WO2017086471A1 - Hybrid vehicle and control method therefor - Google Patents

Hybrid vehicle and control method therefor Download PDF

Info

Publication number
WO2017086471A1
WO2017086471A1 PCT/JP2016/084347 JP2016084347W WO2017086471A1 WO 2017086471 A1 WO2017086471 A1 WO 2017086471A1 JP 2016084347 W JP2016084347 W JP 2016084347W WO 2017086471 A1 WO2017086471 A1 WO 2017086471A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
relative relationship
motor generator
vehicle
deceleration command
Prior art date
Application number
PCT/JP2016/084347
Other languages
French (fr)
Japanese (ja)
Inventor
竜 山角
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201680067476.4A priority Critical patent/CN108349487B/en
Publication of WO2017086471A1 publication Critical patent/WO2017086471A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to a hybrid vehicle and a control method thereof, and more particularly, to a hybrid vehicle and a control method thereof that improve fuel efficiency by increasing a regenerative power generation amount of a motor generator during deceleration of the hybrid vehicle.
  • HEV hybrid vehicle
  • a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle
  • driving force is assisted by a motor generator when the vehicle is accelerated or started, while regenerative power generation is performed by the motor generator during inertial traveling or deceleration.
  • the regenerative braking force by the motor generator can be increased according to the inter-vehicle distance and relative speed with the preceding vehicle without waiting for the deceleration command from the driver or the deceleration command from the control device running in the auto cruise mode. Will be generated.
  • An object of the present disclosure is to provide a hybrid vehicle and a control method thereof that can improve fuel efficiency by increasing the regenerative power generation amount of the motor generator without causing the driver to feel uncomfortable during deceleration of the hybrid vehicle. It is.
  • a hybrid vehicle of the present disclosure that achieves the above object includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, a brake system that applies friction braking force to each wheel, the host vehicle, and a preceding vehicle.
  • a hybrid vehicle including a relative relationship acquisition device that acquires a relative relationship of a vehicle and a control device, a resistance braking force by an engine brake that has issued a deceleration command and stopped fuel injection of the engine, and the brake system
  • the control device includes: Based on the relative relationship acquired by the relative relationship acquisition device, the motor Increasing only the regenerative braking force by Nereta, it is characterized in that the total braking force is configured to perform control of larger than the required braking force.
  • the hybrid vehicle control method of the present disclosure that achieves the above object includes a resistance braking force by an engine brake that stops injection of fuel of an engine, a friction braking force applied to each wheel by a brake system, and a motor generator
  • the total braking force is determined based on the deceleration command after the deceleration command is issued.
  • the hybrid vehicle includes a hybrid system including a motor generator connected to an output shaft that transmits engine power, a brake system that applies friction braking force to each wheel, and the host vehicle.
  • the control device receives the deceleration command, and receives the deceleration command according to the received deceleration command.
  • the operation command by the driver's deceleration operation and the control command of the control device in the auto cruise mode can be exemplified.
  • the operation command include an accelerator-off command indicating that the accelerator pedal is turned off, a brake operation command indicating the amount of operation of the brake pedal, and the control command includes the engine in order to maintain the target vehicle speed.
  • Examples include coasting commands for setting an idling state, brake system operation commands, and the like.
  • the relative relationship between the host vehicle and the preceding vehicle is a relative relationship between the host vehicle and the preceding vehicle, and the distance between the host vehicle and the preceding vehicle and the relative speed of the preceding vehicle viewed from the host vehicle can be exemplified. .
  • Increasing only the regenerative braking force by the motor generator based on this relative relationship is based on the assumption that the total braking force is maintained at the required braking force by the deceleration command, that is, the current vehicle braking force is maintained. In addition, only the regenerative braking force by the motor generator is increased so that the relative relationship does not become a close relationship.
  • the proximity relationship is a relationship in which the friction braking force by the brake system is expected to increase when the host vehicle and the preceding vehicle approach each other. That is, the fact that the relative relationship is a close relationship indicates that the distance between the host vehicle and the preceding vehicle has become shorter, or the relative speed has become negative and the preceding vehicle has approached the host vehicle.
  • the relative relationship between the host vehicle and the preceding vehicle is set. Based on this, only the regenerative braking force of the motor generator is increased so that the total braking force is greater than the required braking force, so that the relative relationship between the host vehicle and the preceding vehicle can be appropriately maintained.
  • This control causes the hybrid vehicle to decelerate more than the degree of deceleration generated by the deceleration command, but only increases the regenerative braking force of the motor generator based on the relative relationship after the deceleration command is issued.
  • the deceleration command can give an impression that the relative relationship between the host vehicle and the preceding vehicle is properly maintained. As a result, the driver does not feel unintended deceleration, and drivability can be improved.
  • the regenerative power generation amount of the motor generator can be increased by increasing only the regenerative braking force of the motor generator.
  • the opportunity to charge the high voltage battery using fuel can be reduced.
  • the amount of charge of the high voltage battery increases, so that the opportunity to assist with the motor generator can be increased.
  • the regenerative power generation amount of the motor generator can be increased and the fuel consumption can be improved without causing the driver to feel uncomfortable during the deceleration of the hybrid vehicle.
  • FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating a method for controlling the hybrid vehicle of FIG.
  • FIG. 3 is a correlation diagram between the brake opening degree (instructed operation amount) and the required braking force.
  • FIG. 4 is a correlation diagram between the gradient of the traveling road and the amount of increase / decrease in the required braking force.
  • FIG. 5 is a correlation diagram between the inter-vehicle distance and the increase / decrease amount of the regenerative braking force.
  • FIG. 6 is a correlation diagram between the relative speed and the amount of increase / decrease in the regenerative braking force.
  • FIG. 7 is a correlation diagram between the deceleration command and the total braking force after increasing the regenerative braking force.
  • FIG. 1 illustrates a hybrid vehicle according to an embodiment of the present disclosure.
  • the hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, a pickup truck, and the like, and an engine 10 and a motor generator that are controlled in combination according to the driving state of the vehicle.
  • a hybrid system 30 having 31 is provided.
  • the HEV also includes a drum brake 92 as a brake system that applies a friction braking force to each wheel.
  • the HEV includes a relative relationship acquisition device 85 that acquires the relative relationship between the host vehicle and the preceding vehicle.
  • the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11.
  • the engine 10 is a diesel engine or a gasoline engine.
  • the rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
  • the transmission 20 uses an AMT or an AT that automatically shifts to a target shift speed determined based on the HEV operating state and preset map data using the shift actuator 21.
  • the transmission 20 is not limited to the automatic transmission type such as AMT, and may be a manual type in which the driver manually changes gears.
  • Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
  • the hybrid system 30 includes a motor generator 31, an inverter 35 that is electrically connected to the motor generator 31 in order, a high voltage battery 32 (for example, 48V), a DC / DC converter 33, and a low voltage battery 34 (for example, 12V). ).
  • a high voltage battery 32 for example, 48V
  • a DC / DC converter 33 for example, 12V
  • a low voltage battery 34 for example, 12V.
  • the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery.
  • the low voltage battery 34 is a lead battery.
  • the DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34.
  • the DC / DC converter 33 can supply power to various vehicle electrical components 36 from the high voltage battery 32 in addition to the low voltage battery 34.
  • BMS battery management system
  • the DC / DC converter 33 and the vehicle electrical component 36 are illustrated as auxiliary machines that consume the power of the high-voltage battery 32, but the auxiliary machines are electrically connected to the high-voltage battery 32.
  • An electric air conditioner, an electric hydraulic pump, etc. can also be illustrated.
  • the motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.
  • the motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
  • the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32.
  • the drum brake 92 is a device that applies a friction braking force to each wheel including the drive wheel 24, and a disc brake may be used instead.
  • Examples of the brake system using the drum brake 92 as an example include an air brake using compressed air and a hydraulic brake using hydraulic pressure.
  • the relative relationship acquisition device 85 is a device that acquires the relative relationship R1 between the HEV and the preceding vehicle.
  • Examples of the relative relationship R1 include an inter-vehicle distance L1 between the HEV and a preceding vehicle traveling on the same lane as the HEV, and a relative speed ⁇ V1 of the preceding vehicle as viewed from HEV.
  • Examples of the relative relationship acquisition device 85 include a device that estimates a relative relationship from an image captured by a camera, and a device that measures a relative relationship using a millimeter wave radar, and more specifically, a lane departure prevention support system and the like. it can.
  • the relative speed ⁇ V1 is the relative speed of the preceding vehicle as viewed from HEV, and the traveling direction is positive. That is, when the vehicle speed of HEV is faster than the vehicle speed of the preceding vehicle, the relative speed ⁇ V1 is a negative value.
  • the control device 80 acquires the relative relationship acquired by the relative relationship acquisition device 85. Based on R1, only the regenerative braking force B5 by the motor generator 31 is increased, and the total braking force B1 is controlled to be larger than the required braking force B2.
  • the control device 80 includes a CPU that performs various processes, an internal storage device that can read and write programs and processing results used to perform the various processes, and various interfaces.
  • the control device 80 is connected to the hybrid system 30 (the engine 10 and the inverter 35), the drum brake 92, and the relative relationship acquisition device 85 through signal lines.
  • the control device 80 also includes an accelerator opening sensor 96 that detects the amount of depression of the accelerator pedal 95 (accelerator opening) via a signal line, and a brake opening that detects the amount of depression of the brake pedal 90 (brake opening).
  • the sensor 97 is connected to a vehicle speed sensor 99 that detects the vehicle speed V1.
  • a plurality of execution programs are stored in the internal storage device.
  • As the execution programs a program for changing the total braking force B1 to the required braking force B2 based on the deceleration command C1, and a relative relationship R1.
  • a program for increasing the regenerative braking force B5 by the motor generator 31 can be exemplified.
