  • the aperture diameter of the stop 132 is small, the depth of focus is deep. For this reason, light in a wide area in the depth direction is accumulated in one two-dimensional image.
  • the obtained two-dimensional image includes information on a wide range of samples including a region deviated from the focal plane.
  • the first structure 901 and the second structure 902 in the sample 900 are both represented in the two-dimensional image 820. Therefore, in order to obtain a large amount of information with one two-dimensional image, it is preferable that the aperture diameter of the diaphragm 132 is small. In order to obtain a high-resolution image with a single two-dimensional image, it is preferable that the aperture diameter of the diaphragm 132 is large.
  • the aperture diameter of the stop 132 is small, the observation regions overlap and the resolution in the depth direction is deteriorated, and the obtained three-dimensional image has a poor resolution. Therefore, when obtaining a three-dimensional image, it is preferable that the aperture diameter of the diaphragm 132 is large.
  • the aperture diameter of the diaphragm 132 is reduced and the two-dimensional image is recorded in a state where the focal depth is deep. Acquisition is performed.
  • the aperture diameter of the diaphragm 132 is increased and a plurality of two-dimensional images are acquired with a shallow depth of focus.
  • 2D images and 3D images there are various uses for 2D images and 3D images.
  • analysis and visual recognition are easy. For this reason, a two-dimensional image can be used for grasping the sample outline.
  • a three-dimensional image can be used.
  • the necessary information can be acquired efficiently by acquiring the three-dimensional image.
  • the analysis method includes an image acquisition process in step S101 and an analysis process in step S102.
  • the image acquisition process of step S101 an image of the sample used for analysis is acquired by repeatedly executing a predetermined operation.
  • the analysis processing in step S102 the sample is analyzed based on the obtained image. Note that acquisition of an image and analysis of the obtained image may be alternately repeated.
  • the image acquisition process will be described.
  • a plurality of images including a two-dimensional image or a three-dimensional image are acquired over time. That is, time-lapse observation is performed.
  • This image acquisition may be controlled manually or may be controlled by the data processing device 200, for example.
  • An example of the image acquisition process controlled by the data processing device 200 will be described with reference to FIG.
  • step S201 the imaging control unit 222 of the data processing device 200 performs various settings related to image acquisition.
  • the data processing apparatus 200 sets a series of shooting time timings, the number of images to be acquired, a focus position, and the like based on values input by the user, for example.
  • step S202 the shooting control unit 222 of the data processing device 200 determines whether it is time to perform shooting. For example, the imaging control unit 222 measures the elapsed time from the start of imaging. In step S202, the shooting control unit 222 compares the elapsed time from the start of shooting with the timing of shooting set in step S201, and determines whether to perform shooting. When it is not time to perform shooting, the process proceeds to step S206, and the processes of steps S203 to S205 are skipped. On the other hand, when it is time to shoot, the process proceeds to step S203.
  • step S203 the aperture determining unit 224 of the data processing device 200 performs an aperture diameter determining process for determining the aperture diameter of the diaphragm 132 based on a predetermined condition.
  • a small aperture diameter with a deep focal depth is selected.
  • a large aperture diameter with a shallow depth of focus is selected.
  • the small opening diameter and the large opening diameter may be determined in advance according to the optical conditions of the observation apparatus 100, respectively.
  • the small opening diameter can be determined such as how many mm the diameter of the aperture of the diaphragm 132 is, and the large aperture diameter can be determined such as how many mm the diameter of the aperture of the diaphragm 132 is.
  • the small opening diameter and the large opening diameter may be respectively designated by the user in the setting in step S201.
  • step S204 the aperture control unit 234 of the data processing device 200 controls the operation of the aperture 132 so that the determined aperture diameter is obtained.
  • step S205 the data processing apparatus 200 performs image generation processing for capturing an image and generating a two-dimensional image or a three-dimensional image. That is, when a small aperture diameter is selected in step S203 and the aperture diameter of the diaphragm 132 is set to be small in step S204, one two-dimensional image is acquired. On the other hand, when a large aperture diameter is selected in step S203 and the aperture diameter of the diaphragm 132 is set to be large in step S204, a plurality of two-dimensional images are acquired, and a three-dimensional image is obtained based on these two-dimensional images. An image is created.
  • step S206 the imaging control unit 222 of the data processing device 200 determines whether or not a series of imaging has been completed. When it is determined that a series of shooting has not been completed, the process returns to step S202. In this way, the set number of images is acquired for the period set in step S201. When a series of photographing is finished, the image acquisition process is finished.
  • ⁇ Image acquisition mode> In the analysis system 1 according to the present embodiment, three operation modes for image acquisition are prepared. In any mode, in at least one of the repeated image acquisitions, the aperture diameter is set to a value that includes the analysis target at different positions in the optical axis direction of the objective optical system within the depth of focus. It is determined. These modes will be described in order.
  • the first mode is a mode in which a two-dimensional image and a three-dimensional image are acquired at the image acquisition timing set in step S201, respectively.
  • the timing at which an image is acquired in the first mode will be described with reference to FIG.
  • the analysis system 1 first reduces the aperture diameter of the diaphragm 132 to a state where the depth of focus is deep, and in this state, captures one image and acquires one two-dimensional image. Subsequently, the analysis system 1 increases the aperture diameter of the diaphragm 132 so that the focal depth is shallow, and in this state, the analysis system 1 performs a plurality of times along the depth direction of the weakly luminescent sample (a direction substantially perpendicular to the two-dimensional image).
  • the analysis system 1 repeatedly performs such image acquisition as a set of the two-dimensional image and the three-dimensional image at the timing set in step S201. In order to obtain a predetermined exposure amount, when the aperture diameter is small, it is necessary to expose for a longer time than when the aperture diameter is large.
  • a three-dimensional analysis of weak light can be performed by acquiring a minimum three-dimensional image by repeatedly acquiring a two-dimensional image provided with three-dimensional information by a three-dimensional image. It can be executed continuously.
  • the opening diameter is changed to a small state immediately before shooting for a two-dimensional image, and the opening diameter is set to a large state immediately before the first shooting for a three-dimensional image is performed. Be changed.
  • the aperture diameter is changed to a large state immediately after shooting for a two-dimensional image, and the aperture diameter is changed to a small state immediately after the last shooting for a three-dimensional image is performed.
  • step S301 the opening determination unit 224 of the data processing device 200 determines whether it is time to change the opening diameter to a small state. For example, in a setting in which the aperture diameter is changed to a small state immediately before shooting for a two-dimensional image and the aperture diameter is changed to a large state immediately before the first shooting for a three-dimensional image is performed, 2 is set. It is determined whether or not it is immediately before photographing for a three-dimensional image is performed.
  • the setting is made such that the aperture diameter is changed to a large state immediately after shooting for a two-dimensional image and the aperture diameter is changed to a small state immediately after the last shooting for a three-dimensional image is performed. It is determined whether or not it is immediately after the last shooting for a three-dimensional image is performed.
  • the process proceeds to step S302.
  • the aperture determining unit 224 determines to change the aperture diameter of the aperture 132 to a small state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG.
  • step S301 If it is determined in step S301 that it is not time to change the aperture diameter to a small state, the process proceeds to step S303.
  • step S303 the opening determination unit 224 determines whether it is time to change the opening diameter to a larger state. For example, in a setting in which the aperture diameter is changed to a small state immediately before shooting for a two-dimensional image and the aperture diameter is changed to a large state immediately before the first shooting for a three-dimensional image is performed, 3 It is determined whether or not it is just before the first shooting for a three-dimensional image is performed.
  • the setting is made such that the aperture diameter is changed to a large state immediately after shooting for a two-dimensional image and the aperture diameter is changed to a small state immediately after the last shooting for a three-dimensional image is performed. In, it is determined whether or not it is immediately after shooting for a two-dimensional image.
  • the process proceeds to step S304.
  • the aperture determining unit 224 determines to change the aperture diameter of the aperture 132 to a large state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG.
  • step S303 If it is determined in step S303 that it is not time to change the aperture diameter to a larger state, the process proceeds to step S305.
  • step S305 the opening determination unit 224 determines to maintain the opening diameter. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG.
  • the aperture control unit 234 of the data processing device 200 controls the operation of the aperture 132 so that the determined aperture diameter is obtained. For example, when it is determined in the opening diameter determination process in step S203 that the opening diameter is changed to a small state, the diaphragm 132 is changed to a state where the opening diameter is small. On the other hand, when it is determined to change the aperture diameter to a large state, the diaphragm 132 is changed to a state where the aperture diameter is large. Further, when it is determined to maintain the aperture diameter, the diaphragm 132 is not changed.
  • step S205 the image generation process performed in step S205 will be described with reference to FIG.
  • step S401 the imaging control unit 222 of the data processing device 200 determines whether or not the aperture diameter of the diaphragm 132 determined in step S203 and set in step S204 is small. When the opening diameter is small, the process proceeds to step S402.
  • step S ⁇ b> 402 the imaging control unit 222 causes the imaging device 134 to perform imaging at a predetermined focal plane once via the imaging device control unit 232, and acquires image data related to one two-dimensional image.
  • the focal plane set here may be a focal plane designated in advance by the user in step S201, for example. Further, for example, the focal plane may include a region with the highest luminance in the previously acquired three-dimensional image.
  • step S403 the imaging control unit 222 causes the image processing unit 242 to create one two-dimensional image based on the image data acquired in step S402. Thereafter, the image generation process ends, and the process returns to the image acquisition process described with reference to FIG.
  • step S401 If it is determined in step S401 that the aperture diameter of the diaphragm 132 is not small, that is, the aperture diameter of the diaphragm 132 is large, the process proceeds to step S404.
  • step S ⁇ b> 404 the imaging control unit 222 causes the imaging device 134 to repeatedly perform imaging while changing the focal plane by moving, for example, the stage 110 in the optical axis direction via the position control unit 236. Image data relating to a three-dimensional image is acquired.
  • step S405 the imaging control unit 222 causes the image composition unit 244 to perform a reconstruction process for creating one three-dimensional image based on the image data of the plurality of two-dimensional images acquired in step S404. Thereafter, the image generation process ends, and the process returns to the image acquisition process described with reference to FIG.
  • the two-dimensional image and the three-dimensional image are repeatedly acquired by the processing in steps S203 to S205, whereby the two-dimensional image and the three-dimensional image are repeatedly acquired as a set. It will be. Although an example in which a 3D image is acquired after a 2D image is shown here, a 3D image may be acquired first and then a 2D image may be acquired.
  • photographing for obtaining a two-dimensional image is repeatedly performed in a state where the aperture diameter with a large depth of focus is small, and photographing with a large aperture diameter with a small depth of focus is performed at a predetermined frequency.
  • One three-dimensional image acquisition is performed by performing it several times. For example, the exposure time required for acquiring a two-dimensional image is, for example, about 10 minutes, and for acquiring a three-dimensional image, for example, the time required for acquiring one two-dimensional image is, for example, about three minutes. Such a two-dimensional image acquisition is repeated 10 times.
  • the analysis can be performed mainly based on the information included in the two-dimensional image, for example, when the cell moves in the living tissue, and the information is partially included in the three-dimensional image. This is effective when it is necessary to perform an analysis based on this. That is, three-dimensional analysis using a two-dimensional image can be continuously performed while accurately reflecting information based on the three-dimensional image.
  • the opening diameter is changed to a large state immediately before the first shooting for the three-dimensional image is performed, and the opening diameter is small immediately before the shooting for the two-dimensional image is performed.
  • the opening diameter determination process performed in step S203 is performed according to the procedure described with reference to the flowchart of FIG. That is, in step S301, the opening determination unit 224 determines whether it is time to change the opening diameter to a small state. For example, it is determined whether or not it is immediately before photographing for a two-dimensional image is performed. When it is just before photographing for a two-dimensional image is performed, in step S302, the aperture determination unit 224 determines to make the aperture diameter of the aperture 132 small. In step S303, the opening determination unit 224 determines whether it is time to change the opening diameter to a larger state. For example, it is determined whether it is immediately before the first shooting for a three-dimensional image is performed. When it is just before the first shooting for a three-dimensional image is performed, in step S304, the aperture determination unit 224 determines to increase the aperture diameter of the aperture 132.
  • step S205 the image generation process performed in step S205 is performed according to the procedure described with reference to the flowchart of FIG. That is, when the aperture diameter of the diaphragm 132 is small, one image data is acquired in step S402, and one two-dimensional image is created in step S403. On the other hand, when the aperture diameter of the diaphragm 132 is large, a plurality of image data is acquired in step S404, and one three-dimensional image is created in step S405.
  • a two-dimensional image or a three-dimensional image is repeatedly acquired at the timing adjusted in step S202 by the processing in steps S203 to S205.
  • the opening diameter of the diaphragm 132 is set to the first opening diameter at the repeated first timing.
  • the aperture diameter of the diaphragm 132 is set to the second aperture diameter at the second timing repeated.
  • the third mode will be described.
  • a two-dimensional image is repeatedly acquired.
  • the obtained two-dimensional image is sequentially analyzed.
  • acquisition of the three-dimensional image is performed.
  • the analysis system 1 can be configured such that a three-dimensional image is acquired assuming that a large change is detected.
  • the analysis system 1 can be configured so that a change is detected when the emission intensity that is recognized as having biological activity is set as a threshold and the emission intensity exceeds the threshold. Further, the obtained three-dimensional image is sequentially analyzed. Then, when it is detected that the change is smaller than the predetermined change in the three-dimensional image, acquisition of the two-dimensional image is performed.
  • the imaging condition in a state where the aperture diameter is small, that is, the depth of focus is deep is set as the initial value of the aperture diameter of the diaphragm 132.
  • step S501 the opening determination unit 224 of the data processing device 200 determines whether or not the opening diameter is small. When the opening diameter is small, the process proceeds to step S502.
  • step S502 the image analysis unit 246 analyzes a two-dimensional image obtained in the past, and the aperture determination unit 224 determines whether a predetermined change is detected in the two-dimensional image.
  • step S502 when the change in luminance in the two-dimensional image obtained by two successive acquisitions is greater than a predetermined value, the luminance value in the obtained two-dimensional image May exceed the predetermined threshold value, the luminance value in the obtained two-dimensional image may exceed the threshold value corresponding to the predetermined upper limit value, and / or the case may be below the threshold value corresponding to the predetermined lower limit value.
  • a three-dimensional analysis corresponding to various changes in weak light can be performed by applying a range of change amounts composed of threshold values of both an upper limit value and a lower limit value.
  • the threshold value corresponding to the lower limit value is not reached, by increasing the aperture diameter of the optical stop, the amount of light collection can be increased and the limit of analysis can be expanded even if the luminance value becomes extremely weak.
  • the initial value of the aperture diameter of the diaphragm 132 is set to a small state, a two-dimensional image is always acquired in the first image acquisition.
  • step S502 When it is determined in step S502 that a change has been detected, the process proceeds to step S503.
  • the aperture determining unit 224 determines to change the aperture diameter of the aperture 132 to a large state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG. As a result, one three-dimensional image is created in the next image generation process.
  • step S502 When it is determined in step S502 that no change has been detected in the two-dimensional image, the process proceeds to step S504.
  • step S504 the aperture determining unit 224 determines to maintain the aperture diameter of the diaphragm 132 in a small state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG. As a result, one two-dimensional image is created in the next image generation process.
  • step S501 When it is determined in step S501 that the opening diameter is not small, the process proceeds to step S505.
  • step S505 the image analysis unit 246 analyzes a three-dimensional image obtained in the past, and the aperture determination unit 224 determines whether a predetermined change is detected in the three-dimensional image.
  • the case where a change is detected in step S505 is, for example, a case where a change in which the luminance is reduced is detected in a three-dimensional image obtained by two successive acquisitions. This may be the case when the value becomes larger than the value, or when the luminance value in the obtained three-dimensional image falls below a predetermined threshold.
  • step S505 When it is determined in step S505 that no change has been detected, the process proceeds to step S506.
  • step S506 the aperture determination unit 224 determines to change the aperture diameter of the aperture 132 to a small state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG. As a result, one two-dimensional image is created in the next image generation process.
  • step S505 When it is determined in step S505 that a change has been detected in the three-dimensional image, the process proceeds to step S507.
  • step S507 the aperture determining unit 224 determines to maintain the aperture diameter of the diaphragm 132 in a large state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG. As a result, one three-dimensional image is created in the next image generation process.
  • a necessary three-dimensional image is acquired only when a change occurs, and only a two-dimensional image is acquired when no change occurs.
  • the amount of data can be suppressed.
  • the data listability is improved. For example, light emission observation is often performed over a long period of time, and if a large amount of three-dimensional images having a large amount of data is recorded, the amount of data becomes enormous, which may hinder analysis.
  • a three-dimensional image is an image that is not suitable for grasping the contents of the image at a glance.
  • the initial value of the opening diameter of the diaphragm 132 is set to the first opening diameter. Then, when the weak light images repeatedly acquired with the first opening diameter are compared, and the change in the luminance value of the weak light image becomes larger than a predetermined value, the opening diameter of the diaphragm 132 is the second opening diameter.
  • the aperture diameter of the diaphragm 132 is set to the second aperture diameter, a set of two-dimensional weak light images for a plurality of different focal planes is acquired, and the set of two-dimensional weak light images is obtained. A three-dimensional weak light image is generated by synthesis.
  • the data processing device 200 determines whether or not the brightness of the two-dimensional image has changed.
  • the data processing device 200 determines whether or not the brightness of the two-dimensional image has changed.
  • it is not limited to this.
  • each time a two-dimensional image is acquired it is displayed on the display device 310, and the user may input the timing for acquiring the three-dimensional image to the data processing device 200 while confirming this display.
  • the data processing device 200 performs an operation for acquiring a three-dimensional image.
  • the operations repeatedly executed in the image acquisition processing in step S101 include predetermined operations such as opening diameter determination processing, setting of the opening diameter of the aperture 132, image generation processing, and the like. By repeatedly performing these operations, an image of the sample used for analysis is acquired.
  • predetermined operations such as opening diameter determination processing, setting of the opening diameter of the aperture 132, image generation processing, and the like.
  • an image of the sample used for analysis is acquired.
  • an example of the operation in each mode described above an example is shown in which only two states, the state in which the aperture diameter of the diaphragm 132 is large and the state in which it is small, are taken. However, it is not limited to this. You may take a state with three or more opening diameters.
  • a two-dimensional image when a two-dimensional image is acquired, a plurality of types of two-dimensional images obtained in a plurality of states with different opening diameters may be acquired according to the use of the two-dimensional image, or the opening diameter may be appropriately set. It may be selected. Further, when a three-dimensional image is acquired, the aperture diameter of the diaphragm 132 may be appropriately selected depending on the relationship between the time required for photographing and the resolution of the obtained three-dimensional image.
  • step S102 various analyzes are performed based on the two-dimensional image or the three-dimensional image acquired in the image acquisition process in step S101.
  • the luminance distribution in the image is analyzed.
  • a change in luminance distribution in the image with respect to the elapsed time is analyzed.
  • a necessary image may be selected from a plurality of two-dimensional images and three-dimensional images obtained in a series of image acquisitions and analyzed.
  • a two-dimensional image and a three-dimensional image are acquired as a set of information as in the first mode shown in FIG. 5, an example in which the selected image is analyzed will be described with reference to FIG. I will explain.
  • step S601 the display control unit 248 of the data processing device 200 causes the display device 310 to display a list of acquired two-dimensional images.
  • step S602 the imaging control unit 222 of the data processing device 200 determines whether one two-dimensional image is selected from the plurality of displayed two-dimensional images. If a two-dimensional image has not been selected, the process proceeds to step S604. On the other hand, when a two-dimensional image is selected, the process proceeds to step S603.
  • step S603 the image analysis unit 246 of the data processing device 200 performs analysis using a three-dimensional image corresponding to the selected two-dimensional image.
  • the three-dimensional image corresponding to the selected two-dimensional image is, for example, a three-dimensional weak light image synthesized based on a set of two-dimensional weak light images acquired at the timing closest to the selected two-dimensional image. obtain. Thereafter, the process proceeds to step S604.
  • step S604 the imaging control unit 222 determines whether to end the analysis process. If the analysis process is not terminated, the process returns to step S601. On the other hand, when the analysis process ends, the analysis process ends.
  • the two-dimensional image according to the present embodiment is an image obtained by increasing the depth of focus by reducing the aperture diameter of the diaphragm 132. For this reason, a lot of information is included in the two-dimensional image. For this reason, the two-dimensional image according to the present embodiment is suitable as a thumbnail image. As a result, the user can quickly select a notable image. This is effective in improving the efficiency of the entire analysis.
  • the two-dimensional image has better listability than the three-dimensional image.
  • a three-dimensional image has a large amount of information. Therefore, acquiring a three-dimensional image as necessary is effective for more detailed sample analysis and three-dimensional grasp of the sample state.
  • the configuration of the observation apparatus 100 of the above-described embodiment can be changed as appropriate.
  • the sample 900 is irradiated with illumination light from the objective lens 131 side.
  • Illumination light may be irradiated from the side opposite to the objective lens 131 with the sample 900 interposed therebetween.
  • a configuration as shown in FIG. 11 can be adopted. That is, the illumination unit 160 is arranged on the opposite side of the sample unit 130 with respect to the sample 900.
  • a condenser lens 167 is provided in the observation apparatus 100.
  • the illumination optical system 163 includes a collector lens 164 and a condenser lens 167.
  • the collector lens 164 and the condenser lens 167 of the illumination optical system 163 collect white light from the light source 161 on the sample 900.
  • an inverted microscope for example, LUMINOVIEW 200, which is an inverted luminescence imaging system manufactured by Olympus Corporation
  • LUMINOVIEW 200 which is an inverted luminescence imaging system manufactured by Olympus Corporation
  • the present invention is not limited to this, and the stage 110 may be moved along the optical axis.
  • whether the two-dimensional image and the three-dimensional image are bright-field images or light-emitting images is not limited. Only the luminescent image may be acquired, or the bright field image may be acquired together with the luminescent image. Further, the light emission image and the bright field image may be acquired at predetermined timings, respectively. Further, the acquisition of the luminescent image and the acquisition of the bright field image may be performed according to a predetermined condition.
  • a three-dimensional sample is prepared to emit light and a luminescence image is acquired.
  • the three-dimensional sample is prepared so as to emit fluorescence and the observation apparatus 100 is configured to acquire a fluorescence image
  • a fluorescence image that makes it difficult to acquire a three-dimensional image at a video rate may be acquired.
  • the weak light emits weak light that is difficult to perform three-dimensional analysis at the video rate.
  • a sample exhibiting such an event corresponds to the three-dimensional analysis of faint light in the present invention because it can be considered that the thickness of the sample is relatively large.
  • fluorescence eg, fluorescent proteins
  • aperture diameters of the attached diaphragm There are three types of aperture diameters of the attached diaphragm: ⁇ 16.8 mm, ⁇ 12.6 mm, and ⁇ 8.4 mm.
  • the NA when the opening diameter is ⁇ 8.4 mm corresponds to 0.0933.
  • Each exposure time was 50 milliseconds. The following two types of samples were used.
  • Porous silica beads used as a desiccant were used as samples.
  • the bead diameter is 3 mm to 7 mm. Samples are mixed with beads of different sizes.
  • the sample used in Okuboe et al., “PLoS” ONE 8 (11) 2013, “DOI: 10.1371 / journal.pone.0078306” was used. That is, the femur of the clock gene Per2 :: luciferase knock-in mouse was used. The femur was cultured in a 35 mm dish. Observation was performed by adding luciferin to the dish.
  • a bright field image and a light emission image were acquired.
  • the exposure time was set to 50 milliseconds.
  • the exposure time was 3 minutes or 10 minutes.
  • the optical aperture value can be selectively determined according to the target sample so that the light emission is not saturated and the depth information of the sample can be acquired as much as possible.
  • continuous three-dimensional analysis which has been difficult in the past, can be easily realized by repeatedly acquiring two-dimensional luminescent images regarding the thick femoral head and the entire femoral body sample. If the sample has a brightness value that changes within the allowable upper and lower limits, regardless of the rate of change in the brightness value of the light emission, the weak light is repeatedly emitted using the same optical aperture selected. It is considered that a three-dimensional time series analysis can be performed by acquiring an image obtained by the above method.
  • a three-dimensional image composed of a plurality of two-dimensional images is formed using an aperture diameter relatively larger than the selected optical aperture, and depth information is acquired from the three-dimensional image to obtain a three-dimensional image. It is possible to provide an analysis method and an analysis system capable of executing analysis continuously and with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

