WO2017022391A1 - Multipath detection device, multipath detection method, multipath detection program, positioning device, positioning method, and positioning program - Google Patents

Multipath detection device, multipath detection method, multipath detection program, positioning device, positioning method, and positioning program Download PDF

Info

Publication number
WO2017022391A1
WO2017022391A1 PCT/JP2016/069907 JP2016069907W WO2017022391A1 WO 2017022391 A1 WO2017022391 A1 WO 2017022391A1 JP 2016069907 W JP2016069907 W JP 2016069907W WO 2017022391 A1 WO2017022391 A1 WO 2017022391A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
multipath
value
multipath detection
wave
Prior art date
Application number
PCT/JP2016/069907
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 鳥居
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2017022391A1 publication Critical patent/WO2017022391A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/22Multipath-related issues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry

Definitions

  • the present invention relates to a multipath detection device, a multipath detection method, and a multipath detection program for detecting whether or not a received positioning signal is a multipath wave.
  • a direct wave is a signal in which a positioning signal transmitted from a positioning satellite is directly received by an antenna.
  • a multipath wave is a signal in which a positioning signal transmitted from a positioning satellite is reflected by some object and received by an antenna.
  • High-accuracy positioning using carrier phase is less affected by multipath waves than positioning using code phase, and positioning accuracy is less likely to deteriorate.
  • one positioning signal is excluded from all received positioning signals, and positioning calculation is performed using a pseudo distance.
  • the positioning device described in Patent Document 1 repeats positioning calculation based on pseudo distance while switching positioning signals to be excluded.
  • the positioning device described in Patent Literature 1 detects a positioning signal excluded when it is determined that the positioning accuracy is high as an unnecessary wave such as a multipath wave.
  • the positioning calculation based on the pseudo distance must be performed a plurality of times. Executing the positioning calculation based on the pseudo distance a plurality of times requires a high calculation load and takes time to detect a multipath wave.
  • an object of the present invention is to provide a multipath detection device that detects a multipath wave at high speed and accurately.
  • the multipath detection apparatus of the present invention includes an observation value acquisition unit 20, an estimated value calculation unit 30, and a determination unit 40.
  • the observation value acquisition unit acquires the observation value from the carrier phase of the positioning signal received from a plurality of positioning satellites.
  • the estimated value calculation unit calculates an estimated value corresponding to the observed value from the geometric distance obtained from the position of the positioning satellite and the approximate position of the antenna.
  • the determination unit determines whether the received positioning signal is a multipath wave based on the time change amount of the observed value and the time change amount of the estimated value.
  • the difference between the observed value of the multipath wave and the observed value of the direct wave is detected from the time change of the difference between the observed value and the estimated value. Therefore, the difference between the direct wave and the multipath wave can be obtained without performing positioning using the carrier phase.
  • multipath waves can be detected at high speed.
  • multipath waves can be detected accurately.
  • FIG. 1 is a block diagram of a multipath detection device according to a first embodiment of the present invention.
  • Graph showing time variation in multiphase wave and direct wave carrier phase integration value Graph showing the time change of the difference between the carrier phase integration value of the reference direct wave and the carrier phase integration value of the observed direct wave and multipath wave
  • Flowchart of the positioning method according to the first embodiment of the present invention The block diagram of the positioning apparatus which concerns on the 1st Embodiment of this invention.
  • the block diagram of the multipath detection apparatus concerning the 2nd Embodiment of this invention.
  • Flowchart of the positioning method according to the second embodiment of the present invention The block diagram of the multipath detection apparatus concerning the 3rd Embodiment of this invention.
  • FIG. 1 is a block diagram of a multipath detection apparatus according to the first embodiment of the present invention.
  • the multipath detection apparatus 10 includes an observation value acquisition unit 20, an estimated value calculation unit 30, and a determination unit 40.
  • the observation value acquisition unit 20 is connected to the antenna ANT1.
  • the antenna ANT1 is installed at a fixed point, receives a positioning signal transmitted from a positioning satellite, and outputs it to the observation value acquisition unit 20.
  • a positioning satellite is a satellite that constitutes a GNSS such as GPS.
  • the positioning signal is a signal obtained by code-modulating a carrier wave having a predetermined frequency with a pseudo spread code. A navigation message is superimposed on the positioning signal.
  • the observation value acquisition unit 20 captures and tracks a positioning signal for each positioning satellite.
  • the observation value acquisition unit 20 acquires the observation value of the carrier phase integrated value from the tracking result.
  • the observation value acquisition unit 20 outputs the observation value to the determination unit 40.
  • the observation value acquisition unit 20 measures the code phase and carrier phase of the positioning signal.
  • the observation value acquisition unit 20 outputs the code phase and the carrier wave phase to the estimated value calculation unit 30.
  • the estimated value calculation unit 30 calculates a geometric distance from the approximate position of the antenna ANT1 and the position of the positioning satellite.
  • the position of the positioning satellite is obtained from the satellite orbit information in the navigation message.
  • the approximate position of the antenna ANT1 is obtained by positioning using pseudoranges for a plurality of positioning satellites calculated using the code phase.
  • the estimated value calculating unit 30 outputs the carrier phase integrated value calculated from the geometric distance to the determining unit 40 as an estimated value of the carrier phase integrated value.
  • the determination unit 40 determines whether or not the received positioning signal is a multipath wave, using the observation value and the estimated value of the carrier phase integrated value. Specifically, the determination unit 40 determines multipath waves by the following method.
  • FIG. 2 is a graph showing the time change of the carrier phase integrated value of the multipath wave and the direct wave.
  • FIG. 3 is a graph showing the change over time of the difference between the carrier phase integrated value of the reference direct wave and the observed carrier phase integrated values of the direct wave and the multipath wave.
  • direct wave (Wd), multipath wave A (Wma), and multipath wave B (Wmb) indicate cases where a positioning signal is received at a fixed point
  • multipath wave C (Wmc) is The case where a positioning signal is received at a moving point is shown.
  • the difference between the carrier phase integrated values shown in FIG. 3 is calculated by the carrier phase integrated value shown in FIG.
  • the reference direct wave Wd (std) is the same as the observed direct wave Wd.
  • the observed value of the carrier phase integrated value when a positioning signal is received at a fixed point, regardless of whether it is a direct wave or a multipath wave, the observed value of the carrier phase integrated value can be regarded as linearly increasing or decreasing linearly if it is about a few minutes. it can.
  • the amount of time change in the observed value of the carrier phase integrated value differs between the direct wave and the multipath wave. For this reason, as shown in FIG. 3, when a positioning signal is received at a fixed point, the difference between the observed value of the carrier phase integrated value of the multipath wave and the observed value of the carrier phase integrated value of the direct wave is approximately linear. Change, monotonically increasing or monotonically decreasing.
  • the time change of the observed value of the carrier phase integrated value becomes nonlinear depending on the receiving position. Therefore, the difference between the observed value of the carrier phase integrated value of the multipath wave and the observed value of the carrier phase integrated value of the direct wave also changes nonlinearly.
  • the observed values of the carrier phase integrated value of the multipath wave at times t0 and t0 + ⁇ t are respectively ADR m (t0) and ADR m (t0 + ⁇ t), and the observed values of the carrier phase integrated value of the direct wave at times t0 and t0 + ⁇ t Are ADR d (t0) and ADR d (t0 + ⁇ t), respectively, and a multipath wave dependence coefficient f x (t0, t0 + ⁇ t) between times t0 and t0 + ⁇ t is expressed by the following equation.
  • f x (t0, t0 + ⁇ t) (ADR m (t0 + ⁇ t) ⁇ ADR m (t0)) ⁇ (ADR d (t0 + ⁇ t) ⁇ ADR d (t0)) (Formula 1)
  • n is a coefficient representing the passage of time.
  • the determination unit 40 Since it is not possible to directly acquire the term relating to the direct wave in the above (Equation 1), the determination unit 40 does not know whether the positioning signal is a direct wave or a multipath wave only by acquiring the observation value of the carrier phase integrated value. .
  • the estimated value calculation unit 30 calculates an estimated value of the carrier wave phase integrated value of the direct wave in a pseudo manner from the position measured using the code phase. Specifically, the estimated value calculation unit 30 calculates the position of the antenna ANT1 from the pseudo distance for each positioning signal, calculates the reception time, and calculates the geometric distance between the positioning satellite and the antenna ANT1. The estimated value calculation unit 30 calculates an estimated value of the carrier phase integrated value from the calculated geometric distance.
  • the determination unit 40 substitutes the estimated value at each time for ADR d (t0 + ⁇ t) and ADR d (t0) in (Equation 1), and calculates the multipath wave dependency coefficient f x (t0, t0 + ⁇ t). The determination unit 40 similarly calculates the multipath wave dependency coefficient f x (t0, t0 + n ⁇ t) at different times (t0, t0 + n ⁇ t).
  • Determining portion 40 the relationship (linear change in the multipath wave dependence coefficient at different another twice times f x (t0, t0 + ⁇ t ) and multipath wave dependency coefficient f x (t0, t0 + n ⁇ t ) is (Equation 3) ), It is determined that the received positioning signal is a multipath wave.
  • the determination unit 40 that the second time of the multipath wave dependency coefficient f x (t0, t0 + ⁇ t ) and multipath wave dependency coefficient f x (t0, t0 + n ⁇ t ) is a relationship (no change) of (Formula 2) Is detected, it is determined that the received positioning signal is not a multipath wave (direct wave).
  • the configuration of the present embodiment it is possible to detect whether or not the received positioning signal is a multipath wave without performing positioning using the carrier phase. That is, by using the configuration of this embodiment, multipath waves can be detected quickly and accurately.
  • the multipath may be detected by acquiring the ratio of the time change amount of the observed value and the time change amount of the estimated value over time.
  • the mode in which the multipath is detected by obtaining the difference between the time change amount of the observed value and the time change amount of the estimated value with time is shown.
  • FIG. 4 is a flowchart of the positioning method according to the first embodiment of the present invention.
  • the arithmetic processing unit acquires the observation value of the carrier phase integrated value from the tracking result of the received positioning signal (S101).
  • the arithmetic processing unit calculates an estimated value of the carrier phase integrated value from the pseudo distance based on the positioning signal (S102).
  • the arithmetic processing unit compares the observed value of the carrier wave phase integrated value with the estimated value (S103). The arithmetic processing unit performs this comparison by combining two times having different time intervals.
  • the arithmetic processing unit determines that the positioning signal is a multipath wave (S105). As a specific example, the arithmetic processing unit calculates the difference between the observed value and the estimated value of the carrier phase integrated value (corresponding to S103), and if the difference value changes linearly (S104: corresponding to NO), It is determined that the positioning signal is a multipath wave (corresponding to S105).
  • the arithmetic processing unit determines that the positioning signal is not a multipath wave but a direct wave. As a specific example, the arithmetic processing unit calculates the difference between the observed value and the estimated value of the carrier phase integrated value (corresponding to S103), and if the difference value is the same (S104: corresponding to YES), positioning is performed. It is determined that the signal is not a multipath wave but a direct wave.
  • FIG. 5 is a block diagram of the positioning apparatus according to the first embodiment of the present invention.
  • the positioning device 100 includes the configuration of the multipath detection device 10 described above and a positioning calculation unit 50.
  • the positioning calculation unit 50 receives the observation value of the carrier phase integrated value and the detection result of the multipath wave.
