WO2017057356A1 - Structure imaging apparatus, structure inspection apparatus, and structure inspection system - Google Patents

Structure imaging apparatus, structure inspection apparatus, and structure inspection system Download PDF

Info

Publication number
WO2017057356A1
WO2017057356A1 PCT/JP2016/078444 JP2016078444W WO2017057356A1 WO 2017057356 A1 WO2017057356 A1 WO 2017057356A1 JP 2016078444 W JP2016078444 W JP 2016078444W WO 2017057356 A1 WO2017057356 A1 WO 2017057356A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
unit
inspection apparatus
main body
position change
Prior art date
Application number
PCT/JP2016/078444
Other languages
French (fr)
Japanese (ja)
Inventor
宜之 溝▲辺▼
山本 実
二村 孝房
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015189792A external-priority patent/JP6602624B2/en
Priority claimed from JP2015189793A external-priority patent/JP6602625B2/en
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Publication of WO2017057356A1 publication Critical patent/WO2017057356A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention relates to an imaging device, an inspection device, and an inspection system for a surface state of a structure such as a road or a runway, and in particular, it detects deterioration or cracks of a concrete pavement surface by image processing and is movable by human power.
  • the present invention relates to a small structure imaging apparatus, a structure inspection apparatus and a structure inspection system, or a small structure inspection system capable of moving by human power or autonomously moving.
  • a road surface inspection system (for example, refer to Patent Document 1) that detects cracks and the like generated on a road surface by photographing a road surface with an in-vehicle camera while traveling on a paved road and analyzing the captured image, travels on a paved surface.
  • a deterioration investigation system (for example, see Patent Document 2) for investigating the deterioration state of a concrete plate, or a road surface unevenness evaluation system (for example, see Patent Document 3) that is mounted on a general vehicle and evaluates road surface unevenness is proposed.
  • Patent Document 2 for example, see Patent Document 2
  • Patent Document 3 for example, see Patent Document 3
  • a road surface crack measuring device mounted on a carriage and continuously measuring and recording cracks on a paved road surface such as a road or a runway by image processing is directed toward the road on the measurement vehicle.
  • a road surface property measuring machine (see, for example, Patent Document 5) that can be disposed and can measure and evaluate road surface properties such as a crack rate has also been proposed.
  • JP 2014-86826 A JP 2011-237283 A JP2013-79889A JP-A-4-240555 Japanese Unexamined Patent Publication No. 3-56805
  • CIS Contact Image Sensor
  • the camera is focused with a slight unevenness of the object. It is not practical. Therefore, even if the size can be reduced to such a level that it can be moved by human power, the overall center of gravity tends to be high, and stable movement by human power is difficult.
  • a first object of the present invention is to detect a deterioration or a crack of a concrete pavement surface by image processing and to be able to move stably by human power and a structure
  • An inspection apparatus and a structure inspection system are provided.
  • the crack measuring device described in Patent Document 4 and the road surface property measuring instrument described in Patent Document 5 that are premised on being pulled by a vehicle on a road or the like cannot be moved by human power if they are downsized as they are. It may be possible.
  • the data output from the measurement processing device is taken back and then analyzed by a personal computer or the like. It is attached to processing.
  • the road surface property measuring machine described in Patent Document 5 first, the road surface is photographed by the video camera 2 as described in the lower left column, lines 5 to 8 of the third page of the specification, and the image is taken. Since the image is reproduced and the cracked portion is confirmed, the image is reproduced after the road surface is once photographed. Therefore, none of these crack measuring devices and road surface property measuring machines confirms or analyzes the image of the road surface being photographed in real time.
  • the second object of the present invention is to detect deterioration or cracks of a concrete pavement surface by image processing, and can be moved by human power or autonomously, and in real time during movement It is to provide a structure inspection system that can confirm images and the like.
  • a structure inspection apparatus includes an imaging unit for imaging an imaging region of a structure, a bending optical system that bends an imaging direction by the imaging unit, and the imaging target.
  • An illumination unit that illuminates a region, and an inspection unit that inspects the structure based on image data captured by the imaging unit.
  • a position change detection unit that detects a position change due to movement on the structure, and imaging by the imaging unit based on the position change detected by the position change detection unit And an imaging timing control unit for controlling the timing.
  • You may further provide the main-body part which interiors the said imaging part and the said bending
  • the main body may have a flat shape, and the imaging unit may image the imaging area of the structure facing the bottom surface or the top surface of the main body.
  • examples of the bending optical system include, but are not limited to, a reflecting member (specifically, an optical mirror) and a prism.
  • the structure inspection apparatus having such a configuration, since the entire center of gravity is sufficiently low, stable movement by human power is possible.
  • the structure inspection apparatus of the present invention may further include an absolute position detector (for example, GPS) that detects absolute position information.
  • an absolute position detector for example, GPS
  • the structure inspection system of the present invention includes the structure inspection apparatus described above, a control unit that controls the operation of the structure inspection apparatus, and that acquires and analyzes the image data captured by the imaging unit.
  • the image processing apparatus includes a display unit that displays at least one of the image data acquired by the control unit or an analysis result by the control unit, and a storage unit that stores the image data.
  • the structure inspection system of the present invention controls the operation of the structure inspection apparatus described above and the structure inspection apparatus, and is detected by the image data captured by the imaging unit and the absolute position detector.
  • the structure inspection system having such a configuration, since the entire center of gravity is sufficiently low, stable movement by human power is possible, and it is easy to perform operations and display confirmation.
  • the structure imaging apparatus of the present invention includes an imaging unit for imaging an imaging region of the structure, a bending optical system that bends an imaging direction by the imaging unit, and an illumination unit that illuminates the imaging region. It is characterized by providing.
  • a position change detector that detects a change in position due to movement on the structure, and an imaging timing controller that controls the timing of imaging by the imaging unit based on the position change detected by the position change detector. Further, it may be provided.
  • the main body may have a flat shape, and the imaging unit may image the imaging area of the structure facing the bottom surface or the top surface of the main body.
  • the bending optical system include, but are not limited to, a reflecting member (specifically, an optical mirror) and a prism.
  • the structure imaging apparatus having such a configuration, since the entire center of gravity is sufficiently low, stable movement by human power is possible.
  • a structure inspection system of the present invention includes an imaging unit for imaging an imaging area on a mounting surface, an illumination unit that illuminates the imaging area, and the above description
  • a position change detection unit that detects a change in position due to movement on the mounting surface
  • an imaging timing control unit that controls a timing of imaging by the imaging unit based on the position change detected by the position change detection unit
  • An image acquisition / analysis unit that acquires and analyzes image data captured by the imaging unit, a display unit that displays at least one of the image data acquired by the image acquisition / analysis unit or an analysis result thereof, and the image data
  • a storage unit for storing and a grip unit for gripping to move the display unit are arranged, and the display unit is arranged so that display contents can be visually recognized in a state of gripping the grip unit.
  • the structure inspection system having such a configuration, movement by human power is possible, and an image of the road surface being photographed can be easily confirmed in real time during movement.
  • the structure inspection system includes an imaging unit for imaging an imaging region on the placement surface, an illumination unit that illuminates the imaging region, and a positional change caused by movement on the placement surface.
  • a position change detection unit for detecting the image
  • an imaging timing control unit for controlling the timing of imaging by the imaging unit based on the position change detected by the position change detection unit, and an image data captured by the imaging unit.
  • An image acquisition / analysis unit that performs acquisition and analysis, a storage unit that stores the image data, self-propelled means for moving at least the imaging unit and the illumination unit, and the image acquired by the image acquisition / analysis unit
  • a display unit that displays at least one of the data and the analysis result thereof at a location distant from the imaging unit.
  • the structure inspection system having such a configuration, autonomous movement is possible, and an image of a road surface being photographed can be easily confirmed in real time while moving.
  • the structure inspection system further includes an absolute position detector (for example, GPS) that detects absolute position information
  • the image acquisition analysis unit includes the image data captured by the imaging unit and the absolute position detection.
  • the absolute position information detected by the instrument may be acquired and analyzed.
  • the structure imaging apparatus and the structure inspection apparatus of the present invention since the entire center of gravity is sufficiently low, stable movement by human power is possible.
  • the structure inspection system of the present invention since the overall center of gravity is sufficiently low, stable movement by human power is possible, and it is easy to perform operations and display confirmation. Alternatively, movement by human power or autonomous movement is possible, and images and the like can be easily confirmed in real time during movement.
  • FIG. 1 is a side view showing a schematic configuration of a structure inspection system 100 including a structure imaging apparatus 10 according to a first embodiment of the present invention.
  • 1 is a perspective view illustrating a schematic configuration inside a structure imaging apparatus 10.
  • 2 is a plan view showing a schematic configuration inside the structure imaging apparatus 10.
  • FIG. FIG. 4 is a sectional view taken along line 4-4 of FIG. 1 is a block diagram showing an electrical schematic configuration of a structure inspection system 100.
  • FIG. It is a side view showing a schematic structure of structure scanner 100A concerning a 2nd embodiment of the present invention. It is a block diagram which shows the electrical schematic structure of the structure scanner 100A.
  • It is a side view which shows schematic structure of the structure scanner 100B which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a side view showing a schematic configuration of a structure inspection system 100 including a structure imaging apparatus 10 according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a schematic configuration inside the structure imaging apparatus 10.
  • FIG. 3 is a plan view illustrating a schematic configuration inside the structure imaging apparatus 10.
  • 4 is a cross-sectional view taken along line 4-4 of FIG.
  • FIG. 5 is a block diagram showing an electrical schematic configuration of the structure inspection system 100.
  • a structure inspection system 100 that inspects a structure 40 or the like includes a structure imaging device 10 and a frame 30 attached to the rear end portion of the structure imaging device 10 so as to extend in the vertical direction.
  • the structure image pickup device 10 is moved by being provided to extend in the horizontal direction at the upper end of the frame 30 and the notebook personal computer 20 as a control means for controlling the operation of the structure image pickup device 10.
  • a handle 31 for gripping is provided to extend in the horizontal direction at the upper end of the frame 30 and the notebook personal computer 20 as a control means for controlling the operation of the structure image pickup device 10.
  • the notebook computer 20 especially a display 20b described later
  • the handle 31 be as close as possible to facilitate operation and display confirmation.
  • the frame 30 and the handle 31 may be detachable from the structure imaging device 10.
  • the structures 40 to be inspected include, for example, concrete paved surfaces such as roads, railway station platforms, airport aprons (air parks), runways, bridges, dam walls, buildings, and other building structures. Examples include, but are not limited to, outer wall surfaces. Also, paving is not necessarily limited to concrete.
  • wheels 15 are respectively attached to the front and rear of the left and right side surfaces of the structure imaging apparatus 10. By being supported by these four wheels 15, the structure imaging apparatus 10 can be easily moved by human power by pushing the handle 31. In order to reduce vibration at the time of movement as much as possible, it is preferable to use a tire having seismic isolation for the wheel 15.
  • the structure imaging device 10 has a strip-like region 40a (relative to the bottom surface of the structure imaging device 10) that is an elongated imaging region orthogonal to the moving direction on the structure 40, etc.
  • the line camera 11 arranged with the imaging direction facing forward, the mirror 16 arranged in front of the line camera 11 and bending the imaging direction vertically downward, and the position corresponding to the belt-like region 40a
  • An LED illumination 12a that is arranged slightly rearward and illuminates the belt-like region 40a with high uniformity from obliquely above, an illumination power source 12b dedicated to the LED illumination 12a, and arranged in conjunction with the rotation of the wheel 15, such as the structure 40
  • An encoder 13 for detecting the moving distance of the structure imaging device 10 on the top of the line camera 11 and the line camera 11 based on the moving distance detected by the encoder 13.
  • a control box 14 that contains the synchronizing unit 14a to perform imaging that.
  • the line camera 11 is a monochrome digital camera having a resolution capable of sufficiently identifying cracks of the structure 40 and the like, and functions as an imaging unit.
  • the camera body 11a is a C-mount camera
  • a plurality of cameras may be arranged side by side and images captured by them may be combined, or scanning may be performed in a direction orthogonal to the moving direction with a single camera.
  • a color camera may also be used.
  • the mirror 16 is an optical surface mirror, and is an example of a reflecting member that functions as a bending optical system that bends the imaging direction of the line camera 11. In the case where the line camera 11 is arranged with its imaging direction facing horizontally forward, the imaging direction of the line camera 11 becomes vertically downward by arranging the mirror 16 diagonally downward 45 degrees. .
  • the number of mirrors 16 is preferably limited to the minimum number, but is not necessarily limited to one. Further, the bending optical system is not limited to the mirror 16, and for example, a prism may be substituted.
  • the main body 10 c is a housing that houses the line camera 11 and the mirror 16.
  • the main body portion 10c preferably has a flat shape in order to keep the center of gravity low.
  • the main body 10c is not limited to a square box shape, and may have a shape whose side surface is a curved surface (for example, a shape like a flat cylinder).
  • the image capturing direction of the line camera 11 is arranged horizontally, and the image capturing direction is bent vertically downward by the mirror 16, thereby ensuring a certain visual field width and depth of field required for the line camera 11.
  • the height of the structure imaging device 10 can be kept relatively small while ensuring the optical path length.
  • the apparatus height (the height of the main body 10c) is preferably 30 cm or less, more preferably 20 cm or less.
  • the width and depth of the apparatus (the size of each of the two sides of the bottom surface and the top surface of the main body 10c), if it is too large, it becomes difficult to handle the device, so it is preferably 100 cm or less, more preferably 50 cm or less.
  • the imaging direction may not be completely horizontal, and may be slightly inclined from the horizontal, for example, depending on the layout inside the structure imaging apparatus 10.
  • the center of gravity of the structure imaging apparatus 10 is lowered, stable movement by human power is possible.
  • the belt-like region 40 a that is the imaged region is the structure imaging device 10. It can be said that it is opposite to the bottom or top surface.
  • the LED illumination 12a may be, for example, a bar-type LED illumination that uses a white LED as a light source and illuminates an elongated strip-shaped region with high brightness and high uniformity, but is not limited thereto.
  • Two or more LED illuminations may be combined (for example, arranged both before and after the position corresponding to the belt-like region 40a), or a light source other than the LED may be used. It is preferable that the type, arrangement, illumination direction, and the like of these illuminations make it possible to capture as clearly as possible cracks in the structure 40 and the like.
  • the illumination power source 12b is a dedicated power source that makes the light emission amount of the LED illumination 12a variable by a pulse dimming method or a voltage dimming method.
  • a pulse dimming method it is necessary to pay attention to the timing of imaging so that uneven illumination or the like does not occur in the captured image when the shutter speed of imaging by the line camera 11 is particularly high.
  • a dedicated power source is not always essential depending on the type of illumination used.