This analysis method for a faint light-emitting sample includes: an image acquisition process (S101) of acquiring a faint light image of a faint light-emitting sample as a three-dimensional sample including a plurality of objects to be analyzed which are prepared to emit a faint light; and an analysis process (S102) of analyzing the three-dimensional sample on the basis of the acquired faint light image. The image acquisition process (S101) includes repeatedly determining the opening size of an optical diaphragm inserted in an optical system for acquiring the faint light image on the basis of a predetermined condition (S203), and acquiring the faint light image concerning the three-dimensional sample using the optical diaphragm with the determined opening size (S205).

Description

微弱発光試料の解析方法及び解析システムMethod and system for analyzing weakly luminescent sample
 本発明は、微弱発光試料の解析方法及び解析システムに関する。 The present invention relates to an analysis method and an analysis system for a weakly luminescent sample.
 胚様体、動物の組織、臓器等のように個別に解析可能であるような複数の解析対象となる細胞を3次元の方向に多数含んでいる厚みのあるサンプル(3次元試料)を、顕微鏡を用いて観察する際に、3次元画像の再構成が行われることがある。3次元画像は、光軸方向に合焦位置を動かしながら複数枚の2次元画像を撮影し、それらの画像をスタックすることで再構成される。このようにして得られた3次元画像は、3次元の情報を有しており、3次元試料の解析に有効に用いられ得る。 A thick sample (three-dimensional sample) containing a large number of cells to be analyzed, such as embryoid bodies, animal tissues, organs, etc., in a three-dimensional direction. When observing using a 3D image, a three-dimensional image may be reconstructed. A three-dimensional image is reconstructed by capturing a plurality of two-dimensional images while moving the focusing position in the optical axis direction and stacking these images. The three-dimensional image obtained in this way has three-dimensional information and can be used effectively for analysis of a three-dimensional sample.
 例えば、日本国特許第5424528号には、次のような技術が開示されている。すなわち、この技術では、解析対象は、微弱光としての生物発光を発生する生きた胚又は組織といった厚みを有するサンプルである。このサンプルには、複数の測定対象部位が設けられている。この技術では、厚みのあるサンプルを立体とみなし、測定対象部位ごとに異なる角度から微弱光シグナルが取得され、そのシグナルを用いて個々の測定部位に関する解析が行われる。異なる角度から取得される微弱光シグナルは、厚みのあるサンプルの表面から一定の深さ情報を含んでおり、測定部位ごとに別々の3次元情報を含んでいる。 For example, Japanese Patent No. 5424528 discloses the following technology. That is, in this technique, the analysis target is a sample having a thickness such as a live embryo or tissue that generates bioluminescence as weak light. This sample is provided with a plurality of measurement target parts. In this technique, a thick sample is regarded as a solid, a weak light signal is acquired from a different angle for each measurement target site, and analysis on each measurement site is performed using the signal. The faint light signal acquired from different angles includes certain depth information from the surface of the thick sample, and includes separate three-dimensional information for each measurement site.
 また、例えば日本国特開2014-119762号公報には、次のようなシステムに係る技術が開示されている。すなわち、このシステムは、細胞等を解析するシステムである。このシステムは、フォーカス位置を変化させながら、明視野画像及び発光画像又は蛍光画像を撮影することができる。 Further, for example, Japanese Patent Application Laid-Open No. 2014-119762 discloses a technology related to the following system. That is, this system is a system for analyzing cells and the like. This system can capture bright field images and luminescent or fluorescent images while changing the focus position.
 得られる3次元画像の解像度を高めるためには、3次元再構成に用いられる2次元画像の数は多い方がよい。また、2次元画像の焦点深度は、2次元画像の数に応じて適度に浅い方がよい。 In order to increase the resolution of the obtained 3D image, it is better that the number of 2D images used for 3D reconstruction is large. Further, the depth of focus of the two-dimensional image should be reasonably shallow according to the number of two-dimensional images.
 一方で、3次元画像の再構成を行うためには、焦点位置を光軸に沿って移動させるための電動システムが必要である。また、3次元再構成のための複数枚の画像撮影は、時間を要する。また、3次元画像では関心領域(ROI:Region Of Interest)を3次元的に設定することを含めてデータ解析が難しい場合がある。特に、微弱光の3次元画像を取得する場合、撮影に要する時間が長くなりやすい。このため、特に微弱光を発生する3次元試料の解析においては、1枚の2次元画像に立体試料の多くの情報を集積させたいという要望もある。このような理由から必要とされる2次元画像は、焦点深度がある程度深いことが好ましい。このように、3次元画像と2次元画像とが共に必要とされる場合がある。また、3次元画像の取得と2次元画像の取得とでは、好ましい焦点深度が異なることがある。 On the other hand, in order to reconstruct a three-dimensional image, an electric system for moving the focal position along the optical axis is necessary. In addition, it takes time to capture a plurality of images for three-dimensional reconstruction. In addition, in a three-dimensional image, it may be difficult to analyze data including setting a region of interest (ROI: Region Of Interest) three-dimensionally. In particular, when acquiring a three-dimensional image of weak light, the time required for photographing tends to be long. For this reason, particularly in the analysis of a three-dimensional sample that generates faint light, there is a desire to accumulate a large amount of information of a three-dimensional sample in one two-dimensional image. The two-dimensional image required for such a reason preferably has a certain depth of focus. Thus, there are cases where both a three-dimensional image and a two-dimensional image are required. In addition, the preferred depth of focus may differ between acquisition of a three-dimensional image and acquisition of a two-dimensional image.
 本発明は、微弱光を発するように調製された厚みを有する3次元試料を対象とする解析において、焦点深度が調整された画像が取得される微弱発光試料の解析方法及び解析システムを提供することを目的とする。 The present invention provides an analysis method and an analysis system for a weakly luminescent sample in which an image with an adjusted depth of focus is acquired in an analysis of a three-dimensional sample having a thickness prepared so as to emit weak light. With the goal.
 本発明の一態様によれば、微弱発光試料の解析方法は、微弱光を発するように調製された、複数の解析対象を含んでいる3次元試料としての微弱発光試料の微弱光画像を取得する画像取得処理と、取得された前記微弱光画像に基づいて前記3次元試料を解析する解析処理とを備え、前記画像取得処理は、所定の条件に基づいて、前記微弱光画像を取得する光学系に挿入された光学的絞りの開口径を決定することと、決定された前記開口径の前記光学的絞りを用いて前記3次元試料についての微弱光画像を取得することとを繰り返し行うことを含み、繰り返し行われる前記画像取得処理のうち少なくとも1回の前記画像取得処理においては、前記開口径は、前記光学系の光軸方向に異なる位置に存在する前記解析対象を焦点深度内に含めるような値に決定される。 According to one aspect of the present invention, a method for analyzing a weakly luminescent sample acquires a weak light image of a weakly luminescent sample as a three-dimensional sample prepared to emit weak light and including a plurality of analysis objects. An image acquisition process; and an analysis process for analyzing the three-dimensional sample based on the acquired weak light image, wherein the image acquisition process acquires the weak light image based on a predetermined condition. Repeatedly determining an aperture diameter of the optical aperture inserted into the optical aperture and acquiring a weak light image of the three-dimensional sample using the optical aperture of the determined aperture diameter. In at least one of the repeated image acquisition processes, the aperture diameter includes the analysis target existing at a position different in the optical axis direction of the optical system within the depth of focus. It is determined to be a value.
 本発明の一態様によれば、解析システムは、対物光学系と、前記対物光学系に設けられた光学的絞りと、所定の条件に基づいて光学的絞りの開口径を決定する開口決定部と、
 前記光学的絞りの開口径を決定された値にする絞り駆動部と、前記光学的絞りが決定された前記開口径である状態で微弱光を発するように調製された複数の解析対象を含んでいる3次元試料としての微弱発光試料についての微弱光画像を、前記対物光学系を介して撮像する撮像装置とを備える。
According to an aspect of the present invention, an analysis system includes an objective optical system, an optical aperture provided in the objective optical system, and an aperture determination unit that determines an aperture diameter of the optical aperture based on a predetermined condition. ,
An aperture drive unit for setting the aperture diameter of the optical aperture to a determined value, and a plurality of analysis objects prepared to emit weak light in a state where the optical aperture is the determined aperture diameter And an imaging device that captures a weak light image of the weak luminescent sample as a three-dimensional sample through the objective optical system.
 本発明によれば、微弱光を発するように調製された厚みを有する3次元試料を対象とする解析において、焦点深度が調整された画像が取得される微弱発光試料の解析方法及び解析システムを提供できる。 According to the present invention, there is provided an analysis method and an analysis system for a weakly luminescent sample in which an image with an adjusted focal depth is acquired in an analysis of a three-dimensional sample having a thickness prepared so as to emit weak light. it can.
図1は、一実施形態に係る解析システムの構成例の概略を示す図である。FIG. 1 is a diagram illustrating an outline of a configuration example of an analysis system according to an embodiment. 図2は、絞りの開口径と得られる画像との関係について説明するための模式図である。FIG. 2 is a schematic diagram for explaining the relationship between the aperture diameter of the diaphragm and the obtained image. 図3は、一実施形態に係る解析方法の一例の概略を示すフローチャートである。FIG. 3 is a flowchart illustrating an outline of an example of the analysis method according to the embodiment. 図4は、一実施形態に係る画像取得処理の一例の概略を示すフローチャートである。FIG. 4 is a flowchart illustrating an outline of an example of an image acquisition process according to an embodiment. 図5は、第1のモードに係る撮影のタイミングの一例について説明するための図である。FIG. 5 is a diagram for explaining an example of shooting timing according to the first mode. 図6は、第1のモードに係る開口径決定処理の一例の概略を示すフローチャートである。FIG. 6 is a flowchart illustrating an outline of an example of the opening diameter determination process according to the first mode. 図7は、第1のモードに係る画像生成処理の一例の概略を示すフローチャートである。FIG. 7 is a flowchart illustrating an outline of an example of image generation processing according to the first mode. 図8は、第2のモードに係る撮影のタイミングの一例について説明するための図である。FIG. 8 is a diagram for explaining an example of shooting timing according to the second mode. 図9は、第3のモードに係る開口径決定処理の一例の概略を示すフローチャートである。FIG. 9 is a flowchart illustrating an outline of an example of the opening diameter determination process according to the third mode. 図10は、一実施形態に係る解析処理の一例の概略を示すフローチャートである。FIG. 10 is a flowchart illustrating an outline of an example of analysis processing according to an embodiment. 図11は、一実施形態の変形例に係る解析システムの構成例の概略を示す図である。FIG. 11 is a diagram illustrating an outline of a configuration example of an analysis system according to a modification of the embodiment. 図12は、方眼紙で作製した三角錐の観察結果の一例を示す図である。FIG. 12 is a diagram illustrating an example of an observation result of a triangular pyramid made of graph paper. 図13は、多孔質シリカビーズの観察結果の一例を示す図である。FIG. 13 is a diagram illustrating an example of observation results of porous silica beads. 図14は、時計遺伝子Per2::ルシフェラーゼをノックインしたマウスの大腿骨の観察結果の一例を示す図である。FIG. 14 is a diagram showing an example of observation results of femurs of mice knocked in with the clock gene Per2 :: luciferase.
 〈解析の概要〉
 本発明の一実施形態について説明する。本実施形態に係る解析システムは、微弱光を発するように調製された厚みを有する3次元試料の解析に用いられ得る。このような3次元試料の例としては、マウス等といった小動物の器官及び臓器、胚様体、スフェロイド、ゲル又は担体内で培養した3次元細胞試料等が挙げられる。
<Outline of analysis>
An embodiment of the present invention will be described. The analysis system according to the present embodiment can be used for analysis of a three-dimensional sample having a thickness prepared so as to emit faint light. Examples of such three-dimensional samples include small animal organs and organs such as mice, embryoid bodies, spheroids, gels, or three-dimensional cell samples cultured in a carrier.
 本実施形態に係る解析システムは、画像を取得するための顕微鏡を含む。本解析システムは、試料の2次元画像を取得できる。すなわち、微弱光を発する3次元試料についての2次元微弱光画像を取得できる。また、本解析システムは、互いに異なる複数の合焦面についての複数の2次元画像を取得できる。本解析システムは、得られた複数の2次元画像を含む少なくとも一組の2次元画像を合成して、3次元画像を生成することができる。すなわち、微弱光を発する3次元試料の3次元微弱光画像を取得できる。本解析システムでは、このようにして生成された2次元画像又は3次元画像といった微弱光画像に基づいて、解析が行われる。解析では、例えば画像中の輝度が求められる。 The analysis system according to the present embodiment includes a microscope for acquiring an image. This analysis system can acquire a two-dimensional image of a sample. That is, a two-dimensional weak light image can be acquired for a three-dimensional sample that emits weak light. In addition, the analysis system can acquire a plurality of two-dimensional images for a plurality of different focal planes. This analysis system can generate a three-dimensional image by synthesizing at least one set of two-dimensional images including a plurality of obtained two-dimensional images. That is, a three-dimensional weak light image of a three-dimensional sample that emits weak light can be acquired. In this analysis system, an analysis is performed based on a weak light image such as a two-dimensional image or a three-dimensional image generated in this way. In the analysis, for example, the luminance in the image is obtained.
 また、本解析システムにおいて、例えば対物レンズ部分といった顕微鏡の光学系には、開口径が可変である光学的絞りが設けられている。この絞りの開口径を変更することで、焦点深度は変化する。本実施形態に係る解析システムは、2次元画像又は3次元画像を取得する際に、絞りの開口径を調整し、得られる画像の焦点深度を調整する。 Further, in the present analysis system, an optical aperture having a variable aperture diameter is provided in an optical system of a microscope such as an objective lens portion. By changing the aperture diameter of this stop, the depth of focus changes. When acquiring a two-dimensional image or a three-dimensional image, the analysis system according to the present embodiment adjusts the aperture diameter of the diaphragm and adjusts the depth of focus of the obtained image.
 〈システム構成〉
 本実施形態に係る解析システムの構成例について図1を参照して説明する。解析システム1は、上述の3次元試料であるサンプル900を観察するための観察装置100と、観察装置100の動作の制御及び画像処理等を行うデータ処理装置200とを備える。さらに、解析システム1は、データ処理装置200で処理された画像を表示するための表示装置310と、ユーザがデータ処理装置200に命令を入力する際に用いられる入力装置320とを備える。観察装置100は、サンプル900を照明しながら明視野画像を取得したり、暗条件でサンプル900の発光画像を取得したりできる装置である。観察装置100とデータ処理装置200とが連携することで、サンプル900の観察を行うことができる。
<System configuration>
A configuration example of the analysis system according to the present embodiment will be described with reference to FIG. The analysis system 1 includes an observation apparatus 100 for observing the sample 900 that is the above-described three-dimensional sample, and a data processing apparatus 200 that controls the operation of the observation apparatus 100 and performs image processing. Furthermore, the analysis system 1 includes a display device 310 for displaying an image processed by the data processing device 200 and an input device 320 used when a user inputs a command to the data processing device 200. The observation apparatus 100 is an apparatus that can acquire a bright field image while illuminating the sample 900, or can acquire a light emission image of the sample 900 under dark conditions. When the observation apparatus 100 and the data processing apparatus 200 cooperate, the sample 900 can be observed.
 観察装置100は、サンプル900が入った容器910を設置するステージ110と、サンプル900を撮影するための撮影ユニット130と、サンプル900を照明するための照明ユニット160とを備える。 The observation apparatus 100 includes a stage 110 on which a container 910 containing a sample 900 is placed, a photographing unit 130 for photographing the sample 900, and an illumination unit 160 for illuminating the sample 900.
 容器910は、サンプル900を収納する。容器910として、シャーレ、スライドガラス、マイクロプレートのほか、ゲル支持体、微粒子担体などが用いられ得る。 The container 910 stores the sample 900. As the container 910, a petri dish, a glass slide, a microplate, a gel support, a fine particle carrier, and the like can be used.
 本実施形態では、撮影ユニット130に正立型の発光顕微鏡が用いられている。撮影ユニット130は、対物レンズ131と、光学的な絞り132と、結像レンズ133と、撮像装置134とを有する。対物レンズ131、光学的な絞り132、結像レンズ133等は、対物光学系の一部を成す。 In this embodiment, an upright light emitting microscope is used for the photographing unit 130. The photographing unit 130 includes an objective lens 131, an optical aperture 132, an imaging lens 133, and an imaging device 134. The objective lens 131, the optical aperture 132, the imaging lens 133, and the like form part of the objective optical system.
 撮像装置134は、サンプル900の発光画像や明視野画像を撮像する。撮像装置134は、CCDイメージセンサ又はCMOSイメージセンサ等の固体撮像素子を有する。撮像装置134は、この固体撮像素子の撮像面上に結像された像を光電変換することによって画像データを生成する。撮像装置134は、生成した画像データをデータ処理装置200へと出力する。撮像装置134としては、例えば冷却CCDカメラが用いられ得る。冷却CCDとしては、例えば0℃以下の冷却CCDが利用され得る。また、冷却CCDとして、好ましくは-80℃乃至-30℃の冷却CCD、特に-60℃程度の冷却CCDが利用され得る。 The imaging device 134 captures a light emission image or a bright field image of the sample 900. The imaging device 134 has a solid-state imaging device such as a CCD image sensor or a CMOS image sensor. The imaging device 134 generates image data by photoelectrically converting an image formed on the imaging surface of the solid-state imaging device. The imaging device 134 outputs the generated image data to the data processing device 200. As the imaging device 134, for example, a cooled CCD camera can be used. As the cooling CCD, for example, a cooling CCD of 0 ° C. or lower can be used. As the cooling CCD, a cooling CCD of preferably −80 ° C. to −30 ° C., particularly a cooling CCD of about −60 ° C. can be used.
 対物レンズ131及び結像レンズ133は、サンプル900の像を撮像装置134の撮像素子の撮像面に結像させる。絞り132は、対物レンズ131の後方に設けられている。絞り132は、開口径が変更され得るように構成されている。なお、絞り132は、撮影ユニット130内の他の位置に挿入されてもよい。 The objective lens 131 and the imaging lens 133 form an image of the sample 900 on the imaging surface of the imaging device of the imaging device 134. The diaphragm 132 is provided behind the objective lens 131. The diaphragm 132 is configured such that the opening diameter can be changed. The diaphragm 132 may be inserted at another position in the photographing unit 130.
 観察装置100には、データ処理装置200の制御下で、絞り132の開口径を変化させる絞り駆動部142が設けられている。また、撮影ユニット130には、合焦面を変化させるために、対物レンズ131をその光軸(Z軸)に沿って移動させるレンズ移動機構136が設けられている。観察装置100には、データ処理装置200の制御下でレンズ移動機構136を動作させる対物レンズ駆動部144が設けられている。 The observation apparatus 100 is provided with a diaphragm driving unit 142 that changes the aperture diameter of the diaphragm 132 under the control of the data processing apparatus 200. Further, the photographing unit 130 is provided with a lens moving mechanism 136 that moves the objective lens 131 along its optical axis (Z axis) in order to change the focal plane. The observation apparatus 100 is provided with an objective lens driving unit 144 that operates the lens moving mechanism 136 under the control of the data processing apparatus 200.
 ステージ110は、撮影ユニット130の光軸に対して垂直な平面内(X-Y平面内)で移動できる。観察装置100には、データ処理装置200の制御下で、ステージ110を移動させるステージ駆動部120が設けられている。ステージ駆動部120は、ステージ110を2次元的に移動させる。 The stage 110 can move in a plane perpendicular to the optical axis of the photographing unit 130 (in the XY plane). The observation apparatus 100 is provided with a stage drive unit 120 that moves the stage 110 under the control of the data processing apparatus 200. The stage drive unit 120 moves the stage 110 two-dimensionally.
 照明ユニット160は、明視野観察用の光(例えば白色光)をサンプル900に照射する。照明ユニット160は、光源161と、シャッター162と、照明光学系163とを備える。光源161は、明視野観察用の光を発するハロゲンランプ等を有する。 The illumination unit 160 irradiates the sample 900 with light for bright field observation (for example, white light). The illumination unit 160 includes a light source 161, a shutter 162, and an illumination optical system 163. The light source 161 includes a halogen lamp that emits light for bright field observation.
