WO2017041691A1 - Self-biased bandgap reference circuit with wide range of input voltages and high-precision output - Google Patents

Self-biased bandgap reference circuit with wide range of input voltages and high-precision output Download PDF

Info

Publication number
WO2017041691A1
WO2017041691A1 PCT/CN2016/098175 CN2016098175W WO2017041691A1 WO 2017041691 A1 WO2017041691 A1 WO 2017041691A1 CN 2016098175 W CN2016098175 W CN 2016098175W WO 2017041691 A1 WO2017041691 A1 WO 2017041691A1
Authority
WO
WIPO (PCT)
Prior art keywords
type mos
mos transistor
drain
unit
gate
Prior art date
Application number
PCT/CN2016/098175
Other languages
French (fr)
Chinese (zh)
Inventor
许育森
吴边
Original Assignee
卓捷创芯科技(深圳)有限公司
无锡智速科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卓捷创芯科技(深圳)有限公司, 无锡智速科技有限公司 filed Critical 卓捷创芯科技(深圳)有限公司
Publication of WO2017041691A1 publication Critical patent/WO2017041691A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Abstract

A self-biased bandgap reference circuit having a wide range of input voltages and a high-precision output. The circuit comprises a self-biasing unit. The self-biasing unit comprises a mirroring unit and a following unit. The self-biasing unit can reduce a voltage difference between bias points (x, y) at a high supply voltage effectively and increase the matching precision and thus the precision of an output reference voltage. Also, the self-biased circuit structure does not use an operational amplifier, and thus has a simple structure and reduces the power consumption, thereby addressing the application problem of a thin gate oxide high-voltage device and eliminating the clamping control specific to an output voltage of the operational amplifier, so as to prevent a gate of a high-voltage MOS transistor from being punctured at a high voltage of a thin gate oxide. Further, since a minimum value of an input voltage (Vdd) is a sum of threshold voltages of MOS transistors, and a maximum value of the input voltage (Vdd) is related to a Vds withstand value of the MOS transistor and can be a high value, therefore, the present invention can operate in a wide range of input voltages.

