JP2008082819A - Positioning instrument and method - Google Patents

Positioning instrument and method Download PDF

Info

Publication number
JP2008082819A
JP2008082819A JP2006262074A JP2006262074A JP2008082819A JP 2008082819 A JP2008082819 A JP 2008082819A JP 2006262074 A JP2006262074 A JP 2006262074A JP 2006262074 A JP2006262074 A JP 2006262074A JP 2008082819 A JP2008082819 A JP 2008082819A
Authority
JP
Japan
Prior art keywords
receiver
clock error
positioning
delay information
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006262074A
Other languages
Japanese (ja)
Inventor
Sueo Sugimoto
末雄 杉本
Yukihiro Kubo
幸弘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006262074A priority Critical patent/JP2008082819A/en
Publication of JP2008082819A publication Critical patent/JP2008082819A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an independent positioning instrument and an independent positioning method for estimating a receiver position with the effect of a receiver clock error suppressed. <P>SOLUTION: A linear regression equation is formed which has, as object variables, respective input observation values, that is, carrier phases of L1 waves as to respective selected GPS satellites, carrier waves of L2 waves, code pseudo ranges of C/A codes, code pseudo ranges of PY codes, clock error information, ionization layer delay information, and troposphere delay information, and includes integer bias and the receiver position as explanatory variables. On this occasion, receiver bias for every carrier wave signal and that for every code, hitherto included in the clock error, are separated from the clock error and added to the regression equation. A least-squares method is applied to the regression equation to estimate/calculate the integer bias and the receiver position. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、測位用信号を用いて受信機の測位を行う測位装置および測位方法に関するものである。   The present invention relates to a positioning device and a positioning method for positioning a receiver using a positioning signal.

従来、測位衛星から送信される測位用信号を用いて測位を行う装置が各種開示されており、その基本測位演算は、コード擬似距離や搬送波によるキャリア位相差を用いて、受信機の3次元の位置(誤差)と 受信機の時計誤差とを未知数とした非線形連立方程式にニュートン法や拡張カルマンフィルタを適用することで求めるものであった。この際、電離層遅延による誤差や対流圏遅延による誤差の影響を除去するため、これらの遅延による影響を初期状態から「0」に設定したり、1重位相差等の演算処理を行って、これらの遅延量を推定していた。   Conventionally, various devices that perform positioning using positioning signals transmitted from positioning satellites have been disclosed, and the basic positioning calculation uses a code pseudorange and a carrier phase difference due to a carrier wave to obtain a three-dimensional receiver. It was obtained by applying Newton's method or extended Kalman filter to the nonlinear simultaneous equations with the position (error) and receiver clock error as unknowns. At this time, in order to remove the error caused by the ionospheric delay and the error caused by the troposphere delay, the influence of these delays is set to “0” from the initial state, or arithmetic processing such as a single phase difference is performed. The amount of delay was estimated.

これを解決する方法として、特許文献1には、算出したい受信機位置を含む所定のパラメータを未知数とし、測位用信号から観測できるデータを用いて回帰方程式を形成し、当該回帰方程式を演算することにより、受信機位置を算出する方法が開示されている。
国際公開第WO2006/022318 A1
As a method for solving this, Patent Document 1 discloses that a predetermined parameter including a receiver position to be calculated is an unknown, a regression equation is formed using data that can be observed from a positioning signal, and the regression equation is calculated. Discloses a method for calculating the receiver position.
International Publication No. WO2006 / 022318 A1

ところが、特許文献1に示された方法では、 受信機時計誤差および測位衛星時計誤差をそれぞれ受信機,衛星固有の1個のパラメータとして扱っているが、現実には、搬送波信号の種類やコードの種類別により誤差が異なる。したがって、特許文献1の方法を用いた場合、受信機位置としては、或程度、例えば数十cmスケールの誤差が発生してしまい、これ以上収束させることが難しい。   However, in the method disclosed in Patent Document 1, the receiver clock error and the positioning satellite clock error are each handled as one parameter unique to the receiver and the satellite. The error varies depending on the type. Therefore, when the method of Patent Document 1 is used, an error of a certain scale, for example, several tens of centimeters, is generated as the receiver position, and it is difficult to converge further.

したがって、本発明の目的は、従来よりも高精度の受信機位置を測位することができる測位装置および測位方法を提供することにある。   Accordingly, an object of the present invention is to provide a positioning device and a positioning method capable of positioning a receiver position with higher accuracy than before.