  • the positioning calculation unit 50 performs positioning calculation using the observation value of the carrier phase integrated value.
  • the positioning calculation unit 50 sets a weighting coefficient for each observation value in the calculation formula for positioning calculation.
  • the weighting coefficient is set so that the larger the weight, the greater the influence on the positioning result, and the smaller the weight, the smaller the influence on the positioning result.
  • the positioning calculation unit 50 sets the weight for the observation value of the positioning signal determined to be a multipath wave to be small and the weight for the observation value of the positioning signal determined to be not a multipath wave to be large.
  • the positioning calculation unit 50 performs positioning calculation using this weighted calculation formula.
  • the weight of the positioning signal determined to be a multipath wave may be minimized, that is, the weighting coefficient may be “0”.
  • the positioning calculation unit 50 can perform positioning using not only the observed value of the carrier phase integrated value but also the observed value of the code phase integrated value.
  • FIG. 6 is a block diagram of a multipath detection apparatus according to the second embodiment of the present invention.
  • the multipath detection device 10A according to the present embodiment uses a single phase difference between satellites calculated from the carrier phase integration value, whereas the multipath detection device 10 according to the first embodiment uses the carrier phase integration value as it is. Is used.
  • the basic concept of the multipath detection device 10A according to the present embodiment is the same as that of the multipath detection device 10 according to the first embodiment.
  • the multipath detection device 10A includes an observation value acquisition unit 20A, an estimated value calculation unit 30A, and a determination unit 40A.
  • the observation value acquisition unit 20A includes an integrated value observation unit 201 and a single phase difference calculation unit 202.
  • the integrated value observation unit 201 is the same as the observation value acquisition unit 20 according to the first embodiment.
  • the integrated value observation unit 201 outputs the observation value of the carrier phase integrated value to the single phase difference calculation unit 202.
  • the integrated value observation unit 201 outputs the code phase to the estimated value calculation unit 30A.
  • the single phase difference calculation unit 202 calculates the observation value of the inter-satellite single phase difference from the observation value of the carrier phase integrated value for a plurality of positioning satellites.
  • Single phase difference calculation section 202 outputs the observation value of the single phase difference between satellites to determination section 40A.
  • the estimated value calculation unit 30A calculates pseudoranges for a plurality of positioning satellites from code phases for the plurality of positioning satellites.
  • the estimated value calculation unit 30A calculates an estimated value of a single phase difference between satellites from a difference in pseudoranges for a plurality of positioning satellites and a wavelength of a carrier phase.
  • the estimated value calculation unit 30A outputs an estimated value of the single phase difference between the satellites to the determination unit 40A.
  • the determination unit 40A compares the observed value and the estimated value of the single phase difference between the satellites, and detects whether or not the positioning signal is a multipath wave from the comparison result. Specifically, the relationship between the observed value and the estimated value of the single phase difference between satellites is similar to that in the first embodiment.
  • the single-phase phase differences between the satellites of the multipath wave carrier phase at times t0 and t0 + ⁇ t are respectively ADRD m P, Q (t0) and ADRD m P, Q (t0 + ⁇ t), and the carrier phase of the direct wave at times t0, t0 + ⁇ t
  • ADRD m P, Q (t0) and ADRD m P, Q (t0 + ⁇ t) are respectively ADRD m P, Q (t0) and ADRD m P, Q (t0 + ⁇ t)
  • the carrier phase of the direct wave at times t0, t0 + ⁇ t are respectively, and the multipath wave dependence coefficients due to the single phase difference between times t0, t0 + ⁇ t.
  • n be a coefficient representing the passage of time.
  • the determination unit 40A detects whether or not the positioning signal is a multipath wave by using whether or not the difference between the observed value and the estimated value of the single phase difference between the satellites changes with time.
  • the detection of multipath waves in the present embodiment may be stored by programming each of the above-described processes, and the program may be executed by an arithmetic processing device such as a computer.
  • the arithmetic processing unit may execute the following positioning method and positioning program.
  • FIG. 7 is a flowchart of the positioning method according to the second embodiment of the present invention.
  • the arithmetic processing unit acquires the observation value of the carrier phase integrated value from the tracking result of the received positioning signal (S201).
  • the arithmetic processing unit calculates the observation value of the single phase difference between the satellites from the observation value of the carrier phase integrated value for each positioning satellite (S202).
  • the arithmetic processing unit calculates an estimated value of the single phase difference between the satellites from the pseudorange using the code phase of the positioning signal (S203).
  • the arithmetic processing unit compares the observed value and the estimated value of the single phase difference between the satellites (S204).
  • the arithmetic processing unit performs this comparison by combining two times having different time intervals.
  • the arithmetic processing unit determines that the positioning signal is a multipath wave (S206). If the comparison result is constant (S205: YES), the arithmetic processing unit determines that the positioning signal is not a multipath wave but a direct wave.
  • multipath detection device 10A can also be provided in the positioning device, similarly to the configuration shown in FIG.
  • FIG. 8 is a block diagram of a multipath detection apparatus according to the third embodiment of the present invention.
  • the multipath detection device 10B according to the present embodiment uses the double phase difference of the carrier phase integrated value, whereas the multipath detection device 10A according to the second embodiment uses a single phase difference between satellites. Yes.
  • the basic concept of the multipath detection device 10B according to the present embodiment is the same as that of the multipath detection device 10A according to the second embodiment.
  • the multipath detection device 10B includes an observation value acquisition unit 20B, an estimated value calculation unit 30B, a determination unit 40B, and a wireless communication unit 70.
  • the observation value acquisition unit 20B includes an integrated value observation unit 201 and a double phase difference calculation unit 203.
  • the integrated value observation unit 201 is the same as the integrated value observation unit 201 according to the second embodiment.
  • the integrated value observation unit 201 outputs the observation value of the carrier phase integrated value to the double phase difference calculation unit 203.
  • the integrated value observation unit 201 outputs the code phase to the estimated value calculation unit 30B.
  • the wireless communication unit 70 is connected to the antenna ANT70.
  • the radio communication unit 70 receives the observation value of the carrier phase integrated value and the code phase or pseudorange in the base station via the antenna ANT70.
  • the wireless communication unit 70 outputs the observation value of the carrier phase integrated value to the double phase difference calculation unit 203.
  • the wireless communication unit 70 outputs the code phase or the pseudo distance to the estimated value calculation unit 30B.
  • the double phase difference calculation unit 203 calculates the observation value of the double phase difference from the observation value of the carrier phase integrated value of the own device and the base station for a plurality of positioning satellites.
  • the double phase difference calculation unit 203 outputs the observation value of the double phase difference to the determination unit 40B.
  • the estimated value calculation unit 30B calculates pseudoranges for the plurality of positioning satellites, the own device, and the base station from the code phases of the own device and the base station for the plurality of positioning satellites. If the pseudo distance is acquired from the base station, the acquired pseudo distance may be used.
  • the estimated value calculation unit 30B calculates an estimated value of the double phase difference from the difference of the pseudoranges for the plurality of positioning satellites in the own apparatus and the base station and the wavelength of the carrier phase. That is, the estimated value of the single phase difference shown in the second embodiment is calculated for the own apparatus and the base station, and the difference is calculated.
  • the estimated value calculation unit 30B outputs the estimated value of the double phase difference to the determination unit 40B.
  • the determination unit 40B compares the observed value of the double phase difference with the estimated value of the double phase difference, and detects whether the positioning signal is a multipath wave from the comparison result. Specifically, the relationship between the observed value of the double phase difference and the estimated value of the double phase difference has the same relationship as in the first and second embodiments described above.
  • the double phase difference of the carrier phase of the multipath wave at times t0 and t0 + ⁇ t is ADRDD m p, q (t0) and ADRDD m p, q (t0 + ⁇ t), respectively, and the carrier phase of the direct wave at times t0, t0 + ⁇ t
  • the double phase differences are ADRDD d p, q (t0) and ADRDD d p, q (t0 + ⁇ t), respectively, and the multipath wave dependence coefficient due to the double phase difference between times t0, t0 + ⁇ t is f x P, Q (t0 , T0 + ⁇ t).
  • n be a coefficient representing the passage of time.
  • the determination unit 40B detects whether or not the positioning signal is a multipath wave by using whether or not the difference between the observed value of the double phase difference and the estimated value of the double phase difference changes with time.
  • the detection of multipath waves according to the present embodiment is stored by programming each of the above-described processes, and the program may be executed by an arithmetic processing device such as a computer. .
  • the arithmetic processing unit may execute the following positioning method and positioning program.
  • FIG. 9 is a flowchart of the positioning method according to the third embodiment of the present invention.
  • the arithmetic processing unit acquires the observation value of the carrier phase integrated value from the tracking result of the received positioning signal (S301).
  • the arithmetic processing unit acquires the observation value and the pseudo distance of the carrier phase integrated value from the base station (S302).
  • the arithmetic processing unit calculates an observed value of the double phase difference from the observed value of the carrier phase integrated value for each positioning satellite in the own device and the base station (S303).
  • the arithmetic processing unit calculates an estimated value of the double phase difference from the pseudorange using the code phase of the positioning signal and the pseudorange of the base station (S304).
  • the arithmetic processing unit compares the observed value of the double phase difference with the estimated value of the double phase difference (S305).
  • the arithmetic processing unit performs this comparison by combining two times having different time intervals.
  • the arithmetic processing unit determines that the positioning signal is a multipath wave if the comparison result is not constant (S306: NO) (S307). If the comparison result is constant (S306: YES), the arithmetic processing unit determines that the positioning signal is not a multipath wave but a direct wave.
  • multipath detection device 10B can also be provided in the positioning device, similarly to the configuration shown in FIG.
  • the second and third embodiments there are two positioning satellites for obtaining a single phase difference or a double phase difference between the satellites, and it cannot be determined which positioning satellites are multipath waves. .
  • high-accuracy positioning can be realized by reducing or eliminating the weights for these two positioning satellites.
  • Multipath detection device 20 Integrated value acquisition unit 30, 30A, 30B: Estimated value calculation unit 40, 40A, 40B: Determination unit 50: Positioning calculation unit 70: Wireless communication unit 100: Positioning device 201: Integrated value observation unit 202: single phase difference calculation unit 203: double phase difference calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

[Problem] To accurately detect a multipath wave at high speed. [Solution] This multipath detection device 10 comprises an observation value acquisition unit 20, an estimation value calculation unit 30, and a determination unit 40. The observation value acquisition unit 20 receives a positioning signal from each of a plurality of positioning satellites, and obtains an observation value of a carrier wave phase of each positioning signal. The estimation value calculation unit 30 calculates an estimation value corresponding to the observation value on the basis of a geometric distance obtained from the position of the positioning satellite and an approximate position of an antenna ANT1. The determination unit 40 determines whether the received positioning signal is a multipath wave on the basis of the amount of temporal change of the observation value and the amount of temporal change of the estimation value.