  • the encoder 13 serving as a position change detection unit is disposed so as to be linked to the rotation of one bearing portion of the wheel 15 in order to detect a change in position due to the movement of the structure imaging device 10, and has a constant rotation amount (angle). A pulse signal is generated every time. Thereby, from the relationship with the outer peripheral length of the wheel 15, the position change of the structure imaging device 10, specifically, the moving distance can be detected.
  • the synchronization unit 14 a controls the timing of imaging by the line camera 11 based on the pulse signal generated from the encoder 13. Specifically, every time a predetermined number of pulse signals are counted, the imaging by the line camera 11 is performed synchronously. Thereby, every time the structure imaging apparatus 10 moves by a certain distance, the imaging by the line camera 11 can be performed. At this time, the LED illumination 12a may be flashed in synchronization with the imaging timing of the line camera 11.
  • a recess 10 b is provided on the lower surface 10 a of the structure imaging device 10 so as to surround the optical path of the belt-like region 40 a from the line camera 11, and the mirror 16 is formed at the opening at the upper end thereof.
  • a transparent plate material 17a is arranged at a position facing the. Thereby, it is reduced as much as possible that unnecessary light is mixed in the image captured by the line camera 11.
  • a transparent plate material 17b (for example, made of acrylic) is also disposed on the lower surface 10a of the structure imaging apparatus 10 directly below and around the LED illumination 12a. Thereby, the light from the LED illumination 12a reaches the strip-like region 40a on the structure 40 or the like through the transparent plate 17b.
  • the main body portion 10c of the structure imaging apparatus 10 is a hermetically sealed type so that dust or dust does not enter the interior as much as possible.
  • the layout inside the structure imaging apparatus 10 described above is merely an example, and it is possible to reverse the front and rear.
  • a battery 18 is attached to the upper surface of the structure imaging apparatus 10, and the line camera 11 and illumination power supply 12b inside the structure imaging apparatus 10 are connected via a connector (not shown).
  • the encoder 13 and the synchronization unit 14a are supplied with electric power.
  • the attachment of the battery 18 is not limited to the upper surface of the structure imaging apparatus 10 and may be built in the structure imaging apparatus 10 if possible.
  • the notebook personal computer 20 as a control unit controls the operation of each part of the structure imaging apparatus 10 on its main body, and also acquires and analyzes image data captured by the line camera 11. And a display 20b for displaying image data acquired by the CPU 20a, analysis results, and the like.
  • the control unit a general-purpose notebook computer may be used as described above, or a dedicated control unit may be used.
  • a large-capacity hard disk 21 is externally attached to the notebook computer 20 as a storage unit.
  • an external hard disk 21 is not essential.
  • a hard disk of a type that can be accommodated in the notebook computer 20 or a nonvolatile memory may be used.
  • connection between the structure imaging device 10 and the notebook computer 20 is performed by a cable 22 (not shown in FIG. 1), but these connections may be wireless.
  • the structure inspection system 100 including the structure imaging device 10 is placed on the structure 40 to be inspected, and after the preparation work before starting the movement on the notebook personal computer 20 side, the LED illumination 12a is turned on. Then, the handle 31 is pushed to start moving the structure imaging apparatus 10 forward at a constant speed as much as possible.
  • a pulse signal is generated from the encoder 13 at every constant rotation amount (angle).
  • the synchronization unit 14a synchronously performs imaging by the line camera 11 every time a predetermined number of pulse signals are counted. Thereby, it is possible to continuously image the band-like regions 40a at regular distance intervals on the structure 40 or the like.
  • the notebook computer 20 acquires the image data of the band-like area 40a imaged by the line camera 11 for each imaging, stores the data in the external hard disk 21 as necessary, and performs various image processing and analysis by the CPU 20a.
  • the deterioration or crack of the structure 40 is detected.
  • a method disclosed in an apparatus or system as described in each of the above-described patent documents as background art can be applied.
  • the drawing and the distance between the moving area information of the structure imaging device 10 and the imaged band-like region 40a are It is also possible to automatically superimpose the image data of the band-like area 40a on a map or the like and display it on the display 20b.
  • the notebook computer 20 is supported in the vicinity of the handle 31, and the display on the display 20b can be confirmed in real time while moving the structure imaging apparatus 10. Thereby, it is possible to perform the inspection work while easily confirming whether the band-like region 40a on the structure 40 or the like is clearly imaged without omission. Further, if each image data of the band-like region 40a superimposed on a drawing or a map is used, an inspection report or the like can be efficiently created.
  • the structure imaging device 10 While the connection between the structure imaging device 10 and the notebook computer 20 is wireless, and the frame 30 and the handle 31 are removed, only the flat box-shaped main body 10c with an imaging unit, a bending optical system, etc. is provided.
  • the structure imaging device 10 has a low center of gravity, so even if it is a vertical or oblique wall surface of a building such as a building or a civil engineering structure such as a dam, Stable inspection is possible without losing balance.
  • the position change detection unit may be an encoder provided in a rope for pulling the main body or a wire winding device.
  • the imaging may be controlled by detecting a change in height using a GPS (Global Positioning System), an atmospheric pressure sensor, a laser rangefinder, or the like.
  • GPS Global Positioning System
  • the structure imaging apparatus 10 may include an absolute position detector such as a normal GPS (Global Positioning System) or an indoor GPS.
  • an absolute position detector such as a normal GPS (Global Positioning System) or an indoor GPS.
  • the encoder 13 can only know the movement distance on the straight line from the movement start point. However, by using it together with the absolute position detector, the structure 40 and the like can be expanded two-dimensionally. It is also possible to make the area having the inspection object.
  • the absolute position detector may be built in the notebook computer 20, It may be provided near the handle 31. Unlike the case of wireless connection, these absolute positions are almost the same.
  • the structure imaging device 10 itself may be provided with a control device equivalent to the notebook personal computer 20 for controlling this operation and a self-running means such as a so-called robot cleaner.
  • the structure imaging device 10 and the notebook computer 20 may be wirelessly connected, and the structure imaging device 10 itself may be provided with a self-propelled means.
  • you may provide the base used as the starting point of the structure imaging device 10, or a normal standby position. As a result, the structure 40 and the like can be automatically inspected without human intervention, and periodic maintenance and inspection can be facilitated.
  • FIG. 6 is a side view showing a schematic configuration of a structure scanner 100A according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing an electrical schematic configuration of the structure scanner 100A.
  • the same referential mark is attached
  • a structure scanner 100A for inspecting a structure 40 has a flat box-shaped structure scanner main body 10A and a rear of the structure scanner main body 10A.
  • a line camera 11 that captures a strip-like region 40a that is an elongated imaging region that is supported by the subframe 32 with the imaging direction facing downward and that is orthogonal to the moving direction on the mounted structure 40 or the like; 30 is provided at the upper end of 30 so as to extend rearward in the horizontal direction, and is gripped when moving the structure scanner 100A. And a handle 31 of the eye.
  • the notebook personal computer 20 (particularly, a display 20b described later) and the handle 31 are preferably as close as possible to facilitate operation and display confirmation, but at least the display 20b is in a state of holding the handle 31. It is preferable to arrange the display contents so as to be visible. However, there may be a configuration in which the connection between the structure scanner main body 10A and the notebook computer 20 is wireless, and the display on the display 20b is confirmed in a place away from a person pushing the structure scanner main body 10A. .
  • wheels 15 are respectively attached to the front and rear of the side surface of the structure scanner main body 10A.
  • the structure scanner 100A can be easily moved manually by pushing the handle 31.
  • the structure scanner main body 10A is arranged slightly rearward of the position corresponding to the belt-like region 40a, and illuminates the belt-like region 40a with high uniformity from obliquely above, an illumination power source 12b dedicated to the LED light 12a, and a wheel.
  • the encoder 13 is arranged so as to be interlocked with the rotation of 15 and detects the moving distance of the structure scanner 100A on the structure 40 or the like, and the line camera 11 captures an image based on the moving distance detected by the encoder 13.
  • an electrical box 14A in which a synchronizing unit 14a (described later with reference to FIG. 7) is stored.
  • a battery 18 is attached to the upper surface of the structure scanner main body 10A, and an illumination power source 12b, an encoder 13, and the like inside the structure scanner main body 10A are connected via a connector (not shown). Power is supplied to the synchronization unit 14a and the like.
  • the attachment of the battery 18 is not limited to the upper surface of the structure scanner main body 10A, and may be built in the structure scanner main body 10A if possible.
  • the notebook computer 20 functioning as an image acquisition / analysis unit controls the operation of each unit of the structure scanner 100 ⁇ / b> A on its main body, and acquires and analyzes image data captured by the line camera 11.
  • a CPU 20a to perform, and a display 20b as a display unit for displaying image data and analysis results acquired by the CPU 20a are provided.
  • the image acquisition / analysis unit a general-purpose notebook computer may be used as described above, or a dedicated information processing apparatus may be used.
  • connection between the structure scanner main body 10A and the line camera 11 and the notebook computer 20 is made by the cable 22 (not shown in FIG. 6), but these connections may be wireless.
  • the structure scanner 100A is placed on the structure 40 or the like to be inspected, and after the preparatory work before starting the movement on the notebook personal computer 20 side, the LED illumination 12a is turned on, and the handle 31 is pushed to push the structure scanner. Start moving 100A forward at as constant a speed as possible.
  • a pulse signal is generated from the encoder 13 at every constant rotation amount (angle).
  • the synchronization unit 14a synchronously performs imaging by the line camera 11 every time a predetermined number of pulse signals are counted. Thereby, it is possible to continuously image the band-like regions 40a at regular distance intervals on the structure 40 or the like.
  • the notebook computer 20 acquires the image data of the band-like area 40a imaged by the line camera 11 for each imaging, stores the data in the external hard disk 21 as necessary, and performs various image processing and analysis by the CPU 20a.
  • the deterioration or crack of the structure 40 is detected.
  • a method disclosed in an apparatus or system as described in each of the above-described patent documents as background art can be applied.
  • the drawing or the map is based on the movement start point information of the structure scanner 100A and the distance between the imaged band-like regions 40a. It is also possible to automatically superimpose the image data of the belt-like region 40a on the display 20b.
  • the notebook computer 20 is supported near the handle 31, and the display on the display 20b can be checked in real time while moving the structure scanner 100A. Thereby, it is possible to perform the inspection work while easily confirming whether the band-like region 40a on the structure 40 or the like is clearly imaged without omission. Further, if each image data of the band-like region 40a superimposed on a drawing or a map is used, an inspection report or the like can be efficiently created.
  • the third embodiment will now be described as being movable by self-propelled means rather than being moved by human power as in the second embodiment. Note that the same components as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and different points will be mainly described below.
  • FIG. 8 is a side view showing a schematic configuration of a structure scanner 100B according to the third embodiment of the present invention.
  • the structure scanner 100B for inspecting the structure 40 or the like is orthogonal to the moving direction on the flat box-shaped structure scanner main body 10B and the mounted structure 40 or the like.
  • a line camera 11 that captures an image of a strip-shaped region 40a that is a long and thin region to be imaged.
  • the line camera 11 includes a rear frame 34 attached to the rear end portion of the structure scanner main body 10B so as to extend in the vertical direction and a front frame 33 attached to extend to the front end portion of the structure scanner main body 10B in the vertical direction.
  • the sub-frame 32 is supported horizontally so that the imaging direction is downward.
  • Wheels 15 are attached to the front and rear of the side surface of the structure scanner main body 10B, respectively, and a battery 18 is attached to the upper surface of the structure scanner main body 10B.
  • the structure scanner main body 10B is disposed slightly behind the position corresponding to the belt-like region 40a, and illuminates the belt-like region 40a with high uniformity from obliquely above, and an illumination power source 12b dedicated to the LED light 12a
  • the encoder 13 is arranged so as to be interlocked with the rotation of the wheel 15 and detects the moving distance of the structure scanner 100B on the structure 40 or the like, and the line camera 11 based on the moving distance detected by the encoder 13.
  • an electrical box 14B containing a control unit that controls each unit.
  • the structure scanner 100B incorporates a drive unit 19 (such as a motor) that drives the wheels 15 in order to allow the structure scanner main body 10B to autonomously move by self-propelling, and surrounding obstacles and the like during self-propelling Are provided at the front end of the structure scanner main body 10B and the front end of the sub-frame 32.
  • a drive unit 19 such as a motor
  • the obstacle detection sensor 35 may be added to the rear end portion or the side surface of the structure scanner main body 10B.
  • connection between the structure scanner main body 10B and the notebook computer 20 is wireless, and image data and analysis results captured by the line camera 11 are displayed on the display 20b at a location away from the structure scanner main body 10B. May be.
  • the inspection of the structure 40 and the like can be automatically performed without human intervention, and the burden on the operator who performs management and the like can be reduced.
  • the structure scanner 100A and the structure scanner 100B may be provided with an absolute position detector such as a normal GPS (Global Positioning System) or an indoor GPS.
  • an absolute position detector such as a normal GPS (Global Positioning System) or an indoor GPS.
  • the encoder 13 can only know the movement distance on the straight line from the movement start point. It is also possible to inspect a region having a dimension spread.
  • the absolute position detector may be built in the notebook computer 20 or provided near the handle 31.
  • An imaging unit for imaging an imaging area on the mounting surface; An illumination unit that illuminates the imaged region; A position change detection unit for detecting a position change due to movement on the placement surface, and An imaging timing control unit that controls the timing of imaging by the imaging unit based on the position change detected by the position change detection unit; An image acquisition and analysis unit for acquiring and analyzing image data captured by the imaging unit; A display unit for displaying at least one of the image data acquired by the image acquisition analysis unit or the analysis result; A storage unit for storing the image data; A gripping part for gripping to move, The structure inspection system, wherein the display unit is arranged so that display contents can be visually recognized in a state where the holding unit is held.
  • Imaging unit 2 An imaging unit for imaging an imaging area on the mounting surface; An illumination unit that illuminates the imaged region; A position change detection unit for detecting a position change due to movement on the placement surface, and An imaging timing control unit that controls the timing of imaging by the imaging unit based on the position change detected by the position change detection unit; An image acquisition and analysis unit for acquiring and analyzing image data captured by the imaging unit; A storage unit for storing the image data; Self-propelled means for moving at least the imaging unit and the illumination unit; A structure inspection system comprising: a display unit configured to display at least one of the image data acquired by the image acquisition analysis unit or the analysis result thereof at a location away from the imaging unit.
  • Structure imaging device 10A Structure scanner main body 10B Structure scanner main body 11 Line camera (imaging part) 11a Camera body 11b Lens 12a LED illumination (illumination part) 12b Illumination power supply 13 Encoder (travel distance detector) 14 electrical box 14A electrical box 14B electrical box 14a synchronization unit 15 wheel 16 mirror (bending optical system) 17a transparent plate material 17b transparent plate material 18 battery 19 drive unit 20 notebook computer 20a CPU (control unit) 20b Display (display section) 21 External hard disk (storage) 22 Cable 30 Frame 31 Handle (grip) 32 Sub-frame 33 Front frame 34 Rear frame 35 Obstacle detection sensor 40 Structure 40a Strip region 100 Structure inspection system 100A Structure scanner (structure inspection system) 100B Structure scanner (structure inspection system)