Description

一种宽输入电压范围和高精度输出的自偏置带隙基准电路Self-biased bandgap reference circuit with wide input voltage range and high precision output 技术领域Technical field
本发明涉及模拟集成电路设计领域,具体是指一种具有宽输入电压范围和高精度输出的自偏置带隙基准电路。The invention relates to the field of analog integrated circuit design, in particular to a self-biased bandgap reference circuit having a wide input voltage range and high precision output.
背景技术Background technique
基准电路是模拟集成电路中的关键电路,它为芯片内部提供一个稳定的参考电压。该参考电压对工艺制程、电源电压和温度等变化不敏感,能够保持稳定。芯片电路中可利用该参考电压进行偏置,是低压差稳压电源和模数转换器的重要组成部分。The reference circuit is a key circuit in an analog integrated circuit that provides a stable reference voltage inside the chip. The reference voltage is insensitive to changes in process, supply voltage and temperature and can be stable. The reference voltage can be used for biasing in the chip circuit, which is an important component of the low-dropout regulated power supply and analog-to-digital converter.
带隙基准电路利用硅的带隙电压来提供这样的参考电压。为实现低温度系数的参考电压,将两种具有相反温度系数的量以适当的权重相加而获得抵消温度系数的电压值。众所周知,双极晶体管的基极-发射极电压(VBE)具有负的温度系数。The bandgap reference circuit utilizes the bandgap voltage of silicon to provide such a reference voltage. To achieve a low temperature coefficient reference voltage, two quantities having opposite temperature coefficients are added with appropriate weights to obtain a voltage value that cancels the temperature coefficient. It is well known that the base-emitter voltage (V BE ) of a bipolar transistor has a negative temperature coefficient.
双极晶体管集电极电流IC与基极-发射极电压VBE满足以下关系The bipolar transistor collector current I C and the base-emitter voltage V BE satisfy the following relationship
Figure PCTCN2016098175-appb-000001
Figure PCTCN2016098175-appb-000001
其中IS为饱和电流,与双极晶体管发射极面积呈正比,VT为热电压,具有正的温度系数。假设两个双极晶体管偏置在相同电流下,它们之间的发射面积比为n,则IC1=IC2
Figure PCTCN2016098175-appb-000002
Where I S is the saturation current, which is proportional to the emitter area of the bipolar transistor, V T is the thermal voltage and has a positive temperature coefficient. Assuming that the two bipolar transistors are biased at the same current, the ratio of the emission area between them is n, then I C1 = I C2 ,
Figure PCTCN2016098175-appb-000002
Figure PCTCN2016098175-appb-000003
Figure PCTCN2016098175-appb-000003
因此偏置在相等的电流密度下的两个具有不同发射极面积的双极晶体管基极-发射极电压差值具有正的温度系数,可利用双极晶体管的这些特性来实现带隙基准电路。Therefore, the base-emitter voltage difference of two bipolar transistors having different emitter areas biased at equal current densities has a positive temperature coefficient, and these characteristics of the bipolar transistor can be utilized to implement the bandgap reference circuit.
传统的自偏置带隙基准电路如图1所示,该传统自偏置结构(PM1、PM2、NM1和NM2)本身是反馈环路,IPM1复制了IPM2,INM2复制了INM1,其中IPM1=INM1,IPM2=INM2。可以看出,此环路是正反馈环路,其环路增益等于环路电流增益。由反馈环路稳定性理论可知,正反馈环路达到稳定状态的要求是其环路增益小于1,否则正反馈环路必定会引起自激振荡。该环路结构的环路增益A可通过断开NM1和NM2的栅极连接并在NM2栅极加入电压vi,计算环路返回电压vr得到
Figure PCTCN2016098175-appb-000004
RQ1、RQ2为晶体管Q1和Q2发射极对地的等效电阻,
Figure PCTCN2016098175-appb-000005
因此
Figure PCTCN2016098175-appb-000006
即A<1恒成立,所以该正反馈环路是稳定的。在该稳定的正反馈环路中,根据集成电路制造工艺中匹配晶体管的特性,节点Vx和Vy在一定程度上可以保持电压相等,从而如果给Q1和Q2两个双极晶体管提供的偏置电流相同,而Q1和Q2发射极面积之比为1:n,则流过R1的电流为IPM2=VTln(n)/R1,IPM3=IPM2,则Vbg=VBE3+R2*IPM3VBE3+R2*VTln(n)/R1(1)。
The traditional self-biased bandgap reference circuit is shown in Figure 1. The traditional self-biasing structure (PM1, PM2, NM1, and NM2) is itself a feedback loop. I PM1 replicates I PM2 and I NM2 replicates I NM1 . Where I PM1 = I NM1 , I PM2 = I NM2 . It can be seen that this loop is a positive feedback loop with a loop gain equal to the loop current gain. According to the feedback loop stability theory, the requirement that the positive feedback loop reaches a steady state is that its loop gain is less than 1, otherwise the positive feedback loop must cause self-oscillation. The loop gain A of the loop structure can be obtained by disconnecting the gates of NM1 and NM2 and adding a voltage vi to the gate of NM2 to calculate the loop return voltage vr.
Figure PCTCN2016098175-appb-000004
R Q1 and R Q2 are the equivalent resistances of the emitters of transistors Q1 and Q2 to ground.
Figure PCTCN2016098175-appb-000005
therefore
Figure PCTCN2016098175-appb-000006
That is, A<1 is always true, so the positive feedback loop is stable. In the stable positive feedback loop, the nodes Vx and Vy can maintain a voltage equal to some extent according to the characteristics of the matching transistors in the integrated circuit manufacturing process, so that if the bias currents are supplied to the two bipolar transistors Q1 and Q2 The same, and the ratio of the emitter area of Q1 and Q2 is 1:n, then the current flowing through R1 is I PM2 =V T ln(n)/R1, I PM3 =I PM2 , then Vbg=V BE3 +R2*I PM3 V BE3 +R2*V T ln(n)/R1(1).
Vx和Vy是否能确保相等,取决于上文所述的匹配特性和增益小于1的正反馈环路的纠错能力。实际上,一般的电路只有在负反馈环路增益远远大于1,形成强大的纠错机制,才能保证两个节点的电压相等。在图1结构中,Vx和Vy并不能保证完全相等。首先,如上文所述相关晶体管匹配特性使得Vx和Vy在一定程度下能够保证相等,但是十分有限,考虑沟道调制效应的影响,PM1和PM2的Vds差异会导致PM1不能完全镜像PM2的电流,从而导致Vx和Vy电压之间 不会相等,特别是Vdd在很大电压范围变化下,Vx和Vy差别更大;其次,该环路其正反馈性质使得其不能像负反馈那样具有纠错机制,Vx和Vy的电压不能保证在所有变化条件下保持一致,也即无法保证相等,与此同时,正反馈性质导致电路具有相对较弱的电源抑制比的特性,从而影响到该传统带隙基准电路输出电压的精度和温漂特性。因此该电路结构本身既没有有效的避免沟道调制效应的不利影响,又没有有效的反馈机制来纠正这样的电压差异,存在较大的缺点,限制了其应用。如在射频识别(RFID)的应用中,RFID标签离读卡器不同程度远近距离的时候,电源电压高低变化很大,造成Vx和Vy的一致性进一步恶化,不适合RFID应用。Whether Vx and Vy can ensure equality depends on the matching characteristics described above and the error correction capability of the positive feedback loop with gain less than one. In fact, the general circuit only has a negative feedback loop gain far greater than 1, forming a powerful error correction mechanism to ensure that the voltages of the two nodes are equal. In the structure of Fig. 1, Vx and Vy are not guaranteed to be completely equal. First, as described above, the relevant transistor matching characteristics make Vx and Vy equal to a certain extent, but very limited. Considering the influence of the channel modulation effect, the Vds difference between PM1 and PM2 will cause PM1 not to completely mirror the PM2 current. Thereby causing a voltage between Vx and Vy It is not equal, especially when Vdd changes over a large voltage range, Vx and Vy are more different; secondly, the positive feedback nature of the loop makes it impossible to have error correction mechanism like negative feedback, and the voltages of Vx and Vy are not guaranteed. Consistently under all changing conditions, that is, equality cannot be guaranteed. At the same time, the positive feedback property causes the circuit to have a relatively weak power supply rejection ratio, thereby affecting the accuracy and temperature drift of the output voltage of the conventional bandgap reference circuit. characteristic. Therefore, the circuit structure itself has neither effective avoidance of the adverse effects of the channel modulation effect, and no effective feedback mechanism to correct such voltage differences, which has a large disadvantage and limits its application. For example, in radio frequency identification (RFID) applications, when the RFID tag is far away from the card reader, the power supply voltage varies greatly, causing the consistency of Vx and Vy to deteriorate further, which is not suitable for RFID applications.
为使得Vx和Vy能够在Vdd的电压变化范围内始终保持相等,有文献提出如图2所示的电路结构,运放的输出控制PM1和PM2的栅极,如果PM1和PM2尺寸相同,可以保证流过PM1和PM2的电流不随Vdd的变化而变化,几乎相等。其输出Vbg和公式(1)一样。该技术利用了运算放大器的高增益负反馈,形成强大的纠错机制,使得Vx和Vy几乎相等,能够较好的解决上文所提到的缺点,但是也会引入其它的缺点。In order to make Vx and Vy consistently within the voltage variation range of Vdd, there is a circuit structure as shown in Fig. 2. The output of the op amp controls the gates of PM1 and PM2. If PM1 and PM2 are the same size, it can be guaranteed. The current flowing through PM1 and PM2 does not change with Vdd, and is almost equal. Its output V bg is the same as equation (1). This technology utilizes the high gain negative feedback of the operational amplifier to form a powerful error correction mechanism, making Vx and Vy almost equal, which can better solve the above mentioned shortcomings, but also introduce other shortcomings.
首先,电路中采用运放的反馈来实现Vx=Vy,需要高增益运放来达到较高的精度,一般采用两级运放,两级运放则需要频率补偿,增加了设计难度。而且由于运放的使用额外增加了电路功耗和电路面积,进一步增加了电路成本。其次,在高压Vdd下,很容易引起栅氧击穿的问题。运放采用Vdd作为电源输入,输出直接控制PM1和PM2的栅极。在某些工艺中,高压CMOS器件可以制作在标准的CMOS工艺,制造中并不需要调整工艺步骤。在这样的工艺中,CMOS器件的漏源电压可以做的很高,但是栅源电压需要特别限制,因为薄的栅氧在高压下 容易击穿。因此在这些工艺中运放的耐高压设计以及运放输出电压需要特别控制,以防对PM1、PM2和PM3栅极的击穿。而耐高压CMOS工艺成本过高,导致该工艺下的产品商业价值受限制。为争取商业利润的最大化就对工艺的复杂度提出了更高的要求,提高了电路设计的难度。First, the circuit uses the feedback of the op amp to achieve Vx=Vy. High-gain op amps are needed to achieve higher accuracy. Generally, two-stage op amps are used. Two-stage op amps require frequency compensation, which increases the design difficulty. Moreover, since the use of the op amp additionally increases circuit power consumption and circuit area, the circuit cost is further increased. Secondly, under high voltage Vdd, it is easy to cause the problem of gate oxide breakdown. The op amp uses Vdd as the power input and the output directly controls the gates of PM1 and PM2. In some processes, high voltage CMOS devices can be fabricated in standard CMOS processes without the need to adjust process steps. In such a process, the drain-source voltage of a CMOS device can be made very high, but the gate-source voltage needs to be particularly limited because a thin gate oxide is under high voltage. Easy to penetrate. Therefore, the high voltage design of the op amp and the op amp output voltage in these processes require special control to prevent breakdown of the gates of PM1, PM2, and PM3. The high cost of the high voltage CMOS process results in limited commercial value of the product under the process. In order to maximize the commercial profit, it puts higher requirements on the complexity of the process and improves the difficulty of circuit design.