Description

マルチパス検出装置、マルチパス検出方法、マルチパス検出プログラム、測位装置、測位方法、および測位プログラムMultipath detection device, multipath detection method, multipath detection program, positioning device, positioning method, and positioning program
 本発明は、受信した測位信号がマルチパス波か否かを検出するマルチパス検出装置、マルチパス検出方法、およびマルチパス検出プログラムに関する。 The present invention relates to a multipath detection device, a multipath detection method, and a multipath detection program for detecting whether or not a received positioning signal is a multipath wave.
 測位衛星からの測位信号を受信して測位を行う場合、受信した測位信号が直接波であれば高精度な測位が可能であり、マルチパス波であれば測位精度が劣化する。直接波とは、測位衛星から送信された測位信号がアンテナで直接受信されたものである。一方、マルチパス波とは、測位衛星から送信された測位信号が何らかの物体に反射してアンテナで受信されたものである。 When positioning is performed by receiving a positioning signal from a positioning satellite, high-precision positioning is possible if the received positioning signal is a direct wave, and positioning accuracy is degraded if it is a multipath wave. A direct wave is a signal in which a positioning signal transmitted from a positioning satellite is directly received by an antenna. On the other hand, a multipath wave is a signal in which a positioning signal transmitted from a positioning satellite is reflected by some object and received by an antenna.
 搬送波位相を用いた高精度測位は、コード位相を用いた測位よりも、マルチパス波による影響は小さく、測位精度は劣化し難い。 High-accuracy positioning using carrier phase is less affected by multipath waves than positioning using code phase, and positioning accuracy is less likely to deteriorate.
 特許文献1に記載の測位装置では、受信できた全ての測位信号から1つの測位信号を除外して、擬似距離による測位演算を行う。特許文献1に記載の測位装置は、除外する測位信号を切り替えながら、擬似距離による測位演算を繰り返す。特許文献1に記載の測位装置は、測位精度が高いと判断されたときに除外された測位信号を、マルチパス波等の不要波として検出する。 In the positioning device described in Patent Document 1, one positioning signal is excluded from all received positioning signals, and positioning calculation is performed using a pseudo distance. The positioning device described in Patent Document 1 repeats positioning calculation based on pseudo distance while switching positioning signals to be excluded. The positioning device described in Patent Literature 1 detects a positioning signal excluded when it is determined that the positioning accuracy is high as an unnecessary wave such as a multipath wave.
米国特許第5841399号明細書US Pat. No. 5,841,399
 しかしながら、特許文献1に記載の方法を用いた場合、擬似距離による測位演算を複数回行わなければならない。擬似距離による測位演算を複数回実行することは、演算負荷が高く、マルチパス波の検出に時間が掛かってしまう。 However, when the method described in Patent Document 1 is used, the positioning calculation based on the pseudo distance must be performed a plurality of times. Executing the positioning calculation based on the pseudo distance a plurality of times requires a high calculation load and takes time to detect a multipath wave.
 また、複数の測位信号に対して誤差が含まれている場合には、正常な測位衛星をマルチパスの要因となる測位衛星として誤検出してしまう可能性が高い。 In addition, when errors are included in a plurality of positioning signals, there is a high possibility that a normal positioning satellite is erroneously detected as a positioning satellite that causes multipath.
 したがって、本発明の目的は、高速且つ正確にマルチパス波を検出するマルチパス検出装置を提供することにある。 Therefore, an object of the present invention is to provide a multipath detection device that detects a multipath wave at high speed and accurately.
 この発明のマルチパス検出装置は、観測値取得部20、推定値算出部30、および、判定部40を備える。観測値取得部は、複数の測位衛星から受信した測位信号の搬送波位相から観測値を取得する。推定値算出部は、測位衛星の位置とアンテナの概略位置とから得られる幾何距離から観測値に対応する推定値を算出する。判定部は、観測値の時間変化量と推定値の時間変化量とにより、受信した測位信号がマルチパス波かを判定する。 The multipath detection apparatus of the present invention includes an observation value acquisition unit 20, an estimated value calculation unit 30, and a determination unit 40. The observation value acquisition unit acquires the observation value from the carrier phase of the positioning signal received from a plurality of positioning satellites. The estimated value calculation unit calculates an estimated value corresponding to the observed value from the geometric distance obtained from the position of the positioning satellite and the approximate position of the antenna. The determination unit determines whether the received positioning signal is a multipath wave based on the time change amount of the observed value and the time change amount of the estimated value.
 この構成では、観測値と推定値との差の時間変化から、マルチパス波の観測値と直接波の観測値との違いが検出される。したがって、搬送波位相を用いた測位を行わなくても直接波とマルチパス波との差が得られる。 In this configuration, the difference between the observed value of the multipath wave and the observed value of the direct wave is detected from the time change of the difference between the observed value and the estimated value. Therefore, the difference between the direct wave and the multipath wave can be obtained without performing positioning using the carrier phase.
 この発明によれば、マルチパス波を高速に検出することができる。また、マルチパス波を正確に検出することができる。 According to the present invention, multipath waves can be detected at high speed. In addition, multipath waves can be detected accurately.
本発明の第1の実施形態に係るマルチパス検出装置のブロック図1 is a block diagram of a multipath detection device according to a first embodiment of the present invention. マルチパス波と直接波の搬送波位相積算値に時間変化を示すグラフGraph showing time variation in multiphase wave and direct wave carrier phase integration value 基準の直接波の搬送波位相積算値と観測された直接波およびマルチパス波の搬送波位相積算値との差の時間変化を示すグラフGraph showing the time change of the difference between the carrier phase integration value of the reference direct wave and the carrier phase integration value of the observed direct wave and multipath wave 本発明の第1の実施形態に係る測位方法のフローチャートFlowchart of the positioning method according to the first embodiment of the present invention 本発明の第1の実施形態に係る測位装置のブロック図The block diagram of the positioning apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るマルチパス検出装置のブロック図The block diagram of the multipath detection apparatus concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る測位方法のフローチャートFlowchart of the positioning method according to the second embodiment of the present invention 本発明の第3の実施形態に係るマルチパス検出装置のブロック図The block diagram of the multipath detection apparatus concerning the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る測位方法のフローチャートFlowchart of the positioning method according to the third embodiment of the present invention
 本発明の第1の実施形態に係るマルチパス検出装置、マルチパス検出方法、および、マルチパス検出プログラムについて、図を参照して説明する。図1は、本発明の第1の実施形態に係るマルチパス検出装置のブロック図である。 A multipath detection apparatus, a multipath detection method, and a multipath detection program according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a multipath detection apparatus according to the first embodiment of the present invention.
 マルチパス検出装置10は、観測値取得部20、推定値算出部30、および、判定部40を備える。観測値取得部20は、アンテナANT1に接続されている。 The multipath detection apparatus 10 includes an observation value acquisition unit 20, an estimated value calculation unit 30, and a determination unit 40. The observation value acquisition unit 20 is connected to the antenna ANT1.
 アンテナANT1は固定点に設置されており、測位衛星から送信される測位信号を受信して、観測値取得部20に出力する。測位衛星とは、GPS等のGNSSを構成する衛星である。測位信号は、所定周波数の搬送波を擬似拡散コードによってコード変調した信号である。測位信号には、航法メッセージが重畳されている。 The antenna ANT1 is installed at a fixed point, receives a positioning signal transmitted from a positioning satellite, and outputs it to the observation value acquisition unit 20. A positioning satellite is a satellite that constitutes a GNSS such as GPS. The positioning signal is a signal obtained by code-modulating a carrier wave having a predetermined frequency with a pseudo spread code. A navigation message is superimposed on the positioning signal.
 観測値取得部20は、測位衛星毎に測位信号を捕捉、追尾する。観測値取得部20は、追尾結果から搬送波位相積算値の観測値を取得する。観測値取得部20は、観測値を判定部40に出力する。 The observation value acquisition unit 20 captures and tracks a positioning signal for each positioning satellite. The observation value acquisition unit 20 acquires the observation value of the carrier phase integrated value from the tracking result. The observation value acquisition unit 20 outputs the observation value to the determination unit 40.
 観測値取得部20は、測位信号のコード位相、搬送波位相を測定する。観測値取得部20は、コード位相、搬送波位相を推定値算出部30に出力する。 The observation value acquisition unit 20 measures the code phase and carrier phase of the positioning signal. The observation value acquisition unit 20 outputs the code phase and the carrier wave phase to the estimated value calculation unit 30.
 推定値算出部30は、アンテナANT1の概略位置と測位衛星の位置とから幾何距離を算出する。測位衛星の位置は、航法メッセージの衛星軌道情報等から得られる。アンテナANT1の概略位置は、コード位相を用いて算出された複数の測位衛星に対する擬似距離を用いた測位によって得られる。推定値算出部30は、この幾何距離から算出した搬送波位相積算値を、搬送波位相積算値の推定値として判定部40に出力する。 The estimated value calculation unit 30 calculates a geometric distance from the approximate position of the antenna ANT1 and the position of the positioning satellite. The position of the positioning satellite is obtained from the satellite orbit information in the navigation message. The approximate position of the antenna ANT1 is obtained by positioning using pseudoranges for a plurality of positioning satellites calculated using the code phase. The estimated value calculating unit 30 outputs the carrier phase integrated value calculated from the geometric distance to the determining unit 40 as an estimated value of the carrier phase integrated value.
 判定部40は、搬送波位相積算値の観測値と推定値とを用いて、受信した測位信号がマルチパス波か否かを判定する。具体的には、判定部40は、次に示す方法によってマルチパス波の判定を行う。 The determination unit 40 determines whether or not the received positioning signal is a multipath wave, using the observation value and the estimated value of the carrier phase integrated value. Specifically, the determination unit 40 determines multipath waves by the following method.
 図2は、マルチパス波と直接波の搬送波位相積算値の時間変化を示すグラフである。図3は、基準の直接波の搬送波位相積算値と観測された直接波およびマルチパス波の搬送波位相積算値との差の時間変化を示すグラフである。図2、図3において、直接波(Wd)、マルチパス波A(Wma)、マルチパス波B(Wmb)は、固定点で測位信号を受信した場合を示し、マルチパス波C(Wmc)は、移動点で測位信号を受信した場合を示す。図3に示す搬送波位相積算値の差は、図2に示す搬送波位相積算値によって算出されている。図3において、基準となる直接波Wd(std)は、観測された直接波Wdと同じである。 FIG. 2 is a graph showing the time change of the carrier phase integrated value of the multipath wave and the direct wave. FIG. 3 is a graph showing the change over time of the difference between the carrier phase integrated value of the reference direct wave and the observed carrier phase integrated values of the direct wave and the multipath wave. 2 and 3, direct wave (Wd), multipath wave A (Wma), and multipath wave B (Wmb) indicate cases where a positioning signal is received at a fixed point, and multipath wave C (Wmc) is The case where a positioning signal is received at a moving point is shown. The difference between the carrier phase integrated values shown in FIG. 3 is calculated by the carrier phase integrated value shown in FIG. In FIG. 3, the reference direct wave Wd (std) is the same as the observed direct wave Wd.