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

This structure imaging apparatus is provided with an imaging unit (11) for imaging an area to be imaged (40a) of a placement surface (40), a bending optical system (16) that bends the direction of imaging by the imaging unit (11), and a lighting unit (12a) that lights the area to be imaged (40a). This structure inspection apparatus is further provided with a position change detection unit (13) that detects a position change due to a movement on the placement surface (40), and an imaging timing control unit (14a) that controls timing of imaging by the imaging unit (11) on the basis of the position change detected by the position change detection unit (13).

Description

構造物撮像装置、構造物検査装置および構造物検査システムStructure imaging apparatus, structure inspection apparatus, and structure inspection system
 本発明は、道路や滑走路などの構造物の表面状態の撮像装置、検査装置および検査システムに関し、特に、コンクリート舗装面などの劣化や亀裂などを画像処理によって検出するとともに、人力によって移動可能な小型の構造物撮像装置、構造物検査装置および構造物検査システム、または人力による移動または自律移動が可能な小型の構造物検査システムに関する。 The present invention relates to an imaging device, an inspection device, and an inspection system for a surface state of a structure such as a road or a runway, and in particular, it detects deterioration or cracks of a concrete pavement surface by image processing and is movable by human power. The present invention relates to a small structure imaging apparatus, a structure inspection apparatus and a structure inspection system, or a small structure inspection system capable of moving by human power or autonomously moving.
 従来、舗装道路を走行しながら車載カメラにより路面を撮影し、その撮影画像を解析することによって、路面に生じたひび割れ等を検出する路面検査システム(例えば特許文献1参照)、舗装表面上を走行しながらコンクリート版の劣化状態を調査する劣化調査システム(例えば特許文献2参照)、あるいは、一般車両に搭載されて、路面の凹凸を評価する路面凹凸評価システム(例えば特許文献3参照)などが提案されている。 Conventionally, a road surface inspection system (for example, refer to Patent Document 1) that detects cracks and the like generated on a road surface by photographing a road surface with an in-vehicle camera while traveling on a paved road and analyzing the captured image, travels on a paved surface. A deterioration investigation system (for example, see Patent Document 2) for investigating the deterioration state of a concrete plate, or a road surface unevenness evaluation system (for example, see Patent Document 3) that is mounted on a general vehicle and evaluates road surface unevenness is proposed. Has been.
 これらはいずれも、自走式の車両に搭載され、走行しながら路面を検査などすることが前提となっている。 These are all assumed to be mounted on self-propelled vehicles and to inspect road surfaces while traveling.
 一方、台車に搭載されて、道路や滑走路などの舗装路面のひび割れを画像処理によって連続的に計測・記録する路面のひび割れ計測装置(例えば特許文献4参照)や、測定車上に道路に向けて配設され、ひび割れ率などの路面性状を測定評価可能な路面性状測定機(例えば特許文献5参照)なども提案されている。 On the other hand, a road surface crack measuring device (see, for example, Patent Document 4) mounted on a carriage and continuously measuring and recording cracks on a paved road surface such as a road or a runway by image processing is directed toward the road on the measurement vehicle. A road surface property measuring machine (see, for example, Patent Document 5) that can be disposed and can measure and evaluate road surface properties such as a crack rate has also been proposed.
 これらはいずれも、それ自体では自走できないため、道路上などを車両に牽引されることが前提となっている。 These are all assumed to be towed on the road etc. because they cannot run on their own.
特開2014- 86826号公報JP 2014-86826 A 特開2011-237283号公報JP 2011-237283 A 特開2013- 79889号公報JP2013-79889A 特開平4-240555号公報JP-A-4-240555 特開平3- 56805号公報Japanese Unexamined Patent Publication No. 3-56805
 上記の各特許文献に記載されているような装置やシステムは、車両に直接搭載されるか、牽引されることを前提としている。そのため、鉄道の駅のホームや歩道などのように車両が進入しにくいスペースでの運用は困難であった。 The devices and systems described in the above patent documents are assumed to be mounted directly on the vehicle or towed. For this reason, it has been difficult to operate in a space where a vehicle is difficult to enter, such as a train station platform or a sidewalk.
 また、それらの装置やシステムでは、路面を上方から撮影するようにカメラなどが配置されているが、被写界深度をある程度確保するには一定の光路長が必要なので、小型化には限界があった。密着センサー(CIS:Contact Image Sensor)を用いることである程度の小型化は可能であるが、CISのように被写界深度が浅い光学系の場合、対象物の僅かな凹凸でカメラのピントが合わなくなり実用的ではない。そのため、たとえ、人力で移動できる程度に小型化できても、全体の重心が高くなりがちで、人力による安定した移動は困難であった。 In addition, in these devices and systems, cameras are arranged so as to photograph the road surface from above, but a certain optical path length is necessary to secure a certain depth of field, so there is a limit to downsizing. there were. It is possible to reduce the size to some extent by using a contact sensor (CIS: Contact Image Sensor), but in the case of an optical system with a shallow depth of field, such as CIS, the camera is focused with a slight unevenness of the object. It is not practical. Therefore, even if the size can be reduced to such a level that it can be moved by human power, the overall center of gravity tends to be high, and stable movement by human power is difficult.
 また、ビルの壁面やダムの壁面などの構造物の鉛直または斜めの面に対しても同様の劣化・亀裂等の診断が必要であるが、この場合、鉛直または斜めの対象面に対して装置を立てて使用することになる。このとき、装置の重心が高いと非常に安定性が悪くなり、装置の保持や移動が困難であった。 In addition, the same diagnosis of deterioration and cracks is necessary for vertical or diagonal surfaces of structures such as building walls and dam walls. Will be used. At this time, if the center of gravity of the device is high, the stability is very poor, and it is difficult to hold and move the device.
 従来技術のこのような課題に鑑み、本発明の第1目的は、コンクリート舗装面などの劣化や亀裂などを画像処理によって検出するとともに、人力による安定した移動が可能な構造物撮像装置、構造物検査装置および構造物検査システムを提供することである。 In view of such a problem of the prior art, a first object of the present invention is to detect a deterioration or a crack of a concrete pavement surface by image processing and to be able to move stably by human power and a structure An inspection apparatus and a structure inspection system are provided.
 また、道路上などを車両に牽引されることが前提となっている特許文献4に記載のひび割れ計測装置や特許文献5に記載の路面性状測定機は、そのまま小型化すれば人力による移動自体は可能かもしれない。しかし、特許文献4に記載のひび割れ計測装置では、その明細書の段落0022などに記載されているように、計測処理装置から出力されたデータが記録された記録媒体を持ち帰ってからパソコンなどによって解析処理に付される。特許文献5に記載の路面性状測定機では、その明細書の第3頁の左下欄第5~8行などに記載されているように、まずビデオカメラ2によって路面の撮影を行い、その画像を再生し、ひび割れ箇所の確認を行うので、一旦路面の撮影を行った後にその画像を再生していることになる。したがって、これらのひび割れ計測装置や路面性状測定機はいずれも、撮影中の路面の画像をリアルタイムで確認や解析をするものではない。 In addition, the crack measuring device described in Patent Document 4 and the road surface property measuring instrument described in Patent Document 5 that are premised on being pulled by a vehicle on a road or the like cannot be moved by human power if they are downsized as they are. It may be possible. However, in the crack measurement device described in Patent Document 4, as described in paragraph 0022 of the specification, etc., the data output from the measurement processing device is taken back and then analyzed by a personal computer or the like. It is attached to processing. In the road surface property measuring machine described in Patent Document 5, first, the road surface is photographed by the video camera 2 as described in the lower left column, lines 5 to 8 of the third page of the specification, and the image is taken. Since the image is reproduced and the cracked portion is confirmed, the image is reproduced after the road surface is once photographed. Therefore, none of these crack measuring devices and road surface property measuring machines confirms or analyzes the image of the road surface being photographed in real time.
 従来技術のこのような課題に鑑み、本発明の第2目的は、コンクリート舗装面などの劣化や亀裂などを画像処理によって検出するとともに、人力による移動または自律移動が可能で、移動中にリアルタイムで画像などが確認できる構造物検査システムを提供することである。 In view of such a problem of the prior art, the second object of the present invention is to detect deterioration or cracks of a concrete pavement surface by image processing, and can be moved by human power or autonomously, and in real time during movement It is to provide a structure inspection system that can confirm images and the like.
 上記第1目的を達成するため、本発明の構造物検査装置は、構造物の被撮像領域を撮像するための撮像部と、この撮像部による撮像方向を屈曲する屈曲光学系と、前記被撮像領域を照明する照明部と、前記撮像部によって撮像された画像データを基に前記構造物の検査を行う検査部とを備えることを特徴とする。 In order to achieve the first object, a structure inspection apparatus according to the present invention includes an imaging unit for imaging an imaging region of a structure, a bending optical system that bends an imaging direction by the imaging unit, and the imaging target. An illumination unit that illuminates a region, and an inspection unit that inspects the structure based on image data captured by the imaging unit.
 また、本発明の構造物検査装置において、前記構造物上での移動による位置変化を検知する位置変化検知部と、この位置変化検知部によって検知された前記位置変化に基づいて前記撮像部による撮像の時期を制御する撮像時期制御部とをさらに備えてもよい。前記撮像部および前記屈曲光学系を内装する本体部をさらに備えてもよい。また、前記本体部は偏平な形状であって、前記撮像部は前記本体部の底面または天面と相対する前記構造物の前記被撮像領域を撮像してもよい。 Moreover, in the structure inspection apparatus of the present invention, a position change detection unit that detects a position change due to movement on the structure, and imaging by the imaging unit based on the position change detected by the position change detection unit And an imaging timing control unit for controlling the timing. You may further provide the main-body part which interiors the said imaging part and the said bending | flexion optical system. The main body may have a flat shape, and the imaging unit may image the imaging area of the structure facing the bottom surface or the top surface of the main body.
 ここで、前記屈曲光学系は、例えば反射部材(具体的には光学用ミラー)やプリズムなどが挙げられるが、これらに限らない。 Here, examples of the bending optical system include, but are not limited to, a reflecting member (specifically, an optical mirror) and a prism.
 このような構成の構造物検査装置によれば、全体の重心が十分低いので、人力による安定した移動が可能である。 According to the structure inspection apparatus having such a configuration, since the entire center of gravity is sufficiently low, stable movement by human power is possible.
 また、本発明の構造物検査装置において、絶対位置情報を検知する絶対位置検知器(例えばGPS)をさらに備えてもよい。 The structure inspection apparatus of the present invention may further include an absolute position detector (for example, GPS) that detects absolute position information.
 また、本発明の構造物検査システムは、上述した構造物検査装置と、前記構造物検査装置の動作を制御するとともに、前記撮像部によって撮像された前記画像データの取得および解析を行う制御部と、この制御部によって取得された前記画像データまたは前記制御部による解析結果の少なくとも一方を表示する表示部と、前記画像データを保存する保存部とを備えることを特徴とする。あるいは、本発明の構造物検査システムは、上述した構造物検査装置と、前記構造物検査装置の動作を制御するとともに、前記撮像部によって撮像された前記画像データおよび前記絶対位置検知器によって検知された前記絶対位置情報の取得および解析を行う制御部と、この制御部によって取得された前記画像データまたは前記制御部による解析結果の少なくとも一方を表示する表示部と、前記画像データを保存する保存部とを備えることを特徴とする。 Moreover, the structure inspection system of the present invention includes the structure inspection apparatus described above, a control unit that controls the operation of the structure inspection apparatus, and that acquires and analyzes the image data captured by the imaging unit. The image processing apparatus includes a display unit that displays at least one of the image data acquired by the control unit or an analysis result by the control unit, and a storage unit that stores the image data. Alternatively, the structure inspection system of the present invention controls the operation of the structure inspection apparatus described above and the structure inspection apparatus, and is detected by the image data captured by the imaging unit and the absolute position detector. A control unit that acquires and analyzes the absolute position information, a display unit that displays at least one of the image data acquired by the control unit or an analysis result by the control unit, and a storage unit that stores the image data. It is characterized by providing.
 このような構成の構造物検査システムによれば、全体の重心が十分低いので、人力による安定した移動が可能であり、操作や表示確認などもしやすくなる。 According to the structure inspection system having such a configuration, since the entire center of gravity is sufficiently low, stable movement by human power is possible, and it is easy to perform operations and display confirmation.
 また、本発明の構造物撮像装置は、構造物の被撮像領域を撮像するための撮像部と、この撮像部による撮像方向を屈曲する屈曲光学系と、前記被撮像領域を照明する照明部とを備えることを特徴とする。前記構造物上での移動による位置変化を検知する位置変化検知部と、この位置変化検知部によって検知された前記位置変化に基づいて前記撮像部による撮像の時期を制御する撮像時期制御部とをさらに備えてもよい。前記撮像部および前記屈曲光学系を内装する本体部をさらに備えてもよい。また、前記本体部は偏平な形状であって、前記撮像部は前記本体部の底面または天面と相対する前記構造物の前記被撮像領域を撮像してもよい。前記屈曲光学系は、例えば反射部材(具体的には光学用ミラー)やプリズムなどが挙げられるが、これらに限らない。絶対位置情報を検知する絶対位置検知器(例えばGPS)をさらに備えてもよい。 Further, the structure imaging apparatus of the present invention includes an imaging unit for imaging an imaging region of the structure, a bending optical system that bends an imaging direction by the imaging unit, and an illumination unit that illuminates the imaging region. It is characterized by providing. A position change detector that detects a change in position due to movement on the structure, and an imaging timing controller that controls the timing of imaging by the imaging unit based on the position change detected by the position change detector. Further, it may be provided. You may further provide the main-body part which interiors the said imaging part and the said bending | flexion optical system. The main body may have a flat shape, and the imaging unit may image the imaging area of the structure facing the bottom surface or the top surface of the main body. Examples of the bending optical system include, but are not limited to, a reflecting member (specifically, an optical mirror) and a prism. You may further provide the absolute position detector (for example, GPS) which detects absolute position information.
 このような構成の構造物撮像装置によれば、全体の重心が十分低いので、人力による安定した移動が可能である。 According to the structure imaging apparatus having such a configuration, since the entire center of gravity is sufficiently low, stable movement by human power is possible.
 また、上記第2目的を達成するため、本発明の構造物検査システムは、載置面上の被撮像領域を撮像するための撮像部と、前記被撮像領域を照明する照明部と、前記載置面上での移動による位置変化を検知する位置変化検知部と、この位置変化検知部によって検知された前記位置変化に基づいて前記撮像部による撮像の時期を制御する撮像時期制御部と、前記撮像部によって撮像された画像データの取得および解析を行う画像取得解析部と、この画像取得解析部によって取得された前記画像データまたはその解析結果の少なくとも一方を表示する表示部と、前記画像データを保存する保存部と、移動させるために把持する把持部とを備え、前記表示部は、前記把持部を把持した状態で表示内容を視認可能に配置されていることを特徴とする。 In order to achieve the second object, a structure inspection system of the present invention includes an imaging unit for imaging an imaging area on a mounting surface, an illumination unit that illuminates the imaging area, and the above description A position change detection unit that detects a change in position due to movement on the mounting surface; an imaging timing control unit that controls a timing of imaging by the imaging unit based on the position change detected by the position change detection unit; An image acquisition / analysis unit that acquires and analyzes image data captured by the imaging unit, a display unit that displays at least one of the image data acquired by the image acquisition / analysis unit or an analysis result thereof, and the image data A storage unit for storing and a grip unit for gripping to move the display unit are arranged, and the display unit is arranged so that display contents can be visually recognized in a state of gripping the grip unit.
 このような構成の構造物検査システムによれば、人力による移動が可能で、移動中にリアルタイムで撮影中の路面の画像などが容易に確認できる。 According to the structure inspection system having such a configuration, movement by human power is possible, and an image of the road surface being photographed can be easily confirmed in real time during movement.