 シャッター162は、サンプル900への明視野観察用の光の照射の有無を切り替えるシャッターである。観察装置100には、データ処理装置200の制御下でシャッター162を駆動する、シャッター駆動部170が設けられている。 The shutter 162 is a shutter that switches whether the sample 900 is irradiated with light for bright field observation. The observation apparatus 100 is provided with a shutter driving unit 170 that drives the shutter 162 under the control of the data processing apparatus 200.
 照明光学系163は、コレクタレンズ164及び照明用ファイバ165を有する。照明用ファイバ165の入射端は、コレクタレンズ164の集光位置に設けられる。照明用ファイバ165の射出端は、ステージ110の対物レンズ131側(図示される正立型の発光顕微鏡においてはサンプル900の上方)に、照明光の射出方向をサンプル900の方向(又は容器910の底面の中央付近)に向けて斜めの光軸を有するように、かつ対物レンズ131への入射がなるべく少なくなるように、対物レンズ131の光軸に対して90度未満、好ましくは30~65度の鋭角の傾きで設けられている。 The illumination optical system 163 includes a collector lens 164 and an illumination fiber 165. The incident end of the illumination fiber 165 is provided at the condensing position of the collector lens 164. The exit end of the illumination fiber 165 is on the objective lens 131 side of the stage 110 (above the sample 900 in the illustrated upright light emission microscope), and the exit direction of the illumination light is the direction of the sample 900 (or the container 910). Less than 90 degrees with respect to the optical axis of the objective lens 131, preferably 30 to 65 degrees so that the optical axis is inclined toward the vicinity of the center of the bottom surface and the incidence on the objective lens 131 is minimized. It is provided with an acute angle inclination.
 コレクタレンズ164により集光された光源161からの光は、照明用ファイバ165の射出端から所定の角度で光が発散されることで、対物レンズ131側からほぼ均一にサンプル900を照射することができる。このように、対物レンズ131側から照明することで、厚みのあるサンプルに関して、影が生じることなく見通しの良い明視野画像を得ることができる。 The light from the light source 161 condensed by the collector lens 164 is emitted from the exit end of the illumination fiber 165 at a predetermined angle, so that the sample 900 can be irradiated almost uniformly from the objective lens 131 side. it can. In this way, by illuminating from the objective lens 131 side, a bright field image with good line of sight can be obtained without causing a shadow for a thick sample.
 データ処理装置200は、演算回路210と記憶装置280とを備える。演算回路210は、各種演算を行う回路である。記憶装置280は、演算回路210で用いられる各種プログラム及び各種パラメータ等を記憶する記憶装置を含む。また、記憶装置280には、得られた画像及び解析結果等の情報が記憶される。また、記憶装置280には、演算回路210が演算を行う際に使用する情報を一時的に記憶するRAM等が含まれ得る。記憶装置280は、例えば半導体メモリ、ハードディスク、各種ROM等を含み得る。 The data processing device 200 includes an arithmetic circuit 210 and a storage device 280. The arithmetic circuit 210 is a circuit that performs various calculations. The storage device 280 includes a storage device that stores various programs and various parameters used in the arithmetic circuit 210. The storage device 280 stores information such as the obtained image and analysis results. The storage device 280 may include a RAM that temporarily stores information used when the arithmetic circuit 210 performs an operation. The storage device 280 can include, for example, a semiconductor memory, a hard disk, various ROMs, and the like.
 図1には、演算回路210の機能ブロックが示されている。すなわち、演算回路210は、撮影制御部222と、開口決定部224と、撮像装置制御部232と、絞り制御部234と、位置制御部236と、シャッター制御部238と、画像処理部242と、画像合成部244と、画像解析部246と、表示制御部248としての機能を有する。 FIG. 1 shows functional blocks of the arithmetic circuit 210. That is, the arithmetic circuit 210 includes an imaging control unit 222, an aperture determination unit 224, an imaging device control unit 232, an aperture control unit 234, a position control unit 236, a shutter control unit 238, an image processing unit 242, The image synthesizing unit 244, the image analyzing unit 246, and the display control unit 248 are provided.
 撮影制御部222は、観察装置100を用いた画像取得に係る動作、取得された画像の表示に係る動作、取得された画像に基づく解析等の全体の動作を制御する。 The imaging control unit 222 controls overall operations such as an operation related to image acquisition using the observation apparatus 100, an operation related to display of the acquired image, and an analysis based on the acquired image.
 開口決定部224は、撮影制御部222から取得した情報に基づいて、絞り132の開口径を決定する。開口決定部224は、決定した開口径を絞り制御部234へと伝達する。 The aperture determination unit 224 determines the aperture diameter of the aperture 132 based on the information acquired from the imaging control unit 222. The aperture determination unit 224 transmits the determined aperture diameter to the aperture control unit 234.
 絞り制御部234は、撮影制御部222の指示の下、絞り132の開口径が開口決定部224から取得した開口径となるように、絞り132の動作を制御する。すなわち、絞り制御部234は、絞り駆動部142へと制御信号を出力する。 The aperture control unit 234 controls the operation of the aperture 132 so that the aperture diameter of the aperture 132 becomes the aperture diameter acquired from the aperture determination unit 224 under the instruction of the imaging control unit 222. That is, the aperture controller 234 outputs a control signal to the aperture driver 142.
 撮像装置制御部232は、撮影制御部222の指示の下、撮像装置134の動作を制御する。撮像装置制御部232は、例えば、撮像のタイミング、露出時間等を制御する。 The imaging device control unit 232 controls the operation of the imaging device 134 under the instruction of the imaging control unit 222. The imaging device control unit 232 controls, for example, imaging timing, exposure time, and the like.
 位置制御部236は、撮影制御部222の指示の下、対物レンズ131の位置及びステージ110の位置を制御する。すなわち、位置制御部236は、対物レンズ駆動部144及びステージ駆動部120へと制御信号を出力する。 The position control unit 236 controls the position of the objective lens 131 and the position of the stage 110 under the instruction of the imaging control unit 222. That is, the position control unit 236 outputs a control signal to the objective lens driving unit 144 and the stage driving unit 120.
 シャッター制御部238は、撮影制御部222の指示の下、シャッター162の動作を制御する。すなわち、シャッター制御部238は、シャッター駆動部170へと制御信号を出力する。シャッター制御部238は、例えば、明視野画像を取得するときにはシャッター162を開状態にし、発光画像を取得するときにはシャッター162を閉状態にする。 The shutter control unit 238 controls the operation of the shutter 162 under the instruction of the shooting control unit 222. That is, the shutter control unit 238 outputs a control signal to the shutter driving unit 170. For example, the shutter control unit 238 opens the shutter 162 when acquiring a bright field image, and closes the shutter 162 when acquiring a light emission image.
 画像処理部242は、撮影制御部222の制御下で、撮像装置134から画像データを取得して、当該画像データに対して画像処理を施す。例えば、画像処理部242は、2次元画像のデータを作成する。画像処理部242は、画像処理後の画像データを画像合成部244、画像解析部246又は表示制御部248へと伝達する。また、画像処理部242は、処理後の画像を記憶装置280に記録させる。 The image processing unit 242 acquires image data from the imaging device 134 under the control of the imaging control unit 222 and performs image processing on the image data. For example, the image processing unit 242 creates two-dimensional image data. The image processing unit 242 transmits the image data after the image processing to the image synthesis unit 244, the image analysis unit 246, or the display control unit 248. In addition, the image processing unit 242 causes the storage device 280 to record the processed image.
 画像合成部244は、撮影制御部222の制御下で、画像処理部242から取得した2次元画像に基づいて、3次元画像を合成する。画像合成部244は、作成した3次元画像を画像解析部246又は表示制御部248へと伝達する。また、画像合成部244は、作成した3次元画像を記憶装置280に記録させる。 The image composition unit 244 synthesizes a three-dimensional image based on the two-dimensional image acquired from the image processing unit 242 under the control of the imaging control unit 222. The image composition unit 244 transmits the created three-dimensional image to the image analysis unit 246 or the display control unit 248. In addition, the image composition unit 244 records the created three-dimensional image in the storage device 280.
 画像解析部246は、撮影制御部222の制御下で、画像処理部242から取得した2次元画像又は画像合成部244から取得した3次元画像を用いて、解析を行う。画像解析部246は、例えば、画像データに基づいて、3次元試料の発光量を算出する。画像解析部246は、解析結果を必要に応じて必要な形式で表示制御部248へと伝達する。また、画像解析部246は、解析結果を記憶装置280に記録させる。 The image analysis unit 246 performs analysis using the two-dimensional image acquired from the image processing unit 242 or the three-dimensional image acquired from the image composition unit 244 under the control of the imaging control unit 222. For example, the image analysis unit 246 calculates the light emission amount of the three-dimensional sample based on the image data. The image analysis unit 246 transmits the analysis result to the display control unit 248 in a necessary format as necessary. In addition, the image analysis unit 246 records the analysis result in the storage device 280.
 表示制御部248は、撮影制御部222の制御下で、画像処理部242、画像合成部244又は画像解析部246から取得した情報に基づいて、画像を表示装置310に表示させる。 The display control unit 248 causes the display device 310 to display an image based on information acquired from the image processing unit 242, the image synthesis unit 244, or the image analysis unit 246 under the control of the imaging control unit 222.
 演算回路210は、Central Processing Unit(CPU)、Application Specific Integrated Circuit(ASIC)、又はField Programmable Gate Array(FPGA)等の集積回路等を含む。演算回路210は、1つの集積回路等で構成されてもよいし、例えば機能ブロックごとに設けられた複数の集積回路等が組み合わされて構成されてもよい。これら集積回路の動作は、例えば記憶装置280や集積回路内の記録領域に記録されたプログラムに従って行われる。 The arithmetic circuit 210 includes an integrated circuit such as a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), or a Field Programmable Gate Array (FPGA). The arithmetic circuit 210 may be configured by one integrated circuit or the like, or may be configured by combining a plurality of integrated circuits or the like provided for each functional block, for example. The operations of these integrated circuits are performed in accordance with, for example, a program recorded in the storage device 280 or a recording area in the integrated circuit.
 表示装置310は、例えば液晶ディスプレイや有機ELディスプレイといった、一般的な表示装置である。表示装置310は、表示制御部248の制御下で、各種画像を表示する。なお、表示装置310とともに、例えば表示内容を紙に印刷するプリンタ等が備えられてもよい。 The display device 310 is a general display device such as a liquid crystal display or an organic EL display. The display device 310 displays various images under the control of the display control unit 248. In addition to the display device 310, for example, a printer that prints display content on paper may be provided.
 入力装置320は、例えばキーボード、マウス、タッチパネル、スイッチといった一般的な入力装置である。入力装置320は、ユーザによる入力をデータ処理装置200へと伝達する。 The input device 320 is a general input device such as a keyboard, a mouse, a touch panel, and a switch. The input device 320 transmits input from the user to the data processing device 200.
 〈3次元試料〉
 3次元試料としては、上述のとおり、例えば、マウス等といった小動物の器官若しくは臓器、生体の組織、胚様体、スフェロイド、又はゲル若しくは担体内で培養した3次元細胞試料等が挙げられる。本実施形態では微弱光を発光する3次元試料の発光画像を取得することが含まれる。このため、試料を構成する細胞には、例えば発光タンパク質の遺伝子が導入されている。発光タンパク質としては、例えばルシフェラーゼが用いられ得る。発光タンパク質としてルシフェラーゼが用いられる場合、試料には、発光基質であるルシフェリンが導入される。一般に、発光タンパク質の遺伝子が導入された細胞は、蛍光タンパク質に比べて100分の1以下の極めて微弱な輝度の生物発光を発生するに過ぎず、ビデオレートで撮像することが困難である。それにもかかわらず、発光タンパク質は、細胞内の遺伝子の発現量と極めて相関の高い生物発光を生じるので、長時間に亘り微弱な光を測定することにより、発現量の微弱な変化を正確に捉えることができる。このようにビデオレートでの撮像が困難となるような微弱光は、微弱な生物活性を定量するのに非常に適している。しかしながら、生物発光のような微弱光を高感度に取得できる顕微鏡ベースの発光イメージングシステム(発光顕微鏡)は発展途上であり、多様な生物活性に応用する手法も装置も検討されていない状況にある。
<Three-dimensional sample>
Examples of the three-dimensional sample include a small animal organ or organ such as a mouse, a living tissue, an embryoid body, a spheroid, or a three-dimensional cell sample cultured in a gel or a carrier as described above. The present embodiment includes obtaining a light emission image of a three-dimensional sample that emits weak light. For this reason, for example, a photoprotein gene is introduced into the cells constituting the sample. As the photoprotein, for example, luciferase can be used. When luciferase is used as the photoprotein, luciferin, which is a luminescent substrate, is introduced into the sample. In general, a cell into which a photoprotein gene has been introduced only emits bioluminescence with an extremely weak luminance of 1/100 or less as compared with a fluorescent protein, and it is difficult to image at a video rate. Nevertheless, photoproteins produce bioluminescence that is highly correlated with the level of gene expression in the cell, so by measuring faint light over a long period of time, we can accurately capture weak changes in expression level. be able to. Such faint light that makes imaging at a video rate difficult is very suitable for quantifying faint biological activity. However, a microscope-based luminescence imaging system (luminescence microscope) that can acquire faint light such as bioluminescence with high sensitivity is in the process of development, and neither a technique nor an apparatus that is applied to various biological activities has been studied.
 ルシフェラーゼ活性を指標として生物活性の一例である遺伝子発現の強さを調べる場合には、ルシフェラーゼがレポーター遺伝子として生きた細胞に導入される。この場合、ルシフェラーゼ遺伝子の上流や下流に目的のDNA断片がつながれることによって、そのDNA断片が転写に及ぼす影響を時系列的に調べることができる。また、転写に影響を及ぼすと思われる転写因子などの遺伝子を発現ベクターにつないでレポーター遺伝子と共発現させることにより、その遺伝子産物のレポーター遺伝子の発現に対する影響を調べることもできる。 When investigating the strength of gene expression, which is an example of biological activity, using luciferase activity as an index, luciferase is introduced into a living cell as a reporter gene. In this case, when the target DNA fragment is connected upstream or downstream of the luciferase gene, the influence of the DNA fragment on transcription can be examined in time series. In addition, by connecting a gene such as a transcription factor that is thought to affect transcription to an expression vector and co-expressing it with the reporter gene, the effect of the gene product on the expression of the reporter gene can be examined.
 〈絞りの開口径と得られる画像との関係〉
 絞り132の開口径と撮像装置134によって得られる画像との関係について、図2に示す模式図を参照して説明する。図2において、左列は2次元画像を得る場合を示し、右列は3次元画像を得る場合を示す。図2において、上段は絞り132の開口径が大きい場合を示し、下段は絞り132の開口径が小さい場合を示す。
<Relationship between aperture diameter and resulting image>
The relationship between the aperture diameter of the aperture 132 and the image obtained by the imaging device 134 will be described with reference to the schematic diagram shown in FIG. In FIG. 2, the left column shows a case where a two-dimensional image is obtained, and the right column shows a case where a three-dimensional image is obtained. In FIG. 2, the upper stage shows a case where the aperture diameter of the diaphragm 132 is large, and the lower stage shows a case where the aperture diameter of the diaphragm 132 is small.
 それぞれの欄における上の図は、光軸を含む平面を示す。すなわち、これらの図は、容器910の底面上のサンプル900を横から見た状態の模式図を示す。図中の各白抜きの矩形810は、1回の撮像で画像が得られる領域を模式的に示す。すなわち、各矩形810の高さは、焦点深度を模式的に示している。2次元画像を取得する場合には、1つの2次元画像が取得されるので、1つの矩形810が示されている。一方、3次元画像を取得する場合には、レンズ移動機構136によって対物レンズ131をその光軸に沿って移動させながら複数の2次元画像が得られるので、複数の矩形810が示されている。 The upper figure in each column shows the plane including the optical axis. That is, these drawings show schematic views of the sample 900 on the bottom surface of the container 910 as viewed from the side. Each white rectangle 810 in the drawing schematically shows a region where an image can be obtained by one imaging. That is, the height of each rectangle 810 schematically indicates the depth of focus. In the case of acquiring a two-dimensional image, one two-dimensional image is acquired, and thus one rectangle 810 is shown. On the other hand, in the case of acquiring a three-dimensional image, a plurality of two-dimensional images are obtained while moving the objective lens 131 along its optical axis by the lens moving mechanism 136, and thus a plurality of rectangles 810 are shown.
 2次元画像の欄における下の図は、得られる2次元画像820を模式的に示す。これらの2次元画像820は、光軸に対して垂直な平面を表す画像であり、矩形810で示される領域に係るサンプル900の断面を表す画像である。3次元画像の欄における下の図は、得られる3次元画像の光軸を含む平面についての断面画像830を模式的に示す。 The lower figure in the 2D image column schematically shows the obtained 2D image 820. These two-dimensional images 820 are images representing a plane perpendicular to the optical axis, and are images representing a cross section of the sample 900 related to the region indicated by the rectangle 810. The lower figure in the three-dimensional image column schematically shows a cross-sectional image 830 for a plane including the optical axis of the obtained three-dimensional image.
 図2に示すように、絞り132の開口径が大きいときは焦点深度が浅い。このため、得られる2次元画像820には、合焦面に係る狭い範囲の試料の情報が含まれ、合焦面から外れた領域に係る試料の情報は含まれない。例えば、サンプル900内の第1の構造物901については2次元画像820に表されるが、第2の構造物902については2次元画像820に表されない。一方、絞り132の開口径が小さいときは焦点深度が深い。このため、深さ方向について広い領域の光が1枚の2次元画像に集積させられる。その結果、得られる2次元画像には、合焦面から外れた領域も含む広い範囲の試料の情報が含まれる。例えば、サンプル900内の第1の構造物901及び第2の構造物902が共に2次元画像820に表される。したがって、1枚の2次元画像で多くの情報を得るためには、絞り132の開口径が小さい方が好ましい。1枚の2次元画像で高解像度の画像を得るためには、絞り132の開口径が大きい方が好ましい。 As shown in FIG. 2, when the aperture diameter of the diaphragm 132 is large, the depth of focus is shallow. For this reason, the obtained two-dimensional image 820 includes information on the sample in a narrow range related to the in-focus plane, and does not include information on the sample in the area outside the in-focus plane. For example, the first structure 901 in the sample 900 is represented in the two-dimensional image 820, but the second structure 902 is not represented in the two-dimensional image 820. On the other hand, when the aperture diameter of the stop 132 is small, the depth of focus is deep. For this reason, light in a wide area in the depth direction is accumulated in one two-dimensional image. As a result, the obtained two-dimensional image includes information on a wide range of samples including a region deviated from the focal plane. For example, the first structure 901 and the second structure 902 in the sample 900 are both represented in the two-dimensional image 820. Therefore, in order to obtain a large amount of information with one two-dimensional image, it is preferable that the aperture diameter of the diaphragm 132 is small. In order to obtain a high-resolution image with a single two-dimensional image, it is preferable that the aperture diameter of the diaphragm 132 is large.
 また、3次元画像については、図2に示すように、絞り132の開口径が大きい方が高い解像度が得られる。一方、絞り132開口径が小さいと、観察領域が重複して深さ方向の解像度が悪くなり、得られる3次元画像は解像度が悪いものとなってしまう。したがって、3次元画像を得る場合には、絞り132の開口径が大きい方が好ましい。 As for the three-dimensional image, as shown in FIG. 2, the higher the aperture diameter of the diaphragm 132, the higher the resolution. On the other hand, if the aperture diameter of the stop 132 is small, the observation regions overlap and the resolution in the depth direction is deteriorated, and the obtained three-dimensional image has a poor resolution. Therefore, when obtaining a three-dimensional image, it is preferable that the aperture diameter of the diaphragm 132 is large.