 図2に示すように、固定点で測位信号を受信した場合、直接波、マルチパス波に関係なく、搬送波位相積算値の観測値は数分程度なら線形で増加あるいは線形で減少するとみなすことができる。搬送波位相積算値の観測値の時間変化量は、直接波とマルチパス波とで異なる。このため、図3に示すように、固定点で測位信号を受信した場合、マルチパス波の搬送波位相積算値の観測値と直接波の搬送波位相積算値の観測値との差は、略線形に変化し、単調増加もしくは単調減少となる。 As shown in FIG. 2, when a positioning signal is received at a fixed point, regardless of whether it is a direct wave or a multipath wave, the observed value of the carrier phase integrated value can be regarded as linearly increasing or decreasing linearly if it is about a few minutes. it can. The amount of time change in the observed value of the carrier phase integrated value differs between the direct wave and the multipath wave. For this reason, as shown in FIG. 3, when a positioning signal is received at a fixed point, the difference between the observed value of the carrier phase integrated value of the multipath wave and the observed value of the carrier phase integrated value of the direct wave is approximately linear. Change, monotonically increasing or monotonically decreasing.
 移動点で測位信号を受信した場合、受信の位置に依存して搬送波位相積算値の観測値の時間変化は非線形となる。したがって、マルチパス波の搬送波位相積算値の観測値と直接波の搬送波位相積算値の観測値との差も非線形に変化する。 When the positioning signal is received at the moving point, the time change of the observed value of the carrier phase integrated value becomes nonlinear depending on the receiving position. Therefore, the difference between the observed value of the carrier phase integrated value of the multipath wave and the observed value of the carrier phase integrated value of the direct wave also changes nonlinearly.
 すなわち、時刻t0,t0+Δtでのマルチパス波の搬送波位相積算値の観測値をそれぞれADR(t0)、ADR(t0+Δt)とし、時刻t0,t0+Δtでの直接波の搬送波位相積算値の観測値をそれぞれADR(t0)、ADR(t0+Δt)とすると、時刻t0,t0+Δt間でのマルチパス波依存係数をf(t0,t0+Δt)は、次式で表される。 That is, the observed values of the carrier phase integrated value of the multipath wave at times t0 and t0 + Δt are respectively ADR m (t0) and ADR m (t0 + Δt), and the observed values of the carrier phase integrated value of the direct wave at times t0 and t0 + Δt Are ADR d (t0) and ADR d (t0 + Δt), respectively, and a multipath wave dependence coefficient f x (t0, t0 + Δt) between times t0 and t0 + Δt is expressed by the following equation.
 f(t0,t0+Δt)=(ADR(t0+Δt)-ADR(t0))
              -(ADR(t0+Δt)-ADR(t0))
                               (式1)
 対象の測位信号がマルチパス波でなく直接波である場合、時間経過を表す係数をnとすると、次式の関係が成り立つ。
f x (t0, t0 + Δt) = (ADR m (t0 + Δt) −ADR m (t0))
− (ADR d (t0 + Δt) −ADR d (t0))
(Formula 1)
When the target positioning signal is not a multipath wave but a direct wave, the relationship of the following equation is established, where n is a coefficient representing the passage of time.
 f(t0,t0+nΔt)=f(t0,t0+Δt)=0    (式2)
 対象の測位信号がマルチパス波である場合、次式が成り立つ。
f x (t0, t0 + nΔt) = f x (t0, t0 + Δt) = 0 (Formula 2)
When the target positioning signal is a multipath wave, the following equation holds.
 f(t0,t0+nΔt)=nf(t0,t0+Δt)     (式3)
 上述の(式1)の直接波に関する項を直接取得することはできないので、判定部40は、搬送波位相積算値の観測値の取得だけでは、測位信号が直接波かマルチパス波かは分からない。
f x (t0, t0 + nΔt) = nf x (t0, t0 + Δt) (Formula 3)
Since it is not possible to directly acquire the term relating to the direct wave in the above (Equation 1), the determination unit 40 does not know whether the positioning signal is a direct wave or a multipath wave only by acquiring the observation value of the carrier phase integrated value. .
 したがって、推定値算出部30は、コード位相を用いて測位した位置から擬似的に直接波の搬送波位相積算値の推定値を算出する。具体的には、推定値算出部30は、測位信号毎の擬似距離からアンテナANT1の位置を算出し、受信時刻を算出し、これらから測位衛星とアンテナANT1との幾何距離を算出する。推定値算出部30は、算出された幾何距離から搬送波位相積算値の推定値を算出する。 Therefore, the estimated value calculation unit 30 calculates an estimated value of the carrier wave phase integrated value of the direct wave in a pseudo manner from the position measured using the code phase. Specifically, the estimated value calculation unit 30 calculates the position of the antenna ANT1 from the pseudo distance for each positioning signal, calculates the reception time, and calculates the geometric distance between the positioning satellite and the antenna ANT1. The estimated value calculation unit 30 calculates an estimated value of the carrier phase integrated value from the calculated geometric distance.
 判定部40は、(式1)のADR(t0+Δt),ADR(t0)に各時刻における推定値を代入し、マルチパス波依存係数f(t0,t0+Δt)を算出する。判定部40は、異なる別の時刻(t0,t0+nΔt)において、同様にマルチパス波依存係数f(t0,t0+nΔt)を算出する。 The determination unit 40 substitutes the estimated value at each time for ADR d (t0 + Δt) and ADR d (t0) in (Equation 1), and calculates the multipath wave dependency coefficient f x (t0, t0 + Δt). The determination unit 40 similarly calculates the multipath wave dependency coefficient f x (t0, t0 + nΔt) at different times (t0, t0 + nΔt).
 判定部40は、この異なる別の二回の時刻でのマルチパス波依存係数f(t0,t0+Δt)とマルチパス波依存係数f(t0,t0+nΔt)が(式3)の関係(線形変化)になることを検出すると、受信した測位信号がマルチパス波であると判定する。一方、判定部40は、この二回のマルチパス波依存係数f(t0,t0+Δt)とマルチパス波依存係数f(t0,t0+nΔt)が(式2)の関係(変化無し)になることを検出すると、受信した測位信号がマルチパス波でない(直接波である)と判定する。 Determining portion 40, the relationship (linear change in the multipath wave dependence coefficient at different another twice times f x (t0, t0 + Δt ) and multipath wave dependency coefficient f x (t0, t0 + nΔt ) is (Equation 3) ), It is determined that the received positioning signal is a multipath wave. On the other hand, the determination unit 40 that the second time of the multipath wave dependency coefficient f x (t0, t0 + Δt ) and multipath wave dependency coefficient f x (t0, t0 + nΔt ) is a relationship (no change) of (Formula 2) Is detected, it is determined that the received positioning signal is not a multipath wave (direct wave).
 以上のように、本実施形態の構成を用いることによって、搬送波位相を用いた測位を行わずに、受信した測位信号がマルチパス波か否かを検出することができる。すなわち、本実施形態の構成を用いることによって、マルチパス波の検出を高速且つ正確に行うことができる。 As described above, by using the configuration of the present embodiment, it is possible to detect whether or not the received positioning signal is a multipath wave without performing positioning using the carrier phase. That is, by using the configuration of this embodiment, multipath waves can be detected quickly and accurately.
 なお、上述の実施形態では、観測値の時間変化量と推定値の時間変化量の差を経時的に取得してマルチパスを検出する態様を示した。しかしながら、観測値の時間変化量と推定値の時間変化量の比を経時的に取得してマルチパスを検出してもよい。 In the above-described embodiment, a mode in which the difference between the time change amount of the observed value and the time change amount of the estimated value is acquired with time to detect the multipath is shown. However, the multipath may be detected by acquiring the ratio of the time change amount of the observed value and the time change amount of the estimated value over time.
 また、上述の実施形態では、観測値の時間変化量と推定値の時間変化量の差を経時的に取得してマルチパスを検出する態様を示した。しかしながら、観測値と推定値との差の時間変化量を取得してマルチパスを検出することも可能である。この場合、観測値と推定値との差が経時的に変化しなければマルチパス波ではないと判定し、観測値と推定値との差が経時的に単調増加または単調減少すればマルチパス波であると判定することができる。 Further, in the above-described embodiment, the mode in which the multipath is detected by obtaining the difference between the time change amount of the observed value and the time change amount of the estimated value with time is shown. However, it is also possible to detect the multipath by acquiring the time change amount of the difference between the observed value and the estimated value. In this case, if the difference between the observed value and the estimated value does not change with time, it is determined that the wave is not a multipath wave, and if the difference between the observed value and the estimated value monotonically increases or decreases with time, the multipath wave is determined. It can be determined that
 上述の説明では、各処理を個別の機能ブロックで実行する例を示したが、上述の各処理をプログラム化して記憶しており、当該プログラムをコンピュータ等の演算処理装置で実行してもよい。この場合、演算処理装置は、次に示す測位方法、測位プログラムを実行すればよい。図4は、本発明の第1の実施形態に係る測位方法のフローチャートである。 In the above description, an example is shown in which each process is executed by individual functional blocks. However, each of the above processes may be stored as a program, and the program may be executed by an arithmetic processing device such as a computer. In this case, the arithmetic processing unit may execute the following positioning method and positioning program. FIG. 4 is a flowchart of the positioning method according to the first embodiment of the present invention.
 演算処理装置は、受信した測位信号の追尾結果から搬送波位相積算値の観測値を取得する(S101)。演算処理装置は、測位信号による擬似距離から搬送波位相積算値の推定値を算出する(S102)。演算処理装置は、搬送波位相積算値の観測値と推定値とを比較する(S103)。演算処理装置は、この比較を時間間隔が異なる2つの時刻の組み合わせで行う。 The arithmetic processing unit acquires the observation value of the carrier phase integrated value from the tracking result of the received positioning signal (S101). The arithmetic processing unit calculates an estimated value of the carrier phase integrated value from the pseudo distance based on the positioning signal (S102). The arithmetic processing unit compares the observed value of the carrier wave phase integrated value with the estimated value (S103). The arithmetic processing unit performs this comparison by combining two times having different time intervals.
 演算処理装置は、比較結果が一定でなければ(S104:NO)、測位信号がマルチパス波であると判定する(S105)。具体的な一例としては、演算処理装置は、搬送波位相積算値の観測値と推定値との差分を算出し(S103に相当)、差分値が線形に変化すれば(S104:NOに相当)、測位信号がマルチパス波であると判定する(S105に相当)。 If the comparison result is not constant (S104: NO), the arithmetic processing unit determines that the positioning signal is a multipath wave (S105). As a specific example, the arithmetic processing unit calculates the difference between the observed value and the estimated value of the carrier phase integrated value (corresponding to S103), and if the difference value changes linearly (S104: corresponding to NO), It is determined that the positioning signal is a multipath wave (corresponding to S105).
 演算処理装置は、比較結果が一定であれば(S104:YES)、測位信号がマルチパス波でなく直接波であると判定する。具体的な一例としては、演算処理装置は、搬送波位相積算値の観測値と推定値との差分を算出し(S103に相当)、差分値が同じであれば(S104:YESに相当)、測位信号がマルチパス波でなく直接波であると判定する。 If the comparison result is constant (S104: YES), the arithmetic processing unit determines that the positioning signal is not a multipath wave but a direct wave. As a specific example, the arithmetic processing unit calculates the difference between the observed value and the estimated value of the carrier phase integrated value (corresponding to S103), and if the difference value is the same (S104: corresponding to YES), positioning is performed. It is determined that the signal is not a multipath wave but a direct wave.
 このようなマルチパス検出装置は、測位装置に適用することができる。図5は、本発明の第1の実施形態に係る測位装置のブロック図である。 Such a multipath detection device can be applied to a positioning device. FIG. 5 is a block diagram of the positioning apparatus according to the first embodiment of the present invention.
 図5に示すように、測位装置100は、上述のマルチパス検出装置10の構成と測位演算部50とを備えている。 As shown in FIG. 5, the positioning device 100 includes the configuration of the multipath detection device 10 described above and a positioning calculation unit 50.