この発明は、複数の測位衛星から複数 周波数の搬送波信号に重畳させて送信される測位用信号に含まれる航法メッセージまたはオフライン処理により予め推定された値から測位衛星の時計誤差を観測する衛星時計誤差検出手段と、電離層遅延情報を取得する電離層遅延情報取得手段と、対流圏遅延情報を取得する対流圏遅延情報取得手段と、複数周波数の搬送波の整数値バイアス、受信機時計誤差、および受信機位置を未知数として含み、該受信機位置を過去の推定演算値で1次テイラー級数展開することで線形近似し、整数値バイアス、受信機 時計誤差、受信機位置、測位衛星の時計誤差、電離層遅延情報、対流圏遅延情報を説明変数とし、観測値であるキャリア位相およびコード擬似距離を目的変数とする回帰方程式を構成し、該回帰方程式に最小二乗法を適用することで整数値バイアスと、受信機時計誤差と、受信機の位置とを推定演算する測位演算手段と、を備えた測位装置に関するものである。そして、この測位装置の測位演算手段は、少なくとも受信機時計誤差を、搬送波信号の種類別およびコードの種類別に分割して設定し、回帰方程式に代入して利用することを特徴としている。   The present invention relates to a satellite clock error for observing a clock error of a positioning satellite from a navigation message included in a positioning signal transmitted by being superimposed on a carrier signal of a plurality of frequencies from a plurality of positioning satellites or a value estimated in advance by offline processing. Detecting means, ionospheric delay information acquiring means for acquiring ionospheric delay information, tropospheric delay information acquiring means for acquiring tropospheric delay information, integer value bias of multiple frequency carrier wave, receiver clock error, and receiver position unknown The receiver position is linearly approximated by expanding the first-order Taylor series with the past estimated calculation value, integer bias, receiver clock error, receiver position, positioning satellite clock error, ionospheric delay information, troposphere Construct a regression equation with the delay information as explanatory variables and the observed carrier phase and code pseudorange as objective variables. And integer bias by applying the least square method to equations, the receiver clock error, the positioning calculation means for estimating the position of the receiver, to a positioning device provided with a. The positioning calculation means of this positioning apparatus is characterized in that at least the receiver clock error is set by dividing it by carrier signal type and code type and substituting it into a regression equation for use.

また、この発明は、複数の測位衛星から複数 周波数の搬送波信号に重畳させて送信される測位用信号に含まれる航法メッセージまたはオフライン処理により予め推定された値から測位衛星の時計誤差を観測し、電離層 遅延情報および対流圏遅延情報を取得し、複数周波数の搬送波の整数値バイアス、受信機時計誤差、および受信機位置を未知数として含み、該受信機位置を過去の推定演算値で1次テイラー級数展開することで線形近似し、整数値バイアス、受信機時計誤差、受信機位置、測位衛星の時計誤差、電離層遅延情報、対流圏遅延情報を説明変数とし、 観測値であるキャリア位相およびコード擬似距離を目的変数とする回帰方程式を構成し、該回帰方程式に最小二乗法を適用することで整数値バイアスと、受信機時計誤差と、受信機の位置とを推定演算する測位演算方法に関するものである。そして、この測位演算方法では、少なくとも受信機時計誤差を、搬送波信号の種類別およびコードの種類別に分割して設定し、回帰方程式に代入して利用することを特徴としている。   Further, the present invention observes a clock error of a positioning satellite from a navigation message included in a positioning signal transmitted by being superimposed on a carrier signal of a plurality of frequencies from a plurality of positioning satellites or a value estimated in advance by offline processing, Acquire ionospheric delay information and tropospheric delay information, include integer bias of multiple frequency carriers, receiver clock error, and receiver position as unknowns, and expand the first-order Taylor series with the estimated calculation values in the past Approximate integer value bias, receiver clock error, receiver position, positioning satellite clock error, ionospheric delay information, and tropospheric delay information as explanatory variables, aiming at observed carrier phase and code pseudorange By constructing a regression equation as a variable and applying the least squares method to the regression equation, an integer value bias, receiver clock error, and reception The present invention relates to a positioning calculation method for estimating and calculating the position of a machine. The positioning calculation method is characterized in that at least the receiver clock error is divided and set for each type of carrier wave signal and each type of code, and is substituted into a regression equation for use.

これらの構成および方法では、回帰方程式を設定する際に、受信機時計誤差を、搬送波信号の種類(例えば、GPSであればL1波とL2波)別、および、コードの種類(例えば、GPSであればC/AコードとP(Y)コード)別に分割して設定する。これにより、 現実的に異なるこれらの誤差を1個の受信機時計誤差として丸め込んで演算する場合よりも、より高精度に未知数の演算値(収束値)が得られる。そして、この未知数に受信機位置が含まれていることから、受信機位置が高精度に得られることとなる。   In these configurations and methods, when setting the regression equation, the receiver clock error is classified by carrier signal type (for example, L1 wave and L2 wave for GPS) and code type (for example, GPS). If there is, C / A code and P (Y) code) are divided and set. As a result, an unknown calculation value (convergence value) can be obtained with higher accuracy than in the case where a calculation is performed by rounding these practically different errors as one receiver clock error. Since the unknown position includes the receiver position, the receiver position can be obtained with high accuracy.