 本実施形態に係る解析システムでは、深さ方向の情報を多く有する2次元画像の取得が要求されているときは、絞り132の開口径は小さくして、焦点深度が深い状態で2次元画像の取得が行われる。一方、解像度が高い3次元画像の取得が要求されているときは、絞り132の開口径を大きくして、焦点深度が浅い状態で複数の2次元画像の取得が行われる。このようにして得られた焦点深度が浅い2次元画像を合成することで1つの解像度が高い3次元画像が得られる。 In the analysis system according to the present embodiment, when acquisition of a two-dimensional image having a lot of information in the depth direction is required, the aperture diameter of the diaphragm 132 is reduced and the two-dimensional image is recorded in a state where the focal depth is deep. Acquisition is performed. On the other hand, when acquisition of a three-dimensional image with high resolution is required, the aperture diameter of the diaphragm 132 is increased and a plurality of two-dimensional images are acquired with a shallow depth of focus. By synthesizing the two-dimensional image having the shallow depth of focus thus obtained, one high-resolution three-dimensional image can be obtained.
 なお、2次元画像と3次元画像とは種々の使い分けがあり得る。例えば、2次元画像によれば、解析や視覚的な認識が容易である。このため、試料概要の把握のために2次元画像が利用され得る。一方、詳細な解析が必要な場合には、3次元画像が利用され得る。また、2次元画像の取得を基本として、2次元画像において所定の変化が検出された場合に、3次元画像の取得が行われることで、効率よく必要な情報が取得され得る。 It should be noted that there are various uses for 2D images and 3D images. For example, according to a two-dimensional image, analysis and visual recognition are easy. For this reason, a two-dimensional image can be used for grasping the sample outline. On the other hand, when detailed analysis is required, a three-dimensional image can be used. In addition, based on the acquisition of the two-dimensional image, when a predetermined change is detected in the two-dimensional image, the necessary information can be acquired efficiently by acquiring the three-dimensional image.
 〈解析方法〉
 本実施形態に係る3次元を有する微弱発光試料の解析方法について説明する。図3に示すように、本解析方法は、ステップS101の画像取得処理と、ステップS102の解析処理とを含む。ステップS101の画像取得処理では、所定の動作が繰り返し実行されることによって、解析に用いられる試料の画像が取得される。ステップS102の解析処理では、得られた画像に基づいて試料の解析が行われる。なお、画像の取得と得られた画像の解析とが交互に繰り返し行われる等してもよい。
<analysis method>
A method for analyzing a weakly luminescent sample having three dimensions according to the present embodiment will be described. As shown in FIG. 3, the analysis method includes an image acquisition process in step S101 and an analysis process in step S102. In the image acquisition process of step S101, an image of the sample used for analysis is acquired by repeatedly executing a predetermined operation. In the analysis processing in step S102, the sample is analyzed based on the obtained image. Note that acquisition of an image and analysis of the obtained image may be alternately repeated.
 画像取得処理について説明する。画像取得処理では、時間経過に沿って2次元画像又は3次元画像を含む複数の画像が取得される。すなわち、タイムラプス観察が行われる。この画像取得は、手動で制御されてもよいし、例えばデータ処理装置200によって制御されてもよい。図4を参照して、データ処理装置200によって制御される画像取得処理の一例を説明する。 The image acquisition process will be described. In the image acquisition process, a plurality of images including a two-dimensional image or a three-dimensional image are acquired over time. That is, time-lapse observation is performed. This image acquisition may be controlled manually or may be controlled by the data processing device 200, for example. An example of the image acquisition process controlled by the data processing device 200 will be described with reference to FIG.
 ステップS201において、データ処理装置200の撮影制御部222は、画像取得に係る各種設定を行う。データ処理装置200は、例えばユーザが入力した値に基づいて、一連の撮影時間のタイミング、取得する画像の枚数、合焦位置等を設定する。 In step S201, the imaging control unit 222 of the data processing device 200 performs various settings related to image acquisition. The data processing apparatus 200 sets a series of shooting time timings, the number of images to be acquired, a focus position, and the like based on values input by the user, for example.
 ステップS202において、データ処理装置200の撮影制御部222は、撮影を行うタイミングであるか否かを判定する。例えば、撮影制御部222は、撮影開始からの経過時間を計測する。撮影制御部222は、ステップS202において、撮影開始からの経過時間とステップS201で設定された撮影を行うタイミングとを比較して、撮影を行うか否かを判定する。撮影を行うタイミングでないとき、処理はステップS206に進み、ステップS203乃至ステップS205の処理をスキップする。一方撮影を行うタイミングであるとき、処理はステップS203に進む。 In step S202, the shooting control unit 222 of the data processing device 200 determines whether it is time to perform shooting. For example, the imaging control unit 222 measures the elapsed time from the start of imaging. In step S202, the shooting control unit 222 compares the elapsed time from the start of shooting with the timing of shooting set in step S201, and determines whether to perform shooting. When it is not time to perform shooting, the process proceeds to step S206, and the processes of steps S203 to S205 are skipped. On the other hand, when it is time to shoot, the process proceeds to step S203.
 ステップS203において、データ処理装置200の開口決定部224は、所定の条件に基づいて絞り132の開口径を決定する開口径決定処理を行う。本実施形態では、2次元画像が取得される場合、焦点深度が深い小さな開口径が選択される。一方、3次元画像が取得される場合、焦点深度が浅い大きな開口径が選択される。小さな開口径と大きな開口径とは、それぞれ観察装置100の光学的な条件によって予め決められていてもよい。例えば、小さな開口径とは、絞り132の開口の直径が何mmであり、大きな開口径とは、絞り132の開口の直径が何mmである等のように決められ得る。あるいは、小さな開口径と大きな開口径は、ステップS201における設定において、ユーザによってそれぞれ指定されてもよい。 In step S203, the aperture determining unit 224 of the data processing device 200 performs an aperture diameter determining process for determining the aperture diameter of the diaphragm 132 based on a predetermined condition. In this embodiment, when a two-dimensional image is acquired, a small aperture diameter with a deep focal depth is selected. On the other hand, when a three-dimensional image is acquired, a large aperture diameter with a shallow depth of focus is selected. The small opening diameter and the large opening diameter may be determined in advance according to the optical conditions of the observation apparatus 100, respectively. For example, the small opening diameter can be determined such as how many mm the diameter of the aperture of the diaphragm 132 is, and the large aperture diameter can be determined such as how many mm the diameter of the aperture of the diaphragm 132 is. Alternatively, the small opening diameter and the large opening diameter may be respectively designated by the user in the setting in step S201.
 ステップS204において、データ処理装置200の絞り制御部234は、決定された開口径となるように、絞り132の動作を制御する。 In step S204, the aperture control unit 234 of the data processing device 200 controls the operation of the aperture 132 so that the determined aperture diameter is obtained.
 ステップS205において、データ処理装置200は、撮像を行い、2次元画像又は3次元画像を生成する画像生成処理を行う。すなわち、ステップS203で小さな開口径が選択され、ステップS204で絞り132の開口径が小さくなるように設定されたとき、1枚の2次元画像が取得される。一方、ステップS203で大きな開口径が選択され、ステップS204で絞り132の開口径が大きくなるように設定されたとき、複数枚の2次元画像が取得され、これらの2次元画像に基づいて3次元画像が作成される。 In step S205, the data processing apparatus 200 performs image generation processing for capturing an image and generating a two-dimensional image or a three-dimensional image. That is, when a small aperture diameter is selected in step S203 and the aperture diameter of the diaphragm 132 is set to be small in step S204, one two-dimensional image is acquired. On the other hand, when a large aperture diameter is selected in step S203 and the aperture diameter of the diaphragm 132 is set to be large in step S204, a plurality of two-dimensional images are acquired, and a three-dimensional image is obtained based on these two-dimensional images. An image is created.
 ステップS206において、データ処理装置200の撮影制御部222は、一連の撮影が終了したか否かを判定する。一連の撮影が終了していないと判定されたとき、処理はステップS202に戻る。このようにして、ステップS201で設定された期間、設定された数の画像が取得される。一連の撮影が終了したとき、画像取得処理は終了する。 In step S206, the imaging control unit 222 of the data processing device 200 determines whether or not a series of imaging has been completed. When it is determined that a series of shooting has not been completed, the process returns to step S202. In this way, the set number of images is acquired for the period set in step S201. When a series of photographing is finished, the image acquisition process is finished.
 〈画像取得のモードについて〉
 本実施形態に係る解析システム1には、画像取得のための3つの動作モードが用意されている。いずれのモードにおいても、繰り返し行われる画像取得のうち少なくとも1回の処理においては、開口径は、対物光学系の光軸方向に異なる位置に存在する解析対象を焦点深度内に含めるような値に決定される。これらのモードについて順に説明する。
<Image acquisition mode>
In the analysis system 1 according to the present embodiment, three operation modes for image acquisition are prepared. In any mode, in at least one of the repeated image acquisitions, the aperture diameter is set to a value that includes the analysis target at different positions in the optical axis direction of the objective optical system within the depth of focus. It is determined. These modes will be described in order.
 (第1のモード)
 第1のモードは、ステップS201で設定された画像取得のタイミングにおいて、それぞれ2次元画像と3次元画像とが取得されるモードである。第1のモードにおいて、画像が取得されるタイミングを図5を参照して説明する。第1のモードでは、解析システム1は、まず、絞り132の開口径を小さくして焦点深度が深い状態とし、この状態で1回の撮影を行い1つの2次元画像を取得する。続いて、解析システム1は、絞り132の開口径を大きくして焦点深度が浅い状態とし、この状態で微弱発光試料の深さ方向(2次元画像に対しほぼ垂直な方向)に沿って複数回の撮影を行い、得られた画像を合成することで1つの3次元画像を取得する。解析システム1は、このような2次元画像と3次元画像とを一組とした画像取得を、ステップS201で設定されたタイミングで繰り返し行う。なお、所定の露光量を得るためには、開口径が小さいときは、開口径が大きい場合に比較して、長時間の露出が必要である。
(First mode)
The first mode is a mode in which a two-dimensional image and a three-dimensional image are acquired at the image acquisition timing set in step S201, respectively. The timing at which an image is acquired in the first mode will be described with reference to FIG. In the first mode, the analysis system 1 first reduces the aperture diameter of the diaphragm 132 to a state where the depth of focus is deep, and in this state, captures one image and acquires one two-dimensional image. Subsequently, the analysis system 1 increases the aperture diameter of the diaphragm 132 so that the focal depth is shallow, and in this state, the analysis system 1 performs a plurality of times along the depth direction of the weakly luminescent sample (a direction substantially perpendicular to the two-dimensional image). Are taken, and the obtained images are combined to obtain a single three-dimensional image. The analysis system 1 repeatedly performs such image acquisition as a set of the two-dimensional image and the three-dimensional image at the timing set in step S201. In order to obtain a predetermined exposure amount, when the aperture diameter is small, it is necessary to expose for a longer time than when the aperture diameter is large.
 このように、互いに異なる光学的絞りの開口径を用いて2次元画像と3次元画像とを一組として画像取得を行うことで、3次元画像に基づいて、2次元画像の中にある画像情報を3次元的に対応付けることが容易となる。したがって、第1のモードにおけるベストモードとしては、3次元画像により3次元情報が付与された2次元画像を繰り返し取得することで、最小限の3次元画像の取得でもって微弱光の3次元解析が連続的に実行され得る。 In this way, by obtaining an image as a set of a two-dimensional image and a three-dimensional image using different aperture diameters of optical stops, image information in the two-dimensional image is obtained based on the three-dimensional image. Can be easily associated three-dimensionally. Therefore, as the best mode in the first mode, a three-dimensional analysis of weak light can be performed by acquiring a minimum three-dimensional image by repeatedly acquiring a two-dimensional image provided with three-dimensional information by a three-dimensional image. It can be executed continuously.
 第1のモードでは、例えば2次元画像のための撮影が行われる直前に、開口径は小さい状態に変更され、3次元画像のための最初の撮影が行われる直前に、開口径は大きい状態に変更される。あるいは、例えば2次元画像のための撮影が行われた直後に、開口径は大きい状態に変更され、3次元画像のための最後の撮影が行われた直後に、開口径は小さい状態に変更される。 In the first mode, for example, the opening diameter is changed to a small state immediately before shooting for a two-dimensional image, and the opening diameter is set to a large state immediately before the first shooting for a three-dimensional image is performed. Be changed. Alternatively, for example, the aperture diameter is changed to a large state immediately after shooting for a two-dimensional image, and the aperture diameter is changed to a small state immediately after the last shooting for a three-dimensional image is performed. The
 第1のモードにおいて、ステップS203で行われる開口径決定処理について、図6を参照して説明する。ステップS301において、データ処理装置200の開口決定部224は、開口径を小さい状態に変更するタイミングであるか否かを判定する。例えば2次元画像のための撮影が行われる直前に開口径は小さい状態に変更され、3次元画像のための最初の撮影が行われる直前に開口径は大きい状態に変更される設定においては、2次元画像のための撮影が行われる直前であるか否かが判定される。あるいは、例えば2次元画像のための撮影が行われた直後に開口径は大きい状態に変更され、3次元画像のための最後の撮影が行われた直後に開口径は小さい状態に変更される設定においては、3次元画像のための最後の撮影が行われた直後であるか否かが判定される。開口径を小さくするタイミングであるとき、処理はステップS302に進む。ステップS302において、開口決定部224は、絞り132の開口径を小さい状態に変更すると決定する。その後、開口径決定処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。 In the first mode, the opening diameter determination process performed in step S203 will be described with reference to FIG. In step S301, the opening determination unit 224 of the data processing device 200 determines whether it is time to change the opening diameter to a small state. For example, in a setting in which the aperture diameter is changed to a small state immediately before shooting for a two-dimensional image and the aperture diameter is changed to a large state immediately before the first shooting for a three-dimensional image is performed, 2 is set. It is determined whether or not it is immediately before photographing for a three-dimensional image is performed. Alternatively, for example, the setting is made such that the aperture diameter is changed to a large state immediately after shooting for a two-dimensional image and the aperture diameter is changed to a small state immediately after the last shooting for a three-dimensional image is performed. It is determined whether or not it is immediately after the last shooting for a three-dimensional image is performed. When it is time to reduce the opening diameter, the process proceeds to step S302. In step S302, the aperture determining unit 224 determines to change the aperture diameter of the aperture 132 to a small state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG.
 ステップS301において開口径を小さい状態に変更するタイミングでないと判定されたとき、処理はステップS303に進む。ステップS303において、開口決定部224は、開口径を大きい状態に変更するタイミングであるか否かを判定する。例えば2次元画像のための撮影が行われる直前に開口径は小さい状態に変更され、3次元画像のための最初の撮影が行われる直前に開口径は大きい状態に変更される設定においては、3次元画像のための最初の撮影が行われる直前であるか否かが判定される。あるいは、例えば2次元画像のための撮影が行われた直後に開口径は大きい状態に変更され、3次元画像のための最後の撮影が行われた直後に開口径は小さい状態に変更される設定においては、2次元画像のための撮影が行われた直後であるか否かが判定される。開口径を大きい状態に変更するタイミングであるとき、処理はステップS304に進む。ステップS304において、開口決定部224は、絞り132の開口径を大きい状態に変更すると決定する。その後、開口径決定処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。 If it is determined in step S301 that it is not time to change the aperture diameter to a small state, the process proceeds to step S303. In step S303, the opening determination unit 224 determines whether it is time to change the opening diameter to a larger state. For example, in a setting in which the aperture diameter is changed to a small state immediately before shooting for a two-dimensional image and the aperture diameter is changed to a large state immediately before the first shooting for a three-dimensional image is performed, 3 It is determined whether or not it is just before the first shooting for a three-dimensional image is performed. Alternatively, for example, the setting is made such that the aperture diameter is changed to a large state immediately after shooting for a two-dimensional image and the aperture diameter is changed to a small state immediately after the last shooting for a three-dimensional image is performed. In, it is determined whether or not it is immediately after shooting for a two-dimensional image. When it is time to change the opening diameter to a larger state, the process proceeds to step S304. In step S304, the aperture determining unit 224 determines to change the aperture diameter of the aperture 132 to a large state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG.
 ステップS303において開口径を大きい状態に変更するタイミングでないと判定されたとき、処理はステップS305に進む。ステップS305において、開口決定部224は、開口径を維持すると決定する。その後、開口径決定処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。 If it is determined in step S303 that it is not time to change the aperture diameter to a larger state, the process proceeds to step S305. In step S305, the opening determination unit 224 determines to maintain the opening diameter. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG.
 開口径決定処理の後、ステップS204において、データ処理装置200の絞り制御部234は、決定された開口径となるように、絞り132の動作を制御する。例えば、ステップS203の開口径決定処理において、開口径を小さい状態に変更すると決定されたとき、絞り132は、開口径が小さい状態に変更される。一方、開口径を大きい状態に変更すると決定されたとき、絞り132は、開口径が大きい状態に変更される。また、開口径を維持すると決定されたとき、絞り132は変更されない。 After the aperture diameter determination process, in step S204, the aperture control unit 234 of the data processing device 200 controls the operation of the aperture 132 so that the determined aperture diameter is obtained. For example, when it is determined in the opening diameter determination process in step S203 that the opening diameter is changed to a small state, the diaphragm 132 is changed to a state where the opening diameter is small. On the other hand, when it is determined to change the aperture diameter to a large state, the diaphragm 132 is changed to a state where the aperture diameter is large. Further, when it is determined to maintain the aperture diameter, the diaphragm 132 is not changed.
 次に、ステップS205で行われる画像生成処理について、図7を参照して説明する。 Next, the image generation process performed in step S205 will be described with reference to FIG.
 ステップS401において、データ処理装置200の撮影制御部222は、ステップS203で決定されてステップS204で設定された絞り132の開口径が小さい状態であるか否かを判定する。開口径が小さいとき、処理はステップS402に進む。ステップS402において、撮影制御部222は、撮像装置制御部232を介して撮像装置134に所定の焦点面における撮像を1回行わせ、1枚の2次元画像に係る画像データを取得する。ここで設定される焦点面は、例えば、ステップS201において、ユーザによって予め指定された焦点面でもよい。また、例えば、前回取得された3次元画像において、輝度が最も高い領域を含むような焦点面であってもよい。 In step S401, the imaging control unit 222 of the data processing device 200 determines whether or not the aperture diameter of the diaphragm 132 determined in step S203 and set in step S204 is small. When the opening diameter is small, the process proceeds to step S402. In step S <b> 402, the imaging control unit 222 causes the imaging device 134 to perform imaging at a predetermined focal plane once via the imaging device control unit 232, and acquires image data related to one two-dimensional image. The focal plane set here may be a focal plane designated in advance by the user in step S201, for example. Further, for example, the focal plane may include a region with the highest luminance in the previously acquired three-dimensional image.
 ステップS403において、撮影制御部222は、画像処理部242にステップS402で取得された画像データに基づいて、1つの2次元画像を作成させる。その後、画像生成処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。 In step S403, the imaging control unit 222 causes the image processing unit 242 to create one two-dimensional image based on the image data acquired in step S402. Thereafter, the image generation process ends, and the process returns to the image acquisition process described with reference to FIG.