发明内容Summary of the invention
本申请针对带隙基准电路中对宽输入电压范围和兼容标准CMOS工艺的要求,提出了一种宽输入电压范围和高精度输出的自偏置带隙基准电路,以消除运放的使用和传统自偏置带隙基准电路失调大的缺点,本发明在电路性能上与使用运放并没有明显的弱势。This application proposes a self-biased bandgap reference circuit with a wide input voltage range and high precision output for the wide input voltage range and compatible standard CMOS process in the bandgap reference circuit to eliminate the use and tradition of the op amp. The disadvantage of the large offset of the self-biased bandgap reference circuit is that the present invention has no significant disadvantage in terms of circuit performance and the use of an operational amplifier.
为实现上述目的,本发明所采取的技术方案为:一种宽输入电压范围和高精度输出的自偏置带隙基准电路,包括连接至电源的第一P型MOS管、第二P型MOS管和第三P型MOS管,以及分别连接至所述第一P型MOS管漏极端和第二P型MOS管漏极端的第一N型MOS管和第二N型MOS管,所述第一N型MOS管通过第一三极管接地,所述第二N型MOS管通过第一电阻连接至第二三极管并接地,所述第三P型MOS管栅极连接至所述第一P型MOS管和第二P型MOS管栅极,漏极端通过第二电阻连接至第三三极管并接地,所述电路还包括连接至电源的自偏置单元,所述自偏置单元包括镜像单元和跟随单元两部分,To achieve the above object, the technical solution adopted by the present invention is: a self-biased bandgap reference circuit with a wide input voltage range and high precision output, including a first P-type MOS transistor connected to a power supply, and a second P-type MOS And a third P-type MOS transistor, and a first N-type MOS transistor and a second N-type MOS transistor respectively connected to the drain terminal of the first P-type MOS transistor and the drain terminal of the second P-type MOS transistor An N-type MOS transistor is grounded through a first triode, the second N-type MOS transistor is connected to the second triode through a first resistor and grounded, and the third P-type MOS transistor is connected to the gate a P-type MOS transistor and a second P-type MOS transistor gate, the drain terminal is connected to the third transistor through a second resistor and grounded, the circuit further comprising a self-biasing unit connected to the power source, the self-bias The unit includes a mirror unit and a follow unit.
所述镜像单元的第一电源输入端与第二电源输入端分别连接至电源,第一输出端与第二输出端分别连接至跟随单元,用于生成两路大小相同的电流值信号并输出至所述跟随单元,输出控制端连接至第一P型MOS管、第二P型MOS管和第三P型MOS管的栅极端,用于控制所述第一P型MOS管、第二P型MOS 管和第三P型MOS管栅极端的偏置电压;The first power input end and the second power input end of the mirroring unit are respectively connected to the power source, and the first output end and the second output end are respectively connected to the following unit, for generating two current value signals of the same size and outputting to The following control unit is connected to the gate terminals of the first P-type MOS transistor, the second P-type MOS transistor and the third P-type MOS transistor for controlling the first P-type MOS transistor and the second P-type MOS a bias voltage between the tube and the gate terminal of the third P-type MOS transistor;
所述跟随单元的第一输入端与第二输入端分别连接至所述镜像单元的第一输出端与第二输出端,所述跟随单元的第三输入端连接至所述第一P型MOS管的漏极和第一N型MOS管的漏极,所述跟随单元的第四输入端连接至所述第二P型MOS管的漏极和第二N型MOS管的漏极,所述跟随单元的接地端接地。The first input end and the second input end of the following unit are respectively connected to the first output end and the second output end of the mirror unit, and the third input end of the follow unit is connected to the first P type MOS a drain of the tube and a drain of the first N-type MOS transistor, a fourth input terminal of the follower unit being connected to a drain of the second P-type MOS transistor and a drain of the second N-type MOS transistor, Ground the ground of the following unit.
根据以上结构的本发明,其进一步的技术特征在于,所述镜像单元包括第四P型MOS管和第五P型MOS管,According to the invention of the above structure, a further technical feature is that the mirror unit includes a fourth P-type MOS transistor and a fifth P-type MOS transistor.
所述第四P型MOS管源极连接至电源作为所述镜像单元的第一电源输入端,其栅极连接至其漏极并连接至跟随单元,作为所述镜像单元的第一输出端;The fourth P-type MOS transistor source is connected to a power source as a first power input end of the mirror unit, and a gate thereof is connected to a drain thereof and connected to a follower unit as a first output end of the mirror unit;
所述第五P型MOS管源极连接至电源作为所述镜像单元的第二电源输入端,其漏极连接至跟随单元,作为所述镜像单元的第二输出端;The fifth P-type MOS transistor source is connected to the power source as the second power input end of the mirror unit, and the drain thereof is connected to the following unit as the second output end of the mirror unit;
所述第四P型MOS管栅极连接至所述第五P型MOS管栅极,并同时连接至所述第一P型MOS管、第二P型MOS管和第三P型MOS管的栅极端,作为所述镜像单元的控制端。The fourth P-type MOS transistor gate is connected to the fifth P-type MOS transistor gate, and is simultaneously connected to the first P-type MOS transistor, the second P-type MOS transistor, and the third P-type MOS transistor The gate terminal serves as a control terminal of the mirror unit.
更进一步的技术特征还在于,所述跟随单元包括第三N型MOS管、第四N型MOS管、第五N型MOS管和第六N型MOS管,A further technical feature is that the following unit includes a third N-type MOS transistor, a fourth N-type MOS transistor, a fifth N-type MOS transistor, and a sixth N-type MOS transistor.
所述第三N型MOS管漏极连接至所述镜像单元的第一输出端,作为所述跟随单元的第一输入端,其栅极连接至第一P型MOS管的漏极和第一N型MOS管的漏极,作为所述跟随单元的第三输入端,其源极连接至所述第六N型MOS管的漏极,所述第六N型MOS管栅极连接至所述第四N型MOS管漏极,第六N型MOS管源极接地;The drain of the third N-type MOS transistor is connected to the first output end of the mirror unit, as the first input end of the follower unit, the gate thereof is connected to the drain of the first P-type MOS transistor and the first a drain of the N-type MOS transistor as a third input terminal of the follower unit, a source thereof is connected to a drain of the sixth N-type MOS transistor, and a gate of the sixth N-type MOS transistor is connected to the a drain of the fourth N-type MOS transistor, and a source of the sixth N-type MOS transistor is grounded;
所述第四N型MOS管漏极连接至所述镜像单元的第二输出端,作为所述跟 随单元的第二输入端,其栅极连接至第二P型MOS管的漏极和第二N型MOS管的漏极,作为所述跟随单元的第四输入端,其源极连接至所述第三N型MOS管的源极,并连接至所述第五N型MOS管的漏极,所述第五N型MOS管栅极连接至第四N型MOS管漏极,第五N型MOS管源极接地作为所述跟随单元的接地端。The drain of the fourth N-type MOS transistor is connected to the second output end of the mirror unit, as the a second input terminal of the cell, the gate of which is connected to the drain of the second P-type MOS transistor and the drain of the second N-type MOS transistor, as the fourth input terminal of the follower unit, the source of which is connected to the a source of the third N-type MOS transistor connected to the drain of the fifth N-type MOS transistor, and a gate of the fifth N-type MOS transistor connected to the drain of the fourth N-type MOS transistor, the fifth N The source of the MOS transistor is grounded as the ground of the follower unit.
本申请所提出的技术方案可以直接应用于宽输入电压范围和薄栅氧高压器件应用中。本发明采用的新型自偏置结构,大大减小了传统自偏置结构中偏置点Vx和Vy之间的电压差异,达到提高输出基准电压精度的目的。因为传统自偏置结构中,第一P型MOS管PM1和二极管连接的第二P型MOS管PM2(假设两者尺寸相同)在宽输入电压范围内,特别是输入高压下,流过PM1的电流和PM2电流失调更大,且没有足够的增益反馈机制来减小这样的失调,最终导致Vx并不能近似恒等于Vy,而本发明所述的自偏置结构中,释放了二极管连接的PM2管,让PM1和PM2的漏极电压(即Vx、Vy)在输入电压变化下几乎相同,沟道调制效应对PM1和PM2两支路的电流失调作用大大减小。另外,本发明的类似运放的作用使得该自偏置结构本身具有一定的增益反馈控制Vx和Vy近似相等。综上:与传统自偏置结构构成的带隙基准电路结构相比,本发明采用的新型自偏置结构在高电源电压下,有效减小了偏置点Vx和Vy的电压差异,提高了匹配精度,进而提高输出基准电压的精度。The technical solution proposed by the present application can be directly applied to a wide input voltage range and a thin gate oxygen high voltage device application. The novel self-biasing structure adopted by the invention greatly reduces the voltage difference between the bias points Vx and Vy in the conventional self-biasing structure, and achieves the purpose of improving the accuracy of the output reference voltage. Because of the conventional self-biasing structure, the first P-type MOS transistor PM1 and the diode-connected second P-type MOS transistor PM2 (assuming the same size) are flowing through the PM1 over a wide input voltage range, especially at input high voltage. The current and PM2 current offsets are larger, and there is not enough gain feedback mechanism to reduce such offset, which ultimately results in Vx not being approximately equal to Vy. In the self-biasing structure of the present invention, the diode-connected PM2 is released. The tube makes the drain voltages of PM1 and PM2 (ie, Vx, Vy) almost the same under the input voltage change, and the channel modulation effect greatly reduces the current offset of the two branches of PM1 and PM2. In addition, the effect of the op amp of the present invention is such that the self-biasing structure itself has a certain gain feedback control Vx and Vy that are approximately equal. In summary: Compared with the bandgap reference circuit structure composed of the conventional self-biased structure, the novel self-biasing structure adopted by the present invention effectively reduces the voltage difference between the bias points Vx and Vy at a high power supply voltage, thereby improving the voltage difference. Matching accuracy, which in turn increases the accuracy of the output reference voltage.
同时,本发明自偏置电路结构并没有采用运放,结构简单,降低了功耗,解决了在薄栅氧高压器件的应用,消除了运放输出电压特别的钳压控制,以防止在薄栅氧高压下对高压MOS管栅极的击穿。本发明电路的偏置电流由Q1、Q2和R1决定,这个电流并不会很大,该电流流过二极管方式连接的第四P型MOS管PM4,PM4的栅极偏压跟随电源电压Vdd,该栅极偏压为输出控制端,其电平范围并不 会超过薄栅氧高压器件Vgs限制,因此本发明自身即可兼容薄栅氧高压应用。At the same time, the self-biasing circuit structure of the invention does not adopt an operational amplifier, has a simple structure, reduces power consumption, solves the application in a thin gate oxygen high voltage device, and eliminates the special clamp control of the output voltage of the operational amplifier to prevent thinning. Breakdown of the gate of the high voltage MOS transistor under gate oxide high voltage. The bias current of the circuit of the present invention is determined by Q1, Q2 and R1. This current is not large. The current flows through the diode-connected fourth P-type MOS transistor PM4. The gate bias of PM4 follows the power supply voltage Vdd. The gate bias is an output control terminal, and the level range is not It will exceed the Vgs limit of the thin-gate oxygen high voltage device, so the invention itself is compatible with thin gate oxygen high pressure applications.