 測位演算部50には、搬送波位相積算値の観測値と、マルチパス波の検出結果が入力される。測位演算部50は、搬送波位相積算値の観測値を用いて測位演算を行う。測位演算部50は、測位演算の演算式における観測値毎の重み付け係数を設定する。重み付け係数は、重みが大きいほど測位結果に与える影響が大きく、重みが小さいほど測位結果に与える影響が小さくなるように設定されている。測位演算部50は、マルチパス波と判定された測位信号の観測値に対する重みを小さく、マルチパス波でないと判定された測位信号の観測値に対する重みを大きくするように設定する。測位演算部50は、この重み付けされた演算式を用いて測位演算を行う。 The positioning calculation unit 50 receives the observation value of the carrier phase integrated value and the detection result of the multipath wave. The positioning calculation unit 50 performs positioning calculation using the observation value of the carrier phase integrated value. The positioning calculation unit 50 sets a weighting coefficient for each observation value in the calculation formula for positioning calculation. The weighting coefficient is set so that the larger the weight, the greater the influence on the positioning result, and the smaller the weight, the smaller the influence on the positioning result. The positioning calculation unit 50 sets the weight for the observation value of the positioning signal determined to be a multipath wave to be small and the weight for the observation value of the positioning signal determined to be not a multipath wave to be large. The positioning calculation unit 50 performs positioning calculation using this weighted calculation formula.
 なお、受信した測位信号が多い場合には、マルチパス波と判定された測位信号を用いなくてもよい。言い換えれば、マルチパス波と判定された測位信号の重みを最も小さく、すなわち重み付け係数を「0」とすればよい。 In addition, when there are many received positioning signals, it is not necessary to use positioning signals determined as multipath waves. In other words, the weight of the positioning signal determined to be a multipath wave may be minimized, that is, the weighting coefficient may be “0”.
 また、測位演算部50は、搬送波位相積算値の観測値に限らず、コード位相積算値の観測値等を用いて測位を行うこともできる。 Further, the positioning calculation unit 50 can perform positioning using not only the observed value of the carrier phase integrated value but also the observed value of the code phase integrated value.
 この重み付け測位演算を用いることによって、測位演算に対するマルチパス波の影響を抑圧できる。したがって、さらに高精度な測位を実現することができる。 影響 By using this weighted positioning calculation, the influence of multipath waves on the positioning calculation can be suppressed. Therefore, it is possible to realize positioning with higher accuracy.
 次に、本発明の第2の実施形態に係るマルチパス検出装置、マルチパス検出方法、および、マルチパス検出プログラムについて、図を参照して説明する。図6は、本発明の第2の実施形態に係るマルチパス検出装置のブロック図である。 Next, a multipath detection device, a multipath detection method, and a multipath detection program according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a block diagram of a multipath detection apparatus according to the second embodiment of the present invention.
 本実施形態に係るマルチパス検出装置10Aは、第1の実施形態に係るマルチパス検出装置10が搬送波位相積算値をそのまま利用するのに対して、搬送波位相積算値から算出する衛星間一重位相差を用いている。本実施形態に係るマルチパス検出装置10Aの基本的な概念は、第1の実施形態に係るマルチパス検出装置10と同じである。 The multipath detection device 10A according to the present embodiment uses a single phase difference between satellites calculated from the carrier phase integration value, whereas the multipath detection device 10 according to the first embodiment uses the carrier phase integration value as it is. Is used. The basic concept of the multipath detection device 10A according to the present embodiment is the same as that of the multipath detection device 10 according to the first embodiment.
 図6に示すように、マルチパス検出装置10Aは、観測値取得部20A、推定値算出部30A、および、判定部40Aを備える。観測値取得部20Aは、積算値観測部201および一重位相差算出部202を備える。 As shown in FIG. 6, the multipath detection device 10A includes an observation value acquisition unit 20A, an estimated value calculation unit 30A, and a determination unit 40A. The observation value acquisition unit 20A includes an integrated value observation unit 201 and a single phase difference calculation unit 202.
 積算値観測部201は、第1の実施形態に係る観測値取得部20と同じである。積算値観測部201は、搬送波位相積算値の観測値を一重位相差算出部202に出力する。積算値観測部201は、コード位相を推定値算出部30Aに出力する。 The integrated value observation unit 201 is the same as the observation value acquisition unit 20 according to the first embodiment. The integrated value observation unit 201 outputs the observation value of the carrier phase integrated value to the single phase difference calculation unit 202. The integrated value observation unit 201 outputs the code phase to the estimated value calculation unit 30A.
 一重位相差算出部202は、複数の測位衛星に対する搬送波位相積算値の観測値から、衛星間一重位相差の観測値を算出する。一重位相差算出部202は、衛星間一重位相差の観測値を判定部40Aに出力する。 The single phase difference calculation unit 202 calculates the observation value of the inter-satellite single phase difference from the observation value of the carrier phase integrated value for a plurality of positioning satellites. Single phase difference calculation section 202 outputs the observation value of the single phase difference between satellites to determination section 40A.
 推定値算出部30Aは、複数の測位衛星に対するコード位相から、複数の測位衛星に対する擬似距離を算出する。推定値算出部30Aは、複数の測位衛星に対する擬似距離の差と搬送波位相の波長から衛星間一重位相差の推定値を算出する。推定値算出部30Aは、衛星間一重位相差の推定値を判定部40Aに出力する。 The estimated value calculation unit 30A calculates pseudoranges for a plurality of positioning satellites from code phases for the plurality of positioning satellites. The estimated value calculation unit 30A calculates an estimated value of a single phase difference between satellites from a difference in pseudoranges for a plurality of positioning satellites and a wavelength of a carrier phase. The estimated value calculation unit 30A outputs an estimated value of the single phase difference between the satellites to the determination unit 40A.
 判定部40Aは、衛星間一重位相差の観測値と推定値とを比較し、比較結果から測位信号がマルチパス波か否かを検出する。具体的には、衛星間一重位相差の観測値と推定値との間にも、上述の第1の実施形態と同様の関係がある。 The determination unit 40A compares the observed value and the estimated value of the single phase difference between the satellites, and detects whether or not the positioning signal is a multipath wave from the comparison result. Specifically, the relationship between the observed value and the estimated value of the single phase difference between satellites is similar to that in the first embodiment.
 時刻t0,t0+Δtでのマルチパス波の搬送波位相の衛星間一重位相差をそれぞれADRD P,Q(t0)、ADRD P,Q(t0+Δt)とし、時刻t0,t0+Δtでの直接波の搬送波位相の衛星間一重位相差をそれぞれADRD P,Q(t0)、ADRD P,Q(t0+Δt)とし、時刻t0,t0+Δt間での一重位相差によるマルチパス波依存係数をf P,Q(t0,t0+Δt)とする。時間経過を表す係数をnとする。 The single-phase phase differences between the satellites of the multipath wave carrier phase at times t0 and t0 + Δt are respectively ADRD m P, Q (t0) and ADRD m P, Q (t0 + Δt), and the carrier phase of the direct wave at times t0, t0 + Δt Are the single phase differences between satellites ADRD d P, Q (t0) and ADRD d P, Q (t0 + Δt), respectively, and the multipath wave dependence coefficients due to the single phase difference between times t0, t0 + Δt are f x P, Q ( t0, t0 + Δt). Let n be a coefficient representing the passage of time.
 f P,Q(t0,t0+Δt)
 =(ADRD P,Q(t0+Δt)-ADRD P,Q(t0))
  -(ADRD P,Q(t0+Δt)-ADRD P,Q(t0))    (式4)
 f P,Q(t0,t0+nΔt)=nf P,Q(t0,t0+Δt)=0 (式5)
 したがって、マルチパス波であれば、衛星間一重位相差の観測値と推定値との差は、経時的に線形に変化し、単調増加または単調減少する。一方、直接波であれば、衛星間一重位相差の観測値と推定値との差は、経時的に変化しない。
f x P, Q (t0, t0 + Δt)
= (ADRD m P, Q (t0 + Δt) −ADRD m P, Q (t0))
− (ADRD d P, Q (t0 + Δt) −ADRD d P, Q (t0)) (Formula 4)
f x P, Q (t0, t0 + nΔt) = nf x P, Q (t0, t0 + Δt) = 0 (Formula 5)
Therefore, in the case of a multipath wave, the difference between the observed value and the estimated value of the single phase difference between satellites changes linearly with time, and increases or decreases monotonously. On the other hand, in the case of a direct wave, the difference between the observed value and the estimated value of the single phase difference between satellites does not change with time.
 判定部40Aは、衛星間一重位相差の観測値と推定値との差が経時的に変化するか否かを用いて、測位信号がマルチパス波か否かを検出する。 The determination unit 40A detects whether or not the positioning signal is a multipath wave by using whether or not the difference between the observed value and the estimated value of the single phase difference between the satellites changes with time.
 このような構成を用いることで、マルチパス検出装置10Aの装置内時計の誤差の影響を受けないので、マルチパス波か否かをより正確に検出することができる。 By using such a configuration, it is not affected by the error of the internal clock of the multipath detection apparatus 10A, so it is possible to more accurately detect whether or not it is a multipath wave.
 本実施形態のマルチパス波の検出も第1の実施形態と同様に、上述の各処理をプログラム化して記憶しており、当該プログラムをコンピュータ等の演算処理装置で実行してもよい。この場合、演算処理装置は、次に示す測位方法、測位プログラムを実行すればよい。図7は、本発明の第2の実施形態に係る測位方法のフローチャートである。 As in the first embodiment, the detection of multipath waves in the present embodiment may be stored by programming each of the above-described processes, and the program may be executed by an arithmetic processing device such as a computer. In this case, the arithmetic processing unit may execute the following positioning method and positioning program. FIG. 7 is a flowchart of the positioning method according to the second embodiment of the present invention.
 演算処理装置は、受信した測位信号の追尾結果から搬送波位相積算値の観測値を取得する(S201)。演算処理装置は、測位衛星毎の搬送波位相積算値の観測値から衛星間一重位相差の観測値を算出する(S202)。 The arithmetic processing unit acquires the observation value of the carrier phase integrated value from the tracking result of the received positioning signal (S201). The arithmetic processing unit calculates the observation value of the single phase difference between the satellites from the observation value of the carrier phase integrated value for each positioning satellite (S202).
 演算処理装置は、測位信号のコード位相を用いた擬似距離から衛星間一重位相差の推定値を算出する(S203)。演算処理装置は、衛星間一重位相差の観測値と推定値とを比較する(S204)。演算処理装置は、この比較を時間間隔が異なる2つの時刻の組み合わせで行う。 The arithmetic processing unit calculates an estimated value of the single phase difference between the satellites from the pseudorange using the code phase of the positioning signal (S203). The arithmetic processing unit compares the observed value and the estimated value of the single phase difference between the satellites (S204). The arithmetic processing unit performs this comparison by combining two times having different time intervals.
 演算処理装置は、比較結果が一定でなければ(S205:NO)、測位信号がマルチパス波であると判定する(S206)。演算処理装置は、比較結果が一定であれば(S205:YES)、測位信号がマルチパス波でなく直接波であると判定する。 If the comparison result is not constant (S205: NO), the arithmetic processing unit determines that the positioning signal is a multipath wave (S206). If the comparison result is constant (S205: YES), the arithmetic processing unit determines that the positioning signal is not a multipath wave but a direct wave.
 なお、本実施形態に係るマルチパス検出装置10Aも、図4に示す構成と同様に、測位装置に備えることができる。 Note that the multipath detection device 10A according to the present embodiment can also be provided in the positioning device, similarly to the configuration shown in FIG.
 次に、本発明の第3の実施形態に係るマルチパス検出装置、マルチパス検出方法、および、マルチパス検出プログラムについて、図を参照して説明する。図8は、本発明の第3の実施形態に係るマルチパス検出装置のブロック図である。 Next, a multipath detection device, a multipath detection method, and a multipath detection program according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram of a multipath detection apparatus according to the third embodiment of the present invention.
 本実施形態に係るマルチパス検出装置10Bは、第2の実施形態に係るマルチパス検出装置10Aが衛星間一重位相差を利用するのに対して、搬送波位相積算値の二重位相差を用いている。本実施形態に係るマルチパス検出装置10Bの基本的な概念は、第2の実施形態に係るマルチパス検出装置10Aと同じである。 The multipath detection device 10B according to the present embodiment uses the double phase difference of the carrier phase integrated value, whereas the multipath detection device 10A according to the second embodiment uses a single phase difference between satellites. Yes. The basic concept of the multipath detection device 10B according to the present embodiment is the same as that of the multipath detection device 10A according to the second embodiment.