 ステップS401において、絞り132の開口径が小さくない、すなわち、絞り132の開口径が大きいと判定されたとき、処理はステップS404に進む。ステップS404において、撮影制御部222は、位置制御部236を介して例えばステージ110を光軸方向に移動させることで合焦面を変化させながら、撮像装置134に繰り返し撮像を行わせ、複数の2次元画像に係る画像データを取得する。ステップS405において、撮影制御部222は、画像合成部244にステップS404で取得された複数の2次元画像の画像データに基づいて、1つの3次元画像を作成する再構成処理を行わせる。その後、画像生成処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。 If it is determined in step S401 that the aperture diameter of the diaphragm 132 is not small, that is, the aperture diameter of the diaphragm 132 is large, the process proceeds to step S404. In step S <b> 404, the imaging control unit 222 causes the imaging device 134 to repeatedly perform imaging while changing the focal plane by moving, for example, the stage 110 in the optical axis direction via the position control unit 236. Image data relating to a three-dimensional image is acquired. In step S405, the imaging control unit 222 causes the image composition unit 244 to perform a reconstruction process for creating one three-dimensional image based on the image data of the plurality of two-dimensional images acquired in step S404. Thereafter, the image generation process ends, and the process returns to the image acquisition process described with reference to FIG.
 ステップS202で調整されたタイミングにおいて、ステップS203乃至ステップS205の処理によって2次元画像と3次元画像とが繰り返し取得されることで、2次元画像と3次元画像とが一組として、繰り返し取得されることになる。なお、ここでは、2次元画像の後に3次元画像が取得される例を示したが、先に3次元画像が取得され、その後に2次元画像が取得されてもよい。 At the timing adjusted in step S202, the two-dimensional image and the three-dimensional image are repeatedly acquired by the processing in steps S203 to S205, whereby the two-dimensional image and the three-dimensional image are repeatedly acquired as a set. It will be. Although an example in which a 3D image is acquired after a 2D image is shown here, a 3D image may be acquired first and then a 2D image may be acquired.
 (第2のモード)
 第2のモードの概略について、図8を参照して説明する。第2のモードでは、図8に示すように、焦点深度が深い開口径が小さい状態において2次元画像取得のための撮影が繰り返し行われ、所定の頻度で焦点深度が浅い開口径が大きい撮影が複数回行わることで1つの3次元画像取得が行われる。例えば、2次元画像の取得に必要な露出時間が例えば10分程度であり、3次元画像の取得のために、例えば1枚の2次元画像の取得に必要な時間が例えば3分程度であって、このような2次元画像の取得が10回繰り返される等のように設定される。
(Second mode)
An outline of the second mode will be described with reference to FIG. In the second mode, as shown in FIG. 8, photographing for obtaining a two-dimensional image is repeatedly performed in a state where the aperture diameter with a large depth of focus is small, and photographing with a large aperture diameter with a small depth of focus is performed at a predetermined frequency. One three-dimensional image acquisition is performed by performing it several times. For example, the exposure time required for acquiring a two-dimensional image is, for example, about 10 minutes, and for acquiring a three-dimensional image, for example, the time required for acquiring one two-dimensional image is, for example, about three minutes. Such a two-dimensional image acquisition is repeated 10 times.
 第2のモードは、例えば細胞が生体組織内で移動する場合のように、主に2次元画像に含まれる情報に基づいて解析を行うことができ、部分的に3次元画像に含まれる情報に基づいて解析を行うことが必要な場合に効果を奏する。すなわち、3次元画像に基づく情報を正確に反映させながら2次元画像による3次元解析が連続的に実行され得る。 In the second mode, the analysis can be performed mainly based on the information included in the two-dimensional image, for example, when the cell moves in the living tissue, and the information is partially included in the three-dimensional image. This is effective when it is necessary to perform an analysis based on this. That is, three-dimensional analysis using a two-dimensional image can be continuously performed while accurately reflecting information based on the three-dimensional image.
 第2のモードにおいても、例えば3次元画像のための最初の撮影が行われる直前に、開口径は大きい状態に変更され、2次元画像のための撮影が行われる直前に、開口径は小さい状態に変更される。 Also in the second mode, for example, the opening diameter is changed to a large state immediately before the first shooting for the three-dimensional image is performed, and the opening diameter is small immediately before the shooting for the two-dimensional image is performed. Changed to
 第2のモードにおいても、ステップS203で行われる開口径決定処理は、図6のフローチャートを参照して説明した手順で行われる。すなわち、ステップS301において、開口決定部224は、開口径を小さい状態に変更するタイミングであるか否かを判定する。例えば、2次元画像のための撮影が行われる直前であるか否かが判定される。2次元画像のための撮影が行われる直前であるとき、ステップS302において、開口決定部224は、絞り132の開口径を小さい状態にすると決定する。ステップS303において、開口決定部224は、開口径を大きい状態に変更するタイミングであるか否かを判定する。例えば、3次元画像のための最初の撮影が行われる直前であるか否かが判定される。3次元画像のための最初の撮影が行われる直前であるとき、ステップS304において、開口決定部224は、絞り132の開口径を大きい状態にすると決定する。 Also in the second mode, the opening diameter determination process performed in step S203 is performed according to the procedure described with reference to the flowchart of FIG. That is, in step S301, the opening determination unit 224 determines whether it is time to change the opening diameter to a small state. For example, it is determined whether or not it is immediately before photographing for a two-dimensional image is performed. When it is just before photographing for a two-dimensional image is performed, in step S302, the aperture determination unit 224 determines to make the aperture diameter of the aperture 132 small. In step S303, the opening determination unit 224 determines whether it is time to change the opening diameter to a larger state. For example, it is determined whether it is immediately before the first shooting for a three-dimensional image is performed. When it is just before the first shooting for a three-dimensional image is performed, in step S304, the aperture determination unit 224 determines to increase the aperture diameter of the aperture 132.
 また、第2のモードにおいても、ステップS205で行われる画像生成処理は、図7のフローチャートを参照して説明した手順で行われる。すなわち、絞り132の開口径が小さいとき、ステップS402で1つの画像データが取得され、ステップS403で1つの2次元画像が作成される。一方、絞り132の開口径が大きいとき、ステップS404で複数の画像データが取得され、ステップS405で1つの3次元画像が作成される。 Also in the second mode, the image generation process performed in step S205 is performed according to the procedure described with reference to the flowchart of FIG. That is, when the aperture diameter of the diaphragm 132 is small, one image data is acquired in step S402, and one two-dimensional image is created in step S403. On the other hand, when the aperture diameter of the diaphragm 132 is large, a plurality of image data is acquired in step S404, and one three-dimensional image is created in step S405.
 第2のモードにおいては、ステップS203乃至ステップS205の処理によって、ステップS202で調整されたタイミングで2次元画像又は3次元画像が繰り返し取得される。 In the second mode, a two-dimensional image or a three-dimensional image is repeatedly acquired at the timing adjusted in step S202 by the processing in steps S203 to S205.
 このように、第1の開口径を小さい開口径とし、第2の開口径を大きい開口径としたときに、繰り返される第1のタイミングで絞り132の開口径は第1の開口径に設定され、繰り返される第2のタイミングで絞り132の開口径は第2の開口径に設定される。そして、絞り132の開口径を第2の開口径とする場合には、互いに異なる複数の合焦面についての一組の2次元微弱光画像が取得され、この一組の2次元微弱光画像を合成して3次元微弱光画像が生成される。 As described above, when the first opening diameter is a small opening diameter and the second opening diameter is a large opening diameter, the opening diameter of the diaphragm 132 is set to the first opening diameter at the repeated first timing. The aperture diameter of the diaphragm 132 is set to the second aperture diameter at the second timing repeated. When the aperture diameter of the diaphragm 132 is the second aperture diameter, a set of two-dimensional weak light images for a plurality of different focal planes are acquired, and the set of two-dimensional weak light images are obtained. A three-dimensional weak light image is generated by combining the images.
 (第3のモード)
 第3のモードについて説明する。第3のモードでは、まず、2次元画像が繰り返し取得される。得られた2次元画像は逐次に解析される。そして、2次元画像において所定の変化よりも大きな変化が検出されたとき、3次元画像の取得が行われる。例えば、微弱光としての発光(ルシフェラーゼ遺伝子による細胞から発生する光)の画像については、生物学的な活性(例えば遺伝子発現量)が有意に変化したと解釈できるような発光強度の変化があった場合に、大きな変化が検出されたとして3次元画像の取得が行われるように解析システム1は構成され得る。あるいは、生物学的な活性があると認められる発光強度を閾値として、発光強度が当該閾値よりも上回った場合に変化が検出されたと判断されるように解析システム1は構成され得る。また、得られた3次元画像は逐次に解析される。そして、3次元画像において所定の変化よりも変化が小さくなったことが検出されたとき、2次元画像の取得が行われる。
(Third mode)
The third mode will be described. In the third mode, first, a two-dimensional image is repeatedly acquired. The obtained two-dimensional image is sequentially analyzed. When a change larger than a predetermined change is detected in the two-dimensional image, acquisition of the three-dimensional image is performed. For example, for images of luminescence as faint light (light generated from cells by the luciferase gene), there was a change in luminescence intensity that could be interpreted as a significant change in biological activity (eg gene expression level). In such a case, the analysis system 1 can be configured such that a three-dimensional image is acquired assuming that a large change is detected. Alternatively, the analysis system 1 can be configured so that a change is detected when the emission intensity that is recognized as having biological activity is set as a threshold and the emission intensity exceeds the threshold. Further, the obtained three-dimensional image is sequentially analyzed. Then, when it is detected that the change is smaller than the predetermined change in the three-dimensional image, acquisition of the two-dimensional image is performed.
 第3のモードでは、ステップS201で行われる設定において、絞り132の開口径の初期値として開口径が小さい、つまり焦点深度が深い状態での撮像条件が設定される。 In the third mode, in the setting performed in step S201, the imaging condition in a state where the aperture diameter is small, that is, the depth of focus is deep is set as the initial value of the aperture diameter of the diaphragm 132.
 第3のモードにおけるステップS203で行われる開口径決定処理について、図9を参照して説明する。なお、ステップS205で行われる画像生成処理では、図7を参照して説明した処理と同様の処理が行われる。ステップS501において、データ処理装置200の開口決定部224は、開口径は小さい状態であるか否かを判定する。開口径が小さい状態であるとき、処理はステップS502に進む。ステップS502において、画像解析部246は、過去に得られた2次元画像を解析し、開口決定部224は、2次元画像において所定の変化が検出されたか否かを判定する。 The opening diameter determination process performed in step S203 in the third mode will be described with reference to FIG. In the image generation process performed in step S205, the same process as the process described with reference to FIG. 7 is performed. In step S501, the opening determination unit 224 of the data processing device 200 determines whether or not the opening diameter is small. When the opening diameter is small, the process proceeds to step S502. In step S502, the image analysis unit 246 analyzes a two-dimensional image obtained in the past, and the aperture determination unit 224 determines whether a predetermined change is detected in the two-dimensional image.
 ステップS502で変化が検出される場合とは、例えば連続する2回の取得で得られた2次元画像における輝度の変化が所定の値よりも大きくなった場合、得られた2次元画像における輝度値が所定の閾値を超えた場合、得られた2次元画像における輝度値が所定の上限値に相当する閾値を超えた場合及び/又は所定の下限値に相当する閾値を下回った場合が該当し得る。ここで、上限値と下限値の両方の閾値からなる変化量の範囲を適用することにより、多様な微弱光の変化に応じた3次元解析を行い得る。下限値に相当する閾値を下回った場合、光学的絞りの開口径を逆に大きくすることで、輝度値が極端に弱くなったとしても集光量を多くし解析の限界を拡げ得る。なお、この例では、絞り132の開口径の初期値は小さい状態に設定されているので、最初の画像取得では、必ず2次元画像が取得されることになる。 When the change is detected in step S502, for example, when the change in luminance in the two-dimensional image obtained by two successive acquisitions is greater than a predetermined value, the luminance value in the obtained two-dimensional image May exceed the predetermined threshold value, the luminance value in the obtained two-dimensional image may exceed the threshold value corresponding to the predetermined upper limit value, and / or the case may be below the threshold value corresponding to the predetermined lower limit value. . Here, a three-dimensional analysis corresponding to various changes in weak light can be performed by applying a range of change amounts composed of threshold values of both an upper limit value and a lower limit value. If the threshold value corresponding to the lower limit value is not reached, by increasing the aperture diameter of the optical stop, the amount of light collection can be increased and the limit of analysis can be expanded even if the luminance value becomes extremely weak. In this example, since the initial value of the aperture diameter of the diaphragm 132 is set to a small state, a two-dimensional image is always acquired in the first image acquisition.
 ステップS502において、変化が検出されたと判定されたとき、処理はステップS503に進む。ステップS503において、開口決定部224は、絞り132の開口径を大きい状態に変更すると決定する。その後、開口径決定処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。その結果、次に行われる画像生成処理において、1つの3次元画像が作成される。 When it is determined in step S502 that a change has been detected, the process proceeds to step S503. In step S503, the aperture determining unit 224 determines to change the aperture diameter of the aperture 132 to a large state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG. As a result, one three-dimensional image is created in the next image generation process.
 ステップS502において、2次元画像において変化が検出されていないと判定されたとき、処理はステップS504に進む。ステップS504において、開口決定部224は、絞り132の開口径を小さい状態で維持すると決定する。その後、開口径決定処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。その結果、次に行われる画像生成処理において、1つの2次元画像が作成される。 When it is determined in step S502 that no change has been detected in the two-dimensional image, the process proceeds to step S504. In step S504, the aperture determining unit 224 determines to maintain the aperture diameter of the diaphragm 132 in a small state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG. As a result, one two-dimensional image is created in the next image generation process.
 ステップS501において、開口径が小さい状態でないと判定されたとき、処理はステップS505に進む。ステップS505において、画像解析部246は、過去に得られた3次元画像を解析し、開口決定部224は、3次元画像において所定の変化が検出されたか否かを判定する。 When it is determined in step S501 that the opening diameter is not small, the process proceeds to step S505. In step S505, the image analysis unit 246 analyzes a three-dimensional image obtained in the past, and the aperture determination unit 224 determines whether a predetermined change is detected in the three-dimensional image.
 ステップS505で変化が検出される場合とは、例えば連続する2回の取得で得られた3次元画像において、輝度が低下する変化が検出された場合であって、当該輝度の変化量が所定の値よりも大きくなった場合や、得られた3次元画像における輝度値が所定の閾値を下回ったとき等が該当し得る。 The case where a change is detected in step S505 is, for example, a case where a change in which the luminance is reduced is detected in a three-dimensional image obtained by two successive acquisitions. This may be the case when the value becomes larger than the value, or when the luminance value in the obtained three-dimensional image falls below a predetermined threshold.
 ステップS505において、変化が検出されなかったと判定されたとき、処理はステップS506に進む。ステップS506において、開口決定部224は、絞り132の開口径を小さい状態に変更すると決定する。その後、開口径決定処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。その結果、次に行われる画像生成処理において1つの2次元画像が作成される。 When it is determined in step S505 that no change has been detected, the process proceeds to step S506. In step S506, the aperture determination unit 224 determines to change the aperture diameter of the aperture 132 to a small state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG. As a result, one two-dimensional image is created in the next image generation process.
 ステップS505において、3次元画像において変化が検出されたと判定されたとき、処理はステップS507に進む。ステップS507において、開口決定部224は、絞り132の開口径を大きい状態で維持すると決定する。その後、開口径決定処理は終了し、処理は図4を参照して説明した画像取得処理に戻る。その結果、次に行われる画像生成処理において1つの3次元画像が作成される。 When it is determined in step S505 that a change has been detected in the three-dimensional image, the process proceeds to step S507. In step S507, the aperture determining unit 224 determines to maintain the aperture diameter of the diaphragm 132 in a large state. Thereafter, the opening diameter determination process ends, and the process returns to the image acquisition process described with reference to FIG. As a result, one three-dimensional image is created in the next image generation process.
 以上のようにして、例えば取得される画像における微弱光の輝度が高いとき、3次元画像が作成される。一方、例えば取得される画像における微弱光の輝度が低いとき、2次元画像が作成される。 As described above, for example, when the brightness of the weak light in the acquired image is high, a three-dimensional image is created. On the other hand, for example, when the brightness of the weak light in the acquired image is low, a two-dimensional image is created.
 一般に、上述のように生物学的な活性が有意に変化したと解釈できるような発光強度の変化が生じた場合等、変化が生じている状態について3次元画像を用いて詳細に解析したいことがある。第3のモードによれば、変化が生じたときのみ必要な3次元画像が取得され、変化が生じていないときは2次元画像のみが取得される。その結果、データ量が抑制され得る。また、2次元画像によれば、データの一覧性が向上する。例えば発光観察は、長時間にわたって行われることが多くあり、1つのデータが大きい3次元画像が多く記録されるとデータ量が膨大になり、解析に支障が生じることがある。また、3次元画像は一目で画像の内容を把握するのに不向きな画像である。 In general, when there is a change in luminescence intensity that can be interpreted as a significant change in biological activity as described above, it is desirable to analyze the state of the change in detail using a three-dimensional image. is there. According to the third mode, a necessary three-dimensional image is acquired only when a change occurs, and only a two-dimensional image is acquired when no change occurs. As a result, the amount of data can be suppressed. In addition, according to the two-dimensional image, the data listability is improved. For example, light emission observation is often performed over a long period of time, and if a large amount of three-dimensional images having a large amount of data is recorded, the amount of data becomes enormous, which may hinder analysis. A three-dimensional image is an image that is not suitable for grasping the contents of the image at a glance.
 このように、第1の開口径を小さい開口径とし、第2の開口径を大きい開口径としたときに、絞り132の開口径の初期値は第1の開口径に設定される。そして、第1の開口径で繰り返し取得された微弱光画像を比較して、微弱光画像の輝度値の変化が所定値よりも大きくなったときに、絞り132の開口径は第2の開口径に設定される。さらに、絞り132の開口径を第2の開口径とする場合には、互いに異なる複数の合焦面についての一組の2次元微弱光画像が取得され、この一組の2次元微弱光画像を合成して3次元微弱光画像を生成される。 Thus, when the first opening diameter is a small opening diameter and the second opening diameter is a large opening diameter, the initial value of the opening diameter of the diaphragm 132 is set to the first opening diameter. Then, when the weak light images repeatedly acquired with the first opening diameter are compared, and the change in the luminance value of the weak light image becomes larger than a predetermined value, the opening diameter of the diaphragm 132 is the second opening diameter. Set to Further, when the aperture diameter of the diaphragm 132 is set to the second aperture diameter, a set of two-dimensional weak light images for a plurality of different focal planes is acquired, and the set of two-dimensional weak light images is obtained. A three-dimensional weak light image is generated by synthesis.
 また、ここでは、データ処理装置200が2次元画像の輝度が変化したか否かを判定する例を示した。しかしながらこれに限らない。例えば、2次元画像が取得される度に表示装置310に表示され、ユーザがこの表示を確認しながら、3次元画像を取得するタイミングをデータ処理装置200に入力してもよい。この場合、3次元画像を取得する旨が入力されたとき、データ処理装置200は、3次元画像を取得するための動作を行う。 Here, an example is shown in which the data processing device 200 determines whether or not the brightness of the two-dimensional image has changed. However, it is not limited to this. For example, each time a two-dimensional image is acquired, it is displayed on the display device 310, and the user may input the timing for acquiring the three-dimensional image to the data processing device 200 while confirming this display. In this case, when an instruction to acquire a three-dimensional image is input, the data processing device 200 performs an operation for acquiring a three-dimensional image.