本发明输入电压Vdd的最小值为VBEQ1+VgsNM1+VdsatPM1(或者是VBEQ2+VgsNM2+VdsatPM2),大约为2V,Vdd的最大值与PM1或PM2MOS管的Vds耐压值有关,这个可以是很高的数值,因此本发明可以在很宽的输入电压范围内工作。The minimum value of the input voltage Vdd of the present invention is VBE Q1 + Vgs NM1 + Vdsat PM1 (or VBE Q2 + Vgs NM2 + Vdsat PM2 ), which is approximately 2V, and the maximum value of Vdd is related to the Vds withstand voltage of the PM1 or PM2 MOS tube. This can be a very high value, so the invention can operate over a wide range of input voltages.
附图说明DRAWINGS
图1是传统的自偏置带隙基准电路结构图;1 is a structural diagram of a conventional self-biased bandgap reference circuit;
图2是带运算放大器的自偏置带隙基准电路结构图;2 is a structural diagram of a self-biased bandgap reference circuit with an operational amplifier;
图3是本发明自偏置带隙基准电路结构框图;3 is a block diagram showing the structure of a self-biased bandgap reference circuit of the present invention;
图4是本发明自偏置带隙基准电路实施例一结构图;4 is a structural diagram of Embodiment 1 of a self-biased bandgap reference circuit of the present invention;
图5是本发明自偏置带隙基准电路实施例二结构图;5 is a structural diagram of Embodiment 2 of a self-biased bandgap reference circuit of the present invention;
图6是本发明自偏置带隙基准电路实施例三结构图;6 is a structural diagram of Embodiment 3 of a self-biased bandgap reference circuit of the present invention;
图7是本发明自偏置带隙基准电路实施例四结构图。Figure 7 is a block diagram showing the fourth embodiment of the self-biased bandgap reference circuit of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
如图3所示,本发明所述一种宽输入电压范围和高精度输出的自偏置带隙基准电路,包括连接至电源Vdd的第一P型MOS管PM1、第二P型MOS管PM2和第三P型 MOS管PM3,以及分别连接至所述第一P型MOS管PM1漏极端和第二P型MOS管PM2漏极端的第一N型MOS管NM1和第二N型MOS管NM2,所述第一N型MOS管NM1通过第一三极管Q1接地,所述第二N型MOS管NM2通过第一电阻R1连接至第二三极管Q2并接地,所述第三P型MOS管PM3栅极连接至所述第一P型MOS管PM1和第二P型MOS管PM2栅极,漏极端通过第二电阻R2连接至第三三极管Q3并接地。As shown in FIG. 3, a self-biased bandgap reference circuit with a wide input voltage range and high precision output according to the present invention includes a first P-type MOS transistor PM1 connected to a power supply Vdd, and a second P-type MOS transistor PM2. And the third P type a MOS transistor PM3, and a first N-type MOS transistor NM1 and a second N-type MOS transistor NM2 connected to the drain terminal of the first P-type MOS transistor PM1 and the drain terminal of the second P-type MOS transistor PM2, respectively, the first The N-type MOS transistor NM1 is grounded through the first transistor Q1, and the second N-type MOS transistor NM2 is connected to the second transistor Q2 through the first resistor R1 and grounded, and the gate of the third P-type MOS transistor PM3 Connected to the gates of the first P-type MOS transistor PM1 and the second P-type MOS transistor PM2, the drain terminal is connected to the third transistor Q3 through the second resistor R2 and grounded.
所述电路还包括连接至电源Vdd的自偏置单元,所述自偏置单元包括镜像单元和跟随单元两部分,The circuit further includes a self-biasing unit connected to the power source Vdd, the self-biasing unit including a mirror unit and a follow unit,
所述镜像单元的第一电源输入端与第二电源输入端分别连接至电源Vdd,第一输出端O1与第二输出端O2分别连接至跟随单元,用于生成两路大小相同的电流值信号并输出至所述跟随单元,输出控制端Ctr连接至第一P型MOS管PM1、第二P型MOS管PM2和第三P型MOS管PM3的栅极端,用于控制所述第一P型MOS管PM1、第二P型MOS管PM2和第三P型MOS管PM3栅极端的偏置电压;The first power input end and the second power input end of the mirroring unit are respectively connected to the power source Vdd, and the first output end O1 and the second output end O2 are respectively connected to the following unit for generating two current value signals of the same size And outputting to the following unit, the output control terminal Ctr is connected to the gate terminals of the first P-type MOS transistor PM1, the second P-type MOS transistor PM2, and the third P-type MOS transistor PM3 for controlling the first P-type a bias voltage of the gate end of the MOS transistor PM1, the second P-type MOS transistor PM2, and the third P-type MOS transistor PM3;
所述跟随单元的第一输入端In1与第二输入端In2分别连接至所述镜像单元的第一输出端O1与第二输出端O2,所述跟随单元的第三输入端In3连接至所述第一P型MOS管PM1的漏极和第一N型MOS管NM1的漏极,所述跟随单元的第四输入端In4连接至所述第二P型MOS管PM2的漏极和第二N型MOS管NM2的漏极,所述跟随单元的接地端接地。The first input end In1 and the second input end In2 of the following unit are respectively connected to the first output end O1 and the second output end O2 of the mirror unit, and the third input end In3 of the following unit is connected to the a drain of the first P-type MOS transistor PM1 and a drain of the first N-type MOS transistor NM1, and a fourth input terminal In4 of the follow-up unit is connected to a drain of the second P-type MOS transistor PM2 and a second N The drain of the MOS transistor NM2 is grounded to the ground of the follower unit.
本发明所采用的自偏置结构中,释放了传统自偏置结构中二极管接法的第二P型MOS管PM2,因此,第一P型MOS管PM1和正统接法的第二P型MOS管PM2在宽输入电压范围内,特别是高压下,沟道调制效应对PM1和PM2两支路的电流失调作用大大减小,使得Vx近似恒等于Vy。 In the self-biasing structure used in the present invention, the second P-type MOS transistor PM2 of the diode connection in the conventional self-biasing structure is released, and therefore, the first P-type MOS transistor PM1 and the second P-type MOS of the positive connection method In the wide input voltage range of the tube PM2, especially at high voltage, the channel modulation effect greatly reduces the current offset of the two branches of PM1 and PM2, so that Vx is approximately equal to Vy.
实施例一Embodiment 1
如图4所示为本发明实施例一结构图。所述镜像单元包括第四P型MOS管PM4和第五P型MOS管PM5,FIG. 4 is a structural diagram of a first embodiment of the present invention. The mirror unit includes a fourth P-type MOS transistor PM4 and a fifth P-type MOS transistor PM5,
所述第四P型MOS管PM4源极连接至电源Vdd作为所述镜像单元的第一电源输入端In1,其栅极连接至其漏极并连接至跟随单元,作为所述镜像单元的第一输出端O1;The fourth P-type MOS transistor PM4 is connected to the power source Vdd as the first power input terminal In1 of the mirror unit, the gate thereof is connected to the drain thereof and is connected to the follower unit as the first of the mirror unit Output O1;
所述第五P型MOS管PM5源极连接至电源Vdd作为所述镜像单元的第二电源输入端In2,其漏极连接至跟随单元,作为所述镜像单元的第二输出端O2;The fifth P-type MOS transistor PM5 source is connected to the power source Vdd as the second power source input terminal In2 of the mirror unit, the drain thereof is connected to the following unit, as the second output terminal O2 of the mirror unit;
所述第四P型MOS管PM4栅极连接至所述第五P型MOS管PM5栅极,并同时连接至所述第一P型MOS管PM1、第二P型MOS管PM2和第三P型MOS管PM3的栅极端,作为所述镜像单元的输出控制端Ctr。The fourth P-type MOS transistor PM4 is gate-connected to the gate of the fifth P-type MOS transistor PM5, and is simultaneously connected to the first P-type MOS transistor PM1, the second P-type MOS transistor PM2, and the third P The gate terminal of the MOS transistor PM3 serves as the output control terminal Ctr of the mirror unit.
所述跟随单元包括第三N型MOS管NM3、第四N型MOS管NM4和第五N型MOS管NM5,The following unit includes a third N-type MOS transistor NM3, a fourth N-type MOS transistor NM4, and a fifth N-type MOS transistor NM5.
所述第三N型MOS管NM3漏极连接至所述镜像单元的第一输出端O1,作为所述跟随单元的第一输入端In1,其栅极连接至第一P型MOS管PM1的漏极和第一N型MOS管NM1的漏极,作为所述跟随单元的第三输入端In3;The drain of the third N-type MOS transistor NM3 is connected to the first output terminal O1 of the mirror unit, as the first input terminal In1 of the following unit, and the gate thereof is connected to the drain of the first P-type MOS transistor PM1 a drain of the first N-type MOS transistor NM1, as the third input terminal In3 of the following unit;
所述第四N型MOS管NM4漏极连接至所述镜像单元的第二输出端O2,作为所述跟随单元的第二输入端In2,其栅极连接至第二P型MOS管PM2的漏极和第二N型MOS管NM2的漏极,作为所述跟随单元的第四输入端In4,其源极连接至所述第三N型MOS管NM3的源极,并连接至所述第五N型MOS管NM5的漏极,所述第五N型MOS管NM5栅极连接至第四N型MOS管NM4漏极,第五N型MOS管NM5源极接地作为所述跟随单元的接地端。 The drain of the fourth N-type MOS transistor NM4 is connected to the second output terminal O2 of the mirror unit, as the second input terminal In2 of the following unit, and the gate thereof is connected to the drain of the second P-type MOS transistor PM2 a drain of the pole and the second N-type MOS transistor NM2, as a fourth input terminal In4 of the follower unit, a source connected to a source of the third N-type MOS transistor NM3, and connected to the fifth a drain of the N-type MOS transistor NM5, a gate of the fifth N-type MOS transistor NM5 is connected to a drain of the fourth N-type MOS transistor NM4, and a source of the fifth N-type MOS transistor NM5 is grounded as a ground terminal of the follower unit .