 図8に示すように、マルチパス検出装置10Bは、観測値取得部20B、推定値算出部30B、判定部40B、無線通信部70を備える。観測値取得部20Bは、積算値観測部201および二重位相差算出部203を備える。 As shown in FIG. 8, the multipath detection device 10B includes an observation value acquisition unit 20B, an estimated value calculation unit 30B, a determination unit 40B, and a wireless communication unit 70. The observation value acquisition unit 20B includes an integrated value observation unit 201 and a double phase difference calculation unit 203.
 積算値観測部201は、第2の実施形態に係る積算値観測部201と同じである。積算値観測部201は、搬送波位相積算値の観測値を二重位相差算出部203に出力する。積算値観測部201は、コード位相を推定値算出部30Bに出力する。 The integrated value observation unit 201 is the same as the integrated value observation unit 201 according to the second embodiment. The integrated value observation unit 201 outputs the observation value of the carrier phase integrated value to the double phase difference calculation unit 203. The integrated value observation unit 201 outputs the code phase to the estimated value calculation unit 30B.
 無線通信部70は、アンテナANT70に接続されている。無線通信部70は、アンテナANT70を介して、基地局における搬送波位相積算値の観測値およびコード位相または擬似距離を受信する。無線通信部70は、搬送波位相積算値の観測値を二重位相差算出部203に出力する。無線通信部70は、コード位相または擬似距離を推定値算出部30Bに出力する。 The wireless communication unit 70 is connected to the antenna ANT70. The radio communication unit 70 receives the observation value of the carrier phase integrated value and the code phase or pseudorange in the base station via the antenna ANT70. The wireless communication unit 70 outputs the observation value of the carrier phase integrated value to the double phase difference calculation unit 203. The wireless communication unit 70 outputs the code phase or the pseudo distance to the estimated value calculation unit 30B.
 二重位相差算出部203は、複数の測位衛星に対する自装置および基地局の搬送波位相積算値の観測値から、二重位相差の観測値を算出する。二重位相差算出部203は、二重位相差の観測値を判定部40Bに出力する。 The double phase difference calculation unit 203 calculates the observation value of the double phase difference from the observation value of the carrier phase integrated value of the own device and the base station for a plurality of positioning satellites. The double phase difference calculation unit 203 outputs the observation value of the double phase difference to the determination unit 40B.
 推定値算出部30Bは、複数の測位衛星に対する自装置および基地局のコード位相から、複数の測位衛星と自装置および基地局に対する擬似距離を算出する。なお、基地局から擬似距離を取得している場合は、取得した擬似距離を用いればよい。推定値算出部30Bは、自装置および基地局における複数の測位衛星に対する擬似距離の差と搬送波位相の波長から二重位相差の推定値を算出する。すなわち、第2の実施形態に示した一重位相差の推定値を自装置と基地局に対して算出し、その差を算出する。推定値算出部30Bは、二重位相差の推定値を判定部40Bに出力する。 The estimated value calculation unit 30B calculates pseudoranges for the plurality of positioning satellites, the own device, and the base station from the code phases of the own device and the base station for the plurality of positioning satellites. If the pseudo distance is acquired from the base station, the acquired pseudo distance may be used. The estimated value calculation unit 30B calculates an estimated value of the double phase difference from the difference of the pseudoranges for the plurality of positioning satellites in the own apparatus and the base station and the wavelength of the carrier phase. That is, the estimated value of the single phase difference shown in the second embodiment is calculated for the own apparatus and the base station, and the difference is calculated. The estimated value calculation unit 30B outputs the estimated value of the double phase difference to the determination unit 40B.
 判定部40Bは、二重位相差の観測値と二重位相差の推定値を比較し、比較結果から測位信号がマルチパス波か否かを検出する。具体的には、二重位相差の観測値と二重位相差の推定値との間にも、上述の第1、第2の実施形態と同様の関係がある。 The determination unit 40B compares the observed value of the double phase difference with the estimated value of the double phase difference, and detects whether the positioning signal is a multipath wave from the comparison result. Specifically, the relationship between the observed value of the double phase difference and the estimated value of the double phase difference has the same relationship as in the first and second embodiments described above.
 時刻t0,t0+Δtでのマルチパス波の搬送波位相の二重位相差をそれぞれADRDD p,q(t0)、ADRDD p,q(t0+Δt)とし、時刻t0,t0+Δtでの直接波の搬送波位相の二重位相差をそれぞれADRDD p,q(t0)、ADRDD p,q(t0+Δt)とし、時刻t0,t0+Δt間での二重位相差によるマルチパス波依存係数をf P,Q(t0,t0+Δt)とする。時間経過を表す係数をnとする。 The double phase difference of the carrier phase of the multipath wave at times t0 and t0 + Δt is ADRDD m p, q (t0) and ADRDD m p, q (t0 + Δt), respectively, and the carrier phase of the direct wave at times t0, t0 + Δt The double phase differences are ADRDD d p, q (t0) and ADRDD d p, q (t0 + Δt), respectively, and the multipath wave dependence coefficient due to the double phase difference between times t0, t0 + Δt is f x P, Q (t0 , T0 + Δt). Let n be a coefficient representing the passage of time.
 f P,Q(t0,t0+Δt)
 =(ADRDD p,q(t0+Δt)-ADRDD p,q(t0))
  -(ADRDD p,q(t0+Δt)-ADRDD p,q(t0))
                                 (式6)
 f P,Q(t0,t0+nΔt)=nf P,Q(t0,t0+Δt)=0  (式7)
 したがって、マルチパス波であれば、二重位相差の観測値と二重位相差の推定値との差は、経時的に線形に変化し、単調増加または単調減少する。一方、直接波であれば、二重位相差の観測値と二重位相差の推定値との差は、経時的に変化しない。
f x P, Q (t0, t0 + Δt)
= (ADRDD m p, q (t0 + Δt) −ADRDD m p, q (t0))
− (ADRDD d p, q (t0 + Δt) −ADRDD d p, q (t0))
(Formula 6)
f x P, Q (t0, t0 + nΔt) = nf x P, Q (t0, t0 + Δt) = 0 (formula 7)
Accordingly, in the case of a multipath wave, the difference between the observed value of the double phase difference and the estimated value of the double phase difference changes linearly with time, and increases or decreases monotonously. On the other hand, in the case of a direct wave, the difference between the observed value of the double phase difference and the estimated value of the double phase difference does not change with time.
 また、基地局とマルチパス検出装置が近いときには、次式の関係が得られる。 Also, when the base station and the multipath detection device are close, the following relationship is obtained.
 ADRDD p,q(t0+Δt)-ADRDD p,q(t0)=0   (式8)
 つまり、直接波を考慮しなくてよいので、マルチパス波依存係数から、マルチパス波、あるいは直接波の判断が非常に正確に行うことができる。
ADRDD d p, q (t0 + Δt) −ADRDD d p, q (t0) = 0 (Equation 8)
That is, since it is not necessary to consider the direct wave, the determination of the multipath wave or the direct wave can be performed very accurately from the multipath wave dependency coefficient.
 判定部40Bは、二重位相差の観測値と二重位相差の推定値との差が経時的に変化するか否かを用いて、測位信号がマルチパス波か否かを検出する。 The determination unit 40B detects whether or not the positioning signal is a multipath wave by using whether or not the difference between the observed value of the double phase difference and the estimated value of the double phase difference changes with time.
 このような構成を用いることで、マルチパス検出装置10Bの装置内時計の誤差、および測位衛星の衛星時計誤差の影響、外部環境の変化の影響を受けないので、マルチパス波か否かをより正確に検出することができる。 By using such a configuration, it is not affected by the error of the internal clock of the multipath detection device 10B, the satellite clock error of the positioning satellite, or the change of the external environment. It can be detected accurately.
 本実施形態のマルチパス波の検出も第1、第2の実施形態と同様に、上述の各処理をプログラム化して記憶しており、当該プログラムをコンピュータ等の演算処理装置で実行してもよい。この場合、演算処理装置は、次に示す測位方法、測位プログラムを実行すればよい。図9は、本発明の第3の実施形態に係る測位方法のフローチャートである。 Similarly to the first and second embodiments, the detection of multipath waves according to the present embodiment is stored by programming each of the above-described processes, and the program may be executed by an arithmetic processing device such as a computer. . In this case, the arithmetic processing unit may execute the following positioning method and positioning program. FIG. 9 is a flowchart of the positioning method according to the third embodiment of the present invention.
 演算処理装置は、受信した測位信号の追尾結果から搬送波位相積算値の観測値を取得する(S301)。演算処理装置は、基地局から搬送波位相積算値の観測値および擬似距離を取得する(S302)。演算処理装置は、自装置と基地局における測位衛星毎の搬送波位相積算値の観測値から二重位相差の観測値を算出する(S303)。 The arithmetic processing unit acquires the observation value of the carrier phase integrated value from the tracking result of the received positioning signal (S301). The arithmetic processing unit acquires the observation value and the pseudo distance of the carrier phase integrated value from the base station (S302). The arithmetic processing unit calculates an observed value of the double phase difference from the observed value of the carrier phase integrated value for each positioning satellite in the own device and the base station (S303).
 演算処理装置は、測位信号のコード位相を用いた擬似距離および基地局の擬似距離から二重位相差の推定値を算出する(S304)。演算処理装置は、二重位相差の観測値と二重位相差の推定値とを比較する(S305)。演算処理装置は、この比較を時間間隔が異なる2つの時刻の組み合わせで行う。 The arithmetic processing unit calculates an estimated value of the double phase difference from the pseudorange using the code phase of the positioning signal and the pseudorange of the base station (S304). The arithmetic processing unit compares the observed value of the double phase difference with the estimated value of the double phase difference (S305). The arithmetic processing unit performs this comparison by combining two times having different time intervals.
 演算処理装置は、比較結果が一定でなければ(S306:NO)、測位信号がマルチパス波であると判定する(S307)。演算処理装置は、比較結果が一定であれば(S306:YES)、測位信号がマルチパス波でなく直接波であると判定する。 The arithmetic processing unit determines that the positioning signal is a multipath wave if the comparison result is not constant (S306: NO) (S307). If the comparison result is constant (S306: YES), the arithmetic processing unit determines that the positioning signal is not a multipath wave but a direct wave.
 なお、本実施形態に係るマルチパス検出装置10Bも、図4に示す構成と同様に、測位装置に備えることができる。 Note that the multipath detection device 10B according to the present embodiment can also be provided in the positioning device, similarly to the configuration shown in FIG.
 第2、第3の実施形態では、衛星間一重位相差または二重位相差を得るための測位衛星は二つであり、いずれの測位衛星からの測位信号がマルチパス波であるかは判定できない。しかしながら、二重位相差を用いた相対測位や三重位相差を用いた相対測位を行う場合に、これら二つの測位衛星に対する重みを軽くする、または、除外すれば、高精度な測位は実現できる。 In the second and third embodiments, there are two positioning satellites for obtaining a single phase difference or a double phase difference between the satellites, and it cannot be determined which positioning satellites are multipath waves. . However, when performing relative positioning using a double phase difference or relative positioning using a triple phase difference, high-accuracy positioning can be realized by reducing or eliminating the weights for these two positioning satellites.
10,10A,10B:マルチパス検出装置
20:積算値取得部
30,30A,30B:推定値算出部
40,40A,40B:判定部
50:測位演算部
70:無線通信部
100:測位装置
201:積算値観測部
202:一重位相差算出部
203:二重位相差算出部
10, 10A, 10B: Multipath detection device 20: Integrated value acquisition unit 30, 30A, 30B: Estimated value calculation unit 40, 40A, 40B: Determination unit 50: Positioning calculation unit 70: Wireless communication unit 100: Positioning device 201: Integrated value observation unit 202: single phase difference calculation unit 203: double phase difference calculation unit