 以上のように、ステップS101の画像取得処理で繰り返し実行される動作には、例えば、開口径決定処理、絞り132の開口径の設定、画像生成処理等といった所定の動作が含まれる。これらの動作が繰り返し実行されることによって、解析に用いられる試料の画像が取得される。なお、上述の各モードの動作として、絞り132の開口径が大きい状態と小さい状態との2つの状態のみを取る例を示した。しかしながらこれに限らない。開口径が3つ以上の状態を取ってもよい。例えば2次元画像が取得される際に、2次元画像の用途に応じて、開口径が異なる複数の状態で得られた複数種類の2次元画像が取得されてもよいし、開口径が適宜に選択されてもよい。また、3次元画像が取得される際に、撮影に必要な時間と得られる3次元画像の解像度との関係によって、絞り132の開口径が適宜に選択されてもよい。 As described above, the operations repeatedly executed in the image acquisition processing in step S101 include predetermined operations such as opening diameter determination processing, setting of the opening diameter of the aperture 132, image generation processing, and the like. By repeatedly performing these operations, an image of the sample used for analysis is acquired. As an example of the operation in each mode described above, an example is shown in which only two states, the state in which the aperture diameter of the diaphragm 132 is large and the state in which it is small, are taken. However, it is not limited to this. You may take a state with three or more opening diameters. For example, when a two-dimensional image is acquired, a plurality of types of two-dimensional images obtained in a plurality of states with different opening diameters may be acquired according to the use of the two-dimensional image, or the opening diameter may be appropriately set. It may be selected. Further, when a three-dimensional image is acquired, the aperture diameter of the diaphragm 132 may be appropriately selected depending on the relationship between the time required for photographing and the resolution of the obtained three-dimensional image.
 〈解析処理について〉
 ステップS102で行われる解析処理では、ステップS101の画像取得処理で取得された2次元画像又は3次元画像に基づいて、種々の解析が行われる。解析処理では、例えば画像における輝度分布が解析される。また、解析処理では、例えば画像における輝度分布の経過時間に対する変化が解析される。
<About analysis processing>
In the analysis process performed in step S102, various analyzes are performed based on the two-dimensional image or the three-dimensional image acquired in the image acquisition process in step S101. In the analysis process, for example, the luminance distribution in the image is analyzed. In the analysis process, for example, a change in luminance distribution in the image with respect to the elapsed time is analyzed.
 また、解析処理では、一連の画像取得において得られた複数の2次元画像及び3次元画像の中から必要な画像が選択されて解析が行われることがある。一例として図5に示す第1のモードのように2次元画像と3次元画像とが一組の情報として取得された場合において、選択された画像について解析される場合の例を図10を参照して説明する。 In the analysis process, a necessary image may be selected from a plurality of two-dimensional images and three-dimensional images obtained in a series of image acquisitions and analyzed. As an example, when a two-dimensional image and a three-dimensional image are acquired as a set of information as in the first mode shown in FIG. 5, an example in which the selected image is analyzed will be described with reference to FIG. I will explain.
 ステップS601において、データ処理装置200の表示制御部248は、取得された2次元画像を表示装置310に一覧表示させる。 In step S601, the display control unit 248 of the data processing device 200 causes the display device 310 to display a list of acquired two-dimensional images.
 ステップS602において、データ処理装置200の撮影制御部222は、表示させた複数の2次元画像の中から1つの2次元画像が選択されたか否かを判定する。2次元画像が選択されていないとき、処理はステップS604に進む。一方、2次元画像が選択されているとき、処理はステップS603に進む。ステップS603において、データ処理装置200の画像解析部246は、選択された2次元画像に対応する3次元画像を用いた解析を行う。選択された2次元画像に対応する3次元画像は、例えば選択された2次元画像と最も近いタイミングで取得された一組の2次元微弱光画像に基づいて合成された3次元微弱光画像であり得る。その後、処理はステップS604に進む。 In step S602, the imaging control unit 222 of the data processing device 200 determines whether one two-dimensional image is selected from the plurality of displayed two-dimensional images. If a two-dimensional image has not been selected, the process proceeds to step S604. On the other hand, when a two-dimensional image is selected, the process proceeds to step S603. In step S603, the image analysis unit 246 of the data processing device 200 performs analysis using a three-dimensional image corresponding to the selected two-dimensional image. The three-dimensional image corresponding to the selected two-dimensional image is, for example, a three-dimensional weak light image synthesized based on a set of two-dimensional weak light images acquired at the timing closest to the selected two-dimensional image. obtain. Thereafter, the process proceeds to step S604.
 ステップS604において、撮影制御部222は、解析処理を終了するか否かを判定する。解析処理を終了しないとき、処理はステップS601に戻る。一方、解析処理を終了するとき、解析処理を終了する。 In step S604, the imaging control unit 222 determines whether to end the analysis process. If the analysis process is not terminated, the process returns to step S601. On the other hand, when the analysis process ends, the analysis process ends.
 このように、2次元画像をサムネイル画像として利用することができる。本実施形態に係る2次元画像は、絞り132の開口径を小さくすることで焦点深度を深くして得られた画像である。このため、2次元画像には多くの情報が含まれている。このため、本実施形態に係る2次元画像は、サムネイル画像として適している。その結果、ユーザは注目すべき画像を素早く選択することができる。このことは、解析全体の効率化に効を奏する。 In this way, 2D images can be used as thumbnail images. The two-dimensional image according to the present embodiment is an image obtained by increasing the depth of focus by reducing the aperture diameter of the diaphragm 132. For this reason, a lot of information is included in the two-dimensional image. For this reason, the two-dimensional image according to the present embodiment is suitable as a thumbnail image. As a result, the user can quickly select a notable image. This is effective in improving the efficiency of the entire analysis.
 〈本解析システムの利点〉
 本実施形態によれば、絞り132の開口径を変化させることで、3次元試料について、情報量の多い2次元画像と解像度の高い3次元画像とを適切に取得することができる。2次元画像は、3次元画像と比較して、撮影に必要な時間が短い。このため、本実施形態によれば、限られた時間内で効率よく情報を収集することができる。また、2次元画像は3次元画像と比較してデータサイズが小さい。このため、本実施形態によれば、不必要なデータが発生することを抑制して、データの管理が行いやすくなる。また、2次元画像は3次元画像と比較して、ROIの設定など、データの取り扱いが容易である。また、2次元画像は3次元画像に対して一覧性がよい。一方で、3次元画像は情報量が多い。したがって、必要に応じて3次元画像が取得されることは、より詳細な試料の解析や試料の状態の3次元的な把握に効を奏する。
<Advantages of this analysis system>
According to the present embodiment, by changing the aperture diameter of the diaphragm 132, it is possible to appropriately acquire a two-dimensional image with a large amount of information and a three-dimensional image with a high resolution for a three-dimensional sample. A two-dimensional image requires a shorter time for photographing than a three-dimensional image. For this reason, according to this embodiment, information can be efficiently collected within a limited time. In addition, the data size of the two-dimensional image is smaller than that of the three-dimensional image. For this reason, according to this embodiment, it becomes easy to manage data by suppressing the generation of unnecessary data. In addition, two-dimensional images are easier to handle data, such as setting ROI, than three-dimensional images. In addition, the two-dimensional image has better listability than the three-dimensional image. On the other hand, a three-dimensional image has a large amount of information. Therefore, acquiring a three-dimensional image as necessary is effective for more detailed sample analysis and three-dimensional grasp of the sample state.
 〈変形例〉
 上述の実施形態の観察装置100の構成は、適宜に変更され得る。例えば、図1に示す例では、対物レンズ131側から照明光がサンプル900に照射される例を示した。しかしながらこれに限らない。サンプル900を挟んで対物レンズ131と反対側から照明光が照射されてもよい。この場合、例えば図11に示すような構成が採用され得る。すなわち、照明ユニット160は、サンプル900に対して撮影ユニット130と反対側に配置されている。図1に示す例における照明用ファイバ165に代えて、コンデンサーレンズ167が観察装置100に設けられる。すなわち、照明光学系163は、コレクタレンズ164及びコンデンサーレンズ167を有する。照明光学系163のコレクタレンズ164及びコンデンサーレンズ167は、光源161からの白色光をサンプル900上に集光させる。また、上述の実施形態では、正立型の顕微鏡が用いられる例を示したがこれに限らない。例えば倒立型の顕微鏡(たとえばオリンパス(株)製の倒立型発光イメージングシステムであるLUMINOVIEW200)が用いられてもよい。
<Modification>
The configuration of the observation apparatus 100 of the above-described embodiment can be changed as appropriate. For example, in the example illustrated in FIG. 1, the sample 900 is irradiated with illumination light from the objective lens 131 side. However, it is not limited to this. Illumination light may be irradiated from the side opposite to the objective lens 131 with the sample 900 interposed therebetween. In this case, for example, a configuration as shown in FIG. 11 can be adopted. That is, the illumination unit 160 is arranged on the opposite side of the sample unit 130 with respect to the sample 900. Instead of the illumination fiber 165 in the example shown in FIG. 1, a condenser lens 167 is provided in the observation apparatus 100. That is, the illumination optical system 163 includes a collector lens 164 and a condenser lens 167. The collector lens 164 and the condenser lens 167 of the illumination optical system 163 collect white light from the light source 161 on the sample 900. In the above-described embodiment, an example in which an upright microscope is used has been described, but the present invention is not limited thereto. For example, an inverted microscope (for example, LUMINOVIEW 200, which is an inverted luminescence imaging system manufactured by Olympus Corporation) may be used.
 また、上述の実施形態では、合焦面を変化させるために対物レンズ131を移動させて撮影ユニット130の光学系を変化させる例を示した。しかしながらこれに限らず、ステージ110を光軸に沿って移動させてもよい。 In the above-described embodiment, the example in which the optical system of the photographing unit 130 is changed by moving the objective lens 131 in order to change the in-focus plane has been described. However, the present invention is not limited to this, and the stage 110 may be moved along the optical axis.
 また、上述の実施形態では、2次元画像及び3次元画像が明視野画像であるか発光画像であるかを限定しなかった。発光画像のみが取得されてもよいし、発光画像と併せて明視野画像が取得されてもよい。また、発光画像と明視野画像とが、それぞれ所定のタイミングで取得されてもよい。また、発光画像の取得と明視野画像の取得とが、所定の条件に応じて行われてもよい。 In the above-described embodiment, whether the two-dimensional image and the three-dimensional image are bright-field images or light-emitting images is not limited. Only the luminescent image may be acquired, or the bright field image may be acquired together with the luminescent image. Further, the light emission image and the bright field image may be acquired at predetermined timings, respectively. Further, the acquisition of the luminescent image and the acquisition of the bright field image may be performed according to a predetermined condition.
 また、上述の実施形態では3次元試料が発光するように調製されており、発光画像が取得される例を示した。しかしながらこれに限らない。3次元試料が蛍光を発するように調製され、観察装置100が蛍光画像を取得できるように構成されていれば、ビデオレートでの3次元画像の取得が難しいような蛍光画像が取得されてもよい。このように、微弱光には発光以外にも、ビデオレートでの3次元解析が難しいような微弱光を発したり、3次元画像の取得中に輝度値の変化量が所定の上限値よりも上回ってしまうような事象を示すサンプルについては、相対的にサンプルの厚みが大きいと見なすことができるので、本発明における微弱光の3次元解析に該当する。同様の事象を示す場合には、蛍光(たとえば蛍光タンパク質)の使用も含まれ得る。 In the above-described embodiment, an example in which a three-dimensional sample is prepared to emit light and a luminescence image is acquired is shown. However, it is not limited to this. If the three-dimensional sample is prepared so as to emit fluorescence and the observation apparatus 100 is configured to acquire a fluorescence image, a fluorescence image that makes it difficult to acquire a three-dimensional image at a video rate may be acquired. . In this way, in addition to light emission, the weak light emits weak light that is difficult to perform three-dimensional analysis at the video rate. A sample exhibiting such an event corresponds to the three-dimensional analysis of faint light in the present invention because it can be considered that the thickness of the sample is relatively large. Where similar events are indicated, the use of fluorescence (eg, fluorescent proteins) can also be included.
 [第1の実施例]
 〈観察方法〉
 正立型発光イメージングシステムを用いて、明視野画像の撮影を行った。ここでは、図1に示す観察装置100のように、対物レンズ131側から照明光が照射される構成を有する正立型発光イメージングシステムを用いた。使用した対物レンズは、倍率が4倍である対物レンズ(XLFLUOR4X/340;オリンパス(株))である。このレンズにおいて、絞りを取り付けていない状態(NA:0.28)、及び開口径が異なる絞りを対物レンズの後方に取り付けた場合のそれぞれにおいてサンプルの撮影を行い、2次元画像を取得した。取り付けた絞りの開口径は、φ16.8mm、φ12.6mm、及びφ8.4mmの3種類である。開口径がφ8.4mmの場合のNAは0.0933に相当する。露出時間はそれぞれ50ミリ秒とした。サンプルは下記の2種類とした。
[First embodiment]
<Observation method>
Bright field images were taken using an upright luminescence imaging system. Here, as in the observation apparatus 100 shown in FIG. 1, an upright light emission imaging system having a configuration in which illumination light is irradiated from the objective lens 131 side is used. The objective lens used is an objective lens (XLFLUOR4X / 340; Olympus Corporation) having a magnification of 4 times. In this lens, a sample was photographed in each of a state in which no diaphragm was attached (NA: 0.28) and a diaphragm having a different aperture diameter was attached to the rear of the objective lens, and a two-dimensional image was obtained. There are three types of aperture diameters of the attached diaphragm: φ16.8 mm, φ12.6 mm, and φ8.4 mm. The NA when the opening diameter is φ8.4 mm corresponds to 0.0933. Each exposure time was 50 milliseconds. The following two types of samples were used.
 (第1のサンプル)
 方眼紙を用いて作成した三角錐をサンプルとした。方眼紙のメモリは1mm間隔である。三角錐の頂点に合焦させた状態で撮影を行った。
(First sample)
A triangular pyramid created using graph paper was used as a sample. Graph paper memory is 1 mm apart. The photo was taken while focusing on the apex of the triangular pyramid.
 (第2のサンプル)
 乾燥剤として用いられる多孔質シリカビーズをサンプルとした。ビーズ径は3mm乃至7mmである。サンプルには、サイズの違うビーズが混ざっている。
(Second sample)
Porous silica beads used as a desiccant were used as samples. The bead diameter is 3 mm to 7 mm. Samples are mixed with beads of different sizes.
 〈結果及び考察〉
 第1のサンプル(方眼紙で作製した三角錐)の観察結果を図12に示す。図12に示すように、絞りによって調整された開口径が大きいほど焦点深度が浅く、開口径が小さいほど焦点深度が深くなる様子が明確に確認された。
<Results and discussion>
The observation results of the first sample (triangular pyramid made of graph paper) are shown in FIG. As shown in FIG. 12, it was clearly confirmed that the larger the aperture diameter adjusted by the diaphragm, the shallower the focal depth, and the smaller the aperture diameter, the deeper the focal depth.
 第2のサンプル(多孔質シリカビーズ)の観察結果を図13に示す。図13中に正方形で示した位置に合焦させて画像取得を行った。図12の場合と同様に、図13の場合においても、絞りによって調整された開口径が大きいほど焦点深度が浅く、開口径が小さいほど焦点深度が深くなる様子が明確に確認された。 The observation result of the second sample (porous silica beads) is shown in FIG. Image acquisition was performed by focusing on the position indicated by the square in FIG. Similar to the case of FIG. 12, also in the case of FIG. 13, it was clearly confirmed that the larger the aperture diameter adjusted by the diaphragm, the shallower the focal depth, and the smaller the aperture diameter, the deeper the focal depth.
 このように、絞りの効果が示され、絞りの開口径が小さいほど、深さ情報が反映された画像が得られることが明らかになった。 Thus, the effect of the diaphragm was shown, and it became clear that the image reflecting the depth information was obtained as the aperture diameter of the diaphragm was smaller.
 [第2の実施例]
 〈観察方法〉
 第1の実施例と同様のXLFLUOR4X/340を有する光学系を用いて、マウスの大腿骨のサンプルを観察した。本実施例では、絞りを取り付けない状態と、開口径φ8.4mmの絞りを取り付けた状態とで撮影を行い2次元画像を取得した。
[Second Embodiment]
<Observation method>
A mouse femur sample was observed using an optical system having XLFLUOR4X / 340 similar to that of the first example. In this example, a two-dimensional image was obtained by photographing in a state where no diaphragm was attached and in a state where a diaphragm with an aperture diameter of 8.4 mm was attached.
 マウス大腿骨のサンプルとしては、Okubo et al., PLoS ONE 8(11)2013, DOI: 10.1371/journal.pone.0078306で使用されているサンプルを用いた。すなわち、時計遺伝子Per2::ルシフェラーゼノックインマウスの大腿骨を用いた。この大腿骨について35mmディッシュ内で器官培養を行った。このディッシュにルシフェリンを添加して観察を行った。 As a sample of the mouse femur, the sample used in Okuboe et al., “PLoS” ONE 8 (11) 2013, “DOI: 10.1371 / journal.pone.0078306” was used. That is, the femur of the clock gene Per2 :: luciferase knock-in mouse was used. The femur was cultured in a 35 mm dish. Observation was performed by adding luciferin to the dish.
 本実施例では、明視野画像と発光画像とを取得した。明視野画像の取得に際しては、露出時間を50ミリ秒とした。発光画像の取得に際しては、露出時間を3分又は10分とした。 In this example, a bright field image and a light emission image were acquired. When acquiring a bright field image, the exposure time was set to 50 milliseconds. When acquiring the luminescent image, the exposure time was 3 minutes or 10 minutes.
 〈結果及び考察〉
 本実施例の観察結果を図14に示す。絞りなしの発光画像に示すように、絞りなしでは、矢印で示した発光量が高いマウス大腿骨の先端部分である大腿骨頭部分の発光が飽和してしまい、大腿骨体の観察ができなかった。一方、開口径をφ8.4mmとしたとき、露出時間10分の画像に四角形で示した部分を含めて、大腿骨頭及び大腿骨体サンプル全体の発光が取得できた。発光画像においても絞りによって調整された開口径が大きいほど焦点深度が浅く、開口径が小さいほど焦点深度が深くなる様子が明確に確認された。
<Results and discussion>
The observation results of this example are shown in FIG. As shown in the luminescence image without the diaphragm, without the diaphragm, the luminescence of the femoral head, which is the tip of the mouse femur, with a high luminescence amount indicated by the arrow was saturated, and the femoral body could not be observed. . On the other hand, when the aperture diameter was φ8.4 mm, the entire femoral head and femoral body sample luminescence including the portion indicated by the square in the image with an exposure time of 10 minutes could be acquired. Also in the luminescent image, it was clearly confirmed that the larger the aperture diameter adjusted by the diaphragm, the shallower the focal depth, and the smaller the aperture diameter, the deeper the focal depth.
 このことから、対象とするサンプルに応じて、発光が飽和せずサンプルの深さ情報をできるだけ多く取得できるよう光学的絞り値を選択的に決定できることが分かった。このように、厚みのある大腿骨頭および大腿骨体サンプル全体に関する2次元の発光画像を繰り返し取得することで、従来困難であった連続的な3次元解析を容易に実現できる。発光の輝度値の変化の速さに依らず、許容し得る上限と下限値の範囲内で輝度値が変化するようなサンプルであれば、選定された同一の光学的絞りを用いて繰り返し微弱光による画像を取得することで、3次元的な時系列解析を実施できると考えられる。この場合は、選定された光学的絞りよりも相対的に大きい開口径を用いて複数の2次元画像からなる3次元画像を形成し、この3次元画像から深さ情報を取得することで3次元解析を連続的かつ高精度に実行できる解析方法および解析システムを提供できる。 From this, it was found that the optical aperture value can be selectively determined according to the target sample so that the light emission is not saturated and the depth information of the sample can be acquired as much as possible. In this way, continuous three-dimensional analysis, which has been difficult in the past, can be easily realized by repeatedly acquiring two-dimensional luminescent images regarding the thick femoral head and the entire femoral body sample. If the sample has a brightness value that changes within the allowable upper and lower limits, regardless of the rate of change in the brightness value of the light emission, the weak light is repeatedly emitted using the same optical aperture selected. It is considered that a three-dimensional time series analysis can be performed by acquiring an image obtained by the above method. In this case, a three-dimensional image composed of a plurality of two-dimensional images is formed using an aperture diameter relatively larger than the selected optical aperture, and depth information is acquired from the three-dimensional image to obtain a three-dimensional image. It is possible to provide an analysis method and an analysis system capable of executing analysis continuously and with high accuracy.