  • step S10 the control device 80 receives a deceleration command C1.
  • the deceleration command C1 include an operation command by the driver's deceleration operation and a control command of the control device 80 in the auto cruise mode.
  • an accelerator off command C2 indicating that the accelerator pedal 95 of the accelerator opening sensor 96 is turned off, or a brake indicating an operation amount of the brake pedal 90 of the brake opening sensor 97 is displayed.
  • An operation command C3 can be exemplified.
  • examples of the control command include a coasting command C4 for setting the engine 10 in an idling state on a downhill road to maintain the target vehicle speed, a brake operation command C5 for the drum brake 92 when the vehicle speed exceeds the target vehicle speed, and the like.
  • an auxiliary brake such as an exhaust brake or a compression release brake
  • the auto-cruise mode is used especially when traveling on a highway, and the program stored in the control device 80 automatically schedules HEV when an unillustrated auto-cruise switch is turned on by the driver. It is a mode that runs on the street.
  • engine travel, assist travel, motor travel, and inertia travel are selected in a timely manner based on parameters such as the gradient of the travel path and the weight of the HEV, and the HEV vehicle speed is set in advance.
  • Examples include a mode in which the HEV is automatically driven while maintaining the speed range, and a mode in which the HEV is made to follow the preceding vehicle by appropriately selecting to follow the preceding vehicle.
  • step S20 the control device 80 calculates the required braking force B2 based on the deceleration command C1. Specifically, the required braking force B2 is calculated with reference to map data that has been created in advance through experiments and tests and stored in the internal storage device using the deceleration command C1 as a parameter.
  • the required braking force B2 is set to a braking force corresponding to the engine brake according to the vehicle speed of HEV.
  • the brake operation command C3 or the brake operation command C5 is received in step S10, the braking force is set according to the brake opening degree or the instructed instruction operation amount.
  • FIG. 3 is map data illustrating the correlation between the brake opening (instructed operation amount) and the required braking force B2. As shown in FIG. 3, the brake opening degree (instructed operation amount) and the required braking force B2 have a positive correlation.
  • the required braking force B2 may be increased or decreased in accordance with the HEV vehicle weight or the road gradient. Specifically, the vehicle weight and the gradient are acquired as parameters, and the increase / decrease amount of the required braking force B2 is calculated with reference to map data that is created in advance by experiments and tests and stored in the internal storage device.
  • FIG. 4 is map data exemplifying the correlation between the gradient of the traveling road and the increase amount of the required braking force B2 when the vehicle weight is a predetermined value.
  • the solid line is set to a predetermined vehicle weight M1
  • the dotted line is set to a vehicle weight M2 that is lighter than the vehicle weight M1
  • the alternate long and short dash line is set to a vehicle weight M3 that is heavier than the vehicle weight M1.
  • the vehicle weight and the increase amount thereof, and the gradient and the increase amount thereof have a positive correlation at a balance gradient ⁇ or more.
  • the balance gradient ⁇ is based on the HEV vehicle weight, and has a negative correlation with the vehicle weight. As the vehicle weight increases, the balance gradient ⁇ decreases.
  • the balance gradient ⁇ is a gradient in which the forward speed due to the gravitational acceleration applied to the HEV is equal to or greater than the running resistance, and the vehicle speed V1 does not decelerate even if the driving force of the engine 10 and the motor generator 31 is not applied.
  • As the balance gradient ⁇ for example, when the vehicle weight of HEV is 25 t, a gradient of 2% can be exemplified.
  • the HEV is a vehicle such as a bus, a truck, or a pickup truck
  • the vehicle weight varies greatly depending on the load and the number of passengers. Therefore, a balance gradient ⁇ and an increase amount corresponding to the vehicle weight should be set. Is desirable.
  • the regenerative electric energy of the motor generator 31 can be further increased when the vehicle weight is relatively heavy, which is advantageous in improving fuel consumption. Further, when the vehicle weight is relatively light, it is possible to avoid that the hybrid vehicle is excessively decelerated due to excessive braking force due to regeneration, which is advantageous in improving drivability.
  • a program for estimating the vehicle weight on the assumption that the driving force transmitted to the drive wheels 24 at the time of starting or shifting is equal to the running resistance can be exemplified.
  • a program that is calculated based on detection values of various sensors such as an acceleration sensor (G sensor), a wheel speed sensor, and a gyro sensor (not shown) and a navigation system (not shown) are registered.
  • step S30 the control device 80 performs control to change the total braking force B1 to the required braking force B2.
  • the total braking force B1 is any one or some of a resistance braking force B3 by the engine brake that stops the fuel injection of the engine 10, a friction braking force B4 by the drum brake 92, and a regenerative braking force B5 by the motor generator 31. This is the total braking force.
  • the total braking force B1 may include braking force by an auxiliary brake such as an exhaust brake, a compression release brake, and a retarder.
  • step S30 for example, when the accelerator off command C2 or the coasting command C4 is received in step S10, the regenerative braking force B5 is added to the resistance braking force B3 when the gradient of the travel path is larger than the balancing gradient ⁇ . Thus, the total braking force B1 is set to the required braking force B2. Further, when the brake operation command C3 or the brake operation command C5 is received in step S10, the friction braking force B4 corresponding to the brake opening degree (instructed operation amount) is added to the resistance braking force B3, and the total braking force B1 is obtained as the required braking force. Set to B2.
  • the regenerative braking force B5 is added to the resistance braking force B3, and the friction braking force B4 corresponding to the difference between them and the required braking force B2 is added.
  • the braking force B1 is set to the required braking force B2.
  • step S40 the relative relationship acquisition device 85 acquires the relative relationship R1 between the HEV and the preceding vehicle.
  • step S50 the control device 80 determines whether or not a condition is satisfied. This condition is established when the relative relationship R1 becomes the proximity relationship R2 where the friction braking force B4 by the drum brake 92 is expected to increase, assuming that the total braking force B1 is maintained at the required braking force B2.
  • the proximity relationship R2 is a relationship in which the friction braking force B4 by the drum brake 92 is expected to increase as the HEV and the preceding vehicle approach each other.
  • Examples of the proximity relationship R2 include a relationship in which the inter-vehicle distance L1 between the HEV and the preceding vehicle becomes the proximity distance L2, or the relative speed ⁇ V1 between the HEV and the preceding vehicle becomes the proximity speed ⁇ V2.
  • the proximity distance L2 is set according to the HEV vehicle speed V1, and when the vehicle speed V1 is 60 km / h or less, a distance obtained by subtracting a predetermined value from the value of the vehicle speed V1 (for example, the vehicle speed is 40 km / h, the predetermined speed). When the vehicle speed V1 exceeds 60 km / h, the proximity distance L2 is approximately the same as the vehicle speed V1 (for example, the vehicle speed is 80 km / h). Can be exemplified by 80 m).
  • the proximity speed ⁇ V2 can be exemplified as ⁇ 10 km / h or less when the inter-vehicle distance L1 is equal to or less than the proximity distance L2.
  • the proximity speed ⁇ V2 is preferably increased or decreased according to the inter-vehicle distance L1. For example, the proximity speed ⁇ V2 is decreased (approached to zero) each time the inter-vehicle distance L1 is equal to or smaller than the proximity distance L2 and the inter-vehicle distance L1 is reduced.
  • step S50 If it is determined in step S50 that the condition is not satisfied, the process returns to the start. On the other hand, when the condition is satisfied, that is, when it is determined that the relative relationship R1 becomes the proximity relationship R2 when the total braking force B1 is maintained in the current state, the process proceeds to step S60.
  • step S60 the control device 80 calculates an increase amount ⁇ B of the regenerative braking force B5 by the motor generator 31.
  • the increase amount ⁇ B is calculated with reference to map data that has been created in advance through experiments and tests using the vehicle speed V1, the inter-vehicle distance L1, and the relative speed ⁇ V1 as parameters, and stored in the internal storage device.
  • FIG. 5 is map data illustrating the relationship between the inter-vehicle distance L1 and the increase amount ⁇ B when the vehicle speed V1 is a predetermined speed.
  • FIG. 6 is map data illustrating the relationship between the relative speed ⁇ V1 and the increase amount ⁇ B when the inter-vehicle distance L1 is equal to or less than the proximity distance L2.
  • the vehicle speed V1 and the inter-vehicle distance L1 have a positive correlation.
  • the inter-vehicle distance L1 and the increase amount ⁇ B have a negative correlation, and the relative speed ⁇ V1 and the increase amount ⁇ B. And negative correlation.
  • step S70 the control device 80 increases the regenerative braking force B5 of the motor generator 31 by the calculated increase amount ⁇ B.
  • step S70 the process returns to the start, and steps S10 to S70 are repeated until the HEV travel stops.
  • FIG. 7 illustrates the relationship between each deceleration command C1 and the total braking force B1 after increasing the regenerative braking force B5.
  • the HEV is decelerated more than the degree of deceleration generated by the deceleration command C1, but after the deceleration command C1 is issued, only the regenerative braking force B5 of the motor generator 31 is increased based on the relative relationship R1.
  • the deceleration command C1 can give an impression that the relative relationship R1 between the HEV and the preceding vehicle is appropriately maintained so as not to become the proximity relationship R2.
  • the driver does not feel unintended deceleration, and drivability can be improved.
  • the regenerative power generation amount of the motor generator 31 can be increased by increasing only the regenerative braking force B5 of the motor generator 31.
  • the relative relationship R1 between the HEV and the preceding vehicle becomes the proximity relationship R2
  • the energy lost by the frictional braking force B4 by the drum brake 92 is converted into electric energy by regeneration, so that high fuel is used.
  • Opportunities for charging the voltage battery 32 can be reduced.
  • the opportunity to assist the motor generator 31 can be increased.
  • the regenerative power generation amount of the motor generator 31 can be increased without causing the driver to feel uncomfortable during the deceleration of the HEV, so that the fuel efficiency can be improved.
  • the regenerative braking force B5 by the motor generator 31 can be increased even in an HEV that does not have a coordinated regenerative system that is complicated in control and high in cost.
  • the amount can be increased.
  • the hybrid vehicle of the present disclosure is useful in that the amount of regenerative power generation of the motor generator can be increased and fuel consumption can be improved without causing the driver to feel uncomfortable during the deceleration of the hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

If a deceleration command (C1) is provided and the total braking force (B1) is set to the demand braking force (B2) based on the deceleration command (C1), this hybrid vehicle is configured in such a manner that a control device (80) implements control to set the total braking force (B1) to be greater than the demand braking force (B2) by increasing only the regenerative braking force (B5) generated by a motor generator (31) on the basis of the relative relation (R1) acquired by a relative relation acquisition device (85).