Claims (17)

  1.  複数の測位衛星から受信した測位信号の搬送波位相から観測値を取得する観測値取得部と、
     測位衛星の位置とアンテナの概略位置とから得られる幾何距離から前記観測値に対応する推定値を算出する推定値算出部と、
     前記観測値の時間変化量と前記推定値の時間変化量とにより、前記受信した測位信号がマルチパス波かを判定する判定部と、
     を備える、マルチパス検出装置。
    An observation value acquisition unit for acquiring an observation value from a carrier phase of a positioning signal received from a plurality of positioning satellites;
    An estimated value calculation unit for calculating an estimated value corresponding to the observed value from a geometric distance obtained from the position of the positioning satellite and the approximate position of the antenna;
    A determination unit that determines whether the received positioning signal is a multipath wave based on the time change amount of the observed value and the time change amount of the estimated value;
    A multipath detection device comprising:
  2.  請求項1に記載のマルチパス検出装置であって、
     前記観測値は、搬送波位相積算値である、
     マルチパス検出装置。
    The multipath detection device according to claim 1,
    The observed value is a carrier phase integrated value,
    Multipath detection device.
  3.  請求項1に記載のマルチパス検出装置であって、
     前記観測値は、衛星間一重位相差である、
     マルチパス検出装置。
    The multipath detection device according to claim 1,
    The observed value is a single phase difference between satellites,
    Multipath detection device.
  4.  請求項1に記載のマルチパス検出装置であって、
     前記観測値は、二重位相差である、
     マルチパス検出装置。
    The multipath detection device according to claim 1,
    The observed value is a double phase difference;
    Multipath detection device.
  5.  請求項1乃至請求項4のいずれかに記載のマルチパス検出装置であって、
     前記判定部は、
     前記観測値の時間変化量と前記推定値の時間変化量との差が経時的に単調増加または単調減少すれば、前記受信した測位信号がマルチパス波であると判定する、
     マルチパス検出装置。
    The multipath detection device according to any one of claims 1 to 4,
    The determination unit
    If the difference between the time change amount of the observed value and the time change amount of the estimated value monotonously increases or monotonously decreases with time, it is determined that the received positioning signal is a multipath wave;
    Multipath detection device.
  6.  請求項1乃至請求項5のいずれかに記載のマルチパス検出装置であって、
     前記推定値算出部は、
     前記複数の測位衛星に対する擬似距離により前記アンテナの概略位置を算出する、
     マルチパス検出装置。
    A multipath detection device according to any one of claims 1 to 5,
    The estimated value calculation unit
    Calculating the approximate position of the antenna by pseudoranges for the plurality of positioning satellites;
    Multipath detection device.
  7.  請求項1乃至請求項6のいずれかに記載のマルチパス検出装置と、
     前記複数の測位信号を用いて重み付け測位演算を行う測位演算部と、を備える測位装置であって、
     前記測位演算部は、マルチパス波と判定された前記測位信号に対する重み付けを、マルチパス波と判定されていない測位信号に対する重み付けよりも低くして前記重み付け測位演算を行う、
     測位装置。
    The multipath detection device according to any one of claims 1 to 6,
    A positioning calculation unit that performs weighted positioning calculation using the plurality of positioning signals,
    The positioning calculation unit performs the weighted positioning calculation by setting the weighting for the positioning signal determined as a multipath wave lower than the weighting for the positioning signal not determined as a multipath wave,
    Positioning device.
  8.  複数の測位衛星から受信した測位信号の搬送波位相から観測値を取得する観測値取得工程と、
     測位衛星の位置とアンテナの概略位置とから得られる幾何距離から前記観測値に対応する推定値を算出する推定値算出工程と、
     前記観測値の時間変化量と前記推定値の時間変化量とにより、前記受信した測位信号がマルチパス波かを判定する判定工程と、
     を有する、マルチパス検出方法。
    An observation value acquisition step of acquiring an observation value from a carrier phase of a positioning signal received from a plurality of positioning satellites;
    An estimated value calculating step for calculating an estimated value corresponding to the observed value from a geometric distance obtained from the position of the positioning satellite and the approximate position of the antenna;
    A determination step of determining whether the received positioning signal is a multipath wave based on the time change amount of the observed value and the time change amount of the estimated value;
    A multipath detection method comprising:
  9.  請求項8に記載のマルチパス検出方法であって、
     前記観測値は、搬送波位相積算値、衛星間一重位相差、および、二重位相差の少なくとも1つである、
     マルチパス検出方法。
    The multipath detection method according to claim 8, comprising:
    The observed value is at least one of a carrier phase integrated value, an inter-satellite single phase difference, and a double phase difference.
    Multipath detection method.
  10.  請求項8または請求項9に記載のマルチパス検出方法であって、
     前記判定工程は、
     前記観測値の時間変化量と前記推定値の時間変化量との差が経時的に単調増加または単調減少すれば、前記受信した測位信号がマルチパス波であると判定する、
     マルチパス検出方法。
    The multipath detection method according to claim 8 or 9, wherein:
    The determination step includes
    If the difference between the time change amount of the observed value and the time change amount of the estimated value monotonously increases or monotonously decreases with time, it is determined that the received positioning signal is a multipath wave;
    Multipath detection method.
  11.  請求項8乃至請求項10のいずれかに記載のマルチパス検出方法であって、
     前記推定値算出工程は、
     前記複数の測位衛星に対する擬似距離により前記アンテナの概略位置を算出する、
     マルチパス検出方法。
    A multipath detection method according to any one of claims 8 to 10,
    The estimated value calculating step includes:
    Calculating the approximate position of the antenna by pseudoranges for the plurality of positioning satellites;
    Multipath detection method.
  12.  請求項8乃至請求項11のいずれかに記載のマルチパス検出方法と、
     前記複数の測位信号を用いて重み付け測位演算を行う測位演算工程と、を有する測位方法であって、
     前記測位演算工程は、マルチパス波と判定された前記測位信号に対する重み付けを、マルチパス波と判定されていない測位信号に対する重み付けよりも低くして前記重み付け測位演算を行う、
     測位方法。
    A multipath detection method according to any one of claims 8 to 11,
    A positioning calculation step of performing weighted positioning calculation using the plurality of positioning signals, and a positioning method comprising:
    The positioning calculation step performs the weighted positioning calculation by setting the weighting for the positioning signal determined as a multipath wave lower than the weighting for the positioning signal not determined as a multipath wave,
    Positioning method.
  13.  受信した測位信号がマルチパス波か否かを検出する処理をコンピュータに実行させるマルチパス検出プログラムであって、
     前記コンピュータは、
     複数の測位衛星から受信した測位信号の搬送波位相から観測値を取得する観測値取得処理と、
     測位衛星の位置とアンテナの概略位置とから得られる幾何距離から前記観測値に対応する推定値を算出する推定値算出処理と、
     前記観測値の時間変化量と前記推定値の時間変化量とにより、前記受信した測位信号がマルチパス波かを判定する判定処理と、
     を実行する、マルチパス検出プログラム。
    A multipath detection program for causing a computer to execute processing for detecting whether a received positioning signal is a multipath wave,
    The computer
    An observation value acquisition process for acquiring an observation value from a carrier phase of a positioning signal received from a plurality of positioning satellites;
    An estimated value calculation process for calculating an estimated value corresponding to the observed value from a geometric distance obtained from the position of the positioning satellite and the approximate position of the antenna;
    A determination process for determining whether the received positioning signal is a multipath wave based on the time change amount of the observed value and the time change amount of the estimated value;
    A multipath detection program that executes
  14.  請求項13に記載のマルチパス検出プログラムであって、
     前記観測値は、搬送波位相積算値、衛星間一重位相差、および、二重位相差の少なくとも1つである、
     マルチパス検出プログラム。
    A multi-path detection program according to claim 13,
    The observed value is at least one of a carrier phase integrated value, an inter-satellite single phase difference, and a double phase difference.
    Multipath detection program.
  15.  請求項13または請求項14に記載のマルチパス検出プログラムであって、
     前記コンピュータは、
     前記判定処理において、
     前記観測値の時間変化量と前記推定値の時間変化量との差が経時的に単調増加または単調減少すれば、前記受信した測位信号がマルチパス波であると判定する、
     マルチパス検出プログラム。
    The multipath detection program according to claim 13 or 14,
    The computer
    In the determination process,
    If the difference between the time change amount of the observed value and the time change amount of the estimated value monotonously increases or monotonously decreases with time, it is determined that the received positioning signal is a multipath wave;
    Multipath detection program.
  16.  請求項13乃至請求項15のいずれかに記載のマルチパス検出プログラムであって、
     前記コンピュータは、
     前記推定値算出処理において、
     前記複数の測位衛星に対する擬似距離により前記アンテナの概略位置を算出する、
     マルチパス検出プログラム。
    A multipath detection program according to any one of claims 13 to 15,
    The computer
    In the estimated value calculation process,
    Calculating the approximate position of the antenna by pseudoranges for the plurality of positioning satellites;
    Multipath detection program.
  17.  受信した測位信号の搬送波位相を用いて測位を行う処理をコンピュータに実行させる測位プログラムであって、
     前記コンピュータは、
     請求項13乃至請求項16のいずれかに記載のマルチパス検出プログラムと、
     前記複数の測位信号を用いて重み付け測位演算を行う測位演算処理と、を実行し、
     前記測位演算処理において、マルチパス波と判定された前記測位信号に対する重み付けを、マルチパス波と判定されていない測位信号に対する重み付けよりも低くして前記重み付け測位演算を行う、
     測位プログラム。
    A positioning program that causes a computer to execute a process of positioning using a carrier phase of a received positioning signal,
    The computer
    A multipath detection program according to any one of claims 13 to 16,
    Performing a positioning calculation process for performing a weighted positioning calculation using the plurality of positioning signals,
    In the positioning calculation process, the weighting for the positioning signal determined to be a multipath wave is made lower than the weighting for the positioning signal not determined to be a multipath wave, and the weighted positioning calculation is performed.
    Positioning program.
PCT/JP2016/069907 2015-08-06 2016-07-05 Multipath detection device, multipath detection method, multipath detection program, positioning device, positioning method, and positioning program WO2017022391A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-156183 2015-08-06
JP2015156183 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022391A1 true WO2017022391A1 (en) 2017-02-09