Claims (11)

  1.  微弱光を発するように調製された、複数の解析対象を含んでいる3次元試料としての微弱発光試料の微弱光画像を取得する画像取得処理と、
     取得された前記微弱光画像に基づいて前記3次元試料を解析する解析処理と
     を備え、
     前記画像取得処理は、
      所定の条件に基づいて、前記微弱光画像を取得する光学系に挿入された光学的絞りの開口径を決定することと、
      決定された前記開口径の前記光学的絞りを用いて前記3次元試料についての微弱光画像を取得することと
     を繰り返し行うことを含み、
     繰り返し行われる前記画像取得処理のうち少なくとも1回の前記画像取得処理においては、前記開口径は、前記光学系の光軸方向に異なる位置に存在する前記解析対象を焦点深度内に含めるような値に決定される、
     微弱発光試料の解析方法。
    An image acquisition process for acquiring a weak light image of a weakly luminescent sample as a three-dimensional sample prepared to emit weak light and including a plurality of analysis objects;
    Analyzing the three-dimensional sample based on the acquired weak light image,
    The image acquisition process includes:
    Determining an aperture diameter of an optical diaphragm inserted in an optical system for acquiring the weak light image based on a predetermined condition;
    Repeatedly performing a weak light image on the three-dimensional sample using the optical aperture of the determined aperture diameter,
    In at least one of the image acquisition processes that are repeatedly performed, the aperture diameter is a value that includes the analysis target existing in a different position in the optical axis direction of the optical system within the depth of focus. Determined to
    Method for analyzing weakly luminescent samples.
  2.  前記開口径の初期値は第1の開口径であり、
     前記条件は、前記微弱光画像の輝度値の変化が所定値よりも大きくなったか否かであり、
     前記開口径を決定することは、前記第1の開口径で繰り返し取得された前記微弱光画像を比較して、前記微弱光画像の前記輝度値の変化が前記所定値よりも大きくなったときに、前記第1の開口径より大きい第2の開口径にする決定を含み、
     前記微弱光画像を取得することは、前記開口径を前記第2の開口径とする場合には、互いに異なる複数の合焦面についての一組の2次元微弱光画像を取得することを含み、
     前記画像取得処理は、前記一組の2次元微弱光画像を合成して3次元微弱光画像を生成することをさらに含む、
     請求項1に記載の微弱発光試料の解析方法。
    The initial value of the opening diameter is the first opening diameter;
    The condition is whether or not the change in luminance value of the weak light image is greater than a predetermined value,
    The determination of the aperture diameter is performed when the weak light image repeatedly acquired with the first aperture diameter is compared, and the change in the luminance value of the weak light image is larger than the predetermined value. Determining a second opening diameter that is larger than the first opening diameter;
    Acquiring the weak light image includes acquiring a set of two-dimensional weak light images for a plurality of different focusing surfaces when the opening diameter is the second opening diameter,
    The image acquisition process further includes synthesizing the set of two-dimensional weak light images to generate a three-dimensional weak light image.
    The method for analyzing the weakly luminescent sample according to claim 1.
  3.  前記条件は、経過時間が予め設定されたタイミングとなったか否かであり、
     前記開口径を決定することは、
      繰り返される第1のタイミングで前記開口径を第1の開口径に決定することと、
      繰り返される第2のタイミングで前記開口径を前記第1の開口径よりも大きい第2の開口径に決定することと、
     を含み、
     前記微弱光画像を取得することは、前記開口径を前記第2の開口径とする場合には、互いに異なる複数の合焦面についての一組の2次元微弱光画像を取得することを含み、
     前記画像取得処理は、前記一組の2次元微弱光画像を合成して3次元微弱光画像を生成することをさらに含む、
     請求項1に記載の微弱発光試料の解析方法。
    The condition is whether or not the elapsed time has become a preset timing,
    Determining the opening diameter is
    Determining the opening diameter to be a first opening diameter at a repeated first timing;
    Determining the opening diameter to be a second opening diameter larger than the first opening diameter at a repeated second timing;
    Including
    Acquiring the weak light image includes acquiring a set of two-dimensional weak light images for a plurality of different focusing surfaces when the opening diameter is the second opening diameter,
    The image acquisition process further includes synthesizing the set of two-dimensional weak light images to generate a three-dimensional weak light image.
    The method for analyzing the weakly luminescent sample according to claim 1.
  4.  前記解析処理は、
      前記第1の開口径で得られた複数の前記微弱光画像をディスプレイに表示させることと、
      表示させた複数の前記微弱光画像の中から選択された前記微弱光画像と最も近いタイミングで取得された一組の2次元微弱光画像に基づいて合成された前記3次元微弱光画像を用いて所定の解析を行うことと
     を含む、請求項3に記載の微弱発光試料の解析方法。
    The analysis process is
    Displaying a plurality of the weak light images obtained with the first opening diameter on a display;
    Using the three-dimensional weak light image synthesized based on a set of two-dimensional weak light images acquired at a timing closest to the weak light image selected from the plurality of displayed weak light images The method for analyzing a weakly luminescent sample according to claim 3, comprising performing a predetermined analysis.
  5.  前記開口径の初期値は第1の開口径であり、
     前記画像取得処理は、前記第1の開口径で取得された前記微弱光画像に基づく画像をディスプレイに表示させることをさらに含み、
     前記開口径を決定することは、前記第1の開口径より大きい第2の開口径にする旨の指示が入力されたときに、前記開口径を前記第2の開口径にする決定を含む、
     請求項1に記載の微弱発光試料の解析方法。
    The initial value of the opening diameter is the first opening diameter;
    The image acquisition process further includes displaying an image based on the weak light image acquired at the first aperture diameter on a display;
    Determining the opening diameter includes determining the opening diameter to be the second opening diameter when an instruction to make the second opening diameter larger than the first opening diameter is input.
    The method for analyzing the weakly luminescent sample according to claim 1.
  6.  前記微弱光画像を取得することは、前記開口径を前記第2の開口径とする場合には、互いに異なる複数の合焦面についての一組の2次元微弱光画像を取得することを含み、
     前記画像取得処理は、前記一組の2次元微弱光画像を合成して3次元微弱光画像を生成することをさらに含む、
     請求項5に記載の微弱発光試料の解析方法。
    Acquiring the weak light image includes acquiring a set of two-dimensional weak light images for a plurality of different focusing surfaces when the opening diameter is the second opening diameter,
    The image acquisition process further includes synthesizing the set of two-dimensional weak light images to generate a three-dimensional weak light image.
    The method for analyzing a weakly luminescent sample according to claim 5.
  7.  前記3次元試料は、複数の細胞を含む、請求項1に記載の微弱発光試料の解析方法。 The method for analyzing a weakly luminescent sample according to claim 1, wherein the three-dimensional sample includes a plurality of cells.
  8.  対物光学系と、
     前記対物光学系に設けられた光学的絞りと、
     所定の条件に基づいて光学的絞りの開口径を決定する開口決定部と、
     前記光学的絞りの開口径を決定された値にする絞り駆動部と、
     前記光学的絞りが決定された前記開口径である状態で微弱光を発するように調製された複数の解析対象を含んでいる3次元試料としての微弱発光試料についての微弱光画像を、前記対物光学系を介して撮像する撮像装置と
     を備える解析システム。
    An objective optical system;
    An optical aperture provided in the objective optical system;
    An aperture determining unit that determines an aperture diameter of the optical diaphragm based on a predetermined condition;
    An aperture drive unit for setting the aperture diameter of the optical aperture to a determined value;
    A weak light image of a weakly luminescent sample as a three-dimensional sample including a plurality of analysis objects prepared so as to emit weak light in a state where the optical aperture is the determined aperture diameter, and the objective optical An analysis system comprising: an imaging device that images through the system.
  9.  前記対物光学系の合焦位置を光軸に沿って移動させる駆動部と、
     前記駆動部の動作を制御しながら、前記撮像装置の動作を制御する撮影制御部と、
     画像合成部と
     をさらに備え、
     前記条件は、前記微弱光画像の輝度値の変化が所定値よりも大きくなったか否かであり、
     前記開口決定部は、前記開口径の初期値を第1の開口径とし、前記第1の開口径で繰り返し取得された前記微弱光画像の比較結果に基づいて、前記微弱光画像の前記輝度値の変化が前記所定値よりも大きくなったときに、前記第1の開口径より大きい第2の開口径にする決定を行い、
     前記撮影制御部は、前記開口径を前記第2の開口径とする場合には、互いに異なる複数の合焦面についての一組の2次元微弱光画像を前記撮像装置に取得させ、
     前記画像合成部は、前記一組の2次元微弱光画像を合成して3次元微弱光画像を生成する、
     請求項8に記載の解析システム。
    A drive unit for moving the in-focus position of the objective optical system along the optical axis;
    A shooting control unit that controls the operation of the imaging device while controlling the operation of the driving unit;
    An image composition unit, and
    The condition is whether or not the change in luminance value of the weak light image is greater than a predetermined value,
    The opening determination unit sets the initial value of the opening diameter as a first opening diameter, and the brightness value of the weak light image based on a comparison result of the weak light image repeatedly acquired with the first opening diameter. When the change of becomes larger than the predetermined value, the second opening diameter larger than the first opening diameter is determined,
    When the aperture diameter is the second aperture diameter, the imaging control unit causes the imaging device to acquire a set of two-dimensional weak light images for a plurality of different focusing surfaces,
    The image synthesis unit synthesizes the set of two-dimensional weak light images to generate a three-dimensional weak light image;
    The analysis system according to claim 8.
  10.  前記対物光学系の合焦位置を光軸に沿って移動させる駆動部と、
     前記駆動部の動作を制御しながら、前記撮像装置の動作を制御する撮影制御部と、
     画像合成部と
     をさらに備え、
     前記条件は、経過時間が予め設定されたタイミングとなったか否かであり、
     前記開口決定部は、
      繰り返される第1のタイミングで前記開口径を第1の開口径に決定し、
      繰り返される第2のタイミングで前記開口径を前記第1の開口径よりも大きい第2の開口径に決定し、
     前記撮影制御部は、前記開口径を前記第2の開口径とする場合には、互いに異なる複数の合焦面についての一組の2次元微弱光画像を前記撮像装置に取得させ、
     前記画像合成部は、前記一組の2次元微弱光画像を合成して3次元微弱光画像を生成する、
     請求項8に記載の解析システム。
    A drive unit for moving the in-focus position of the objective optical system along the optical axis;
    A shooting control unit that controls the operation of the imaging device while controlling the operation of the driving unit;
    An image composition unit, and
    The condition is whether or not the elapsed time has become a preset timing,
    The opening determining unit
    The opening diameter is determined to be the first opening diameter at the first timing repeated,
    The opening diameter is determined to be a second opening diameter larger than the first opening diameter at a second timing repeated;
    When the aperture diameter is the second aperture diameter, the imaging control unit causes the imaging device to acquire a set of two-dimensional weak light images for a plurality of different focusing surfaces,
    The image synthesis unit synthesizes the set of two-dimensional weak light images to generate a three-dimensional weak light image;
    The analysis system according to claim 8.
  11.  画像を表示する表示装置と、
     前記表示装置への表示を制御する表示制御部と、
     画像に基づいて解析を行う画像解析部と
     をさらに備え、
     前記表示制御部は、前記第1の開口径で得られた複数の前記微弱光画像を前記表示装置に表示させ、
     前記画像解析部は、表示させた複数の前記微弱光画像の中から選択された前記微弱光画像と最も近いタイミングで取得された一組の2次元微弱光画像に基づいて合成された前記3次元微弱光画像を用いて所定の解析を行う、
     請求項10に記載の解析システム。
    A display device for displaying an image;
    A display control unit for controlling display on the display device;
    An image analysis unit that performs analysis based on the image,
    The display control unit causes the display device to display a plurality of the weak light images obtained with the first opening diameter,
    The image analysis unit is configured to combine the three-dimensional image based on a set of two-dimensional weak light images acquired at a timing closest to the weak light image selected from the displayed weak light images. Perform predetermined analysis using weak light images,
    The analysis system according to claim 10.
PCT/JP2015/086387 2015-12-25 2015-12-25 Analysis method and analysis system for faint light-emitting sample WO2017109983A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017557655A JP6655632B2 (en) 2015-12-25 2015-12-25 Method and system for analyzing weakly luminescent samples
PCT/JP2015/086387 WO2017109983A1 (en) 2015-12-25 2015-12-25 Analysis method and analysis system for faint light-emitting sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086387 WO2017109983A1 (en) 2015-12-25 2015-12-25 Analysis method and analysis system for faint light-emitting sample