Description

ハイブリッド車両及びその制御方法Hybrid vehicle and control method thereof
 本開示は、ハイブリッド車両及びその制御方法に関し、より詳細には、ハイブリッド車両の減速中に、モータージェネレーターの回生発電量を増加して、燃費を向上するハイブリッド車両及びその制御方法に関する。 The present disclosure relates to a hybrid vehicle and a control method thereof, and more particularly, to a hybrid vehicle and a control method thereof that improve fuel efficiency by increasing a regenerative power generation amount of a motor generator during deceleration of the hybrid vehicle.
 近年、燃費向上及び環境対策などの観点から、車両の運転状態に応じて複合的に制御されるエンジン及びモータージェネレーターを有したハイブリッドシステムを備えたハイブリッド車両(以下「HEV」という。)が注目されている。このHEVにおいては、車両の加速時や発進時には、モータージェネレーターによる駆動力のアシストが行われる一方で、慣性走行時や減速時にはモータージェネレーターによる回生発電が行われる。 2. Description of the Related Art In recent years, a hybrid vehicle (hereinafter referred to as “HEV”) including a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle has been attracting attention from the viewpoint of improving fuel efficiency and environmental measures. ing. In this HEV, driving force is assisted by a motor generator when the vehicle is accelerated or started, while regenerative power generation is performed by the motor generator during inertial traveling or deceleration.
 モータージェネレーターの回生発電量を効率よく増加するために、各車輪に制動力を付与するブレーキシステムによる摩擦制動力にモータージェネレーターの回生制動力を協調させる協調回生が知られている。 In order to efficiently increase the regenerative power generation amount of the motor generator, cooperative regeneration is known in which the regenerative braking force of the motor generator is coordinated with the friction braking force by the brake system that applies the braking force to each wheel.
 これに関して、先行車両との車間距離や相対速度に応じて、モータージェネレーターによる回生発電量を増加する装置が提案されている(例えば、特許文献1参照)。 In this regard, a device has been proposed that increases the amount of regenerative power generated by a motor generator in accordance with the inter-vehicle distance and relative speed with the preceding vehicle (see, for example, Patent Document 1).
 しかしながら、この装置によると、運転者による減速指令やオートクルーズモードで走行中の制御装置による減速指令を待たずに、先行車両との車間距離や相対速度に応じて、モータージェネレーターによる回生制動力を生じさせることになる。 However, according to this device, the regenerative braking force by the motor generator can be increased according to the inter-vehicle distance and relative speed with the preceding vehicle without waiting for the deceleration command from the driver or the deceleration command from the control device running in the auto cruise mode. Will be generated.
 従って、運転者によっては、意図しないHEVの減速を感じることで、違和感が生じて、ドライバビリティが悪化するという問題があった。 Therefore, depending on the driver, there is a problem in that the driver feels uncomfortable due to unintended HEV deceleration, and drivability deteriorates.
日本国特開2001-054203号公報Japanese Laid-Open Patent Publication No. 2001-054203
 本開示の目的は、ハイブリッド車両の減速中に、運転者に違和感を与えること無く、モータージェネレーターの回生発電量を増加して、燃費を向上することができるハイブリッド車両及びその制御方法を提供することである。 An object of the present disclosure is to provide a hybrid vehicle and a control method thereof that can improve fuel efficiency by increasing the regenerative power generation amount of the motor generator without causing the driver to feel uncomfortable during deceleration of the hybrid vehicle. It is.
 上記の目的を達成する本開示のハイブリッド車両は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、各車輪に摩擦制動力を付与するブレーキシステムと、自車両及び先行車両の相対関係を取得する相対関係取得装置と、制御装置と、を備えたハイブリッド車両において、減速指令が発せられ、前記エンジンの燃料の噴射を停止したエンジンブレーキによる抵抗制動力と、前記ブレーキシステムによる摩擦制動力と、前記モータージェネレーターによる回生制動力とのいずれか、あるいはいくつかの組み合わせを総合した総合制動力を、前記減速指令に基づいた要求制動力にする場合に、前記制御装置が、前記相対関係取得装置が取得した前記相対関係に基づいて、前記モータージェネレーターによる回生制動力のみを増加して、前記総合制動力を前記要求制動力よりも大きくする制御を行うように構成されたことを特徴とするものである。 A hybrid vehicle of the present disclosure that achieves the above object includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, a brake system that applies friction braking force to each wheel, the host vehicle, and a preceding vehicle. In a hybrid vehicle including a relative relationship acquisition device that acquires a relative relationship of a vehicle and a control device, a resistance braking force by an engine brake that has issued a deceleration command and stopped fuel injection of the engine, and the brake system In the case where the total braking force obtained by combining the friction braking force by the motor generator and the regenerative braking force by the motor generator or some combination thereof is set to the required braking force based on the deceleration command, the control device includes: Based on the relative relationship acquired by the relative relationship acquisition device, the motor Increasing only the regenerative braking force by Nereta, it is characterized in that the total braking force is configured to perform control of larger than the required braking force.
 また、上記の目的を達成する本開示のハイブリッド車両の制御方法は、エンジンの燃料の噴射を停止したエンジンブレーキによる抵抗制動力と、ブレーキシステムによる各車輪へ付与される摩擦制動力と、モータージェネレーターによる回生制動力とのいずれか、あるいはいくつかの組み合わせを総合した総合制動力により制動するハイブリッド車両の制御方法において、減速指令が発せられた後に、その減速指令に基づいて、前記総合制動力をその減速指令に基づいた要求制動力にするステップと、先行車に対する相対関係を取得するステップと、前記抵抗制動力及び前記摩擦制動力を維持しながら、取得した前記相対関係に基づいて前記回生制動力のみを増加して、前記総合制動力を前記要求制動力よりも大きくするステップと、を含むことを特徴とする方法である。 In addition, the hybrid vehicle control method of the present disclosure that achieves the above object includes a resistance braking force by an engine brake that stops injection of fuel of an engine, a friction braking force applied to each wheel by a brake system, and a motor generator In a hybrid vehicle control method in which braking is performed with a total braking force obtained by combining any one of the regenerative braking force or a combination of several, the total braking force is determined based on the deceleration command after the deceleration command is issued. The step of obtaining the required braking force based on the deceleration command, the step of acquiring the relative relationship with the preceding vehicle, and the regenerative braking based on the acquired relative relationship while maintaining the resistance braking force and the friction braking force. Increasing only the power and making the total braking force larger than the required braking force. It is a method characterized by.
 また、上記の目的を達成する本開示のハイブリッド車両は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、各車輪に摩擦制動力を付与するブレーキシステムと、自車両及び先行車両の相対関係を取得する相対関係取得装置と、制御装置と、を備えたハイブリッド車両において、前記制御装置は、減速指令を受信する受信処理と、受信した前記減速指令に応じて、前記エンジンの燃料の噴射を停止したエンジンブレーキによる抵抗制動力と、前記ブレーキシステムによる摩擦制動力と、前記モータージェネレーターによる回生制動力とのいずれか、あるいはいくつかの組み合わせを総合した総合制動力を、前記減速指令に基づいた要求制動力に制御する制御処理と、前記制御処理の実行後に、前記前記相対関係取得装置が取得した前記相対関係に基づいて、前記モータージェネレーターによる回生制動力のみを増加して、前記総合制動力を前記要求制動力よりも大きくする増加処理、を行うように構成されたことを特徴とするものである。 The hybrid vehicle according to the present disclosure that achieves the above object includes a hybrid system including a motor generator connected to an output shaft that transmits engine power, a brake system that applies friction braking force to each wheel, and the host vehicle. In the hybrid vehicle including the relative relationship acquisition device that acquires the relative relationship between the preceding vehicle and the control device, the control device receives the deceleration command, and receives the deceleration command according to the received deceleration command. A total braking force obtained by combining any one or some combination of the resistance braking force by the engine brake that stops the fuel injection of the engine, the friction braking force by the brake system, and the regenerative braking force by the motor generator, A control process for controlling the required braking force based on the deceleration command; and After the execution, based on the relative relationship acquired by the relative relationship acquisition device, an increase process for increasing only the regenerative braking force by the motor generator and making the total braking force larger than the required braking force is performed. It is configured as described above.
 なお、減速指令としては、運転者の減速操作による操作指令や、オートクルーズモードにおける制御装置の制御指令を例示できる。具体的には、操作指令としては、アクセルペダルのオフを示すアクセルオフ指令、ブレーキペダルの操作量を示すブレーキ操作指令などを例示でき、制御指令としては、目標車速を維持するために、エンジンをアイドリング状態にする惰行指令、ブレーキシステムの作動指令などを例示できる。 In addition, as a deceleration command, the operation command by the driver's deceleration operation and the control command of the control device in the auto cruise mode can be exemplified. Specifically, examples of the operation command include an accelerator-off command indicating that the accelerator pedal is turned off, a brake operation command indicating the amount of operation of the brake pedal, and the control command includes the engine in order to maintain the target vehicle speed. Examples include coasting commands for setting an idling state, brake system operation commands, and the like.
 また、自車両及び先行車両の相対関係は、自車両と先行車両との相対的な関係であり、自車両と先行車両との車間距離や、自車両から見た先行車両の相対速度を例示できる。 The relative relationship between the host vehicle and the preceding vehicle is a relative relationship between the host vehicle and the preceding vehicle, and the distance between the host vehicle and the preceding vehicle and the relative speed of the preceding vehicle viewed from the host vehicle can be exemplified. .
 この相対関係に基づいてモータージェネレーターによる回生制動力のみを増加することは、減速指令により総合制動力が要求制動力に維持された、つまり、現時点における自車両の制動力が維持されたと仮定した場合に、その相対関係が近接関係にならないように、モータージェネレーターによる回生制動力のみを増加することである。 Increasing only the regenerative braking force by the motor generator based on this relative relationship is based on the assumption that the total braking force is maintained at the required braking force by the deceleration command, that is, the current vehicle braking force is maintained. In addition, only the regenerative braking force by the motor generator is increased so that the relative relationship does not become a close relationship.
 なお、近接関係とは、自車両と先行車両とが近接することによって、ブレーキシステムによる摩擦制動力が増加することが予想される関係である。つまり、相対関係が近接関係になることは、自車両と先行車両との車間距離が近くなった、あるいは、相対速度が負になり、先行車両が自車両に近づいたことを示す。 Note that the proximity relationship is a relationship in which the friction braking force by the brake system is expected to increase when the host vehicle and the preceding vehicle approach each other. That is, the fact that the relative relationship is a close relationship indicates that the distance between the host vehicle and the preceding vehicle has become shorter, or the relative speed has become negative and the preceding vehicle has approached the host vehicle.
 このハイブリッド車両及びその制御方法によれば、減速指令が発せられた後の減速中に、総合制動力を減速指令に基づいた要求制動力にする場合に、自車両と先行車両との相対関係に基づいて、モータージェネレーターの回生制動力のみを増加して、総合制動力を要求制動力よりも大きくするようにしたので、自車両と先行車両との相対関係を適切に維持することができる。 According to this hybrid vehicle and its control method, when the total braking force is set to the required braking force based on the deceleration command during deceleration after the deceleration command is issued, the relative relationship between the host vehicle and the preceding vehicle is set. Based on this, only the regenerative braking force of the motor generator is increased so that the total braking force is greater than the required braking force, so that the relative relationship between the host vehicle and the preceding vehicle can be appropriately maintained.