また、この発明の測位装置の測位演算手段は、測位衛星の時計誤差を、搬送波信号の種類別およびコードの種類別に分割して設定し、回帰方程式に代入して利用することを特徴としている。   Further, the positioning calculation means of the positioning device of the present invention is characterized in that the clock error of the positioning satellite is divided and set for each type of carrier wave signal and for each type of code, and is substituted into a regression equation for use.

また、この発明の測位演算方法では、さらに、測位衛星の時計誤差を、搬送波信号の種類別およびコードの種類別に分割して設定し、回帰方程式に代入して利用することを特徴としている。   The positioning calculation method of the present invention is further characterized in that the clock error of the positioning satellite is divided and set for each type of carrier signal and for each type of code, and is substituted into a regression equation for use.

これらの構成および方法では、衛星時計誤差に対して、受信機時計誤差と同様に搬送波信号の種類(例えば、GPSであればL1波とL2波)別、および、コードの種類(例えば、GPSであればC/AコードとP(Y)コード)別に分割して設定する。これにより、さらに高精度に回帰方程式の未知数に対する演算値(収束値)が得られる。そして、この未知数に受信機位置および衛星位置が含まれていることから、受信機位置および衛星位置が高精度に得られることとなる。   In these configurations and methods, for the satellite clock error, similarly to the receiver clock error, the carrier wave signal type (for example, L1 wave and L2 wave for GPS) and the code type (for example, GPS) If there is, C / A code and P (Y) code) are divided and set. Thereby, the operation value (convergence value) with respect to the unknown of the regression equation can be obtained with higher accuracy. Since the unknown position includes the receiver position and the satellite position, the receiver position and the satellite position can be obtained with high accuracy.

この発明によれば、受信機時計誤差を 搬送波信号の種類別およびコード別に詳細に分類して回帰方程式に用いることで、より高精度に回帰方程式を構成する未知数を算出することができる。これにより、さらに高精度に受信機位置を測位することができる。   According to the present invention, it is possible to calculate the unknowns constituting the regression equation with higher accuracy by classifying the receiver clock error in detail for each type and code of the carrier signal and using it in the regression equation. As a result, the receiver position can be measured with higher accuracy.

本発明の実施形態に係る測位装置および測位演算方法について図を参照して説明する。なお、以下の説明では、GPSについて説明するが、他の全てのGNSS(全地球的航法衛星システム)に適用することができる。また、以下の説明では、単独測位を行う場合について説明するが、相対測位にも適用することができる。
図1は本実施形態の単独測位装置の概略構成を示すブロック図である。
また、図2は本実施形態の単独測位装置とGPS 受信機とからなる単独測位システムの処理フローを示すフローチャートである。
A positioning device and a positioning calculation method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, GPS is described, but the present invention can be applied to all other GNSS (Global Navigation Satellite System). Moreover, although the following description demonstrates the case where independent positioning is performed, it is applicable also to relative positioning.
FIG. 1 is a block diagram showing a schematic configuration of the single positioning apparatus of the present embodiment.
FIG. 2 is a flowchart showing a processing flow of the single positioning system including the single positioning device and the GPS receiver according to this embodiment.

図1に示すように、単独測位装置10は、GPS受信機30に接続し、航法メッセージ解析部11、衛星情報処理部12、および測位演算部13を備える。   As shown in FIG. 1, the single positioning device 10 is connected to a GPS receiver 30 and includes a navigation message analysis unit 11, a satellite information processing unit 12, and a positioning calculation unit 13.

GPS受信機30はアンテナ20に接続し、アンテナ20で受信したGPS衛星(測位衛星)からのGPS信号(測位用信号)より、既知の方法でL1波およびL2波のキャリア位相、C/AコードおよびP(Y)コードのコード擬似距離(擬似距離)を取得するともに、L1波に重畳された航法メッセージを取得する(S1→S2)。そして、GPS受信機30は、航法メッセージを単独測位装置10の航法メッセージ解析部11に出力し、キャリア位相およびコード擬似距離を単独測位装置10の測位演算部13に出力する。   The GPS receiver 30 is connected to the antenna 20, and from the GPS signal (positioning signal) received from the antenna 20 by a GPS satellite (positioning signal), the carrier phase and C / A code of the L1 wave and L2 wave are known by a known method. And the code pseudo distance (pseudo distance) of P (Y) code is acquired, and the navigation message superimposed on the L1 wave is acquired (S1 → S2). Then, the GPS receiver 30 outputs the navigation message to the navigation message analysis unit 11 of the single positioning device 10, and outputs the carrier phase and the code pseudo distance to the positioning calculation unit 13 of the single positioning device 10.