上述实施例中,第四P型MOS管PM4、第五P型MOS管PM5和第三N型MOS管NM3、第四N型MOS管NM4、第五N型MOS管NM5组成了新型的自偏置结构,第四N型MOS管NM4和第五N型MOS管NM5构成并联反馈电压跟随器,结构上不同传统的电压跟随器:假设第五P型MOS管PM5为电流源偏置,该跟随器可以通过第五N型MOS管NM5的栅极反馈自适应汲取更大电流,其源级输出阻抗更小,近似为1/(gmNM5gmNM4roNM4),Vc能更好跟随Vb的电压变化。电路尺寸(即MOS管宽长比)上选择第三N型MOS管NM3和第四N型MOS管NM4尺寸相同,第四P型MOS管PM4、第五P型MOS管PM5、第一P型MOS管PM1和第二P型MOS管PM2尺寸相同。在第四P型MOS管PM4和第五P型MOS管PM5镜像作用下,流过第三N型MOS管NM3和第四N型MOS管NM4的电流相同,其电流值大小由Va、Vb的电压大小决定,如果能偏置第三N型MOS管NM3和第四N型MOS管NM4在饱和区,则始终能够保持Va=Vb,而Va、Vb的电压大小由流过第一P型MOS管PM1和第二P型MOS管PM2两个支路的电流偏置决定。第一P型MOS管PM1和第二P型MOS管PM2是第四P型MOS管PM4的镜像,所以流过第一P型MOS管PM1和第二P型MOS管PM2的电流大小相同,因此Vx和Vy电压相同,Q1、Q2和R1决定了支路电流,即I=VTln(n)/R1,从而决定了Va和Vb的电压,也即决定了各个支路流过的电流相等。In the above embodiment, the fourth P-type MOS transistor PM4, the fifth P-type MOS transistor PM5 and the third N-type MOS transistor NM3, the fourth N-type MOS transistor NM4, and the fifth N-type MOS transistor NM5 form a novel self-bias. The fourth N-type MOS transistor NM4 and the fifth N-type MOS transistor NM5 form a parallel feedback voltage follower, which is different in structure from the conventional voltage follower: assuming that the fifth P-type MOS transistor PM5 is a current source bias, the following The device can adaptively draw more current through the gate feedback of the fifth N-type MOS transistor NM5, and the source-level output impedance is smaller, approximately 1/(gm NM5 gm NM4 ro NM4 ), and Vc can better follow the voltage of Vb. Variety. The size of the circuit (ie, the width to length ratio of the MOS tube) is selected to be the same size as the third N-type MOS transistor NM3 and the fourth N-type MOS transistor NM4, the fourth P-type MOS transistor PM4, the fifth P-type MOS transistor PM5, and the first P-type The MOS tube PM1 and the second P-type MOS tube PM2 are the same size. Under the mirror image of the fourth P-type MOS transistor PM4 and the fifth P-type MOS transistor PM5, the current flowing through the third N-type MOS transistor NM3 and the fourth N-type MOS transistor NM4 is the same, and the current value thereof is determined by Va and Vb. The magnitude of the voltage determines that if the third N-type MOS transistor NM3 and the fourth N-type MOS transistor NM4 can be biased in the saturation region, Va=Vb can always be maintained, and the voltages of Va and Vb flow through the first P-type MOS. The current bias of the two branches of the tube PM1 and the second P-type MOS transistor PM2 is determined. The first P-type MOS transistor PM1 and the second P-type MOS transistor PM2 are mirror images of the fourth P-type MOS transistor PM4, so the current flowing through the first P-type MOS transistor PM1 and the second P-type MOS transistor PM2 is the same, Vx and Vy have the same voltage. Q1, Q2 and R1 determine the branch current, ie I=VTln(n)/R1, which determines the voltage of Va and Vb, that is, the current flowing through each branch is equal.
上述论述用公式推导如下:The above discussion is derived by the following formula:
Figure PCTCN2016098175-appb-000007
Figure PCTCN2016098175-appb-000007
Figure PCTCN2016098175-appb-000008
Figure PCTCN2016098175-appb-000008
Figure PCTCN2016098175-appb-000009
Figure PCTCN2016098175-appb-000009
公式(2)和(3)中,由于第三N型MOS管NM3和第四N型MOS管NM4尺寸相同, 衬底相同,则Vth(NM3)=Vth(NM4)。又由于成镜像结构的第四P型MOS管PM4和第五P型MOS管PM5尺寸相同,衬底相同,则I(PM4)=I(PM5),即I(NM3)=I(NM4),因此Vac=Vbc。对于第一N型MOS管NM1和第二N型MOS管NM2,由于两个MOS管的栅极端电压相同,而Va=Vb使得两个MOS管的漏极端电压相同,则两个MOS管的源极端电压必定相同,即Vx=VyEquation (2) and (3), the same as the third N-type MOS transistor NM3 and NM4 fourth N-MOS transistor dimensions, the same substrate, the V th (NM3) = V th (NM4). Also, because the same into a fourth P-type MOS transistor PM4 and PM5 fifth P-type MOS transistor structure of the image size, the same substrate, then I (PM4) = I (PM5 ), i.e. I (NM3) = I (NM4 ), Therefore V ac =V bc . For the first N-type MOS transistor NM1 and the second N-type MOS transistor NM2, since the gate voltages of the two MOS transistors are the same, and V a = V b such that the drain terminals of the two MOS transistors have the same voltage, the two MOS transistors The source extreme voltage must be the same, ie V x =V y .
需要说明的是:当Vdd在一个较宽的电压范围内变化时,第四P型MOS管PM4和第五P型MOS管PM5沟道调制效应的存在,存在一定的失调,导致I(PM4)和I(PM5)存在一定的差异,但是,根据公式(2)和(3),这两条支路的电流差异反映到第三N型MOS管NM3、第四N型MOS管NM4的栅极,有个开平方的削弱,所以Vgs的差异会更小,从而Va和Vb几乎相同。It should be noted that when Vdd changes over a wide voltage range, there is a certain imbalance in the existence of the channel modulation effect of the fourth P-type MOS transistor PM4 and the fifth P-type MOS transistor PM5, resulting in I (PM4). There is a certain difference between I and PM (PM5) . However, according to equations (2) and (3), the current difference between the two branches is reflected to the gate of the third N-type MOS transistor NM3 and the fourth N-type MOS transistor NM4. There is a weakening of the square root, so the difference in Vgs will be smaller, so that Va and Vb are almost the same.
本发明的自偏置结构本身是一个闭环回路,类似传统的自偏置结构。结构存在“0”的稳定工作点简并态,需要启动电路来脱离“0”简并态。一旦启动完毕后,虽然结构环路是正反馈,但是由Q1、Q2和R1决定的偏置电流基本恒定,也即Va和Vb基本不变,环路中流过的电流基本不变,导致环路增益小于1,可以达到另一稳定工作点,而这一稳定工作点的偏置电流即由Q1、Q2和R1决定。The self-biasing structure of the present invention is itself a closed loop, similar to a conventional self-biasing structure. The structure has a stable working point degenerate state of "0", and it is necessary to start the circuit to deviate from the "0" degeneracy state. Once the startup is completed, although the structural loop is positive feedback, the bias currents determined by Q1, Q2, and R1 are substantially constant, that is, Va and Vb are substantially constant, and the current flowing in the loop is substantially constant, resulting in loop gain. If it is less than 1, another stable operating point can be reached, and the bias current of this stable operating point is determined by Q1, Q2 and R1.
另外,本发明所述的自偏置结构的两输入对管NM3和NM4在输出控制端形成一定的增益,该增益表示为gmNM3/gmPM4,类似运放的作用,通过PM1和PM2的反馈控制,使得Va=Vb。第三P型MOS管PM3镜像的电流与绝对温度成正比,Vbg的表达式和公式(1)相同。In addition, the two-input pair of tubes NM3 and NM4 of the self-biasing structure of the present invention form a certain gain at the output control end, and the gain is expressed as gm NM3/ gm PM4 , similar to the action of the operational amplifier, and feedback through PM1 and PM2. Control so that Va = Vb. The current of the third P-type MOS transistor PM3 mirror is proportional to the absolute temperature, and the expression of Vbg is the same as the formula (1).
实施例二Embodiment 2
如图5所示为本发明实施例二结构图。本实施例与实施例一的区别之处在 于本实施例中将第五N型MOS管NM5拆分为第五N型MOS管NM5和第六N型MOS管NM6,以保证电路版图的匹配和对称。FIG. 5 is a structural diagram of Embodiment 2 of the present invention. The difference between this embodiment and the first embodiment is In the embodiment, the fifth N-type MOS transistor NM5 is split into a fifth N-type MOS transistor NM5 and a sixth N-type MOS transistor NM6 to ensure matching and symmetry of the circuit layout.
所述镜像单元包括第四P型MOS管PM4和第五P型MOS管PM5,The mirror unit includes a fourth P-type MOS transistor PM4 and a fifth P-type MOS transistor PM5,
所述第四P型MOS管PM4源极连接至电源Vdd作为所述镜像单元的第一电源输入端In1,其栅极连接至其漏极并连接至跟随单元,作为所述镜像单元的第一输出端O1;The fourth P-type MOS transistor PM4 is connected to the power source Vdd as the first power input terminal In1 of the mirror unit, the gate thereof is connected to the drain thereof and is connected to the follower unit as the first of the mirror unit Output O1;
所述第五P型MOS管PM5源极连接至电源Vdd作为所述镜像单元的第二电源输入端In2,其漏极连接至跟随单元,作为所述镜像单元的第二输出端O2;The fifth P-type MOS transistor PM5 source is connected to the power source Vdd as the second power source input terminal In2 of the mirror unit, the drain thereof is connected to the following unit, as the second output terminal O2 of the mirror unit;
所述第四P型MOS管PM4栅极连接至所述第五P型MOS管PM5栅极,并同时连接至所述第一P型MOS管PM1、第二P型MOS管PM2和第三P型MOS管PM3的栅极端,作为所述镜像单元的输出控制端Ctr。The fourth P-type MOS transistor PM4 is gate-connected to the gate of the fifth P-type MOS transistor PM5, and is simultaneously connected to the first P-type MOS transistor PM1, the second P-type MOS transistor PM2, and the third P The gate terminal of the MOS transistor PM3 serves as the output control terminal Ctr of the mirror unit.
所述跟随单元包括第三N型MOS管NM3、第四N型MOS管NM4、第五N型MOS管NM5和第六N型MOS管NM6,The following unit includes a third N-type MOS transistor NM3, a fourth N-type MOS transistor NM4, a fifth N-type MOS transistor NM5, and a sixth N-type MOS transistor NM6.
所述第三N型MOS管NM3漏极连接至所述镜像单元的第一输出端O1,作为所述跟随单元的第一输入端In1,其栅极连接至第一P型MOS管PM1的漏极和第一N型MOS管NM1的漏极,作为所述跟随单元的第三输入端In3,其源极连接至所述第六N型MOS管NM6的漏极,所述第六N型MOS管NM6栅极连接至所述第四N型MOS管NM4漏极,第六N型MOS管NM6源极接地;The drain of the third N-type MOS transistor NM3 is connected to the first output terminal O1 of the mirror unit, as the first input terminal In1 of the following unit, and the gate thereof is connected to the drain of the first P-type MOS transistor PM1 a drain of the first N-type MOS transistor NM1, a third input terminal In3 of the follower unit, a source connected to a drain of the sixth N-type MOS transistor NM6, the sixth N-type MOS a gate of the NM6 is connected to the drain of the fourth N-type MOS transistor NM4, and a source of the sixth N-type MOS transistor NM6 is grounded;
所述第四N型MOS管NM4漏极连接至所述镜像单元的第二输出端O2,作为所述跟随单元的第二输入端In2,其栅极连接至第二P型MOS管PM2的漏极和第二N型MOS管NM2的漏极,作为所述跟随单元的第四输入端In4,其源极连接至所述第三N型MOS管NM3的源极,并连接至所述第五N型MOS管NM5的漏极, 所述第五N型MOS管NM5栅极连接至第四N型MOS管NM4漏极,第五N型MOS管NM5源极接地作为所述跟随单元的接地端。The drain of the fourth N-type MOS transistor NM4 is connected to the second output terminal O2 of the mirror unit, as the second input terminal In2 of the following unit, and the gate thereof is connected to the drain of the second P-type MOS transistor PM2 a drain of the pole and the second N-type MOS transistor NM2, as a fourth input terminal In4 of the follower unit, a source connected to a source of the third N-type MOS transistor NM3, and connected to the fifth The drain of the N-type MOS transistor NM5, The gate of the fifth N-type MOS transistor NM5 is connected to the drain of the fourth N-type MOS transistor NM4, and the source of the fifth N-type MOS transistor NM5 is grounded as the ground of the follower unit.
实施例三Embodiment 3
如图6所示为本发明实施例三结构图。本实施例与实施例二的区别在于采用共源共栅的第六P型MOS管PM6、第七P型MOS管PM7、第八P型MOS管PM8和第九P型MOS管PM9构成电流镜来替代第四P型MOS管PM4和第五P型MOS管PM5,以减小第四P型MOS管PM4和第五P型MOS管PM5镜像电流的失调。FIG. 6 is a structural diagram of a third embodiment of the present invention. The difference between this embodiment and the second embodiment is that the sixth P-type MOS transistor PM6, the seventh P-type MOS transistor PM7, the eighth P-type MOS transistor PM8, and the ninth P-type MOS transistor PM9 using the cascode constitute a current mirror. The fourth P-type MOS transistor PM4 and the fifth P-type MOS transistor PM5 are replaced to reduce the offset of the mirror current of the fourth P-type MOS transistor PM4 and the fifth P-type MOS transistor PM5.
所述镜像单元包括第六P型MOS管PM6、第七P型MOS管PM7、第八P型MOS管PM8和第九P型MOS管PM9,The mirroring unit includes a sixth P-type MOS transistor PM6, a seventh P-type MOS transistor PM7, an eighth P-type MOS transistor PM8, and a ninth P-type MOS transistor PM9.