 この制御により、ハイブリッド車両はその減速指令で生じる減速度合いよりも減速することになるが、減速指令が発せられた後に、相対関係に基づいてモータージェネレーターの回生制動力のみを増加するようにしたことで、その減速指令により、自車両と先行車両との相対関係が適切に維持される印象を与えることができる。これにより、運転者は、意図しない減速を感じることが無くなるので、ドライバビリティを向上できる。 This control causes the hybrid vehicle to decelerate more than the degree of deceleration generated by the deceleration command, but only increases the regenerative braking force of the motor generator based on the relative relationship after the deceleration command is issued. Thus, the deceleration command can give an impression that the relative relationship between the host vehicle and the preceding vehicle is properly maintained. As a result, the driver does not feel unintended deceleration, and drivability can be improved.
 また、この制御により、モータージェネレーターの回生制動力のみを増加することで、モータージェネレーターの回生発電量を増加することができる。加えて、ブレーキシステムによる摩擦制動力によって失われるエネルギーを回生により電気エネルギーに変換することで、燃料を使用して高電圧バッテリーを充電する機会を減少することができる。更に、高電圧バッテリーの充電量が増加することで、モータージェネレーターによりアシストする機会を増加できる。 Also, with this control, the regenerative power generation amount of the motor generator can be increased by increasing only the regenerative braking force of the motor generator. In addition, by converting the energy lost due to the frictional braking force by the brake system into electrical energy through regeneration, the opportunity to charge the high voltage battery using fuel can be reduced. Further, the amount of charge of the high voltage battery increases, so that the opportunity to assist with the motor generator can be increased.
 従って、上記のハイブリッド車両及びその制御方法によれば、ハイブリッド車両の減速中に、運転者に違和感を与えること無く、モータージェネレーターの回生発電量を増加して、燃費を向上することができる。 Therefore, according to the hybrid vehicle and the control method thereof, the regenerative power generation amount of the motor generator can be increased and the fuel consumption can be improved without causing the driver to feel uncomfortable during the deceleration of the hybrid vehicle.
図1は、本開示の実施形態からなるハイブリッド車両の構成図である。FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure. 図2は、図1のハイブリッド車両の制御方法を例示するフロー図である。FIG. 2 is a flowchart illustrating a method for controlling the hybrid vehicle of FIG. 図3は、ブレーキ開度(指示操作量)と要求制動力との相関図である。FIG. 3 is a correlation diagram between the brake opening degree (instructed operation amount) and the required braking force. 図4は、走行路の勾配と要求制動力の増減量との相関図である。FIG. 4 is a correlation diagram between the gradient of the traveling road and the amount of increase / decrease in the required braking force. 図5は、車間距離と回生制動力の増減量との相関図である。FIG. 5 is a correlation diagram between the inter-vehicle distance and the increase / decrease amount of the regenerative braking force. 図6は、相対速度と回生制動力の増減量との相関図である。FIG. 6 is a correlation diagram between the relative speed and the amount of increase / decrease in the regenerative braking force. 図7は、減速指令と回生制動力を増加後の総合制動力との相関図である。FIG. 7 is a correlation diagram between the deceleration command and the total braking force after increasing the regenerative braking force.
 以下に、本開示の実施形態について、図面を参照して説明する。図1は、本開示の実施形態からなるハイブリッド車両を示す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 illustrates a hybrid vehicle according to an embodiment of the present disclosure.
 このハイブリッド車両(以下「HEV」という。)は、普通乗用車のみならず、バスやトラック、ピックアップトラックなどを含む車両であり、車両の運転状態に応じて複合的に制御されるエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えている。また、このHEVは、各車輪に摩擦制動力を付与するブレーキシステムとして、ドラムブレーキ92を備えている。加えて、このHEVは、自車両及び先行車両の相対関係を取得する相対関係取得装置85を備えている。 The hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, a pickup truck, and the like, and an engine 10 and a motor generator that are controlled in combination according to the driving state of the vehicle. A hybrid system 30 having 31 is provided. The HEV also includes a drum brake 92 as a brake system that applies a friction braking force to each wheel. In addition, the HEV includes a relative relationship acquisition device 85 that acquires the relative relationship between the host vehicle and the preceding vehicle.
 エンジン10においては、エンジン本体11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランクシャフト13が回転駆動される。このエンジン10には、ディーゼルエンジンやガソリンエンジンが用いられる。このクランクシャフト13の回転動力は、クランクシャフト13の一端部に接続するクラッチ14(例えば、湿式多板クラッチなど)を通じてトランスミッション20に伝達される。 In the engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11. The engine 10 is a diesel engine or a gasoline engine. The rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
 トランスミッション20には、HEVの運転状態と予め設定されたマップデータとに基づいて決定された目標変速段へ、変速用アクチュエーター21を用いて自動的に変速するAMT又はATが用いられている。なお、トランスミッション20は、AMTのような自動変速式に限るものではなく、運転者が手動で変速するマニュアル式であってもよい。 The transmission 20 uses an AMT or an AT that automatically shifts to a target shift speed determined based on the HEV operating state and preset map data using the shift actuator 21. The transmission 20 is not limited to the automatic transmission type such as AMT, and may be a manual type in which the driver manually changes gears.
 トランスミッション20で変速された回転動力は、プロペラシャフト22を通じてデファレンシャル23に伝達され、一対の駆動輪24にそれぞれ駆動力として分配される。 Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
 ハイブリッドシステム30は、モータージェネレーター31と、そのモータージェネレーター31に順に電気的に接続するインバーター35、高電圧バッテリー32(例えば、48Vなど)、DC/DCコンバーター33及び低電圧バッテリー34(例えば、12Vなど)とを有している。 The hybrid system 30 includes a motor generator 31, an inverter 35 that is electrically connected to the motor generator 31 in order, a high voltage battery 32 (for example, 48V), a DC / DC converter 33, and a low voltage battery 34 (for example, 12V). ).
 高電圧バッテリー32としては、リチウムイオンバッテリーやニッケル水素バッテリーなどが好ましく例示される。また、低電圧バッテリー34には鉛バッテリーが用いられる。DC/DCコンバーター33は、高電圧バッテリー32と低電圧バッテリー34との間における充放電の方向及び出力電圧を制御する機能を有している。このDC/DCコンバーター33により、低電圧バッテリー34に加えて、高電圧バッテリー32からも、各種の車両電装品36に電力を供給可能になっている。 Preferred examples of the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery. The low voltage battery 34 is a lead battery. The DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34. The DC / DC converter 33 can supply power to various vehicle electrical components 36 from the high voltage battery 32 in addition to the low voltage battery 34.
 また、このハイブリッドシステム30の高電圧バッテリー32における種々のパラメータ、例えば、内部温度、電流値、電圧値や残存容量(SOC)などは、BMS(バッテリーマネージメントシステム)39により管理される。 Further, various parameters in the high voltage battery 32 of the hybrid system 30 such as internal temperature, current value, voltage value and remaining capacity (SOC) are managed by a BMS (battery management system) 39.
 この実施形態では、高電圧バッテリー32の電力を消費する補機として、DC/DCコンバーター33や車両電装品36を例示するが、この補機としては、高電圧バッテリー32に電気的に接続された電動エアコンディショナー、電動油圧ポンプなども例示できる。 In this embodiment, the DC / DC converter 33 and the vehicle electrical component 36 are illustrated as auxiliary machines that consume the power of the high-voltage battery 32, but the auxiliary machines are electrically connected to the high-voltage battery 32. An electric air conditioner, an electric hydraulic pump, etc. can also be illustrated.
 モータージェネレーター31は、回転軸37に取り付けられた第1プーリー15とエンジン本体11の出力軸であるクランクシャフト13の他端部に取り付けられた第2プーリー16との間に掛け回された無端状のベルト状部材17を介して、エンジン10との間で動力を伝達する。なお、2つのプーリー15、16及びベルト状部材17の代わりに、ギヤボックスなどを用いて動力を伝達することもできる。また、モータージェネレーター31に接続するエンジン本体11の出力軸は、クランクシャフト13に限るものではなく、例えばエンジン本体11とトランスミッション20との間の伝達軸やプロペラシャフト22であっても良い。 The motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.
 このモータージェネレーター31は、エンジン本体11を始動するスターターモーター(図示せず)の代わりに、クランキングを行う機能も有している。 The motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
 これらのエンジン10及びハイブリッドシステム30は、制御装置80により制御される。具体的には、HEVの発進時や加速時には、ハイブリッドシステム30は高電圧バッテリー32から電力を供給されたモータージェネレーター31により駆動力の少なくとも一部をアシストする一方で、慣性走行時や制動時においては、モータージェネレーター31による回生発電を行い、余剰の運動エネルギーを電力に変換して高電圧バッテリー32を充電する。 These engine 10 and hybrid system 30 are controlled by a control device 80. Specifically, at the time of HEV start or acceleration, the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32.
 ドラムブレーキ92は、駆動輪24を含む各車輪へ摩擦制動力を付与する装置であって、代わりにディスクブレーキを用いてもよい。このドラムブレーキ92を例とするブレーキシステムとしては、圧縮空気を利用する空気ブレーキ、油圧を利用する油圧ブレーキを例示できる。 The drum brake 92 is a device that applies a friction braking force to each wheel including the drive wheel 24, and a disc brake may be used instead. Examples of the brake system using the drum brake 92 as an example include an air brake using compressed air and a hydraulic brake using hydraulic pressure.
 相対関係取得装置85は、このHEVと先行車両との相対関係R1を取得する装置である。この相対関係R1としては、このHEVと、このHEVと同一車線上を走行する先行車両との車間距離L1や、HEVからみた先行車両の相対速度ΔV1を例示できる。この相対関係取得装置85としては、カメラで撮像した映像から相対関係を推定する装置、ミリ波レーダで相対関係を測定する装置を例示でき、より具体的には、車線逸脱防止支援システムなどを例示できる。なお、相対速度ΔV1は、HEVから見た先行車両の相対速度であって、進行方向を正とする。つまり、HEVの車速が先行車両の車速よりも速い場合には、相対速度ΔV1は負の値となる。 The relative relationship acquisition device 85 is a device that acquires the relative relationship R1 between the HEV and the preceding vehicle. Examples of the relative relationship R1 include an inter-vehicle distance L1 between the HEV and a preceding vehicle traveling on the same lane as the HEV, and a relative speed ΔV1 of the preceding vehicle as viewed from HEV. Examples of the relative relationship acquisition device 85 include a device that estimates a relative relationship from an image captured by a camera, and a device that measures a relative relationship using a millimeter wave radar, and more specifically, a lane departure prevention support system and the like. it can. The relative speed ΔV1 is the relative speed of the preceding vehicle as viewed from HEV, and the traveling direction is positive. That is, when the vehicle speed of HEV is faster than the vehicle speed of the preceding vehicle, the relative speed ΔV1 is a negative value.
 このようなHEVにおいて、減速指令C1が発せられ、総合制動力B1を、その減速指令C1に基づいた要求制動力B2にする場合に、制御装置80が、相対関係取得装置85が取得した相対関係R1に基づいて、モータージェネレーター31による回生制動力B5のみを増加して、総合制動力B1を要求制動力B2よりも大きくする制御を行うように構成される。 In such HEV, when the deceleration command C1 is issued and the total braking force B1 is set to the required braking force B2 based on the deceleration command C1, the control device 80 acquires the relative relationship acquired by the relative relationship acquisition device 85. Based on R1, only the regenerative braking force B5 by the motor generator 31 is increased, and the total braking force B1 is controlled to be larger than the required braking force B2.
 制御装置80は、各種処理を行うCPU、その各種処理を行うために用いられるプログラムや処理結果を読み書き可能な内部記憶装置、及び各種インターフェースなどから構成される。 The control device 80 includes a CPU that performs various processes, an internal storage device that can read and write programs and processing results used to perform the various processes, and various interfaces.