航法メッセージ解析部11は、入力された航法メッセージを解析して、電離層遅延情報、各GPS衛星の時計誤差、軌道情報を取得し、かつ数式モデルを用いて対流圏遅延情報を取得して(S3)、衛星情報処理部12に出力する。   The navigation message analysis unit 11 analyzes the input navigation message, acquires ionospheric delay information, clock error and orbit information of each GPS satellite, and acquires tropospheric delay information using a mathematical model (S3). And output to the satellite information processing unit 12.

衛星情報処理部12は、GPS衛星のエフェメリス情報を用いて測位に用いるGPS衛星を選定して、選定したGPS衛星に関する時計遅延情報や電離層遅延情報、および対流圏遅延情報を測位演算部13に出力する。   The satellite information processing unit 12 selects a GPS satellite to be used for positioning using the ephemeris information of the GPS satellite, and outputs clock delay information, ionospheric delay information, and tropospheric delay information regarding the selected GPS satellite to the positioning calculation unit 13. .

測位演算部13は、入力された各観測値、すなわち、選定された各GPS衛星に対するL1波のキャリア位相、L2波のキャリア位相、C/Aコードによるコード擬似距離、P(Y)コードのコード擬似距離、受信機時計誤差情報、 受信機バイアス、衛星時計誤差、電離層遅延情報、対流圏遅延情報を用いて、後述する線形回帰方程式に最小二乗法を適用させて、L1、L2波に対する整数値バイアスNL1,NL2、受信機時計誤差δtu、従来受信機時計誤差δtuに含まれていた受信機バイアスδbCA,u,δbPY,u,δbL1,u,δbL2,u、受信機の位置uとを推定演算する(S4)。この演算は推定値の変化が予め設定された所定の閾値以下になるまで繰り返し行われ、推定値の変化が所定の閾値に達した時点での受信機の位置の推定演算 結果が測位結果として出力される。 The positioning calculation unit 13 inputs each observation value, that is, the carrier phase of the L1 wave, the carrier phase of the L2 wave, the code pseudo distance by the C / A code, the code of the P (Y) code for each selected GPS satellite Using the pseudorange, receiver clock error information, receiver bias, satellite clock error, ionosphere delay information, troposphere delay information, and applying the least squares method to the linear regression equation described later, an integer bias for the L1 and L2 waves N L1, N L2, receiver clock error .DELTA.t u, conventional receiver clock error .DELTA.t receiver bias was included in the u δb CA, u, δb PY , u, δb L1, u, δb L2, u, the receiver The position u is estimated and calculated (S4). This calculation is repeated until the estimated value changes below a predetermined threshold value, and the estimated calculation result of the receiver position when the estimated value changes reaches the predetermined threshold value is output as the positioning result. Is done.

ここで、航法メッセージ解析部11、衛星 情報処理部12、測位演算部13は、それぞれ、以下に示すアルゴリズムを実現するマイクロプロセッサ等の数値演算処理器からなる。そして、これらの部分は複数の数値演算処理器により形成してもよく、1つの数値演算処理器により形成してもよい。   Here, the navigation message analysis unit 11, the satellite information processing unit 12, and the positioning calculation unit 13 are each composed of a numerical calculation processor such as a microprocessor that implements the following algorithm. These portions may be formed by a plurality of numerical arithmetic processors or by a single numerical arithmetic processor.

次に、前述の整数値バイアスNL1,NL2および受信機位置uの推定演算アルゴリズムについて詳述する。 Next, the estimation calculation algorithm for the integer value biases N L1 and N L2 and the receiver position u will be described in detail.

一般に、受信機u、GPS衛星pに対するコード擬似距離(擬似距離)ρp c,uの観測方程式は式(1),(2)で表すことができ、キャリア位相Φp L,uの観測方程式は式(3),(4)で表される。ここで、マルチパス誤差は微少として無視する。 In general, the observation equation of the code pseudorange (pseudorange) ρ p c, u for the receiver u and the GPS satellite p can be expressed by the equations (1) and (2), and the observation equation of the carrier phase Φ p L, u Is expressed by equations (3) and (4). Here, the multipath error is negligible and ignored.