 あるいは、本発明の構造物検査システムは、載置面上の被撮像領域を撮像するための撮像部と、前記被撮像領域を照明する照明部と、前記載置面上での移動による位置変化を検知する位置変化検知部と、この位置変化検知部によって検知された前記位置変化に基づいて前記撮像部による撮像の時期を制御する撮像時期制御部と、前記撮像部によって撮像された画像データの取得および解析を行う画像取得解析部と、前記画像データを保存する保存部と、少なくとも前記撮像部および前記照明部を移動するための自走手段と、前記画像取得解析部によって取得された前記画像データまたはその解析結果の少なくとも一方を前記撮像部から離れた場所に表示する表示部とを備えることを特徴とする。 Alternatively, the structure inspection system according to the present invention includes an imaging unit for imaging an imaging region on the placement surface, an illumination unit that illuminates the imaging region, and a positional change caused by movement on the placement surface. A position change detection unit for detecting the image, an imaging timing control unit for controlling the timing of imaging by the imaging unit based on the position change detected by the position change detection unit, and an image data captured by the imaging unit. An image acquisition / analysis unit that performs acquisition and analysis, a storage unit that stores the image data, self-propelled means for moving at least the imaging unit and the illumination unit, and the image acquired by the image acquisition / analysis unit And a display unit that displays at least one of the data and the analysis result thereof at a location distant from the imaging unit.
 このような構成の構造物検査システムによれば、自律移動が可能で、移動中にリアルタイムで撮影中の路面の画像などが容易に確認できる。 According to the structure inspection system having such a configuration, autonomous movement is possible, and an image of a road surface being photographed can be easily confirmed in real time while moving.
 また、本発明の構造物検査システムにおいて、絶対位置情報を検知する絶対位置検知器(例えばGPS)をさらに備え、前記画像取得解析部は、前記撮像部によって撮像された画像データおよび前記絶対位置検知器によって検知された前記絶対位置情報の取得および解析を行ってもよい。 The structure inspection system according to the present invention further includes an absolute position detector (for example, GPS) that detects absolute position information, and the image acquisition analysis unit includes the image data captured by the imaging unit and the absolute position detection. The absolute position information detected by the instrument may be acquired and analyzed.
 本発明の構造物撮像装置および構造物検査装置によれば、全体の重心が十分低いので、人力による安定した移動が可能である。 According to the structure imaging apparatus and the structure inspection apparatus of the present invention, since the entire center of gravity is sufficiently low, stable movement by human power is possible.
 本発明の構造物検査システムによれば、全体の重心が十分低いので、人力による安定した移動が可能であり、操作や表示確認などもしやすくなる。または、人力による移動または自律移動が可能で、移動中にリアルタイムで画像などが容易に確認できる。 According to the structure inspection system of the present invention, since the overall center of gravity is sufficiently low, stable movement by human power is possible, and it is easy to perform operations and display confirmation. Alternatively, movement by human power or autonomous movement is possible, and images and the like can be easily confirmed in real time during movement.
本発明の第1実施形態に係る構造物撮像装置10を含む構造物検査システム100の概略構成を示す側面図である。1 is a side view showing a schematic configuration of a structure inspection system 100 including a structure imaging apparatus 10 according to a first embodiment of the present invention. 構造物撮像装置10の内部の概略構成を示す斜視図である。1 is a perspective view illustrating a schematic configuration inside a structure imaging apparatus 10. 構造物撮像装置10の内部の概略構成を示す平面図である。2 is a plan view showing a schematic configuration inside the structure imaging apparatus 10. FIG. 図3の4-4断面図である。FIG. 4 is a sectional view taken along line 4-4 of FIG. 構造物検査システム100の電気的な概略構成を示すブロック図である。1 is a block diagram showing an electrical schematic configuration of a structure inspection system 100. FIG. 本発明の第2実施形態に係る構造物スキャナー100Aの概略構成を示す側面図である。It is a side view showing a schematic structure of structure scanner 100A concerning a 2nd embodiment of the present invention. 構造物スキャナー100Aの電気的な概略構成を示すブロック図である。It is a block diagram which shows the electrical schematic structure of the structure scanner 100A. 本発明の第3実施形態に係る構造物スキャナー100Bの概略構成を示す側面図である。It is a side view which shows schematic structure of the structure scanner 100B which concerns on 3rd Embodiment of this invention.
 以下、本発明の実施形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1実施形態の構成>
 (1)構造物検査システム100の全体
 図1は本発明の第1実施形態に係る構造物撮像装置10を含む構造物検査システム100の概略構成を示す側面図である。図2は構造物撮像装置10の内部の概略構成を示す斜視図である。図3は構造物撮像装置10の内部の概略構成を示す平面図である。図4は図3の4-4断面図である。図5は、構造物検査システム100の電気的な概略構成を示すブロック図である。
<Configuration of First Embodiment>
(1) Overall Structure Inspection System 100 FIG. 1 is a side view showing a schematic configuration of a structure inspection system 100 including a structure imaging apparatus 10 according to the first embodiment of the present invention. FIG. 2 is a perspective view showing a schematic configuration inside the structure imaging apparatus 10. FIG. 3 is a plan view illustrating a schematic configuration inside the structure imaging apparatus 10. 4 is a cross-sectional view taken along line 4-4 of FIG. FIG. 5 is a block diagram showing an electrical schematic configuration of the structure inspection system 100.
 図1に示すように、構造物40などの検査を行う構造物検査システム100は、構造物撮像装置10と、構造物撮像装置10の後端部に垂直方向へ延びるように取り付けられたフレーム30の上部で支持されるとともに、構造物撮像装置10の動作を制御する制御手段であるノートパソコン20と、フレーム30の上端に水平方向に延びるように設けられ、構造物撮像装置10を移動させるときに把持するためのハンドル31とを備えている。 As shown in FIG. 1, a structure inspection system 100 that inspects a structure 40 or the like includes a structure imaging device 10 and a frame 30 attached to the rear end portion of the structure imaging device 10 so as to extend in the vertical direction. When the structure image pickup device 10 is moved by being provided to extend in the horizontal direction at the upper end of the frame 30 and the notebook personal computer 20 as a control means for controlling the operation of the structure image pickup device 10. And a handle 31 for gripping.
 ノートパソコン20(特に後述するディスプレー20b)とハンドル31とは、操作や表示確認などをしやすくするため、できるだけ近接させることが好ましい。また、フレーム30およびハンドル31は、構造物撮像装置10から着脱式としてもよい。 It is preferable that the notebook computer 20 (especially a display 20b described later) and the handle 31 be as close as possible to facilitate operation and display confirmation. The frame 30 and the handle 31 may be detachable from the structure imaging device 10.
 なお、検査対象とする構造物40としては、例えば、道路などのコンクリート舗装面、鉄道駅のホーム、空港のエプロン(駐機場)や滑走路、橋、ダムの壁面、ビルなどの建築構造物の外壁面などが挙げられるが、これらに限らない。また、舗装も必ずしもコンクリートに限るわけではない。 The structures 40 to be inspected include, for example, concrete paved surfaces such as roads, railway station platforms, airport aprons (air parks), runways, bridges, dam walls, buildings, and other building structures. Examples include, but are not limited to, outer wall surfaces. Also, paving is not necessarily limited to concrete.
 (2)構造物撮像装置10
 図2~図4に示すように、構造物撮像装置10の左右側面の前方および後方には、それぞれ車輪15が取り付けられている。これら4つの車輪15に支持されることで、ハンドル31を押すことによる人力での構造物撮像装置10の移動が容易となる。移動時の振動を極力軽減するため、車輪15には除震性を有するタイヤを用いることが好ましい。
(2) Structure imaging apparatus 10
As shown in FIGS. 2 to 4, wheels 15 are respectively attached to the front and rear of the left and right side surfaces of the structure imaging apparatus 10. By being supported by these four wheels 15, the structure imaging apparatus 10 can be easily moved by human power by pushing the handle 31. In order to reduce vibration at the time of movement as much as possible, it is preferable to use a tire having seismic isolation for the wheel 15.
 構造物撮像装置10はその内部において、ほぼ中央の後部寄りに、構造物40などの上での移動方向と直交する細長い被撮像領域である帯状領域40a(構造物撮像装置10の底面と相対)を撮像するため、撮像方向を前方に向けて配置されたラインカメラ11と、このラインカメラ11の前方に配置され、その撮像方向を鉛直下向きに曲げるミラー16と、帯状領域40aに対応する位置のやや後方に配置され、帯状領域40aを斜め上方から高均一に照明するLED照明12aと、このLED照明12a専用の照明電源12bと、車輪15の回転に連動するように配置され、構造物40などの上での構造物撮像装置10の移動距離を検知するエンコーダ13と、このエンコーダ13で検知された移動距離に基づいてラインカメラ11による撮像を行わせる同期部14aを収めた電装ボックス14とを備えている。 The structure imaging device 10 has a strip-like region 40a (relative to the bottom surface of the structure imaging device 10) that is an elongated imaging region orthogonal to the moving direction on the structure 40, etc. The line camera 11 arranged with the imaging direction facing forward, the mirror 16 arranged in front of the line camera 11 and bending the imaging direction vertically downward, and the position corresponding to the belt-like region 40a An LED illumination 12a that is arranged slightly rearward and illuminates the belt-like region 40a with high uniformity from obliquely above, an illumination power source 12b dedicated to the LED illumination 12a, and arranged in conjunction with the rotation of the wheel 15, such as the structure 40 An encoder 13 for detecting the moving distance of the structure imaging device 10 on the top of the line camera 11 and the line camera 11 based on the moving distance detected by the encoder 13. And a control box 14 that contains the synchronizing unit 14a to perform imaging that.
 ラインカメラ11は、構造物40などのひび割れが十分識別可能な解像度を有するモノクロのデジタルカメラであり、撮像部として機能する。例えば、カメラ本体11aがCマウントカメラである場合、構造物撮像装置10の横幅のほぼ全体を撮像できるように、広角のレンズ11b(例えば28mm程度)を用いることが好ましい。ただし、複数台のカメラを横に並べて配置し、それらによって撮像された画像を合成するようにしてもよいし、1台のカメラで移動方向とは直交する方向に走査を行ってもよい。また、カラーのカメラを用いてもよい。 The line camera 11 is a monochrome digital camera having a resolution capable of sufficiently identifying cracks of the structure 40 and the like, and functions as an imaging unit. For example, when the camera body 11a is a C-mount camera, it is preferable to use a wide-angle lens 11b (for example, about 28 mm) so that almost the entire width of the structure imaging apparatus 10 can be imaged. However, a plurality of cameras may be arranged side by side and images captured by them may be combined, or scanning may be performed in a direction orthogonal to the moving direction with a single camera. A color camera may also be used.
 ミラー16は光学用の表面鏡であり、ラインカメラ11の撮像方向を屈曲させる屈曲光学系として機能する反射部材の一例である。ラインカメラ11がその撮像方向を水平前方に向けて配置されている場合には、ミラー16を後方斜め下45度の方向に向けて配置することで、ラインカメラ11の撮像方向が鉛直下向きとなる。ミラー16は最小枚数に留めることが好ましいが、必ずしも1枚に限るわけではない。また、屈曲光学系としてはミラー16に限らず、例えばプリズムで代用してもよい。 The mirror 16 is an optical surface mirror, and is an example of a reflecting member that functions as a bending optical system that bends the imaging direction of the line camera 11. In the case where the line camera 11 is arranged with its imaging direction facing horizontally forward, the imaging direction of the line camera 11 becomes vertically downward by arranging the mirror 16 diagonally downward 45 degrees. . The number of mirrors 16 is preferably limited to the minimum number, but is not necessarily limited to one. Further, the bending optical system is not limited to the mirror 16, and for example, a prism may be substituted.
 本体部10cは、ラインカメラ11とミラー16を内装する筐体である。本体部10cは重心を低く抑えるため偏平な形状であることが好ましい。また、本体部10cは四角い箱形状に限らず、側面が曲面で構成されるような形状(例えば平たい円筒のような形状)でもよい。 The main body 10 c is a housing that houses the line camera 11 and the mirror 16. The main body portion 10c preferably has a flat shape in order to keep the center of gravity low. The main body 10c is not limited to a square box shape, and may have a shape whose side surface is a curved surface (for example, a shape like a flat cylinder).
 ラインカメラ11の撮像方向を水平に向けて配置するとともに、その撮像方向をミラー16によって鉛直下向きに曲げることで、ラインカメラ11に必要な視野幅と被写界深度とを確保するための一定の光路長を確保しつつ、構造物撮像装置10の高さを比較的小さく抑えることができる。例えば、構造物の垂直面に対しても安定して使用可能なことを考慮すると、装置高(本体部10cの高さ)は好ましくは30cm以下、より好ましくは20cm以下がよい。装置の幅と奥行き(本体部10cの底面と天面の各2辺のサイズ)に関しても、大きすぎると取り回しが困難となるため、好ましくは100cm以下、より好ましくは50cm以下がよい。ラインカメラ11の配置は、その撮像方向(光軸)が完全に水平でなくてもよく、構造物撮像装置10内部のレイアウトの都合などによっては、例えば、水平より少し傾けてもよい。これにより、構造物撮像装置10の重心が低くなるので、人力による安定した移動が可能となる。また、構造物の垂直面に対して使用する場合には、構造物撮像装置10の底面と天面の実質的な差違はなくなるので、被撮像領域である帯状領域40aは構造物撮像装置10の底面または天面と相対するとも言える。 The image capturing direction of the line camera 11 is arranged horizontally, and the image capturing direction is bent vertically downward by the mirror 16, thereby ensuring a certain visual field width and depth of field required for the line camera 11. The height of the structure imaging device 10 can be kept relatively small while ensuring the optical path length. For example, considering that the structure can be used stably with respect to the vertical surface of the structure, the apparatus height (the height of the main body 10c) is preferably 30 cm or less, more preferably 20 cm or less. As for the width and depth of the apparatus (the size of each of the two sides of the bottom surface and the top surface of the main body 10c), if it is too large, it becomes difficult to handle the device, so it is preferably 100 cm or less, more preferably 50 cm or less. In the arrangement of the line camera 11, the imaging direction (optical axis) may not be completely horizontal, and may be slightly inclined from the horizontal, for example, depending on the layout inside the structure imaging apparatus 10. Thereby, since the center of gravity of the structure imaging apparatus 10 is lowered, stable movement by human power is possible. Further, when used with respect to the vertical surface of the structure, since there is no substantial difference between the bottom surface and the top surface of the structure imaging device 10, the belt-like region 40 a that is the imaged region is the structure imaging device 10. It can be said that it is opposite to the bottom or top surface.
 LED照明12aは、例えば、白色LEDを光源とし、細長い帯状領域を高輝度で高均一に照明するバー型LED照明が挙げられるが、これに限らない。2つ以上のLED照明を組み合わせてもよいし(例えば、帯状領域40aに対応する位置の前後両方に配置)、LED以外の光源を用いてもよい。それらの照明の種類、配置や照明方向などは、構造物40などのひび割れができるだけ鮮明に撮像できるようにすることが好ましい。 The LED illumination 12a may be, for example, a bar-type LED illumination that uses a white LED as a light source and illuminates an elongated strip-shaped region with high brightness and high uniformity, but is not limited thereto. Two or more LED illuminations may be combined (for example, arranged both before and after the position corresponding to the belt-like region 40a), or a light source other than the LED may be used. It is preferable that the type, arrangement, illumination direction, and the like of these illuminations make it possible to capture as clearly as possible cracks in the structure 40 and the like.
 照明電源12bは、LED照明12aの発光量をパルス調光方式や電圧調光方式によって可変とする専用電源である。パルス調光方式を用いる場合、ラインカメラ11による撮像のシャッター速度が特に高速なときには、撮像された画像に照明ムラなどが生じないように、撮像のタイミングなどに留意する必要がある。ただし、用いる照明の種類によっては、このような専用電源は必須とは限らない。 The illumination power source 12b is a dedicated power source that makes the light emission amount of the LED illumination 12a variable by a pulse dimming method or a voltage dimming method. When the pulse dimming method is used, it is necessary to pay attention to the timing of imaging so that uneven illumination or the like does not occur in the captured image when the shutter speed of imaging by the line camera 11 is particularly high. However, such a dedicated power source is not always essential depending on the type of illumination used.
 位置変化検知部であるエンコーダ13は、構造物撮像装置10の移動による位置変化を検知するため、例えば、車輪15の1つの軸受部に回転に連動するように配置され、一定回転量(角度)毎にパルス信号を発生する。これにより、車輪15の外周長との関係から、構造物撮像装置10の位置変化、具体的には移動距離を検知することができる。 The encoder 13 serving as a position change detection unit is disposed so as to be linked to the rotation of one bearing portion of the wheel 15 in order to detect a change in position due to the movement of the structure imaging device 10, and has a constant rotation amount (angle). A pulse signal is generated every time. Thereby, from the relationship with the outer peripheral length of the wheel 15, the position change of the structure imaging device 10, specifically, the moving distance can be detected.
 同期部14aは、エンコーダ13から発生されるパルス信号に基づいて、ラインカメラ11による撮像の時期を制御する。具体的には、予め定められた回数のパルス信号をカウントする毎に、ラインカメラ11による撮像を同期的に行わせる。これにより、構造物撮像装置10が一定距離だけ移動する毎にラインカメラ11による撮像を行うことができる。このとき、LED照明12aをラインカメラ11の撮像タイミングと同期させてストロボ発光させてもよい。 The synchronization unit 14 a controls the timing of imaging by the line camera 11 based on the pulse signal generated from the encoder 13. Specifically, every time a predetermined number of pulse signals are counted, the imaging by the line camera 11 is performed synchronously. Thereby, every time the structure imaging apparatus 10 moves by a certain distance, the imaging by the line camera 11 can be performed. At this time, the LED illumination 12a may be flashed in synchronization with the imaging timing of the line camera 11.