Family

ID=57942814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069907 WO2017022391A1 (en) 2015-08-06 2016-07-05 Multipath detection device, multipath detection method, multipath detection program, positioning device, positioning method, and positioning program

Country Status (1)

Country Link
WO (1) WO2017022391A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162127A1 (en) * 2021-01-29 2022-08-04 Thales Gnss signal multipath detection device, and associated carrier geolocation system and multipath detection method
CN116299623A (en) * 2023-05-12 2023-06-23 武汉大学 PPP and INS tight combination method and system under urban complex scene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507796A (en) * 1996-12-31 2001-06-12 ハネウエル・インコーポレーテッド GPS multipath detection method and device
JP2006064593A (en) * 2004-08-27 2006-03-09 Japan Radio Co Ltd Positioning device
JP2006133142A (en) * 2004-11-08 2006-05-25 Furuno Electric Co Ltd Positioning receiver
JP2008298443A (en) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp Multipath detection device, positioning device, attitude azimuth orientation device, multipath detection method, and multipath detection program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507796A (en) * 1996-12-31 2001-06-12 ハネウエル・インコーポレーテッド GPS multipath detection method and device
JP2006064593A (en) * 2004-08-27 2006-03-09 Japan Radio Co Ltd Positioning device
JP2006133142A (en) * 2004-11-08 2006-05-25 Furuno Electric Co Ltd Positioning receiver
JP2008298443A (en) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp Multipath detection device, positioning device, attitude azimuth orientation device, multipath detection method, and multipath detection program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162127A1 (en) * 2021-01-29 2022-08-04 Thales Gnss signal multipath detection device, and associated carrier geolocation system and multipath detection method
FR3119463A1 (en) * 2021-01-29 2022-08-05 Thales DEVICE FOR DETECTING MULTIPATHS OF GNSS SIGNAL, AND SYSTEM FOR GEOLOCATING A CARRIER AND METHOD FOR DETECTING ASSOCIATED MULTIPATHS
CN116299623A (en) * 2023-05-12 2023-06-23 武汉大学 PPP and INS tight combination method and system under urban complex scene

Similar Documents

Publication Publication Date Title
JP5034935B2 (en) POSITIONING METHOD, PROGRAM, POSITIONING DEVICE, AND ELECTRONIC DEVICE
JP4655139B2 (en) Mobile positioning device
JP4781313B2 (en) Multipath detection device, positioning device, posture orientation determination device, multipath detection method, and multipath detection program
US8593341B2 (en) Position calculation method and position calculation apparatus
KR101843004B1 (en) Global precise point positioning apparatus using inter systm bias of multi global satellite positioning systems and the method thereof
JP5508515B2 (en) Positioning method, positioning program, GNSS receiver, and mobile terminal
WO2011105445A1 (en) Pseudo range estimation method, pseudo range estimation program, gnss receiver apparatus, and mobile terminal
US8325086B2 (en) Methods and systems to diminish false-alarm rates in multi-hypothesis signal detection through combinatoric navigation
JP5526492B2 (en) Pseudo distance calculation method, positioning method, program, and positioning device
US9253751B2 (en) Method of calculating movement speed and device for calculating movement speed
WO2015145718A1 (en) Positioning device
JP7329814B2 (en) Positioning device, positioning method, positioning program, positioning program storage medium, application device, and positioning system
US8670927B2 (en) Positioning method, program, positioning device, and electronic apparatus
US20110193741A1 (en) Satellite signal tracking method, position calculating method, and position calculating device
WO2017022391A1 (en) Multipath detection device, multipath detection method, multipath detection program, positioning device, positioning method, and positioning program
JP2011179894A (en) Positioning method, positioning program, gnss receiver, and mobile terminal
JP6047944B2 (en) Receiver and correlation integration processing method
JP4215264B2 (en) Position and orientation estimation device
JP2013253814A (en) Positioning method, positioning program, positioning apparatus, and information apparatus terminal
JP2009115514A (en) Positioning method, program, positioning circuit, and electronic device
JP2014044056A (en) Positioning device, positioning method, and positioning program
US11294072B2 (en) Method, device and server for estimation of IFB calibration value
JP2008082819A (en) Positioning instrument and method
JP2012108015A (en) Satellite positioning apparatus
JP2009097898A (en) Positioning method, program, positioning device, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16832670

Country of ref document: EP

Kind code of ref document: A1