Figure 2008082819
Figure 2008082819

ここで、λはL波(L1波、L2波)の波長を示し、r (t,t−τ )は時刻tでの受信機uと時刻(t−τ )でのGPS衛星pとの距離を示し、δI (t)はL1波の電離層遅延を示し、δT (t)はL1波、L2波の対流圏遅延を示し、δt(t)は真の時刻tでの受信機uの時計誤差を示し、δt(t−τ )は時刻(t−τ )でのGPS衛星pの時計誤差を示し、δbL,uは受信機uのL波に対するバイアスを示し、δbCA,uは受信機uのC/Aコードに対するバイアスを示し、δbPY,uは受信機uのP(Y)コードに対するバイアスを示し、δbp LはGPS衛星pのL波に対するバイアスを示し、δbp CAはGPS衛星pのC/Aコードに対するバイアスを示し、δbp PYはGPS衛星pのP(Y)コードに対する バイアスを示し、N L,uはL波における受信機uと衛星pとの間の整数値バイアスを示し、ε L,u(t),e c,u(t)はそれぞれ観測雑音を示す。 Here, λ L indicates the wavelength of the L wave (L1 wave, L2 wave), and r p u (t, t−τ p u ) is the receiver u at time t and the time (t−τ p u ). ΔI p u (t) indicates the ionospheric delay of the L1 wave, δT p u (t) indicates the tropospheric delay of the L1 wave and the L2 wave, and δt u (t) is true. Represents the clock error of the receiver u at time t, δt p (t−τ p u ) represents the clock error of the GPS satellite p at time (t−τ p u ), and δb L, u represents the receiver. u represents the bias for the L wave, δb CA, u represents the bias for the C / A code of the receiver u , δb PY, u represents the bias for the P (Y) code of the receiver u, and δb p L is shows the bias for L wave of the GPS satellite p, [delta] b p CA represents a bias for C / a code of the GPS satellite p, [delta] b p PY is the GPS satellites p (Y) shows the bias for code, N p L, u represents an integer bias between the receiver u and satellite p in L wave, ε p L, u (t ), e p c, u (t ) Indicates observation noise.

ところで、受信機とGPS衛星との距離r (t,t−τ )は、式(5)で表すことができる。 By the way, the distance r p u (t, t−τ p u ) between the receiver and the GPS satellite can be expressed by equation (5).

Figure 2008082819
Figure 2008082819

次に、未知数である受信機位置u(t)≡[x(t),y(t),z(t)]の先験的な推定受信機位置u(j)(t)≡[x (j)(t),y (j)(t),z (j)(t)]の周りで1次のテイラー級数展開を行う。さらに、p番目の測位衛星位置spの先験的な推定測位衛星位置sepの周りで1次のティラー級数展開を行う。これにより、r (t)を線形近似すると次式を得られる。 Next, an a priori estimated receiver position u (j) (t) of unknown receiver position u (t) ≡ [x u (t), yu (t), z u (t)] T ≡ [x u (j) (t), yu (j) (t), z u (j) (t)] Perform a first order Taylor series expansion around T. Furthermore, performing the p-th primary tiller series expansion around priori estimated positioning satellite position se p for positioning satellite positions s p. Thus, when r p u (t) is linearly approximated, the following equation is obtained.

Figure 2008082819
Figure 2008082819

ここで、   here,

Figure 2008082819
Figure 2008082819

(nは測位衛星数)と定義すると、式(1)〜式(4)は、次式(8)〜(11)で表される。 When defined as ( ns is the number of positioning satellites), the equations (1) to (4) are expressed by the following equations (8) to (11).

Figure 2008082819
Figure 2008082819

これは、すなわち、キャリア位相、コード擬似距離を目的変数とし、受信機の位置、電離層遅延、対流圏遅延、受信機バイアス、GPS衛星バイアス、整数値バイアス、誤差要因を説明変数とする近似的な線形回帰方程式に相当する。   This is an approximate linear function with the carrier phase and code pseudorange as objective variables and the receiver position, ionospheric delay, tropospheric delay, receiver bias, GPS satellite bias, integer bias, and error factors as explanatory variables. Corresponds to regression equation.

ここで、GPS衛星バイアスは受信機バイアスに比較して2桁程度低い要素であるので、以下の演算では無視する。   Here, since the GPS satellite bias is an element that is about two digits lower than the receiver bias, it is ignored in the following calculation.

そして、   And

Figure 2008082819
Figure 2008082819

と定義すると、式(8)〜式(11)はベクトル行列からなる次式で表される。 If defined, equations (8) to (11) are expressed by the following equations consisting of a vector matrix.

Figure 2008082819
Figure 2008082819

である。   It is.

この線形回帰方程式を、最小二乗法を用いて繰り返し推定演算を行うことで、未知数を収束させて各値を取得する。この際、未知数の収束条件として、未知数の推定値の繰り返し演算での変化が予め設定した閾値以下に達した時点で、未知数の値を確定させる。   This linear regression equation is repeatedly estimated using the least squares method to converge unknowns and acquire each value. At this time, as the convergence condition of the unknown, the value of the unknown is determined when the change in the estimated value of the unknown reaches a predetermined threshold or less.