 ここで、図4に示すように、構造物撮像装置10の下面10aには、ラインカメラ11から帯状領域40aの光路を囲むように凹部10bが設けられており、その上端の開口部でミラー16に対向する位置に透明板材17aが配置されている。これにより、ラインカメラ11によって撮像された画像に不要光が混じることを極力低減する。また、構造物撮像装置10の下面10aでLED照明12aの直下およびその周辺にも、透明板材17b(例えばアクリル製)が配置されている。これにより、LED照明12aからの光が透明板材17bを通して構造物40などの上の帯状領域40aに達する。 Here, as shown in FIG. 4, a recess 10 b is provided on the lower surface 10 a of the structure imaging device 10 so as to surround the optical path of the belt-like region 40 a from the line camera 11, and the mirror 16 is formed at the opening at the upper end thereof. A transparent plate material 17a is arranged at a position facing the. Thereby, it is reduced as much as possible that unnecessary light is mixed in the image captured by the line camera 11. In addition, a transparent plate material 17b (for example, made of acrylic) is also disposed on the lower surface 10a of the structure imaging apparatus 10 directly below and around the LED illumination 12a. Thereby, the light from the LED illumination 12a reaches the strip-like region 40a on the structure 40 or the like through the transparent plate 17b.
 なお、構造物撮像装置10の本体部10cは密閉式として、内部にゴミや埃などが極力侵入しないようにすることが好ましい。また、上述した構造物撮像装置10内部のレイアウトは一例に過ぎず、前後を反転させたりすることも可能である。 In addition, it is preferable that the main body portion 10c of the structure imaging apparatus 10 is a hermetically sealed type so that dust or dust does not enter the interior as much as possible. Moreover, the layout inside the structure imaging apparatus 10 described above is merely an example, and it is possible to reverse the front and rear.
 また、図1に示すように、構造物撮像装置10の上面には、バッテリー18が取り付けられており、コネクタ(不図示)を介して、構造物撮像装置10内部のラインカメラ11、照明電源12b、エンコーダ13、同期部14aなどに電力を供給する。ただし、バッテリー18の取り付けは構造物撮像装置10の上面に限らないし、可能であれば構造物撮像装置10に内蔵してもよい。 Further, as shown in FIG. 1, a battery 18 is attached to the upper surface of the structure imaging apparatus 10, and the line camera 11 and illumination power supply 12b inside the structure imaging apparatus 10 are connected via a connector (not shown). The encoder 13 and the synchronization unit 14a are supplied with electric power. However, the attachment of the battery 18 is not limited to the upper surface of the structure imaging apparatus 10 and may be built in the structure imaging apparatus 10 if possible.
 (3)ノートパソコン20
 図5に示すように、制御部であるノートパソコン20はその本体に、構造物撮像装置10の各部の動作を制御するとともに、ラインカメラ11によって撮像された画像データの取得や解析などを行うCPU20aと、このCPU20aによって取得された画像データや解析結果などを表示するディスプレー20bとを備えている。制御部としては、上記のように汎用のノートパソコンを用いてもよいし、専用の制御ユニットなどを用いてもよい。
(3) Notebook PC 20
As shown in FIG. 5, the notebook personal computer 20 as a control unit controls the operation of each part of the structure imaging apparatus 10 on its main body, and also acquires and analyzes image data captured by the line camera 11. And a display 20b for displaying image data acquired by the CPU 20a, analysis results, and the like. As the control unit, a general-purpose notebook computer may be used as described above, or a dedicated control unit may be used.
 さらに、ノートパソコン20には保存部として大容量のハードディスク21が外付けされている。ただし、このような外付けハードディスク21は必須ではない。外付けハードディスク21の代わりに、ノートパソコン20の内部に収容可能なタイプのハードディスクまたは不揮発メモリなどを用いてもよい。 Furthermore, a large-capacity hard disk 21 is externally attached to the notebook computer 20 as a storage unit. However, such an external hard disk 21 is not essential. Instead of the external hard disk 21, a hard disk of a type that can be accommodated in the notebook computer 20 or a nonvolatile memory may be used.
 構造物撮像装置10とノートパソコン20との接続はケーブル22(図1では不図示)によって行うが、これらの接続を無線式としてもよい。 The connection between the structure imaging device 10 and the notebook computer 20 is performed by a cable 22 (not shown in FIG. 1), but these connections may be wireless.
 <構造物検査システム100による検査>
 構造物検査システム100による検査方法について次に説明する。
<Inspection by the structure inspection system 100>
Next, an inspection method by the structure inspection system 100 will be described.
 まず、構造物撮像装置10を含む構造物検査システム100を検査対象とする構造物40などの上に置き、ノートパソコン20側で移動開始前の準備作業などをした後、LED照明12aを点灯させ、ハンドル31を押して構造物撮像装置10をなるべく一定の速度で前方へ移動開始させる。 First, the structure inspection system 100 including the structure imaging device 10 is placed on the structure 40 to be inspected, and after the preparation work before starting the movement on the notebook personal computer 20 side, the LED illumination 12a is turned on. Then, the handle 31 is pushed to start moving the structure imaging apparatus 10 forward at a constant speed as much as possible.
 構造物撮像装置10の移動によって車輪15が回転すると、一定回転量(角度)毎にエンコーダ13からパルス信号が発生する。同期部14aは、予め定められた回数のパルス信号をカウントする毎にラインカメラ11による撮像を同期的に行わせる。これにより、構造物40などの上で一定距離間隔の帯状領域40aを連続して撮像することができる。 When the wheel 15 is rotated by the movement of the structure imaging device 10, a pulse signal is generated from the encoder 13 at every constant rotation amount (angle). The synchronization unit 14a synchronously performs imaging by the line camera 11 every time a predetermined number of pulse signals are counted. Thereby, it is possible to continuously image the band-like regions 40a at regular distance intervals on the structure 40 or the like.
 ノートパソコン20は、ラインカメラ11によって撮像された帯状領域40aの画像データを撮像毎に取得し、必要に応じて外付けハードディスク21にそれぞれ保存するとともに、CPU20aによって様々な画像処理や解析などを行って構造物40などの劣化や亀裂などを検出する。具体的な解析には、例えば、背景技術として上述した各特許文献に記載されているような装置やシステムで開示されている方法なども適用可能である。 The notebook computer 20 acquires the image data of the band-like area 40a imaged by the line camera 11 for each imaging, stores the data in the external hard disk 21 as necessary, and performs various image processing and analysis by the CPU 20a. The deterioration or crack of the structure 40 is detected. For specific analysis, for example, a method disclosed in an apparatus or system as described in each of the above-described patent documents as background art can be applied.
 検査対象とする構造物40などの図面や地図などの情報を予め入力しておけば、構造物撮像装置10の移動開始地点情報と撮像された帯状領域40aの距離間隔などに基づいて、図面や地図などの上に帯状領域40aの各画像データを自動的に重ね合わせてディスプレー20bに表示することもできる。ノートパソコン20はハンドル31付近に支持されており、構造物撮像装置10を移動させながらディスプレー20b上の表示をリアルタイムで確認できる。これにより、構造物40などの上の帯状領域40aが漏れなく鮮明に撮像されているかを容易に確認しながら検査作業を行うことができる。また、図面や地図などの上に重ね合わせた帯状領域40aの各画像データを用いれば、検査報告書なども効率的に作成可能となる。 If information such as a drawing or a map of the structure 40 to be inspected is input in advance, the drawing and the distance between the moving area information of the structure imaging device 10 and the imaged band-like region 40a are It is also possible to automatically superimpose the image data of the band-like area 40a on a map or the like and display it on the display 20b. The notebook computer 20 is supported in the vicinity of the handle 31, and the display on the display 20b can be confirmed in real time while moving the structure imaging apparatus 10. Thereby, it is possible to perform the inspection work while easily confirming whether the band-like region 40a on the structure 40 or the like is clearly imaged without omission. Further, if each image data of the band-like region 40a superimposed on a drawing or a map is used, an inspection report or the like can be efficiently created.
 また、構造物撮像装置10とノートパソコン20との接続を無線式とするとともに、フレーム30およびハンドル31を取り外せば、撮像部や屈曲光学系などを内装した偏平な箱形状の本体部10cだけになる。これを例えば、ロープやワイヤーなどで吊り下げるようにすれば、構造物撮像装置10の重心が低いため、ビルなどの建築物やダムなどの土木構造物の鉛直または斜めの壁面であっても、バランスを崩すことなく安定した検査が可能となる。このとき、位置変化検知部は本体を牽引するロープやワイヤーの巻き取り装置に設けたエンコーダであってもよい。これにより鉛直または斜めの壁面であっても本体の移動に同期させて撮像することが可能である。また、必要な精度にもよるが、GPS(全地球測位システム)、気圧センサー、レーザー距離計などによって高さ変化を検知して撮像を制御してもよい。 In addition, while the connection between the structure imaging device 10 and the notebook computer 20 is wireless, and the frame 30 and the handle 31 are removed, only the flat box-shaped main body 10c with an imaging unit, a bending optical system, etc. is provided. Become. For example, if it is hung with a rope or wire, the structure imaging device 10 has a low center of gravity, so even if it is a vertical or oblique wall surface of a building such as a building or a civil engineering structure such as a dam, Stable inspection is possible without losing balance. At this time, the position change detection unit may be an encoder provided in a rope for pulling the main body or a wire winding device. Thereby, even if it is a vertical or diagonal wall surface, it is possible to image in synchronization with the movement of the main body. Depending on the required accuracy, the imaging may be controlled by detecting a change in height using a GPS (Global Positioning System), an atmospheric pressure sensor, a laser rangefinder, or the like.
 <第1実施形態の変形例>
 構造物撮像装置10に、通常のGPS(Global Positioning System)や屋内GPSなどの絶対位置検知器を備えてもよい。
<Modification of First Embodiment>
The structure imaging apparatus 10 may include an absolute position detector such as a normal GPS (Global Positioning System) or an indoor GPS.
 上述した構造物撮像装置10では、エンコーダ13によって移動開始地点からの直線上の移動距離がわかるだけであったが、絶対位置検知器と併用することで、構造物40などで2次元の広がりをもった領域を検査対象とすることもできる。 In the structure imaging apparatus 10 described above, the encoder 13 can only know the movement distance on the straight line from the movement start point. However, by using it together with the absolute position detector, the structure 40 and the like can be expanded two-dimensionally. It is also possible to make the area having the inspection object.
 なお、上述した構造物検査システム100のように、構造物撮像装置10とノートパソコン20とがケーブル22などによって有線で接続されている場合は、絶対位置検知器はノートパソコン20に内蔵したり、ハンドル31付近に備えてもよい。無線式接続の場合とは異なり、これらの絶対位置はほとんど同じだからである。 In addition, as in the structure inspection system 100 described above, when the structure imaging apparatus 10 and the notebook computer 20 are connected by a cable 22 or the like, the absolute position detector may be built in the notebook computer 20, It may be provided near the handle 31. Unlike the case of wireless connection, these absolute positions are almost the same.
 また、構造物撮像装置10自体に、この動作を制御するノートパソコン20と同等の制御装置と、いわゆるロボット掃除機のような自走手段とを備えてもよい。または、構造物撮像装置10とノートパソコン20との接続を無線式とするとともに、構造物撮像装置10自体に自走手段を備えてもよい。さらに、構造物撮像装置10の起点または通常待機位置となる基地を備えてもよい。これらにより、構造物40などの検査を、人手を介さず自動的に行うことができ、定期的な保守点検なども容易となる。 Further, the structure imaging device 10 itself may be provided with a control device equivalent to the notebook personal computer 20 for controlling this operation and a self-running means such as a so-called robot cleaner. Alternatively, the structure imaging device 10 and the notebook computer 20 may be wirelessly connected, and the structure imaging device 10 itself may be provided with a self-propelled means. Furthermore, you may provide the base used as the starting point of the structure imaging device 10, or a normal standby position. As a result, the structure 40 and the like can be automatically inspected without human intervention, and periodic maintenance and inspection can be facilitated.
 <第2実施形態の構成>
 図6は本発明の第2実施形態に係る構造物スキャナー100Aの概略構成を示す側面図である。図7は、構造物スキャナー100Aの電気的な概略構成を示すブロック図である。なお、第1実施形態と同一の構成部材には同一の参照符号を付し、以下では主として相違点について説明する。
<Configuration of Second Embodiment>
FIG. 6 is a side view showing a schematic configuration of a structure scanner 100A according to the second embodiment of the present invention. FIG. 7 is a block diagram showing an electrical schematic configuration of the structure scanner 100A. In addition, the same referential mark is attached | subjected to the same structural member as 1st Embodiment, and the difference is mainly demonstrated below.
 図6に示すように、構造物40(例えば、道路などのコンクリート舗装面)などの検査を行う構造物スキャナー100Aは、扁平な箱形状の構造物スキャナー本体10Aと、構造物スキャナー本体10Aの後端部に垂直方向へ延びるように取り付けられたフレーム30の上部で支持されるとともに、構造物スキャナー100Aの動作を制御するノートパソコン20と、フレーム30の上部に水平方向前方へ延びるように設けられたサブフレーム32によって撮像方向を下方に向けて支持され、載置された構造物40などの上での移動方向と直交する細長い被撮像領域である帯状領域40aを撮像するラインカメラ11と、フレーム30の上端に水平方向後方へ延びるように設けられ、構造物スキャナー100Aを移動させるときに把持するためのハンドル31とを備えている。 As shown in FIG. 6, a structure scanner 100A for inspecting a structure 40 (for example, a concrete pavement surface such as a road) has a flat box-shaped structure scanner main body 10A and a rear of the structure scanner main body 10A. A notebook computer 20 that controls the operation of the structure scanner 100A and a notebook computer 20 that controls the operation of the structure scanner 100A, and is provided so as to extend forward in the horizontal direction. A line camera 11 that captures a strip-like region 40a that is an elongated imaging region that is supported by the subframe 32 with the imaging direction facing downward and that is orthogonal to the moving direction on the mounted structure 40 or the like; 30 is provided at the upper end of 30 so as to extend rearward in the horizontal direction, and is gripped when moving the structure scanner 100A. And a handle 31 of the eye.
 ノートパソコン20(特に後述するディスプレー20b)とハンドル31とは、操作や表示確認などをしやすくするため、できるだけ近接させることが好ましいが、少なくとも、ディスプレー20bは、ハンドル31を把持したままの状態で表示内容が視認できるように配置することが好ましい。ただし、構造物スキャナー本体10Aとノートパソコン20との接続を無線式とし、構造物スキャナー本体10Aを押す人とは別の人が離れた場所でディスプレー20bの表示を確認するような構成もあり得る。 The notebook personal computer 20 (particularly, a display 20b described later) and the handle 31 are preferably as close as possible to facilitate operation and display confirmation, but at least the display 20b is in a state of holding the handle 31. It is preferable to arrange the display contents so as to be visible. However, there may be a configuration in which the connection between the structure scanner main body 10A and the notebook computer 20 is wireless, and the display on the display 20b is confirmed in a place away from a person pushing the structure scanner main body 10A. .
 図6に示すように、構造物スキャナー本体10Aの側面の前方および後方には、それぞれ車輪15が取り付けられている。反対側側面に取り付けられたものも含む4つの車輪15に支持されることで、ハンドル31を押すことによる人力での構造物スキャナー100Aの移動が容易となる。移動時の振動を極力軽減するため、車輪15には除震性を有するタイヤを用いることが好ましい。 As shown in FIG. 6, wheels 15 are respectively attached to the front and rear of the side surface of the structure scanner main body 10A. By being supported by the four wheels 15 including those attached to the opposite side surface, the structure scanner 100A can be easily moved manually by pushing the handle 31. In order to reduce vibration at the time of movement as much as possible, it is preferable to use a tire having seismic isolation for the wheel 15.
 構造物スキャナー本体10Aは、帯状領域40aに対応する位置のやや後方に配置され、帯状領域40aを斜め上方から高均一に照明するLED照明12aと、このLED照明12a専用の照明電源12bと、車輪15の回転に連動するように配置され、構造物40などの上での構造物スキャナー100Aの移動距離を検知するエンコーダ13と、このエンコーダ13で検知された移動距離に基づいてラインカメラ11による撮像を行わせる同期部14a(図7を参照して後述)を収めた電装ボックス14Aとを備えている。 The structure scanner main body 10A is arranged slightly rearward of the position corresponding to the belt-like region 40a, and illuminates the belt-like region 40a with high uniformity from obliquely above, an illumination power source 12b dedicated to the LED light 12a, and a wheel. The encoder 13 is arranged so as to be interlocked with the rotation of 15 and detects the moving distance of the structure scanner 100A on the structure 40 or the like, and the line camera 11 captures an image based on the moving distance detected by the encoder 13. And an electrical box 14A in which a synchronizing unit 14a (described later with reference to FIG. 7) is stored.