所述第六P型MOS管PM6源极连接至电源Vdd作为所述镜像单元的第一电源输入端In1,其栅极连接至其漏极并连接至第八P型MOS管PM8的源极,所述第八P型MOS管PM8的栅极连接至其漏极并连接至跟随单元,作为所述镜像单元的第一输出端O1;The sixth P-type MOS transistor PM6 is connected to the power source Vdd as the first power input terminal In1 of the mirror unit, and has a gate connected to the drain thereof and connected to the source of the eighth P-type MOS transistor PM8. The gate of the eighth P-type MOS transistor PM8 is connected to its drain and is connected to the follower unit as the first output terminal O1 of the mirror unit;
所述第七P型MOS管PM7源极连接至电源Vdd作为所述镜像单元的第二电源输入端In2,其漏极连接至第九P型MOS管PM9的源极,所述第九P型MOS管PM9的栅极连接至第八P型MOS管PM8的栅极,第九P型MOS管PM9漏极连接至跟随单元,作为所述镜像单元的第二输出端O2;The seventh P-type MOS transistor PM7 is connected to the power source Vdd as the second power input terminal In2 of the mirror unit, and the drain thereof is connected to the source of the ninth P-type MOS transistor PM9, the ninth P-type The gate of the MOS transistor PM9 is connected to the gate of the eighth P-type MOS transistor PM8, and the drain of the ninth P-type MOS transistor PM9 is connected to the follower unit as the second output terminal O2 of the mirroring unit;
所述第六P型MOS管PM6栅极连接至所述第七P型MOS管PM7栅极,并连接至所述第一P型MOS管PM1、第二P型MOS管PM2和第三P型MOS管PM3的栅极端,作为所述镜像单元的输出控制端Ctr。The sixth P-type MOS transistor PM6 is gate-connected to the gate of the seventh P-type MOS transistor PM7, and is connected to the first P-type MOS transistor PM1, the second P-type MOS transistor PM2, and the third P-type The gate terminal of the MOS transistor PM3 serves as the output control terminal Ctr of the mirror unit.
所述跟随单元包括第三N型MOS管NM3、第四N型MOS管NM4、第五N型MOS 管NM5和第六N型MOS管NM6,The following unit includes a third N-type MOS transistor NM3, a fourth N-type MOS transistor NM4, and a fifth N-type MOS Tube NM5 and sixth N-type MOS tube NM6,
所述第三N型MOS管NM3漏极连接至所述镜像单元的第一输出端O1,作为所述跟随单元的第一输入端In1,其栅极连接至第一P型MOS管PM1的漏极和第一N型MOS管NM1的漏极,作为所述跟随单元的第三输入端In3,其源极连接至所述第六N型MOS管NM6的漏极,所述第六N型MOS管NM6栅极连接至所述第四N型MOS管NM4漏极,第六N型MOS管NM6源极接地;The drain of the third N-type MOS transistor NM3 is connected to the first output terminal O1 of the mirror unit, as the first input terminal In1 of the following unit, and the gate thereof is connected to the drain of the first P-type MOS transistor PM1 a drain of the first N-type MOS transistor NM1, a third input terminal In3 of the follower unit, a source connected to a drain of the sixth N-type MOS transistor NM6, the sixth N-type MOS a gate of the NM6 is connected to the drain of the fourth N-type MOS transistor NM4, and a source of the sixth N-type MOS transistor NM6 is grounded;
所述第四N型MOS管NM4漏极连接至所述镜像单元的第二输出端O2,作为所述跟随单元的第二输入端In2,其栅极连接至第二P型MOS管PM2的漏极和第二N型MOS管NM2的漏极,作为所述跟随单元的第四输入端In4,其源极连接至所述第三N型MOS管NM3的源极,并连接至所述第五N型MOS管NM5的漏极,所述第五N型MOS管NM5栅极连接至第四N型MOS管NM4漏极,第五N型MOS管NM5源极接地作为所述跟随单元的接地端。The drain of the fourth N-type MOS transistor NM4 is connected to the second output terminal O2 of the mirror unit, as the second input terminal In2 of the following unit, and the gate thereof is connected to the drain of the second P-type MOS transistor PM2 a drain of the pole and the second N-type MOS transistor NM2, as a fourth input terminal In4 of the follower unit, a source connected to a source of the third N-type MOS transistor NM3, and connected to the fifth a drain of the N-type MOS transistor NM5, a gate of the fifth N-type MOS transistor NM5 is connected to a drain of the fourth N-type MOS transistor NM4, and a source of the fifth N-type MOS transistor NM5 is grounded as a ground terminal of the follower unit .
实施例四Embodiment 4
如图7所示为本发明实施例四结构图。本实施例与上述三个实施例的区别之处在于上述三个实施例的输入端采用N型MOS管,而本实施例中的输入端采用P型MOS管,对应的,镜像单元采用N型MOS管,而跟随单元采用P型MOS管,如此结构可减少第一N型MOS管NM1和第二N型MOS管NM2的使用,一定程度上降低了MOS管的使用数量,降低芯片成本。具体的,其结构为:FIG. 7 is a structural diagram of a fourth embodiment of the present invention. The difference between the embodiment and the above three embodiments is that the input end of the above three embodiments adopts an N-type MOS tube, and the input end of the embodiment adopts a P-type MOS tube, and correspondingly, the mirror unit adopts an N-type. The MOS transistor and the follower unit adopt a P-type MOS transistor. This structure can reduce the use of the first N-type MOS transistor NM1 and the second N-type MOS transistor NM2, which reduces the use of the MOS transistor to a certain extent and reduces the chip cost. Specifically, its structure is:
所述镜像单元包括第七N型MOS管NM7、第八N型MOS管NM8、第九N型MOS管NM9和第十四P型MOS管PM14,The mirroring unit includes a seventh N-type MOS transistor NM7, an eighth N-type MOS transistor NM8, a ninth N-type MOS transistor NM9, and a fourteenth P-type MOS transistor PM14.
所述第七N型MOS管NM7漏极连接至其栅极,并连接至跟随单元作为所述 镜像单元的第一输出端O1,其源极接地作为镜像单元的第一输入端In1,The seventh N-type MOS transistor NM7 is connected to the gate thereof and connected to the follower unit as the The first output end O1 of the mirror unit is grounded as the first input end In1 of the mirror unit,
所述第八N型MOS管NM8漏极连接至跟随单元作为所述镜像单元的第二输出端O2,其栅极连接至所述第七N型MOS管NM7栅极,其源极接地作为镜像单元的第二输入端In2,The drain of the eighth N-type MOS transistor NM8 is connected to the follower unit as the second output terminal O2 of the mirror unit, the gate thereof is connected to the gate of the seventh N-type MOS transistor NM7, and the source thereof is grounded as a mirror image The second input of the unit, In2,
所述第九N型MOS管NM9栅极连接至所述第七N型MOS管NM7栅极和第八N型MOS管NM8栅极,其源极接地,作为镜像单元的第三输入端In3,其漏极连接至第十四P型MOS管PM14漏极,所述第十四P型MOS管PM14源极连接至电源作为镜像单元的第四输入端In4,其栅极连接至其漏极并连接至第一P型MOS管PM1、第二P型MOS管PM2和第三P型MOS管PM3的栅极端,作为所述镜像单元的输出控制端Ctr;The gate of the ninth N-type MOS transistor NM9 is connected to the gate of the seventh N-type MOS transistor NM7 and the gate of the eighth N-type MOS transistor NM8, and the source thereof is grounded as a third input terminal In3 of the mirror unit. The drain is connected to the drain of the fourteenth P-type MOS transistor PM14, and the source of the fourteenth P-type MOS transistor PM14 is connected to the power source as the fourth input terminal In4 of the mirror unit, and the gate thereof is connected to the drain thereof. Connecting to the gate terminals of the first P-type MOS transistor PM1, the second P-type MOS transistor PM2, and the third P-type MOS transistor PM3 as the output control terminal Ctr of the mirroring unit;
所述跟随单元包括第十P型MOS管PM10,第十一P型MOS管PM11,第十二P型MOS管PM12和第十三P型MOS管PM13,The following unit includes a tenth P-type MOS transistor PM10, an eleventh P-type MOS transistor PM11, a twelfth P-type MOS transistor PM12, and a thirteenth P-type MOS transistor PM13,
所述第十P型MOS管PM10源极连接至所述第十一P型MOS管PM11源极并连接至电源Vdd,所述第十P型MOS管PM10漏极连接至第十一P型MOS管PM11漏极并连接至所述第十二P型MOS管PM12源极,所述第十二P型MOS管PM12栅极连接至第一P型MOS管PM1的漏极和第一N型MOS管NM1的漏极,作为所述跟随单元的第三输入端In3,所述第十二P型MOS管PM12漏极连接至镜像单元作为所述跟随单元的第一输入端In1;The source of the tenth P-type MOS transistor PM10 is connected to the source of the eleventh P-type MOS transistor PM11 and is connected to the power source Vdd, and the drain of the tenth P-type MOS transistor PM10 is connected to the eleventh P-type MOS. The drain of the PM11 is connected to the source of the twelfth P-type MOS transistor PM12, and the gate of the twelfth P-type MOS transistor PM12 is connected to the drain of the first P-type MOS transistor PM1 and the first N-type MOS The drain of the tube NM1, as the third input terminal In3 of the following unit, the drain of the twelfth P-type MOS transistor PM12 is connected to the mirror unit as the first input terminal In1 of the following unit;
所述第十一P型MOS管PM11漏极连接至所述第十三P型MOS管PM13源极,第十三P型MOS管PM13栅极连接至第二P型MOS管PM2的漏极和第二N型MOS管NM2的漏极,作为所述跟随单元的第四输入端In4,所述第十三P型MOS管PM13漏极连接至所述第十P型MOS管PM10栅极和第十一P型MOS管PM11栅极, 并连接至镜像单元作为所述跟随单元的第二输入端In2。The drain of the eleventh P-type MOS transistor PM11 is connected to the source of the thirteenth P-type MOS transistor PM13, and the gate of the thirteenth P-type MOS transistor PM13 is connected to the drain of the second P-type MOS transistor PM2 and a drain of the second N-type MOS transistor NM2 as a fourth input terminal In4 of the following unit, the thirteenth P-type MOS transistor PM13 having a drain connected to the gate of the tenth P-type MOS transistor PM10 and Eleven P-type MOS tube PM11 gate, And connected to the mirror unit as the second input terminal In2 of the following unit.
本发明采用第四P型MOS管PM4、第五P型MOS管PM5和第三N型MOS管NM3、第四N型MOS管NM4、第五N型MOS管NM5组成了新型的自偏置结构,通过这样的结构一方面可以直接应用于宽输入电压范围,特别是高压输入下,另一方面不会增加大的功耗和版图面积,降低芯片成本。与传统自偏置结构和运放结构的带隙基准结构相比,电路大大减小沟道调制效应,结构较简单,即经济又实用。同时,该自偏置结构的两个输入对管外接反馈电路,可以有效控制两个输出端的偏置电压几乎相等,这一技术点同样可以应用于其他类似于带隙基准电路的结构中,以保证电路中产生两路大小恒定相同的输出电压。 The invention adopts a fourth P-type MOS tube PM4, a fifth P-type MOS tube PM5 and a third N-type MOS tube NM3, a fourth N-type MOS tube NM4, and a fifth N-type MOS tube NM5 to form a novel self-biasing structure. On the one hand, such a structure can be directly applied to a wide input voltage range, especially under high voltage input, on the other hand, it does not increase large power consumption and layout area, and reduces chip cost. Compared with the traditional self-biased structure and the bandgap reference structure of the op amp structure, the circuit greatly reduces the channel modulation effect, and the structure is relatively simple, that is, economical and practical. At the same time, the two input-to-tube external feedback circuits of the self-biasing structure can effectively control the bias voltages of the two output terminals to be almost equal. This technical point can also be applied to other structures similar to the bandgap reference circuit. Ensure that two equal output voltages of the same size are generated in the circuit.