このような演算を行うことで、各搬送波信号L1,L2やコードCA,PYにより変化する受信機バイアスδbuとともに、整数値バイアスNL1,NL2や受信機位置uを推定することができる。 Such operations by performing, each carrier signal L1, L2 and the code CA, with the receiver bias [delta] b u that varies by PY, it is possible to estimate the integer ambiguity N L1, N L2 and receiver position u.

この結果、従来のように受信機バイアスδbuを受信機時計誤差δtuに包括して丸め込むのではなく、受信機バイアスδbuを正確に算出することで、同時に、整数値バイアスNL1,NL2や受信機位置uをより高精度に算出することができる。例えば、本願の方法を用いることにより、数cmオーダーで受信機位置を算出することができる。 As a result, instead of rounding a comprehensive receiver clock error .DELTA.t u conventional receiver bias [delta] b u like, by accurately calculate the receiver bias [delta] b u, at the same time, integer ambiguity N L1, N L2 and the receiver position u can be calculated with higher accuracy. For example, the receiver position can be calculated on the order of several centimeters by using the method of the present application.

なお、上述の説明では、受信機バイアスδbuを回帰方程式に用い、GPS衛星バイアスδbpは用いなかったが、上述の式(8)〜式(11)をそのまま行列表現して、回帰方程式に用いるようにしてもよい。この場合、演算処理数が増加するので、受信機位置の算出までに係る時間は長くなるが、より高精度に受信機位置を算出することができる。 In the above description, using the receiver bias [delta] b u in the regression equation was not used GPS satellites bias [delta] b p, and the above equation (8) to Formula (11) as it is a matrix representation, the regression equation You may make it use. In this case, since the number of arithmetic processes increases, the time required to calculate the receiver position becomes longer, but the receiver position can be calculated with higher accuracy.

また、上述の説明では、受信機で全ての未知数を推定したが、電離層遅延量や対流圏遅延量等の受信機位置に大きく依存しない演算要素を基地局により推定し、受信機に与えるようにしてもよい。これにより、さらに高精度に受信機バイアスバイアスδbuや受信機位置を算出することができる。 In the above description, all unknowns are estimated by the receiver. However, calculation elements that do not largely depend on the receiver position, such as ionospheric delay amount and tropospheric delay amount, are estimated by the base station and given to the receiver. Also good. Thus, it is possible to calculate the receiver bias bias [delta] b u and receiver position further highly accurately.

また、前述の説明では、回帰方程式に最小二乗法を適用した例を示したが、他のパラメータ推定アルゴリズムを用いても良い。   In the above description, an example in which the least square method is applied to the regression equation is shown, but other parameter estimation algorithms may be used.

また、上述の説明では単独測位を例に示したが、上述の方法および構成は相対測位にも適用することができる。   In the above description, single positioning is shown as an example, but the above-described method and configuration can also be applied to relative positioning.

また、単独測位を行う二つの受信機を近傍に設置し、これらの距離を予め測定して拘束条件として用い、前述の回帰方程式に適用することもできる。この場合、さらに高精度に受信機位置を測位することができる。   It is also possible to install two receivers that perform single positioning in the vicinity, measure these distances in advance, use them as constraint conditions, and apply them to the regression equation described above. In this case, the receiver position can be measured with higher accuracy.

本発明の実施形態の単独測位装置の概略構成を示すブロック図The block diagram which shows schematic structure of the single positioning apparatus of embodiment of this invention. 本発明の実施形態の単独測位装置とGPS受信機とからなる単独測位システムの処理フローを示すフローチャートThe flowchart which shows the processing flow of the single positioning system which consists of the single positioning apparatus and GPS receiver of embodiment of this invention.

符号の説明Explanation of symbols

10−単独測位装置
11−航法メッセージ解析部
12−衛星情報処理部
13−測位演算部
20−GPSアンテナ
30−GPS受信機
10-single positioning device 11-navigation message analysis unit 12-satellite information processing unit 13-positioning calculation unit 20-GPS antenna 30-GPS receiver

Claims (4)