 この制御装置80は、信号線を介してハイブリッドシステム30(エンジン10及びインバーター35)、ドラムブレーキ92、及び相対関係取得装置85に接続される。また、この制御装置80は、信号線を介してアクセルペダル95の踏み込み量(アクセル開度)を検出するアクセル開度センサ96、ブレーキペダル90の踏み込み量(ブレーキ開度)を検出するブレーキ開度センサ97、及び車速V1を検出する車速センサ99に接続される。 The control device 80 is connected to the hybrid system 30 (the engine 10 and the inverter 35), the drum brake 92, and the relative relationship acquisition device 85 through signal lines. The control device 80 also includes an accelerator opening sensor 96 that detects the amount of depression of the accelerator pedal 95 (accelerator opening) via a signal line, and a brake opening that detects the amount of depression of the brake pedal 90 (brake opening). The sensor 97 is connected to a vehicle speed sensor 99 that detects the vehicle speed V1.
 制御装置80は、複数の実行プログラムが内部記憶装置に記憶されており、この実行プログラムとしては、減速指令C1に基づいて総合制動力B1を要求制動力B2にするプログラム、相対関係R1に基づいてモータージェネレーター31による回生制動力B5を増加するプログラムを例示できる。 In the control device 80, a plurality of execution programs are stored in the internal storage device. As the execution programs, a program for changing the total braking force B1 to the required braking force B2 based on the deceleration command C1, and a relative relationship R1. A program for increasing the regenerative braking force B5 by the motor generator 31 can be exemplified.
 次に、上記のプログラムを実施したHEVの制御方法について、図2のフロー図を参照しながら制御装置80の機能として、以下に説明する。なお、この制御方法は、HEVの走行中に減速指令C1が発進されたことをトリガーにして開始されるものとする。 Next, the HEV control method in which the above program is executed will be described below as a function of the control device 80 with reference to the flowchart of FIG. This control method is assumed to be triggered by the fact that the deceleration command C1 is started while the HEV is running.
 まず、ステップS10では、制御装置80が、減速指令C1を受信する。この減速指令C1としては、運転者の減速操作による操作指令やオートクルーズモードにおける制御装置80の制御指令を例示できる。 First, in step S10, the control device 80 receives a deceleration command C1. Examples of the deceleration command C1 include an operation command by the driver's deceleration operation and a control command of the control device 80 in the auto cruise mode.
 具体的には、運転者の減速操作による操作指令としては、アクセル開度センサ96のアクセルペダル95のオフを示すアクセルオフ指令C2や、ブレーキ開度センサ97のブレーキペダル90の操作量を示すブレーキ操作指令C3などを例示できる。また、制御指令としては、目標車速を維持するために降坂路においてエンジン10をアイドリング状態にする惰行指令C4、車速が目標車速を超過したときのドラムブレーキ92のブレーキ作動指令C5などを例示できる。この他に、エンジン10が排気ブレーキや圧縮開放ブレーキなどの補助ブレーキを備える場合には、それらの作動指令なども例示できる。 Specifically, as an operation command by the driver's deceleration operation, an accelerator off command C2 indicating that the accelerator pedal 95 of the accelerator opening sensor 96 is turned off, or a brake indicating an operation amount of the brake pedal 90 of the brake opening sensor 97 is displayed. An operation command C3 can be exemplified. Further, examples of the control command include a coasting command C4 for setting the engine 10 in an idling state on a downhill road to maintain the target vehicle speed, a brake operation command C5 for the drum brake 92 when the vehicle speed exceeds the target vehicle speed, and the like. In addition, when the engine 10 includes an auxiliary brake such as an exhaust brake or a compression release brake, an operation command thereof can be exemplified.
 オートクルーズモードは、特に高速道路を走行する際に使用されており、制御装置80に記憶されたプログラムが、運転者によって図示しないオートクルーズ作動スイッチが投入された場合にHEVを自動走行させて予定通りに運行させるモードである。 The auto-cruise mode is used especially when traveling on a highway, and the program stored in the control device 80 automatically schedules HEV when an unillustrated auto-cruise switch is turned on by the driver. It is a mode that runs on the street.
 このオートクルーズモードとしては、エンジン走行、アシスト走行、モータ走行、及び惰性走行を、走行路の勾配、HEVの車重などのパラメータに基づいて適時選択して、HEVの車速を予め設定された目標速度範囲に維持してHEVを自動走行させるモードや、先行車両に追従するように適時選択して、HEVに先行車を追従させるモードを例示できる。 In this auto-cruise mode, engine travel, assist travel, motor travel, and inertia travel are selected in a timely manner based on parameters such as the gradient of the travel path and the weight of the HEV, and the HEV vehicle speed is set in advance. Examples include a mode in which the HEV is automatically driven while maintaining the speed range, and a mode in which the HEV is made to follow the preceding vehicle by appropriately selecting to follow the preceding vehicle.
 次いで、ステップS20では、制御装置80が、減速指令C1に基づいて要求制動力B2を算出する。具体的には、減速指令C1をパラメータとして、予め実験や試験により作成され、内部記憶装置に記憶させておいたマップデータを参照して、要求制動力B2を算出する。 Next, in step S20, the control device 80 calculates the required braking force B2 based on the deceleration command C1. Specifically, the required braking force B2 is calculated with reference to map data that has been created in advance through experiments and tests and stored in the internal storage device using the deceleration command C1 as a parameter.
 例えば、ステップS10でアクセルオフ指令C2や惰行指令C4を受信すると、要求制動力B2はHEVの車速に応じたエンジンブレーキ相当の制動力に設定される。また、ステップS10でブレーキ操作指令C3やブレーキ作動指令C5を受信すると、ブレーキ開度又は指示された指示操作量に応じた制動力に設定される。 For example, when the accelerator-off command C2 or the coasting command C4 is received in step S10, the required braking force B2 is set to a braking force corresponding to the engine brake according to the vehicle speed of HEV. Further, when the brake operation command C3 or the brake operation command C5 is received in step S10, the braking force is set according to the brake opening degree or the instructed instruction operation amount.
 図3は、ブレーキ開度(指示操作量)と要求制動力B2との相関を例示したマップデータである。この図3に示すように、ブレーキ開度(指示操作量)と要求制動力B2とは正の相関になる。 FIG. 3 is map data illustrating the correlation between the brake opening (instructed operation amount) and the required braking force B2. As shown in FIG. 3, the brake opening degree (instructed operation amount) and the required braking force B2 have a positive correlation.
 このステップS20では、HEVの車重や走行路の勾配に応じて、要求制動力B2を増減するとよい。具体的には、車重や勾配をパラメータとして取得し、予め実験や試験により作成され、内部記憶装置に記憶させておいたマップデータを参照して、要求制動力B2の増減量を算出する。 In this step S20, the required braking force B2 may be increased or decreased in accordance with the HEV vehicle weight or the road gradient. Specifically, the vehicle weight and the gradient are acquired as parameters, and the increase / decrease amount of the required braking force B2 is calculated with reference to map data that is created in advance by experiments and tests and stored in the internal storage device.
 図4は、車重が所定値の場合の走行路の勾配と要求制動力B2の増加量との相関を例示したマップデータである。図中では、実線を所定の車重M1に、点線をその車重M1よりも軽い車重M2に、一点鎖線をその車重M1よりも重い車重M3に設定している。この図4に示すように、車重及びその増加量、並びに、勾配及びその増加量は、釣合勾配θ以上では、正の相関になる。 FIG. 4 is map data exemplifying the correlation between the gradient of the traveling road and the increase amount of the required braking force B2 when the vehicle weight is a predetermined value. In the drawing, the solid line is set to a predetermined vehicle weight M1, the dotted line is set to a vehicle weight M2 that is lighter than the vehicle weight M1, and the alternate long and short dash line is set to a vehicle weight M3 that is heavier than the vehicle weight M1. As shown in FIG. 4, the vehicle weight and the increase amount thereof, and the gradient and the increase amount thereof have a positive correlation at a balance gradient θ or more.
 釣合勾配θは、HEVの車重に基づいており、車重に対して負の相関になり、車重が重くなるほど釣合勾配θは小さくなる。この釣合勾配θは、HEVに加わる重力加速度による前進方向の力が走行抵抗以上になり、エンジン10及びモータージェネレーター31の駆動力を付与しなくても、車速V1が減速しない勾配である。この釣合勾配θとしては、例えば、HEVの車重が25tの場合には、2%の勾配を例示できる。 The balance gradient θ is based on the HEV vehicle weight, and has a negative correlation with the vehicle weight. As the vehicle weight increases, the balance gradient θ decreases. The balance gradient θ is a gradient in which the forward speed due to the gravitational acceleration applied to the HEV is equal to or greater than the running resistance, and the vehicle speed V1 does not decelerate even if the driving force of the engine 10 and the motor generator 31 is not applied. As the balance gradient θ, for example, when the vehicle weight of HEV is 25 t, a gradient of 2% can be exemplified.
 加えて、特に、HEVがバスやトラック、ピックアップトラックなどの車両の場合には、積荷や乗客数によって車重が大きく変動するので、車重に応じた釣合勾配θや増加量を設定することが望ましい。 In addition, especially when the HEV is a vehicle such as a bus, a truck, or a pickup truck, the vehicle weight varies greatly depending on the load and the number of passengers. Therefore, a balance gradient θ and an increase amount corresponding to the vehicle weight should be set. Is desirable.
 このような制御を行うことで、車重が比較的重い場合には、モータージェネレーター31の回生電力量をより増加させることができるので、燃費の向上に有利になる。また、車重が比較的軽い場合には、回生による過剰な制動力によってハイブリッド車両が減速し過ぎることを回避できるので、ドライバビリティの向上に有利になる。 By performing such control, the regenerative electric energy of the motor generator 31 can be further increased when the vehicle weight is relatively heavy, which is advantageous in improving fuel consumption. Further, when the vehicle weight is relatively light, it is possible to avoid that the hybrid vehicle is excessively decelerated due to excessive braking force due to regeneration, which is advantageous in improving drivability.
 なお、HEVの車重を取得する手段としては、発進時や変速時に駆動輪24に伝達される駆動力が走行抵抗に等しくなるとして車重を推定するプログラムを例示できる。また、走行路の勾配を取得する手段としては、図示しない加速度センサ(Gセンサ)、輪速センサ、ジャイロセンサなどの各種センサの検出値に基づいて算出するプログラムや、図示しないナビゲーションシステムに登録されている勾配情報を参照するプログラムを例示できる。 As a means for acquiring the HEV vehicle weight, a program for estimating the vehicle weight on the assumption that the driving force transmitted to the drive wheels 24 at the time of starting or shifting is equal to the running resistance can be exemplified. In addition, as means for acquiring the gradient of the traveling road, a program that is calculated based on detection values of various sensors such as an acceleration sensor (G sensor), a wheel speed sensor, and a gyro sensor (not shown) and a navigation system (not shown) are registered. An example of a program that refers to current gradient information.
 次いで、ステップS30では、制御装置80が、総合制動力B1を要求制動力B2にする制御を行う。総合制動力B1は、エンジン10の燃料の噴射を停止したエンジンブレーキによる抵抗制動力B3と、ドラムブレーキ92による摩擦制動力B4と、モータージェネレーター31による回生制動力B5とのいずれか、あるいはいくつかの組み合わせを総合した制動力である。なお、この総合制動力B1には、排気ブレーキ、圧縮開放ブレーキ、リターダなどの補助ブレーキによる制動力を含めてもよい。 Next, in step S30, the control device 80 performs control to change the total braking force B1 to the required braking force B2. The total braking force B1 is any one or some of a resistance braking force B3 by the engine brake that stops the fuel injection of the engine 10, a friction braking force B4 by the drum brake 92, and a regenerative braking force B5 by the motor generator 31. This is the total braking force. The total braking force B1 may include braking force by an auxiliary brake such as an exhaust brake, a compression release brake, and a retarder.