Claims (6)

  1. 一种宽输入电压范围和高精度输出的自偏置带隙基准电路,包括连接至电源的第一P型MOS管、第二P型MOS管和第三P型MOS管,以及分别连接至所述第一P型MOS管漏极端和第二P型MOS管漏极端的第一N型MOS管和第二N型MOS管,所述第一N型MOS管通过第一三极管接地,所述第二N型MOS管通过第一电阻连接至第二三极管并接地,所述第三P型MOS管栅极连接至所述第一P型MOS管和第二P型MOS管栅极,漏极端通过第二电阻连接至第三三极管并接地,其特征在于:所述电路还包括连接至电源的自偏置单元,所述自偏置单元包括镜像单元和跟随单元两部分,A self-biased bandgap reference circuit with a wide input voltage range and high precision output, including a first P-type MOS transistor, a second P-type MOS transistor, and a third P-type MOS transistor connected to a power supply, and respectively connected to the a first N-type MOS transistor and a second N-type MOS transistor of a drain terminal of the first P-type MOS transistor and a drain terminal of the second P-type MOS transistor, wherein the first N-type MOS transistor is grounded through the first transistor The second N-type MOS transistor is connected to the second triode through a first resistor and grounded, and the third P-type MOS transistor gate is connected to the first P-type MOS transistor and the second P-type MOS transistor gate a drain terminal connected to the third transistor through a second resistor and grounded, wherein the circuit further comprises a self-biasing unit connected to the power source, the self-biasing unit comprising a mirror unit and a follow unit,
    所述镜像单元的第一电源输入端与第二电源输入端分别连接至电源,第一输出端与第二输出端分别连接至跟随单元,用于生成两路大小相同的电流值信号并输出至所述跟随单元,输出控制端连接至第一P型MOS管、第二P型MOS管和第三P型MOS管的栅极端,用于控制所述第一P型MOS管、第二P型MOS管和第三P型MOS管栅极端的偏置电压;The first power input end and the second power input end of the mirroring unit are respectively connected to the power source, and the first output end and the second output end are respectively connected to the following unit, for generating two current value signals of the same size and outputting to The following control unit is connected to the gate terminals of the first P-type MOS transistor, the second P-type MOS transistor and the third P-type MOS transistor for controlling the first P-type MOS transistor and the second P-type a bias voltage of the gate end of the MOS transistor and the third P-type MOS transistor;
    所述跟随单元的第一输入端与第二输入端分别连接至所述镜像单元的第一输出端与第二输出端,所述跟随单元的第三输入端连接至所述第一P型MOS管的漏极和第一N型MOS管的漏极,所述跟随单元的第四输入端连接至所述第二P型MOS管的漏极和第二N型MOS管的漏极,所述跟随单元的接地端接地。The first input end and the second input end of the following unit are respectively connected to the first output end and the second output end of the mirror unit, and the third input end of the follow unit is connected to the first P type MOS a drain of the tube and a drain of the first N-type MOS transistor, a fourth input terminal of the follower unit being connected to a drain of the second P-type MOS transistor and a drain of the second N-type MOS transistor, Ground the ground of the following unit.
  2. 根据权利要求1所述的宽输入电压范围和高精度输出的自偏置带隙基准电路,其特征在于:所述镜像单元包括第四P型MOS管和第五P型MOS管,A self-biased bandgap reference circuit with a wide input voltage range and a high precision output according to claim 1, wherein said mirror unit comprises a fourth P-type MOS transistor and a fifth P-type MOS transistor.
    所述第四P型MOS管源极连接至电源作为所述镜像单元的第一电源输入端,其栅极连接至其漏极并连接至跟随单元,作为所述镜像单元的第一输出端;The fourth P-type MOS transistor source is connected to a power source as a first power input end of the mirror unit, and a gate thereof is connected to a drain thereof and connected to a follower unit as a first output end of the mirror unit;
    所述第五P型MOS管源极连接至电源作为所述镜像单元的第二电源输入端, 其漏极连接至跟随单元,作为所述镜像单元的第二输出端;The source of the fifth P-type MOS transistor is connected to a power source as a second power input end of the mirror unit. a drain connected to the follower unit as a second output of the mirror unit;
    所述第四P型MOS管栅极连接至所述第五P型MOS管栅极,并同时连接至所述第一P型MOS管、第二P型MOS管和第三P型MOS管的栅极端,作为所述镜像单元的输出控制端。The fourth P-type MOS transistor gate is connected to the fifth P-type MOS transistor gate, and is simultaneously connected to the first P-type MOS transistor, the second P-type MOS transistor, and the third P-type MOS transistor The gate terminal serves as an output control terminal of the mirror unit.
  3. 根据权利要求1所述的宽输入电压范围和高精度输出的自偏置带隙基准电路,其特征在于:所述镜像单元包括第六P型MOS管、第七P型MOS管、第八P型MOS管和第九P型MOS管,A self-biased bandgap reference circuit for wide input voltage range and high precision output according to claim 1, wherein said mirror unit comprises a sixth P-type MOS transistor, a seventh P-type MOS transistor, and an eighth P Type MOS tube and ninth P type MOS tube,
    所述第六P型MOS管源极连接至电源作为所述镜像单元的第一电源输入端,其栅极连接至其漏极并连接至第八P型MOS管的源极,所述第八P型MOS管的栅极连接至其漏极并连接至跟随单元,作为所述镜像单元的第一输出端;The sixth P-type MOS transistor source is connected to the power source as a first power input terminal of the mirror unit, the gate thereof is connected to the drain thereof and is connected to the source of the eighth P-type MOS transistor, the eighth a gate of the P-type MOS transistor is connected to its drain and connected to the follower unit as a first output end of the mirror unit;
    所述第七P型MOS管源极连接至电源作为所述镜像单元的第二电源输入端,其漏极连接至第九P型MOS管的源极,所述第九P型MOS管的栅极连接至第八P型MOS管的栅极,第九P型MOS管漏极连接至跟随单元,作为所述镜像单元的第二输出端;The seventh P-type MOS transistor source is connected to the power source as a second power input end of the mirror unit, the drain thereof is connected to the source of the ninth P-type MOS transistor, and the gate of the ninth P-type MOS transistor The pole is connected to the gate of the eighth P-type MOS transistor, and the drain of the ninth P-type MOS transistor is connected to the follower unit as a second output end of the mirror unit;
    所述第六P型MOS管栅极连接至所述第七P型MOS管栅极,并连接至所述第一P型MOS管、第二P型MOS管和第三P型MOS管的栅极端,作为所述镜像单元的输出控制端。The sixth P-type MOS transistor gate is connected to the seventh P-type MOS transistor gate, and is connected to the gates of the first P-type MOS transistor, the second P-type MOS transistor, and the third P-type MOS transistor Extremely, as the output control end of the mirror unit.
  4. 根据权利要求1所述的宽输入电压范围和高精度输出的自偏置带隙基准电路,其特征在于:所述跟随单元包括第三N型MOS管、第四N型MOS管和第五N型MOS管,A self-biased bandgap reference circuit for wide input voltage range and high precision output according to claim 1, wherein said following unit comprises a third N-type MOS transistor, a fourth N-type MOS transistor, and a fifth N Type MOS tube,
    所述第三N型MOS管漏极连接至所述镜像单元的第一输出端,作为所述跟随单元的第一输入端,其栅极连接至第一P型MOS管的漏极和第一N型MOS管 的漏极,作为所述跟随单元的第三输入端;The drain of the third N-type MOS transistor is connected to the first output end of the mirror unit, as the first input end of the follower unit, the gate thereof is connected to the drain of the first P-type MOS transistor and the first N type MOS tube a drain as a third input of the following unit;
    所述第四N型MOS管漏极连接至所述镜像单元的第二输出端,作为所述跟随单元的第二输入端,其栅极连接至第二P型MOS管的漏极和第二N型MOS管的漏极,作为所述跟随单元的第四输入端,其源极连接至所述第三N型MOS管的源极,并连接至所述第五N型MOS管的漏极,所述第五N型MOS管栅极连接至第四N型MOS管漏极,第五N型MOS管源极接地作为所述跟随单元的接地端。The fourth N-type MOS transistor drain is connected to the second output end of the mirror unit, as a second input end of the follow unit, the gate thereof is connected to the drain and the second of the second P-type MOS transistor a drain of the N-type MOS transistor, as a fourth input terminal of the follower unit, a source connected to a source of the third N-type MOS transistor and connected to a drain of the fifth N-type MOS transistor The fifth N-type MOS transistor gate is connected to the fourth N-type MOS transistor drain, and the fifth N-type MOS transistor source is grounded as the ground terminal of the follower unit.
  5. 根据权利要求1所述的宽输入电压范围和高精度输出的自偏置带隙基准电路,其特征在于:所述跟随单元包括第三N型MOS管、第四N型MOS管、第五N型MOS管和第六N型MOS管,A self-biased bandgap reference circuit for wide input voltage range and high precision output according to claim 1, wherein said following unit comprises a third N-type MOS transistor, a fourth N-type MOS transistor, and a fifth N Type MOS tube and sixth N type MOS tube,
    所述第三N型MOS管漏极连接至所述镜像单元的第一输出端,作为所述跟随单元的第一输入端,其栅极连接至第一P型MOS管的漏极和第一N型MOS管的漏极,作为所述跟随单元的第三输入端,其源极连接至所述第六N型MOS管的漏极,所述第六N型MOS管栅极连接至所述第四N型MOS管漏极,第六N型MOS管源极接地;The drain of the third N-type MOS transistor is connected to the first output end of the mirror unit, as the first input end of the follower unit, the gate thereof is connected to the drain of the first P-type MOS transistor and the first a drain of the N-type MOS transistor as a third input terminal of the follower unit, a source thereof is connected to a drain of the sixth N-type MOS transistor, and a gate of the sixth N-type MOS transistor is connected to the a drain of the fourth N-type MOS transistor, and a source of the sixth N-type MOS transistor is grounded;
    所述第四N型MOS管漏极连接至所述镜像单元的第二输出端,作为所述跟随单元的第二输入端,其栅极连接至第二P型MOS管的漏极和第二N型MOS管的漏极,作为所述跟随单元的第四输入端,其源极连接至所述第三N型MOS管的源极,并连接至所述第五N型MOS管的漏极,所述第五N型MOS管栅极连接至第四N型MOS管漏极,第五N型MOS管源极接地作为所述跟随单元的接地端。The fourth N-type MOS transistor drain is connected to the second output end of the mirror unit, as a second input end of the follow unit, the gate thereof is connected to the drain and the second of the second P-type MOS transistor a drain of the N-type MOS transistor, as a fourth input terminal of the follower unit, a source connected to a source of the third N-type MOS transistor and connected to a drain of the fifth N-type MOS transistor The fifth N-type MOS transistor gate is connected to the fourth N-type MOS transistor drain, and the fifth N-type MOS transistor source is grounded as the ground terminal of the follower unit.
  6. 根据权利要求1所述的宽输入电压范围和高精度输出的自偏置带隙基准电路,其特征在于:所述镜像单元包括第七N型MOS管、第八N型MOS管、第九N型MOS管和第十四P型MOS管, A self-biased bandgap reference circuit for wide input voltage range and high precision output according to claim 1, wherein said mirror unit comprises a seventh N-type MOS transistor, an eighth N-type MOS transistor, and a ninth N Type MOS tube and fourteenth P type MOS tube,
    所述第七N型MOS管漏极连接至其栅极,并连接至跟随单元作为所述镜像单元的第一输出端,其源极接地作为镜像单元的第一输入端,The seventh N-type MOS transistor has a drain connected to the gate thereof, and is connected to the follower unit as a first output end of the mirror unit, and a source thereof is grounded as a first input end of the mirror unit.
    所述第八N型MOS管漏极连接至跟随单元作为所述镜像单元的第二输出端,其栅极连接至所述第七N型MOS管栅极,其源极接地作为镜像单元的第二输入端,The eighth N-type MOS transistor drain is connected to the follower unit as a second output end of the mirror unit, the gate thereof is connected to the seventh N-type MOS transistor gate, and the source is grounded as a mirror unit Two inputs,
    所述第九N型MOS管栅极连接至所述第七N型MOS管栅极和第八N型MOS管栅极,其源极接地,作为镜像单元的第三输入端,其漏极连接至第十四P型MOS管漏极,所述第十四P型MOS管源极连接至电源作为镜像单元的第四输入端,其栅极连接至其漏极并连接至第一P型MOS管、第二P型MOS管和第三P型MOS管的栅极端,作为所述镜像单元的输出控制端;The ninth N-type MOS transistor gate is connected to the seventh N-type MOS transistor gate and the eighth N-type MOS transistor gate, and the source thereof is grounded, as a third input end of the mirror unit, and the drain connection thereof Up to the drain of the fourteenth P-type MOS transistor, the source of the fourteenth P-type MOS transistor is connected to the power source as a fourth input terminal of the mirror unit, and the gate thereof is connected to the drain thereof and connected to the first P-type MOS a gate end of the tube, the second P-type MOS transistor and the third P-type MOS transistor as an output control end of the mirror unit;
    所述跟随单元包括第十P型MOS管,第十一P型MOS管,第十二P型MOS管和第十三P型MOS管,The following unit includes a tenth P-type MOS transistor, an eleventh P-type MOS transistor, a twelfth P-type MOS transistor, and a thirteenth P-type MOS transistor.
    所述第十P型MOS管源极连接至所述第十一P型MOS管源极并连接至电源,所述第十P型MOS管漏极连接至第十一P型MOS管漏极并连接至所述第十二P型MOS管源极,所述第十二P型MOS管栅极连接至第一P型MOS管的漏极和第一N型MOS管的漏极,作为所述跟随单元的第三输入端,所述第十二P型MOS管漏极连接至镜像单元作为所述跟随单元的第一输入端;The tenth P-type MOS transistor source is connected to the eleventh P-type MOS transistor source and is connected to a power source, and the tenth P-type MOS transistor drain is connected to the eleventh P-type MOSFET drain Connected to the twelfth P-type MOS transistor source, the twelfth P-type MOS transistor gate is connected to the drain of the first P-type MOS transistor and the drain of the first N-type MOS transistor as the a third input end of the following unit, the twelfth P-type MOS transistor drain is connected to the mirror unit as a first input end of the following unit;
    所述第十一P型MOS管漏极连接至所述第十三P型MOS管源极,第十三P型MOS管栅极连接至第二P型MOS管的漏极和第二N型MOS管的漏极,作为所述跟随单元的第四输入端,所述第十三P型MOS管漏极连接至所述第十P型MOS管栅极和第十一P型MOS管栅极,并连接至镜像单元作为所述跟随单元的第二输入端。 The eleventh P-type MOS transistor drain is connected to the thirteenth P-type MOS transistor source, and the thirteenth P-type MOS transistor gate is connected to the drain of the second P-type MOS transistor and the second N-type a drain of the MOS transistor as a fourth input terminal of the follower unit, the thirteenth P-type MOS transistor drain is connected to the tenth P-type MOSFET gate and the eleventh P-type MOSFET gate And connected to the mirroring unit as the second input of the following unit.
PCT/CN2016/098175 2015-09-07 2016-09-06 Self-biased bandgap reference circuit with wide range of input voltages and high-precision output WO2017041691A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510564335.0A CN105116954B (en) 2015-09-07 2015-09-07 A kind of wide input voltage range and the automatic biasing band-gap reference circuit of high accuracy output
CN201510564335.0 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017041691A1 true WO2017041691A1 (en) 2017-03-16