 また、図6に示すように、構造物スキャナー本体10Aの上面には、バッテリー18が取り付けられており、コネクタ(不図示)を介して、構造物スキャナー本体10A内部の照明電源12b、エンコーダ13、同期部14aなどに電力を供給する。ただし、バッテリー18の取り付けは構造物スキャナー本体10Aの上面に限らないし、可能であれば構造物スキャナー本体10Aに内蔵してもよい。 As shown in FIG. 6, a battery 18 is attached to the upper surface of the structure scanner main body 10A, and an illumination power source 12b, an encoder 13, and the like inside the structure scanner main body 10A are connected via a connector (not shown). Power is supplied to the synchronization unit 14a and the like. However, the attachment of the battery 18 is not limited to the upper surface of the structure scanner main body 10A, and may be built in the structure scanner main body 10A if possible.
 図7に示すように、画像取得解析部として機能するノートパソコン20はその本体に、構造物スキャナー100Aの各部の動作を制御するとともに、ラインカメラ11によって撮像された画像データの取得や解析などを行うCPU20aと、このCPU20aによって取得された画像データや解析結果などを表示する表示部としてディスプレー20bとを備えている。画像取得解析部として上記のように汎用のノートパソコンを用いてもよいし、専用の情報処理装置を用いてもよい。 As shown in FIG. 7, the notebook computer 20 functioning as an image acquisition / analysis unit controls the operation of each unit of the structure scanner 100 </ b> A on its main body, and acquires and analyzes image data captured by the line camera 11. A CPU 20a to perform, and a display 20b as a display unit for displaying image data and analysis results acquired by the CPU 20a are provided. As the image acquisition / analysis unit, a general-purpose notebook computer may be used as described above, or a dedicated information processing apparatus may be used.
 構造物スキャナー本体10Aとラインカメラ11やノートパソコン20との接続はケーブル22(図6では不図示)によって行うが、これらの接続を無線式としてもよい。 The connection between the structure scanner main body 10A and the line camera 11 and the notebook computer 20 is made by the cable 22 (not shown in FIG. 6), but these connections may be wireless.
 <構造物スキャナー100Aによる検査>
 構造物スキャナー100Aによる検査方法について次に説明する。
<Inspection by Structure Scanner 100A>
Next, an inspection method using the structure scanner 100A will be described.
 まず、構造物スキャナー100Aを検査対象とする構造物40などの上に置き、ノートパソコン20側で移動開始前の準備作業などをした後、LED照明12aを点灯させ、ハンドル31を押して構造物スキャナー100Aをなるべく一定の速度で前方へ移動開始させる。 First, the structure scanner 100A is placed on the structure 40 or the like to be inspected, and after the preparatory work before starting the movement on the notebook personal computer 20 side, the LED illumination 12a is turned on, and the handle 31 is pushed to push the structure scanner. Start moving 100A forward at as constant a speed as possible.
 構造物スキャナー100Aの移動によって車輪15が回転すると、一定回転量(角度)毎にエンコーダ13からパルス信号が発生する。同期部14aは、予め定められた回数のパルス信号をカウントする毎にラインカメラ11による撮像を同期的に行わせる。これにより、構造物40などの上で一定距離間隔の帯状領域40aを連続して撮像することができる。 When the wheel 15 is rotated by the movement of the structure scanner 100A, a pulse signal is generated from the encoder 13 at every constant rotation amount (angle). The synchronization unit 14a synchronously performs imaging by the line camera 11 every time a predetermined number of pulse signals are counted. Thereby, it is possible to continuously image the band-like regions 40a at regular distance intervals on the structure 40 or the like.
 ノートパソコン20は、ラインカメラ11によって撮像された帯状領域40aの画像データを撮像毎に取得し、必要に応じて外付けハードディスク21にそれぞれ保存するとともに、CPU20aによって様々な画像処理や解析などを行って構造物40などの劣化や亀裂などを検出する。具体的な解析には、例えば、背景技術として上述した各特許文献に記載されているような装置やシステムで開示されている方法なども適用可能である。 The notebook computer 20 acquires the image data of the band-like area 40a imaged by the line camera 11 for each imaging, stores the data in the external hard disk 21 as necessary, and performs various image processing and analysis by the CPU 20a. The deterioration or crack of the structure 40 is detected. For specific analysis, for example, a method disclosed in an apparatus or system as described in each of the above-described patent documents as background art can be applied.
 検査対象とする構造物40などの図面や地図などの情報を予め入力しておけば、構造物スキャナー100Aの移動開始地点情報と撮像された帯状領域40aの距離間隔などに基づいて、図面や地図などの上に帯状領域40aの各画像データを自動的に重ね合わせてディスプレー20bに表示することもできる。ノートパソコン20はハンドル31付近に支持されており、構造物スキャナー100Aを移動させながらディスプレー20b上の表示をリアルタイムで確認できる。これにより、構造物40などの上の帯状領域40aが漏れなく鮮明に撮像されているかを容易に確認しながら検査作業を行うことができる。また、図面や地図などの上に重ね合わせた帯状領域40aの各画像データを用いれば、検査報告書なども効率的に作成可能となる。 If information such as a drawing or a map of the structure 40 to be inspected is input in advance, the drawing or the map is based on the movement start point information of the structure scanner 100A and the distance between the imaged band-like regions 40a. It is also possible to automatically superimpose the image data of the belt-like region 40a on the display 20b. The notebook computer 20 is supported near the handle 31, and the display on the display 20b can be checked in real time while moving the structure scanner 100A. Thereby, it is possible to perform the inspection work while easily confirming whether the band-like region 40a on the structure 40 or the like is clearly imaged without omission. Further, if each image data of the band-like region 40a superimposed on a drawing or a map is used, an inspection report or the like can be efficiently created.
 <第3実施形態>
 第2実施形態のように人力によって移動するのではなく、自走手段によって移動可能としたものを第3実施形態として次に説明する。なお、第1実施形態や第2実施形態と同一の構成部材には同一の参照符号を付し、以下では主として相違点について説明する。
<Third Embodiment>
The third embodiment will now be described as being movable by self-propelled means rather than being moved by human power as in the second embodiment. Note that the same components as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and different points will be mainly described below.
 図8は本発明の第3実施形態に係る構造物スキャナー100Bの概略構成を示す側面図である。 FIG. 8 is a side view showing a schematic configuration of a structure scanner 100B according to the third embodiment of the present invention.
 図8に示すように、構造物40などの検査を行う構造物スキャナー100Bは、扁平な箱形状の構造物スキャナー本体10Bと、載置された構造物40などの上での移動方向と直交する細長い被撮像領域である帯状領域40aを撮像するラインカメラ11とを備えている。このラインカメラ11は、構造物スキャナー本体10Bの後端部に垂直方向へ延びるように取り付けられた後方フレーム34と構造物スキャナー本体10Bの前端部に垂直方向へ延びるように取り付けられた前方フレーム33とで水平に支持されたサブフレーム32によって、撮像方向を下方に向けて支持されている。 As shown in FIG. 8, the structure scanner 100B for inspecting the structure 40 or the like is orthogonal to the moving direction on the flat box-shaped structure scanner main body 10B and the mounted structure 40 or the like. And a line camera 11 that captures an image of a strip-shaped region 40a that is a long and thin region to be imaged. The line camera 11 includes a rear frame 34 attached to the rear end portion of the structure scanner main body 10B so as to extend in the vertical direction and a front frame 33 attached to extend to the front end portion of the structure scanner main body 10B in the vertical direction. The sub-frame 32 is supported horizontally so that the imaging direction is downward.
 構造物スキャナー本体10Bの側面の前方および後方には、それぞれ車輪15が取り付けられており、構造物スキャナー本体10Bの上面には、バッテリー18が取り付けられている。 Wheels 15 are attached to the front and rear of the side surface of the structure scanner main body 10B, respectively, and a battery 18 is attached to the upper surface of the structure scanner main body 10B.
 また、構造物スキャナー本体10Bは、帯状領域40aに対応する位置のやや後方に配置され、帯状領域40aを斜め上方から高均一に照明するLED照明12aと、このLED照明12a専用の照明電源12bと、車輪15の回転に連動するように配置され、構造物40などの上での構造物スキャナー100Bの移動距離を検知するエンコーダ13と、このエンコーダ13で検知された移動距離に基づいてラインカメラ11による撮像を行わせる同期部14aや各部の制御を行う制御部を収めた電装ボックス14Bとを備えている。 Further, the structure scanner main body 10B is disposed slightly behind the position corresponding to the belt-like region 40a, and illuminates the belt-like region 40a with high uniformity from obliquely above, and an illumination power source 12b dedicated to the LED light 12a, The encoder 13 is arranged so as to be interlocked with the rotation of the wheel 15 and detects the moving distance of the structure scanner 100B on the structure 40 or the like, and the line camera 11 based on the moving distance detected by the encoder 13. And an electrical box 14B containing a control unit that controls each unit.
 さらに、構造物スキャナー100Bは、構造物スキャナー本体10Bに自走による自律移動を可能とするために車輪15を駆動する駆動部19(モーターなど)を内蔵するとともに、自走時に周囲の障害物などと衝突することを回避するための障害物検知センサー35を構造物スキャナー本体10Bの前端部とサブフレーム32の前端部とに備えている。 Furthermore, the structure scanner 100B incorporates a drive unit 19 (such as a motor) that drives the wheels 15 in order to allow the structure scanner main body 10B to autonomously move by self-propelling, and surrounding obstacles and the like during self-propelling Are provided at the front end of the structure scanner main body 10B and the front end of the sub-frame 32.
 なお、駆動部19および車輪15による前後方向の移動だけでなく、移動方向を変えられるようにしてもよい。ラジコン式またはリモコン式にして、離れた場所から作業者の操作によって操縦可能としてもよい。自走による移動させるものを、ラインカメラ11、LED照明12a、照明電源12bおよびバッテリー18などに限定してもよい。障害物検知センサー35は、構造物スキャナー本体10Bの後端部や側面などに追加してもよい。 In addition, you may enable it to change not only the movement in the front-back direction by the drive part 19 and the wheel 15, but a movement direction. It may be a radio control type or a remote control type, and may be steerable by an operator's operation from a remote location. What is moved by self-running may be limited to the line camera 11, the LED illumination 12a, the illumination power supply 12b, the battery 18, and the like. The obstacle detection sensor 35 may be added to the rear end portion or the side surface of the structure scanner main body 10B.
 また、構造物スキャナー本体10Bとノートパソコン20との接続を無線式とし、ラインカメラ11によって撮像された画像データや解析結果などを、構造物スキャナー本体10Bとは離れた場所でディスプレー20bに表示させてもよい。 Also, the connection between the structure scanner main body 10B and the notebook computer 20 is wireless, and image data and analysis results captured by the line camera 11 are displayed on the display 20b at a location away from the structure scanner main body 10B. May be.
 このような構成によれば、構造物40などの検査を、人手を介さずに自動的に行うことができ、管理などを行う作業者の負担も軽減できる。 According to such a configuration, the inspection of the structure 40 and the like can be automatically performed without human intervention, and the burden on the operator who performs management and the like can be reduced.
 <第2実施形態や第3実施形態の変形例>
 構造物スキャナー100Aや構造物スキャナー100Bに、通常のGPS(Global Positioning System)や屋内GPSなどの絶対位置検知器を備えてもよい。
<Modifications of Second Embodiment and Third Embodiment>
The structure scanner 100A and the structure scanner 100B may be provided with an absolute position detector such as a normal GPS (Global Positioning System) or an indoor GPS.
 上述した構造物スキャナー100Aや構造物スキャナー100Bでは、エンコーダ13によって移動開始地点からの直線上の移動距離がわかるだけであったが、絶対位置検知器と併用することで、構造物40などで2次元の広がりをもった領域を検査対象とすることもできる。 In the structure scanner 100A and the structure scanner 100B described above, the encoder 13 can only know the movement distance on the straight line from the movement start point. It is also possible to inspect a region having a dimension spread.
 また、絶対位置検知器はノートパソコン20に内蔵したり、ハンドル31付近に備えてもよい。 Further, the absolute position detector may be built in the notebook computer 20 or provided near the handle 31.
 <第2実施形態や第3実施形態に対応する請求の範囲>
(請求項1)
 載置面上の被撮像領域を撮像するための撮像部と、
 前記被撮像領域を照明する照明部と、
 前記載置面上での移動による位置変化を検知する位置変化検知部と、
 この位置変化検知部によって検知された前記位置変化に基づいて前記撮像部による撮像の時期を制御する撮像時期制御部と、
 前記撮像部によって撮像された画像データの取得および解析を行う画像取得解析部と、
 この画像取得解析部によって取得された前記画像データまたはその解析結果の少なくとも一方を表示する表示部と、
 前記画像データを保存する保存部と、
 移動させるために把持する把持部と
を備え、
 前記表示部は、前記把持部を把持した状態で表示内容を視認可能に配置されていることを特徴とする構造物検査システム。
(請求項2)
 載置面上の被撮像領域を撮像するための撮像部と、
 前記被撮像領域を照明する照明部と、
 前記載置面上での移動による位置変化を検知する位置変化検知部と、
 この位置変化検知部によって検知された前記位置変化に基づいて前記撮像部による撮像の時期を制御する撮像時期制御部と、
 前記撮像部によって撮像された画像データの取得および解析を行う画像取得解析部と、
 前記画像データを保存する保存部と、
 少なくとも前記撮像部および前記照明部を移動するための自走手段と、
 前記画像取得解析部によって取得された前記画像データまたはその解析結果の少なくとも一方を前記撮像部から離れた場所に表示する表示部と
を備えることを特徴とする構造物検査システム。
(請求項3)
 請求項1または2に記載の構造物検査システムにおいて、
 絶対位置情報を検知する絶対位置検知器をさらに備え、
 前記画像取得解析部は、前記撮像部によって撮像された画像データおよび前記絶対位置検知器によって検知された前記絶対位置情報の取得および解析を行うことを特徴とする構造物検査システム。
<Claims corresponding to 2nd Embodiment and 3rd Embodiment>
(Claim 1)
An imaging unit for imaging an imaging area on the mounting surface;
An illumination unit that illuminates the imaged region;
A position change detection unit for detecting a position change due to movement on the placement surface, and
An imaging timing control unit that controls the timing of imaging by the imaging unit based on the position change detected by the position change detection unit;
An image acquisition and analysis unit for acquiring and analyzing image data captured by the imaging unit;
A display unit for displaying at least one of the image data acquired by the image acquisition analysis unit or the analysis result;
A storage unit for storing the image data;
A gripping part for gripping to move,
The structure inspection system, wherein the display unit is arranged so that display contents can be visually recognized in a state where the holding unit is held.
(Claim 2)
An imaging unit for imaging an imaging area on the mounting surface;
An illumination unit that illuminates the imaged region;
A position change detection unit for detecting a position change due to movement on the placement surface, and
An imaging timing control unit that controls the timing of imaging by the imaging unit based on the position change detected by the position change detection unit;
An image acquisition and analysis unit for acquiring and analyzing image data captured by the imaging unit;
A storage unit for storing the image data;
Self-propelled means for moving at least the imaging unit and the illumination unit;
A structure inspection system comprising: a display unit configured to display at least one of the image data acquired by the image acquisition analysis unit or the analysis result thereof at a location away from the imaging unit.
(Claim 3)
In the structure inspection system according to claim 1 or 2,
Further equipped with an absolute position detector for detecting absolute position information,
The structure inspection system, wherein the image acquisition / analysis unit acquires and analyzes the image data captured by the imaging unit and the absolute position information detected by the absolute position detector.
 なお、本発明は、その主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-mentioned embodiment is only a mere illustration in all points, and should not be interpreted limitedly. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 この出願は、日本で2015年9月28日に出願された特願2015-189792号および特願2015-189793号に基づく優先権を請求する。それらの内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2015-189792 and Japanese Patent Application No. 2015-189793 filed on September 28, 2015 in Japan. The contents of which are hereby incorporated by reference into this application. In addition, the documents cited in the present specification are specifically incorporated in their entirety by referring to them.
10   構造物撮像装置
10A  構造物スキャナー本体
10B  構造物スキャナー本体
11   ラインカメラ(撮像部)
11a  カメラ本体
11b  レンズ
12a  LED照明(照明部)
12b  照明電源
13   エンコーダ(移動距離検知部)
14   電装ボックス
14A  電装ボックス
14B  電装ボックス
14a  同期部
15   車輪
16   ミラー(屈曲光学系)
17a  透明板材
17b  透明板材
18   バッテリー
19   駆動部
20   ノートパソコン
20a  CPU(制御部)
20b  ディスプレー(表示部)
21   外付けハードディスク(保存部)
22   ケーブル
30   フレーム
31   ハンドル(把持部)
32   サブフレーム
33   前方フレーム
34   後方フレーム
35   障害物検知センサー
40   構造物
40a  帯状領域
100  構造物検査システム
100A 構造物スキャナー(構造物検査システム)
100B 構造物スキャナー(構造物検査システム)
DESCRIPTION OF SYMBOLS 10 Structure imaging device 10A Structure scanner main body 10B Structure scanner main body 11 Line camera (imaging part)
11a Camera body 11b Lens 12a LED illumination (illumination part)
12b Illumination power supply 13 Encoder (travel distance detector)
14 electrical box 14A electrical box 14B electrical box 14a synchronization unit 15 wheel 16 mirror (bending optical system)
17a transparent plate material 17b transparent plate material 18 battery 19 drive unit 20 notebook computer 20a CPU (control unit)
20b Display (display section)
21 External hard disk (storage)
22 Cable 30 Frame 31 Handle (grip)
32 Sub-frame 33 Front frame 34 Rear frame 35 Obstacle detection sensor 40 Structure 40a Strip region 100 Structure inspection system 100A Structure scanner (structure inspection system)
100B Structure scanner (structure inspection system)