複数の測位衛星から複数周波数の 搬送波信号に重畳させて送信される測位用信号に含まれる航法メッセージまたはオフライン処理により予め推定された値から前記測位衛星の時計誤差を観測する衛星時計誤差検出手段と、電離層遅延情報を取得する電離層遅延情報取得手段と、対流圏遅延情報を取得する対流圏遅延情報取得手段と、前記複数周波数の搬送波の整数値バイアス、受信機時計誤差、および受信機位置を未知数として含み、該受信機位置を過去の推定演算値で1次テイラー級数展開することで線形近似し、前記整数値バイアス、前記受信機時計誤差、前記受信機位置、前記測位衛星の時計誤差、前記電離層遅延情報、前記対流圏遅延情報を説明変数とし、観測値であるキャリア位相およびコード擬似距離を目的変数とする回帰方程式を構成し、該回帰方程式に最小二乗法を適用することで前記整数値バイアスと、前記受信機時計誤差と、前記受信機の位置とを推定演算する測位演算手段と、を備えた測位装置であって、
前記測位演算手段は、少なくとも 前記受信機時計誤差を、搬送波信号の種類別およびコードの種類別に分割して設定し、前記回帰方程式に代入して利用する測位装置。
A satellite clock error detecting means for observing a clock error of the positioning satellite from a navigation message included in a positioning signal transmitted by being superimposed on a carrier signal of a plurality of frequencies from a plurality of positioning satellites or a value estimated in advance by offline processing; An ionospheric delay information acquisition unit for acquiring ionospheric delay information, a tropospheric delay information acquisition unit for acquiring tropospheric delay information, an integer value bias of the multiple frequency carriers, a receiver clock error, and a receiver position as unknowns The receiver position is linearly approximated by first-order Taylor series expansion using past estimated calculation values, and the integer bias, the receiver clock error, the receiver position, the positioning satellite clock error, and the ionospheric delay Information, the tropospheric delay information as explanatory variables, and the regression process using the observed carrier phase and code pseudorange as objective variables A positioning apparatus comprising: positioning calculation means for calculating and estimating the integer value bias, the receiver clock error, and the position of the receiver by applying a least square method to the regression equation Because
The positioning calculation means uses at least the receiver clock error divided and set for each type of carrier wave signal and each type of code, and substitutes it into the regression equation for use.
前記測位演算手段は、前記測位衛星の時計誤差を、搬送波信号の種類別およびコードの種類別に分割して設定し、前記回帰方程式に代入して利用する請求項1に記載の測位装置。   The positioning device according to claim 1, wherein the positioning calculation unit divides and sets the clock error of the positioning satellite according to the type of carrier signal and the type of code, and substitutes it into the regression equation for use. 複数の測位衛星から複数周波数の 搬送波信号に重畳させて送信される測位用信号に含まれる航法メッセージまたはオフライン処理により予め推定された値から前記測位衛星の時計誤差を観測し、電離層 遅延情報および対流圏遅延情報を取得し、前記複数周波数の搬送波の整数値バイアス、受信機時計誤差、および受信機位置を未知数として含み、該受信機位置を過去の推定演算値で1次テイラー級数展開することで線形近似し、前記整数値バイアス、前記受信機時計誤差、前記受信機位置、前記測位衛星の時計誤差、前記電離層遅延情報、前記対流圏 遅延情報を説明変数とし、観測値であるキャリア位相およびコード擬似距離を目的変数とする回帰方程式を構成し、該回帰方程式に最小二乗法を適用することで前記 整数値バイアスと、前記受信機時計誤差と、前記受信機の位置とを推定演算する測位演算方法であって、
少なくとも前記受信機時計誤差を、搬送波信号の種類別およびコードの種類別に分割して設定し、前記回帰方程式に代入して利用する測位演算方法。
The clock error of the positioning satellite is observed from a navigation message included in a positioning signal transmitted from a plurality of positioning satellites superimposed on a carrier signal of multiple frequencies or a value estimated in advance by offline processing, and ionospheric delay information and troposphere Linearity is obtained by acquiring delay information, including the integer bias of the carrier waves of the plurality of frequencies, the receiver clock error, and the receiver position as unknowns, and expanding the first-order Taylor series of the receiver position with past estimated calculation values. Approximating the integer value bias, the receiver clock error, the receiver position, the positioning satellite clock error, the ionospheric delay information, and the tropospheric delay information as explanatory variables, and the carrier phase and code pseudorange as observation values Is formed as an objective variable, and the integer value bias is applied by applying the least square method to the regression equation. A positioning calculation method for estimating and calculating a receiver clock error and a position of the receiver,
A positioning calculation method in which at least the receiver clock error is divided and set for each type of carrier signal and each type of code, and is substituted into the regression equation for use.
さらに、前記測位衛星の時計誤差を、搬送波信号の種類別およびコードの種類別に分割して設定し、前記回帰方程式に代入して利用する請求項3に記載の測位演算方法。   4. The positioning calculation method according to claim 3, wherein the clock error of the positioning satellite is divided and set for each carrier signal type and code type, and is substituted into the regression equation for use.
JP2006262074A 2006-09-27 2006-09-27 Positioning instrument and method Pending JP2008082819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262074A JP2008082819A (en) 2006-09-27 2006-09-27 Positioning instrument and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262074A JP2008082819A (en) 2006-09-27 2006-09-27 Positioning instrument and method

Publications (1)

Publication Number Publication Date
JP2008082819A true JP2008082819A (en) 2008-04-10