Family

ID=54664972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098175 WO2017041691A1 (en) 2015-09-07 2016-09-06 Self-biased bandgap reference circuit with wide range of input voltages and high-precision output

Country Status (2)

Country Link
CN (1) CN105116954B (en)
WO (1) WO2017041691A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108762366A (en) * 2018-06-02 2018-11-06 丹阳恒芯电子有限公司 A kind of band-gap reference circuit
CN109144165A (en) * 2017-06-19 2019-01-04 深圳市威益德科技有限公司 A reference source and its integrated circuit
US10256808B2 (en) 2017-05-02 2019-04-09 Richwave Technology Corp. Bandgap reference circuit having clamping control circuit and being capable of improving rate of providing predetermined voltage
CN110275563A (en) * 2019-07-12 2019-09-24 苏州锴威特半导体有限公司 A kind of current biasing circuit with temperature-compensating
CN110719093A (en) * 2019-10-08 2020-01-21 西安拓尔微电子有限责任公司 Multi-path high-speed broadband overcurrent detection circuit for load switch and control method
CN110943738A (en) * 2019-10-15 2020-03-31 芯创智(北京)微电子有限公司 Inductance-capacitance voltage-controlled oscillator with adjustable common-mode voltage of output clock
CN111245370A (en) * 2020-03-10 2020-06-05 西安拓尔微电子有限责任公司 CMOS bistable oscillator and implementation method thereof
CN111294047A (en) * 2020-03-11 2020-06-16 电子科技大学 High-speed high-linearity input buffer
CN114167931A (en) * 2021-12-04 2022-03-11 恒烁半导体(合肥)股份有限公司 Band-gap reference voltage source capable of being started quickly and application thereof
CN114421950A (en) * 2022-01-17 2022-04-29 北京奕斯伟计算技术有限公司 Level conversion circuit, chip and display device
CN115185327A (en) * 2022-07-19 2022-10-14 电子科技大学 VGS-based CMOS reference voltage source
CN115333436A (en) * 2022-10-13 2022-11-11 昂赛微电子(上海)有限公司 Voltage clamp circuit, motor driving chip and voltage clamp control method
CN115421549A (en) * 2021-06-01 2022-12-02 上海艾为电子技术股份有限公司 Self-biased band-gap reference circuit and control method thereof, power supply circuit and electronic equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116954B (en) * 2015-09-07 2017-09-01 卓捷创芯科技(深圳)有限公司 A kind of wide input voltage range and the automatic biasing band-gap reference circuit of high accuracy output
CN108601144A (en) * 2017-10-09 2018-09-28 东莞市翔实信息科技有限公司 Unmanned electric light drive integrated circult
CN112825002B (en) * 2019-11-21 2022-10-25 中芯国际集成电路制造(上海)有限公司 Reference current source circuit
CN111026219B (en) * 2019-12-24 2021-08-17 南京微盟电子有限公司 Reference source of cascode structure
CN111930172B (en) * 2020-09-03 2022-04-15 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Single-operational-amplifier self-biased cascode band-gap reference circuit
CN115328258A (en) * 2022-09-22 2022-11-11 武汉泽声微电子有限公司 Band gap reference circuit
CN117492509B (en) * 2023-12-27 2024-03-22 苏州贝克微电子股份有限公司 Low-voltage comparison circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020610A1 (en) * 1996-11-01 1998-05-14 Burr-Brown Corporation Low-impedance cmos output stage and method
CN1719722A (en) * 2004-07-09 2006-01-11 三星电子株式会社 Self biased differential amplifier
CN102315823A (en) * 2010-07-05 2012-01-11 上海跃芯微电子有限公司 Passive mixer bias circuit capable of following threshold voltage of MOS (metal oxide semiconductor) transistor
CN102571002A (en) * 2010-12-10 2012-07-11 上海华虹集成电路有限责任公司 Automatic-biasing structural operation amplifier applied to band gap reference source
CN103926968A (en) * 2014-04-18 2014-07-16 电子科技大学 Band-gap reference voltage generating circuit
CN105116954A (en) * 2015-09-07 2015-12-02 卓捷创芯科技(深圳)有限公司 Automatic biasing band-gap reference circuit with wide input voltage range and high-precision output

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147632B (en) * 2011-05-11 2012-09-12 电子科技大学 Resistance-free bandgap voltage reference source
CN104122918B (en) * 2013-04-26 2016-06-29 中国科学院深圳先进技术研究院 Band-gap reference circuit
CN103901935A (en) * 2014-03-18 2014-07-02 苏州市职业大学 Automatic biasing band-gap reference source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020610A1 (en) * 1996-11-01 1998-05-14 Burr-Brown Corporation Low-impedance cmos output stage and method
CN1719722A (en) * 2004-07-09 2006-01-11 三星电子株式会社 Self biased differential amplifier
CN102315823A (en) * 2010-07-05 2012-01-11 上海跃芯微电子有限公司 Passive mixer bias circuit capable of following threshold voltage of MOS (metal oxide semiconductor) transistor
CN102571002A (en) * 2010-12-10 2012-07-11 上海华虹集成电路有限责任公司 Automatic-biasing structural operation amplifier applied to band gap reference source
CN103926968A (en) * 2014-04-18 2014-07-16 电子科技大学 Band-gap reference voltage generating circuit
CN105116954A (en) * 2015-09-07 2015-12-02 卓捷创芯科技(深圳)有限公司 Automatic biasing band-gap reference circuit with wide input voltage range and high-precision output

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256808B2 (en) 2017-05-02 2019-04-09 Richwave Technology Corp. Bandgap reference circuit having clamping control circuit and being capable of improving rate of providing predetermined voltage
TWI672576B (en) * 2017-05-02 2019-09-21 立積電子股份有限公司 Bandgap reference circuit, voltage generator and voltage control method thereof
CN109144165A (en) * 2017-06-19 2019-01-04 深圳市威益德科技有限公司 A reference source and its integrated circuit
CN108762366A (en) * 2018-06-02 2018-11-06 丹阳恒芯电子有限公司 A kind of band-gap reference circuit
CN110275563A (en) * 2019-07-12 2019-09-24 苏州锴威特半导体有限公司 A kind of current biasing circuit with temperature-compensating
CN110275563B (en) * 2019-07-12 2023-09-29 苏州锴威特半导体股份有限公司 Current bias circuit with temperature compensation
CN110719093A (en) * 2019-10-08 2020-01-21 西安拓尔微电子有限责任公司 Multi-path high-speed broadband overcurrent detection circuit for load switch and control method
CN110943738B (en) * 2019-10-15 2023-05-26 芯创智(北京)微电子有限公司 Inductance-capacitance voltage-controlled oscillator with adjustable output clock common mode voltage
CN110943738A (en) * 2019-10-15 2020-03-31 芯创智(北京)微电子有限公司 Inductance-capacitance voltage-controlled oscillator with adjustable common-mode voltage of output clock
CN111245370A (en) * 2020-03-10 2020-06-05 西安拓尔微电子有限责任公司 CMOS bistable oscillator and implementation method thereof
CN111294047A (en) * 2020-03-11 2020-06-16 电子科技大学 High-speed high-linearity input buffer
CN115421549A (en) * 2021-06-01 2022-12-02 上海艾为电子技术股份有限公司 Self-biased band-gap reference circuit and control method thereof, power supply circuit and electronic equipment
CN114167931A (en) * 2021-12-04 2022-03-11 恒烁半导体(合肥)股份有限公司 Band-gap reference voltage source capable of being started quickly and application thereof
CN114421950A (en) * 2022-01-17 2022-04-29 北京奕斯伟计算技术有限公司 Level conversion circuit, chip and display device
CN115185327A (en) * 2022-07-19 2022-10-14 电子科技大学 VGS-based CMOS reference voltage source
CN115185327B (en) * 2022-07-19 2023-03-28 电子科技大学 VGS-based CMOS reference voltage source
CN115333436A (en) * 2022-10-13 2022-11-11 昂赛微电子(上海)有限公司 Voltage clamp circuit, motor driving chip and voltage clamp control method

Also Published As

Publication number Publication date
CN105116954A (en) 2015-12-02
CN105116954B (en) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2017041691A1 (en) Self-biased bandgap reference circuit with wide range of input voltages and high-precision output
US10599176B1 (en) Bandgap reference circuit and high-order temperature compensation method
CN109917842B (en) Clamp feedback starting circuit for eliminating self-biased bandgap reference degeneration metastable state
US10671109B2 (en) Scalable low output impedance bandgap reference with current drive capability and high-order temperature curvature compensation
US9483069B2 (en) Circuit for generating bias current
WO2016015523A1 (en) Bandgap reference source having low offset voltage and high psrr
JP2008108009A (en) Reference voltage generation circuit
CN104516391B (en) The CMOS votage reference source of a kind of low-power consumption low temperature drift
CN103760944B (en) Realize base current compensation without amplifier internal electric source structure
US20140247034A1 (en) Low supply voltage bandgap reference circuit and method
CN107831819B (en) Reference voltage source and reference current source comprising same
US10585447B1 (en) Voltage generator
CN103399606B (en) Low-voltage bandgap-free reference voltage source
CN107168442B (en) Band gap reference voltage source circuit
CN109062309A (en) A kind of low-dropout linear voltage adjuster
CN109308091B (en) Voltage reference source circuit
CN112987836A (en) High-performance band-gap reference circuit
TWI548209B (en) Differential operational amplifier and bandgap reference voltage generating circuit
CN104460799A (en) CMOS reference voltage source circuit
TW201805754A (en) Wide supply range precision startup current source
US20090184752A1 (en) Bias circuit
CN104777870A (en) Bandgap reference circuit
CN113253788B (en) Reference voltage circuit
CN112433556A (en) Improved band-gap reference voltage circuit
CN111293876A (en) Linear circuit of charge pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843629

Country of ref document: EP

Kind code of ref document: A1