Claims (14)

  1.  構造物の被撮像領域を撮像するための撮像部と、
     この撮像部による撮像方向を屈曲する屈曲光学系と、
     前記被撮像領域を照明する照明部と、
     前記撮像部によって撮像された画像データを基に前記構造物の検査を行う検査部と
    を備えることを特徴とする構造物検査装置。
    An imaging unit for imaging the imaging region of the structure;
    A bending optical system that bends the imaging direction of the imaging unit;
    An illumination unit that illuminates the imaged region;
    A structure inspection apparatus, comprising: an inspection unit that inspects the structure based on image data captured by the imaging unit.
  2.  請求項1に記載の構造物検査装置において、
     前記構造物上での移動による位置変化を検知する位置変化検知部と、
     この位置変化検知部によって検知された前記位置変化に基づいて前記撮像部による撮像の時期を制御する撮像時期制御部と
    をさらに備えることを特徴とする構造物検査装置。
    The structure inspection apparatus according to claim 1,
    A position change detection unit for detecting a position change due to movement on the structure;
    A structure inspection apparatus, further comprising: an imaging timing control unit that controls an imaging timing by the imaging unit based on the position change detected by the position change detection unit.
  3.  請求項1または2に記載の構造物検査装置において、
     前記撮像部および前記屈曲光学系を内装する本体部をさらに備えることを特徴とする構造物検査装置。
    In the structure inspection apparatus according to claim 1 or 2,
    A structure inspection apparatus, further comprising a main body that houses the imaging unit and the bending optical system.
  4.  請求項3に記載の構造物検査装置において、
     前記本体部は偏平な形状であって、
     前記撮像部は前記本体部の底面または天面と相対する前記構造物の前記被撮像領域を撮像することを特徴とする構造物検査装置。
    In the structure inspection apparatus according to claim 3,
    The main body has a flat shape,
    The structure inspection apparatus characterized in that the imaging unit images the imaged region of the structure facing the bottom surface or the top surface of the main body.
  5.  請求項1~4のいずれか1項に記載の構造物検査装置において、
     前記屈曲光学系は反射部材であることを特徴とする構造物検査装置。
    The structure inspection apparatus according to any one of claims 1 to 4,
    The structure inspection apparatus, wherein the bending optical system is a reflecting member.
  6.  請求項1~5のいずれか1項に記載の構造物検査装置において、
     絶対位置情報を検知する絶対位置検知器をさらに備えることを特徴とする構造物検査装置。
    In the structure inspection apparatus according to any one of claims 1 to 5,
    A structure inspection apparatus, further comprising an absolute position detector for detecting absolute position information.
  7.  請求項1~6のいずれか1項に記載の構造物検査装置と、
     前記構造物検査装置の動作を制御するとともに、前記撮像部によって撮像された前記画像データの取得および解析を行う制御部と、
     この制御部によって取得された前記画像データまたは前記制御部による解析結果の少なくとも一方を表示する表示部と、
     前記画像データを保存する保存部と
    を備えることを特徴とする構造物検査システム。
    The structure inspection apparatus according to any one of claims 1 to 6,
    A control unit that controls the operation of the structure inspection apparatus and that acquires and analyzes the image data captured by the imaging unit;
    A display unit for displaying at least one of the image data acquired by the control unit or an analysis result by the control unit;
    A structure inspection system comprising: a storage unit that stores the image data.
  8.  請求項1~6のいずれか1項に記載の構造物検査装置と、
     前記構造物検査装置の動作を制御するとともに、前記撮像部によって撮像された前記画像データおよび前記絶対位置検知器によって検知された前記絶対位置情報の取得および解析を行う制御部と、
     この制御部によって取得された前記画像データまたは前記制御部による解析結果の少なくとも一方を表示する表示部と、
     前記画像データを保存する保存部と
    を備えることを特徴とする構造物検査システム。
    The structure inspection apparatus according to any one of claims 1 to 6,
    A control unit that controls the operation of the structure inspection apparatus and acquires and analyzes the image data captured by the imaging unit and the absolute position information detected by the absolute position detector;
    A display unit for displaying at least one of the image data acquired by the control unit or an analysis result by the control unit;
    A structure inspection system comprising: a storage unit that stores the image data.
  9.  構造物の被撮像領域を撮像するための撮像部と、
     この撮像部による撮像方向を屈曲する屈曲光学系と、
     前記被撮像領域を照明する照明部と
    を備えることを特徴とする構造物撮像装置。
    An imaging unit for imaging the imaging region of the structure;
    A bending optical system that bends the imaging direction of the imaging unit;
    A structure imaging apparatus comprising: an illumination unit that illuminates the imaged region.
  10.  請求項9に記載の構造物撮像装置において、
     前記構造物上での移動による位置変化を検知する位置変化検知部と、
     この位置変化検知部によって検知された前記位置変化に基づいて前記撮像部による撮像の時期を制御する撮像時期制御部と
    をさらに備えることを特徴とする構造物撮像装置。
    The structure imaging apparatus according to claim 9, wherein
    A position change detection unit for detecting a position change due to movement on the structure;
    A structure imaging apparatus, further comprising: an imaging timing control unit that controls an imaging timing by the imaging unit based on the position change detected by the position change detection unit.
  11.  請求項9または10に記載の構造物撮像装置において、
     前記撮像部および前記屈曲光学系を内装する本体部をさらに備えることを特徴とする構造物撮像装置。
    In the structure imaging device according to claim 9 or 10,
    A structure imaging apparatus, further comprising a main body that houses the imaging unit and the bending optical system.
  12.  請求項11に記載の構造物撮像装置において、
     前記本体部は偏平な形状であって、
     前記撮像部は前記本体部の底面または天面と相対する前記構造物の前記被撮像領域を撮像することを特徴とする構造物撮像装置。
    The structure imaging apparatus according to claim 11,
    The main body has a flat shape,
    The structure imaging apparatus, wherein the imaging unit images the imaging region of the structure facing the bottom surface or the top surface of the main body.
  13.  請求項9~12のいずれか1項に記載の構造物撮像装置において、
     前記屈曲光学系は反射部材であることを特徴とする構造物撮像装置。
    The structure imaging apparatus according to any one of claims 9 to 12,
    The structure imaging apparatus, wherein the bending optical system is a reflecting member.
  14.  請求項9~13のいずれか1項に記載の構造物撮像装置において、
     絶対位置情報を検知する絶対位置検知器をさらに備えることを特徴とする構造物撮像装置。
    The structure imaging apparatus according to any one of claims 9 to 13,
    A structure imaging apparatus, further comprising an absolute position detector for detecting absolute position information.
PCT/JP2016/078444 2015-09-28 2016-09-27 Structure imaging apparatus, structure inspection apparatus, and structure inspection system WO2017057356A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015189792A JP6602624B2 (en) 2015-09-28 2015-09-28 Structure inspection system
JP2015-189792 2015-09-28
JP2015-189793 2015-09-28
JP2015189793A JP6602625B2 (en) 2015-09-28 2015-09-28 Structure inspection system