Publications (1)

Publication Number Publication Date
WO2017109983A1 true WO2017109983A1 (en) 2017-06-29

Family

ID=59089756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086387 WO2017109983A1 (en) 2015-12-25 2015-12-25 Analysis method and analysis system for faint light-emitting sample

Country Status (2)

Country Link
JP (1) JP6655632B2 (en)
WO (1) WO2017109983A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248050A (en) * 2006-02-17 2007-09-27 Olympus Corp Treating method and analysis method of cell for performing analysis by weak light of live cell
JP2010281800A (en) * 2009-06-08 2010-12-16 Gunma Univ Cell analyzer and method of analyzing cell
JP2011008000A (en) * 2009-06-25 2011-01-13 Olympus Corp Fluorescence observing apparatus and fluorescent observation method
JP2011112394A (en) * 2009-11-24 2011-06-09 Olympus Corp Imaging apparatus for low-light sample
JP2012122829A (en) * 2010-12-08 2012-06-28 Olympus Corp Imaging method and device in vivo
WO2012128367A1 (en) * 2011-03-24 2012-09-27 株式会社ニコン Optical coherence tomography observation device, method for determining relative position between images, and program for determining relative position between images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248050A (en) * 2006-02-17 2007-09-27 Olympus Corp Treating method and analysis method of cell for performing analysis by weak light of live cell
JP2010281800A (en) * 2009-06-08 2010-12-16 Gunma Univ Cell analyzer and method of analyzing cell
JP2011008000A (en) * 2009-06-25 2011-01-13 Olympus Corp Fluorescence observing apparatus and fluorescent observation method
JP2011112394A (en) * 2009-11-24 2011-06-09 Olympus Corp Imaging apparatus for low-light sample
JP2012122829A (en) * 2010-12-08 2012-06-28 Olympus Corp Imaging method and device in vivo
WO2012128367A1 (en) * 2011-03-24 2012-09-27 株式会社ニコン Optical coherence tomography observation device, method for determining relative position between images, and program for determining relative position between images

Also Published As

Publication number Publication date
JP6655632B2 (en) 2020-02-26
JPWO2017109983A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2007037439A1 (en) Focal point position deciding method, focal point position deciding device, weak light detecting device, and weak light detecting method
US9438848B2 (en) Image obtaining apparatus, image obtaining method, and image obtaining program
JP5826561B2 (en) Microscope system, specimen image generation method and program
JP2005284136A (en) Observation device and focusing method for observation device
JP6136085B2 (en) Image acquisition apparatus, image acquisition method, and computer program
JP2015127738A (en) Microscope system and control method
JP2010230495A (en) Observation device
JP2014521114A (en) Image quality optimization for in vivo imaging
JP2014098575A (en) Image acquisition device and image acquisition method
JP2014523545A (en) Microscope system and method for in vivo imaging
JP2015031831A (en) Cell tracking device and method, and cell tracking program
US11169079B2 (en) Captured image evaluation apparatus, captured image evaluation method, and captured image evaluation program
JP2006275964A (en) Shading correction method for scanning fluorescence microscope
WO2016092674A1 (en) Observation system, optical component, and observation method
JP5953195B2 (en) Imaging analysis apparatus, control method thereof, and program for imaging analysis apparatus
US10721413B2 (en) Microscopy system, microscopy method, and computer readable recording medium
JP6461204B2 (en) Method for generating three-dimensional luminescent image and imaging system
JP5471715B2 (en) Focusing device, focusing method, focusing program, and microscope
US7983466B2 (en) Microscope apparatus and cell observation method
WO2017109983A1 (en) Analysis method and analysis system for faint light-emitting sample
JP2021512346A (en) Impact rescanning system
US20180180867A1 (en) Microscope and setting support method
WO2013005765A1 (en) Microscope device
JP2011017620A (en) Shape measuring method, image processing program, and observation device
JP2010008492A (en) Living sample observation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911417

Country of ref document: EP

Kind code of ref document: A1