Family

ID=39353850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262074A Pending JP2008082819A (en) 2006-09-27 2006-09-27 Positioning instrument and method

Country Status (1)

Country Link
JP (1) JP2008082819A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190723A (en) * 2009-02-18 2010-09-02 Seiko Epson Corp Position calculating method and position calculating device
KR101175589B1 (en) 2012-06-15 2012-09-07 한국항공우주연구원 Detecting Method of GPS Clock Signal Jump Using Carrier Phase Measurements in Real -Time
KR101843004B1 (en) 2017-11-15 2018-03-29 한국 천문 연구원 Global precise point positioning apparatus using inter systm bias of multi global satellite positioning systems and the method thereof
CN113341437A (en) * 2021-05-21 2021-09-03 东南大学 GNSS unmodeled error inversion method
CN113341437B (en) * 2021-05-21 2024-05-28 东南大学 GNSS unmodeled error inversion method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265624A (en) * 1993-03-12 1994-09-22 Japan Radio Co Ltd Position measuring apparatus
JP2004028655A (en) * 2002-06-24 2004-01-29 Sony Corp Positioning calculation method and receiver for positioning
WO2006022318A1 (en) * 2004-08-25 2006-03-02 The Ritsumeikan Trust Independent positioning device and independent positioning method
JP2007292610A (en) * 2006-04-25 2007-11-08 Furuno Electric Co Ltd Satellite navigation receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265624A (en) * 1993-03-12 1994-09-22 Japan Radio Co Ltd Position measuring apparatus
JP2004028655A (en) * 2002-06-24 2004-01-29 Sony Corp Positioning calculation method and receiver for positioning
WO2006022318A1 (en) * 2004-08-25 2006-03-02 The Ritsumeikan Trust Independent positioning device and independent positioning method
JP2007292610A (en) * 2006-04-25 2007-11-08 Furuno Electric Co Ltd Satellite navigation receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190723A (en) * 2009-02-18 2010-09-02 Seiko Epson Corp Position calculating method and position calculating device
KR101175589B1 (en) 2012-06-15 2012-09-07 한국항공우주연구원 Detecting Method of GPS Clock Signal Jump Using Carrier Phase Measurements in Real -Time
KR101843004B1 (en) 2017-11-15 2018-03-29 한국 천문 연구원 Global precise point positioning apparatus using inter systm bias of multi global satellite positioning systems and the method thereof
CN113341437A (en) * 2021-05-21 2021-09-03 东南大学 GNSS unmodeled error inversion method
CN113341437B (en) * 2021-05-21 2024-05-28 东南大学 GNSS unmodeled error inversion method

Similar Documents

Publication Publication Date Title
KR101151782B1 (en) Independent positioning device and independent positioning method
JP7153427B2 (en) POSITIONING METHOD AND POSITIONING DEVICE USING SATELLITE POSITIONING SYSTEM
JP6907083B2 (en) Distributed Kalman filter architecture for ambiguity estimation of carrier propagation distance
JP5305416B2 (en) A method and apparatus for detecting ionospheric anomalies in a satellite navigation system.
CN104714244A (en) Multi-system dynamic PPP resolving method based on robust self-adaption Kalman smoothing
JP5253067B2 (en) Position measuring apparatus and position measuring method using GPS
US20060262010A1 (en) GPSR multi-frequency measuring device, corrective method and program for ionospheric delay
US7733269B2 (en) Positioning apparatus and positioning system
CN104335069A (en) Method and apparatus for determining position in a global navigation satellite system
JP7329814B2 (en) Positioning device, positioning method, positioning program, positioning program storage medium, application device, and positioning system
JP4498399B2 (en) Positioning system and positioning method
JP4108738B2 (en) Positioning device
US11112508B2 (en) Positioning method and positioning terminal
JP4723801B2 (en) Relative positioning device
JP2009079975A (en) Positioning system
JP2008082819A (en) Positioning instrument and method
RU2624268C1 (en) Method of determining mutual position of objects by signals of global navigation satellite systems
EP2000818A1 (en) System and method for determining displacements of objects
KR20120070540A (en) Relative time measurement system with nanosecond level accuracy
RU2592077C1 (en) Method of measuring relative position of objects from global navigation satellite system signals
JP4928114B2 (en) Carrier phase relative positioning device
KR101151670B1 (en) Standard deviation establishing method for gnss pseudorange correction considering reference receiver clock adjustment effect
WO2017022391A1 (en) Multipath detection device, multipath detection method, multipath detection program, positioning device, positioning method, and positioning program
JP2013253814A (en) Positioning method, positioning program, positioning apparatus, and information apparatus terminal
US11294072B2 (en) Method, device and server for estimation of IFB calibration value

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090924

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090924

A521 Written amendment

Effective date: 20090928

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424