Publications (1)

Publication Number Publication Date
WO2017057356A1 true WO2017057356A1 (en) 2017-04-06

Family

ID=58427699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078444 WO2017057356A1 (en) 2015-09-28 2016-09-27 Structure imaging apparatus, structure inspection apparatus, and structure inspection system

Country Status (1)

Country Link
WO (1) WO2017057356A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107059579A (en) * 2017-06-09 2017-08-18 重庆亲旅智千科技有限公司 A kind of multi-functional road CT synthetic detection vehicles
JP2017223087A (en) * 2016-06-17 2017-12-21 東日本高速道路株式会社 Imaging device and imaging system
WO2019107353A1 (en) * 2017-11-30 2019-06-06 パイオニア株式会社 Data structure of map data

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177261A (en) * 1984-02-24 1985-09-11 Power Reactor & Nuclear Fuel Dev Corp Running device for in-cell inspecting device
JPS61275642A (en) * 1985-05-31 1986-12-05 Power Reactor & Nuclear Fuel Dev Corp Inspecting instrument for floor surface
JPH04240555A (en) * 1991-01-23 1992-08-27 Tokimec Inc Apparatus for measuring crack of road surface
JP2002040335A (en) * 2000-07-24 2002-02-06 Tokyo Electron Ind Co Ltd Conduit inside surface inspection apparatus using mirror
US6615648B1 (en) * 1997-12-22 2003-09-09 The Roads And Traffic Authority On New South Wales Road pavement deterioration inspection system
JP2009109352A (en) * 2007-10-30 2009-05-21 Ishikawa Tekkosho:Kk Self-propelled inside-of-tube inspection robot for egg-shaped pipe
JP2015072220A (en) * 2013-10-03 2015-04-16 株式会社ネクスコ・エンジニアリング新潟 Narrow interval inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177261A (en) * 1984-02-24 1985-09-11 Power Reactor & Nuclear Fuel Dev Corp Running device for in-cell inspecting device
JPS61275642A (en) * 1985-05-31 1986-12-05 Power Reactor & Nuclear Fuel Dev Corp Inspecting instrument for floor surface
JPH04240555A (en) * 1991-01-23 1992-08-27 Tokimec Inc Apparatus for measuring crack of road surface
US6615648B1 (en) * 1997-12-22 2003-09-09 The Roads And Traffic Authority On New South Wales Road pavement deterioration inspection system
JP2002040335A (en) * 2000-07-24 2002-02-06 Tokyo Electron Ind Co Ltd Conduit inside surface inspection apparatus using mirror
JP2009109352A (en) * 2007-10-30 2009-05-21 Ishikawa Tekkosho:Kk Self-propelled inside-of-tube inspection robot for egg-shaped pipe
JP2015072220A (en) * 2013-10-03 2015-04-16 株式会社ネクスコ・エンジニアリング新潟 Narrow interval inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223087A (en) * 2016-06-17 2017-12-21 東日本高速道路株式会社 Imaging device and imaging system
CN107059579A (en) * 2017-06-09 2017-08-18 重庆亲旅智千科技有限公司 A kind of multi-functional road CT synthetic detection vehicles
CN107059579B (en) * 2017-06-09 2019-06-25 重庆亲禾智千科技有限公司 A kind of multi-functional road CT synthetic detection vehicle
WO2019107353A1 (en) * 2017-11-30 2019-06-06 パイオニア株式会社 Data structure of map data
JPWO2019107353A1 (en) * 2017-11-30 2020-12-17 パイオニア株式会社 Data structure of map data

Similar Documents

Publication Publication Date Title
JP6602625B2 (en) Structure inspection system
KR101794690B1 (en) Tunnel inspection system having individual driving rail-guided vehicle (rgv) and inertial navigation system (ins)
US9618620B2 (en) Using depth-camera images to speed registration of three-dimensional scans
JP6068012B2 (en) Roadbed shape measuring method, roadbed shape measuring device, and vehicle
JP6296477B2 (en) Method and apparatus for determining the three-dimensional coordinates of an object
CN107209082B (en) Tactical Mobile monitoring system
KR101534486B1 (en) Sewer 3D remote control exploration system
US11635391B2 (en) Systems and methods for inspecting pipelines using a pipeline inspection robot
JP6574845B2 (en) Drawing creating apparatus and drawing creating method
WO2011040239A1 (en) Wide angle imaging device and measurement system
JP6938107B1 (en) How to measure road surface damage
WO2017057356A1 (en) Structure imaging apparatus, structure inspection apparatus, and structure inspection system
JP5992893B2 (en) Narrow gap inspection device
JP5260175B2 (en) Non-contact measuring method and measuring system for measuring coordinates of target surface
JP2011124965A (en) Subject dimension measuring camera apparatus
JP6602624B2 (en) Structure inspection system
KR101520018B1 (en) Tunnel inspection apparatus
JP2016024516A (en) Movable multiple image pick-up apparatus
KR101079894B1 (en) Development of tunnel wall image acquiring system
KR100816826B1 (en) Crack Measuring Apparatus by Laser Image and the Method thereof
JP2017161403A (en) Imaging device, method, and program, and display control device and program
JP2004352107A (en) Railway equipment managing system
US20220292664A1 (en) Curb inspection tool
JP7067852B1 (en) Calculation method of road surface damage position
KR101172873B1 (en) 3d image photographing apparatus for tunnel surveying

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851527

Country of ref document: EP

Kind code of ref document: A1