 このステップS30では、例えば、ステップS10でアクセルオフ指令C2や惰行指令C4を受信した場合で、走行路の勾配が釣合勾配θよりも大きいときに、抵抗制動力B3に回生制動力B5を加えて、総合制動力B1を要求制動力B2にする。また、ステップS10でブレーキ操作指令C3やブレーキ作動指令C5を受信すると、抵抗制動力B3にブレーキ開度(指示作動量)に応じた摩擦制動力B4を加えて、総合制動力B1を要求制動力B2にする。なお、HEVのブレーキシステムが協調回生システムを搭載する場合には、抵抗制動力B3に回生制動力B5を加え、それらと要求制動力B2との差分に応じた摩擦制動力B4を加えて、総合制動力B1を要求制動力B2にする。 In this step S30, for example, when the accelerator off command C2 or the coasting command C4 is received in step S10, the regenerative braking force B5 is added to the resistance braking force B3 when the gradient of the travel path is larger than the balancing gradient θ. Thus, the total braking force B1 is set to the required braking force B2. Further, when the brake operation command C3 or the brake operation command C5 is received in step S10, the friction braking force B4 corresponding to the brake opening degree (instructed operation amount) is added to the resistance braking force B3, and the total braking force B1 is obtained as the required braking force. Set to B2. When the HEV brake system is equipped with a cooperative regeneration system, the regenerative braking force B5 is added to the resistance braking force B3, and the friction braking force B4 corresponding to the difference between them and the required braking force B2 is added. The braking force B1 is set to the required braking force B2.
 次いで、ステップS40では、相対関係取得装置85が、HEVと先行車両との相対関係R1を取得する。 Next, in step S40, the relative relationship acquisition device 85 acquires the relative relationship R1 between the HEV and the preceding vehicle.
 次いで、ステップS50では、制御装置80が、条件が成立したか否かを判定する。この条件は、総合制動力B1を要求制動力B2に維持したと仮定した場合に、相対関係R1がドラムブレーキ92による摩擦制動力B4が増加することが予想される近接関係R2になると成立する。 Next, in step S50, the control device 80 determines whether or not a condition is satisfied. This condition is established when the relative relationship R1 becomes the proximity relationship R2 where the friction braking force B4 by the drum brake 92 is expected to increase, assuming that the total braking force B1 is maintained at the required braking force B2.
 近接関係R2とは、HEVと先行車両とが近接することによって、ドラムブレーキ92による摩擦制動力B4が増加することが予想される関係である。この近接関係R2としては、HEVと先行車両との車間距離L1が近接距離L2になる、あるいは、HEVと先行車両との相対速度ΔV1が近接速度ΔV2になる関係を例示できる。 The proximity relationship R2 is a relationship in which the friction braking force B4 by the drum brake 92 is expected to increase as the HEV and the preceding vehicle approach each other. Examples of the proximity relationship R2 include a relationship in which the inter-vehicle distance L1 between the HEV and the preceding vehicle becomes the proximity distance L2, or the relative speed ΔV1 between the HEV and the preceding vehicle becomes the proximity speed ΔV2.
 近接距離L2は、HEVの車速V1に応じて設定されており、車速V1が60km/h以下の場合はその車速V1の値から所定の値を減算した距離(例えば、車速が40km/h、所定の値を「15」とすると、近接距離L2は25m)や、車速V1が60km/hを超える場合は、その車速V1と同程度の距離(例えば、車速が80km/hとすると、近接距離L2は80m)を例示できる。 The proximity distance L2 is set according to the HEV vehicle speed V1, and when the vehicle speed V1 is 60 km / h or less, a distance obtained by subtracting a predetermined value from the value of the vehicle speed V1 (for example, the vehicle speed is 40 km / h, the predetermined speed). When the vehicle speed V1 exceeds 60 km / h, the proximity distance L2 is approximately the same as the vehicle speed V1 (for example, the vehicle speed is 80 km / h). Can be exemplified by 80 m).
 近接速度ΔV2としては、車間距離L1が近接距離L2以下の場合で、-10km/h以下を例示できる。なお、この近接速度ΔV2は、車間距離L1に応じて増減することが好ましい。例えば、車間距離L1が近接距離L2以下で、その車間距離L1が近くなるごとに、近接速度ΔV2を小さくする(ゼロに近づける)。 The proximity speed ΔV2 can be exemplified as −10 km / h or less when the inter-vehicle distance L1 is equal to or less than the proximity distance L2. The proximity speed ΔV2 is preferably increased or decreased according to the inter-vehicle distance L1. For example, the proximity speed ΔV2 is decreased (approached to zero) each time the inter-vehicle distance L1 is equal to or smaller than the proximity distance L2 and the inter-vehicle distance L1 is reduced.
 このステップS50で、条件が成立しないと判定した場合には、スタートへ戻る。一方、条件が成立する、つまり、総合制動力B1を現在の状態に維持した場合に、相対関係R1が近接関係R2になると判定した場合には、ステップS60へ進む。 If it is determined in step S50 that the condition is not satisfied, the process returns to the start. On the other hand, when the condition is satisfied, that is, when it is determined that the relative relationship R1 becomes the proximity relationship R2 when the total braking force B1 is maintained in the current state, the process proceeds to step S60.
 次いで、ステップS60では、制御装置80が、モータージェネレーター31による回生制動力B5の増加量ΔBを算出する。具体的には、車速V1、車間距離L1、相対速度ΔV1をパラメータとして、予め実験や試験により作成し、内部記憶装置に記憶させておいたマップデータを参照して、増加量ΔBを算出する。 Next, in step S60, the control device 80 calculates an increase amount ΔB of the regenerative braking force B5 by the motor generator 31. Specifically, the increase amount ΔB is calculated with reference to map data that has been created in advance through experiments and tests using the vehicle speed V1, the inter-vehicle distance L1, and the relative speed ΔV1 as parameters, and stored in the internal storage device.
 図5は、車速V1が所定の速度の場合の車間距離L1と増加量ΔBとの関係を例示したマップデータである。図6は、車間距離L1が近接距離L2以下の場合の相対速度ΔV1と増加量ΔBとの関係を例示したマップデータである。 FIG. 5 is map data illustrating the relationship between the inter-vehicle distance L1 and the increase amount ΔB when the vehicle speed V1 is a predetermined speed. FIG. 6 is map data illustrating the relationship between the relative speed ΔV1 and the increase amount ΔB when the inter-vehicle distance L1 is equal to or less than the proximity distance L2.
 前述したように車速V1と車間距離L1とは正の相関になり、また、これらのマップデータによれば、車間距離L1と増加量ΔBとは負の相関になり、相対速度ΔV1と増加量ΔBとは負の相関になる。 As described above, the vehicle speed V1 and the inter-vehicle distance L1 have a positive correlation. According to these map data, the inter-vehicle distance L1 and the increase amount ΔB have a negative correlation, and the relative speed ΔV1 and the increase amount ΔB. And negative correlation.
 次いで、ステップS70では、制御装置80が、モータージェネレーター31の回生制動力B5を、算出した増加量ΔBの分だけ増加する。このステップS70が完了すると、スタートへ戻り、HEVの走行が停止するまで、ステップS10~ステップS70が繰り返される。 Next, in step S70, the control device 80 increases the regenerative braking force B5 of the motor generator 31 by the calculated increase amount ΔB. When step S70 is completed, the process returns to the start, and steps S10 to S70 are repeated until the HEV travel stops.
 図7は、各減速指令C1のそれぞれと、回生制動力B5を増加した後の総合制動力B1との関係を例示している。 FIG. 7 illustrates the relationship between each deceleration command C1 and the total braking force B1 after increasing the regenerative braking force B5.
 図7に示すように、上記の制御を行うことで、減速指令C1が発せられた後の減速中に、HEVと先行車両との相対関係R1が近接関係R2になると判定された場合に、モータージェネレーター31の回生制動力B5のみが増加して、総合制動力B1が要求制動力B2よりも大きくなる。そして、この回生制動力B5の増加分により、HEVと先行車両との相対関係R1を近接関係R2にならないように適切に維持することができる。 As shown in FIG. 7, by performing the above control, when it is determined that the relative relationship R1 between the HEV and the preceding vehicle becomes the proximity relationship R2 during deceleration after the deceleration command C1 is issued, the motor Only the regenerative braking force B5 of the generator 31 increases, and the total braking force B1 becomes larger than the required braking force B2. Then, by the increase in the regenerative braking force B5, the relative relationship R1 between the HEV and the preceding vehicle can be appropriately maintained so as not to become the proximity relationship R2.
 この制御により、HEVはその減速指令C1より生じる減速度合いよりも減速することになるが、減速指令C1が発せられた後に、相対関係R1に基づいてモータージェネレーター31の回生制動力B5のみを増加するようにしたことで、その減速指令C1により、HEVと先行車両との相対関係R1が近接関係R2にならないように適切に維持される印象を与えることができる。これにより、運転者は、意図しない減速を感じることが無くなるので、ドライバビリティを向上できる。 By this control, the HEV is decelerated more than the degree of deceleration generated by the deceleration command C1, but after the deceleration command C1 is issued, only the regenerative braking force B5 of the motor generator 31 is increased based on the relative relationship R1. By doing so, the deceleration command C1 can give an impression that the relative relationship R1 between the HEV and the preceding vehicle is appropriately maintained so as not to become the proximity relationship R2. As a result, the driver does not feel unintended deceleration, and drivability can be improved.
 また、モータージェネレーター31の回生制動力B5のみを増加することで、モータージェネレーター31の回生発電量を増加することができる。加えて、HEVと先行車両との相対関係R1が近接関係R2になった場合にドラムブレーキ92による摩擦制動力B4によって失われるエネルギーを回生により電気エネルギーに変換することで、燃料を使用して高電圧バッテリー32を充電する機会を減少することができる。更に、高電圧バッテリー32の充電量が増加することで、モータージェネレーター31によりアシストする機会を増加できる。 In addition, the regenerative power generation amount of the motor generator 31 can be increased by increasing only the regenerative braking force B5 of the motor generator 31. In addition, when the relative relationship R1 between the HEV and the preceding vehicle becomes the proximity relationship R2, the energy lost by the frictional braking force B4 by the drum brake 92 is converted into electric energy by regeneration, so that high fuel is used. Opportunities for charging the voltage battery 32 can be reduced. Furthermore, since the amount of charge of the high voltage battery 32 increases, the opportunity to assist the motor generator 31 can be increased.
 これらの結果により、上記のHEVによれば、HEVの減速中に、運転者に違和感を与えること無く、モータージェネレーター31の回生発電量を増加することができるので、燃費を向上することができる。 From these results, according to the HEV described above, the regenerative power generation amount of the motor generator 31 can be increased without causing the driver to feel uncomfortable during the deceleration of the HEV, so that the fuel efficiency can be improved.
 上記の制御方法は、特に、制御が複雑で、且つコストが高くなる協調回生システムを有さないHEVでも、モータージェネレーター31による回生制動力B5が増加することができるので、モータージェネレーター31による回生発電量を増加することができる。 In the above-described control method, the regenerative braking force B5 by the motor generator 31 can be increased even in an HEV that does not have a coordinated regenerative system that is complicated in control and high in cost. The amount can be increased.
 本出願は、2015年11月20日付で出願された日本国特許出願(特願2015-227565)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-227565) filed on November 20, 2015, the contents of which are incorporated herein by reference.
 本開示のハイブリッド車両は、ハイブリッド車両の減速中に、運転者に違和感を与えること無く、モータージェネレーターの回生発電量を増加して、燃費を向上することができるという点において有用である。 The hybrid vehicle of the present disclosure is useful in that the amount of regenerative power generation of the motor generator can be increased and fuel consumption can be improved without causing the driver to feel uncomfortable during the deceleration of the hybrid vehicle.
10 エンジン
30 ハイブリッドシステム
31 モータージェネレーター
80 制御装置
85 相対関係取得装置
92 ドラムブレーキ(ブレーキシステム)
B1 総合制動力
B2 要求制動力
B3 抵抗制動力
B4 摩擦制動力
B5 回生制動力
C1 減速指令
R1 相対関係
DESCRIPTION OF SYMBOLS 10 Engine 30 Hybrid system 31 Motor generator 80 Control apparatus 85 Relative relationship acquisition apparatus 92 Drum brake (brake system)
B1 Total braking force B2 Required braking force B3 Resistance braking force B4 Friction braking force B5 Regenerative braking force C1 Deceleration command R1 Relative relationship

Claims (5)

  1.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、
     各車輪に摩擦制動力を付与するブレーキシステムと、
     自車両及び先行車両の相対関係を取得する相対関係取得装置と、
     制御装置と、
     を備えたハイブリッド車両において、
     減速指令が発せられ、前記エンジンの燃料の噴射を停止したエンジンブレーキによる抵抗制動力と、前記ブレーキシステムによる摩擦制動力と、前記モータージェネレーターによる回生制動力とのいずれか、あるいはいくつかの組み合わせを総合した総合制動力を、前記減速指令に基づいた要求制動力にする場合に、
     前記制御装置が、前記相対関係取得装置が取得した前記相対関係に基づいて、前記モータージェネレーターによる回生制動力のみを増加して、前記総合制動力を前記要求制動力よりも大きくする制御を行うように構成されたことを特徴とするハイブリッド車両。
    A hybrid system having a motor generator connected to an output shaft for transmitting engine power;
    A brake system for applying friction braking force to each wheel;
    A relative relationship acquisition device that acquires the relative relationship between the host vehicle and the preceding vehicle;
    A control device;
    In a hybrid vehicle equipped with
    Any one or some combination of a resistance braking force by an engine brake that has issued a deceleration command and stopped fuel injection of the engine, a friction braking force by the brake system, and a regenerative braking force by the motor generator When the total braking force combined is a required braking force based on the deceleration command,
    The control device performs control to increase only the regenerative braking force by the motor generator based on the relative relationship acquired by the relative relationship acquisition device and to make the total braking force larger than the required braking force. A hybrid vehicle characterized by being configured as described above.
  2.  前記制御装置が、前記総合制動力を前記要求制動力に維持したと仮定した場合に、前記相対関係が前記ブレーキシステムによる摩擦制動力が増加することが予想される近接関係になるときに、前記モータージェネレーターによる回生制動力のみを増加するように構成された請求項1に記載のハイブリッド車両。 When the control device assumes that the total braking force is maintained at the required braking force, the relative relationship becomes a proximity relationship where the friction braking force by the brake system is expected to increase. The hybrid vehicle according to claim 1, wherein only the regenerative braking force by the motor generator is increased.
  3.  エンジンの燃料の噴射を停止したエンジンブレーキによる抵抗制動力と、ブレーキシステムによる各車輪へ付与される摩擦制動力と、モータージェネレーターによる回生制動力とのいずれか、あるいはいくつかの組み合わせを総合した総合制動力により制動するハイブリッド車両の制御方法において、
     減速指令が発せられた後に、
     その減速指令に基づいて、前記総合制動力をその減速指令に基づいた要求制動力にするステップと、
     先行車に対する相対関係を取得するステップと、
     前記抵抗制動力及び前記摩擦制動力を維持しながら、取得した前記相対関係に基づいて前記回生制動力のみを増加して、前記総合制動力を前記要求制動力よりも大きくするステップと、を含むことを特徴とするハイブリッド車両の制御方法。
    Comprehensive synthesis of either one or some combination of the resistance braking force by the engine brake that stopped the fuel injection of the engine, the friction braking force applied to each wheel by the brake system, and the regenerative braking force by the motor generator In a control method of a hybrid vehicle that brakes by a braking force,
    After the deceleration command is issued,
    Based on the deceleration command, the step of making the total braking force a required braking force based on the deceleration command;
    Obtaining a relative relationship with the preceding vehicle;
    Maintaining the resistance braking force and the friction braking force, and increasing only the regenerative braking force based on the acquired relative relationship to make the total braking force larger than the required braking force. A control method of a hybrid vehicle characterized by the above.
  4.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、
     各車輪に摩擦制動力を付与するブレーキシステムと、
     自車両及び先行車両の相対関係を取得する相対関係取得装置と、
     制御装置と、
     を備えたハイブリッド車両において、
     前記制御装置は、
      減速指令を受信する受信処理と、
      受信した前記減速指令に応じて、前記エンジンの燃料の噴射を停止したエンジンブレーキによる抵抗制動力と、前記ブレーキシステムによる摩擦制動力と、前記モータージェネレーターによる回生制動力とのいずれか、あるいはいくつかの組み合わせを総合した総合制動力を、前記減速指令に基づいた要求制動力に制御する制御処理と、
      前記制御処理の実行後に、前記前記相対関係取得装置が取得した前記相対関係に基づいて、前記モータージェネレーターによる回生制動力のみを増加して、前記総合制動力を前記要求制動力よりも大きくする増加処理、
     を行うように構成されたことを特徴とするハイブリッド車両。
    A hybrid system having a motor generator connected to an output shaft for transmitting engine power;
    A brake system for applying friction braking force to each wheel;
    A relative relationship acquisition device that acquires the relative relationship between the host vehicle and the preceding vehicle;
    A control device;
    In a hybrid vehicle equipped with
    The control device includes:
    A reception process for receiving a deceleration command;
    Depending on the received deceleration command, any one or some of a resistance braking force by an engine brake that stops fuel injection of the engine, a friction braking force by the brake system, and a regenerative braking force by the motor generator A control process for controlling the total braking force that is a combination of the above to the required braking force based on the deceleration command;
    After execution of the control process, based on the relative relationship acquired by the relative relationship acquisition device, only the regenerative braking force by the motor generator is increased, and the total braking force is increased to be larger than the required braking force. processing,
    A hybrid vehicle configured to perform the following.
  5.  前記制御装置は、
      前記総合制動力を前記要求制動力に維持したと仮定した場合に、前記相対関係が前記ブレーキシステムによる摩擦制動力が増加することが予想される近接関係になるか否かを判断する判断処理、
     をさらに実行するように構成され、
     前記制御装置は、前記相対関係が前記近接関係になると判断された場合に、前記増加処理を実行するように構成された請求項4に記載のハイブリッド車両。
    The control device includes:
    A determination process for determining whether the relative relationship is a proximity relationship in which an increase in friction braking force by the brake system is expected, assuming that the total braking force is maintained at the required braking force;
    Is configured to perform further,
    The hybrid vehicle according to claim 4, wherein the control device is configured to execute the increase process when it is determined that the relative relationship is the proximity relationship.
PCT/JP2016/084347 2015-11-20 2016-11-18 Hybrid vehicle and control method therefor WO2017086471A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680067476.4A CN108349487B (en) 2015-11-20 2016-11-18 Hybrid vehicle and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227565A JP6657839B2 (en) 2015-11-20 2015-11-20 Hybrid vehicle and control method thereof
JP2015-227565 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017086471A1 true WO2017086471A1 (en) 2017-05-26

Family

ID=58719171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084347 WO2017086471A1 (en) 2015-11-20 2016-11-18 Hybrid vehicle and control method therefor

Country Status (3)

Country Link
JP (1) JP6657839B2 (en)
CN (1) CN108349487B (en)
WO (1) WO2017086471A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102158178B1 (en) * 2018-10-23 2020-09-23 주식회사 알오씨오토시스템 System and method of controlling regenerative braking
JP7172836B2 (en) * 2019-04-26 2022-11-16 トヨタ自動車株式会社 Braking force controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229015A (en) * 2012-05-14 2012-11-22 Nissan Motor Co Ltd Regenerative braking control device of hybrid vehicle
JP2015104984A (en) * 2013-11-29 2015-06-08 ダイムラー・アクチェンゲゼルシャフトDaimler AG Travel control device of hybrid vehicle
JP2015182726A (en) * 2014-03-26 2015-10-22 いすゞ自動車株式会社 Hybrid vehicle and control method for hybrid vehicle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054203A (en) * 1999-08-06 2001-02-23 Mitsubishi Motors Corp Regenerative braking device of vehicle
JP3594010B2 (en) * 2001-11-29 2004-11-24 日産自動車株式会社 Vehicle driving force control method and its control device
JP4743121B2 (en) * 2006-03-29 2011-08-10 日産自動車株式会社 Brake distribution control device at the time of vehicle collision
JP4258548B2 (en) * 2006-12-19 2009-04-30 トヨタ自動車株式会社 Vehicle and control method thereof
CN102414062B (en) * 2009-05-07 2015-08-19 本田技研工业株式会社 Braking device for vehicle
US10272902B2 (en) * 2009-09-02 2019-04-30 Toyota Jidosha Kabushiki Kaisha Brake control device
KR101404087B1 (en) * 2010-05-12 2014-06-05 주식회사 만도 Control method of regenerative brake system for vehicle
JP5222329B2 (en) * 2010-08-05 2013-06-26 本田技研工業株式会社 Braking device for vehicle
JP5370594B2 (en) * 2010-10-25 2013-12-18 トヨタ自動車株式会社 Brake control device
CN102139694A (en) * 2010-12-30 2011-08-03 中国第一汽车集团公司 Regenerative braking control method for hybrid power car
CN103328294B (en) * 2011-01-31 2016-10-12 铃木株式会社 Regenerating control device, method for controlling reproduction and motor vehicle driven by mixed power
WO2013008298A1 (en) * 2011-07-11 2013-01-17 トヨタ自動車株式会社 Brake system and actuator control device
JP2013035509A (en) * 2011-08-10 2013-02-21 Toyota Motor Corp Vehicle breaking force control device
JP5790782B2 (en) * 2011-12-09 2015-10-07 トヨタ自動車株式会社 Vehicle control device
JP6115808B2 (en) * 2012-12-10 2017-04-19 いすゞ自動車株式会社 Vehicle regenerative braking device
JP5979101B2 (en) * 2013-08-26 2016-08-24 トヨタ自動車株式会社 vehicle
JP6337476B2 (en) * 2014-01-22 2018-06-06 株式会社アドヴィックス Brake control device for vehicle
JP5943011B2 (en) * 2014-01-31 2016-06-29 トヨタ自動車株式会社 Hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229015A (en) * 2012-05-14 2012-11-22 Nissan Motor Co Ltd Regenerative braking control device of hybrid vehicle
JP2015104984A (en) * 2013-11-29 2015-06-08 ダイムラー・アクチェンゲゼルシャフトDaimler AG Travel control device of hybrid vehicle
JP2015182726A (en) * 2014-03-26 2015-10-22 いすゞ自動車株式会社 Hybrid vehicle and control method for hybrid vehicle

Also Published As

Publication number Publication date
JP2017094832A (en) 2017-06-01
CN108349487A (en) 2018-07-31
CN108349487B (en) 2021-10-26
JP6657839B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
CN106467107B (en) Method for controlling vehicle
EP2634052B1 (en) Engine start control device for hybrid electric vehicle
KR101588789B1 (en) Method and apparatus of controlling creep torque for vehicle including driving motor
US9139105B2 (en) Deceleration control method and system for electric vehicle while coasting
US9283953B2 (en) Travel control device
JP5843412B2 (en) Accelerator pedal reaction force control device and vehicle
US9868436B2 (en) Method and device for controlling start time of engine in hybrid vehicle
CN106476793B (en) Apparatus and method for controlling driving mode of hybrid electric vehicle
US9371069B2 (en) Apparatus and method for controlling engine clutch of hybrid electric vehicle
JP6018018B2 (en) Electric vehicle regeneration control device
JP7010296B2 (en) Vehicle control method and control device
CN108290571B (en) Regenerative power amount control system for hybrid vehicle, and control method
WO2017086471A1 (en) Hybrid vehicle and control method therefor
JP2013005560A (en) Electric vehicle
JP2015000675A (en) Control method for hybrid vehicle during cost drive and hybrid
JP2016175496A (en) Hybrid vehicle and control method therefor
CN108791272B (en) Vehicle control device
JP2018007444A (en) Automobile
JP6593044B2 (en) Hybrid vehicle and control method thereof
JP6593045B2 (en) Hybrid vehicle and control method thereof
JP2016175505A (en) Hybrid vehicle and control method therefor
JP6400648B2 (en) Electric vehicle regeneration control device
JP2016175500A (en) Hybrid vehicle and control method therefor
JP6428250B2 (en) Stop lamp control device
JP2017007408A (en) Hybrid automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866471

Country of ref document: EP

Kind code of ref document: A1